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Abstract: The article focuses on the application 
of the Galerkin method to approximate the 
deflection of a beam. This method, which 
allows solving differential equations in an 
approximate way, stands out for its versatility 
and ease of application compared to methods 
such as Laplace and Fourier. The strategy 
consists of integrating the differential equation 
and proposing a test function that meets 
the boundary conditions, thus obtaining an 
approximate analytical solution.
Keywords: Deflection, Laplace, Fourier, 
Fourier, Galerkin, beam, beam

INTRODUCTION
In 1915 Galerkin, proposed a method of 

approximation of solution of boundary value 
problems that does not require the variational 
formulation of the problem, in the year 2016 
was the 100th anniversary of this method, the 
article contains a brief description and origin 
of the method as well as its development [1], 
therefore provides a clearer and more general 
approximation. This method can be applied to 
the solution of partial differential equations of 
elliptic, hyperbolic and parabolic type, as well 
as linear and nonlinear problems. When the 
variational form of a problem with boundary 
conditions exists, it can be shown that the 
Ritz and Galerkin methods are equivalent 
and produce identical results. Therefore, 
instead of trying to develop the equivalent 
variational form for a given boundary-valued 
problem and applying Ritz’s method, one 
can apply Galerkin’s method directly to the 
boundary-valued problem. Galerkin’s method 
is the means by which an ordinary or partial 
differential equation can be converted to an 
integral problem in order to transform it to 
a system of linear algebraic equations. Where 
the coefficients obtained are substituted into 
the test function.

METHODOLOGY OR 
DEVELOPMENT
In this study, the equation of a uniformly 

loaded embedded beam was solved. Galerkin’s 
method was used to find an approximate 
solution and compared with the exact solution 
through graphs.

The fundamental idea of Galerkin’s method 
can be exemplified by the boundary value 
problem described by equations (1).

Where L is a linear differential operator for 
example:

Where B is a linear boundary condition 
operator  

where  denotes the derivative along the 
outward normal to the boundary at the surface 
in steady state heat transfer application.

equations (5- 6) is of the elliptic type 
which models steady state phenomena. 
These equations arise in areas such as fluid 
dynamics, heat transfer, electromagnetism, 
geophysics, biology, among others. The best 
known of these equations are the Laplace and 
Poisson equations.

The following procedure is used to solve 
these equations.

It is proposed ϕj (r) = 1,2,3 ..., n is a set 
of basis functions. The term ~Tn (r) The one 
known as the test function is as follows:

http://64.233.179.104/translate_c?hl=es&u=http://en.wikipedia.org/wiki/Differential_equation&prev=/search%3Fq%3Dgalerkin%26hl%3Des
http://64.233.179.104/translate_c?hl=es&u=http://en.wikipedia.org/wiki/Differential_equation&prev=/search%3Fq%3Dgalerkin%26hl%3Des
http://64.233.179.104/translate_c?hl=es&u=http://en.wikipedia.org/wiki/Differential_equation&prev=/search%3Fq%3Dgalerkin%26hl%3Des
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Where the function ψ0(r) satisfies the 
non-homogeneous part of the boundary 
conditions of equation (2) and the functions 
ϕj (r)=1,2,...,n is a set of orthogonal functions, 
satisfy the homogeneous part, i.e. 

An approximate solution is proposed that 
satisfies the boundary conditions but does 
not solve the differential equation exactly, 
generating an error. To minimize this error, 
the coefficients of the test solution are adjusted 
so that the error is orthogonal to a set of basis 
functions. This procedure is known as the 
Galerkin method.

To find an approximate solution, the 
same basis functions of equation (7) are 
used. If the non-homogeneous part is zero, 
the problem is simplified. When applying 
the Galerkin method, the error generated by 
the approximate solution is minimized by 
imposing conditions of orthogonality of the 
residual with respect to the basis functions.

This method allows to calculate the 
unknown coefficients C2, C2, ..,Cn unknown 
coefficients by means of

Equation (12) can be expressed in a more 
compact form, as shown in eq. (13).

The objective of establishing this rela-
tionship is to obtain a system of equations that 

allows the unknown coefficients to be calcu-
lated. Equation (13) ensures that the error is 
minimal in a specific sense. By restricting the 
solution to a finite space, the Galerkin me-
thod provides an approximate solution. This 
method takes advantage of the orthogonality 
principle to solve differential equations effi-
ciently.

The construction of the test functions is 
described, following the recommendations 
of [2]. These functions must be smooth 
and form a complete functional space. For 
boundary conditions of the first kind, we look 
for functions that cancel on the boundary and 
are sufficiently regular in the interior of the 
domain. A common approach is to construct 
these functions from products of basis 
functions and powers of the independent 
variable, as shown in equation (14) 

The constructed functions satisfy the 
boundary conditions, are sufficiently smooth 
and form a complete system. The problem is 
reduced to finding the coefficients of these 
functions. These coefficients are obtained by 
applying the boundary conditions

1. For domains with simple and smooth 
boundaries, such as the circle, orthonormal 
sets of basis functions are available.

The function F(x,y) is continuous and has 
continuous partial derivatives with respect to 
x e y. The function w(x,y) can be selected as :

For a circular region of radius R centered 
at the origin, the equation of the boundary 
satisfies equation

The weight function w(x,y) is taken as 
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Figure (1) contour region obtained from [2].

2. In regions bounded by convex 
polynomials, the equations of their sides are 
expressed as:

the weight function w(x,y) is chosen as 
follows: 

A function is sought that cancels over the 
entire boundary of the domain and satisfies 
the homogeneous part of the first type 

boundary conditions in the region of interest. 
For each of the four geometries illustrated in 
Figure 1, multiple solutions will be obtained 
for such a function as previously defined. The 
specific boundary conditions for each of these 
geometries (1a, 1b, 1c and 1d) are detailed 
below.

The weight functions w(x,y) for each 
geometry are presented below:
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For each set of boundary conditions, a 
specific weight function is required ϕj function 
is required for each set of boundary conditions. 
The test solution is constructed as a linear 
combination of these functions.

Application 
An application consider a beam as shown 

in Figure. 2.

Figure 2. Double-supported beam with 
distance cut x where 0 ≤ x ≤ l. [3]

As a case study, the application of Galerkin’s 
method to a simply supported beam subjected 
to bending moments at its ends is considered 
(Figure 2). where l is the length of the horizontal 
distance between the points of attachment of 
the conductor at two consecutive supports, 
q is the intensity of the static load uniformly 
distributed over the entire surface and Ra is the 
reaction at the support, the bending moment 
equation for the beam in question must be 
obtained.

The governing equation in general: 

boundary conditions:

For a particular case [3].

Where: 

boundary conditions:

The  represents deflection of the beam as 
a function of position x is denoted by M(x). 
The parameters M(x) represent the bending 
moment, I y E the moment of inertia and 
Young’s modulus, respectively. The length 
of the beam is l. Substituting these values 
in equation (29), the analytical solution is 
obtained [3]. It is given by equation (33).

Next, the Galerkin method will be applied 
to the problem.

In general, a linear combination of 
orthogonal polynomials of the form given by 
equation (31) is selected as the test function.   

where the ϕj satisfy the boundary conditions, 
the following is proposed for this particular case

Where:

The equation satisfies the boundary 
conditions as shown below:
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Substituting (20) in (7) we obtain

where 

They integrate using identity:

Substituting in equation (38), the equations 
(44-45)

Substituting equation (47) into equation 
(33) gives the approximate solution.

Taking Values q=1 E I=1 l=1 we will plot 
equation (33) and equation (48)

Figure. Graph of the analytical (red) and 
approximate (blue) solution.

RESULTS AND ANALYSIS
With the advancement of technology, 

today’s software makes it possible to quickly 
and accurately calculate symbolic derivatives 
and integrals. This tool is invaluable for the 
application of Galerkin’s method. By increasing 
the number of terms in the test function, a 
closer and closer approximation to the exact 
analytical solution is obtained. While in 
some cases it is possible to find this analytical 
solution, in most situations, especially when 
dealing with nonlinear equations, it is very 
difficult or even impossible to obtain.

Figure 3 illustrates how, when using a 
single term in the test function, the difference 
between the numerical solution and the 
analytical solution (if any) can be significant. 
However, as more terms are incorporated, this 
difference is reduced considerably.

CONCLUSIONS
Galerkin’s method, when applied to partial 

or ordinary differential equations, allows 
transforming the problem into an integral 
form. This transformation facilitates obtaining 
an approximate analytical solution, which 
can be compared with the exact solution to 
evaluate the error. This method constitutes 
a viable alternative to solve problems of 
simply supported beams subject to moments 
concentrated at the ends.
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