CONSTRUÇÃO DE DEDEKIND DO SISTEMA DOS NÚMEROS REAIS

JEAN FERNANDES BARROS

RESUMO. Estas notas têm a finalidade de construir o sistema dos números reais a partir do sistema dos números racionais, usando os cortes de Dedekind.

1. O ÍNFIMO E O SUPREMO

A referência básica para esta seção é o livro [1]. Inicialmente, consideremos a seguinte definição:

Definição 1. Uma relação < sobre S que satisfaz as condições

- (1) a não está em relação < com a, para cada $a \in S$.
- (2) Dados $a, b \in S$, se a < b, então b não está em relação < com a.
- (3) < é transitiva.

é dita uma relação de ordem estrita sobre S.

É fácil mostrar que a definição de ordem estrita acima é equivalente a definição de ordem estrita abaixo. De fato, basta mostrar que as condições (1) e (2) da definição 1 é equivalente a condição (1) da definição 2, que é *a lei da tricotomia*. Mostremos isso.

Demonstração. Suponhamos que S satisfaz a lei da tricotomia. Se $a \neq b$, então ou a < b ou b < a. Então, a não pode ser menor do que a. Além disso, se a < b, então b não pode ser menor do que a. Reciprocamente, suponhamos que $a \neq b$ e a < b. Então, pelo segundo item, b não é menor do que a. Sendo assim, dados $a, b \in S$, ou a = b ou a < b ou b < a. Logo, S satisfaz a lei da tricotomia. \Box

Definição 2. Seja S um conjunto. Uma relação de ordem estrita sobre S, denotemona por <, é uma relação que satisfaz as seguintes duas propriedades:

(1) Dados $x, y \in S$ uma, e somente uma, das seguintes afirmações

$$x < y, x = y, y < x$$
 (Lei da Tricotomia)

é verdadeira.

(2) Se x < y e y < z, então x < z.

Neste caso, dizemos que S é um conjunto ordenado.

Observação 1. A relação < significa < ou =.

Por exemplo, já sabemos que a relação sobre Q dada por

$$x < y$$
 se, e somente se, $0 < y - x$

é uma relação de ordem estrita sobre Q.

Date: 13/11/2024.

Definição 3. Sejam S um conjunto ordenado e $E \subset S$. Dizemos que E é limitado superiormente (limitado inferiormente) se, existe $b \in S$ tal que $x \leq b$ ($b \leq x$), para todo $x \in S$. Neste caso, dizemos que b é um limitante superior (inferior) de E

Definição 4. Sejam S um conjunto ordenado, $E \subset S$ limitado superiormente (inferiormente). Dizemos que $s \in S$ é o supremo (ínfimo) de E se

- (1) s é um limitante superior (inferior) de E;
- (2) s é o menor (maior) limitante superior (inferior) de E, isto é, se x < s (s < x), existe $y \in E$ tal que $x < y \le s$ ($s \le y < x$).

Neste caso, denotamos $s = \sup E$ ($s = \inf E$).

Definição 5. Seja S um conjunto ordenado. Dizemos que S tem a propriedade do supremo (ínfimo) se, todo subconjunto não-vazio de S limitado superiormente (inferiormente) tem supremo (ínfimo) em S.

Teorema 6. Sejam S um conjunto ordenado que tem a propriedade do supremo, $e \emptyset \neq B \subset S$ limitado inferiormente. Considere L o conjunto de todos limitantes inferiores de B. Então, existe o supremo de L em S, que \acute{e} o ínfimo de B em S.

Demonstração. Observemos que $L \neq \emptyset$, já que B é limitado inferiormente. Como L é o conjunto dos limitantes inferiores de B, temos que todo $y \in L$ é tal que $y \leq x$, para todo $x \in B$. Isto implica que todo elemento de B é um limitante superior de L. Consequentemente, L é um subconjunto não-vazio de S limitado superiormente. Pela propriedade do supremo de S, existe $\alpha \in S$ tal que $\alpha = \sup L$. Afirmamos que $\alpha \in L$. Vejamos, se $\gamma < \alpha$, temos que γ não é um limitante superior de L. Isto implica que $\gamma \not\in B$. Segue-se que $\alpha \leq x$, para todo $x \in B$. E então, $\alpha \in L$, isto é, α é um limitante inferior de B.

Agora, nosso interesse é demonstrar que $\alpha = \inf B$. Para tanto, precisamos mostrar que α é o maior dos limitantes inferiores de B, isto é, se $\alpha < \beta$, então $\beta \notin L$. E isto, segue-se do fato de que α é um limitante superior de L.

2. O Sistema dos Números Reais

A principal referência para esta seção é [5]. Outras referências utilizadas foram [2, 3].

Definição 7. Um subconjunto α de \mathbb{Q} é dito *um corte de Dedekind*, ou simplesmente *corte*, se satisfaz as seguintes propriedades:

- (1) $\alpha \neq \emptyset$ e $\alpha \neq \mathbb{Q}$;
- (2) se $p \in \alpha$, $q \in \mathbb{Q}$ e q < p, então $q \in \alpha$;
- (3) se $p \in \alpha$, então p < r, para algum $r \in \alpha$.

Observação 2. A terceira propriedade da definição de corte, mostra-nos que α não tem um maior elemento.

Observação 3. A segunda propriedade da definição de corte implica que

- (1) Se $p \in \alpha$ e $q \notin \alpha$, então p < q.
- (2) Se $r \notin \alpha$ e r < s, então $s \notin \alpha$.

Vejamos um exemplo de um corte.

Exemplo 1. Seja $p \in \mathbb{Q}$. Afirmamos que o conjunto

$$p^* = \{ x \in \mathbb{Q} : x$$

é um corte, denominado de um corte racional. Primeiramente, como $\mathbb Q$ não tem um menor elemento nem um maior elemento, temos que existem $r,q\in\mathbb Q$ tais que r< p e p< q. Sendo assim, $p^*\neq\emptyset$ e $\mathbb Q\neq p^*$.

Agora, se $r \in p^*$, $q \in \mathbb{Q}$ e q < r, então q < r < p. E então, $q \in p^*$.

Finalmente, se $r \in p^*$, então, pela densidade de \mathbb{Q} , existe $q \in p^*$ tal que r < q.

Seja $\mathbb R$ o conjunto de todos os cortes. Definamos sobre $\mathbb R$ a seguinte relação $\alpha < \beta$ se, e somente se, α é um subconjunto próprio de β , isto é, $\alpha \subset \beta$ e $\alpha \neq \beta$. Mostremos que

Proposição 1. < \acute{e} uma relação de ordem estrita sobre \mathbb{R}

Demonstração. É imediato que < é transitiva, isto é,

se
$$\alpha < \beta$$
 e $\beta < \gamma$, então $\alpha < \gamma$.

Agora, dados $\alpha, \beta \in \mathbb{R}$, mostremos que uma, e somente uma, dentre as seguintes relações

$$\alpha < \beta$$
, $\alpha = \beta$ e $\beta < \alpha$

ocorre. Para tanto, suponhamos que as duas primeiras não se verificam. Sendo assim, como $\alpha \not\subset \beta$, temos que existe $p \in \alpha$ tal que $p \not\in \beta$. Desta forma, se $q \in \beta$, como $p \not\in \beta$, pela observação 3, item (1), concluímos que q < p. Pela definição 7, item (2), temos que $q \in \alpha$. Segue-se que $\beta \subset \alpha$. Como $\alpha \neq \beta$, temos que $\beta < \alpha$. \square

Teorema 8. O conjunto ordenado \mathbb{R} tem a propriedade do supremo.

Demonstração. Seja $\emptyset \neq A \subset \mathbb{R}$ limitado superiormente. Consideremos $\beta \in \mathbb{R}$ um limitante superior de A.

Definamos $\gamma = \bigcup_{\alpha \in A} \alpha$. Isto significa que

 $p \in \gamma$ se, e somente se, existe $\alpha \in A$ tal que $p \in \alpha$.

Afirmamos que $\gamma = \sup A$. Inicialmente, precisamos mostrar que γ é um corte. Como $A \neq \emptyset$, temos que existe $\alpha_0 \in A$. Sendo assim, $\alpha_0 \neq \emptyset$, já que α_0 é um corte. Segue-se que $\gamma \neq \emptyset$. Observamos que $\gamma \subset \beta$, desde que $\alpha \subset \beta$, para todo $\alpha \in A$. Desde que $\beta \neq \mathbb{Q}$, tem-se que $\gamma \neq \mathbb{Q}$. Disto, tem-se que γ satisfaz a primeira propriedade na definição de um corte. Vejamos as outras propriedades.

Seja $p \in \gamma$. Sendo assim, existe $\alpha_1 \in A$ tal que $p \in \alpha_1$. Bem, se q < p, pela definição de corte, $q \in \alpha_1$. Consequentemente, $q \in \gamma$, isto é, γ satisfaz a segunda propriedade.

Agora, se $r \in \alpha_1$ é tal que p < r, temos que $r \in \gamma$, já que $\alpha_1 \subset \gamma$. Logo, γ é um corte, isto é, $\gamma \in \mathbb{R}$.

Pela definição de γ , temos que $\alpha \leq \gamma$, para todo $\alpha \in A$, ou seja, γ é um limitante superior de A. Vamos mostrar que γ é o menor limitante superior de A. Para tanto, suponhamos que $\delta < \gamma$. Então, como $\delta \neq \gamma$, existe $s \in \gamma$ tal que $s \notin \delta$. Como $s \in \gamma$, existe $\alpha \in A$ tal que $s \in \alpha$. Pela lei da tricotomia, $\delta < \alpha$, já que $\alpha \not\subset \delta$ e $\alpha \neq \delta$. E então, δ não é um limitante superior de A. Portanto, $\gamma = \sup A$.

2.1. Operações sobre \mathbb{R} .

2.1.1. Adição. Sejam $\alpha, \beta \in \mathbb{R}$. Define-se $\alpha + \beta$ por

$$\alpha + \beta = \{r + s : r \in \alpha \in s \in \beta\}.$$

(1) A adição é fechada em \mathbb{R} , isto é, $\alpha + \beta$ é um corte. Mostremos isto. Como α e β são subconjuntos não vazios de \mathbb{Q} , temos que $\alpha + \beta$ é um subconjunto não vazio de \mathbb{Q} . Como $\alpha \neq \mathbb{Q}$ e $\beta \neq \mathbb{Q}$, temos que existem $r_0, s_0 \in \mathbb{Q}$ tais que $r_0 \notin \alpha$ e $s_0 \notin \beta$. Então, pela observação 3, item (1), dados $r \in \alpha$ e $s \in \beta$, temos que $r < r_0$ e $s < s_0$. Então, concluímos que

$$r + s < r_0 + s_0$$
, para todos $r \in \alpha$ e $s \in \beta$.

Disto, segue-se que $r_0 + s_0 \not\in \alpha + \beta$. Logo, $\alpha + \beta \neq \mathbb{Q}$, satisfazendo a primeira propriedade da definição de corte. Vejamos as outras duas. Para a segunda, tome $p \in \alpha + \beta$. Sendo assim, existem $r \in \alpha$ e $s \in \beta$ tais que p = r + s. Seja $q \in \mathbb{Q}$ tal que q < p. Como $r \in \alpha$ e q - s < r, temos que $q - s \in \alpha$. Donde,

$$q = (q - s) + s \in \alpha + \beta,$$

verificando a segunda.

Seja p = r + s, onde $r \in \alpha$ e $s \in \beta$. Como α é um corte, existe $t \in \alpha$ tal que r < t. Sendo assim, p = r + s < t + s.

Portanto, $\alpha + \beta$ é um corte.

(2) Dados $\alpha, \beta, \delta \in \mathbb{R}$, vamos demonstrar que

$$(\alpha + \beta) + \delta = \alpha + (\beta + \delta),$$

que é a propriedade associativa da adição. Vejamos, sejam $r \in \alpha$, $s \in \beta$ e $t \in \delta$, temos, pela associatividade da adição em \mathbb{Q} , que

$$(r+s) + t = r + (s+t).$$

Disto, segue-se que $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$.

(3) Seja

$$0^* = \{ s \in \mathbb{Q} : s < 0 \}.$$

O exemplo 1 mostra-nos que 0^{\star} é um corte.

Dado $\alpha \in \mathbb{R}$, demonstremos que

$$\alpha + 0^* = 0^* + \alpha = \alpha,$$

isto é, 0* é o elemento neutro. É suficiente demonstrarmos que $\alpha+0^*=\alpha$, já que a outra igualdade tem demonstração totalmente análoga. Seja $r\in\alpha$. Dado $s\in0^*$, temos que r+s< r. Como $r\in\alpha$, temos que $r+s\in\alpha$. Sendo assim, $\alpha+0^*\subset\alpha$. Para a inclusão contrária, seja $p\in\alpha$ tal que r< p. Desta forma, $r-p\in0^*$ e

$$r = p + (r - p) \in \alpha + 0^*$$
.

Logo, $\alpha \subset \alpha + 0^*$.

Portanto, $\alpha + 0^* = \alpha$.

(4) Dado $\alpha \in \mathbb{R}$, demonstremos que existe $\beta \in \mathbb{R}$ tal que

$$\alpha + \beta = \beta + \alpha = 0^*$$
.

Para tanto, definimos

$$\beta = \{ p \in \mathbb{Q} : \text{ existe } r > 0 \text{ tal que } -(p+r) \notin \alpha \}.$$

Afirmamos que β é um corte. Vejamos,

- (a) Se $s \notin \alpha$ e p = -s 1, então $s = -p 1 \notin \alpha$. Consequentemente, $p \in \beta$. Segue-se que $\beta \neq \emptyset$. Além disso, se $q \in \alpha$, como q r < q, para todo r > 0, temos que $q r \in \alpha$. Sendo assim, $-q \notin \beta$. Então, $\beta \neq \mathbb{Q}$. E assim, a primeira propriedade da definição de corte está satisfeita.
- (b) Seja $p \in \beta$. Sendo assim, existe r > 0 tal que $-p r \notin \alpha$. Se q < p, temos que -p r < -q r. Segue-se que $-q r \notin \alpha$, isto é, $q \in \beta$.
- (c) Seja $p \in \beta$. Sendo assim, existe r > 0 tal que $-p r \notin \alpha$. Considere $t = p + \frac{r}{2}$. Desta forma, p < t e $-t \frac{r}{2} = -p r \notin \alpha$. Logo, existe $t \in \beta$ tal que p < t.

Portanto, β é um corte.

Próximo passo é demonstrarmos que

$$\alpha + \beta = \beta + \alpha = 0^*$$
.

É suficiente demonstrarmos que $\alpha + \beta = 0^*$, já que a outra igualdade tem demonstração totalmente análoga.

Por um lado, sejam $p \in \alpha$ e $s \in \beta$. Como $s \in \beta$, existe r > 0 tal que $-s - r \not\in \alpha$. E assim, como -s - r < -s, pela observação 3, segundo item, temos que $-s \not\in \alpha$. Consequentemente, pela observação 3, primeiro item, p < -s. Logo, $p + s \in 0^*$. E então, $\alpha + \beta \subset 0^*$. Por outro lado, seja $v \in 0^*$. Considere $w = -\frac{v}{2}$.

Afirmação 1. Dados $\alpha \in \mathbb{R}$ e w > 0, existe $z \in \mathbb{Z}$ tal que $zw \in \alpha$ e $(z+1)w \notin \alpha$.

Demonstração. Seja $\alpha \in \mathbb{R}$. Definamos

$$A = \{ z \in \mathbb{Z} : z w \notin \alpha \}.$$

Mostremos que A tem um mínimo. Primeriamente, observemos que $A \neq \emptyset$, já que α é um corte. De fato, existe $q \in \mathbb{Q}$ tal que $q \notin \alpha$. Como \mathbb{Q} é arquimediano, existe $n \in \mathbb{N}$ tal que nw > q. Como $q \notin \alpha$, temos que $nw \notin \alpha$. Agora, mostremos que A é limitado inferiormente. Vejamos, dado $z \in A$, temos que zw > p, para todo $p \in \alpha$. Sendo assim, dado $p \in \alpha$, como $p \in \alpha$ 0, temos que $p \in \alpha$ 1, para todo $p \in \alpha$ 2, onde $p \in \alpha$ 3, onde $p \in \alpha$ 4, onde $p \in \alpha$ 5, para todo $p \in \alpha$ 6, onde $p \in \alpha$ 9. En a função parte inteira, isto é, $p \in \alpha$ 9. En a função definida por

$$[x] = \max\{z \in \mathbb{Z} : z \le x\}.$$

Donde, concluímos que A é limitado inferiormente. Da boa ordenação de \mathbb{Z} , existe $z_0 \in \mathbb{Z}$ tal que $z_0 + 1 = \min A$. Desta forma, existe $z_0 \in \mathbb{Z}$ tal que

$$z_0 w \in \alpha$$
 e $(z_0 + 1) w \notin \alpha$,

como queríamos demonstrar.

Da afirmação acima, segue-se que existe $z\in\mathbb{Z}$ tal que

$$z w \in \alpha$$
 e $(z+1) w \notin \alpha$.

Tome q = -(z+1) w - w = -(z+2) w. Sendo assim, $q \in \beta$ e

$$v = -2 w = z w + q \in \alpha + \beta.$$

Logo, $0^* \subset \alpha + \beta$.

Portanto, $\alpha + \beta = 0^*$.

Seguindo a notação padrão, denotamos o elemento simétrico de α por $-\alpha$.

(5) Dados $\alpha, \beta \in \mathbb{R}$, demonstremos a comutatividade da adição em \mathbb{R} , isto é,

$$\alpha + \beta = \beta + \alpha$$
.

Sejam $r \in \alpha$ e $s \in \beta$. Então, da comutatividade da adição em \mathbb{Q} , temos que r + s = s + r. Logo, $\alpha + \beta = \beta + \alpha$.

Agora, mostremos que

Proposição 2. (Lei do Cancelamento) Dado $\alpha \in \mathbb{R}$, se $\alpha + \beta = \alpha + \delta$, então $\beta = \delta$

Demonstração. Vejamos, usando as propriedades da adição já vistas,

$$\beta = \beta + [\alpha + (-\alpha)]$$

$$= (\alpha + \beta) + (-\alpha)$$

$$= (\alpha + \delta) + (-\alpha)$$

$$= \delta + [\alpha + (-\alpha)]$$

$$= \delta$$

Logo, $\beta = \delta$.

Nós já sabemos que os elementos neutro e simétrico são únicos. Estes fatos podem ser vistos como decorrentes da lei do cancelamento, como passamos a verificar.

Proposição 3. Sejam $\alpha, \beta \in \mathbb{R}$. Então,

- (1) Se $\alpha + \beta = \alpha$, então $\beta = 0^*$.
- (2) Se $\alpha + \beta = 0^*$, então $\beta = -\alpha$.
- (3) $-(-\alpha) = \alpha$.

Demonstração. Mostremos o primeiro item. Dado $\alpha \in \mathbb{R}$, suponhamos que $\alpha + \beta = \alpha$. Mostremos que $\beta = 0^*$. Como $\alpha + 0^* = \alpha$, para todo $\alpha \in \mathbb{R}$, pela lei do cancelamento, temos que $\beta = 0^*$.

Mostremos o segundo item. Dado $\alpha \in \mathbb{R}$, suponhamos que $\alpha + \beta = 0^*$. Como $\alpha + (-\alpha) = 0^*$, para todo $\alpha \in \mathbb{R}$, pela lei do cancelamento, temos que $\beta = -\alpha$.

Mostremos o terceiro item. Dado $\alpha \in \mathbb{R}$, como

$$\alpha + (-\alpha) = [-(-\alpha)] + (-\alpha),$$

temos que $-(-\alpha) = \alpha$.

Proposição 4. Se $\alpha, \beta, \gamma \in \mathbb{R}$ e $\beta < \gamma$, então

$$\alpha + \beta < \alpha + \gamma$$
.

Demonstração. Por definição, temos que

$$\alpha + \beta \subset \alpha + \gamma$$
.

Além disso, pela lei do cancelamento, temos que $\alpha+\beta\neq\alpha+\gamma$, já que se $\alpha+\beta=\alpha+\gamma$, teríamos que $\beta=\gamma$.

Sendo assim,

$$0^* < \alpha$$
 se, e somente se $-\alpha < 0^*$,

como é fácil ver.

Observamos que $\alpha>0^*$ significa que $0^*\subset\alpha$ e que existe $s\in\alpha$ tal que s>0. Antes de passarmos para a próxima operação, mostremos que

Proposição 5. Dados $\alpha, \beta \in \mathbb{R}$, tem-se que

$$-(\alpha + \beta) = -\alpha + (-\beta).$$

Demonstração. Sejam $\alpha, \beta \in \mathbb{R}$. Como

$$\alpha + \beta + [-\alpha + (-\beta)] = [\alpha + (-\alpha)] + [\beta + (-\beta)] = 0^* + 0^* = 0^*,$$
temos que $-(\alpha + \beta) = -\alpha + (-\beta)$.

2.1.2. Multiplicação. Inicialmente, consideremos

$$\mathbb{R}_+ = \{ \alpha \in \mathbb{R} : \alpha > 0^* \}.$$

Dados $\alpha, \beta \in \mathbb{R}_+$, definimos

$$\alpha \beta = \{ p \in \mathbb{Q} : \text{ existem } 0 < r \in \alpha \text{ } e \text{ } 0 < s \in \beta \text{ tais que } p \leq r s \}$$

Uma primeira afirmação é que

Proposição 6. Dados $\alpha, \beta \in \mathbb{R}_+$, tem-se que $\alpha \beta \in \mathbb{R}_+$.

Demonstração. Sejam $\alpha, \beta \in \mathbb{R}_+$. Inicialmente, precisamos mostrar que $\alpha \beta$ é um corte. É imediato que $0^* \subset \alpha \beta$, já que $\alpha > 0^*$ e $\beta > 0^*$. Sendo assim, $\alpha \beta \neq \emptyset$. Além disso, $\alpha \beta \neq \mathbb{Q}$. Vejamos, como existem $r_0, s_0 \in \mathbb{Q}$ tais que $r_0 \notin \alpha$ e $s_0 \notin \beta$, temos que $r < r_0$ e $s < s_0$, para todos $r \in \alpha$ e $s \in \beta$. Como $0^* \subset \alpha \cap \beta$, temos que $r_0, s_0 > 0$. Afirmamos que $r_0 s_0 \notin \alpha \beta$. De fato, dados $0 < r \in \alpha$ e $0 < s \in \beta$, como $r < r_0$ e $s < s_0$, temos que

$$r s < r_0 s < r_0 s_0$$
.

Isto implica que $\alpha \beta \neq \mathbb{Q}$. Com isso, verificamos o primeiro requisito da definição de corte

Verifiquemos o segundo requisito da definição de corte. Seja $p \in \alpha \beta$. Sendo assim, existem $0 < r \in \alpha$ e $0 < s \in \beta$ tais que $p \le r s$. Desta forma, se q < p, temos que

$$q .$$

Logo, $q \in \alpha \beta$.

Verifiquemos o terceiro requisito da definição de corte. Seja $p \in \alpha \beta$. Sendo assim, existem $0 < r \in \alpha$ e $0 < s \in \beta$ tais que $p \le r s$. Como α e β são cortes, existem $\tilde{r} \in \alpha$ e $\tilde{s} \in \beta$ tais que $0 < r < \tilde{r}$ e $0 < s < \tilde{s}$. Então,

$$p < rs < \tilde{r}\tilde{s}$$
.

Logo, $\tilde{r}\,\tilde{s} \in \alpha\,\beta$ e $p < \tilde{r}\,\tilde{s}$, como queríamos.

(1) Dados $\alpha, \beta, \gamma \in \mathbb{R}_+$, mostremos que

$$(\alpha \beta) \gamma = \alpha (\beta \gamma)$$
 Associatividade

Por um lado, dado $p \in (\alpha \beta) \gamma$, existem $0 < r \in \alpha \beta$ e $0 < s \in \gamma$ tais que $p \le r s$. Como $r \in \alpha \beta$, existem $0 < t \in \alpha$ e $0 < u \in \beta$ tais que $r \le t u$. Sendo assim,

$$p \leq \, r \, s \leq (t \, u) \, s = t \, (u \, s).$$

Logo, $p \in \alpha(\beta \gamma)$. E assim, $(\alpha \beta) \gamma \subset \alpha(\beta \gamma)$.

Por outro lado, demonstra-se analogamente que $\alpha(\beta \gamma) \subset (\alpha \beta) \gamma$. Portanto, dados $\alpha, \beta, \gamma \in \mathbb{R}_+$,

$$(\alpha \beta) \gamma = \alpha (\beta \gamma).$$

(2) Seja

$$1^* = \{ q \in \mathbb{Q} : q < 1 \}.$$

Nós já mostramos que 1* é um corte, ver exemplo 1. Além disso, 1* > 0*, já que $0^* \subset 1^*$ e $0^* \neq 1^*$.

A seguir, demonstraremos que 1* é o elemento identidade da multiplicação, isto é, dado $\alpha \in \mathbb{R}_+$, tem-se que

$$\alpha 1^* = 1^* \alpha = \alpha$$
 Existência do Elemento Identidade

É suficiente mostrarmos a primeira igualdade, já que a segunda é demonstrada de forma análoga. Vejamos, por um lado, dado $p \in \alpha \, 1^*$, existem $r \in \alpha$ e $q \in 1^*$ tais que $p \leq r \, q$. Como q < 1, temos que p < r. E então, como $r \in \alpha$ e α é um corte, temos que $p \in \alpha$. Logo, $\alpha \, 1^* \subset \alpha$.

Por outro lado, precisamos mostrar que $\alpha \subset \alpha \, 1^{\star}$. Seja $p \in \alpha$. Como α é um corte, temos que existe $0 < r \in \alpha$ tal que p < r. Sendo assim, $\frac{p}{r} < 1$.

Da densidade de \mathbb{Q} , temos que existe $q \in \mathbb{Q}$ tal que q > 0 e $\frac{p}{r} < q < 1$. E assim,

$$p = r \frac{p}{r} < r q.$$

Donde, $q \in 1^*$ e $p \in \alpha 1^*$. Segue-se que $\alpha \subset \alpha 1^*$.

Portanto, $\alpha 1^* = \alpha$, para todo $\alpha \in \mathbb{R}_+$.

(3) Dado $\alpha \in \mathbb{R}_+$, mostremos que existe $\beta \in \mathbb{R}_+$ tal que

$$\alpha \beta = \beta \alpha = 1^*$$
 Existência do Elemento Inverso

Dado $\alpha \in \mathbb{R}_+$, definimos

$$\beta = \{ p \in \mathbb{Q} : \text{ existe } a \notin \alpha \text{ tal que } p < a^{-1} \}.$$

Observamos que se $a \notin \alpha$ e $\alpha > 0^*$, então a > 0. De fato, como $a \notin \alpha$ existe $0 < r \in \alpha$, temos que a > r > 0. O que mostra que a^{-1} faz sentido. Inicialmente, mostremos que $\beta \in \mathbb{R}_+$. Vejamos,

- (a) Como α é um corte, existe $a \in \mathbb{Q}$ tal que $a \notin \alpha$. Sendo assim, como a>0 e a< a+1, temos que $(a+1)^{-1}< a^{-1}$. Donde, $(a+1)^{-1}\in \beta$. E assim, $\beta \neq \emptyset$. Além disso, dado $0< r\in \alpha$, tem-se que r< a, para todo $a \notin \alpha$. Desta forma, $r^{-1}>a^{-1}$, para todo $a \notin \alpha$. Consequentemente, $r^{-1} \notin \beta$. Logo, $\beta \neq \mathbb{Q}$, que é o primeiro requerimento da definição de corte.
- (b) Seja $p \in \beta$. sendo assim, existe $a \notin \alpha$ tal que $p < a^{-1}$. Então, se r < p, temos que $r < a^{-1}$. Donde, $r \in \beta$, que é o segundo requerimento.
- (c) Seja $p \in \beta$. Sendo assim, existe $a \notin \alpha$ tal que $p < a^{-1}$. Pela densidade de \mathbb{Q} , existe $q \in \mathbb{Q}$ tal que $p < q < a^{-1}$. Donde, existe $q \in \beta$ tal que p < q.

Portanto, $\beta \in \mathbb{R}$. E mais, dado p < 0, e tomando $a \notin \alpha$, temos que $a^{-1} > 0$ e $p < a^{-1}$. Logo, $\beta > 0^*$. E assim, $\beta \in \mathbb{R}_+$.

A seguir, mostramos que β é o inverso aditivo de α , isto é,

$$\alpha \beta = \beta \alpha = 1^*$$
.

Basta mostrarmos a primeira igualdade, que é $\alpha \beta = 1^*$, já que a segunda demonstra-se de forma análoga. Por um lado, dado $p \in \alpha \beta$, existem 0 <

 $r \in \alpha$ e $0 < s \in \beta$ tais que $p \le rs$. Como $s \in \beta$, existe $a \notin \alpha$ tal que as < 1. Sendo assim, como 0 < r < a, temos que

$$p \le r s < a s < 1$$
.

Segue-se que $p \in 1^*$ e que $\alpha \beta \subset 1^*$.

Por outro lado, seja $v \in 1^*$, isto é, v < 1. Analisemos duas situações.

- (a) Se $v \le 0$, dados $0 < r \in \alpha$ e $0 < s \in \beta$, temos que $v \le 0 < r s$. Logo, $v \in \alpha \beta$.
- (b) Se v > 0, temos que $v^{-1} > 1$.

Afirmação 2. Dado $\alpha \in \mathbb{R}_+$, existe $0 < c \in \alpha$ tal que $v^{-1} c \notin \alpha$.

Demonstração. Consideremos $r=v^{-1}$. Como r>1, temos que $r^n< r^{n+1}$, para todo $n\in\mathbb{N}$, como é fácil ver por indução. Dado $0< q\in\alpha$, temos que

$$q < rq < r^2 q < r^3 q < \ldots < r^n q < \ldots$$

É evidente que existe $n_0 \in \mathbb{N}$ tal que $r^{n_0-1} q \in \alpha$ e $r^{n_0} q \notin \alpha$. Tomando $c = r^{n_0-1} q$, temos que $v^{-1} c = r^{n_0} q \notin \alpha$.

Sendo assim, tomando $r \in \alpha$ tal que c < r, temos que

$$v r^{-1} < v c^{-1} = (c v^{-1})^{-1} = (v^{-1} c)^{-1}.$$

Segue-se que $v r^{-1} \in \beta$. E então, $v = r(v r^{-1}) \in \alpha \beta$. Logo, $1^* \subset \alpha \beta$. Portanto, $\alpha \beta = 1^*$.

Seguindo a notação padrão, denotamos o elemento inverso de α por $\alpha^{-1}.$

(4) Dados $\alpha, \beta \in \mathbb{R}_+$, tem-se que

$$\alpha \beta = \beta \alpha$$
 Comutatividade

Vejamos, dado $p \in \alpha \beta$, existem $0 < r \in \alpha$ e $0 < s \in \beta$ tais que $p \le r s$. Como r s = s r, temos que existem $0 < r \in \alpha$ e $0 < s \in \beta$ tais que $p \le s r$. Sendo assim, $p \in \beta \alpha$. Logo, $\alpha \beta \subset \beta \alpha$. Analogamente, mostramos que $\beta \alpha \subset \alpha \beta$. Portanto, $\alpha \beta = \beta \alpha$.

(5) Dados $\alpha, \beta, \gamma \in \mathbb{R}_+$, mostremos que

$$\alpha (\beta + \gamma) = (\beta + \gamma) \alpha = \alpha \beta + \alpha \gamma$$
 Distributuividade

Pela comutatividade, basta mostrarmos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

Antes disso, mostramos a seguinte proposição

Proposição 7. Dados $\alpha, \beta \in \mathbb{R}_+$, tem-se que $\alpha + \beta \in \mathbb{R}_+$.

Demonstração. Como $\alpha + \beta \in \mathbb{R}$, basta mostrarmos que $\alpha + \beta > 0^*$. Primeiramente, dado $p \in 0^*$, como $p \in \alpha$ e $0 \in \beta$, temos que $p = p + 0 \in \alpha + \beta$. Sendo assim, $0^* \subset \alpha + \beta$. Além disso, dados $0 \le r \in \alpha$ e $0 \le s \in \beta$, temos que $0 \le r + s \in \alpha + \beta$. Logo, $0^* \ne \alpha + \beta$. Portanto, $\alpha + \beta > 0^*$.

Da proposição acima, segue-se que $\alpha (\beta + \gamma) \in \mathbb{R}_+$ e que $\alpha \beta + \alpha \gamma \in \mathbb{R}_+$.

Passamos a demonstração da distributividade. Seja $p \in \alpha (\beta + \gamma)$. Sendo assim, existem $0 < r \in \alpha$, $0 < s \in \beta$ e $0 < t \in \gamma$ tais que $p \le r(s+t)$. Como r(s+t) = rs + rt, $0 < rs \in \alpha \beta$ e $0 < rt \in \alpha \gamma$, temos que

$$r(s+t) = rs + rt \in \alpha \beta + \alpha \gamma.$$

E assim, $\alpha(\beta + \gamma) \subset \alpha\beta + \alpha\gamma$. Verifiquemos a inclusão contrária. Dado $p \in \alpha\beta + \alpha\gamma$, temos que existem $0 < r_1, r_2 \in \alpha$, $0 < s \in \beta$ e $0 < t \in \gamma$ tais que

$$p \le r_1 s + r_2 t \le \max\{r_1, r_2\}(s+t).$$

Como $0 < \max\{r_1, r_2\} \in \alpha$, temos que $p \in \alpha (\beta + \gamma)$. Logo,

$$\alpha \beta + \alpha \gamma \subset \alpha (\beta + \gamma).$$

Portanto, $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$.

(6) Do item anterior, segue-se que, dado $\alpha \in \mathbb{R}_+$, temos que

$$\alpha 0^* = \alpha (0^* + 0^*)$$
$$= \alpha 0^* + \alpha 0^*$$

pela lei do cancelamento, $\alpha 0^* = 0^* \alpha = 0^*$.

A partir de agora, vamos estender a definição de multiplicação de \mathbb{R}_+ para \mathbb{R} .

Definição 9. Sejam $\alpha, \beta \in \mathbb{R}$. Define-se a multiplicação $\alpha \beta$ por

$$\alpha \beta = \begin{cases} 0^*, \text{ se } \alpha = 0^* \text{ ou } \beta = 0^*, \\ (-\alpha)(-\beta), \text{ se } \alpha < 0^* \text{ e } \beta < 0^*, \\ -[(-\alpha)\beta], \text{ se } \alpha < 0^* \text{ e } \beta > 0^*, \\ -[\alpha(-\beta)], \text{ se } \alpha > 0^* \text{ e } \beta < 0^*. \end{cases}$$

Nossa intenção é demonstrar que a multiplicação em $\mathbb R$ satisfaz as seguintes propriedades:

- (1) Dados $\alpha, \beta \in \mathbb{R}$, tem-se que $\alpha, \beta \in \mathbb{R}$. **Fechamento**
- (2) Dados $\alpha, \beta, \gamma \in \mathbb{R}$, tem-se que

$$(\alpha \beta) \gamma = \alpha (\beta \gamma)$$
. Associatividade

(3) Existe um único elemento $1^* \in \mathbb{R}$ tal que

$$\alpha 1^* = 1^* \alpha = \alpha$$
, Existência do Elemento Identidade para todo $\alpha \in \mathbb{R}$.

(4) Dado $0^* \neq \alpha \in \mathbb{R}$, existe um único $\beta \in \mathbb{R}$ tal que

$$\alpha \beta = \beta \alpha = 1^*$$
. Existência do Elemento Inverso

(5) Dados $\alpha, \beta \in \mathbb{R}$, tem-se que

$$\alpha \beta = \beta \alpha$$
. Comutatividade

(6) Dados $\alpha, \beta, \gamma \in \mathbb{R}$, tem-se que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$$
. Distributividade

Todas essas propriedades são demonstradas usando as propriedades correspondentes para \mathbb{R}_+ e a identidade $\alpha = -(-\alpha)$, para todo $\alpha \in \mathbb{R}$.

Vejamos como funciona o argumento.

- (1) Para o fechamento, sejam $\alpha, \beta \in \mathbb{R}$. Então,
 - (a) Se $\alpha, \beta \in \mathbb{R}_+ \subset \mathbb{R}$, já mostramos.
 - (b) Se $\alpha < 0^*$ e $\beta < 0^*$, temos que

$$-\alpha, -\beta \in \mathbb{R}_+$$
 e $\alpha \beta = (-\alpha)(-\beta) \in \mathbb{R}_+ \subset \mathbb{R}$.

(c) Se $\alpha < 0^*$ e $\beta > 0^*$, temos que

$$-\alpha \in \mathbb{R}_+$$
 e $(-\alpha)\beta \in \mathbb{R}_+$.

Logo,

$$\alpha \beta = -[(-\alpha)\beta] \in \mathbb{R} \quad e \quad \alpha \beta < 0^*.$$

(d) Se $\alpha > 0^*$ e $\beta < 0^*$, temos que

$$-\beta \in \mathbb{R}_+$$
 e $\alpha(-\beta) \in \mathbb{R}_+$.

Logo,

$$\alpha \beta = -[\alpha(-\beta)] \in \mathbb{R} \quad e \quad \alpha \beta < 0^*.$$

(2) Para a associatividade, sejam $\alpha, \beta, \gamma \in \mathbb{R}$. Mostraremos que

$$\alpha (\beta \gamma) = (\alpha \beta) \gamma.$$

Vejamos,

- (a) Para $\alpha > 0^*$, $\beta > 0^*$ e $\gamma > 0^*$, já sabemos que vale a associatividade.
- (b) Para $\alpha > 0^*$, $\beta > 0^*$ e $\gamma < 0^*$, temos que

$$(\alpha \beta) \gamma = -[(\alpha \beta) (-\gamma)]$$

$$= -\{\alpha [\beta (-\gamma)]\}$$

$$= \alpha \{-[\beta (-\gamma)]\}$$

$$= \alpha (\beta \gamma).$$

(c) Para $\alpha > 0^*$, $\beta < 0^*$ e $\gamma > 0^*$, temos que

$$\begin{array}{rcl} (\alpha \, \beta) \, \gamma & = & -[-(\alpha \, \beta) \, \gamma] \\ & = & -\{[\alpha \, (-\beta)] \, \gamma\} \\ & = & -\{\alpha \, [(-\beta) \, \gamma)]\} \\ & = & \alpha \, \{-[(-\beta) \, \gamma]\} \\ & = & \alpha \, (\beta \, \gamma). \end{array}$$

(d) Para $\alpha > 0^{\star}, \, \beta < 0^{\star}$ e $\gamma < 0^{\star}$, temos que

$$\begin{array}{rcl} \alpha \left(\beta \, \gamma \right) & = & \alpha \left[\left(-\beta \right) \left(-\gamma \right) \right] \\ & = & \left[\alpha \left(-\beta \right) \right] \left(-\gamma \right) \\ & = & -(\alpha \, \beta) \left(-\gamma \right) \\ & = & \left(\alpha \, \beta \right) \gamma. \end{array}$$

(e) Para $\alpha < 0^*$, $\beta > 0^*$ e $\gamma > 0^*$, temos que

$$\begin{array}{rcl} \alpha \left(\beta \, \gamma\right) & = & -[\left(-\alpha\right) \left(\beta \, \gamma\right)] \\ & = & -\{\left[\left(-\alpha\right) \beta\right] \, \gamma\} \\ & = & -[-\left(\alpha \, \beta\right) \gamma\right)] \\ & = & \left(\alpha \, \beta\right) \gamma\right). \end{array}$$

(f) Para $\alpha < 0^*$, $\beta > 0^*$ e $\gamma < 0^*$, temos que

$$\begin{array}{rcl} \alpha \left(\beta \, \gamma \right) & = & \left(-\alpha \right) \left[-(\beta \, \gamma)\right] \\ & = & \left(-\alpha \right) \left[(-\beta) \, \gamma\right] \\ & = & \left[\left(-\alpha \right) \left(-\beta \right)\right] \gamma \\ & = & \left(\alpha \, \beta \right) \gamma. \end{array}$$

(g) Para $\alpha < 0^*$, $\beta < 0^*$ e $\gamma > 0^*$, temos que

$$\begin{array}{rcl} \alpha \left(\beta \, \gamma \right) & = & \left(-\alpha \right) \left[-(\beta \, \gamma)\right] \\ & = & \left(-\alpha \right) \left[(-\beta) \, \gamma \right] \\ & = & \left[\left(-\alpha \right) \left(-\beta \right)\right] \gamma \\ & = & \left(\alpha \, \beta \right) \gamma. \end{array}$$

(h) Para $\alpha < 0^\star,\, \beta < 0^\star$ e $\gamma < 0^\star,$ temos que

$$\begin{array}{lll} \alpha \left(\beta \, \gamma\right) & = & -[\left(-\alpha\right) \left(\beta \, \gamma\right)] \\ & = & -\{\left(-\alpha\right) \left[\left(-\beta\right) \left(-\gamma\right)\right]\} \\ & = & -\{\left[\left(-\alpha\right) \left(-\beta\right)\right] \left(-\gamma\right)\} \\ & = & -[\left(\alpha \, \beta\right) \left(-\gamma\right)] \\ & = & \left(\alpha \, \beta\right) \gamma. \end{array}$$

Logo, vale a associatividade em \mathbb{R} .

- (3) Para a existência do elemento identidade, seja $\alpha \in \mathbb{R}$. Então,
 - (a) Se $\alpha \in \mathbb{R}_+$, já demonstramos que

$$\alpha 1^* = 1^* \alpha = \alpha$$
.

(b) Se $\alpha = 0^*$, temos que

$$1^* 0^* = 0^* 1^* = 0^*.$$

(c) Se $\alpha < 0^*$, temos que

$$-\alpha > 0^*$$
 e $\alpha 1^* = -[(-\alpha) 1^*] = -(-\alpha) = \alpha$.

Analogamente, temos que $1^* \alpha = \alpha$.

- (4) Para a existência do elemento inverso, seja $0^* \neq \alpha \in \mathbb{R}$. Então,
 - (a) Se $\alpha > 0$, então

$$\alpha^{-1} > 0^*$$
 e $\alpha \alpha^{-1} = \alpha^{-1} \alpha = 1^0$.

(b) Se $\alpha < 0^*$, então $-\alpha > 0^*$. Sendo assim, $\alpha^{-1} < 0^*$. E assim,

$$\alpha \alpha^{-1} = (-\alpha)(-\alpha^{-1}) = 1^*.$$

Analogamente, mostra-se que $\alpha^{-1} \alpha = 1^*$.

Portanto, 1* é o elemento identidade da multiplicação.

- (5) Para a comutatividade, sejam $\alpha, \beta \in \mathbb{R}$. Vejamos,
 - (a) Para $\alpha>0^{\star}$ e $\beta>0^{\star}$, já sabemos que a comutatividade é válida em \mathbb{R}_{+} .
 - (b) Para $\alpha > 0^*$ e $\beta < 0^*$, temos que

$$\alpha \beta = -[\alpha(-\beta)] = -[(-\beta)\alpha] = \beta \alpha.$$

(c) Para $\alpha < 0^*$ e $\beta > 0^*$, temos que

$$\alpha \beta = -[(-\alpha)\beta] = -[\beta(-\alpha)] = \beta \alpha.$$

(d) Para $\alpha < 0^{\star}$ e $\beta < 0^{\star},$ temos que

$$\alpha \beta = (-\alpha)(-\beta) = (-\beta)(-\alpha) = \beta \alpha.$$

Portanto, vale a comutatividade em \mathbb{R} .

(6) Para a distributividade, sejam $\alpha, \beta, \gamma \in \mathbb{R}$. Para evitarmos trivialidades, podemos supor que α, β e γ são diferentes de 0^* . Pela comutatividade, basta mostrarmos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

Vejamos,

- (a) Se $\alpha > 0^*$, $\beta > 0^*$ e $\beta + \gamma > 0^*$, analisemos dois subcasos.
 - (i) Se $\gamma > 0^*$, já sabemos que vale a distributividade em \mathbb{R}_+ .
 - (ii) Se $\gamma < 0^*$, como $\beta = (\beta + \gamma) + (-\gamma)$, temos que

$$\alpha \beta = \alpha (\beta + \gamma) + \alpha (-\gamma).$$

Como $\alpha \gamma = -[\alpha(-\gamma)]$, temos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

(b) Sejam $\alpha>0^\star,\ \beta>0^\star$ e $\beta+\gamma<0^\star.$ Como $\beta>0^\star$ e $\beta+\gamma<0^\star$ temos que $\gamma<0^\star.$ Observando que

$$-\gamma = -(\beta + \gamma) + \beta,$$

temos que

$$\alpha(-\gamma) = \alpha[-(\beta + \gamma)] + \alpha\beta.$$

Como
$$\alpha(-\gamma) = -(\alpha \gamma)$$
 e $-[\alpha(\beta + \gamma)] = \alpha[-(\beta + \gamma)]$, temos que $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.

(c) Sejam $\alpha>0^\star,\ \beta<0^\star$ e $\beta+\gamma>0^\star.$ Como $\beta<0^\star$ e $\beta+\gamma>0^\star,$ temos que $\gamma>0^\star.$ Observando que

$$\gamma = (\beta + \gamma) + (-\beta),$$

temos que

$$\alpha \gamma = \alpha (\beta + \gamma) + \alpha (-\beta).$$

Como $\alpha \beta = -[\alpha(-\beta)]$, temos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

- (d) Sejam $\alpha > 0^*$, $\beta < 0^*$ e $\beta + \gamma < 0^*$.
 - (i) Se $\gamma < 0^*$, temos que

$$\begin{array}{lcl} \alpha \left(\beta + \gamma \right) & = & \left(-\alpha \right) \left[-(\beta + \gamma) \right] \\ & = & \left(-\alpha \right) \left[\left(-\beta \right) + \left(-\gamma \right) \right] \\ & = & \left(-\alpha \right) \left(-\beta \right) + \left(-\alpha \right) \left(-\gamma \right) \\ & = & \alpha \beta + \alpha \gamma. \end{array}$$

(ii) Se $\gamma > 0^*$, como $-\beta = -(\beta + \gamma) + \gamma$, temos que

$$\alpha(-\beta) = \alpha[-(\beta + \gamma)] + \alpha\gamma.$$

Como $\alpha \beta = -[\alpha(-\beta)]$ e $\alpha(\beta + \gamma) = -\{\alpha[-(\beta + \gamma)]\}$, temos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

- (e) Sejam $\alpha < 0^*$, $\beta > 0^*$ e $\beta + \gamma > 0^*$.
 - (i) Se $\gamma > 0^*$, temos que

$$\alpha (\beta + \gamma) = -[(-\alpha) (\beta + \gamma)]$$

$$= -[(-\alpha) \beta + (-\alpha) \gamma]$$

$$= -[(-\alpha) \beta] + \{-[(-\alpha) \gamma]\}$$

$$= \alpha \beta + \alpha \gamma.$$

(ii) Se
$$\gamma < 0^*$$
, como $\beta = (\beta + \gamma) + (-\gamma)$, temos que $(-\alpha) \beta = (-\alpha) (\beta + \gamma) + (-\alpha) (-\gamma)$.

Como

$$-(\alpha \beta) = -[\alpha (\beta + \gamma)] + \alpha \gamma,$$

temos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

(f) Sejam $\alpha<0^\star,\ \beta>0^\star$ e $\beta+\gamma<0^\star$. Como $\beta>0^\star$ e $\beta+\gamma<0^\star$ temos que $\gamma<0^\star$. Observando que

$$-\gamma = -(\beta + \gamma) + \beta,$$

temos que

$$(-\alpha)(-\gamma) = (-\alpha)[-(\beta + \gamma)] + (-\alpha)\beta.$$

Como $(-\alpha)\beta = -(\alpha\beta)$, temos que

$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma.$$

Questão 01 Mostre os demais casos, que são

- (i) $\alpha < 0^*, \beta < 0^* \ e \beta + \gamma > 0^*;$
- (ii) $\alpha < 0^*, \beta < 0^* e \beta + \gamma < 0^*.$

Portanto, vale a distributividade em \mathbb{R} .

2.1.3. $\mathbb Q$ isomorficamente identificado em $\mathbb R$. Consideremos a seguinte aplicação $\Phi:\mathbb Q\longrightarrow\mathbb R$ definida por

$$\Phi(r) = r^* = \{ p \in \mathbb{Q} : p < r \}.$$

Afirmamos que

- (1) Φ é injetiva;
- (2) Φ preserva operações, isto é,
 - (a) $\Phi(r+s) = \Phi(r) + \Phi(s)$;
 - (b) $\Phi(rs) = \Phi(r) \Phi(s)$.

Provemos a primeira parte. Mais geralmente, provaremos que

$$r < s$$
 se, e somente se, $r^* < s^*$.

Por um lado, se r < s, então $r \in s^*$. Mas, $r \in r^*$. Sendo assim, $r^* \subset s^*$, mas $r^* \neq s^*$. Logo, $r^* < s^*$.

Por outro lado, se $r^* < s^*$, existe $p \in s^*$, mas $p \notin r^*$. Sendo assim, $r \leq p < s$. Logo, r < s.

Passemos a segunda parte. Precisamos mostrar que

- (a) $(r+s)^* = r^* + s^*$;
- (b) $(r s)^* = r^* s^*$.

Mostremos o item (a). Dados $p \in r^*$ e $q \in s^*$, temos que p < r e q < s. Então, p+q < r+s. Sendo assim, $p+q \in (r+s)^*$. Logo, $r^*+s^* \subset (r+s)^*$. Reciprocamente, seja $p \in (r+s)^*$. Desta forma, p < r+s. Observando que

$$p = \left\lceil r - \frac{1}{2} \left(r + s - p \right) \right\rceil + \left\lceil s - \frac{1}{2} \left(r + s - p \right) \right\rceil \in \, r^\star + s^\star,$$

 $concluímos\ que\ p\in\ r^{\star}+s^{\star}.\ Logo,\ (r+s)^{\star}\subset\ r^{\star}+s^{\star}.$

Portanto, $(r+s)^* = r^* + s^*$.

Aqui cabe uma consequência da preservação da adição.

Proposição 8. Dado $r \in \mathbb{Q}$, tem-se que $(-r)^* = -r^*$.

Demonstração. Dado $r \in \mathbb{Q}$,

$$0^* = [r + (-r)]^* = r^* + (-r)^*.$$

Pela unicidade do simétrico, segue-se que $(-r)^* = -r^*$.

Mostremos o item (b). Inicialmente, suponhamos que r^* , $s^* \in \mathbb{R}_+$. Seja $p \in r^* s^*$. Sendo assim, existem $0 < \tilde{r} < r$ e $0 < \tilde{s} < s$ tais que $p < \tilde{r} \tilde{s} < rs$. Segue-se que $p \in (rs)^*$. Logo, $r^* s^* \subset (rs)^*$.

Seja $p \in (rs)^*$. Sendo assim, p < rs.

- Se $p \le 0$, dados $0 < \tilde{r} < r$ e $0 < \tilde{s} < s$, tem-se que $p < \tilde{r}\tilde{s}$. Donde, $p \in r^* s^*$. Logo, $(rs)^* \subset r^* s^*$.
- Se p > 0, temos que $0 < p(rs)^{-1} < 1$. Consideremos

$$p(rs)^{-1} = q_1 q_2,$$

onde $0 < q_1 < 1 \ e \ 0 < q_2 < 1.$ Sendo assim, $0 < r \, q_1 < r \quad e \quad 0 < s \, q_2 < s.$

Desta forma, $r q_1 \in r^* \ e \ s q_2 \in s^*$. $E \ ent\tilde{ao}$,

$$p = (r q_1) (s q_2) \in r^* s^*.$$

 $Logo, (rs)^* \subset r^*s^*.$

Portanto, $(r s)^* = r^* s^*$.

Mostremos para os outros casos.

• $Sejam \ r > 0 \ e \ s < 0$. Então,

$$r^* s^* = -[r^* (-s^*)]$$

$$= -[r^* (-s)^*]$$

$$= -[r (-s)]^*$$

$$= -[-(r s)]^*$$

$$= -[-(r s)^*]$$

$$= (r s)^*$$

• Sejam r < 0 e s > 0. Então,

$$r^* s^* = -[(-r^*) s^*]$$

$$= -[(-r)^* s^*]$$

$$= -[(-r) s]^*$$

$$= -[-(r s)]^*$$

$$= -[-(r s)^*]$$

$$= (r s)^*$$

• $Sejam \ r < 0 \ e \ s < 0$. $Ent\~ao$,

$$r^* s^* = (-r^*)(-s^*)$$

= $(-r)^*(-s)^*$
= $[(-r)(-s)]^*$
= $(r s)^*$

Concluímos que $\Phi(\mathbb{Q})$ é um cópia isomorfa de \mathbb{Q} em \mathbb{R} .

2.2. Corpo Ordenado Completo que estende \mathbb{Q} . As referências para esta seção são [4, 5].

Até o momento demonstramos que

Teorema 10. Existe um corpo ordenado completo, isto é, um corpo ordenado que tem a propriedade do supremo.

Na realidade, pode-se demonstrar que, a menos de isomorfismo, existe um único corpo ordenado completo.

O corpo ordenado completo que construímos acima é denominado de o corpo dos números reais, que denotamos, como acima, por \mathbb{R} .

Proposição 9. Todo corpo ordenado completo é arquimediano.

Demonstração. Suponhamos, por absurdo, que \mathbb{K} é um corpo ordenado não-arquimediano. Sendo assim, existe $k \in \mathbb{K}$ tal que $n \leq k$, para todo $n \in \mathbb{N}$. Desta forma, $n+1 \leq k$, para todo $n \in \mathbb{N}$. E então, $n \leq k-1$, para todo $n \in \mathbb{N}$. Logo, não existe sup \mathbb{N} .

Consideremos $\alpha = 0^* \cup \{0\} \cup \{p \in \mathbb{Q} : 0 . Afirmamos que <math>\alpha$ é um corte não-racional.

- (a) Para o primeiro requerimento, observamos que $1 \in \alpha$ e $2 \notin \alpha$. Logo, $\alpha \neq \emptyset$ e $\alpha \neq \mathbb{Q}$.
- (b) Para o segundo requerimento, seja $p \in \alpha$. E também, seja $q \in \mathbb{Q}$ tal que q < p.
 - (i) Se $q \leq 0$, temos que $q \in \alpha$.
 - (ii) Se 0 < q < p, temos que $q^2 < q p < p^2 < 3$. Então, $q \in \alpha$.
- (c) Para o terceiro requerimento, seja $p \in \alpha$. Se $p \leq 0$, temos que

$$p \le 0 < 1$$
.

Como $1 \in \alpha$, temos que para o caso em que $p \le 0$, o terceiro requerimento é satisfeito.

Seja 0 < p. Tomando $0 < r < \max\{1, \frac{3-p^2}{1+2p}\}$, temos que

$$(p+r)^2 = p^2 + 2 p r + r^2$$

$$< p^2 + 2 p r + r$$

$$= p^2 + (1+2p) r$$

$$< 3$$

Então, $p + r \in \alpha$ e p .

Portanto, α é um corte.

Agora, α não é um corte racional, já que não existe um número racional cujo quadrado é 3. Isto mostra-nos que $\mathbb Q$ é um subconjunto próprio de $\mathbb R$. Os cortes não-racionais são ditos *cortes irracionais*.

Referências

- Ayres, Jr, F., Álgebra Moderna, Coleção Schaum, Editora McGraw-Hill do Brasil, Ltda, Rio de Janeiro, 1965.
- [2] Hefez, A., Curso de Álgebra, Segunda Edição, Volume 1, CMU, IMPA, Rio de Janeiro, 1997.
- [3] Landau, E., Foundations of Analysis, Third Edition, Chelsea Publishing Company, New York,
- [4] Lima, E. L., Curso de Análise, 7^a Edição, Projeto Euclides, IMPA, Rio de Janeiro, 1992.

[5] Rudin, W., Principles of Mathematical Analysis, Third Edition, McGraw-Hill, Inc., New York, 1976.