Monte Carlo Methods for Uncertainty and Risk Assessment: A Methodological Review Across Engineering and Applied Statistics

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorRCMOS - Revista Científica Multidisciplinar o Saberpt_BR
Autor(es): dc.contributor.authorAlonso Sanchez Clavijo, Dennis-
Data de aceite: dc.date.accessioned2026-02-09T20:37:15Z-
Data de disponibilização: dc.date.available2026-02-09T20:37:15Z-
Data de envio: dc.date.issued2026-02-09-
Fonte completa do material: dc.identifierhttps://submissoesrevistacientificaosaber.com/index.php/rcmos/article/view/2031-
identificador: dc.identifier.otherMONTE_CARLO_UNCERTAINTY_RISK_ASSESSMENT_REVIEW.pdfpt_BR
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/capes/1134528-
Resumo: dc.description.abstractThis paper presents a methodological review of Monte Carlo methods as a consolidated toolkit for uncertainty and risk assessment in engineering and applied statistics. Monte Carlo simulation has become one of the most widely adopted stochastic approaches for analyzing systems subject to variability, incomplete information, and complex probabilistic dependencies. Based on the examination of 24 representative studies published between 1989 and 2025, this review synthesizes the method’s theoretical foundations, implementation workflows, and major application domains, ranging from structural reliability analysis to financial risk evaluation. Particular attention is devoted to the attributes that underpin its widespread adoption—namely flexibility, interpretability, and robustness in nonlinear and high-dimensional contexts—as well as to intrinsic limitations, including slow convergence rates, dependence on accurate input distributions, and high computational demand. The review further discusses recent methodological advances designed to mitigate these constraints, such as hybrid frameworks integrating Monte Carlo sampling with machine learning techniques and intelligent variance-reduction strategies. Overall, the study provides a comprehensive analytical perspective on the contribution of Monte Carlo methods to decision-support systems and outlines future research directions aimed at enhancing efficiency, scalability, and integration within complex stochastic modeling environments.pt_BR
Tamanho: dc.format.extent351 KBpt_BR
Tipo de arquivo: dc.format.mimetypePDFpt_BR
Idioma: dc.language.isoenpt_BR
Direitos: dc.rightsAttribution-NonCommercial-ShareAlike 3.0 Brazil*
Licença: dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/br/*
Palavras-chave: dc.subjectMonte Carlo Simulationpt_BR
Palavras-chave: dc.subjectUncertainty Analysispt_BR
Palavras-chave: dc.subjectRisk Assessmentpt_BR
Palavras-chave: dc.subjectStochastic Modelingpt_BR
Título: dc.titleMonte Carlo Methods for Uncertainty and Risk Assessment: A Methodological Review Across Engineering and Applied Statisticspt_BR
Tipo de arquivo: dc.typetextopt_BR
Aparece nas coleções:Textos

Não existem arquivos associados a este item.

Este item está licenciado sob uma Licença Creative Commons Creative Commons