Até aonde irão seus limites: Sequências numéricas

Elzimar de Oliveira Rufino Universidade Federal de Roraima elzimar.rufino@ufrr.br

17 de abril de 2025

Licença Creative Commons: Este material é disponibilizado sob a licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional. Você é livre para copiar, distribuir, exibir e executar a obra, bem como criar obras derivadas, desde que credite o autor original e compartilhe as obras derivadas sob a mesma licença.

Apresentação

Caro(a) Estudante,

Seja bem-vindo(a) à disciplina de Sequências e Séries!. Este material foi cuidado-samente preparado para auxiliar sua jornada de aprendizado.

Finalidade do Produto Educacional

Este produto educacional tem como finalidade principal desmistificar e elucidar o processo de demonstração da convergência de sequências numéricas utilizando a definição formal de limite. Através de uma abordagem passo a passo, com explicações detalhadas e exemplos práticos resolvidos, busca-se capacitar o estudante a:

- Compreender profundamente a definição formal de limite de uma sequência.
- Desenvolver a intuição necessária para manipular a desigualdade $|a_n L| < \epsilon$ e encontrar um valor n_o apropriado.
- Adquirir a habilidade de construir demonstrações rigorosas e logicamente consistentes de convergência.
- Aplicar a definição formal para verificar limites de diferentes tipos de sequências.
- Superar as dificuldades comuns associadas à compreensão e aplicação da definição.

Ao final deste material, espera-se que o estudante seja capaz de não apenas memorizar a definição, mas de compreendê-la em sua essência e utilizá-la com confiança para provar a convergência de sequências numéricas, desenvolvendo assim uma base sólida para estudos mais avançados em seqências e séries e também em análise matemática.

Carta do Professor ao Aluno

Prezado(a) Estudante,

Seja bem-vindo(a) a esta jornada pelo universo da convergência de sequências numéricas, onde a precisão da matemática se encontra com a intuição do infinito. O conceito de limite é fundamental em toda a Análise Matemática, e compreender como prová-lo utilizando a definição formal é um passo crucial para solidificar seus conhecimentos.

Neste material, embarcaremos juntos na tarefa de desmistificar essa definição, muitas vezes vista como abstrata e desafiadora. Nosso objetivo não é apenas apresentar as contas, mas sim guiá-lo(a) através do raciocínio lógico que as sustenta. Exploraremos o significado de cada componente – o ϵ que representa a nossa tolerância, o n_o que marca o ponto de partida da nossa certeza – e, principalmente, como eles interagem para formalizar a ideia de "aproximar-se indefinidamente".

Através de explicações detalhadas e exemplos cuidadosamente escolhidos, você será conduzido(a) pelo processo de encontrar o elusivo n_o a partir do termo geral da sequência e da nossa exigência de precisão (ϵ) . Verá como as manipulações algébricas e as implicações lógicas se unem para construir uma demonstração formal e irrefutável.

Lembre-se que a beleza da matemática reside em sua precisão e rigor. Dominar a definição de limite não é apenas uma habilidade técnica, mas também um exercício de pensamento crítico e lógico. Encare os desafios que surgirão não como obstáculos, mas como oportunidades de aprofundar sua compreensão e fortalecer seu raciocínio matemático.

Este material foi preparado com o intuito de ser um guia claro e acessível. Dedique tempo para estudar os exemplos, refaça os passos e não hesite em revisitar os conceitos sempre que necessário. Com dedicação e persistência, você descobrirá a elegância e o poder da definição formal de limite.

Espero que esta jornada seja enriquecedora e que, ao final, você se sinta mais confiante e apto(a) a explorar os fascinantes conceitos que a Análise Matemática tem a oferecer.

Bons estudos!

Elzimar de Oliveira Rufino Professor

Informações da Disciplina

Carga Horária

Carga horária total: 60 horas

Ementa

Sequências e Séries Numéricas. Sequências de Funções: Convergência Simples e Uniforme. Séries de Potência. Séries de Fourier.

Objetivo Geral do material

Instrumentalizar o aluno com os conceitos de sequências

Objetivos Específicos

 Sequências: Compreender a definição, tipos (crescente/decrescente) e propriedades (limitadas) de sequências numéricas. Calcular e analisar o limite de sequências.

Metodologia de Ensino

Apresentar material didático com explicações complementares com o intuito de proporcionar uma melhor compreensão do assunto limite de sequências e demosntrações usando tal definição.

Sumário

1	Intr	odução à Convergência de Sequências	3
		1.0.1 A Definição Formal de Convergência	S
		1.0.2 Estratégia para Encontrar n_o	
		1.0.3 Exemplos de Demonstração de Convergência	4
	1.1	Soma de Infinitos Termos de uma Progressão Geométrica (PG)	6
		1.1.1 Explorando mais um ponto de vista	8
	1.2	Conclusão	Ć
	1.3	Exercícios	Ć
	1.4	Exemplo de Série Geométrica Divergente com Razão Menor que -1	12

Capítulo 1

Introdução à Convergência de Sequências

Uma sequência numérica de números reais é uma lista ordenada de números, geralmente denotada por $(a_n)_{n\in}$ ou simplesmente $(a_1, a_2, a_3, ...)$, onde a_n é o n-ésimo termo da sequência e = $\{1, 2, 3, ...\}$ é o conjunto dos números naturais. Para alguma utilidade formal matemática considera-se uma sequencia como sendo uma função

$$n \mapsto a_n$$

que tem como domínio o conjunto dos números naturais \mathbb{N} e como contradomínio (conjunto das imagens) o conjunto dos números reais \mathbb{R} . O leitor poderá consultar a referência [1] para mais detalhes.

É de nosso interesse estudar a convergência de sequências. Intuitivamente, dizemos que uma sequência (a_n) converge para um limite a se os termos a_n se aproximam cada vez mais de a à medida que n se torna cada vez maior. Mas para sermos rigorosos em matemática, precisamos de uma definição precisa.

1.0.1 A Definição Formal de Convergência

Definição 1.1 (Convergência de uma Sequência). Uma sequência $(a_n)_{n\in\mathbb{N}}$ converge para um número real a se, para todo número real $\epsilon > 0$, existe um número natural n_o tal que para todo $n \in \mathbb{N}$ com $n \geq n_o$, temos $|a_n - a| < \epsilon$.

Simbolicamente, isto é escrito como:

$$\lim_{n \to \infty} a_n = a \iff (\forall \epsilon > 0)(\exists n_o \in \mathbb{N})(\forall n \in \mathbb{N}, n \ge n_o \implies |a_n - a| < \epsilon).$$

A designaldade $|a_n - a| < \epsilon$ podde ser reescrita pondo-se $-\epsilon < a_n - a < \epsilon$. De modo equivalente, $a - \epsilon < a_n < a + \epsilon$. Em termos de intervalos $a_n \in (a - \epsilon, a + \epsilon)$.

Aqui, ϵ representa uma "tolerância" ou uma "vizinhança" ao redor do limite a. A definição diz que para qualquer tolerância (por menor que seja), podemos encontrar um ponto na sequência (indexado por n_o) a partir do qual todos os termos subsequentes da sequência estão dentro dessa tolerância do limite a.

1.0.2 Estratégia para Encontrar n_o

O desafio ao usar a definição formal é, dado um $\epsilon > 0$, exibir um número natural n_o que satisfaça a condição $|a_n - a| < \epsilon$ para todo $n \ge n_o$. A estratégia geral envolve os seguintes passos:

- 1. Começar com a desigualdade $|a_n a| < \epsilon$.
- 2. Manipular algebricamente essa desigualdade para isolar n. O objetivo é obter uma expressão da forma n > alguma função de ϵ .
- 3. Escolher um número natural n_o que seja maior ou igual a essa "função de ϵ ". Geralmente, tomamos o menor inteiro maior que essa função.

Vamos agora aplicar essa estratégia a alguns exemplos.

1.0.3 Exemplos de Demonstração de Convergência

Exemplo 1.2. Considere a sequência definida por $a_n = \frac{1}{n}$. Vamos demonstrar que $\lim_{n\to\infty}\frac{1}{n}=0$.

Demonstração: Seja $\epsilon > 0$ um número real positivo arbitrário. Precisamos encontrar um número natural n_o tal que para todo $n \in \mathbb{N}$ com $n \geq n_o$, tenhamos $\left|\frac{1}{n} - 0\right| < \epsilon$. A desigualdade a ser satisfeita é:

$$\left|\frac{1}{n}\right| < \epsilon$$

Como $n \in \mathbb{N}$, temos n > 0, então $\left| \frac{1}{n} \right| = \frac{1}{n}$. Assim, a designaldade se torna:

$$\frac{1}{n} < \epsilon$$
.

Multiplicando ambos os lados por n (que é positivo) e dividindo por ϵ (que é positivo), obtemos:

$$n > \frac{1}{\epsilon}$$

Agora, precisamos encontrar um número natural n_o que seja maior que $\frac{1}{\epsilon}$. Pela propriedade arquimediana dos números reais, para qualquer número real x, existe um número natural n_o tal que $n_o > x$. Portanto, podemos escolher n_o como o menor inteiro estritamente maior que $\frac{1}{\epsilon}$. Formalmente, podemos tomar $n_o = \lfloor \frac{1}{\epsilon} \rfloor + 1$.

Vamos passar a conferir que a escolha feita realmente satisfaz a definição.

Com essa escolha de n_o , para qualquer $n \in \mathbb{N}$ com $n \geq N$, temos:

$$n \ge n_o > \frac{1}{\epsilon}.$$

Como n > 0 e $\epsilon > 0$, podemos tomar os recíprocos e inverter a desigualdade:

$$\frac{1}{n} < \epsilon$$

Como $\frac{1}{n} > 0$, temos $\left| \frac{1}{n} \right| = \frac{1}{n}$, logo:

$$\left|\frac{1}{n} - 0\right| < \epsilon.$$

Portanto, para todo $\epsilon > 0$, existe um $n_o \in (\text{especificamente}, n_o = \lfloor \frac{1}{\epsilon} \rfloor + 1)$ tal que para todo $n \ge n_o$, $\left| \frac{1}{n} - 0 \right| < \epsilon$. Pela definição, $\lim_{n \to \infty} \frac{1}{n} = 0$.

Exemplo 1.3. Considere a sequência definida por $a_n = \frac{2n+1}{n+3}$. Vamos demonstrar que $\lim_{n\to\infty} \frac{2n+1}{n+3} = 2$.

Demonstração: Seja $\epsilon > 0$ um número real positivo arbitrário. Precisamos encontrar um número natural n_o tal que para todo $n \in \text{com } n \ge N$, tenhamos $\left|\frac{2n+1}{n+3} - 2\right| < \epsilon$.

Primeiro, vamos simplificar a expressão $\left|\frac{2n+1}{n+3}-2\right|$:

$$\left|\frac{2n+1}{n+3}-2\right| = \left|\frac{2n+1-2(n+3)}{n+3}\right| = \left|\frac{2n+1-2n-6}{n+3}\right| = \left|\frac{-5}{n+3}\right| = \frac{5}{n+3}.$$

A desigualdade a ser satisfeita é:

$$\frac{5}{n+3} < \epsilon$$

Como $n \in \mathbb{N}$, temos $n \geq 1$, então n+3>0. Também $\epsilon>0$. Podemos manipular a desigualdade:

$$5 < \epsilon(n+3)$$

$$5 < \epsilon n + 3\epsilon$$

$$5 - 3\epsilon < \epsilon n$$

Se $\epsilon > 0$, podemos dividir por ϵ :

$$\frac{5 - 3\epsilon}{\epsilon} < n$$

$$n > \frac{5}{\epsilon} - 3$$

Agora, precisamos encontrar um número natural n_o que seja maior que $\frac{5}{\epsilon}-3$. Novamente, pela propriedade arquimediana, tal n_o existe. Podemos escolher $n_o = \lfloor \frac{5}{\epsilon} - 3 \rfloor + 1$. No entanto, precisamos garantir que n_o seja um número natural, ou seja, $n_o \geq 1$.

Considerando $\epsilon > 0$, se $\epsilon \geq 5/3$, então $\frac{5}{\epsilon} - 3 \leq 0$, e qualquer $n_o \geq 1$ funcionará, pois $\frac{5}{n+3}$ será sempre positivo e menor ou igual a $5/4 < \epsilon$.

Se $0 < \epsilon < 5/3$, então $\frac{5}{\epsilon} - 3 > 0$. Podemos escolher n_o como o menor inteiro estritamente maior que $\frac{5}{\epsilon} - 3$, ou seja, $N = \max\{1, \lfloor \frac{5}{\epsilon} - 3 \rfloor + 1\}$.

Com essa escolha de n_o , para qualquer $n \in \mathbb{N}$ com $n \geq n_o$, temos $n > \frac{5}{\epsilon} - 3$, o que implica:

$$\epsilon n > 5 - 3\epsilon$$

$$\epsilon n + 3\epsilon > 5$$

$$\epsilon(n+3) > 5$$

$$\epsilon > \frac{5}{n+3}$$

Como $\frac{5}{n+3} = |\frac{2n+1}{n+3} - 2|$, temos $|\frac{2n+1}{n+3} - 2| < \epsilon$. Portanto, $\lim_{n \to \infty} \frac{2n+1}{n+3} = 2$.

1.1 Soma de Infinitos Termos de uma Progressão Geométrica (PG)

A soma de infinitos termos de uma Progressão Geométrica (PG) só é finita se a razão (q) da PG estiver entre -1 e 1, ou seja, |q| < 1. Nesse caso, à medida que o número de termos aumenta, os termos da PG se aproximam cada vez mais de zero, e a soma parcial converge para um valor específico.

A fórmula para a soma infinita (S_{∞}) de uma PG é dada por:

$$S_{\infty} = \frac{a_1}{1 - q}$$

onde:

- a_1 é o primeiro termo da PG.
- q é a razão da PG, com |q| < 1.

Por que a soma é finita apenas se |q| < 1?

- Se $|q| \ge 1$: Os termos da PG não se aproximam de zero (exceto se $a_1 = 0$), e a soma parcial cresce indefinidamente (ou oscila sem convergir), não tendo um limite finito.
 - Se q > 1 ou q = 1 (com $a_1 \neq 0$), os termos crescem em magnitude, e a soma tende a $\pm \infty$.
 - Se q = -1 (com $a_1 \neq 0$), a sequência das somas parciais oscila entre a_1 e 0, não convergindo.
 - Se q < -1, os termos crescem em magnitude e alternam o sinal, fazendo com que a soma parcial não convirja.

Exemplo: Uma PG Gera uma Nova Sequência das Reduzidas

Considere a Progressão Geométrica (PG) com primeiro termo $a_1 = 1$ e razão $q = \frac{1}{2}$. Os termos dessa PG são:

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

Agora, vamos gerar uma nova sequência formada pelas **somas reduzidas** (ou somas parciais) dessa PG, que podemos expressar usando a notação de somatório:

- $S_1 = \sum_{k=1}^{1} \left(\frac{1}{2}\right)^{k-1} = 1$
- $S_2 = \sum_{k=1}^{2} \left(\frac{1}{2}\right)^{k-1} = 1 + \frac{1}{2} = \frac{3}{2}$
- $S_3 = \sum_{k=1}^3 \left(\frac{1}{2}\right)^{k-1} = 1 + \frac{1}{2} + \frac{1}{4} = \frac{4}{4} + \frac{2}{4} + \frac{1}{4} = \frac{7}{4}$
- $S_4 = \sum_{k=1}^4 \left(\frac{1}{2}\right)^{k-1} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{8}{8} + \frac{4}{8} + \frac{2}{8} + \frac{1}{8} = \frac{15}{8}$

• $S_n = \sum_{k=1}^n \left(\frac{1}{2}\right)^{k-1}$. A fórmula para a soma dos n primeiros termos de uma PG é $S_n = \frac{a_1(1-q^n)}{1-q}$. Neste caso:

$$S_n = \frac{1\left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}} = \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} = 2\left(1 - \left(\frac{1}{2}\right)^n\right) = 2 - 2 \cdot \frac{1}{2^n} = 2 - \frac{1}{2^{n-1}}$$

A sequência das somas reduzidas é, portanto:

$$1, \frac{3}{2}, \frac{7}{4}, \frac{15}{8}, \frac{31}{16}, \dots, 2 - \frac{1}{2^{n-1}}, \dots$$

Análise da Forma do Termo Geral da Sequência das Reduzidas

O termo geral da sequência das somas reduzidas para esta PG específica é:

$$S_n = 2 - \frac{1}{2^{n-1}}$$

Vamos analisar a forma desse termo geral:

- Constante: O termo geral possui uma parte constante, que é 2.
- Termo Variável: Há um termo variável, $-\frac{1}{2^{n-1}}$, que depende de n.
- Comportamento à medida que n aumenta: À medida que n tende ao infinito $(n \to \infty)$, o termo $\frac{1}{2^{n-1}}$ tende a zero. Isso ocorre porque a base da potência (1/2) está entre -1 e 1.

$$\lim_{n \to \infty} \frac{1}{2^{n-1}} = 0$$

Portanto, o limite da sequência das somas reduzidas é:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(2 - \frac{1}{2^{n-1}} \right) = 2 - 0 = 2$$

Este resultado coincide com a fórmula da soma infinita da PG:

$$S_{\infty} = \frac{a_1}{1 - q} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2$$

Conclusão sobre a forma do termo geral da sequência das reduzidas:

O termo geral da sequência das somas reduzidas de uma PG convergente (onde |q| < 1) tende para a soma infinita da PG à medida que n aumenta. A forma do termo geral geralmente envolve uma constante (que é a soma infinita) mais ou menos um termo que decai exponencialmente para zero, dependendo da razão q e do primeiro termo a_1 .

No exemplo, a sequência das reduzidas se aproxima do valor 2 à medida que adicionamos mais termos da PG original. A "distância" entre a soma parcial S_n e a soma infinita (2) é dada por $\frac{1}{2^{n-1}}$, que diminui rapidamente com o aumento de n.

1.1.1 Explorando mais um ponto de vista

Seja a sequência das somas parciais (ou reduzidas) S_n de uma série geométrica definida por:

$$S_n = \sum_{k=0}^n t^k$$

onde t é a razão da progressão geométrica.

Obtendo a Fórmula para S_n

Para encontrar uma fórmula fechada para S_n , podemos escrever a soma explicitamente:

$$S_n = 1 + t + t^2 + \dots + t^n$$

Multiplicando ambos os lados por t, obtemos:

$$tS_n = t + t^2 + t^3 + \dots + t^{n+1}$$

Subtraindo a segunda equação da primeira:

$$S_n - tS_n = (1 + t + t^2 + \dots + t^n) - (t + t^2 + t^3 + \dots + t^{n+1})$$

A maioria dos termos se cancela, resultando em:

$$S_n(1-t) = 1 - t^{n+1}$$

Se $t \neq 1$, podemos dividir por (1-t) para obter a fórmula para a soma das reduzidas:

$$S_n = \frac{1 - t^{n+1}}{1 - t}, \quad t \neq 1$$

Se t=1, então:

$$S_n = \sum_{k=0}^n 1^k = 1 + 1 + \dots + 1 \quad ((n+1) \text{ vezes})$$

$$S_n = n + 1$$

Exemplo das Reduzidas S_1, S_2, S_3, \ldots

Considerando a série geométrica $\sum_{k=0}^{n} t^{k}$:

- Para n = 1: $S_1 = \sum_{k=0}^{1} t^k = t^0 + t^1 = 1 + t$
- Para n = 2: $S_2 = \sum_{k=0}^{2} t^k = t^0 + t^1 + t^2 = 1 + t + t^2$
- Para n = 3: $S_3 = \sum_{k=0}^3 t^k = t^0 + t^1 + t^2 + t^3 = 1 + t + t^2 + t^3$
- Em geral: $S_n = 1 + t + t^2 + \dots + t^n = \frac{1 t^{n+1}}{1 t}$, para $t \neq 1$.

Soma da Série Geométrica Infinita S_{∞}

A soma da série geométrica infinita é definida como o limite da sequência das somas parciais S_n quando n tende ao infinito:

$$S_{\infty} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=0}^{n} t^k$$

Considerando a fórmula para S_n quando $t \neq 1$:

$$S_{\infty} = \lim_{n \to \infty} \frac{1 - t^{n+1}}{1 - t}$$

O valor desse limite depende do valor de t:

-Se |t| < 1: Então $\lim_{n\to\infty} t^{n+1} = 0$, e a série converge para:

$$S_{\infty} = \frac{1-0}{1-t} = \frac{1}{1-t}$$

Se $|t| \geq 1$:

Se t = 1, $S_n = n + 1$, e $\lim_{n \to \infty} S_n = \infty$.

- Se t = -1, S_n oscila entre 1 e 0, não convergindo.

Se |t| > 1, $|t^{n+1}| \to \infty$, e o limite não existe (a série diverge).

Portanto, a soma da série geométrica infinita $\sum_{k=0}^{\infty} t^k$ é dada por:

$$\sum_{k=0}^{\infty} t^k = \begin{cases} \frac{1}{1-t}, & \text{se } |t| < 1\\ \text{diverge}, & \text{se } |t| \ge 1 \end{cases}$$

1.2 Conclusão

Demonstrar a convergência de uma sequência usando a definição formal envolve mostrar que para qualquer nível de precisão $\epsilon > 0$, podemos encontrar um ponto na sequência a partir do qual todos os termos subsequentes estão dentro dessa precisão do limite. O processo chave é manipular a desigualdade $|a_n - a| < \epsilon$ para encontrar uma condição sobre n em termos de ϵ , e então escolher um número natural n_o que satisfaça essa condição. A propriedade arquimediana dos números reais garante que tal n_o sempre existirá se a sequência realmente convergir para a.

1.3 Exercícios

Exercício 1.4. Prove, usando a definição de limite que $\lim_{n\to\infty} \left(2-\frac{3}{n}\right) = 2$.

Exercício 1.5. Prove, usando a definição de limite que $\lim_{n\to\infty} \frac{4n+1}{n+2} = 4$.

Exercício 1.6. Uma sequência geométrica tem o primeiro termo $a_1 = 3$ e razão q = -2.

1. Escreva os cinco primeiros termos dessa sequência.

2. Calcule a soma dos oito primeiros termos dessa sequência.

Exercício 1.7. Considere a sequência geométrica $6, 2, \frac{2}{3}, \frac{2}{9}, \dots$

- 1. Determine a razão dessa sequência.
- 2. Determine se a soma de todos os termos dessa sequência é finita. Justifique sua resposta.
- 3. Caso a soma seja finita, calcule o valor dessa soma.

Atividade Exploratória: Desvendando o Comportamento da Série Harmônica

Objetivo: Investigar o comportamento da série harmônica e desenvolver uma intuição sobre sua convergência ou divergência.

Materiais:

- Papel e caneta/lápis
- Calculadora (opcional, mas pode ser útil para verificar cálculos)
- Computador com acesso à internet (opcional, para visualizar gráficos ou simulações)

Introdução:

A série harmônica é uma das séries mais importantes e intrigantes em matemática. Ela é definida como a soma dos inversos de todos os números naturais:

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{n} + \dots = \sum_{k=1}^{\infty} \frac{1}{k}$$

Nesta atividade, vamos explorar o comportamento dessa série à medida que adicionamos mais e mais termos.

Parte 1: Calculando as Somas Parciais

- 1. Calcule as primeiras somas parciais da série harmônica:
 - $H_1 = 1$
 - $H_2 = 1 + \frac{1}{2} = ?$
 - $H_3 = 1 + \frac{1}{2} + \frac{1}{3} = ?$
 - $H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = ?$
 - $H_5 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = ?$
 - Continue calculando até H_{10} . Anote seus resultados em uma tabela como a seguinte:

n	H_n (Soma Parcial)
1	1
2	
2 3 4	
4	
5 6	
6	
7	
7 8 9	
10	

2. Observe os valores de H_n à medida que n aumenta. A soma parece estar se aproximando de algum valor específico? Ou parece estar crescendo indefinidamente?

Parte 2: Agrupando os Termos

Vamos tentar uma abordagem diferente para analisar o crescimento da série. Agrupe os termos da seguinte maneira:

$$H_n = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) + \dots$$

- 1. Compare a soma dos termos dentro de cada parêntese com uma fração mais simples:
 - $\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = ?$
 - $\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = ?$
 - $\frac{1}{9} + \cdots + \frac{1}{16} > \frac{1}{16} + \frac{1}{16} + \cdots + \frac{1}{16}$ (quantos termos de $\frac{1}{16}$ há?) =?
- 2. Generalize esse padrão. Para o grupo de termos de $\frac{1}{2^{k-1}+1}$ até $\frac{1}{2^k}$, compare a soma com um múltiplo de $\frac{1}{2^k}$. Quantos termos há nesse grupo?
- 3. Usando essa comparação, tente encontrar uma cota inferior para a soma parcial H_n para alguns valores de n que são potências de 2 (por exemplo, n = 2, 4, 8, 16). Por exemplo:
 - $H_2 = 1 + \frac{1}{2} > ?$
 - $H_4 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > 1 + \frac{1}{2} + ?$
 - $H_8 = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) > 1 + \frac{1}{2} + ? + ?$
- 4. O que essa cota inferior sugere sobre o comportamento de H_n quando n se torna muito grande?

Parte 3: Reflexão e Discussão

- 1. Com base nos seus cálculos das primeiras somas parciais e na análise do agrupamento dos termos, você acha que a série harmônica converge para um valor finito ou diverge (cresce indefinidamente)? Justifique sua resposta.
- 2. Compare suas conclusões com as de seus colegas. Houve diferentes interpretações dos resultados?
- 3. Pesquise (opcional) sobre a prova formal da divergência da série harmônica. A estratégia de agrupamento que utilizamos está relacionada a essa prova?

Conclusão:

Esta atividade exploratória tem como objetivo fornecer uma compreensão intuitiva do comportamento da série harmônica. Embora os primeiros termos da série diminuam rapidamente, a soma total cresce surpreendentemente devagar, mas continua crescendo indefinidamente. A técnica de agrupar os termos nos dá uma maneira poderosa de visualizar essa divergência. A série harmônica é um exemplo importante em matemática, pois ilustra que uma série cujos termos tendem a zero nem sempre converge.

1.4 Exemplo de Série Geométrica Divergente com Razão Menor que -1

Considere a série geométrica com o primeiro termo a=3 e a razão r=-2. A série é:

$$\sum_{n=0}^{\infty} a \cdot r^n = \sum_{n=0}^{\infty} 3 \cdot (-2)^n = 3 - 6 + 12 - 24 + 48 - 96 + 192 - 384 + \dots$$

Como $|r| = |-2| = 2 \ge 1$, a série é divergente.

Vamos observar as somas parciais (reduzidas) desta série até o oitavo termo (S_8) :

- $S_1 = 3$
- $S_2 = 3 6 = -3$
- $S_3 = 3 6 + 12 = 9$
- $S_4 = 3 6 + 12 24 = -15$
- $S_5 = 3 6 + 12 24 + 48 = 33$
- $S_6 = 3 6 + 12 24 + 48 96 = -63$
- $S_7 = 3 6 + 12 24 + 48 96 + 192 = 129$
- $S_8 = 3 6 + 12 24 + 48 96 + 192 384 = -255$

Podemos observar que a sequência das somas parciais $(3, -3, 9, -15, 33, -63, 129, -255, \dots)$ não converge para um valor finito. Em vez disso, os valores oscilam entre positivos e negativos, e a magnitude dos termos cresce exponencialmente.

A fórmula para a soma dos primeiros n termos de uma série geométrica é $S_n = a \frac{1-r^n}{1-r}$. Para este exemplo:

$$S_n = 3\frac{1 - (-2)^n}{1 - (-2)} = 3\frac{1 - (-2)^n}{3} = 1 - (-2)^n$$

Vamos verificar alguns valores usando a fórmula:

•
$$S_1 = 1 - (-2)^1 = 1 - (-2) = 1 + 2 = 3$$

•
$$S_2 = 1 - (-2)^2 = 1 - 4 = -3$$

•
$$S_3 = 1 - (-2)^3 = 1 - (-8) = 1 + 8 = 9$$

•
$$S_4 = 1 - (-2)^4 = 1 - 16 = -15$$

•
$$S_8 = 1 - (-2)^8 = 1 - 256 = -255$$

A fórmula confirma o comportamento das somas parciais. Como $(-2)^n$ alterna de sinal e cresce em magnitude, a sequência das somas parciais não converge. Portanto, a série geométrica com a=3 e r=-2 é divergente. Vamos analisar o comportamento de S_n para valores pares e ímpares de n quando $n \to \infty$.

Para n par $(n = 2k, k \in \mathbb{N})$

$$S_{2k} = 1 - (-2)^{2k} = 1 - ((-2)^2)^k = 1 - 4^k$$

À medida que $k \to \infty$, $4^k \to \infty$, logo $S_{2k} = 1 - 4^k \to -\infty$.

Para n impar $(n = 2k + 1, k \in \mathbb{N})$

$$S_{2k+1} = 1 - (-2)^{2k+1} = 1 - ((-2)^{2k} \cdot (-2)^1) = 1 - (4^k \cdot (-2)) = 1 + 2 \cdot 4^k$$

À medida que $k \to \infty$, $4^k \to \infty$, logo $S_{2k+1} = 1 + 2 \cdot 4^k \to +\infty$.

Como as subsequências das somas parciais para índices pares tendem a $-\infty$ e as subsequências das somas parciais para índices ímpares tendem a $+\infty$, a sequência das somas parciais (S_n) não converge para um único valor finito.

Formalmente: Para que $\lim_{n\to\infty} S_n = L$ exista (onde L é um número real finito), para todo $\epsilon > 0$, deve existir um $N \in \mathbb{N}$ tal que para todo n > N, $|S_n - L| < \epsilon$.

No nosso caso, dado qualquer $a \in \mathbb{R}$ e qualquer $\epsilon > 0$, podemos sempre encontrar valores de n pares e impares suficientemente grandes tais que $|S_n - a| > \epsilon$. Por exemplo, para n par grande, S_n é um número negativo de grande magnitude, e para n impar grande, S_n é um número positivo de grande magnitude, ambos estando a uma distância maior que ϵ de a.

Referências Bibliográficas

[1] Guidorizzi, Amilton Luiz.. *Um curso de Cálculo*Volume 4. 5. ed. Rio de Janeiro: LTC, 2002.