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O material que aqui se encontra sao notas de aula para a disciplina de Pré-Célculo dos
cursos de Matematica, Fisica e Quimica da UFTM. Todo seu contetido é baseado nos livros
e arquivos citados na bibliografia. Estas notas de aula também podem ser utilizadas como

material complementar a disciplina de Fundamentos de Calculo do PROFMAT.

1 Conjuntos

A nocao matematica de conjunto é uma noc¢ao primitiva, podendo ser considerado qual-
quer colecao de objetos ou entidades. Os objetos que compoem esta colecao sao chamados
elementos do conjunto. Designamos, normalmente, os conjuntos por letras maitusculas, e seus
elementos por letras mintsculas.

Para indicarmos que um objeto x é elemento de um conjunto A, escrevemos = € A (lé-se:
x pertence a A). Se um objeto x nao é elemento de A, escrevemos x ¢ A (lé-se: x nao
pertence a A).

Os conjuntos podem ser representados da seguinte forma:

e Representagao analitica: Listagem dos elementos entre chaves, separados por virgula.
1. A={a,b,c,d, e}
2. B=11,2,3,...,100}

3. C=1{2,3,5711,13,..}



e Representagao por diagramas: Regioes planas interiores a uma curva fechada e simples.

e Representacao sintética: Quando escrevemos entre chaves uma caracteristica comum a

todos os elementos formadores do conjunto

1. A= {z | x satisfaz a propriedade P}
2. B={z|x évogal} ={a,e,i,o,u}

3. C = {z | # é um numero inteiro par entre 1 e 10} = {2,4,6, 8,10}

Definigao 1.1 (Conjunto Vazio). Chama-se conjunto vazio o conjunto que ndao possui ele-

mento algum, e denota-se por {} ou ().
Exemplo 1.2. 1. A={z |z é impar e par} = ()
2. B={x|z<-lex>1}=10
Definigao 1.3 (Conjunto Unitério). Eo conjunto que possui apenas um elemento.
Exemplo 1.4. 1. A={a}
2. B={x| X épareéestd entre 5 ¢ 7} = {6}

Definigao 1.5 (Conjuntos Iguais). Dois conjuntos A e B sao iguais quando todo elemento de
A pertence a B e, reciprocamente, todo elemento de B pertence a A. Neste caso, denota-se

que A = B.

Dizemos que A é diferente de B (A # B), se existe um elemento de algum conjunto que

nao pertenga ao outro.

Exemplo 1.6. 1. {1,2,3,4,5} ={2,5,1,4,3}
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2. {2,4,6,8,...} = {x | x é par e maior que 0}.
3. {1,2,3} = {1,2,2,3,3,3}
4. {1,2,3,4} #{1,2,3,4,5}

Definicao 1.7 (Subconjunto). Um conjunto A é subconjunto de um conjunto B se todo
elemento de A também for elemento de B. Em outras palavras, se para todo = € A tem-se
que = € B. Neste caso, denota-se que A C B (lé-se: A esta contido em B), ou B D A (lé-se:

B contém A).

Se o conjunto A nao for subconjunto de B, escrevemos que A nao estd contido em B

(A ¢B). Neste caso, existe x € A tal que = ¢ B.
Exemplo 1.8. 1. {1,2,3,4} C {1,2,3,4,5}
2. {3,5,7} ¢ {1,2,3,4,5}
3. {x | x é inteiro e multiplo de 8} C {..., —8,—6,—4,—-2,0,2,4,6,8, ...}
Observagao 1.9. 1. () é um subconjunto de qualquer conjunto A () C A).
2. Todo conjunto é subconjunto dele mesmo (A C A) (Reflexiva)
3. A= B se, e somente se, A C B e B C A (Anti-simétrica)
4. Se AC Be B C C entao A C C (Transitiva)
5. Se A C B e A# B, dizemos que A é um subconjunto préprio de B.

Definigao 1.10 (Conjunto das partes). Dado um conjunto A, chama-se conjunto das partes

de A, denotado por P(A), ao conjunto formado por todos os subconjuntos de A.



Exemplo 1.11. 1. Se A = {a} entdao P(A) = {0, {a}}.
2. Se A= {1,2,3} entiio P(A) = {0, {1},{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1,2,3}}

Observacao 1.12. 1. Se o conjunto A possui n elementos, entao numero de elementos de

P(A) ¢ dado por 2" elementos.
2. Dado o conjunto A = {1, 2,3}, temos que {1,2} C A e {1,2} € P(A).

Exemplo 1.13. Seja A = {1,2}, B={2,3}, C ={1,3,4} e D = {1,2,3,4}. Verifique se as

afirmagoes abaixo sao verdadeiras ou falsas.

a) ACB b) BC D c)BcC
d)C>DA e)DDA fyBgC
g)3€A h)2eB i)2eC

1.1 Operagoes com conjuntos

Definicao 1.14 (Unido). Dados dois conjuntos A e B, chama-se unido (ou reuniao) de A e

B, denotado por AU B, o conjunto formado pelos elementos que pertencem a A ou a B.

AUB={z|x€ Aouz € B}

Exemplo 1.15. 1. Se A ={a,b,c} e B=1{1,2,3} entdo AUB = {a,b,c,1,2,3}.
2. Se A={1,2,3} e B={1,3,5,7} entdo AUB = {1,2,3,5,7}.

3. Se A={a,b,c} e B=1{a,b,c,d} entao AU B = {a,b,c,d} = B



Propriedades 1.16. Dados os conjuntos A, B e C, temos
1. AUA = A (idempotente)
2. AU = A (elemento neutro)
3. AUB = BU A (comutativa)
4. AU(BUC) = (AUB)UC (associativa)

Defini¢ao 1.17 (Intersegao). Dados dois conjuntos A e B, chama-se interse¢ao de A e B,
denotado por AN B, o conjunto formado pelos elementos que pertencem a A e pertencem a
B.

ANB={z|x€ Aez € B}

ANB

ANB

ANB

Exemplo 1.18. 1. Se A= {a,b,c} e B={1,2,3} entao AN B = 0.
2. Se A={1,2,3} e B=1{1,3,5,7} entao AN B = {1, 3}.
3. Se A={a,b,c} e B={a,b,c,d} entao AN B = {a,b,c} = A
Propriedades 1.19. Dados os conjuntos A, B e C, temos
1. AN A= A (idempotente)
2. AnP=0

3. AN B = BN A (comutativa)



4. An(BNC)=(ANB)NC (associativa)
5. AN(BUC) = (AN B)U(ANC) (distributiva)
6. AU(BNC)=(AUB)N(AUC) (distributiva)
Observacao 1.20. Quando AN B = (), dizemos que A e B sao conjuntos disjuntos.

Defini¢ao 1.21 (Diferenca). Dados dois conjuntos A e B, chama-se diferenca entre B e A,

denotado por B — A, o conjunto formado pelos elementos que pertencem a B e nao pertencem

a A.

B—A={zx|xeBeux¢A}

O®

Exemplo 1.22. 1. Se A={1,2,3} e B=1{4,5,6} entdao B— A ={4,5,6} = B.
2. Se A={1,2,3} e B=1{1,3,5,7} entao B— A = {5,7}.
3. Se A={1,2,3} e B=1{1,3,5,7} entao A — B = {2}.
4. Se A={a,b,c} e B=1{a,b,c,d} entao B — A = {d}
Propriedades 1.23. Dados os conjuntos A, B e C, temos
L. A—A=1
2. A-0=A

3. A—B# B— A, em geral.



4. AN(B—-C)=(ANB)—(ANC)

Definigao 1.24 (Complementar). Dados dois conjuntos A e B tais que A C B, chama-se
complementar de A em B, denotado por A° ou Cg, o conjunto formado pelos elementos que

pertencem a B e nao pertencem a A.

A={r|reBex ¢ A} =B—-A

Exemplo 1.25. 1. Se A={1,2,3} e B=1{1,2,3,4,5,6} entao A° = {4,5,6}.
2. Se A= {1,2,3} = B entao A° = 0.
3. Se A={a,b,c} e B={a,b,c,d} entao A° = {d}.
4. Se A=0e B=1{1,2,3} entdo A° = {1,2,3} = B.

Propriedades 1.26. Sejam A e B subconjunto de C', temos

1. ANA=10
2. AAUA=C
3. (A9 = A.

4. (AUB)* = AN B°
5. (AN B)¢ = A°U B¢

Exercicio 1.27. Dados os conjuntos A = {2,4,6,8,10,12}, B = {3,6,9,12,15}, C =

{3,5,7,11,13} e D = {1,2,3, ..., 15}, determine:



b) AUB
AU (BNCO)

AU(C - B)

AuC
CD

c)AnBNC
f)A—B

i) AN (B —C)
D) C5

0) CANB



2 Conjuntos Numéricos

2.1 Numeros Naturais

O conjunto dos nimeros naturais é de grande importancia pelo seu uso na contagem. Por
exemplo, nimero de dedos da mao de um ser humano; nimero de animais em uma fazenda,
nimero de frutas em uma cesta, etc.

O conjunto dos nimeros naturais é representado por
N=14{0,1,2,3,4,5,....,n,...}.

Indicamos por N* = {1,2,3,4,5,...,n,...} = N — {0}, o conjunto dos nimeros naturais
nao-nulos.
No conjunto dos nimeros naturais N sao definidas duas operacgoes fundamentais que sao

a adi¢do (+) e multiplicagao (-), que apresentam as seguintes propriedades:
[A1] Associativa da adigao: a + (b+ ¢) = (a + b) + ¢, para todo a,b, c € N;
[A2] Comutativa da adigdo: a + b = b+ a, para todo a,b € N;

[A3] Elemento neutro da adicgao: Existe 0 em N tal que a+0 =a e 04+ a = a, para

todo a € N.
[M1] Associativa da multiplicagao: a- (b-¢c) = (a-b) - ¢, para todo a,b,c € N;
[M2] Comutativa da multiplicagdo: a-b=b- a, para todo a,b € N;

[M3] Elemento neutro da multiplicagao: Existe 1 em N tal que a -1 = a, para todo

a € N.

[D] Distributiva: a- (b+c¢) =a-b+ a- ¢, para todo a,b,c € N;

2.2 Numeros Inteiros

O conjunto ds ntimeros inteiros sao constituidos dos nimeros naturais N = {0,1,2,3,4,5, ..., n, ...

e dos seus opostos {0, —1,—-2, -3, —4, =5, ..., —n, ...}.

}



O conjunto dos numeros inteiros é representado por

Z=A.,-n,...—2,-1,0,1,2,...n,...}.

Indicamos por

e 7* =7 — {0}, o conjunto dos nimeros inteiros nao-nulos;

e 7, =140,1,2,3...} = N o conjunto dos niimeros inteiros nao negativos;

e 7Z_=H{..,—3,—2,—2,0} o conjunto dos nimeros inteiros nao positivos;

Uma forma de representar geometricamente o conjunto dos niimeros inteiros Z é construir uma
reta numerada orientada, considerando o nimero 0 como a origem, e posicionando nimero
1 em algum lugar no sentido positivo, e assim tomar a unidade de medida como a distancia

entre 0 e 1, e organizar os demais niimeros inteiros da seguinte maneira:

O sucessor de um numero inteiro é o nimero que esta imediatamente a sua direita na
reta (em Z) e o antecessor de um numero inteiro é o niimero que estd imediatamente a sua
esquerda na reta (em Z). Por exemplo, 3 é sucessor de 2, e 2 é o antecessor de 3.

Todo ntimero inteiro x exceto o zero, possui um elemento denominado simétrico ou oposto
—ux, e ele é caracterizado pelo fato geométrico que tanto x como —z estao a mesma distancia

da origem 0 do conjunto Z. Por exemplo, o oposto de 33 é —33. O oposto de —15 é 15.

Z

>

No conjunto dos nimeros inteiros Z também sao definidas as operagoes de adigao (+) e de
multiplicagao (-), que apresentam, além das propriedades [Al], [A2], [A3], [M1], [M2], [M3] e

[D], a propriedade:
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[A4] Elemento oposto para adigao: Para todo a € Z, existe —a € Z tal que
a+ (—a) =0.
Devido a esta propriedade, podemos definir em Z a operagao de subtragao, estabelecendo que
a—>b=a+ (—b), para todo a,b € Z.

Para a multiplicacao de nimeros inteiros, devemos observar que dado um nimero inteiro
a, o seu oposto —a pode ser obtido por —a = (—1) - a. Note também que a -0 = 0 para
qualquer a € Z. Desta forma, as propriedades anteriores nos permitem estabelecer as regras
de sinais: 1-1=1,(-1)-1=-1,1-(=1) = —-1e (—1)-(—1) = 1. Esta tltima, segue do
fato:

1+ () =0 ). ar1))=(1-0=02 (1) 14 (=1)-(=1) =0

Desta forma, para a,b € Z, temos que —(a -b) = (—a) - b =a - (=b).

Observacao 2.1. 1. Divisor: Dizemos que o inteiro a é divisor do inteiro b, e denotamos

por alb, quando existe um inteiro ¢ tal que b = a - ¢. Isto é,
alb <= existe c € Z tal que b=a - c.

Neste caso, dizemos que b é divisivel por a, e ¢ pode ser denotado por ¢ = 2. Por
exemplo,
2|6, pois 6=2-3
(=15, pois 5= (=1)-(=5)
(=2)|(=8), pois (-8) = (~2)-4
3|0, pois 0=3-0
0/0, pois 0=0-1
2. Numeros primos: Dizemos que um numero inteiro p ¢ primo quando p ¢ diferente de

0,1 e —1, e for divisivel apenas por 1,—1,p e —p.
Por exemplo, 2, —2, 3, —3, 5 e —5 sao nimeros primos.
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2.3 Numeros Racionais

A origem histérica dos nimeros racionais estd intimamente ligada com fatos de natureza
geométrica. Estes niimeros sao construidos a partir da necessidade de medir e de relacionar
medidas.

Os numeros racionais sao todos os nimeros que podem ser escritos sob a forma de fragao

de nimeros inteiros, isto é,
a
Q:{E|a,b€Zeb7é0}.

~ a / 7’ . /7 7’ .
Na fracao 7 o numero a ¢ denominado numerador e o nimero b ¢ denominado deno-
minador.
, . . ’ ’ . . a/ s
Note que todo nimero inteiro a ¢ um numero racional, pois a = 1 Notem também que

a
7= 0 se, e somente se, a = 0.

sao fracoes

W~ Ot

9 _
Uma fracao % ¢ dita irredutivel se mdc(a,b) = 1. Por exemplo, 09
irredutiveis.

No conjunto dos nimeros racionais, adotam-se as seguintes defini¢coes: Para a,b,c,d € Z,

comb#0ed#0:

E<:>a-d:b-c

(1) Igualdade: %

d
d+b
(if) Adigao: 7+~ = ;; ‘
(iii) Multiplicacao: % : cEZ = %

Assim, é possivel verificar que as operacoes de adicao e multiplicacdo de racionais satisfazem
as propriedades [Al], [A2], [A3], [A4], [M1], [M2], [M3] e [D]. Além disso, temos a seguinte

propriedade:

b
[M4] Elemento inverso da multiplicagao: Para todo % € Q, com % # 0, existe — € Q
a

a b
tal que — - — = 1.
b a

Devido a propriedade [M4], podemos definir em Q* = Q — {0} a operagao de divisao, estabe-

a,c a d a c .. : ~
lecendo que —/— = — - —, para — e — racionais quaisquer nao-nulos.
b'd b ¢ b d ) .
a a a
Assim, dados dois inteiros nao nulos a e b, a notagdo a/b representa 1 / 15131
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Observacao 2.2. Todo numero racional pode ser representado por um numero decimal.
Num primeiro caso, o nimero decimal tem uma quantidade finita de algarismos, por exemplo,
5 1 1 33
—-=5-=0,5, — =0,01, ——= = 0,033.
1 2 100 1000

E num segundo caso, o nimero decimal tem uma quantidade infinita de algarismos que

1
se repetem periodicamente, isto é, é uma dizima periédica, por exemplo: 3= 0,33333333...,

2
- = 0,285714285714285714..., 1 = 0,9999....

2.4 Numeros Reais

Suponha que = seja o comprimento da hipotenusa de um triangulo retangulo de catetos

iguais a 1.

Suponha que x esteja associado a um nimero racional b Sem perda de generalidade,
q

podemos supor p e ¢ inteiros primos entre si. Entao, do Teorema de Pitagoras, temos que

2
(E) — P =12412=2
q

Temos entao que p? = 2¢%, o que resulta que p? é par, e consequentemente, p é par, ou seja,
=2k, ke Z. L 2k)? = 2¢% & 4k? = 2¢° 2 = 2k2. Portanto, ¢* também &
p = 2k, . Logo (2k)* = 2¢* & = 2¢° & ¢° = 2k*. Portanto, ¢* também ¢é par, e
consequentemente, g é par, absurdo!, pois p e ¢ foram tomados primos entre si. Logo,  nao
esta associado a um nimero racional.
, . a .
De forma geral, dado um ntmero racional 7 e um numero natural n > 2, nem sempre
a , .
¢/ — ¢ racional.
b
Assim, denominamos como conjunto dos numeros reais R o conjunto formado por todos
os numeros com representagao decimal exata ou periddica, que sao os nimeros racionais,
e os numeros cuja representacao decimal nao é exata nem periddica, que sao os nimeros

irracionais. Por exemplo:
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V2 =1,4142135624...
7 = 3,14159265...
e =2,718281828...

Os numeros reais podem ser representados por meio de pontos numa reta. Isto é, cada ponto

A 4

3 7 2 1 0

()
b | =

da reta é identificado como um ntimero racional ou irracional. Neste caso, esta reta é chamada

de reta real ou reta numérica.
No conjunto dos ntimeros reais as operagoes de adi¢ao e multiplicacao satisfazem as pro-

priedades [A1], [A2], [A3], [A4], [M1], [M2], [M3], [M4] e [D]. Em R também podemos definir

as operagoes subtracao e divisao.

2.5 Intervalos

Sejam a e b dois niimeros reais, com a < b. Um intervalo em R é um subconjunto de R

que possui uma das seguintes formas:

e Intervalo aberto |a,b[:= {x € R | a < z < b}

w @
o@

e Intervalo fechado [a,b] := {xr € R | a <z < b}

& L
a b
e Intervalos semi-abertos ou semifechados:
la,b) :={x €eR|a <z <b} la,b[={r €eR|a <z <b}
o & & e
a b a b
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e Introduzindo os simbolos —oo e +00, podemos considerar os seguintes intervalos:
| —00,40[={r eR| —co <z <400} =R

| —oco,b[={r eR| —oc0 <z <b}

©
b

[a,+oo[={z €R |a <z < 400}

@
a

Exemplo 2.3. Dados os intervalos A =] —2,2] e B = [—1, 5|, determine AUB, ANB, A— B,

B— A, A e B-.

e Determinando A U B.

—29 2'
B P ¢
i 5
AUB & 5
—9 5
Entao AU B =] — 2,5].
e Determinando A N B.
A
= g
B ?
= K
ANB . a
= | 2
Entao AN B = [-1,2].
e Determinando A — B.
A
_29 2-
B
— .
A-B o—e
—2 —1

Entdo A — B =] — 2, —1].
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e Determinando B — A.

e @ -
-2 2
B :
o '5
B-A o .
- 5
Entio B — A =]2, 5].
e Determinando A°.
A
- »
L— &
_9 2
Entao A° =| — 0o, —2]U]2, o0.
e Determinando B°.
B
I %
B 3] o
= | 5
Entao B¢ =] — oo, —1[U]5, ool.

Exercicio 2.4. Dados os conjuntos A = [-3,7], B =] — 00,0[ e C' = [1, +00[, determine?
a) ANB b) AUB c)AnBNC
d) An(BUCQC) e)BNC fiCc—A
g) B—A h) AU (C — B) i) AN (B —C)
J)(ANB)U(B—-A) k)A°NnC [) BNC*

2.6 Desigualdades

Sobre o conjunto dos ntimeros reais R podemos definir uma relacao de ordem <, satisfa-

zendo, para qualquer x,y, z € R, as propriedades:
e Reflexiva: z < x, Vx € R.

e Anti-simétrica: se x <y e y < x entao x = .
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e Transitiva: sex <yey < zentao xr < 2.
Propriedades 2.5. Sejam z,vy, z,w € R. Entao:
l.z2<y <= z+2<y+ =

1
- > 0.
Xr

2. x>0 <
3. >0 «<— —x <.
4. Sez>0entao r <y < xz < yz.
5. Se z < 0entao z <y <= xz > yz.
1 1
6. 0<r<y < 0<—-< —.
y T
7. x <youz=youz >y (Tricotomia).

8. 2y =0 <= z=00uy=0.

Exemplo 2.6. Resolva a inequacao bx + 3 < 2z + 7.

Resolucao:
4
T+3<2r4+7 <= dr<2r+4 <— Jr<4 a:<§
N . . . < 4 4
Entao o conjunto solugao para a inequagao é dado por {x € R | x < §} =] — o0, 5.
. _ +3
Exemplo 2.7. Estude o sinal da expressao: ]
x —_

Resolugao: Primeiro observe que = # 1, pois caso contrario teriamos uma indeterminagao.

T+ 3
Analisemos quando 7 > (. Neste caso, temos duas possibilidades:

l. 24+43>0ex—-1>0<«<—= x> -3ecex>1—x>1

2. 243<0exrx—1<0<«——=zr<-3exrx<]l=—=zx< -3

3
+1>0quandox<—30ux>1.

x
Isto resulta que

3
Observe que z 1= 0 quando x + 3 = 0, ou seja, r = —3.
l‘ —_—

T+ 3
Agora analisemos quando 1 < 0. Novamente aqui temos duas possibilidades:
x
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l.z+3<0ex—1>0<= < —-3ex>1 (Vazio)

2. 24+3>0ex—-1<0<«= x> -3cr<]l— -3<z<l

3
Portantox+1<0quando —JI<r <l
: _ 3rx—1
Exemplo 2.8. Resolva a inequacao: > 5.
T+ 2
Resolugao:
3r—1 3r—1 3r—1-5 2
T loh e Pl 550 e 2 r+2) 5
T+ 2 x4+ 2 T+ 2
—2m—1120 23:+11_
T+ 2 T+ 2
2x+11 e + 4
* |
[ I
X +2 = = p o
| 7
2z + 11 | |
p o2 T i - 1 i
8 'IEH - -2 0 2
2
Entao
3r—1 2 11 11
i > 5= T SO0 —— << -2
T+ 2 x+2 2

Logo [—4, —2[ é conjunto solucao da inequagao.

3z —1
>
+2 =

5, pois é muito tentador ao resolver esta inequagao fazer 3z —1 > 5(x +2), o que s6 é verdade

Observacao 2.9. No exemplo anterior, deve-se tomar cuidado com esta expressao

quando x + 2 > 0.

Exercicio 2.10. Resolva a inequagao (2x + 1) - (z +3) > 0.

2.7 Mobdulo de um numero real

Definigao 2.11 (Mddulo). Seja x € R. Definimos o médulo (ou valor absoluto) de z por:
r ,sex>0

|z =
—x ,sex <0
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Observe que |z| > 0 para todo x € R. Note também que |z|*> = 22, para todo = € R.

Logo, segue que |z| = V22, para todo = € R.
Exemplo 2.12. 1. |-3|=3

2. 18 =8

3. 00/=0

Exemplo 2.13. Determine z € R tal que |z — 3| = 7.

Sabemos que

r—3 ,sex—32>0 r—3 ,sex >3
|z —3| = —|r-3|=

—(x—3) ,sex—3<0 —r+3 ,sex<3

Como queremos determinar z € R tal que |z —3| = 7, entdo para x > 3, temos que [zt —3| =7
implica que x — 3 = 7, o que resulta que x = 10. Para < 3, temos que |r — 3| = 7 implica

que —z + 3 =7, o que resulta que x = —4. Logo a solucao do problema é z = —4 ou z = 10.
Proposicao 2.14. Sejam z,y,r € R com r > 0. Entao

1. Jz|<r<= —r<z<r.

2. x| >r<=x<—-rouz>r

3. |-yl = la] - [yl

4. |x| >z elz] > —x.

o. |z 4yl <zl + yl-
Demonstracao. 1. Temos que

lz| <r = [z <r? 2 <r?
— *-r*<0 = (z—7r)-(z+7r)<0

Analisando a inequagao (z —r) - (z +r) <0,
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[ - < [ - <
(z—r)-{x+T) A

T — — —— —
-~ — — —9— — 9

obtemos que |z| <r<=(x—7r) - (z+7)<0<= —r <z <r.
2. Temos que

lz| >r = |z]*>r? x?>r?
— *—r*>0 = (z—1r)-(z+7r)>0

Analisando a inequacdo (z — ) - (x +r) > 0 (vide figura anterior), temos

lz| >r<—(z—7)-(x+r) >0z < —roux>r.

3. Observe que |z -y|*> = (z-y)? =22 - y* = [z]* - |y|*>. Como |x-y| >0, |[z] >0e|y| >0,

temos que |z - y| = +/|z]? - |y|> = |z| - y].

4. Segue da definicao.

5. Sex+y>0entao |z +yl=x+y < |z|+ |y|

Sex+y<O0entdo |z+yl=—(v+y)=—v—y<|z|+]y|

Exemplo 2.15. 1. |z| <5 o que implica que —5 < x < 5.
2. |z| > 8, o que implica que x < —8 ou x > 8

Exemplo 2.16. Elimine o médulo em |z — 1| + |z + 2|.

Resolucao: Observe que

z—1 ,sex—12>0 r—1 ,sex>1
|z — 1| = =

—(x—1) sex—1<0 —z+1 ,sex<1
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T+ 2 ,sex+22>0 r+2 ,sex>—2
|z + 2| = =
—(x+2) sex+2<0 —r—2 ,sex<—2

Assim, analisando as possibilidades acima, temos
e Serx< 2= |z—1+|z+2/=(—2z+1)+ (-2 —2)=—2z—1.
e Se 2<z<l=z—-1+z+2/=(—2+1)+(x+2)=3.
e Serx>l=|z—1|+]z+2/=(x—-1)+(z+2) =22+ 1.

Portanto,
—2rx—1 ,sex<—2

|z = 1|+ |z +2] = 3 ,se —2<z<1

20 4+1 ,sex>1
\
Exemplo 2.17. A equacgao |z| = x—6 nao possui solugao. De fato, se x > 0, entao z = x —6,

o que resulta que 0 = —6 o que é um absurdo. Se z < 0, entao —x = x — 6, ou seja, 2x = 6,

ou ainda, = = 3, contradicao, pois x < 0. Assim, conclui-se que a equagao nao tem solucao.

Exemplo 2.18. Resolva a inequagao |z — 3| <z +1
Das propriedades de médulo, segue que |z —3| < x+1 implica que —(z+1) < —3 < x+1.

Assim, vamos separar esta inequacao em duas inequagoes:
—r—1l<zrx—-—3ex—3<z+1
NS NG ~~ >

-~

1 11

Resolvendo I: —z —1 <2 —3

—r—-1l<r—3<= - 14+3<r+tr<=—=2<2r<= 1<z

Resolvendo II: # —3 <z + 1

zT—3<zrz+tl<e=—=zr—2<l1+3=0<4=VzeR

Logo, a solugao da inequacgao é dada por todo x € R tal que x satisfaca I e I, isto é, z > 1 e

x € R. Portanto a solugao é dada por {xr e R | x > 1}.

Exercicio 2.19. Resolva a equagao |5z — 7| = 13.
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Exercicio 2.20. Resolva a equagao |z — 5| = 1 — 2x.

Exercicio 2.21. Resolva a inequagao |3z — 5| > 2.

3 Relacoes

3.1 Par Ordenado

Chama-se par todo conjunto formado por dois elementos. Por exemplo, {1,2}, {—2,5} e
{a, b} sdo pares. E importante lembrar que se invertermos a ordem dos elementos de um par,

nao produzimos um novo par, sito é, {a,b} = {b,a}.

Definicao 3.1 (Par ordenado). Um par ordenado é um conjunto de dois elementos em que
a ordem dos elementos os diferencia, isto é, tem importancia. Indicamos por (a,b) o par
ordenado formado pelos elementos a e b, onde a é o primeiro elemento e b é o segundo

elemento.

Deste modo (a,b) # (b,a), e (a,b) = (c,d) se, e somente se, a = c e b = d.

3.2 Sistema Cartesiano Ortogonal

Um sistema cartesiano ortogonal é um sistema formado por dois eixos x e y, perpendicu-
lares entre si, também chamado de plano cartesiano.
AY

=Y
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Um ponto no sistema cartesiano é representado por um par ordenado (a, b), onde a é a abscissa
e b é a ordenada de (a,b). O eixo z é chamado eizo das abscissas e o eixo y é chamado de
eixo das ordenadas. Esses eixos dividem o plano em quatro regioes, chamadas quadrantes. A

origem do sistema é o ponto 0 = (0, 0).

AV

2° quadrante 12 quadrante

3° quadrante 47 quadrante

Assim:

Um ponto no 1° quadrante tem abscissa e ordenada positivas.

Um ponto no 2° quadrante tem abscissa negativa e ordenada positiva.

Um ponto no 3°2 quadrante tem abscissa e ordenada negativas.

Um ponto no 4° quadrante tem abscissa positiva e ordenada negativa.

Um ponto sobre o eixo z tem ordenada igual a 0.

Um ponto sobre o eixo y tem abscissa igual a 0.

Exemplo 3.2. Localizar o pontos A(4,3), B(—2,3), C(0,1), D(3,—1), E(0,—2), F(—4,0) e

G(—3,—4) no plano cartesiano.
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3.3 Produto Cartesiano

Definigao 3.3 (Produto cartesiano). Dados dois conjuntos nao vazios A e B, chama-se pro-
duto cartesiano de A por B, o conjunto, denotado por A x B, cujos os elementos sao todos

os pares ordenados (x,y) onde = pertence a A e y pertence a B

AxB={(z,y) |z € Aeyec B}

Se A=( ou B=0, entao A x B = ().

Exemplo 3.4. 1. Seja A=1{1,2,3} e B={a,b,c,d}. Entao

Ax B={(1,a),(1,b),(1,¢),(1,d),(2,a),(2,b),(2,¢),(2,d), (3,a),(3,b),(3,¢),(3,d)}

B
F Y
d e o o
¢ e o o
b e o o
a e o o
4
1 2 3 =

Representacao gréafica de A x B

2. Seja A =[1,4]. Entdao A x A= {(z,y) |z,y € A} = A%
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Ax A

2 1 (c) © Bx A

Observacgao 3.5. 1. Se A # Bentao A X B # B x A, ou seja, o produto cartesiano nao

¢ comutativo.

2. Se A e B sao conjuntos finitos com m e n elementos respectivamente, entao A x B é

um conjunto finito com m - n elementos.

3. Se A ou B for um conjunto infinito e ambos nao vazios, entao A x B é um conjunto

infinito.
4. Dados os conjuntos A, B e C quaisquer, entao

e (AUB)xC=(AxC)U(BxCQC)

e (ANB)xC=(AxC)N(BxC)

Exercicio 3.6. Dados A = {1,2,3}, B = {2,3} e ¢ = {1,4}, verifique que (AU B) x C' =

(AxC)UBxC)e(ANB)xC=(AxC)N(BxC(C).
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3.4 Relacgoes Binarias

Definigao 3.7 (Relagdo Bindaria). Sejam A e B dois conjuntos e seja A x B = {(z,y) | z €
A, y € B} o produto cartesiano de A por B. Todo subconjunto R de A x B é chamado de

uma relacao bindria de A em B, ou seja, toda relacao é um conjunto de pares ordenados.
R é relacao de A e B se, e somente se, R C A x B.

Se B= A e R é uma relagao de A em A, ou seja, R é um subconjunto de A x A, entao
dizemos que R é uma relacdo sobre A.
Notagao: Se R é uma relacao de A em B, usaremos a notacao aRb para indicar que
(a,b) € R, significando que o elemento a esta relacionado com o elemento b. Se (a,b) ¢ R

entdo escrevemos afR b.

Exemplo 3.8. 1. Seja A ={1,2,3} e B={a,b,c,d}. Entao

Ax B={(1,a),(1,b),(1,¢),(1,d),(2,a),(2,b),(2,¢), (2,d), (3,a),(3,b),(3,¢), (3,d)}
Assim, sao relacoes de A em B:

.R():@

L4 7-\)/1 = {(170')7 (Lb)? (270)7 (37d)}

R

Representacao em diagramas de R,

L RQ = {(270')7 (276)7 (27d)> (3,&)}
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2. Seja A=1{0,1,2,3} e B={-2,-1,0,1}. Entao R = {(x,y) € Ax B |2? = 4*} é uma

relacao de A em B, e seus elementos sao:

R ={(0,0),(1,-1),(1,1),(2,-2)}

3. Seja A= B =7Z. Entao A x B=7Z x Z. Logo
R={(r,y) €LxL|y= -2}
¢ uma relagao sobre Z. Neste caso,

R ={o (=n,n), ey (=2,2), (—1,1),(0,0), (1, —1), (2, =2), ..., (n, —1), ...} = {(n, —n) | n € Z}
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4. Seja A= B =R. Entao A x B =R x R. Logo, sao relagoes sobre R:

(a) Ry ={(z,y) eRxR |z >0, y>0}

(b) Ro={(z,y) e RxR|2*+¢y*=1}

Ra

Exercicio 3.9. Dados os conjuntos A = {1,2,3,4,5} e B ={1,2,3,4}, determine os elemen-
tos da relacdo R = {(z,y) € Ax B |z <y} de A em B. Represente em diagrama a relac¢ao

R.

Exercicio 3.10. Seja A = [1,4] e B = [1,3]. Represente graficamente A x B e a relagdo

R={(x,y) € Ax B|z=uy}.

Definicao 3.11 (Dominio e Imagem). Seja R uma relagao bindria de A em B.
Chama-se dominio de R o subconjunto D(R) de A constituido de todos os primeiros

elementos dos pares ordenados pertencentes a R, isto é,
D(R) ={z € A|(x,y) € R}

Chama-se imagem de R o subconjunto Im(R) de B constituido de todos os segundos

elementos dos pares ordenados pertencentes a ‘R, isto ¢,
Im(R) ={y € B|(z,y) € R}
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O conjunto B é chamado de contradominio de R.

Exemplo 3.12. 1. Dados os conjuntos A = {1,2,3} e B = {a,b,c,d}, e as relagoes R, =

{(1,a),(1,),(2,0),(3,d)} e Ra = {(2,a), (2,)), (2,d), (3,a)}, vistas no exemplo [3.4] (1),

temos que
o Ry ={(1,a),(1,b),(2,¢),(3,d)} = D(R) = {1,2,3} e Im(R) = {a,b,c,d}
o Ry =1{(2,a),(2,b),(2,d),(3,a)} = D(R) = {2,3} ¢ Im(R) = {a,b,d}

2. Dados os conjuntos A = {0,1,2,3} e B = {—=2,—1,0,1} e a relacio R = {(z,y) €

A x B | z* = 32} vistas no exemplo [3.4] (2), temos que
R ={(0,0),(1,-1),(1,1),(2,-2)} = D(R) ={0,1,2} e Im(R) = {—2,—1,0, 1}
Exercicio 3.13. Determine o dominio e imagem das relacoes dadas nos exercicios |3.9 e |3.10}

Definicao 3.14 (Relacdo Inversa). Seja R uma relagdo de A em B. Defini-se a relagdo

inversa R~ da relacdo R como sendo a relacao de B em A dada por
R ={(b,a) € Bx A| (a,b) € R}.
Note que R~ C B x A.
Exemplo 3.15. 1. Seja A =1{1,2,3} e B=1{a,b,c,d}. Entao dada a relacao
R1={(1,a),(1,b),(2,¢),(3,d)}, temos que a relagao inversa de Ry é dada por
Ri'={(a,1),(b,1),(c,2),(d,3)}
A B
R

X7

Para a relagao Ro = {(2,a),(2,0),(2,d),(3,a)}, temos que a relagao inversa de Ry é
dada por
Ry ={(a,2),(b,2),(d,2),(a,3)}
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2. Considere a relagdo R = {(z,y) € R xR | y = 22} sobre R. Entao a relagao inversa de

R ¢ dada por R™! = {(z,y) e RxR |y = 3z}

R_L

Exercicio 3.16. Determine a relacao inversa das relacoes dadas nos exercicios e

Propriedades 3.17. Dados R uma relacao de A em B, com relacao inversa R~!. Entao

Demonstragdo. 1. Mostremos que D(R™') = Im(R). De fato,
y € Im(R) < existe x € A tal que (z,y) € R
& existe € A tal que (y,2) e R™! & ye D(R™).
2. Mostremos que Im(R™') = D(R). De fato,
r € D(R) < existe y € B tal que (z,y) € R

& existe y € B tal que (y,z) e R™! & xelIm(R™).
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3. Mostremos que (R™!)~! = R. De fato,

(z,y) ER < (y,2) ER P& (z,y) € (RN

3.4.1 Propriedades sobre Relagoes

Seja R uma relacao sobre A. Dados z,y € A, usaremos a expressao xRy para indicar que

(z,y) € R. Se (a,b) ¢ R entao escrevemos aRR b.

Definicao 3.18 (Reflexiva). Uma relacao R sobre A é chamada reflexiva se para todo x € A

tem-se que xRz, isto é, (z,x) € R

Exemplo 3.19. 1. Seja A={1,2,3} e R ={(1,1),(1,2),(2,2),(2,1),(3,3)} uma relagao

sobre A. Temos que R é reflexiva, pois 1R1, 2R2 e 3R3

2. Seja A ={a,b,c} e R ={(a,a),(a,b),(b,c),(a,c)} uma relagdo sobre A. Entao, R nao

é reflexiva, pois bRb e cRec.

Definigao 3.20 (Simétrica). Uma relagdo R sobre A é chamada simétrica se para todo

x,y € A tal que xRy tem-se que yRz, ou seja, se (z,y) € R entdo (y,z) € R.

Exemplo 3.21. 1. Seja A=1{1,2,3} e R ={(1,1),(1,2),(2,2),(2,1),(3,3)} uma relagao

sobre A. Temos que R é simétrica, pois 1R2 e 2R1.

2. Seja A ={a,b,c} e R ={(a,a),(a,b),(b,c),(a,c)} uma relagdo sobre A. Entao, R nao

¢ simétrica, pois aRb mas bR a.

Definicao 3.22 (Anti-simétrica). Uma relacdo R sobre A é chamada anti-simétrica se para

todo z,y € A tal que xRy e yRz tem-se que x = y, ou seja, se (z,y) € R e (y,x) € R, entao

x=1y.

Exemplo 3.23. 1. Seja A=1{1,2,3} e R ={(1,1),(1,2),(2,2),(2,1),(3,3)} uma relagao

sobre A. Temos que R nao é anti-simétrica, pois 1R2 e 2R1, mas 1 # 2.
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2. Seja A = {a,b,c} e R = {(a,a),(a,b), (b,c), (a,c)} uma relagdo sobre A. Entdo, R é

anti-simétrica, pois aRa e aRa e logo a = a. Os demais elementos de R nao contradizem

a definicao de anti-simetria.

Definicao 3.24 (Transitiva). Uma relagdo R sobre A é chamada transitiva se para todo

x,y,z € A tal que 2Ry e yRz tem-se que xRz, isto é, se (z,y),(y,z) € R implica que

(x,2) € R.

Exemplo 3.25. 1. Seja A={1,2,3} e R ={(1,1),(1,2),(2,2),(2,1), (3,3)} uma relagao

sobre A. Temos que R ¢ transitiva, pois

1R1 e

1R2 e

1R2 e

2R2 e

2R1 e

2. Seja A = {a,b,c} e R = {(a,a), (a,b), (b, c),(a,c)}

transitiva, pois

1R2

2R2

2R1

2R1

1R2

entao

entao

entao

entao

entao

aRa e aRb entao

aRb e bRc entao

aRa e aRc entao

1R2
1R2
1R1
2R1

2R2

uma relagao sobre A. Entao, R é

aRb

aRe

aRe

Definigao 3.26 (Relagao de ordem parcial). Seja R uma relacao sobre A. Dizemos que R é

uma relacao de ordem parcial sobre A se R for reflexiva, anti-simétrica e transitiva.

Se além disso, R também satisfazer: para todo x,y € A tem-se que xRy ou yRzx, dizemos

que R é uma relagao de ordem total sobre A.

Exemplo 3.27. 1. A relagdio R = {(1,1),(1,2),(2,2),(2,1),(3,3)} sobre A = {1,2,3}

nao é uma relacao de ordem parcial, pois R nao ¢é anti-simétrica.

2. Arelagao R = {(a,a), (a,b), (b,c), (a,c)} sobre A = {a, b, ¢} ndo é uma rela¢ao de ordem

parcial, pois R nao ¢ reflexiva.
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3. Seja R = {(a,b) € N x N| a < b} uma relagao sobre N, isto é,
Va,be N, aRb<=a<h.
Entao:

e R é reflexiva, pois a < a, Va € N
e R nao ¢é simétrica, pois 1 < 2 mas 2 £ 1.
e R é anti-simétrica, pois Va,b € N tal que a < b e b < a implica que a = b.

e R ¢ transitiva, pois Va,b,c € N tal que a < be b < centao a < c.

Logo R é uma relacao de ordem parcial. Mais ainda, como para todo z,y € N é sempre

verdade que z < y ou y < z, segue que R é uma relagao de ordem total.

Definicao 3.28 (Relagao de equivaléncia). Seja R uma relagao sobre A. Dizemos que R é

uma relacao de equivaléncia sobre A se R for reflexiva, simétrica e transitiva.

Exemplo 3.29. 1. A relacdo R = {(1,1),(1,2),(2,2),(2,1),(3,3)} sobre A = {1,2,3} ¢

uma relacao de equivaléncia, pois R é reflexiva, simétrica e transitiva.

2. A relagao R = {(a,a),(a,b),(b,c),(a,c)} sobre A = {a,b,c} ndo é uma relagdo de

equivaléncia, pois R nao é reflexiva.

3. A relagao R = {(a,b) € N x N |a < b} sobre N nao é relagdo de equivaléncia, pois R

nao ¢é simétrica.
Exercicio 3.30. Seja R uma relacao sobre Q definida da seguinte forma: para z,y € Q
TRy <—=zxr—yeci

Verifique que R ¢é uma relagao de equivaléncia.

4 Funcoes

Considere os conjuntos A = {—2,—-1,0,1,2} ¢ B ={0,1,2,3,4} e as seguintes relagdes de

Aem B.
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2. Ro={(z,y) e AxBly=x+1}

3. Rs={(z,y) € Ax B|y=2a?}

4. R4:{(m,y)€AxB|§€Z}

Analisando cada uma das relaces dadas, temos

1. Ry ={(=2,2),(=1,1),(0,0),(1,1),(2,2)}

Temos D(Ry) = A e Im(Ry) = {0,1,2}. Note que para todo elemento = de A, existe

um unico y € B tal que (z,y) € R;.

2. Ry = {<_17 O)a (07 1)7 (17 2)7 (27 3)}

Temos D(Rs) = {—1,0,1,2} # Ae Im(R2) = {0,1,2,3}. Note que nem todo elemento
x de A esta relacionado com algum y € B. Neste caso, —2 € A nao esta relacionado

com nenhum elemento de B.

3. R3 = {(_274)a (_1’ 1)’ (070)7 (17 1)’ <2a4)}
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Temos D(R3) = A e Im(R3) = {0,1,4}. Note que para todo elemento = de A, existe

um unico y € B tal que (z,y) € R3.

4. Ry ={(-2,1),(-2,2),(-1,0),(0,1),(0,2),(0,3),(0,4), (1,1),(2,1),(2,2) }

Temos D(Ry) = A e Im(Ry4) = {1,2,3,4}. Note que para todo elemento = de A, existe
pelo menos y € B tal que (z,y) € Ry. Alguns elementos de A estao relacionados com

mais de um elemento de B, como por exemplo, —2,0 e 2.

A partir de agora, estaremos interessados nas relacoes de A em B, onde cada elemento de A

esteja relacionado com um tnico elemento de B, como visto nas relagoes R e R3 acima.

Definigao 4.1 (Fungao). Dados dois conjuntos A e B nao-vazios, uma relagdo f de A em B
é chamada de aplicacao de A em B ou func¢ao definida em A com imagens em B se, e somente

se, para todo x € A existe um tunico elemento y € B tal que (z,y) € f.

Exemplo 4.2. Sejam A = {a,b,c,d} e B ={1,2,3,4,5}. Considere as seguintes relagoes de

A em B:

1. Ry ={(a,1),(b,3),(c,4)} ndo é funcao, pois d nao estd relacionado a nenhum elemento

de B.
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2. Ry ={(a,1),(b,2),(c,3),(d,4)} é uma funcao.

4. Ry ={(a,5),(b,3),(b,1),(c,2),(d,3)} ndo é uma funcao, pois b esta relacionado a 3 e 1

em B.

Exemplo 4.3. Seja A = B = R, e considere as seguintes relagoes sobre R:

1. Ri={(z,y) € R xR | 2? = y*}, nao ¢ fungao, pois (1,1),(1,—1) € R;.
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2. Ro={(z,y) € R xR | z?+y* = 1} nao é funcao, pois (0,1),(0,—1) € Ro.

L

3. Rz ={(z,y) e Rx R |y = 2%} é fungao.

Ra

Observacao 4.4. 1. Se f for uma funcao de A em B entao denotaremos por f: A — B

e escrevemos y = f () para indicar que (z,y) € f.

f: A - B

r = y=f(z)
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. O conjunto A é o dominio da funcao f, e denotado por

A=D;={x e A| f(x) € B}

w

. O conjunto B é chamado contradominio de f.

W

. A imagem de f é conjunto de todos os valores possiveis de f(z) em B quando z varia

por todo dominio A.

Imf={y=f(x) e Blze A} CB.
5. Todo elemento de A deve estar relacionado com um udnico elemento de B.

6. E comum fazer referéncia a uma funcao fornecendo apenas sua lei de formagao, isto é,
y = f(z). Nestes casos, convenciona-se que o dominio de f é o maior conjunto onde se
pode definir a fungao. Assim, dizemos que x é a varidvel independente, e y é a varidvel

dependente.

7. Se (x,y) € f, o elemento y é chamado de imagem de x pela fungao f, ou de wvalor de f

em x.

8. Dizemos que uma fungao f : A — B é uma func¢ao de uma varidvel real a valores reais,

ou fungao real, se os conjuntos A e B sao subconjuntos dos nimeros reais R.

Exemplo 4.5. Seja f: A — B uma fungao real. Determine o dominio de f:

1. f(z)=22-3
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Como nao ha nenhuma restricao para x € R que gere algum conflito em f(x), temos

que Dy = A=R.

2. f(x):5—x

Como nao é possivel dividir por 0, devemos tomar z € R tal que 5z # 0, ou seja, x # 0.

Logo Dy =A={zx € R |z #0} =R*.

3. f(z)=vz+2
Como nao é possivel calcular raiz quadrada de niimeros negativos, entao devemos tomar
r € Rtalque x+2 > 0, ouseja, z > —2. Logo Dy = A={z € R [z > -2} = [-2, +0o0].

z—1
R

1 f@) =
Note que nao ha restricoes para x—1. Porém, como nao é possivel dividir por 0, devemos
tomar x € R tal que 22 —4 # 0, isto é, (x —2)(z+2) # 0. Entdo x # 2 e v # —2. Logo

Di=A={zreR|z# -2ecx#2}=R—-{-2,2}.

Exercicio 4.6. Considere os conjuntos A = {-2,—1,0,1,2} e B = {-2,-1,0,1,2,3,4}.

Verifique quais das seguintes relacoes de A em B sao funcoes.
1. i={(z,y) e Ax B|y=2zx}
2. fo={(z,y) € Ax B|y=—x}
1
3 fo={(ry) € Ax Bly="}
4. fr={(z,y) e AxB|ly=1-—=x}
Exercicio 4.7. Determine o dominio das seguintes fungoes reais:
x—2

Q) fla) = b) g(z) = V5= 3z

22—z

1 T
C)h(x):\/x——i—l d>r($):”x—1
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Definigao 4.8 (Grafico de fungao). O conjunto formado por todos os pares ordenados

(x, f(x)) € A x B, onde x varia no dominio A de f, denotado por

Exemplo 4.9. 1. Considere a funcao f(x) =2z — 1.
L

Dominio de f: Dy =R N ;

v | 1) R foo |
nE -

0| -1 & @

1 1

2 3

3 5
Imagem de f: Imf = R.

2. Considere a funcao f(z) = z?%.
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Dominio de f: Dy =R

z | f(z)
2| 4
1] 1

0] o

1] 1

2 | 4

Imagem de f: Imf = [0, +-00].

1
3. Considere a fungao f(x) =
x

Dominio de f: Dy ={z e R |z # 0}

z | f(z)
-9 _%
—-1] -1
_% -9
_% -3
| 3
3| 2
1 1
2| 3

Imagem de f: Imf =R — {0}.

4. Considere a fungao f(x) = 1.

41
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Dominio de f: Dy =R

z | f(x) Y
-2 1 3
-1 1 5]
ol 1 (ZNCLD 001 @1
1|1 L b
3 i3 -1 0 1 2 3 4
2 1

Imagem de f: Imf = {1}.

Exercicio 4.10. Esboce o grafico da fungao

Definigao 4.11 (Fungoes iguais). Dadas duas fungoes f : A — B e g: A — B, elas sdo ditas

iguais se, e somente se, f(z) = g(x) para todo x € A.

332—.7,'

Exemplo 4.12. 1. As fungoes f(z) =z —1e g(x) = para todo x € A =R — {0}.

2. As fungoes f(z) = |z| e g(x) = —z para todo x € A =] — 00, 0].
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5 5 4 23 2 1o 1 2

Exercicio 4.13. Verifique se as fungoes reais f(z) = va? e g(x) = x definidas em R sdo

iguais.

Definicao 4.14 (Raizes de fungoes). Chama-se zero de fungao ou raizes de uma fun¢do ao

valor de z tal que f(z) = 0.

Exemplo 4.15. 1. Seja f(x) = 2x—1, entdo a raiz de f sao os valores x tais que f(z) = 0,

1
isto é, 2xr — 1 =0, ou seja, r = 3

2. Seja f(r) = x? — 4, entdo as raizes de f sdo os valores tais que 72 — 4 = 0, ou seja,

r=—-2ex=2.

Observacao 4.16. No grafico de uma fungao, as raizes de uma funcao sao as abscissas dos

pontos cujo grafico corta o eixo x.

5 Funcoes de 12 grau

5.1 Funcao Constante

Definicao 5.1 (Fungao Constante). Uma funcao f: R — R é dita uma fun¢ao constante se

f(z) = b para todo = € R, onde b € R.

Para as fungoes contantes, temos que Dy = R e Imf = {b}. Seus graficos consistem de

uma reta horizontal, paralela ao eixo x, cortando o eixo y em y = b.

Exemplo 5.2. 1. f:R — R definida por f(z) = 2.
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2. f:R — R definida por f(x) = —1.

5.2 Funcgao Linear

Definigao 5.3 (Fungao linear). Uma funcao f : R — R é dita uma func¢ao linear se f(z) = ax

para todo x € R, onde a € R.

Para as funcoes lineares, temos que Dy = R e Imf = R. Seus graficos consistem de uma

reta passando pela origem (0,0) e pelo ponto (1,a), com a € R.

Exemplo 5.4. 1. f:R — R definida por f(x) = —3uz.
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-2 -1 0 1 2

-1

-2
P (1,-3)
2. f:R — R definida por f(z) = 2.
3
2
V2t roonng (1, V2)
1 |
2 4 ]
-1
-2

3. (Fungao Identidade) f : R — R definida por f(z) = =.
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-1

—2

—3

5.3 Funcao Afim

Definicao 5.5 (Funcao Afim). Uma fungao f: R — R é chamada de funcdo afim se f(x) =

ax + b para todo x € R, onde a,b € R.

Para as funcoes afins, temos que Dy = R e Imf = R. Seus graficos consistem de uma reta
passando pelos pontos (0,b) e pelo ponto (—2, 0), com a,b € R, ou uma reta passando por
qualquer dois pontos (z, f(z)) da fungao.

Observe que as funcoes constantes e as funcoes lineares sao casos particulares de uma

funcao afim.

Exemplo 5.6. 1. f:R — R definida por f(z) = 2z — 4.
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-1

-3

2. f:R — R definida por f(z) = —x + 1.

1
Exercicio 5.7. Determine o gréifico da fungao afim f(x) = 3% +3

Exemplo 5.8. 1. Seja f(z) = 3z — 1. Determine f(2z + 1).

fRrx+1)=32x+1)—1=6x+3—-1=06x+2
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2. Seja f(x — 8) = 2x — 5. Determine f(x) e f(4x + 1).
Seja u = x — 8, entao x = u + 8. Desta forma,
fu)=2(u+8)—5=2u+16—-5=2u+11
Logo, trocando u por x, temos que f(x) = 2x 4+ 11. Assim
FAz+1) =2z +1) +11 =8z +2+11 = 8z + 13

Observagao 5.9. 1. A raiz de uma funcdo afim sdo os valores x tais que f(x) = 0, ou
b b

seja, ax + b = 0, isto é, v = ——, desde que a # 0. O ponto (——,0) corresponde ao
a a

ponto onde o grafico de f corta o eixo das abscissas.

2. O coeficiente b de uma fungao afim f(z) = ax + b é chamado de coeficiente linear. O

ponto (0,b) é o ponto onde o grafico de f corta o eixo das ordenadas.
3. O coeficiente a é chamado de coeficiente angular de f.

4. Dada a funcao afim f(x) = ax + b, temos que a inclinagao do gréfico de f depende do

sinal do coeficiente angular a.

a>0 <0

e Se a > 0 dizemos que f é crescente. Neste caso, temos que f(z) > 0 para todo

b b
x> —— e f(zr) <0 para todo z < ——.
a a

e Se a < 0 dizemos que f é decrescente. Neste caso, temos que f(x) < 0 para todo

b b
x> ——, e f(z) > 0 para todo z < ——
a a
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Exercicio 5.10. Esbogar o gréfico, calcular a raiz, e estudar o sinal das fungoes f(x) =
—2x+5eg(x) =4z —8.
5.3.1 Equacgao de reta

A equagdo de uma reta r é dada por y = ax+b. Desta forma, tomando dois pontos (z1,y;)

e (zg,y2) de r, temos que y; = axy + b e ys = axy + b. Assim, fazendo

Yo — Y1 =axe+b— (ax; +b)

Y2 — U1
= — — — a4 = —
ars +b—axr; —b e
= a(xy — x7)
E
e ¥ (2, 12)
Rl 1
(=1, y1) o g
Ve---— 9" 1 -~ ——— - '
! v2—31 |
a :
; . ; ; +
/ T Iy
2 — Y1 :
Note que tg(a) = 270 _, (coeficiente angular).
T2 — I
Assim, se sao dados dois pontos de uma reta (z1,y1) e (z2,y2), para determinar sua
. 2 — Y1 ) . . .
equagao, basta tomarmos a = 279 , e depois para determinar o coeficiente linear b, basta
To — X1

substituir um dos pontos na equacao da reta y = ax + b, por exemplo, b = y; — ax;. Ou

também, pode-se aplicar a férmula abaixo para encontrar a equagao de r:

(Y —y) = alz — 1)
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Exemplo 5.11. Determine a equagao da reta que passa pelos pontos (2,1) e (—1,2).
Vamos determinar a equagao da reta y = ax + b. Para isso, tomemos (z1,y1) = (2,1) e

(x2,y2) = (—1,2) dois pontos da reta. Entao

ey 2-1 1

a

To — Iq —1—2: 3

1 1 2 1 5)
(y—l):<—§>(x—2)<:>y:——x+—+1<:>y:—§x+§

3 3
. , 1 5
Portanto, a equacao da reta é dada por y = —gx + 3

3

\

1

12 10 1 2 3 4 f\

Exercicio 5.12. Determine a funcdo afim cujo gréfico passa por (—3,—1) e tem coeficiente

linear igual a 1.

Observacao 5.13. Dadas duas retas r : y = a,x + b, € s : y = a,x + by,

1. (Condigao de Paralelismo) r e s serao paralelas (r//s) se, e somente se, a, = as.

4

2. (Condicao de Perpendicularismo) r e s serao perpendiculares (r L s) se, e somente se,

a,-as = —1.
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3. (Intersecao de retas) r e s se interceptam (r N's = P) se, e somente se, a, # as.

Neste caso, para determinar o ponto de intersegdo P = (x,y) basta igualar as equagdes
das duas retas a,x + b, = asx + by para obter o valor da variavel x. E depois basta

substituir o valor de x em uma das equagoes para encontrar o valor de y.

Exemplo 5.14. Dadas as retas r e s abaixo, verifique se estas sao paralelas ou perpendicu-

lares. Determine o ponto de intersegao, caso r e s se interceptam.

Resolucao:

3
Observe que a equacao de s é dada por y = —x — 7 Logo, os coeficientes angulares de

r e s sao iguais a —1, e portanto, temos que 7 é paralela a s.

r:y=3r+2
b)

2
S . y:—6$+4
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Resolucao:

2
Observe que o produto dos coeficientes angulares de r e s sao iguais a 3 - <_6) =—1,

e portanto, temos que r é perpendicular a s. Vamos determinar o ponto de intersecao

entre r e s.

2 2 1
3a:+2:—693+4<:> 3x+6x:4—2 <— 3 r+-zx=2

3
9r + x 10z
=2 = — =2
3 3
6 3
— o — 710" 5
~9+10 19

3 3
Substituindo x = — em r, temos y = 3 - R + 2
: . , 3 19
intersecao entre r e s é P = =5 )
Exercicio 5.15. Determine a intersecao entre as retas r e s sabendo que r é a reta que passa

pelo ponto (2,1) e (—1,—2) e s é a reta que passa por (1,2) e é perpendicular a r.

6 Funcoes de 2° grau

Definigao 6.1 (Fungao Quadrética). Uma funcao f : R — R é chamada de func¢do quadrdtica

se f(x) = ax?® 4+ bx + ¢ para todo x € R, onde a,b,c € R, a # 0.

Para as funcoes quadraticas, temos que Dy = R. Seus gréficos consistem de uma parabola,
que corta o eixo y no ponto (0,c), e cuja concavidade pode ser voltada para cima ou para

baixo, a depender do valor do coeficiente a.

i< ()

Exemplo 6.2. 1. Considere a fungao f(x) = z? + 1.
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Dominio de f: Dy =R

z | f(z)
0] 1
2| 5
~1| 2
0] 1
1| 2
2 | 5
-

Imagem de f: Imf = [1, 4+o00].
2. Considere a fungao f(x) = —2x* + 3z — 1.

Dominio de f: Dy =R ' ' > 'flxl“ > X
v | 1@
Ll
1 0
—-1| -6
2 | -3
3 | =10
AR

1
Imagem de f: Imf =] — oo, g]

(3.-10)

Observagao 6.3. 1. Para obter o zeros (raizes) de f(x), vamos reescrever a func¢ao para
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facilitar encontrar o valor de x quando f(z) = 0.

b
f(zx) = axz—l—bx—i-c:a(xQ—f——x—l—E)
a a
2 2 2
completando quadrados 2 9 _ b E . i _ b — 4ac
a(x +ax—i_4a2 4a2+a> ¢ ($+2a 4a?

A=b%—4ac
= a

Fazendo f(x) =0, como a # 0, temos que

b\> A b\ A
f(.%'):() <= (iL‘—l-Q—a) —(4—(12):0<:>(33+%> :4—a2

wopen b YE b B
2a 2a 2a 2a

_—bEVA

< x
2a

e Se A >0, entdo f(z) = 0 terd duas raizes reais distintas:

_ —b+VA _—b-VA

2a ¢ = 2a

r Tra
a>0 a <0
:f‘\/]ﬁ'g T

Neste caso, a parabola corta o eixo x em dois pontos.

T

—b

e Se A =0, entdo f(z) = 0 terd duas raizes reais iguais: ©; = xo = b
a

Neste caso, a parabola tangencia o eixo .
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e Se A <0, entdao f(z) = 0 nao terd raizes reais.

a >0

Neste caso, a parabola nao toca o eixo z.
. Da observacao acima, temos

fx)= ar®* +br+c=a <x+%)2—(%>

b+ VA || —b— VA

2a 2a
—— S——
xr1 xr2

= a(x — z1)(x — x3) — Forma fatorada de f(z)

= a(2? — 2wy — 211 + T179)

= a(z? — (71 + 22)T + 1179)

Segue dai que:

$1+I’2:——
a

[
1Ty = —
a

. Note que f(r) =ax?>+bx+c=a

b\> A
:a(.ilz—i——) — —. Como
4a

(+2) - ()

b\ 2
(x + 2—) > 0, para todo x € R, temos que:
a

b\ 2
e Para a > 0, temos que a (x + 2—) > 0. Assim, para todo = € R,

a
b\> A A A A
f(x):a(:v—i-%) —EZ—E:Im(f):{yERWZ—E}: [—Ed—oo{



Neste caso, y = T ¢ o valor minimo de f.
a

b\ 2
e Para a < 0, temos que a (a: + 2—) < 0. Assim, para todo = € R,

a
b\* A A A A
— | - =Z2<_= — <2V =
f(@) a<x+2a) S 2 () {yeRw_ 4a} ] | 4a]
Neste caso, y = e é o valor maximo de f.
a
e Note que para = = ~og’ temos que
a
(-2 - b b A A
2a) “ 2a  2a da  4a
b A e ,
Desta forma, o ponto V = | ——, —— | é o vértice da parabola.
2a°  4da

A reta vertical que passa pelo vértice V' é chamado de eizo de simetria da parabola.

v i

\

=
T.n—.——-——-—

e

1

|

i

| -
- "
2a +r

<
B|&

4. Dada a fungao quadrética f(z) = axr®+bx+-c, vamos analisar os intervalos onde f(x) > 0

e f(z) <O.

e Para A >0

a>0

;;71‘\9/;72 x

f(z) >0 em |z, zo]

f(z) > 0em | — 0o, z[ U |xg, +00]

F(z) < 0 em ]z, 2 f(z) <0em ] —o00,21[U]zs, +00]
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e Para A=0

a >0

xr = Ia

[ ]

f(x) >0 em | — 00,21 [ U |2y, +oo] f(x) <0 em | — o0, 21[ U Jay, +00

e Para A <0

a >0

f(z) <O0em R

f(z) >0em R

Exemplo 6.4. Esboce o grifico das fungao f(z) = 2 — 4z + 3.
Observe que, como a = 1 > 0 entdo f(x) possui concavidade para cima. Assim, vamos

determinar os zeros de f.

fla)=0e 22—424+3=0 ©A=(-4)?-4-1-3=16—-12=4>0

4+/4 - 442 _, -2,
= = — = e = — =
T o0 1= 2T
Vamos determinar o vértice de f(z). Como a =1,b= —4,¢c=3 e A =4, entdo
b 4 A 4
2a 2 4a 4

Logo o vértice, ¢ V = (2, —1).

Desta forma:
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Dominio de f: Dy =R

r | f(x)

0] 3

31 0

1| o

2 | —1

~1] 8 :
4] 3 1

) 8 1 L \2/3 4 5
-

Imagem de f: Imf = [—1, +o00].

1
Exercicio 6.5. Esboce o grafico das funcoes f(z) = —2% +4x —4 e g(x) = §x2 +x+ 1.

Exemplo 6.6. Um fazendeiro possui 1200 metros de cerca e deseja cercar um campo retan-
gular que estd na margem de um rio reto. Ele nao precisa de cerca ao longo do rio. Determine
dimensoes do campo cercado de forma a obter area maxima.

Resolucao:

Como a area a ser cercada é retangular, chame de y o comprimento da cerca paralela ao

rio, e chame de x o comprimento da cerca vertical ao rio.

u

RIO

Entao a area do campo é A = xy. Como o fazendeiro possui 1200 m de cerca, temos entao

que y + 2z = 1200 = y = 1200 — 2z. Logo

A = zy = (1200 — 27) = A(z) = 1200z — 227
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Queremos maximizar a drea A. Entdo devemos encontrar um ponto de méximo de A(z).

Como A(z) é uma funcao quadrética com concavidade para baixo (a = —2 < 0), segue que o
b A
ponto de méximo de A(x) ocorre no vértice da pardbola V = (—2—, —4—) Assim,
a a
b 1200 1200
r=——=— = = 300

2a 2(-2) 4

A(300) = 1200(300) — 2(300)* = 180000  (4rea médxima)

Como estamos interessados nas dimensoes do campo na qual o mesmo tera area méxima,

entdao o campo terd area maxima quando z = 300 m e y = 1200 — 2(300) = 600 m.

Exercicio 6.7. Um dia na praia a temperatura atingiu seu valor maximo as 14h. Suponha
que neste dia a temperatura era dada por T'(t) = —t? + bt — 156. Sendo o tempo medido em

horas, a temperatura em graus celsius e o tempo 8 < t < 20, pede-se:

a) O valor de b.

b) A temperatura maxima nesse dia.

6.1 Inequacao de 22 grau

Uma inequagio do 2° grau é toda expressao que pode ser reduzida a uma das seguintes

formas:
ax’ +br+c>0, a2 +br+c>0,ar’> +br+c<0eax?+br+c<0

Para resolver as inequacoes, basta determinarmos os intervalos em R onde as inequacoes sao

satisfeitas, como vistas na observagao [6.3|(4).

Exemplo 6.8. Resolva a inequacao: 22 — 2z +1 <0

Considerando f(z) = 2> —2r+ 1, temos quea=1>0e A = (=2)?—=4-1-1=0. Desta
—b -2
forma, f(z) tem raiz em z = 5 = —% = 1. Como f(z) > 0 para todo x € R — {1},

segue que f(z) < 0 somente em x = 1. Portanto a solucdo é S = {1}.
Exercicio 6.9. Resolva a inequacao: —2z% + 3z +2 > 0
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222 —1
Exemplo 6.10. Resolva a inequagao: e -2 >
—x? 4+ 2x

Considerando f(z) = 22> + 2z — 1, temos quea=2>0e A=12-4-2-(-1)=9> 0,

-1 9 1 —-1—-v9
obtendo desta forma duas raizes para f, sendo z; = i =—exy= —\/_ = —1.
2-2 2 2-2
Considerando g(r) = —z? + 2z, temos que a = —1 < 0, e pela fatoragao de g(z) =

x(—x + 2), temos que g possui duas raizes r; =0 e x5 = 2.

Analisando os sinais de f e g, temos

1 s a2 -

£ - ! | : | +

- i - 0+ o8 o) 2
g(x) : o : S
f ~ L 4 o= + i -
(X) * © * ©
g(x) 1 0 1 2

E

1
> 0 se, e somente se, —1 <x <0e 3 < z < 2. Portanto a solucao

1

S=[-1,0[U [5,2[.

Exercicio 6.11. Resolva a inequacao: 5r < 3 — 222 < —2% — 1

6.2 Outras Funcoes
6.2.1 Funcao Polinomial

Definicao 6.12 (Funcao polinomial). Uma funcdo f : R — R é uma func¢do polinomial de
grau n se

f(2) = apa™ + ap_12" ' + -+ agr® + a1 + ag,
para todo z € R, onde ag, ay, ...,a, € R, com a, # 0 e n € N. Neste caso, Dy = R.
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As funcoes afins e as fungoes quadraticas sao fungoes polinomiais de grau 1 e grau 2,

respectivamente.

Exemplo 6.13. Considere a funcao f(r) = 2% — 62*> +x — 1

Dominio de f: Dy =R

155

v | s

0| -1 A
~2| 35 ]
~1] -9

0| -1

1| -5

2 | ~15

4| -2

6| 5

Imagem de f: Imf = R.

6.2.2 Funcao Poténcia

Definigao 6.14 (Funcao Poténcia). Uma funcao f : R — R é uma funcao poténcia se

f(x) = 2%, onde k é uma constante.

Exemplo 6.15. Seja f: R — R definida por f(z) = 2. Entao
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Dominio de f: D =R
z | f(z)
-2 =8
-1] -1
1) 1
2 8
0 0
1 1
2 8
1 1
2 8
Imagem de f: Imf = R.

Observagao 6.16. 1. f(z) =2", com n € N.

y=z

2. f(x)=aw = Yz, comn € N,
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6.2.3 Funcoes Racionais

Definigao 6.17 (Fungoes Racionais). Uma fungao f : R — R é uma func¢do racional se

20 A

-10 -5

3 — 4z
Tz —2

Exercicio 6.18. Considere a funcao f(z) =

a) Represente graficamente f(x).

b) Determine Dy e Im(f).
c) Calcule f(—1), f(2), f(1) e f(—3).
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6.2.4 Funcoes definidas por partes
Definicao 6.19 (Funcao definida por partes). Uma funcao f : R — R é uma funcdo definida

por partes se
g(x) ,sex <k

fz) =

h(z) , sex >k,

onde g(x) e h(x) sdo fungoes reais.

Exercicio 6.20. Considere a fungao

(
r—3 ,sex>3

f@)=< —2249 | se —3<1<3

—r—3 ,sex<-—3
\

a) Represente graficamente f(x).
b) Determine Dy e Im(f).
c) Caleule f(=1), f(=3), f(3), f(=5) e [(5).

7 Alguns conceitos e propriedades sobre funcgoes

Definigao 7.1 (Crescente e Decrescente). Sejam f : A — B uma fungdo, I um subconjunto
de A, e x1,29 € 1.
1. Uma fungao é chamada crescente em I se f(z1) < f(xq) sempre que x; < x5 em I.
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2. Uma fungao é chamada decrescente em I se f(x1) > f(z2) sempre que z7 < xo em I.

Exemplo 7.2. Considere o grifico da fungao y = f(z) abaixo.

N
'\_E/l/

T E I.II: -!l“
|

I
I
[ |
[ [ [
| [ I
l a b e I c : ]
—4 & ?1__4*_ ' \ ¢ /
[
< p
(Ver [Googebra)

Observe que para todo z1, x5 € [a,b], com x; < 3, temos que f(z1) > f(z2), e logo a fungao

é decrescente. Ja para todo x1,x2 € [b, ¢], com z1 < 25 temos que f(x1) < f(x2), e portanto f

é crescente. De forma andloga, conclui-se que no intervalo [¢, d] f é decrescente, e no intervalo

[d, e] a fungao é crescente.
Porém, se analisarmos a fun¢ao f no intervalo [b, d], nada podemos concluir sobre f, pois

neste intervalo teremos momentos com x; < x5 e f(z1) < f(x2) ou f(x1) > f(x2).

Exemplo 7.3. 1. Dada a fungao afim f(x) = ax + b, temos que quando a > 0 entao f é
crescente em R, e quando a < 0 entao f é decrescente em R.

i < )

o=

2. Dada a fungao quadratica f(x) = az?® + bz + ¢, temos

b
e a > 0 entdo f é decrescente em | — oo, —2—[ e f é crescente em | — 20 +ool.
a a

e a < 0 entdo f é crescente em | — oo, —2—[ e f é decrescente em | — —, 400
a a
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Exercicio 7.4. Determine os intervalos onde a funcao abaixo é crescente e decrescente.

.
r—3 ,sex>3

flx) =9 —22+49 ,se —3<z<3

—r—3 ,sex<-—3
\

Definigao 7.5 (Fungoes pares e impares). Seja f : A — B uma fungao.

1. Dizemos que f é uma funcdo par se para todo = € A tem-se que f(—z) = f(x).

2. Dizemos que f é uma func¢ao impar se para todo =z € A tem-se que f(—x) = —f(x).

Exemplo 7.6. 1. As fungoes f(z) = 22+ 1 e g(x) = |z| sdo funcdes pares, pois para todo

z € R:

3

2. As fungoes f(x) =2z e g(z) = 2° — x sdo fungdes fmpares, pois para todo z € R:

o f(—x)=2(-2) = 22 = —f(2)
o g(—a) = (—2)’ — (=2) = —a® + 7 = —(2® — x) = —g(a)
Exercicio 7.7. Determine se as seguintes funcao sao pares ou impares.

1. f(x)=—a*+102*+9

2. f(z) =32° — 4a® + 2z

3. flx) = xg;_?)
1) =Y
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Definigao 7.8 (Operacoes com Fungoes). Sejam f e g duas fungdes com dominios Dy e Dy,

respectivamente.

1. Soma de fungées: (f + g)(z) = f(x) + g(x), onde D4, = Dy N D,.

2. Diferenca de funcées: (f — g)(z) = f(z) — g(x), onde D;_y = D; N D,.
3. Produto de funcées: (f - g)(z) = f(z) - g(x), onde D,y = Dy N D,.

4. Quociente de fungoes: <§) (2) = L&)

(D) onde D(ﬁ) ={rxe DN D,|g(x)#0}.
Exemplo 7.9. Sejam f(z) = 22 + 2z + 1 e g(x) =

x
com D =ReD, =R —{-1},
+ 1 ) f g { }
respectivamente.

(2 +2 1 343,21 4 1
a) (f+g)(x)=a"+22+1+ L _(“T+ )(” + 22 + )-1-:1::36 + 3x° + 4 +
T

1 11 1 ’
com Dsyq =R —{-1}.

b) <f-g><x>=<x2+2x+1>-$jl=”“"<jj_1” —a(r+1) =2 +1,

com Ds.qg =R —{-1}.

f 4241 (z+1)(@*+2x4+1) 2*+322+30+1
°) g (#)= x N x - T ’
r+1

com D(g) =R - {—1,0}.

Definigao 7.10 (Funcao Composta). Sejam f: A — B e g : B — C duas fungdes tais que

Imf C D,. A fungdo composta go f : A — C é definida por (g o f)(z)
€ Digopy ={x € Dy | f(x) € Dy}.

9(f(x)), para

A B

!

gof
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Exemplo 7.11. Considere as funcoes f(z) = 22 + 3z, g(z) = 2z + 1 e h(z) = \/z. Entéo
L. (go f)(x) = g(f(x)) = g(z* +32) =2(x®> + 3z) + 1 = 22% + 62 + 1
2. (goh)(x) = g(h(x)) = g(Vr) =2Vr +1
3. (foh)(z) = f(h(z)) = f(Vr) = (V2)* + 3(Vr) =2+ 3V/x

4. (fog)(x) = flg(x)) = fRx+1) = e+ 1) +3Q2c+1) =42+ 4z + 1+ 6z + 3 =

422 + 10z + 4

Exercicio 7.12. Dadas as fungoes f(z) = 2? +4x — 5 e g(x) = 3 — 2z, determine (f o g)(z),

(go f)@), (fog)(1)e(gof)(1).

7.1 Funcgoes Inversas

Definigao 7.13 (Injetora, Sobrejetora, Bijetora). Seja f : A — B uma fungao.

1. Dizemos que f é uma funcao injetora se para quaisquer a,b € A tais que f(a) = f(b),

temos que ¢ = b. Ou ainda, se para quaisquer a,b € A tais que a # b, temos que

f(a) # f(b).
B
‘e
/lx J\
._

2. Dizemos que f é uma funcao sobrejetora se para qualquer b € B existe a € A tal que

f(a) =b. Neste caso, Imf = B.




3. Dizemos que f é uma funcao bijetora se f é injetora e sobrejetora.

Exemplo 7.14. 1. Sejam A = {1,2,3,4,5}, B={6,7,8,9,10,11} e f : A — B a fungao

dada pelo seguinte diagrama:

e f é injetora, pois para qualquer a,b € A com a # b, temos que f(a) # f(b).
e f nao é sobrejetora, pois dado 10 € B, nao existe a € A tal que f(a) = 10.
Logo f nao é bijetora.

2. Seja a fungao f: A — B dada por f(z) =2z, com A= B =R.

e f ¢ injetora, pois para qualquer a,b € A com a # b, temos que f(a) = 2a # 2b =
().

b
e f é sobrejetora, pois dado qualquer b € B, se tomarmos a = — € A entao

for =202 (%) -

Logo f ¢ bijetora.
3. Considere a fungao f : A — B dada por f(z) = 2%, com com A = B =R.

e [ ndo é injetora, pois —2 # 2, mas f(—2) =4 = f(2).
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e f também nao é sobrejetora, pois —1 € B e nao existe a € A tal que f(a) = —1.

Note que se tomarmos A = B = [0, 400, entao f(z) = 2* serd bijetora. De fato,
e f é injetora, pois se tomarmos a,b € A tais que

fla) = fla) = a* = > = Va2 = Vi2 & ¢ = b.

e [ é sobrejetora, pois para todo b € B, basta tomar a = Vb € A tal que

fla) = a* = (Vb)* =b.

Exercicio 7.15. Com base nos graficos das fungoes reais abaixo, indique quais sao injetoras,

sobrejetoras e bijetoras.

a) b)

-2 -2
4 4

c) d)
3 3

1
a) f(x)=—22+3,b) g(x) =23 +2+1,c) h(z) = —5%+ 3ed) t(r)= (22— 1)(z —2)
Exercicio 7.16. A fungdo f : R — R dada por f(x) = az + b, com a # 0, é bijetora.
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Definigao 7.17 (Funcao Inversa). Seja uma funcdo f : A — B bijetora, onde A = Dy e

B = Imf. Entao sua funcdo inversa f~': B — A tem dominio B e imagem A, sendo definida

port,

'y == f(z)=y

para todo y € B.

A f

Mais ainda,

(f o f)(@) = F1(f(@) = F1(y) =, para todo z € A
(fof ™y =f(fy)=fx)=y, paratodoyé€B.
Esta caracteristica algébrica permite afirmar que os graficos de f e de sua inversa de f~! sao

simétricos em relacao a funcao identidade y = x.

Propriedades 7.18. Seja f : A — B uma funcao bijetora com funcao inversa f~!: B — A.

Entao

Demonstragdo. Segue das propriedades [3.17] O

Exemplo 7.19. 1. A fungao f: A — B dada por f(x) = 2z, com A = B = R, é bijetora.

Assim, vamos determinar sua inversa f~!: B — A:
[y =2 = fx) =y
. — _ Y 1N _ Y
f(a:)—y—2:c<:>$—§<:>f (y)—§
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’ 31

2. A fungao f : [0,+00) — [0,+00) f(x) = z* é bijetora, assim sua funcao inversa f~! :

[0, +00) — [0, +00) é dada por
[T y) =2 = [f(2) =y,

ou seja, f(z) =y =a? < x = /y e portanto f~'(y) = /¥.

Fd
s
Fd
’
/
4 #
’
’
’
s
’
’
3 7
= Fd
f ’
/
/
’
’
2 7
’
4 1
> i
¥; I
’
4
Fd
g
7/
’
’
-1 & 1 2 3 4
s
’
P
I
Fd
# -1
’

Exercicio 7.20. Para cada uma das fungoes abaixo, mostre que f é bijetora, e determine

sua funcao inversa.
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a) f:R — R dada por f(z) =3z —2

T

b) /R —{3} = R— {1} dada por f(z) = -—

8 Funcoes Modulares

Definigao 8.1 (Fungao modular). Uma func¢ao f: R — R é uma func¢ao modular se

rx ,sex>0
f(z) = |z| =
—x ,sex <0
y=|a 5]
1 4
3 2 -I1 u] 1 2
-1

Observe que Dy = R e Im(f) = [0, 4+00[. Também podemos considerar fun¢oes do tipo

f(z) = |g(x)|, onde g(x) é uma funcao real.

Exemplo 8.2. 1. Seja f: R — R a fungao dada por

r—3 ,sex—32>0 r—3 ,sex >3
f(z) =]z —3| = =
—(x—=3) ,sex—3<0 —x+3 ,sex<3
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2. Seja f : R — R a fun¢io dada por f(r) = |22 — 4]. Entao

(
22 -4 [ sex?—4>0
fla) =|o* — 4] =
—(22—4) ,sea?—4<0

\

(

22—4 [sex<—2ouzxz>2
= flz) =2 —4| =

\ 2244 [ se —2<aw<?2

3. Seja f: R — R a fungao dada por f(z) = |z — 1| + |z + 2|. Entao

r—1 ,sex—12>0 r—1 ,sex>1
—(x—1) sex—1<0 —r+1 ,sex<l1
e
T+ 2 ,sex+22>0 r+2 ,sex>—2
|z + 2| = =
—(x+2) sex+2<0 —r—2 ,sex<—2

Assim, analisando as possibilidades acima, temos

e Sex< 2= |z—1l+|z+2=(—2z+1)+(—z—2)=—2z—1.
e Se 2<z<l=|z—1+z+2/=(—2+1)+(x+2)=3.

e Sex>1l=|z—1l+jz+2|=(x—-1)+(x+2)=2x+1.
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Portanto,

—2r—1 | sex < —2
f(@) =z -1+ |z +2[= 3 ,se —2<z<1
2e+1 [, sex>1
\
7
5
5
4
2
1
4 -3 -2 40 1 2 3 4

Exercicio 8.3. Esboce o gréfico de das fungoes.

a) f(r) = [2z|
b) f(z)=|—-3z+1+2
c) f(z)=]—a2*+ 4z — 3|

9 Funcoes Exponenciais

Potenciacao

Seja a um nimero real e n um nimero natural, definimos:

n fatores

Exemplo 9.1. 1. (=5)? = (=5)-(=5) =25
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ot

. Paraa #0, a® = 1.

Propriedades 9.2. Seja a um ntumero real e n e m nimeros naturais.

1. a-am = qrtm PEEER 93 92 95 _ 39
1 Exemplo 1 1
2. a™" = —, desd 0 ="42=_=_
a s esde que a # 2= 16
m xXemplo 35
3. L — a™ ", desde que a # 0 Promplo © - _ 35-2 _ 33 _ 97,
am 32

4. (amym = qmn PRI (93)2 _ 982 _ 96 _ 6y

n 3 3
a\"™ a Exemplo [ 3 3 27
5. (—) = desde que b # 0 (Z) =5 6
6. av = a TR o7s = /27 = 3.
7. a% = Yam  PEEC 4 = P = Y16 = 292,
Definicao 9.3 (Fungoes exponenciais). Uma funcdo f: R — R é uma func¢do exponencial de

base a se f(x) =a”, ondea >0ea # 1.

0 <=1

Note que Dy =R e Imf =]0, +o0].

Exemplo 9.4. 1. Dada a funcdo f(z) = 2%, temos
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0 1
5

1 2
5

2 4
4
3 8 ;

1
-1 3 2

'Il."ni

w

S =
o
loi W

00|

z | f(x)
0 1
1K
2 |}
3|
—1 2
-2 4

1""?14
-3 8 sl

-3 -2 -1 0 1 2 3 4 5

3. A funcao exponencial natural na base e = 2,718281... é dada por

fla)=e
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y=e

—

-4 -3 -2 -1 0 1 2

Observagao 9.5. 1. O grafico de qualquer fungao exponencial passa pelo ponto (0, 1),

pois para a > 0 e a # 1, tem-se que a’ = 1.

2. O grafico da fungao exponencial nao toca o eixo x. Neste caso, o eixo x (reta y = 0) é

uma assintota horizontal para o grafico da funcao exponencial.
3. Sea > 1 afuncdo f(x) = a” é crescente, pois se x < y entdao f(x) =a®* < a¥ = f(y).
4. Se 0 < a < 1afuncado f(z) = a” é decrescente, pois © < y entao f(z) = a® > a¥ = f(y).
5. Pelos dois itens anteriores, temos que fungao exponencial f(x) = a® é injetora.
Propriedades 9.6. Para a,b €]0, +oco[, e 2,y € R, temos

1. a®Y =a® - aY.

4. (ab)* =a® - b".

Exercicio 9.7. Esboce o grafico de f(x) =377,
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9.1 Equacoes Exponenciais

Definicao 9.8 (Equagao exponencial). Chama-se equagio exponencial toda equagdo que

contém incognita no expoente.
Exemplo 9.9. 1. 2 =32
2. 3571 =27
3. (V3)r = V81
4. 4% =2 =2

Para resolver uma equacao exponencial, devemos transforma-la de modo a obter poténcias
de mesma base no primeiro e no segundo membros da equacao utilizando as defini¢oes e

propriedades da potenciacao. Além disso, usaremos o seguinte fato: paraa > 0e a # 1
a* =al <= xr=p
Exemplo 9.10. Resolva:
1.2 =32«=2"=2P«=x=5
Solugao: {5}
2.3 1 =T —=3"1=F—=r-1=3as=14
Solugao: {4}
3. (V3)" = V81 = (3%> — (3Y)} = 35 =3
N 8
Solugao: {=}
3
4o 47 =2 =24= (2T -2 =2<= 2% 2T =2 & (2)2 - 2" =2
Chamando 2% = y, temos que
Y -—y=2<=1y>—y—-2=0<=y=20uy=—1

e Paray =2, entao 2* =2 =2 <<z = 1.
e Para y = —1 nao ¢é possivel obter solugao, pois 2% > 0.
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Logo, a solugao é {1}.
Exercicio 9.11. Resolva:
1. 4% =512
2. 3%78 =81

Exercicio 9.12. O numero de bactérias de uma cultura, ¢ horas apds o inicio de certo
experimento, ¢ dado pela expressao N(t) = 1200 - 2%, Nessas condigoes, quanto tempo apés

o inicio do experimento a cultura tera 38.400 bactérias?

9.2 Inequagoes Exponenciais

Defini¢ao 9.13 (Inequagao exponencial). Chama-se inequa¢ao exponencial toda inequagao

que contém incégnita no expoente.
Exemplo 9.14. 1. 2% > 32
2. 3% <81
;s < % > 22+3 .
4. 4% —2>2°
Para resolver inequacoes exponenciais, devemos observar dois passos importantes:
1. Reducao dos dois membros da inequacao a poténcias de mesma base.
2. Verificar a base da exponencial, a > 1 ou 0 < a < 1, aplicando as propriedades a seguir:

e Casoa > 1,entdo a™ > a" = m >n

e Caso0<a<l1,entao a™ >a" = m <n
Exemplo 9.15. Resolva:

12" >32=2">2P = 1>5
Logo, a solugao ¢ dada por S = {z,€ R |z > 5} =]5, +o0|.
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2.3 <8l =3 <3 —= 12<4=—=22-4<0

Logo, a solugdo ¢ dadapor S={r e R| —2 <z <2} =[-2,2].

1 2x+3 1 2z+3 1 0 3
3. (5) <1<:>(5) <(5) :2x+3>0:x>—§

3 3
Logo, a solugao é dada por S={zx € R |z > _5} = } _574_00 [

4o 45 —2>2T =47 2" —2> 0= (22)*—2"-2> 0= (292 -2 -2 >0
Chamando 2* = y, temos que

(272 =27 —2>0<=1y*—y—2>0

Logoy? —y—2>0<=y< —louy>2LE5 927 < —1ou2®>2

e Para y < —1, terfamos 2* < —1, o que é impossivel, pois 2”7 > 0.

e Paray > 2, temos 2* > 2 =z > 1.
Logo, a solugao é dada por S = {z € R |z > 1} = [1,4o0].

Exercicio 9.16. Resolva:

. 1 33+3< 1 2x—"T
"\ 2 2

1
2. — < 3 <81
27
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10 Funcoes Logaritmicas

Definigao 10.1 (Logaritmo). Sendo a e b nimeros reais positivos, com a # 1, chama-se

logaritmo de b na base a o expoente real x ao qual se eleva a para obter b, isto é,
log,b=2<=a"=0
Na igualdade log, b = z, tem-se

e ¢ ¢ a base do logaritmo;
e b ¢é o logaritmando;

e x ¢ o logaritmo.

Exemplo 10.2. 1. log,32 =5, pois 2° = 32
2. logs5 =1, pois 5' =5
3. logs1 =0, pois 3" =1

Exemplo 10.3. Determine os logaritmos.

1
1. logs 9

1
Chamando logs 9= x, temos

1 1
log3§::c<:>3m:—:—<:>3$:3’2:>x:—2

2. log, 8
Chamando log, 8 = x, temos
T 2\x 3 2x 3 3
log,8=1<=4"=8«= (2°)" =2" <= 2" =2 <:>2x:3<:>x:§
Observagao 10.4. Para a,b € R, coma > 0, b > 0 e a # 1, segue da definicao de logaritmo:
1. O logaritmo de 1 em qualquer base a é igual a zero, pois log, 1 = 0 <= a" = 1.

2. O logaritmo da prépria base ¢ igual a 1, pois log, a = 1 <= a'! = a.
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3. O logaritmo de uma poténcia da base é igual ao expoente, pois

log,a™ =m <= a™ = a™.

4. O logaritmo de b na base a é o expoente ao qual devemos elevar a para obter b

log,b =1 <= a" =b=>a"%"=b.

5. Dois logaritmos de mesma base sao iguais se, e somente se, os logaritmos sao iguais.
log,b=log,c<=b=c

De fato, pois

log, b =log, c <= a'%%° = b <= c = b.

6. Quando nao se indica a base do logaritmo, fica subtendido que a base é 10, isto é,

log b = log, b.
7. Para e = 2,718281..., defini-se o logaritmo natural de base e (base de Neeper)
log, b =Inb.
Assim Inb =z < e* =b.
Propriedades 10.5. Sejam a,b,c € R, coma >0, b>0, c>0ea # 1.
1. log,(b-c) =log, b+ log, c.
b
2. log, (—) = log, b — log, c.
c

3. log,(b") =1 -log, b, onde r € R.

log, b
4. Supondo ¢ # 1, entao log, b = ;)i (mudanga de base)
0g,. a
Demonstra¢ao. 1. Tomando log, b = x, log, c =y e log,(b - ¢) = z, temos
log,b==x — a"=b
log,c=1y — ¥ =c —=a*=b-c=ad"-d'=ad""V = z2=2+y

log,(b-c)=2 = a*=b-c
Logo, log,(b-¢) =z =z +y = log, b+ log, c.
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b
2. Tomando log, b = z, log, c =y e log, (—) = 2, temos
c

log, b =2 == a*=b
z a’I xr—
log,c = — a'=c = ad=-=—=a V—=z=0—y
a
() s =
log, (- ]| =2 = a°=-
c c

b
Logo, loga( ) =z=1a—y=log,b—log,c.

c
3. Tomando log, b = z e log,(b") =y, temos

log,b=2 = a*=0>
—a'=b=(")"=d" = y=rx
log,(b") =y = a¥="0"

Logo, log,(b") = y = rx = rlog, b.

4. Tomando log, b = x, log.b =y e log.a = z, como a # 1 entao z # 0. Mostremos que

T = ?j' De fato,
z

log, b= = a* =0

<

T="=y=2z0 ===

log. b=y — &=b = c'=b=da"=() z

log,a=2 = c=a

log,.b
Logo, log, b =x = y_ &.
z  log.a

3 5
Exemplo 10.6. 1. log,32 =log,(4-8) =log,4 +log,8 =1+ 3=3

1
11 1
3. logy 3 = loge(v/9) = logy 9z = 510g99 =3
4. log, 12 = log,(2? - 3) = log, 22 + log, 3 = 2log, 2 + log, 3 = 2 + log, 3

1 1
5. 1log 0,01 = log — = log

0 T = log107* = ~2log 10 = 2

Exemplo 10.7. Sabendo que log?2 ~ 0, 3, determine log, 10.

Temos que

log 10 1 10 10
o8 %—:—:>10g210%§.

log, 10 =
082 log 2 , 3 3
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Exercicio 10.8. Sabendo que log2 = x e log3 = y, determine, em funcao de = e y, os

logaritmos log 12 e log v/6.

Exemplo 10.9. O ntmero de individuos de uma populacao de bactérias no instante t é
definido pela funcao:

f(t) =30 - 31709515’

onde t é o tempo em minutos. Deseja-se saber apds quantos minutos essa populacao chegara
a 9000 bactérias. (Dica: log3 ~ 0,477)
Resolugao: Como f(t) = 30 - 3199t queremos determinar o tempo ¢ tal que
9000 = 30 - 3M9%" = 3-09%" = 300
. Aplicando o logaritmo na base 10 na igualdade acima, temos
log 3599 = 1og 300 == 1, 095t log 3 = log(3 - 10*) = log 3 + log 10* = log 3 + 21og 10
Entao,
1,095¢(0,477) ~ 0,477 + 2 = 0,522315t = 2,477 =t ~ 2,477 4,742

’ R ’ o 70,522315
Logo, o tempo para atingir 9000 bactérias é de aproximadamente 4 minutos e 45 segundos.
Defini¢ao 10.10 (Funcao logaritmica). Uma fungao f :]0,4+00[— R definida por

f(x) =log, z,

onde a é uma constante positiva com a # 1, é chamada de fun¢do logaritmica de base a.

- 1 0<a-=1
=
y=log,x

y =log,x

3 Y

Note que Dy =0, 400 e Im(f) =R.
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Exemplo 10.11. 1. Dada a funcao f(z) = log, z, temos

4

x| f(z)
1| 0
2] 1
4| 2
8| 3
: -1
1l -2
1 -3

2. Dada a fungao f(x) = logy @, temos

h

—3

—5

—6

z | f(z)
11 0
L
Ll
Ll 3
r
2| —1
41 =2
8| —3

3. A funcao logaritmo natural na base e = 2, 718281... é dada por

f(z)=Inzx
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2 y =Ilnx

Observagao 10.12. 1. O grafico de qualquer funcao logaritmica passa pelo ponto (1,0),

pois para log, 1 = 0.

. O gréfico da fungao logaritmica nao toca o eixo y. Neste caso, o eixo y (reta x = 0) é

uma assintota vertical para o grafico da fungao logaritmica.

. Se a>1afuncdo f(z) = log, x é crescente, pois se < y entdo log, = < log, y.

. Se 0 <a<1afungdo f(x) = log, x é decrescente, pois x < y entao log, z > log, y.

. Paraa > 0ea#1, as fungoes f :]0, +oo[— R dada por f(z) =log,x e g : R —]0, 00|

dada por g(x) = a” sao inversas uma da outra. De fato,

(fog)(x)= f(g9(x)) = f(a®) =log, a® = x, para todo x € R e

(go f)(z) = g(f(z)) = g(log, x) = a'°%® = z, para todo x €]0, +o0l.
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a>1 4

Exercicio 10.13. Esboce o gréfico de f(z) = log, z.

10.1 Equacoes Logaritmicas

Podemos classificar as equacoes logaritmicas em trés tipos:
e 19 tipo: Paraa >0, a # 1, k € R e f(x) uma funcao real:

log, f(x) = b —> f(z) = a*

Exemplo 10.14. Resolva a equagao log,(3x 4+ 1) = 4.

Resolugao:
log,(3r+1)=4=3r+1=2'=16=32=15=2=>5
Logo, a solugao é {5}.
Exercicio 10.15. Resolva a equacio logy(z? + 3z — 1) = 2.
e 2% tipo: Paraa >0, a # 1, f(x) e g(x) fungdes reais:
log, f(x) = log, g(x) = f(x) = g(x) >0
Exemplo 10.16. Resolva a equacao logs(2z — 3) = log;(2 — x). Resolugao:

logs(2x —3) =logs(2—2) =20 —-3=2—2>0
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Entao 2 — 2z > 0 <= x < 2. Desta forma
5
5 ~ D
Como = = 3 < 2 entao a solugao é {5}
Exercicio 10.17. Resolva a equagao logs(4x + 1) = log; 9.
e 3% tipo: Sao as equacoes que resolvemos fazendo uma mudanca de incégnita.

Exemplo 10.18. Resolva a equagio (log, ) — log, = = 2.

A equacao dada é equivalente a (log, ) —logy, # — 2 = 0. Chamando de log, z = y, temos
Y —y—2=0<=y=—1louy=2.
1 1
* Para y = —1 temos log,z = —1 = 2 =2 :>a::§
x Paray =2 temos log, 1 =2 =1 =2 =1 =4

1
Logo a solugao é {5, 4}.

10.2 Inequacgoes logaritmicas

As inequagoes logaritmicas também sao classificadas em trés tipos:

e 12 tipo: Dado f(z) uma funcao real e k € R:

)
f(x) > a* . sea>1
log, f(z) > k=
\ 0< f(z)<at ,se0<a<l

ou
(

0< f(z)<a ,sea>1
log, f(z) < k =

\f(:c)>a’“ ,se0<a<1

Exemplo 10.19. Resolva a inequagao log,;(3z + 2) < 2.

Resolucao:
logs(37+2)<2=0<32+2<3=0<32+2<9.
Assim,
2 7
O<3x+2<9:>—2<3x<7:>—§<x<§.

2 7
Logo, a solugao é {x € R | —g << 5}
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e 2% tipo: Dado f(z) e g(x) fungoes reais::

log, f(x) > log, g(x) = f(z) >g(x) >0 ,sea>1
0< f(z)<g(r) ,sel<a<l

Exemplo 10.20. Resolva a inequagao logs(z? — 3z) > logy .
Resolucao:

logs (2 — 32) > logsx = x> — 32 > 1 > 0.

Assim, z >0 e

r<1?—-3r=0<2’—4dr=x<O0ouzx>4

Logo, a solugao é {z € R | z > 4}.
e 32 tipo: Sao as inequagoes que resolvemos fazendo uma mudanca de incégnita.

Exemplo 10.21. Resolva a equagao (logs r)? < 2log, z.

A equacao dada é equivalente a (logs x)? — 2log; < 0. Chamando de logs z = y, temos
-2y <0<=0<y<2.
x Para y > 0 temos loggz >0 =2 >3 =1
x Paray <2temosloggr <2=—=0<1r<3¥=0<2<9
Logo a solugao é {r e R |1 < x < 9}.

Exercicio 10.22. Resolva a inequacao log%(Zac2 —3x) > —1.

90



Referéncias

[1] Guidorizzi, Hamilton L. Um curso de Calculo: volume 1. 5% edi¢ao. Rio de Janeiro: LTC,

2009.

2] TEZZI, G; MURAKAMI, C. Fundamentos de Matematica Elementar. Volume 1:Conjun-

tos e Fungoes. 7% edigao. Sao Paulo: Atual, 2008.

[3] TEZZI, G; MURAKAMI, C, DOLCE, C. Fundamentos de Matematica Elementar. Volume

2: Logaritmos. 8% edicao. Sao Paulo: Atual, 2009.

[4] MEDEIROS, Valéria Zuma; CALDEIRA, André Machado; DA SILVA, Luiza Maria Oli-

veira;

[5] STEWART, James. Calculo: volume 1. 6% edigao. Sao Paulo: Cengage Learning, 2010.

91



	Conjuntos
	Operações com conjuntos

	Conjuntos Numéricos
	Números Naturais
	Números Inteiros
	Números Racionais
	Números Reais
	Intervalos
	Desigualdades
	Módulo de um número real

	Relações
	Par Ordenado
	Sistema Cartesiano Ortogonal
	Produto Cartesiano
	Relações Binárias
	Propriedades sobre Relações


	Funções
	Funções de 1º grau
	Função Constante
	Função Linear
	Função Afim
	Equação de reta


	Funções de 2º grau
	Inequação de 2º grau
	Outras Funções
	Função Polinomial
	Função Potência
	Funções Racionais
	Funções definidas por partes


	Alguns conceitos e propriedades sobre funções
	Funções Inversas

	Funções Modulares
	Funções Exponenciais
	Equações Exponenciais
	Inequações Exponenciais

	Funções Logarítmicas
	Equações Logarítmicas
	Inequações logarítmicas

	Referências Bibliográficas

