
Cálculo Numérico com Python no Google Colaboratory

1

Cálculo Numérico
com Python no Google Colaboratory

Fábio José da Costa Alves
Cinthia Cunha Maradei Pereira

Cálculo Numérico com Python no Google Colaboratory

2

UNIVERSIDADE DO ESTADO DO PARÁ

CENTRO DE CIÊNCIAS SOCIAIS E EDUCAÇÃO

Clay Anderson Nunes Chagas
REITOR

Ilma Pastana Ferreira
VICE-REITOR

Anderson Madson Oliveira Maia
DIRETORA DO CENTRO DE CIÊNCIAS SOCIAIS E EDUCAÇÃO

Fabrício Martins da Costa
CHEFE DO DEPARTAMENTO DE MATEMÁTICA, ESTATÍSTICA E INFORMÁTICA.

Carlos Alberto de Miranda Pinheiro
COORDENADOR DO CURSO DE MATEMÁTICA

Pedro Franco de Sá
PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

Marta Genu Soares
PROGRAMA DE PÓS-GRADUAÇÃO EM EDUCAÇÂO

Cálculo Numérico com Python no Google Colaboratory

3

ALVES, Fábio José Costa da; PEREIRA, Cinthia Cunha Maradei. Cálculo Numérico com

Python no Google Colaboratory. Grupo de Pesquisa em Ensino da Matemática e

Tecnologias, Universidade do Estado do Pará (UEPA), Belém-Pa, 2023.

ISBN: 978-65-84998-59-9

Cálculo Numérico; Python; Google Colaboratory.

https://doi.org/10.5281/zenodo.18421776

Cálculo Numérico com Python no Google Colaboratory

4

SUMÁRIO

 APRESENTAÇÃO 05

1. SISTEMA NUMÉRICO E ERROS 06

2. GOOGLE COLABORATORY 12

3. RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES 07

3.1. MÉTODO DA BISSEÇÃO 20

3.2. MÉTODO DAS CORDAS

3.3. MÉTODO DE NEWTON

3.4. MÉTODO DE JACOBI

3.5. MÉTODO DE GAUSS-SEIDEL

4. SISTEMAS DE EQUAÇÕES LINEARES 23

4.1. MÉTODO DE GAUSS-JORDAN 42

4.2. MÉTODO DE JACOBI

4.3. MÉTODO DE GAUSS-DEIDEL

5 AJUSTE DE CURVAS 62

5.1. AJUSTE LINEAR

5.2. AJUSTE POLINOMIAL

6. INTERPOLAÇÃO 45

6.1. INTERPOLAÇÃO LINEAR

6.1. INTERPOLAÇÃO DE LAGRANGE

6.2. INTERPOLAÇÃO DE NEWTON

7. INTEGRAÇÃO NUMÉRICA 72

7.1. REGRA DOS TRAPÉZIOS

7.2. PRIMEIRA REGRA DE SIMPSON

7.3. SEGUNDA REGRA DE SIMPSON

Cálculo Numérico com Python no Google Colaboratory

5

APRESENTAÇÃO

Prezado(a) Leitor(a)

 O livro Cálculo Numérico com Python no Google Colaboratory foi desenvolvido

para o desenvolvimento de habilidades de do pensamento computacional, importante

para o futuro desenvolvimento profissional, ao mesmo tempo que se estuda os métodos

do cálculo numérico, em uma abordagem prática-experimental.

Na abordagem de cada método, é apresentada a demonstração das expressões

e/ou o detalhamento do algoritmo recursivo, cuja exemplificação é apresentada com

detalhes, havendo um programa de Python para ser executado na plataforma Google

Colaboratory, possibilitando verificar os resultados das atividades, bem como

aprofundar conhecimentos na programação em Python.

É importante destacar que o Google Colaboratory é um ambiente de web, pode ser

executado tanto no computador quanto no celular, e quem não há necessidade de

instalação de nenhum programa ou app. Além disso, os programas Python são

executados nos processadores dos computadores da Google, viabilizando a programação

em qualquer tipo de computador ou celular, desde que os mesmos possam internet.

Esperamos que com o livro Cálculo Numérico com Python no Google Colaboratory,

você consiga adquirir conhecimentos e desenvolver habilidades que possam ajudá-los

no desenvolvimento de atividades futuras tanto no âmbito da pós-graduação quanto no

dia a dia sua vida profissional em sala de aula.

Os Autores

Cálculo Numérico com Python no Google Colaboratory

6

1. SISTEMA NUMÉRICO E ERROS

Você já observou que no dia a dia estamos cercados de várias situações que

representam problemas das mais diversas origens, como física, química, estatística, etc,

e que alguns destes problemas são: queda livre de um objeto de cima de um prédio, o

crescimento de uma população de uma cidade, o consumo de combustível de um carro, o

consumo de energia de nossa casa, entre outros. Quando um problema é representado

por uma fórmula ou procedimento matemático, que expressam as características

principais deste problema, temos o modelo matemático do problema.

Para que você compreenda melhor a seqüência lógica da solução de um problema,

observe o diagrama a baixo.

Observe que para resolvermos um problema, devemos primeiro fazer a

modelagem deste problema, isto é, produzir um modelo matemático que descreva todo

o comportamento do problema, em seguida devemos buscar a resolução numérica do

modelo matemático, que representará a solução do problema.

Você sabia que podemos obter a solução de um problema (físico), através de

métodos numéricos. Porém, é importante ressaltar, que em certas situações a solução

estimada, pelos métodos numéricos, se afasta da verdadeira solução do problema. Isto

ocorre devido a presença de fontes de erro que podem ocorrer na fase de modelagem do

problema ou na fase resolução do problema.

Para que você possa compreender a fonte de erro no processo de modelagem,

observe o exemplo a seguir.

Exemplo: Uma bola cai de cima de um prédio e sua velocidade em cada instante é

descrita pela equação horária:

𝑠 = 𝑠𝑜 + 𝑣𝑜𝑡 +
𝑎

2
𝑡2

onde 𝑠𝑜 é a altura do prédio, 𝑣𝑜 é a sua velocidade inicial e 𝑎 representa, neste caso, a

gravidade.

Problema

Modelo

Matemático

Solução

Modelagem

Resolução

Cálculo Numérico com Python no Google Colaboratory

7

Se a altura do prédio for de 30 m (𝑠𝑜 = 30), a velocidade inicial da bola for zero (𝑣𝑜 = 0)

e considerando a gravidade igual a 10 m/s2 (𝑎 = 10). A posição após 3 s após a queda é:

𝑠 = 30 + 0.1 −
10

2
22  𝑠 = 10𝑚

Você acha que este resultado é confiável?

É bem provável que não, pois no modelo matemático não foram consideradas outras

forças, como, por exemplo, a resistência do ar, a velocidade do vento, etc.

 Já na fase de resolução, o erro é gerado no momento que se faz os cálculos na

calculadora ou computador devido aos processos de arredondamentos. Para

exemplificar observe o exemplo a seguir.

Exemplo: Erros na fase de Resolução

Observe que √2 = 1,41421356237310. Ao se resolver esta equação
𝑥

105
− √2 = 0, cuja

solução é 𝑥 = 105√2. Observe que a resposta desta equação dependerá do número de

dígitos significativos.

se √2 = 1,41  𝑥 = 141.000

se √2 = 1,4142  𝑥 = 141.420

se √2 = 1,414213  𝑥 = 141.421,30

MUDANÇA DE BASE

 Para você compreender melhor a fonte de erro na fase de resolução, e necessário

nos compreendermos como funciona de mudança de base. Você sabia sábia que os

Cálculo Numérico com Python no Google Colaboratory

8

números que usamos no nosso dia a dia estão na base 10. Para uma melhor

compreensão observe a decomposição do seguinte número

8052 = 8 ∗ 103 + 0 ∗ 102 + 5 ∗ 101 + 2 ∗ 100

é assim que se decompõem um número na base dez. Se o numero tiver dígitos atrás da

vírgula a decomposição fica da seguinte forma

8052,406 = 8 ∗ 103 + 0 ∗ 102 + 5 ∗ 101 + 2 ∗ 100 + 4 ∗ 10−1 + 0 ∗ 10−2 + 6 ∗ 10−3

de uma forma compacta podemos dizer que os números na base dez pode ser escritos

por:

∑𝑎𝑖. 10
𝑖

𝑚

𝑖=𝑛

= 𝑎𝑚. 10
𝑚+. . . +𝑎2. 10

2 + 𝑎1. 10
1 + 𝑎0. 10

0 + 𝑎−1. 10
−1𝑎−2. 10

−2+. . . +𝑎𝑛. 10
𝑛

onde: 𝑎𝑖 ⎯ é 0 ou 1 e 𝑛,𝑚 ⎯ números inteiros, com 𝑛 ≤ 0 e 𝑚 ≥ 0

 Um número na base 2 pode ser escrito como

∑𝑎𝑖. 2
𝑖

𝑚

𝑖=𝑛

= 𝑎𝑚. 2
𝑚+. . . +𝑎2. 2

2 + 𝑎1. 2
1 + 𝑎0. 2

0 + 𝑎−1. 2
−1 + 𝑎−2. 2

−2+. . . +𝑎𝑛. 2
𝑛

para compreender melhor observe os exemplos a seguir:

1011 = 1. 23 + 0. 22 + 1. 21 + 1. 20

1011,101 = 1. 23 + 0. 22 + 1. 21 + 1. 20 + 1. 2−1 + 0. 2−2 + 1. 2−3

Você sabia, que as calculadoras e os computadores trabalham na base 2, que uma

fonte de erro de resolução está nas aproximações que são, as vezes necessárias. Para que

você possa entende melhor este problema, vamos, agora, estudar a conversão de um

número a base 10 para a base 2. Para isto devemos decompô-lo com fizemos

anteriormente, e em seguida efetuar a multiplicação dos dígitos binários pelas potências

de base 2 adequadas.

0123
2 2.12.12.02.11011 +++=  102 111011 =

3210123 2.12.02.12.12.12.02.1101,1011 −−− ++++++=  102 63,111011 =

Para transformar um número inteiro da base 10 para a base 2, utiliza-se o método

de divisões sucessivas, que consiste em dividir o número por 2, a seguir dividi-se por 2 o

quociente encontrado e assim o processo é repetido até que o último quociente seja

igual a 1. O número binário será, então, formado pela concatenação do último quociente

com os restos das divisões lidos em sentido inverso ao que foram obtidos, ou seja,

Cálculo Numérico com Python no Google Colaboratory

9

N 2

r1 q1 2

 r2 q2 2

 r3 q3

 qn-1 2

 rn-1 1

𝑁10 = 1. 𝑟𝑛−1. 𝑟3. 𝑟2. 𝑟1

Exemplo:

18 2

0 9 2

 1 4 2

 0 2 2

 0 1

1810 = 100102

11 2

1 5 2

 1 2 2

 0 1

1110 = 11012

Para transformar números fracionários da base 10 para a base 2, utiliza-se o

método das multiplicações sucessivas, que consiste em:

1º Passo – multiplicar o numero fracionários por 2;

2º Passo – deste resultado, a parte inteira será o primeiro dígito do número na base 2 e

a parte fracionária é novamente multiplicada por 2. O processo é repetido até que a

parte fracionária do último produto seja igual a zero.

Cálculo Numérico com Python no Google Colaboratory

10

Exemplo: transforme 0,187510 para a base 2

logo 0,187510 = 0,00112

Exemplo: transforme 13,2510 para a base 2

13 2

1 6 2

 0 3 2

 1 1

1310 = 11012

0,2510 = 0,012 , logo 13,2510 = 1101,012

Você sabia que, de maneira geral, o número 𝑥 em uma base 𝛽 é representado por:

𝑥 = ± [
𝑑1
𝛽
+
𝑑2
𝛽2
+
𝑑3
𝛽3
+. . . +

𝑑𝑡
𝛽𝑡
] . 𝛽𝑒𝑥𝑝

onde:

𝑑𝑖 ⎯ são os números inteiros contidos no intervalo 0 ≤ 𝑑𝑖 ≤ 𝛽, 𝑖 = 1,2, . . . , 𝑡

𝑒𝑥𝑝 ⎯ representa o expoente de 𝛽 e assume valores entre 𝐼 ≤ 𝑒𝑥𝑝 ≤𝑆,

𝐼, 𝑆 ⎯ os limites inferior e superior, respectivamente, para a variação do expoente

[
𝑑1

𝛽
+
𝑑2

𝛽2
+
𝑑3

𝛽3
+. . . +

𝑑𝑡

𝛽𝑡
] ⎯ é chamado de mantissa e é a parte do número que representa

seus dígitos significativos e 𝑡 é o número de dígitos significativos do sistema de

representação, comumente chamado de precisão da máquina.

0,1875

  2

0,3750

0,375

  2

0,750

0,75

  2

1,50

0,50

  2

1,00

0,25

  2

0,50

0,50

  2

1,00

Cálculo Numérico com Python no Google Colaboratory

11

Exemplo:

Sistema decimal

0,35710 = [
3

10
+

5

102
+

7

103
] . 100 29,35710 = [

2

10
+

9

102
+

3

103
+

5

104
+

7

105
] . 102

Sistema binário

110012 = [
1

2
+

1

22
+

0

23
+

0

24
+

1

25
] . 25

11001,012 = [
1

2
+

1

22
+

0

23
+

0

24
+

1

25
+

0

26
+

1

27
] . 25

Saiba que cada dígito do computador é chamado de bit. Apresentaremos abaixo

uma maquina fictícia de 10 bits para a mantissa, 4 bits para o expoente e 1 bit para o

sinal da mantissa e outro bit para o sinal do expoente.

Para você entender melhor, faremos um exemplo numérico.

Exemplo: Numa máquina de calcular cujo sistema de representação utilizado tenha 𝛽 =

2, 𝑡 = 10, 𝐼 = −15 e 𝑆 = 15, o número 25 na base decimal é representado por

 −2510 = −110012 = −0,11001. 2
5 = −0,11001. 2101

1 1 1 0 0 1 0 0 0 0 0 0 1 0 1

Observe que utilizamos bit = 0 para positivo e bit = 1 para negativo.

Um parâmetro muito utilizado para avaliar a precisão de um determinado sistema

de representação é o número de casas decimais exatas da mantissa e que este valor é

Mantissa Expoente

S
in

al
 d

a

M
an

ti
ss

a

S
in

al
 d

o

E
x
p
o
en

te

Obs: a mantissa é um

número entre 0 e 1.

Cálculo Numérico com Python no Google Colaboratory

12

dado pelo valor decimal do último bit da mantissa, ou seja, o bit de maior significado,

logo:

𝑃𝑅𝐸𝐶𝐼𝑆Ã𝑂 ≤
1

𝛽𝑡

Apresentaremos a seguir, a titulo de curiosidade, os sistemas de representação de

algumas máquinas.

Máquinas 𝛽 𝑡 I S

Burroughs 5500 8 13 - 51 77
Burroughs 6700 8 13 - 63 63
Hewlett-Packard 45 10 10 - 98 100
Texas SR-5X 10 12 - 98 100
PDP-11 2 24 - 128 127
IBM/360 16 6 - 64 63
IBM/370 16 14 - 64 63
Quartzil QI 800 2 24 - 127 127

ATIVIDADE

(01) Os números a seguir estão na base 2, escreva-os na base 10.

(a) 110112 = (b) 1111002 = (c) 1001112 =

(02) Os números a seguir estão na base 10, escreva-os na base 2.

(a) 1510 = (b) 1210 = (c) 3610 =

(03) Considere uma máquina de calcular cujo sistema de representação utilizado tenha

𝛽 = 2, 𝑡 = 10, 𝐼 = −15 e 𝑆 = 15. Represente nesta máquina os números:

(a) 3510 (b) 8, 210 (c) −2410

Cálculo Numérico com Python no Google Colaboratory

13

2. GOOGLE COLABORATORY

Uma pesquisa em 2019 que investigou milhares de listas de empregos para

cientistas de dados, verificou-se que entre as 15 tecnologias mais procuradas, Python

ficou em primeiro lugar e foi de longe a palavra-chave mais frequente nas listas. Além

disso, muitas empresas de tecnologia famosas como Google, Instagram e Netflix fazem

uso dessa linguagem, contribuindo para a popularização da mesma.

Python possui uma sintaxe simples se comparada com outras linguagens de

programação, com isso a curva de aprendizado é mais rápida do que se comparada com

outras opções. O Python é uma linguagem de programação amplamente usada em

aplicações da Web, desenvolvimento de software, ciência de dados e machine learning

(ML). Os desenvolvedores usam o Python porque é eficiente e fácil de aprender e pode

ser executado em muitas plataformas diferentes.

A plataforma Google Colaboratory, ou mais conhecida como “Colab”,

abreviadamente, é um produto da Google Research, que permite que qualquer pessoa

escreva e execute código Python por meio do navegador e é especialmente adequado

para aprendizado, análise de dados e aplicações na educação.

O primeiro passo para usar o Google Colab, para programar em Python, é fazer o

login em uma conta do Google, depois acesse o endereço

https://colab.research.google.com/ e acessará o Google Colab diretamente pelo

navegador, sem precisar instalar nada em seu computador. Ao abrir o Google Colab, você

será recebido com uma interface limpa e amigável.

Os programas Python na plataforma no Google Colaboraty são escutados em um

arquivo denominado de notebooks do Colab que executam código dos servidores em

nuvem do Google, e isso significa que pode tirar proveito da potência de hardware do

Google, como GPUs e TPUs, independentemente da potência da sua máquina, e só

precisa de um navegador para isso.

https://colab.research.google.com/#using-accelerated-hardware

Cálculo Numérico com Python no Google Colaboratory

14

3. RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

 Você sabia, que nas mais diversas áreas das ciências ocorrem situações que

envolvem a resolução de uma equação do tipo 𝑓(𝑥) = 0 que não possui solução

algébrica. Está é a razão porque devemos desenvolver métodos numéricos para

resoluções as equações do tipo 𝑓(𝑥) = 0, podendo ser equações lineares ou não lineares.

Iniciaremos uma nova etapa estudando os métodos para isolar e calcular as raízes

de uma equação real. Tais métodos numéricos são usados na busca das raízes das

equações, ou os zeros reais de 𝑓(𝑥). Embora estes métodos não forneçam raízes exatas,

eles podem calcular as raízes com a exatidão que o problema requeira.

Em geral, os métodos, utilizados apresentam duas fases distintas:

Fase I – Localização ou Isolamento das Raízes

Está fase consiste em obter um intervalo que contém a raiz da função 𝑓(𝑥) = 0, e

em seguida iremos para a segunda fase.

Fase II – Refinamento

Nesta fase definimos a precisão que desejamos da nossa resposta e escolhemos as

aproximações iniciais dentro do intervalo encontrado na Fase I. Em seguida

melhoramos, sucessivamente, a aproximação da raiz da função 𝑓(𝑥) = 0, até se obter

uma aproximação para a raiz dentro de uma precisão pré-fixada.

ISOLAMENTO DE RAÍZES

É importante, que você saiba que os métodos numéricos utilizados para calcular

raízes da equação 𝑓(𝑥) = 0, só calculam uma raiz de cada vez!

Esta é a razão porque devemos determinar um intervalo para cada raiz que

desejamos calcular. Para entendermos melhor como isolar uma raiz de uma equação,

nós devemos observar o teorema a seguir.

Teorema

“Se uma função contínua 𝑓(𝑥) assume valores de sinais oposto nos pontos

extremos do intervalo [a , b] , isto é, 𝑓(𝑎). 𝑓(𝑏) < 0, então o intervalo conterá, no

mínimo, uma raiz da equação 𝑓(𝑥) = 0, em outras palavras haverá no mínimo um

número 𝜀, pertencente ao intervalo aberto (𝑎, 𝑏), 𝜀 ∈ (𝑎, 𝑏), tal que, 𝑓(𝜀) = 0”

Cálculo Numérico com Python no Google Colaboratory

15

Exemplo:

Neste exemplo apresentamos uma função 𝑓(𝑥) que possui dentro do intervalo

[𝑎, 𝑏] três raízes: 𝜀1, 𝜀2 e 𝜀3. Isto é, são três valores de 𝑥, para os quais a função 𝑓(𝑥) tem

imagem igual a zero, isto é: 𝑓(𝜀1) = 0, 𝑓(𝜀2) = 0 e 𝑓(𝜀3) = 0.

Observe no exemplo que 𝑓(𝑎) < 0 e 𝑓(𝑏) > 0, logo o produto 𝑓(𝑎). 𝑓(𝑏) < 0

Observe que toda vez que dentro de um intervalo [𝑎, 𝑏], tivermos 𝑓(𝑎). 𝑓(𝑏) < 0,

significa que neste intervalo temos pelo menos uma raiz da função 𝑓(𝑥), como vemos na

figura a seguir.

Observe, na figura a seguir, que quando uma função possui um número par de raízes

dentro do intervalo [𝑎, 𝑏], temos 𝑓(𝑎). 𝑓(𝑏) > 0

y

x

a

b

 0

f(x) Se a função possui imagem

zero nos pontos 𝜀1, 𝜀2 e 𝜀3, o

gráfico da função 𝑓(𝑥), nestes

pontos, intercepta o eixo dos 𝑥.

y

x

a

b 0

f(x) f(b)

f(a)

y

x

a

b 0

f(x)

Cálculo Numérico com Python no Google Colaboratory

16

 𝑓(𝑎) < 0 𝑓(𝑎) > 0

 𝑓(𝑏) < 0 𝑓(𝑏) > 0

 logo 𝑓(𝑎). 𝑓(𝑏) > 0 logo 𝑓(𝑎). 𝑓(𝑏) > 0

Observe, na figura a seguir, que quando uma função não possui raízes dentro

dointervalo [𝑎, 𝑏], temos 𝑓(𝑎). 𝑓(𝑏) > 0

 𝑓(𝑎) < 0 𝑓(𝑎) > 0

 𝑓(𝑏) < 0 𝑓(𝑏) > 0

 logo 𝑓(𝑎). 𝑓(𝑏) > 0 logo 𝑓(𝑎). 𝑓(𝑏) > 0

O número de raizes de uma função 𝑓(𝑥), dentro do intervalo [𝑎, 𝑏] , que

observamos nos exemplos anteriores, é formalmente expressõ pelo teorema que

anunciaremos a seguir.

y

x

a
b

 0

f(x)
f(b)

f(a)

y

x
a b

0

f(x)
f(b)

f(a)

a

y

x

b

0

f(x)
f(b)

f(a)

y

x

a
b

0

f(x)
f(b)

f(a)

Cálculo Numérico com Python no Google Colaboratory

17

TEOREMA DE BOLZANO

Seja 𝑃(𝑥) = 0 uma equação algébrica com coeficientes reais e 𝑥 ∈ (𝑎, 𝑏).

• Se 𝑃(𝑎). 𝑃(𝑏) < 0, então existem um número ímpar de raízes reais no intervalo

(𝑎, 𝑏).

• Se 𝑃(𝑎). 𝑃(𝑏) > 0, então existem um número par de raízes reais no intervalo

(𝑎, 𝑏) ou não existem raízes reais no intervalo (𝑎, 𝑏).

EQUAÇÕES TRANSCENDENTES

Saiba que a determinação do número de raízes de funções transcendentes é quase

impossível, pois algumas equações podem ter um número infinito de raízes. Como

exemplo temos as funções:

 Função Seno Função Cosseno

 Função Tangente Função Exponencial

O método mais simples de se achar um intervalo que contenha só uma raiz de uma

função, ou seja, isolar uma raiz, é o método gráfico que abordaremos a seguir.

0 2 4 6 8 10 12

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

X

Y

0 2 4 6 8 10 12

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X

Y

0 1 2 3 4 5 6 7 8 9
-20

-15

-10

-5

0

5

10

15

20

X

Y

-4 -3 -2 -1 0 1 2 3 4

-1

0

1

2

3

4

5

6

7

8

9

10

X

Y

Cálculo Numérico com Python no Google Colaboratory

18

MÉTODO GRÁFICO

Lembre-se que uma raiz de uma equação 𝑓(𝑥) = 0 é um ponto onde a função 𝑓(𝑥)

toca o eixo dos 𝑥. Observe a função 𝑓(𝑥) = 𝑥2 − 6𝑥 + 5 cujo gráfico está na figura a

seguir.

Saiba que uma outra forma de identificarmos as raízes da equação é substituir

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), onde 𝑔(𝑥) − ℎ(𝑥) = 0. As raízes de 𝑓(𝑥) = 0 corresponderam a

interseção das funções 𝑔(𝑥) e ℎ(𝑥).

Para você entender melhor, observe o exemplo a seguir, onde utilizamos a função

𝑓(𝑥) = 𝑥2 − 7𝑥 + 10 que possui raízes 2 e 5.

Se fizermos 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), onde 𝑔(𝑥) = 𝑥2 e ℎ(𝑥) = 7𝑥 − 10 temos a

interseção de 𝑔(𝑥) com ℎ(𝑥) acontece em 2 e 5.

Observe no próximo exemplo que o método gráfico também funciona com funções

mais complexas cujas raízes não são simples de se determinar.

Exemplo:

A aplicação do método utilizaremos a função 𝑓(𝑥) = 𝑒𝑥 − 2 − 𝑠𝑒𝑛𝑥 que possui

raízes 2 e 5. Fazendo 𝑔(𝑥) = 𝑒𝑥 e ℎ(𝑥) = +2 + 𝑠𝑒𝑛𝑥, observe que é muito mais fácil

fazer o gráfico de 𝑔(𝑥) e ℎ(𝑥) do que a fazer o gráfico da função 𝑓(𝑥).

0 1 2 3 4 5 6 7

-10

0

10

Y

-1 0 1 2 3 4 5 6 7
-10

0

10

20

30

40

X

Y

1072 +−= xx)x(f

2x)x(g =

107 −= x)x(h

Cálculo Numérico com Python no Google Colaboratory

19

Analisando o gráfico podemos afirmar que a nossa raiz esta próxima de 1, então

este será nosso valor inicial para os nossos métodos numéricos.

ATIVIDADE

(01) Dada a função 𝑓(𝑥) = 0.2𝑥2 + 𝑠𝑒𝑛𝑥, separe está em duas funções e aproxime pelo

menos uma de suas raízes pelo método gráfico.

(02) Dada a função 𝑓(𝑥) = 𝑥2 − 4𝑥, separe está em duas funções e aproxime pelo menos

uma de suas raízes pelo método gráfico.

(03) Dada a função 𝑓(𝑥) = 𝑥2 − 𝑐𝑜𝑠 𝑥, separe está em duas funções e aproxime pelo

menos uma de suas raízes pelo método gráfico.

(04) Dada a função 𝑓(𝑥) = 𝑥3 + 𝑠𝑒𝑛𝑥, separe está em duas funções e aproxime pelo

menos uma de suas raízes pelo método gráfico.

-1 -0.5 0 0.5 1 1.5 2
-2

0

2

4

6

X

Y

-1 -0.5 0 0.5 1 1.5 2
-2

0

2

4

6

X

Y

xsene)x(f x −−= 2

xe)x(g =

xsen)x(h += 2

Cálculo Numérico com Python no Google Colaboratory

20

3.1. MÉTODO DA BISSEÇÃO

Para utilizarmos este método devemos primeiro isolar a raiz dentro de um

intervalo [𝑎, 𝑏], isto é, devemos utilizar o método gráfico para aproximar visualmente a

raiz para em seguida isolá-la pelo intervalo (𝑎, 𝑏), onde esta raiz pertença a este

intervalo.

Para utilizarmos o método da bisseção é necessário que a função 𝑓(𝑥) seja uma

continua no intervalo [𝑎, 𝑏] e que 𝑓(𝑎). 𝑓(𝑏) < 0. No método da bisseção devemos

dividir o intervalo [𝑎, 𝑏] ao meio, obtendo assim 𝑥𝑜 , com isto temos agora dois intervalos

[𝑎, 𝑥𝑜] e [𝑥𝑜 , 𝑏]

Se 𝑓(𝑥𝑜) = 0, então, 𝜀 = 𝑥𝑜; Caso contrário, a raiz estará no subintervalo onde a

função tem sinais oposto nos pontos extremos, ou seja, se

𝑓(𝑎). 𝑓(𝑥𝑜) < 0 implica que a raiz está no intervalo [𝑎, 𝑥𝑜].

𝑓(𝑥𝑜). 𝑓(𝑏) < 0 implica que a raiz está no intervalo [𝑥𝑜 , 𝑏].

A partir daí construiremos um novo intervalo [𝑎1, 𝑏1]

y

x a
b

y

x

Cálculo Numérico com Python no Google Colaboratory

21

O novo intervalo [𝑎1, 𝑏1] que contém 𝜀 é dividido ao meio e obtém-se 𝑥1 onde se

𝑓(𝑎1). 𝑓(𝑥1) < 0 implica que a raiz está no intervalo [𝑎1, 𝑥1].

𝑓(𝑥1). 𝑓(𝑏1) < 0 implica que a raiz está no intervalo [𝑥1, 𝑏1].

O processo se repete até que se obtenha uma aproximação para a raiz exata 𝜀, com

a tolerância ∈ desejada. Tolerância (∈) é um valor que o calculista define, que define a

proximidade que deve ter do valor estimado do valor exato. A partir da tolerância,

definimos o critério de parada, onde se para de refinar a solução e se aceita o valor

aproximado calculado. A tolerância ∈, é muitas vezes avaliada por um dos três critérios

abaixo:

|𝑓(𝑥𝑛)| ≤ 𝐸

|𝑥𝑛 − 𝑥𝑛−1| ≤ 𝐸

|𝑥𝑛 − 𝑥𝑛−1|

|𝑥𝑛|
≤ 𝐸

Para você compreender melhor a aplicação do método da bisseção, observe os

próximos exemplos numéricos, onde determinaremos as raízes das funções

determinadas.

Exemplo:

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3 com 𝐸 ≤ 0,01.

Solução: Primeiro devemos determinar um intervalo onde está a raiz que desejamos

calcular, para isto devemos fazer uma no seu gráfico.

A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3].

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

10

12

14

x

y

Raiz procurada Intervalo
de busca

Cálculo Numérico com Python no Google Colaboratory

22

Logo

N an bn xn f(xn) E

0
1
2
3
4
5
6
7

 1.0000 3.0000 2.0000 1.0000
 1.0000 2.0000 1.5000 -0.7500 0.5000
 1.5000 2.0000 1.7500 0.0625 0.2500
 1.5000 1.7500 1.6250 -0.3594 0.1250
 1.6250 1.7500 1.6875 -0.1523 0.0625
 1.6875 1.7500 1.7188 -0.0459 0.0313
 1.7188 1.7500 1.7344 0.0081 0.0156
 1.7266 1.7344 1.7266 -0.0190 0.0078

onde N  número da interação

an  extremo inferior do intervalo [𝑎𝑛 , 𝑏𝑛].

bn  extremo superior do intervalo [𝑎𝑛 , 𝑏𝑛].

xn  ponto médio do intervalo [𝑎𝑛 , 𝑏𝑛].

f(xn)  valor da função em xn.

E  erro calculado pela expressão |𝑥𝑛 − 𝑥𝑛−1|

Construção da tabela

1ª linha: Na iteração inicial (N = 0) temos [𝑎𝑜𝑏𝑜] = [13] sendo o ponto médio 𝑥𝑜 = 2.

2ª linha: (N = 1) Como 𝑓(𝑎𝑜). 𝑓(𝑥𝑜) < 0, substituímos 𝑏1 = 𝑥𝑜 , logo [𝑎1𝑏1] = [12]

sendo o ponto médio 𝑥1 = 1,5.

3ª linha: (N = 2) Como 𝑓(𝑥1). 𝑓(𝑏1) < 0, substituímos 𝑎2 = 𝑥1, logo [𝑎2𝑏2] = [1,52]

sendo o ponto médio 𝑥2 = 1,75.

...

8ª linha: (N = 7) Como 𝑓(𝑎6). 𝑓(𝑥6) < 0, substituímos 𝑎7 = 𝑥6, logo [𝑎7𝑏7] =

[1.7188 1.7344] sendo o ponto médio 𝑥7 = 1.7266.

Como o erro é menor que tolerância (0.0078 < 𝐸) então a aproximação final é 𝑥 =

1,7266.

Cálculo Numérico com Python no Google Colaboratory

23

PROGRAMA EM PYTHON

Método da Bisseção

Entrada

a = 1 # intervalo [a , b]

b = 3

tolerancia = 0.01 # tolerância

nloop = 50 # número máximo de loop

def f(x):

 return x**2 - 3

import math

print("Método da Bisseção")

print("

n a b x f(a) f(x) f(b) f(a)*f(x) err

o")

n = 1

fa = f(a)

fb = f(b)

xm2 = (a + b)/2

fxm = f(xm2)

v = fa*fxm

erro = 10

print("%2d"%n, "%8.4f"%a, "%8.4f"%b, "%8.4f"%xm2, "%8.4f"%fa,

"%8.4f"%fb, "%8.4f"%fxm, "%8.4f"%v, "%8.4f"%erro)

if v < 0: b = xm2

if v > 0: a = xm2

if v == 0: print("o valor da raiz é %4.4f" %xm2)

while(erro > tolerancia):

 xm1 = xm2

 n = n + 1.

 xm2 = (a + b)/2

 fxm = f(xm2)

 erro = math.fabs(xm1 - xm2)

 v = fa*fxm

 if v < 0: b = xm2

 if v > 0: a = xm2

 print("%2d"%n, "%8.4f"%a, "%8.4f"%b, "%8.4f"%xm2, "%8.4f"%fa,

"%8.4f"%fb, "%8.4f"%fxm, "%8.4f"%v, "%8.4f"%erro)

 if(n == nloop):

 break

Cálculo Numérico com Python no Google Colaboratory

24

print("\nA raiz aproximada é %4.4f" %xm2)

print('Loop para com no máximo 50 interações')

import matplotlib.pyplot as plt

import numpy as np

xi = np.linspace(-10, 10, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

SAÍDA DO PROGRAMA

Método da Bisseção

 n a b x f(a) f(x) f(b) f(a)*f(x) erro

 1 1.0000 3.0000 2.0000 -2.0000 6.0000 1.0000 -2.0000 10.0000

 2 1.5000 2.0000 1.5000 -2.0000 6.0000 -0.7500 1.5000 0.5000

 3 1.5000 1.7500 1.7500 -2.0000 6.0000 0.0625 -0.1250 0.2500

 4 1.6250 1.7500 1.6250 -2.0000 6.0000 -0.3594 0.7188 0.1250

 5 1.6875 1.7500 1.6875 -2.0000 6.0000 -0.1523 0.3047 0.0625

 6 1.7188 1.7500 1.7188 -2.0000 6.0000 -0.0459 0.0918 0.0312

 7 1.7188 1.7344 1.7344 -2.0000 6.0000 0.0081 -0.0161 0.0156

 8 1.7266 1.7344 1.7266 -2.0000 6.0000 -0.0190 0.0380 0.0078

A raiz aproximada é 1.7266

Loop para com no máximo 50 interações

Cálculo Numérico com Python no Google Colaboratory

25

ATIVIDADE

(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 2.2422

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [0 , 3]) Resposta: 1.3535

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥 com 𝐸 ≤ 0,01 utilizando o

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5]) Resposta: 4.1016

(04) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 5𝑠𝑒𝑛𝑥 com 𝐸 ≤ 0,01 utilizando o método

da bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 2.0000

(05) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [2 , 4])

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥 com 𝐸 ≤ 0,01 utilizando o

método da bisseção. (Sugestão utilizar intervalo de busca [0 , 2])

(07) Calcular a raiz da equação 𝑓(𝑥) = 𝑥3 − 12 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])

Cálculo Numérico com Python no Google Colaboratory

26

3.2. MÉTODO DAS CORDAS

 Este será o segundo método numérico para o cálculo de raízes que iremos estudar.

Para utilizarmos este método devemos primeiro isolar a raiz dentro de um intervalo

[𝑎, 𝑏], isto é, devemos, novamente, utilizar o método gráfico para aproximar visualmente

a raiz para em seguida isolá-la pelo intervalo [𝑎 , 𝑏], sendo que a raiz pertença ao

intervalo (𝑎 , 𝑏).

Para utilizarmos o método das cordas é necessários que a função 𝑓(𝑥) seja uma

continua no intervalo [𝑎 , 𝑏] e que derivada segunda com sinal constante, sendo

𝑓(𝑎). 𝑓(𝑏) < 0 e que somente um número 𝜀 ∈ [𝑎 , 𝑏] tal que 𝑓(𝜀) = 0

No método das cordas, ao invés de se dividir o intervalo [𝑎 , 𝑏] ao meio, ele é

dividido em partes proporcionais à razão −𝑓(𝑎)/𝑓(𝑏), ou seja

y

x b

f(a)

f(b)

A existência da corda da origem

a dois triângulos semelhantes,

que permitem estabelecer a

seguinte relação:

ℎ1
−𝑓(𝑎)

=
𝑏 − 𝑎

𝑓(𝑏) − 𝑓(𝑎)

esta relação nos conduz a um

valor aproximado da raiz

𝑥1 = 𝑎 + ℎ1

𝑥1 = 𝑎 −
𝑓(𝑎)

𝑓(𝑏) − 𝑓(𝑎)
(𝑏 − 𝑎)

y

x b

Corda

f(a)

f(b)

Cálculo Numérico com Python no Google Colaboratory

27

y

x b

Corda

f(a)

f(b)

Ao se aplicar este procedimento ao novo intervalo que contém 𝜀, como mostra a

figura a seguir, ([𝑎 , 𝑥1] 𝑜𝑢 [𝑥1 , 𝑏]), obtém-se uma nova aproximação 𝑥2 da raiz pela

aproximação apresentada acima

No método das cordas substituímos a curva 𝑦 = 𝑓(𝑥) por uma corda que passa

pelos pontos 𝐴(𝑎 , 𝑓(𝑎)) e 𝐵(𝑏 , 𝑓(𝑏))

Observe, nas figuras a seguir, como no método das cordas é escolhido o extremo do

intervalo [𝑎 , 𝑏] que deve ser igual ao valor 𝑥𝑜 .

y

x b

f(a)

f(b)

𝑓′′(𝑥) > 0

𝑓(𝑎) < 0 𝑒 𝑓(𝑏) > 0

𝑐 = 𝑏

𝑓′′(𝑥) > 0

𝑓(𝑎) > 0 𝑒 𝑓(𝑏) < 0

𝑐 = 𝑎

y

x

f(b)

f(a)

a

Cálculo Numérico com Python no Google Colaboratory

28

A fórmula de recorrência para a aproximação da raiz enésima é

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛)−𝑓(𝑐)
(𝑥𝑛 − 𝑐), onde 𝑛 = 0,1,2, . ..,

onde o ponto fixado 𝑐 (ou “𝑎” ou “𝑏”) é aquele no qual o sinal da função 𝑓(𝑥)

coincide com o sinal da segunda derivada 𝑓′′(𝑥), ou seja 𝑓′′(𝑐). 𝑓(𝑐) > 0.

E
|x|

|xx|

n

nn 
− −1

Para você compreender melhor a aplicação do método das cordas, observe os

próximos exemplos numéricos, onde determinaremos as raízes das funções.

Exemplo:

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3 com 𝐸 ≤ 0,01.

Solução

Primeiro devemos determinar um intervalo onde esta a raiz que desejamos

calcular, para isto devemos fazer uma no seu gráfico.

y

x

b

f(b)

f(a)

y

x

f(a)

f(b)

a

𝑓′′(𝑥) < 0

𝑓(𝑎) > 0 𝑒 𝑓(𝑏) < 0

𝑐 = 𝑏

𝑓′′(𝑥) < 0

𝑓(𝑎) < 0 𝑒 𝑓(𝑏) > 0

𝑐 = 𝑎

Cálculo Numérico com Python no Google Colaboratory

29

A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3]. Logo

N an bn xn f(xn) E
0
1
2
3
4

 1.0000 3.0000 3.0000 6.0000 1.5000
 1.0000 1.5000 1.5000 -0.7500 0.3000
 1.0000 1.8000 1.8000 0.2400 0.0857
 1.0000 1.7143 1.7143 -0.0612 0.0226
 1.0000 1.7368 1.7368 0.0166 0.0061

onde

N  número da interação

an  extremo inferior do intervalo [𝑎𝑛 , 𝑏𝑛].

bn  extremo superior do intervalo [𝑎𝑛 , 𝑏𝑛].

xn  ponto médio do intervalo [𝑎𝑛 , 𝑏𝑛].

f(xn)  valor da função em xn.

E  erro calculado pela expressão |𝑥𝑛 − 𝑥𝑛−1|

Construção da tabela

Como 𝑓′′(𝑥) = 2  𝑓′′(3) = 2 > 0 e 𝑓(3) = 32 − 3 = 6 > 0

logo 𝑓′′(3). 𝑓(3) > 0 de onde temos que 𝑐 = 𝑎 = 1 usando a fórmula de recorrência

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛)−𝑓(𝑐)
(𝑥𝑛 − 𝑐) temos que 𝑥0 = 𝑏 = 3

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓(𝑥0)−𝑓(1)
(𝑥0 − 1) = 1.5000  [𝑎 , 𝑏] = [1.0 1.50]

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓(𝑥1)−𝑓(1)
(𝑥1 − 1) = 1.8000  [𝑎 , 𝑏] = [1.0 , 1.80]

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓(𝑥2)−𝑓(1)
(𝑥2 − 1) = 1.7143  [𝑎 , 𝑏] = [1.0 1.7143]

𝑥4 = 𝑥3 −
𝑓(𝑥3)

𝑓(𝑥3)−𝑓(1)
(𝑥3 − 1) = 1.7368  [𝑎 , 𝑏] = [1.0 1.7368]

Como o erro é menor que tolerância, então a aproximação é 𝑥 = 1,7368.

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

10

12

14

x

y

Raiz procurada Intervalo
de busca

Cálculo Numérico com Python no Google Colaboratory

30

PROGRAMA EM PYTHON

Método das Cordas

Entrada

a = 1 # intervalo [a , b]

b = 3

tolerancia = 0.01 # tolerância

nloop = 50 # número máximo de loop

def f(x):

 return x**2 - 3

def der1(x):

Derivada de primeira ordem

 dxd1 = 0.0001

 return (f(x + dxd1) - f(x)) / dxd1

def der2(x):

Derivada de segunda ordem

 dxd2 = 0.0001

 d11 = (f(x) - f(x - dxd2)) / dxd2

 d12 = (f(x + dxd2) - f(x)) / dxd2

 return (d12 - d11) / dxd2

import math

print("Método das Cordas")

print(" n a b xn f(xn) erro")

vfa = 0

vfb = 0

vder2a = 0

vder2b = 0

if (f(a) >= 0):

 vfa = 1

if (f(b) >= 0):

 vfa = 1

if (der2(a) >= 0):

 vder2a = 1

if (der2(b) >= 0):

 vder2b = 1

if (vder2a == vfa):

 xo = a

 c = b

Cálculo Numérico com Python no Google Colaboratory

31

if (vder2b == vfb):

 xo = b

 c = a

Variáveis auxiliares

para = 0

xk = 0

h = 0

erro = 10

if (vder2a == vfa):

 print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

if (vder2b == vfb):

 print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

while(para == 0):

 xk = xo - (f(xo)/(f(xo)-f(c)))*(xo - c);

 erro = abs(xk - xo)

 xo = xk

 h = h + 1

 if (vder2a == vfa):

 print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

 if (vder2b == vfb):

 print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

 if (erro < tolerancia):

 if (h > 1):

 para = 1

print("\nA raiz aproximada é %4.4f \n" %xo)

import matplotlib.pyplot as plt

import numpy as np

xi = np.linspace(-10, 10, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

Cálculo Numérico com Python no Google Colaboratory

32

SAÍDA DO PROGRAMA

Método das Cordas

 n a b xn f(xn) erro

 0 1.0000 3.0000 1.0000 -2.0000 10.0000

 1 1.5000 3.0000 1.5000 -0.7500 0.5000

 2 1.6667 3.0000 1.6667 -0.2222 0.1667

 3 1.7143 3.0000 1.7143 -0.0612 0.0476

 4 1.7273 3.0000 1.7273 -0.0165 0.0130

 5 1.7308 3.0000 1.7308 -0.0044 0.0035

A raiz aproximada é 1.7308

ATIVIDADE

(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 2.2308

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 1.3545

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥 com 𝐸 ≤ 0,01 utilizando o

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5]) Resposta: 4.1032

(04) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 5𝑠𝑒𝑛𝑥 com 𝐸 ≤ 0,01 utilizando o método

da bisseção. (Sugestão utilizar intervalo de busca [2 , 3]) Resposta: 2.0870

(05) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7 com 𝐸 ≤ 0,01 utilizando o método das

cordas. (Sugestão utilizar intervalo de busca [2 , 4])

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥 com 𝐸 ≤ 0,01 utilizando o

método das cordas. (Sugestão utilizar intervalo de busca [1 , 3])

(07) Calcular a raiz da equação 𝑓(𝑥) = 𝑥3 − 12 com 𝐸 ≤ 0,01 utilizando o método das

cordas. (Sugestão utilizar intervalo de busca [1 , 3])

Cálculo Numérico com Python no Google Colaboratory

33

3.3. MÉTODO DE NEWTON

 Iremos estudar agora, o método de Newton para o cálculo de raízes de uma

equação que utiliza informação da primeira e segunda derivada. Semelhantes aos

métodos da bisseção e da corda, devemos primeiro isolar a raiz que desejamos procurar

dentro de um intervalo [𝑎 , 𝑏] utilizando para isto o método gráfico.

Para utilizarmos o método de Newton é necessários que a função 𝑓(𝑥) seja uma

continua no intervalo [𝑎 , 𝑏] e que 𝜀 o seu único zero neste intervalo; as derivada 𝑓′(𝑥)

[𝑓′(𝑥) ≠ 0] e 𝑓′′(𝑥) devem também ser contínuas. Para se encontrar a expressão para o

cálculo da aproximação 𝑥𝑛 para a raiz 𝜀 devemos fazer uma expansão em série de Taylor

para 𝑓(𝑥) = 0, de onde temos 𝑓(𝑥) = 𝑓(𝑥𝑛) + 𝑓′(𝑥𝑛)(𝑥 − 𝑥𝑛) se fizermos 𝑓(𝑥) =

𝑓(𝑥𝑛+1) = 0 obteremos a seguinte expressão 𝑓(𝑥𝑛) + 𝑓′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) = 0, isolando o

termo 𝑥𝑛+1 na temos 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, de 𝑥𝑛+1 é uma aproximação de 𝜀.

Você sabia, que o método de Newton é equivalente a substituir um pequeno arco

de curva 𝑦 = 𝑓(𝑥) por uma reta tangente, traçada a partir de um ponto da curva?

Observe, nas figuras a seguir como, no método de Newton, é escolhido o extremo do

intervalo [𝑎 , 𝑏] deve ser igual ao valor 𝑥𝑜 . Para você compreender melhor a utilização do

método de Newton, observe os exemplos numéricos a seguir.

Exemplo:

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3 com 𝐸 ≤ 0,01.

Solução

y

x

f(a)

f(b)

a

y

x

f(b)

f(a)

Cálculo Numérico com Python no Google Colaboratory

34

Primeiro devemos determinar um intervalo onde está a raiz que desejamos

calcular, para isto devemos fazer uma no seu gráfico.

A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3]. Logo

N na bn xn f (xn) E
0
1
2
3

 1.0000 3.0000 3.0000 6.0000
 1.0000 2.0000 2.0000 1.0000 0.2500
 1.0000 1.7500 1.7500 0.0625 0.0179
 1.0000 1.7321 1.7321 0.0003 0.0001

Como 𝑓′(𝑥) = 2𝑥  𝑓′(3) = 6 > 0 e como 𝑓′′(𝑥) = 2 > 0 logo temos 𝑥0 = 𝑏 = 3

usando a expressão 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, temos a seguinte recorrência

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
= 2.0000  [𝑎 , 𝑏] = [1.0 2.0]

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
= 1.7500  [𝑎 , 𝑏] = [1.0 1.75]

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓′(𝑥2)
= 1.7321  [𝑎 , 𝑏] = [1.0 1.7321]

Como o erro é menor que tolerância então a aproximação final é 𝑥 = 1,7321.

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

10

12

14

x

y

Raiz procurada Intervalo
de busca

y

x b

f(b)

f(a)

y

x

f(a)

f(b)

Cálculo Numérico com Python no Google Colaboratory

35

PROGRAMA EM PYTHON

Método de Newton

Entrada

a = 1 # intervalo [a , b]

b = 3

tolerancia = 0.01 # tolerância

nloop = 50 # número máximo de loop

def f(x):

 return x**2 - 3

def der1(x):

Derivada de primeira ordem

 dxd1 = 0.0001

 return (f(x + dxd1) - f(x)) / dxd1

def der2(x):

Derivada de segunda ordem

 dxd2 = 0.0001

 d11 = (f(x) - f(x - dxd2)) / dxd2

 d12 = (f(x + dxd2) - f(x)) / dxd2

 return (d12 - d11) / dxd2

import math

print("Método de Newton")

print(" n a b xn f(xn) erro")

vfa = 0

vfb = 0

vder2a = 0

vder2b = 0

if (f(a) >= 0):

 vfa = 1

if (f(b) >= 0):

 vfa = 1

if (der2(a) >= 0):

 vder2a = 1

if (der2(b) >= 0):

 vder2b = 1

if (vder2a == vfa):

 xo = a

 c = b

Cálculo Numérico com Python no Google Colaboratory

36

if (vder2b == vfb):

 xo = b

 c = a

Variáveis auxiliares

para = 0

xk = 0

h = 0

erro = 10

if (vder2a == vfa):

 print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

if (vder2b == vfb):

 print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

while(para == 0):

 xk = xo - (f(xo)/der1(xo));

 erro = abs(xk - xo)

 xo = xk

 h = h + 1

 if (vder2a == vfa):

 print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

 if (vder2b == vfb):

 print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo),

"%8.4f"%erro)

 if (erro < tolerancia):

 if (h > 1):

 para = 1

print("\nA raiz aproximada é %4.4f \n" %xo)

import matplotlib.pyplot as plt

import numpy as np

xi = np.linspace(-10, 10, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

Cálculo Numérico com Python no Google Colaboratory

37

SAÍDA DO PROGRAMA

Método de Newton

 n a b xn f(xn) erro

 0 1.0000 3.0000 1.0000 -2.0000 10.0000

 1 2.0000 3.0000 2.0000 0.9998 1.0000

 2 1.7500 3.0000 1.7500 0.0625 0.2500

 3 1.7321 3.0000 1.7321 0.0003 0.0179

 4 1.7321 3.0000 1.7321 0.0000 0.0001

A raiz aproximada é 1.7321

ATIVIDADES

(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 2.2381

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5 com 𝐸 ≤ 0,01 utilizando o método da

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) Resposta: 1.7150

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥 com 𝐸 ≤ 0,01 utilizando o

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5]) Resposta: 4.1035

(04) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7 com 𝐸 ≤ 0,01 utilizando o método de

Newton. (Sugestão utilizar intervalo de busca [2 , 4])

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥 com 𝐸 ≤ 0,01 utilizando o

método de Newton. (Sugestão utilizar intervalo de busca [1 , 3])

Cálculo Numérico com Python no Google Colaboratory

38

COMPARAÇÂO DOS MÉTODOS: BISSEÇÃO, CORDAS E NEWTON

Você observou que os exemplos utilizados nos três métodos (bisseção, cordas e de

Newton) são iguais? Fizemos isto, para que você percebesse melhor as diferenças entre

os três métodos!

Retorne aos exemplos do método da bisseção e verifique que este método tem

convergência lenta, embora este método não necessite de informações da primeira e

nem da segunda derivada.

Se você rever os exemplos do método da corda, observará que sua convergência

depende da proximidade de 𝑥0 da raiz exata. Você, também irá perceber que este

método necessita que sinal da segunda derivada permaneça constante no intervalo, para

que haja convergência do resultado. Já o método de Newton necessita da forma analítica

da primeira derivada, porém sua convergência e extraordinária.

Cálculo Numérico com Python no Google Colaboratory

39

-4 -2 0 2 4 6 8

-2

0

2

4

6

8

X

Y

4. SISTEMAS DE EQUAÇÕES LINEARES

 Em nosso dia a dia, a solução de muitos problemas, geralmente está

relacionado com a resolução de um sistema. Um exemplo simples é a determinação do

ponto de interseção de duas retas: 𝑦 + 𝑥 = 5 e 𝑦 − 𝑥 = 1.

Para dar a solução deste problema, devemos resolver o seguinte sistema

{
𝑦 + 𝑥 = 5
𝑦 − 𝑥 = 1

que tem a seguinte solução é 𝑥 = 2 e 𝑦 = 3. Onde o ponto (2 , 3) corresponde a

coordenada da interseção das duas retas.

 Para problemas simples, que envolvem um número reduzido de variáveis (2

ou três variáveis), a solução pode ser facilmente obtida com procedimentos simples de

substituição ou comparação que aprendemos ao longo do nosso curso primário e

secundário. Porém, o grau de dificuldade, na resolução do sistema, aumenta

consideravelmente quando aumenta o número de variáveis (acima de 4 variáveis),

sendo inclusive necessário o uso de computador para a obtenção de sua solução.

 No dia a dia, são vários os problemas que envolvem sistemas com grandes

números de incógnitas, como por exemplo, a tomografia médica, onde os sistemas

envolvidos chegam a ter mais de 5.000 incógnitas.

 Para entendermos os métodos de resolução de sistemas lineares, devemos

primeiro compreender que um sistema linear 𝑆𝑛 é uma coleção de 𝑛 equações lineares,

como mostraremos a seguir

𝑆𝑛 = {

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2
. .
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3+. . . +𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

que pode, também, ser representado por

𝑆𝑛 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑖=1 = 𝑏𝑖, onde 𝑖 = 0,1,2, . . . , 𝑛

 e na forma matricial o sistema 𝑆𝑛 pode ser escrito como

?

𝑦 − 𝑥 = 1

𝑦 + 𝑥 = 5

Cálculo Numérico com Python no Google Colaboratory

40

𝐴𝑥 = 𝑏

onde 𝐴 é uma matriz quadrada de ordem 𝑛, 𝑥 e 𝑏 não matrizes 𝑛 × 1, isto é, com 𝑛 linhas

e uma coluna. A matriz 𝐴 tem a seguinte forma

𝐴 = [

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
.
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛

]

onde 𝑎𝑖𝑗 é chamado coeficiente da incógnita 𝑥𝑗 e os 𝑏𝑖 são chamados termos

independentes. Com a matriz dos coeficientes e a matriz dos termos independentes

montamos a matriz 𝐵, denominada de matriz ampliada, que pode ser escrita por

𝐵 = [𝐴: 𝑏]

ou seja

𝐵 = [

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
.
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛

𝑏1
𝑏2
. . . .
𝑏𝑛

]

Uma solução do sistema 𝑆𝑛 , são os valores 𝑥1, 𝑥2, ... , 𝑥𝑛 , que constituem a matriz coluna

𝑥, denominada de matriz solução que pode ser escrita por

𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

)

Os sistemas lineares 𝑆𝑛 podem ser classificados da seguinte forma:

𝑆𝑛 =

{

 Homogêneo {Possível {

Determinado
Indeterminado

Não − Homogêneo {
Impossível

Possível {
Determinado
Indeterminado

Certamente, você deve estar se questionando sobre alguns itens do diagrama

apresentado. Um sistema 𝑆𝑛 (𝐴𝑥 = 𝑏) é denominado de homogêneo quando a matriz 𝑏,

dos termos independentes, é nula, isto é, quando

𝑏 = [

0
0
⋮
0

]

Um sistema 𝑆𝑛 (𝐴𝑥 = 𝑏) é denominado de não-homogêneo quando a matriz 𝑏, não é

nula, isto é, existe pelo menos um termo em 𝑏, que não é nulo.

Cálculo Numérico com Python no Google Colaboratory

41

Um sistema é dito impossível quando não há nenhuma solução que satisfaça o

sistema, isto é, sua solução é o vazio. Um sistema é dito possível quando há, pelo menos,

uma seqüência de valores 𝑥1, 𝑥2, ..., 𝑥𝑛 que satisfaça o sistema, isto é, a sua solução nunca

é o vazio. Se existir uma única seqüência de valores que satisfaça o sistema 𝑆𝑛, então este

sistema é dito Possível e determinado, se existir mais de uma sequência de valores 𝑥1,

𝑥2, ... , 𝑥𝑛 que satisfaça o sistema 𝑆𝑛, estão podemos afirmar que o sistema é Possível e

indeterminado.

TRANSFORMAÇÕES ELEMENTARES

 Você sabia, que o cálculo da solução de sistemas através de métodos interativos,

consiste em uma seqüência de transformações, onde um sistema mais complexo é

transformado em outro mais simples com a mesma solução.

 As transformações utilizadas para modificar os sistemas de equações lineares são

formadas pelas seguintes operações elementares:

(1) Trocar a ordem de duas equações do sistema.

(2) Multiplicar uma equação do sistema por uma constante não numa.

(3) Adicionar duas equações do sistema.

 A partir das operações apresentadas podemos transformar um sistema 𝑆1 em um

sistema 𝑆2. Isto é, 𝑆1 e 𝑆2 são equivalentes.

 Para que você possa entender bem estas transformações observe o exemplo a

seguir.

Exemplo:

Calcule a solução do sistema 𝑆1 = {
𝑥 + 𝑦 + 𝑧 = 6
𝑧 = 3
𝑦 + 𝑧 = 5

Solução

Para obtermos a solução do sistema teremos que fazer uma seqüência de

transformações no sistema, observe!

𝑆2 = {
𝑥 + 𝑦 + 𝑧 = 6
𝑦 + 𝑧 = 5
𝑧 = 3

O sistema 𝑆2 foi obtido do sistema 𝑆1 a partir da operação: “Trocar a ordem de duas

equações do sistema”.

Cálculo Numérico com Python no Google Colaboratory

42

O sistema 𝑆3 foi obtido do sistema 𝑆2 a partir da operação: “Multiplicar uma equação do

sistema por uma constante não numa.”  Multiplicamos a segunda equação por (−1).

𝑆3 = {
𝑥 + 𝑦 + 𝑧 = 6
−𝑦 − 𝑧 = −5
𝑧 = 3

O sistema 𝑆4 foi obtido do sistema 𝑆3 a partir da operação: “Adicionar duas equações do

sistema.”  Somamos a segunda com a terceira equação de 𝑆3 e colocamos a resposta na

segunda equação de 𝑆4.

𝑆4 = {
𝑥 + 𝑦 + 𝑧 = 6
−𝑦 = −2
𝑧 = 3

Observe que é muito mais fácil calcular a solução do sistema 𝑆4 do que a do sistema 𝑆1. E

ambos sistemas possuem a seguinte solução: 𝑥 = 1, 𝑦 = 2 e 𝑧 = 3.

Se o sistema que você tiver trabalhando tiver 25 incógnitas, como aplicar estas

transformações para calcular a solução do seu sistema?

MÉTODO DIRETO

 Consiste de métodos que determinam a solução do sistema linear com um número

finito de transformações elementares.

4.1. MÉTODO DE GAUSS-JORDAN

Explicaremos o método de Gauss-Jordan com o auxilio do exemplo a seguir.

Exemplo 01 - Calcule a solução do sistema

{

𝑥 + 2𝑦 − 𝑧 = 2
2𝑥 − 𝑦 + 2𝑧 = 6
3𝑥 + 2𝑦 − 𝑧 = 4

Solução

Para facilitar a aplicação do método de Gauss-Jordan devemos, primeiramente,

escrever o sistema na forma matricial, isto é:

o sistema {

𝑥 + 2𝑦 − 𝑧 = 2
2𝑥 − 𝑦 + 2𝑧 = 6
3𝑥 + 2𝑦 − 𝑧 = 4

 deve ser escrito por [
1 2 −1
2 −1 2
3 2 −1

] [
𝑥
𝑦
𝑧
] = [

2
6
4
]

onde

𝐴 = [
1 2 −1
2 −1 2
3 2 −1

] é a matriz dos coeficientes e

Cálculo Numérico com Python no Google Colaboratory

43

𝑏 = [
2
6
4
] é a matriz dos termos independentes;

Com estas duas matrizes montamos a matriz ampliada 𝐵, onde iremos aplicar as

transformações elementares para obtenção da solução do sistema.

𝐵 = [𝐴: 𝑏] = [
1 2 −1
2 −1 2
3 2 −1

 |
2
6
4
]

 As primeiras transformações que iremos fazer tem como objetivo zerar as

posições 𝑎21 = 2 e 𝑎31 = 3 do sistema 𝐵.

















−

−

−

=

4

6

2

123

212

121

0
B

Para zerar 𝑎21 = 2, usaremos o elemento do pivô desta linha 𝑎11 = 1, para

determinar 𝑚1
(0)

:

𝑚1
(0)
=
−𝑎21

(0)

𝑎11
(0) =

−2

1
= −2 (0)  significa que tomaremos estes valores da matriz 𝐵0.

Observe que: 𝑚 =
−(𝑣𝑎𝑙𝑜𝑟𝑞𝑢𝑒𝑠𝑒 𝑑𝑒𝑠𝑒𝑗𝑎𝑧𝑒𝑟𝑎𝑟)

(𝑉𝑎𝑙𝑜𝑟𝑑𝑜𝑝𝑖𝑣ô𝑛𝑒𝑠𝑡𝑎𝑐𝑜𝑙𝑢𝑛𝑎)

após determinar 𝑚1
(0)

, faremos a seguinte operação

𝐿2
(1)
→ 𝑚1

(0)
𝐿1
(0)
+ 𝐿2

(0)

Observe que em todos os cálculos será obedecida esta sequência

𝐿2
(1)
→ 𝑚1

(0)
𝐿1
(0)
+ 𝐿2

(0)

onde: 𝐿1
(0)
 é a linha onde está o pivô

 𝐿2
(0)
 é a linha onde está o elemento que queremos zerar

  tomaremos estes valores da matriz 𝐵0.

  tomaremos estes valores da linha 1 da matriz 𝐵0.

  colocaremos estes valores na matriz 𝐵1.

  colocaremos estes valores na linha 2 da matriz 𝐵1.

Cálculo Numérico com Python no Google Colaboratory

44

isto é, cada elemento da linha 𝐿2
(1)

 é obtido da combinação linear das linhas 𝐿1
(0)

 e 𝐿2
(0)

uma matriz 𝐵0, da seguinte forma:

𝑎21
(1)
= 𝑚1

(0)
. 𝑎11
(0)
+ 𝑎21

(0)
= −2 ∗ 1 + 2 = 0

𝑎22
(1)
= 𝑚1

(0)
. 𝑎12
(0)
+ 𝑎22

(0)
= −2 ∗ 2 + (−1) = −5

𝑎23
(1)
= 𝑚1

(0)
. 𝑎13
(0)
+ 𝑎23

(0)
= −2 ∗ (−1) + 2 = 4

𝑎24
(1)
= 𝑚1

(0)
. 𝑎14
(0)
+ 𝑎24

(0)
= −2 ∗ 2 + 6 = 2

















−

−

−

=

4

2

2

123

450

121

1
B

Para zerar 𝑎31 = 3, usaremos o pivô desta linha 𝑎11 = 1, para determinar 𝑚1
(0)

.

















−

−

−

=

4

2

2

123

450

121

1
B

𝑚2
(0)
=
−𝑎31

(0)

𝑎11
(0) =

−3

1
= −3

após determinar
)(m 0

1 , faremos a seguinte operação

)()()()(LLmL 0
3

0
1

0
2

1
3 +→

isto é, cada elemento da linha 𝐿3
(1)

 é obtido da combinação linear das linhas 𝐿1
(0)

 e 𝐿3
(0)

uma matriz 𝐵0, da seguinte forma:

𝑎31
(1)
= 𝑚1

(0)
. 𝑎11
(0)
+ 𝑎31

(0)
= −3 ∗ 1 + 3 = 0

𝑎32
(1)
= 𝑚1

(0)
. 𝑎12
(0)
+ 𝑎32

(0)
= −3 ∗ 2 + 2 = −4

𝑎33
(1)
= 𝑚1

(0)
. 𝑎13
(0)
+ 𝑎33

(0)
= −3 ∗ (−1) + (−1) = 2

𝑎34
(1)
= 𝑚1

(0)
. 𝑎14
(0)
+ 𝑎34

(0)
= −3 ∗ 2 + 4 = −2

















−−

−

−

=

2

2

2

240

450

121

1
B

Vamos agora zerar o elemento 𝑎32 = −4, para isto, usaremos o pivô da segunda linha

𝑎22 = −5, para determinar 𝑚1
(1)

.

Cálculo Numérico com Python no Google Colaboratory

45

















−−

−

−

=

2

2

2

240

450

121

1
B

𝑚1
(1)
=
−𝑎32

(1)

𝑎22
(1) =

−(−4)

−5
=
−4

5

após determinar 𝑚1
(1)

, faremos a seguinte operação

𝐿3
(2)
→ 𝑚1

(1)
𝐿2
(1)
+ 𝐿3

(1)

isto é, cada elemento da linha 𝐿3
(2)

 é obtido da combinação linear das linhas 𝐿2
(1)

 e 𝐿3
(1)

uma matriz 𝐵1, da seguinte forma:

𝑎31
(2)
= 𝑚1

(1)
. 𝑎21
(1)
+ 𝑎31

(1)
=
−4

5
∗ 0 + 0 = 0

𝑎32
(2)
= 𝑚1

(1)
. 𝑎22
(1)
+ 𝑎32

(1)
=
−4

5
∗ (−5) + (−4) = 0

𝑎33
(2)
= 𝑚1

(1)
. 𝑎23
(1)
+ 𝑎33

(1)
=
−4

5
∗ 4 + 2 =

−6

5

𝑎34
(2)
= 𝑚1

(1)
. 𝑎24
(1)
+ 𝑎34

(1)
=
−4

5
∗ 2 + (−2) =

−18

5

















−−

−

−

=

518

2

2

5600

450

121

2

//

B

Observe que as operações realizadas resultaram em um sistema cujos elementos abaixo

da diagonal principal (triangulo inferior) são iguais a zero.

















−−

−

−

=

518

2

2

5600

450

121

2

//

B

Agora o nosso objetivo é zerar o triangulo superior deste sistema

















−−

−

−

=

518

2

2

5600

450

121

2

//

B

Para isto devemos primeiramente zerar o elemento 𝑎23 = 4, para isto utilizaremos o

pivô 𝑎33
(2)
= −6/5 para calcular 𝑚1

(2)

Cálculo Numérico com Python no Google Colaboratory

46

















−−

−

−

=

518

2

2

5600

450

121

2

//

B

𝑚1
(2)
=
−𝑎23

(2)

𝑎33
(2) =

−4

−6/5
=
10

3

após determinar 𝑚1
(2)

, faremos a seguinte operação

𝐿2
(3)
→ 𝑚1

(2)
𝐿3
(2)
+ 𝐿2

(2)

isto é, cada elemento da linha 𝐿2
(3)

 é obtido da combinação linear das linhas 𝐿2
(2)

 e 𝐿3
(2)

uma matriz 𝐵2, da seguinte forma:

𝑎21
(3)
= 𝑚1

(2)
. 𝑎31
(2)
+ 𝑎21

(2)
=
10

3
∗ 0 + 0 = 0

𝑎22
(3)
= 𝑚1

(2)
. 𝑎32
(2)
+ 𝑎22

(2)
=
10

3
∗ 0 + (−5) = −5

𝑎23
(3)
= 𝑚1

(2)
. 𝑎33
(2)
+ 𝑎23

(2)
=
10

3
∗ (−6/5) + 4 = 0

𝑎24
(3)
= 𝑚1

(2)
. 𝑎34
(2)
+ 𝑎24

(2)
=
10

3
∗ (−18/5) + 2 = −10

















−

−

−

−

−

=

518

10

2

5600

050

121

3

//

B

Vamos, agora, zerar o elemento 𝑎13 = −1, para isto utilizaremos o pivô 𝑎33
(2)
= −6/5

para calcular 𝑚2
(2)

















−

−

−

−

−

=

518

10

2

5600

050

121

3

//

B

𝑚2
(2)
=
−𝑎13

(2)

𝑎33
(2) =

−(−1)

−6/5
=
−5

6

após determinar 𝑚2
(2)

, faremos a seguinte operação

𝐿1
(3)
→ 𝑚2

(2)
𝐿3
(2)
+ 𝐿1

(2)

isto é, cada elemento da linha 𝐿1
(3)

 é obtido da combinação linear das linhas 𝐿1
(2)

 e 𝐿3
(2)

uma matriz 𝐵2, da seguinte forma:

𝑎11
(3)
= 𝑚2

(2)
. 𝑎31
(2)
+ 𝑎11

(2)
=
−5

6
∗ 0 + 1 = 1

Cálculo Numérico com Python no Google Colaboratory

47

𝑎12
(3)
= 𝑚2

(2)
. 𝑎32
(2)
+ 𝑎12

(2)
=
−5

6
∗ 0 + 2 = 2

𝑎13
(3)
= 𝑚2

(2)
. 𝑎33
(2)
+ 𝑎13

(2)
=
−5

6
∗ (−1) + (

−5

6
) = 0

𝑎14
(3)
= 𝑚2

(2)
. 𝑎34
(2)
+ 𝑎14

(2)
=
−5

6
∗ 2 + (

−18

5
) = 5

















−

−

−

−=

518

10

5

5600

050

021

3

//

B

Vamos agora zerar o elemento 𝑎12 = 2, para isto, usaremos o pivô da segunda linha

𝑎22 = −5, para determinar 𝑚1
(3)

.

















−

−

−

−=

518

10

5

5600

050

021

3

//

B

𝑚1
(3)
=
−𝑎13

(3)

𝑎33
(3) =

−2

−5
=
2

5

após determinar 𝑚1
(3)

, faremos a seguinte operação

𝐿1
(4)
→ 𝑚1

(3)
𝐿2
(3)
+ 𝐿1

(3)

isto é, cada elemento da linha 𝐿1
(4)

 é obtido da combinação linear das linhas 𝐿1
(3)

 e 𝐿2
(3)

uma matriz 𝐵3, da seguinte forma:

𝑎11
(4)
= 𝑚1

(3)
. 𝑎21
(3)
+ 𝑎11

(3)
=
2

5
∗ 0 + 1 = 1

𝑎12
(4)
= 𝑚1

(3)
. 𝑎22
(3)
+ 𝑎12

(3)
=
2

5
∗ (−5) + 2 = 0

𝑎13
(4)
= 𝑚1

(3)
. 𝑎23
(3)
+ 𝑎13

(3)
=
2

5
∗ 0 + 0 = 0

𝑎14
(4)
= 𝑚1

(3)
. 𝑎24
(3)
+ 𝑎14

(3)
=
2

5
∗ (−10) + 5 = 1

















−

−

−

−=

518

10

1

5600

050

001

4

//

B

Observe que as operações realizadas resultaram em um sistema cujos elementos acima

da diagonal principal (triangulo superior) são iguais a zero.

Cálculo Numérico com Python no Google Colaboratory

48

















−

−

−

−=

518

10

1

5600

050

001

4

//

B

Para obtermos a solução do sistema divida cada linha pelo seu respectivo pivô, com isto

temos:

 𝐿1
(5)
→

𝐿1
(4)

𝑎11
(4) =

𝐿1
(4)

1
; 𝐿2

(5)
→

𝐿2
(4)

𝑎22
(4) =

𝐿2
(4)

−5
; 𝐿3

(5)
→

𝐿3
(4)

𝑎33
(4) =

𝐿3
(4)

−6/5
.

Com esta operação obtemos

𝐵5 = [
1 0 0
0 1 0
0 0 1

|
1
2
3
]  {

𝑥 = 1
𝑦 = 2
𝑧 = 3

PROGRAMA EM PYTHON

Gauss - Jordan - Sistema

import numpy as np

Entrada (sistema)

M = np.array(

 [[2.0 , -1.0 , 1.0 , 3.0],

 [1.0 , 2.0 , 1.0 , 8.0],

 [2.0 , 1.0 , 2.0 , 10.0]]

)

print("Gauss - Jordan - Sistema")

print("Matriz Ampliada")

#print(D)

linha = np.size(M[:,1])

coluna = np.size(M[1,:])

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

print('Linha: {:d}'.format(linha))

print('Coluna: {:d}'.format(coluna))

Zera Triangulo Infrerior

t = 1

fm = 0

Cálculo Numérico com Python no Google Colaboratory

49

for j in range(0 , linha , 1):

 for i in range(t , linha , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

 M[i , k] = fm * M[j , k] + M[i , k]

 t = t + 1

print("Zera Triangulo Inferior")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

t = 1

fm = 0

for j in range(linha - 1 , 0 , -1):

 for i in range(0 , linha - t , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

 M[i,k] = fm * M[j,k] + M[i,k]

 t = t + 1

print("Zera Triangulo Superior")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

fm = 0;

for i in range(0 , linha , 1):

 fm = M[i,i]

 for j in range(0 , coluna , 1):

 M[i,j] = M[i,j]/fm

print("Matriz Normalizada")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

print("Solução do Sistema")

for i in range(0 , linha , 1):

 print("%8.4f"%M[i , coluna-1])

Cálculo Numérico com Python no Google Colaboratory

50

SAÍDA DO PROGRAMA

Gauss - Jordan - Sistema

Matriz Ampliada

 2.0000 -1.0000 1.0000 3.0000

 1.0000 2.0000 1.0000 8.0000

 2.0000 1.0000 2.0000 10.0000

Linha: 3

Coluna: 4

Zera Triangulo Inferior

 2.0000 -1.0000 1.0000 3.0000

 0.0000 2.5000 0.5000 6.5000

 0.0000 0.0000 0.6000 1.8000

Zera Triangulo Superior

 2.0000 0.0000 0.0000 2.0000

 0.0000 2.5000 0.0000 5.0000

 0.0000 0.0000 0.6000 1.8000

Matriz Normalizada

 1.0000 0.0000 0.0000 1.0000

 0.0000 1.0000 0.0000 2.0000

 0.0000 0.0000 1.0000 3.0000

Solução do Sistema

 1.0000

 2.0000

 3.0000

ATIVIDADE

 (01) Resolva o sistemas

(a) {

𝑥 + 𝑦 + 𝑧 = 6
𝑥 − 𝑦 − 𝑧 = −4
𝑥 − 𝑦 + 𝑧 = 2

 (b) {

𝑥 + 2𝑦 − 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 7
−𝑥 + 2𝑦 + 3𝑧 = 12

(02) Resolva o sistemas

(a) {

𝑥 + 2𝑦 + 3𝑧 = −1
−𝑥 + 5𝑦 + 2𝑧 = 5
−2𝑥 + 2𝑦 + 𝑧 = 0

 (b) {

𝑥 + 2𝑦 + 3𝑧 = 8
𝑥 + 𝑦 + 2𝑧 = 5
−2𝑥 + 𝑦 + 𝑧 = 1

Cálculo Numérico com Python no Google Colaboratory

51

CÁLCULO DA INVERSA DE UMA MATRIZ

Usaremos, agora, o método de Gauss-Jordan para calcular a inversa de uma matriz.

Para que você entender facilmente explicaremos este método, de determinação da

inversa de uma matriz, utilizando um exemplo.

Exemplo 01 – Calcule a inversa da matriz 𝑀 = [
 1 1 2
 0 -1 4
 1 1 1

]

Solução: No cálculo da inversa de uma matriz (𝑀−1), a matriz ampliada 𝐵 é montada

utilizando a matriz 𝑀 e uma matriz identidade 𝐼 da dimensão da matriz 𝑀. Isto é, a

matriz identidade 𝐼 substitui a matriz dos termos independentes 𝑏, utilizada na

resolução de sistemas lineares. Deste modo, a matriz 𝐵 fica da forma: 𝐵 = [𝑀: 𝐼]

















=

1 0 0 1 1 1

0 1 0 4 1- 0

0 0 1 2 1 1

B
0

















=

1 0 1- 1- 0 0

0 1 0 4 1- 0

0 0 1 2 1 1

B
1

















=

1 0 1- 1- 0 0

0 1 0 4 1- 0

2 0 1- 0 1 1

B
2

















=

1 0 1- 1- 0 0

4 1 4- 0 1- 0

2 0 1- 0 1 1

B
2

















=

1 0 1- 1- 0 0

4 1 4- 0 1- 0

6 1 5- 0 0 1

B
3

















=

1- 0 1 1 0 0

4- 1- 4 0 1 0

6 1 5- 0 0 1

B
3

















=

1 1 1

 4 1- 0

2 1 1

M e

















=
−

1- 0 1

4- 1- 4

6 1 5-

M
1

1
a

a
m

)(

)(
)(

−=
−

=
0

11

0
310

1

)()()()(LLmL 0
3

0
1

0
1

1
3 +→

2
a

a
m

)(

)(
)(

=
−

=
1
33

1
231

1

)()()()(LLmL 1
2

1
3

1
1

2
2 +→

4
a

a
m

)(

)(
)(

=
−

=
1
33

1
231

2

)()()()(LLmL 1
2

1
3

1
2

2
2 +→

1
a

a
m

)(

)(
)(

=
−

=
2

22

2
122

1

)()()()(LLmL 2
1

2
2

2
1

3
1 +→


















−
=→

−
→

=→

1

1

1

4
3

4
33

4
35

3

4
2

4
22

4
25

2

4
1

4
11

4
15

1

)(

)(

)(
)(

)(

)(

)(
)(

)(

)(

)(
)(

L

a

L
L

L

a

L
L

L

a

L
L

Cálculo Numérico com Python no Google Colaboratory

52

PROGRAMA EM PYTHON

Gauss - Jordan - Matriz Inversa

import numpy as np

Entrada (matriz)

MM = np.array(

 [[-1.0 , 2.0 , 1.0],

 [-1.0 , 1.0 , 1.0],

 [-1.0 , 1.0 , -1.0]]

)

print("Gauss - Jordan - Matriz Inversa")

linha = np.size(MM[:,1])

coluna = np.size(MM[1,:])

print("Matriz a ser invertida")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%MM[i,j], end=' ')

 print(" ")

print('Linha: {:d}'.format(linha))

print('Coluna: {:d}'.format(coluna))

M = np.zeros((linha , 2*linha))

for j in range(0 , linha , 1):

 M[: , j] = MM[: , j]

M0 = np.eye(3)

for j in range(linha , 2*linha , 1):

 M[: , j] = M0[: , j - linha]

print("Matriz a ser escalonada")

for i in range(0 , linha , 1):

 for j in range(0 , 2*linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

Zera Triangulo Infrerior

t = 1

fm = 0

for j in range(0 , linha , 1):

 for i in range(t , linha , 1):

Cálculo Numérico com Python no Google Colaboratory

53

 fm = - M[i,j]/M[j,j]

 for k in range(0 , 2*linha , 1):

 M[i , k] = fm * M[j , k] + M[i , k]

 t = t + 1

print("Zera Triangulo Inferior")

for i in range(0 , linha , 1):

 for j in range(0 , 2*linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

t = 1

fm = 0

for j in range(linha - 1 , 0 , -1):

 for i in range(0 , linha - t , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , 2*linha , 1):

 M[i,k] = fm * M[j,k] + M[i,k]

 t = t + 1

print("Zera Triangulo Superior")

for i in range(0 , linha , 1):

 for j in range(0 , 2*linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

fm = 0;

for i in range(0 , linha , 1):

 fm = M[i,i]

 for j in range(0 , 2*linha , 1):

 M[i,j] = M[i,j]/fm

print("Matriz Normalizada")

for i in range(0 , linha , 1):

 for j in range(0 , 2*linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

print("Matriz Inversa")

for i in range(0 , linha , 1):

 for j in range(linha , 2*linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

Cálculo Numérico com Python no Google Colaboratory

54

SAÍDA DO PROGRAMA

Gauss - Jordan - Matriz Inversa

Matriz a ser invertida

 -1.0000 2.0000 1.0000

 -1.0000 1.0000 1.0000

 -1.0000 1.0000 -1.0000

Linha: 3

Coluna: 3

Matriz a ser escalonada

 -1.0000 2.0000 1.0000 1.0000 0.0000 0.0000

 -1.0000 1.0000 1.0000 0.0000 1.0000 0.0000

 -1.0000 1.0000 -1.0000 0.0000 0.0000 1.0000

Zera Triangulo Inferior

 -1.0000 2.0000 1.0000 1.0000 0.0000 0.0000

 0.0000 -1.0000 0.0000 -1.0000 1.0000 0.0000

 0.0000 0.0000 -2.0000 0.0000 -1.0000 1.0000

Zera Triangulo Superior

 -1.0000 0.0000 0.0000 -1.0000 1.5000 0.5000

 0.0000 -1.0000 0.0000 -1.0000 1.0000 0.0000

 0.0000 0.0000 -2.0000 0.0000 -1.0000 1.0000

Matriz Normalizada

 1.0000 -0.0000 -0.0000 1.0000 -1.5000 -0.5000

 -0.0000 1.0000 -0.0000 1.0000 -1.0000 -0.0000

 -0.0000 -0.0000 1.0000 -0.0000 0.5000 -0.5000

Matriz Inversa

 1.0000 -1.5000 -0.5000

 1.0000 -1.0000 -0.0000

 -0.0000 0.5000 -0.5000

ATIVIDADE

(01) Determine a inversa das matriz abaixo

(a) [
 1 1 1
 1 -1 -1
 1 -1 1

] Resposta = [

 1/2 1/2 0
 1/2 0 -1/2
 0 -1/2 1/2

]

(b) [
 1 2 -1
 1 1 1
 -1 2 3

] Resposta = [

 -1/10 4/5 -3/10
 2/5 -1/5 1/5
 -3/10 2/5 1/10

]

(02) Determine a inversa das matrizes abaixo

(a) [
1 2 3
−1 5 2
−2 2 1

] (b) [
1 2 3
1 1 2
−2 1 1

]

Cálculo Numérico com Python no Google Colaboratory

55

CÁLCULO DO DETERMINANTE DE UMA MATRIZ

O método de Gauss-Jordan, também pode ser utilizado para calcularmos o

determinante de uma matriz. Para isto, devemos escalonar a matriz ampliada 𝐵, como

fizemos no cálculo da solução do sistema e na determinação da matriz inversa, porém

não devemos fazer o último passo, que é a normalização da matriz pelos elementos da

diagonal principal. Para que você entender melhor observe o exemplo a seguir, onde

iremos calcular o determinante de uma matriz utilizando o método de Gauss-Jordan.

Exemplo 02 – Calcule o determinante da matriz 𝑀 = [
 1 3 0
 0 2 1
 1 2 -1

]

Solução: Observe que a matriz que iremos calcular o determinante é a mesma do

exemplo anterior. Fizemos isto, para que você entendesse melhor que os passos

utilizados no calculo do determinante são os mesmo utilizados na inversa da matriz.

Devemos primeiramente montar a matriz ampliada 𝐵 = [𝑀: 𝐼]

















=

 1- 2 1

 1 2 0

 0 3 1

B
0

















=

 1- 1- 0

 1 2 0

 0 3 1

B
1

















=

 0.50- 0 0

 1.00 2.00 0

 0 3.00 1.00

B
2

















=

 0.50- 0 0

 0 2.00 0

 0 3.00 1.00

B
3

















=

 0.50- 0 0

 0 2.00 0

 0 0 1.00

B
4

001500002001 .).(*.*.)Mdet(−=−=

1
a

a
m

)(

)(
)(

−=
−

=
0

11

0
310

1

)()()()(LLmL 0
3

0
1

0
1

1
3 +→

0.5
a

a
m

)(

)(
)(

=
−

=
1
22

1
321

1

)()()()(LLmL 1
3

1
2

1
1

2
3 +→

2
a

a
m

)(

)(
)(

=
−

=
2

33

2
232

1

)()()()(LLmL 2
2

2
3

2
2

3
2 +→

1.5-
a

a
m

)(

)(
)(

=
−

=
3

22

3
123

1

)()()()(LLmL 3
1

3
2

3
1

4
1 +→

Cálculo Numérico com Python no Google Colaboratory

56

PROGRAMA EM PYTHON

Gauss - Jordan - Determinante

import numpy as np

Entrada (sistema)

M = np.array(

 [[1.0 , 2.0 , 2.0],

 [2.0 , -2.0 , 2.0],

 [2.0 , -1.0 , 2.0]]

)

print("Gauss - Jordan - Determinante")

print("Matriz")

linha = np.size(M[:,1])

coluna = np.size(M[1,:])

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

#print('Linha: {:d}'.format(linha))

#print('Coluna: {:d}'.format(coluna))

Zera Triangulo Infrerior

t = 1

fm = 0

for j in range(0 , linha , 1):

 for i in range(t , linha , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

 M[i , k] = fm * M[j , k] + M[i , k]

 t = t + 1

print("\nZera Triangulo Inferior")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

t = 1

fm = 0

Cálculo Numérico com Python no Google Colaboratory

57

for j in range(linha - 1 , 0 , -1):

 for i in range(0 , linha - t , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

 M[i,k] = fm * M[j,k] + M[i,k]

 t = t + 1

print("Zera Triangulo Superior")

for i in range(0 , linha , 1):

 for j in range(0 , coluna , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

det = 1.

for i in range(0 , linha , 1):

 det = det * M[i,i]

print("\nDeterminante: %8.4f" %det)

SAÍDA DO PROGRAMA

Gauss - Jordan - Determinante

Matriz

 1.0000 2.0000 2.0000

 2.0000 -2.0000 2.0000

 2.0000 -1.0000 2.0000

Zera Triangulo Inferior

 1.0000 2.0000 2.0000

 0.0000 -6.0000 -2.0000

 0.0000 0.0000 -0.3333

Zera Triangulo Superior

 1.0000 0.0000 0.0000

 0.0000 -6.0000 0.0000

 0.0000 0.0000 -0.3333

Determinante: 2.0000

ATIVIDADE

(01) Determine o determinante das matrizes abaixo

(a) [
 1 1 1
 1 -1 -1
 1 -1 1

] (b) [
 1 2 -1
 1 1 1
 -1 2 3

]

(02) Calcule o determinante das matrizes

(a) [
1 2 3
−1 5 2
−2 2 1

] (b) [
1 2 3
1 1 2
−2 1 1

]

Cálculo Numérico com Python no Google Colaboratory

58

MÉTODOS ITERATIVOS

A outra forma de se determinar a solução de um sistema 𝐴𝑥 = 𝑏, que é através dos

métodos iterativos. Os métodos iterativos consistem em determinar uma sequência de

aproximações 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) , para a solução do sistema 𝑥, a partir de uma dada

aproximação inicial 𝑥(0).

Segundo este raciocínio, o sistema 𝐴𝑥 = 𝑏, é transformado em um outro sistema

equivalente com a seguinte forma

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑

onde 𝐹 é uma matriz 𝑛 × 𝑛, 𝑥 e 𝑑 são matrizes 𝑛 × 1. 𝑥(𝑘+1) é uma aproximação obtida a

partir da aproximação 𝑥(𝑘). Sendo a seqüência de aproximações obtida da seguinte

forma

𝑥(1) = 𝐹𝑥(0) + 𝑑

𝑥(2) = 𝐹𝑥(1) + 𝑑

𝑥(3) = 𝐹𝑥(2) + 𝑑

......................

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑

As aproximações são calculadas até que se tenha

‖𝑥(𝑘) − 𝑥‖ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑥𝑖
(𝑘)
− 𝑥𝑖}

 O que garante que a sequência 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) converge para a solução? Se

𝑙𝑖𝑚
𝑘→∞

‖𝑥(𝑘) − 𝑥‖ = 0, então a seqüência 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) converge para a solução 𝑥.

 O que diferencia um método iterativo de outro são as de definirmos as matrizes 𝐹 e

𝑑. A seguir apresentaremos o metido de Jacobi que será o nosso primeiro método

iterativo.

3.4. MÉTODO DE JACOBI

 Para entendermos o método de Jacobi tomemos o sistema

{

𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2
. .
𝑎𝑛1𝑥1 + 𝑎𝑏2𝑥2+. . . +𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

em cada equação do sistema devemos isolar o valor de 𝑥𝑖 , isto é, na primeira equação

devemos isolar 𝑥1, na segunda equação devemos isolar 𝑥2, e assim por diante, com isto

teremos:

Cálculo Numérico com Python no Google Colaboratory

59

{

 𝑥1 =

𝑏1 − (𝑎12𝑥2 + 𝑎13𝑥3+. . . +𝑎1𝑛𝑥𝑛)

𝑎11

𝑥2 =
𝑏2 − (𝑎21𝑥1 + 𝑎13𝑥3+. . . +𝑎2𝑛𝑥𝑛)

𝑎22
. .

𝑥𝑛 =
𝑏𝑛 − (𝑎𝑛1𝑥1 + 𝑎𝑏2𝑥2 + 𝑎13𝑥3+. . . +𝑎𝑛𝑛−1𝑥𝑛−1)

𝑎𝑛𝑛

 É importante você observar que os elementos 𝑎𝑖𝑖 devem ser diferentes de zeros

𝑎𝑖𝑖 ≠ 0, ∀𝑖, se não teremos divisão por zero. Caso isto não ocorra devemos reagrupar o

sistema para que se consiga esta condição

 Podemos colocar o sistema na seguinte forma 𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑, onde

𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑛

] 𝑑 =

[

𝑏1

𝑎11
𝑏2

𝑎22

⋮
𝑏𝑛

𝑎𝑛𝑛]

𝐹 =

[

 0 −

𝑎12
𝑎11

 −
𝑎13
𝑎11

 . . . −
𝑎1𝑛
𝑎11

−
𝑎21
𝑎22

 0 −
𝑎23
𝑎22

 . . . −
𝑎2𝑛
𝑎22

−
𝑎31
𝑎33

 −
𝑎32
𝑎33

 0 . . . −
𝑎3𝑛
𝑎33

. .

−
𝑎𝑛1
𝑎𝑛𝑛

 −
𝑎𝑛2
𝑎𝑛𝑛

 −
𝑎𝑛3
𝑎𝑛𝑛

 . . . 0
]

O método de Jacobi funciona da seguinte forma:

1º Passo: Devemos escolher uma aproximação inicial 𝑥(0).

2º Passo: Devemos gerar as aproximações 𝑥(𝑘) a partir das iterações

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑, 𝑘 = 0,1,2, . ..

3º Passo: Paramos de calcular as aproximações quando um dos critérios de parada

abaixo for satisfeito.

1º critério: 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖
(𝑘+1)

− 𝑥𝑖
(𝑘)
| ≤ 𝐸, onde 𝐸 é a tolerância.

2º critério: 𝑘 > 𝑀, onde 𝑀 é o número máximo de iterações.

A tolerância 𝐸 fixa o grau de precisão das soluções. Para você compreender melhor o

método de Jacobi observe o exemplo a seguir.

Cálculo Numérico com Python no Google Colaboratory

60

Exemplo 01 – Resolva pelo método de Jacobi o sistema

{
2𝑥1 − 𝑥2 = 1
𝑥1 + 2𝑥2 = 3

 com 𝐸 ≤ 10−2 ou 𝑘 > 10.

Solução

Isolando o valor de 𝑥1 na primeira equação e 𝑥2 na segunda equação, temos as equações

de iteração

{
𝑥1
𝑘+1 =

1

2
(1 + 𝑥2

𝑘)

𝑥2
𝑘+1 =

1

2
(3 − 𝑥1

𝑘)
 onde 𝑘 = 0,1,2, . ..

Utilizaremos como aproximação inicial 𝑥(0) = [
0
0
] para calcular 𝑥(1), como mostraremos

a seguir

Para 𝑘 = 0

{
𝑥1
1 =

1

2
(1 + 𝑥2

0)

𝑥2
1 =

1

2
(3 − 𝑥1

0)
  {

𝑥1
1 =

1

2
(1 + 0) = 0.5

𝑥2
1 =

1

2
(3 − 0) = 1.5

  𝑥(1) = [
0.5
1.5
]

Para 𝑘 = 1

{
𝑥1
2 =

1

2
(1 + 𝑥2

1)

𝑥2
2 =

1

2
(3 − 𝑥1

1)
  {

𝑥1
1 =

1

2
(1 + 0.5) = 1.25

𝑥2
1 =

1

2
(3 − 1.5) = 1.25

  𝑥(2) = [
1.25
1.25

]

repetiremos estes cálculos para 𝑘 = 2, 3, e colocamos os valores obtidos na tabela

abaixo:

k 𝑥1
𝑘 𝑥2

𝑘 𝐸

 0 0.0000 0.0000 0.0000
 1 0.5000 1.5000 1.5000
 2 1.2500 1.2500 0.7500
 3 1.1250 0.8750 0.3750
 4 0.9375 0.9375 0.1875
 5 0.9688 1.0313 0.0938
 6 1.0156 1.0156 0.0469
 7 1.0078 0.9922 0.0234
 8 0.9961 0.9961 0.0117
 9 0.9980 1.0020 0.0059
 10 1.0010 1.0010 0.0029

como

0.0029 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}  {
𝑥1 = 1.0010
𝑥2 = 1.0010

  𝑥 = [
1.0010
1.0010

]

Cálculo Numérico com Python no Google Colaboratory

61

Exemplo 02 – Resolva pelo método de Jacobi o sistema

{

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0 = 0
−0.25𝑥1 + 𝑥2 − 0 − 0.25𝑥4 = 0
−0.25𝑥1 + 0 + 𝑥3 − 0.25𝑥4 = −0.25
0 − 0.25𝑥2 + 0 + 𝑥4 = −0.25

com 𝐸 ≤ 10−2 ou 𝑘 > 10 e 𝑥 = [0000].

Solução

Isolando o valor de 𝑥1 na primeira equação, 𝑥2 na segunda equação, 𝑥3 na terceira

equação e 𝑥4 na quarta equação, obtemos as equações de iteração

{

 𝑥1

𝑘+1 = 0.25𝑥2
𝑘 + 0.25𝑥3

𝑘

𝑥2
𝑘+1 = 0.25𝑥1

𝑘 + 0.25𝑥4
𝑘

𝑥3
𝑘+1 = 0.25𝑥1

𝑘 + 0.25𝑥4
𝑘 − 0.25

𝑥4
𝑘+1 = 0.25𝑥2

𝑘 − 0.25

 onde 𝑘 = 0,1,2, . ..

Utilizaremos como aproximação inicial 𝑥(0) = [0000], com os valores das aproximações

montaremos a próxima tabela.

k 𝑥1
𝑘 𝑥2

𝑘 𝑥3
𝑘 𝑥4

𝑘 𝐸

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 1.0000 0.0000 0.0000 -0.2500 -0.2500 0.2500
 2.0000 -0.0625 -0.0063 -0.2562 -0.2500 0.0625
 3.0000 -0.0656 -0.0219 -0.2719 -0.2516 0.0156
 4.0000 -0.0734 -0.0227 -0.2727 -0.2555 0.0078
 5.0000 -0.0738 -0.0247 -0.2747 -0.2557 0.0021
 6.0000 -0.0749 -0.0249 -0.2749 -0.2562 0.0010
 7.0000 -0.0749 -0.0251 -0.2751 -0.2562 0.0003

como

0.0003 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}  {

𝑥1 = −0.0749
𝑥2 = −0.0251
𝑥3 = −0.2751
𝑥4 = −0.2562

  𝑥 = [

−0.0749
−0.0251
−0.2751
−0.2562

]

PROGRAMA EM PYTHON

#Jacobi - Sistema

import numpy as np

Entrada (sistema)

nloop = 50 # numero máximo de loop

erro = 0.001 # tolerância

Cálculo Numérico com Python no Google Colaboratory

62

M = np.array(

 [[3.0 , 1.0 , 1.0 , 8.0],

 [1.0 , -2.0 , 2.0 , 3.0],

 [1.0 , -1.0 , 3.0 , 8.0]]

)

print("Jacobi - Sistema")

tole = 10

pare = 0

v = 0

i1 = 0

i2 = 1

m = np.size(M[:,1])

n = np.size(M[1,:])

print("Matriz Ampliada")

for i in range(0 , m , 1):

 for j in range(0 , n , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

#print('m: {:d}'.format(m))

#print('n: {:d}'.format(n))

R = np.zeros((nloop , m))

v = np.zeros((m))

va = 0;

k = 0

print('\n k x1 x2 x3 Erro')

while(pare == 0):

 for i in range(0 , m , 1):

 va = 0

 for j in range(0 , m , 1):

 if(i == j):

 va = va + 0.0

 if(i != j):

 va = va + (M[i,j] * R[i1,j])

 R[i2,i] = (1/M[i,i])*(M[i,n-1]- va)

 print("%2d"%k , "%8.4f"%R[k , 0] , "%8.4f"%R[k , 1] , "%8.4f"%R[k ,

2] , "%8.4f"%tole)

 tole = 10

 if (k >= 0):

 for i in range(0 , m , 1):

 v[i] = abs(R[i2,i] - R[i1,i]);

 tole = max(v[:]);

 if(tole < erro):

Cálculo Numérico com Python no Google Colaboratory

63

 print("\nSolução do sistema")

 for t in range(0 , m , 1):

 print("%8.2f"%R[i2 , t], end=' ')

 pare = 1

 if(i1 == nloop):

 pare = 1

 i1 = i1 + 1

 i2 = i2 + 1

 k = k + 1

SAÍDA DO PROGRAMA

Jacobi - Sistema

Matriz Ampliada

 3.0000 1.0000 1.0000 8.0000

 1.0000 -2.0000 2.0000 3.0000

 1.0000 -1.0000 3.0000 8.0000

 k x1 x2 x3 Erro

 0 0.0000 0.0000 0.0000 10.0000

 1 2.6667 -1.5000 2.6667 2.6667

 2 2.2778 2.5000 1.2778 4.0000

 3 1.4074 0.9167 2.7407 1.5833

 4 1.4475 1.9444 2.5031 1.0278

 5 1.1842 1.7269 2.8323 0.3292

 6 1.1469 1.9244 2.8476 0.1975

 7 1.0760 1.9210 2.9258 0.0782

 8 1.0510 1.9638 2.9483 0.0428

 9 1.0293 1.9739 2.9709 0.0226

10 1.0184 1.9856 2.9815 0.0117

11 1.0110 1.9907 2.9891 0.0075

12 1.0067 1.9945 2.9933 0.0042

13 1.0041 1.9966 2.9959 0.0027

14 1.0025 1.9980 2.9975 0.0016

Solução do sistema

 1.00 2.00 3.00

ATIVIDADE

(01) Resolva os sistemas, com 𝑥0 = [000], 𝐸 ≤ 10
−2 ou 𝑘 < 10, onde 𝑘 iterações.

(a) {

2𝑥 − 𝑦 + 𝑧 = 2
𝑥 + 2𝑦 + 𝑧 = 4
2𝑥 + 𝑦 + 2𝑧 = 5

 (b) {

4𝑥 − 𝑦 + 𝑧 = 5
𝑥 + 2𝑦 + 𝑧 = 5
𝑥 − 3𝑦 + 3𝑧 = 4

(02) Resolva os sistemas

(a) {

3𝑥 + 𝑦 − 𝑧 = 2
𝑥 + 5𝑦 + 𝑧 = 14
𝑥 − 𝑦 − 3𝑧 = −10

 (b) {

3𝑥 − 𝑦 + 𝑧 = 4
−𝑥 + 4𝑦 + 𝑧 = 10
−𝑥 − 𝑦 + 3𝑧 = 6

Cálculo Numérico com Python no Google Colaboratory

64

4.5. MÉTODO DE GAUSS-SEIDEL

 O método Gauss-Seidel é um outro método iterativo para calcular a solução de

sistemas lineares. Sua conversão é mais rápida do que o método de Jacobi .

 O método iterativo de Gauss-Seidel consiste em:

1º Passo: Definirmos uma aproximação inicial 𝑥(0).

2º Passo: Calcula-se a sequência de aproximações 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) utilizando-se as

seguintes fórmulas:

 )k(
nn

)k()k()k()k(
xaxaxaxab

a
x 13133132121

11

1
1

1
−−−−−=

+ 

 )k(
nn

)k()k()k()k(
xaxaxaxab

a
x 2323323

1
1212

22

1
2

1
−−−−−=

++ 

 )k(
nn

)k()k()k()k(
xaxaxaxab

a
x 3434

1
232

1
1313

33

1
3

1
−−−−−=

+++ 



 )k(
nn,n

)k(
n

)k(
n

)k(
nn

nn

)k(
n xaxaxaxab

a
x

1
11

1
44

1
22

1
11

1 1 +
−−

++++
−−−−−= 

Observe que no cálculo da aproximação 𝑥𝑛
(𝑘+1)

, utilizamos as aproximações 𝑥1
(𝑘+1)

,

𝑥2
(𝑘+1)

, ... , 𝑥𝑛−1
(𝑘+1)

 . Isto faz com que este método tenha convergência mais rápida.

Explicaremos o método iterativo de Gauss-Seidel com o auxílio do exemplo a seguir.

Exemplo 01 - Exemplo 01 – Resolva pelo método de Jacobi o sistema

{
2𝑥1 − 𝑥2 = 1
𝑥1 + 2𝑥2 = 3

 com 𝑥(0) = [00], 𝐸 ≤ 10−2 ou 𝑘 > 10.

Solução

Isolando o valor de 𝑥1 na primeira equação e 𝑥2 na segunda equação, temos as equações

de iteração

Cálculo Numérico com Python no Google Colaboratory

65

{
𝑥1
𝑘+1 =

1

2
(1 + 𝑥2

𝑘)

𝑥2
𝑘+1 =

1

2
(3 − 𝑥1

𝑘+1)
 onde 𝑘 = 0,1,2, . ..

O calculo das aproximações é feito da seguinte forma

Para 𝑘 = 0 (1ª iteração)

{
𝑥1
(1)
=
1

2
(1 + 𝑥2

(0)
)

𝑥2
(1)
=
1

2
(3 − 𝑥1

(1)
)
  {

𝑥1
(1)
=
1

2
(1 + 0) = 0.5

𝑥2
(1)
=
1

2
(3 − 0.5) = 1.25

  𝑥(1) = [
0.5
1.25

]

Para 𝑘 = 1 (2ª iteração)

{
𝑥1
(2)
=
1

2
(1 + 𝑥2

(1)
)

𝑥2
(2)
=
1

2
(3 − 𝑥1

(2)
)
  {

𝑥1
(2)
=
1

2
(1 + 1.25) = 1.125

𝑥2
(2)
=
1

2
(3 − 1.125) = 0.9375

  𝑥(2) = [
1.125
0.9375

]

repetiremos estes cálculos para 𝑘 = 2,3, e colocamos os valores obtidos na tabela a

seguir.

K kx1 kx2 E

 0 0.0000 0.0000 0.0000
 1 0.5000 1.2500 1.2500
 2 1.1250 0.9375 0.6250
 3 0.9688 1.0156 0.1563
 4 1.0078 0.9961 0.0391
 5 0.9980 1.0010 0.0098
 6 1.0005 0.9998 0.0024
 7 0.9999 1.0001 0.0006

como

0.0006 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}  {
𝑥1 = 0.9999
𝑥2 = 1.0001

  𝑥 = [
0.9999
1.0001

]

 Perceba que este método converge mais rápido, comparando este exemplo com o

primeiro exemplo do método Jacobi. Para facilitar a nossa comparação entre os métodos

de Jacobi e Gauss-Seidel, resolveremos a seguir, pelo método de Gauss-Seidel, o exemplo

resolvido pelo método de Jacobi.

Cálculo Numérico com Python no Google Colaboratory

66

Exemplo 02 – Resolva pelo método de Gauss-Seidel o sistema

{

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0 = 0
−0.25𝑥1 + 𝑥2 + 0 − 0.25𝑥4 = 0
−0.25𝑥1 + 0 + 𝑥3 − 0.25𝑥4 = −0.25
0 − 0.25𝑥2 + 0 + 𝑥4 = −0.25

com 𝐸 ≤ 10−2 ou 𝑘 > 10 e 𝑥(0) = [0000].

Solução

Isolando o valor de 𝑥1 na primeira equação, 𝑥2 na segunda equação, 𝑥3 na terceira

equação e 𝑥4 na quarta equação, obtemos as equações de iteração

{

 𝑥1

(𝑘+1)
= 0.25𝑥2

(𝑘)
+ 0.25𝑥3

(𝑘)

𝑥2
(𝑘+1)

= 0.25𝑥1
(𝑘+1)

+ 0.25𝑥4
(𝑘)

𝑥3
(𝑘+1)

= 0.25𝑥1
(𝑘+1)

+ 0.25𝑥4
(𝑘)
− 0.25

𝑥4
(𝑘+1)

= 0.25𝑥2
(𝑘+1)

− 0.25

 onde 𝑘 = 0,1,2, . ..

Utilizaremos como aproximação inicial 𝑥(0) = [0000], com os valores das aproximações

montaremos a próxima tabela.

k 𝑥1
𝑘 𝑥2

𝑘 𝑥3
𝑘 𝑥4

𝑘 𝐸

 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 1.0000 0.0000 0.0000 -0.2500 -0.2500 0.2500
 2.0000 -0.0625 -0.0219 -0.2719 -0.2555 0.0625
 3.0000 -0.0734 -0.0247 -0.2747 -0.2562 0.0109
 4.0000 -0.0749 -0.0251 -0.2751 -0.2563 0.0014
 5.0000 -0.0751 -0.0252 -0.2752 -0.2563 0.0002

como

0.0002 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}  {

𝑥1 = −0.0751
𝑥2 = −0.0252
𝑥3 = −0.2752
𝑥4 = −0.2563

  𝑥 = [

−0.0751
−0.0252
−0.2752
−0.2563

]

PROGRAMA EM PYTHON

#Gauss - Seidel - Sistema

import numpy as np

Entrada (sistema)

nloop = 50 # numero máximo de loop

erro = 0.001 # tolerância

M = np.array(

Cálculo Numérico com Python no Google Colaboratory

67

 [[2.0 , -1.0 , 2.0 , 6.0],

 [1.0 , 2.0 , 2.0 , 11.0],

 [1.0 , -1.0 , 3.0 , 8.0]]

)

print("Gauss - Seidel - Sistema")

tole = 10

pare = 0

v = 0

i1 = 0

i2 = 1

m = np.size(M[:,1])

n = np.size(M[1,:])

print("Matriz Ampliada")

for i in range(0 , m , 1):

 for j in range(0 , n , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

#print('m: {:d}'.format(m))

#print('n: {:d}'.format(n))

R = np.zeros((nloop , m))

v = np.zeros((m))

va = 0;

k = 0

print('\n k x1 x2 x3 Erro')

while(pare == 0):

 for i in range(0 , m , 1):

 va = 0

 for j in range(0 , m , 1):

 if(i == j):

 va = va + 0.0

 if(i != j):

 if(i < j):

 va = va + (M[i,j] * R[i1,j])

 if(i > j):

 va = va + (M[i,j] * R[i2,j])

 R[i2,i] = (1/M[i,i])*(M[i,n-1]- va)

 print("%2d"%k , "%8.4f"%R[k , 0] , "%8.4f"%R[k , 1] , "%8.4f"%R[k ,

2] , "%8.4f"%tole)

 tole = 10

 if (k >= 0):

 for i in range(0 , m , 1):

 v[i] = abs(R[i2,i] - R[i1,i]);

Cálculo Numérico com Python no Google Colaboratory

68

 tole = max(v[:]);

 if(tole < erro):

 print("\nSolução do sistema")

 for t in range(0 , m , 1):

 print("%8.2f"%R[i2 , t], end=' ')

 pare = 1

 if(i1 == nloop):

 pare = 1

 i1 = i1 + 1

 i2 = i2 + 1

 k = k + 1

SAÍDA DO PROGRAMA

Gauss - Seidel - Sistema

Matriz Ampliada

 2.0000 -1.0000 2.0000 6.0000

 1.0000 2.0000 2.0000 11.0000

 1.0000 -1.0000 3.0000 8.0000

 k x1 x2 x3 Erro

 0 0.0000 0.0000 0.0000 10.0000

 1 3.0000 4.0000 3.0000 4.0000

 2 2.0000 1.5000 2.5000 2.5000

 3 1.2500 2.3750 3.0417 0.8750

 4 1.1458 1.8854 2.9132 0.4896

 5 1.0295 2.0720 3.0142 0.1866

 6 1.0218 1.9749 2.9844 0.0971

 7 1.0031 2.0141 3.0037 0.0392

 8 1.0034 1.9946 2.9971 0.0195

 9 1.0002 2.0028 3.0009 0.0082

10 1.0005 1.9989 2.9994 0.0039

11 1.0000 2.0006 3.0002 0.0017

Solução do sistema

 1.00 2.00 3.00

Cálculo Numérico com Python no Google Colaboratory

69

ATIVIDADE

 (01) Resolva o sistemas, com 𝑥0 = [0 , 0 , 0], 𝐸 ≤ 10
−2 ou 𝑘 ≤ 10, onde 𝑘 é o número

de iterações. Utilize o método de Gauss Seidel.

(a) {

2𝑥 − 𝑦 + 𝑧 = 2
𝑥 + 2𝑦 + 𝑧 = 4
2𝑥 + 𝑦 + 2𝑧 = 5

 (b) {

4𝑥 − 𝑦 + 𝑧 = 5
𝑥 + 2𝑦 + 𝑧 = 5
𝑥 − 3𝑦 + 3𝑧 = 4

(c) {

3𝑥 − 𝑦 − 𝑧 = −2
2𝑥 + 5𝑦 + 𝑧 = 15
−𝑥 − 𝑦 − 3𝑧 = −12

 (d) {

3𝑥 − 𝑦 − 𝑧 + 𝑡 = 2
2𝑥 + 5𝑦 + 𝑧 + 𝑡 = 19
−𝑥 − 𝑦 − 3𝑧 − 𝑡 = −16
𝑥 + 2𝑦 + 𝑧 + 5𝑡 = 28

(02) Resolva os sistemas, com 𝑥0 = [0 , 0 , 0], 𝐸 ≤ 10
−2 ou 𝑘 ≤ 10, onde 𝑘 é o número de

iterações. Utilize o método de Gauss Seidel.

(a) {

3𝑥 + 𝑦 − 𝑧 = 2
𝑥 + 5𝑦 + 𝑧 = 14
𝑥 − 𝑦 − 3𝑧 = −10

 (b) {

3𝑥 − 𝑦 + 𝑧 = 4
−𝑥 + 4𝑦 + 𝑧 = 10
−𝑥 − 𝑦 + 3𝑧 = 6

(c) {

3𝑥 + 𝑦 − 𝑧 = 2
−𝑥 + 4𝑦 + 2𝑧 = 13
−𝑥 + 𝑦 + 2𝑧 = 7

 (d) {

3𝑥 + 𝑦 − 𝑧 + 𝑡 = 6
𝑥 + 5𝑦 + 𝑧 + 𝑡 = 18
𝑥 − 𝑦 − 3𝑧 + 𝑡 = −6
𝑥 + 2𝑦 + 𝑧 + 5𝑡 = 28

Cálculo Numérico com Python no Google Colaboratory

70

5. AJUSTE DE CURVAS

 Em muitas situações, principalmente as que estão relacionadas com levantamento

de dados, conhecemos alguns valores da função, só nos pontos amostrados, e na maioria

das vezes precisamos estimar o valor da função para pontos não amostrados. O exemplo

a seguir apresenta um problema desta natureza.

Exemplo – Em uma cidade A foi feito um foi feito um censo cujos resultado está

mostrado na tabela a seguir.

Tabela 1 – Resultado do censo feito na cidade hipotética A.

 Quantos habitantes havia na cidade A em 1970? Para resolver este problema

necessitamos estimar uma função que ajuste estes dados, e só então poderemos estimar

o número de habitantes no ano em que se deseja.

5.1. AJUSTE LINEAR

 Para calcularmos o número de habitantes no ano de 1970, devemos observar que

os dados possuem um comportamento linear, como mostra a Figura 1, logo estes dados

podem ser aproximados por uma reta da forma

𝑦 = 𝛼0 + 𝛼1𝑥,

onde 𝛼0 e 𝛼1 são denominados parâmetros do modelo.

Figura 1 – Representação gráfica dos dados da Tabela 1.

1930 1940 1950 1960 1970 1980 1990 2000 2010
1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03
x 10

4

Ano Número de habitantes

1940
1960
1980
1990
2000

19600
19800
20000
20100
20200

Cálculo Numérico com Python no Google Colaboratory

71

Os valores de 𝛼0 e 𝛼1 que queremos estimar, para isto devemos fazer a seguinte

consideração que é ilustrada com o gráfico da Figura 2.

Figura 2 – As bolinhas representam os valores amostrados no campo e a reta

representa a função ajustada nos pontos amostrados. No ponto 𝑥𝑖 o valor 𝑦𝑖 representa o

valor amostrado, e 𝑦̂𝑖 o seu valor estimado pela função ajustada e 𝑑𝑖 = 𝑦𝑖 − 𝑦̂𝑖 é a

diferença entre o valor amostrado (valor real do campo) e o valor estimado.

Como estimar a função 𝑦̂ = 𝛼0 + 𝛼1𝑥? Para estimarmos a função 𝑦̂ = 𝛼0 + 𝛼1𝑥, o

erro entre o valor amostrado 𝑦𝑖 e o valor estimado 𝑦̂𝑖 deve ser mínimo, para isto a soma

dos quadrados do erro de todos os pontos deve ser a menor possível.

Para você entender melhor, primeiro definiremos a função que representa a soma

do quadrado dos erros:

𝐷 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1 ,

onde temos n é o número de pontos amostrados. A magnitude de 𝐷 depende da reta

ajustada, ou seja, depende de 𝛼0 e 𝛼1. Assim como 𝑦̂ = 𝛼0 + 𝛼1𝑥, podemos escrever:

 𝐷(𝛼0, 𝛼1) = ∑ [𝑦𝑖 − (𝛼0 + 𝛼1𝑥)]
2𝑛

𝑖=1 .

O mínimo de uma função de duas variáveis 𝐷(𝛼0, 𝛼1) ocorre quando as suas derivadas

parciais
𝜕𝐷(𝛼0 ,𝛼1)

𝜕𝛼0
 e
𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
 são simultaneamente iguais a zero.

 Então para determinarmos 𝛼0 e 𝛼1 da função 𝑦̂ = 𝛼0 + 𝛼1𝑥, devemos fazer

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼0
= 0 e

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
= 0,

O que resulta nas expressões:

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2−(∑ 𝑥𝑖

𝑛
𝑖=1)𝑛

𝑖=1
2 e 𝛼0 =

∑ 𝑦𝑖
𝑛
𝑖=1 −(∑ 𝑥𝑖

𝑛
𝑖=1)𝛼1

𝑛
.

Y

Cálculo Numérico com Python no Google Colaboratory

72

Explicaremos o uso destas fórmulas através de um exemplo e você perceberá que sua

aplicação é simples.

Exemplo: Encontre o número de habitantes de uma cidade no ano de 1970 considerando

os dados do censo mostrado na Tabela 2.

i
Ano
(𝑥𝑖)

Número de
habitantes

(𝑦𝑖)
1
2
3
4
5

1940
1960
1980
1990
2000

19600
19800
20000
20100
20200

Tabela 2 – Censo feito na cidade hipotética A. É o mesmo dado da Tabela 1.

 Para calcularmos 𝛼1 e 𝛼0 devemos primeiro completar a tabela com as colunas

contendo informação de 𝑥𝑖
2 e 𝑥𝑖𝑦𝑖 (ver Tabela 3)

i
Ano
(𝑥𝑖)

Número de
habitantes

(𝑦𝑖)
𝑥𝑖
2 𝑥𝑖𝑦𝑖

1
2
3
4
5

1940
1960
1980
1990
2000

19600
19800
20000
20100
20200

3763600
3841600
3920400
3960100
4000000

38024000
38808000
39600000
39999000
40400000

Tabela 3 – Contém informações da Tabela 2 mais as colunas para 𝑥𝑖
2 e 𝑥𝑖𝑦𝑖 .

 Agora calcularemos ∑ 𝑥𝑖
𝑛
𝑖=1 , ∑ 𝑦𝑖

𝑛
𝑖=1 , ∑ 𝑥𝑖

2𝑛
𝑖=1 e ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 que são obtidos

simplesmente pela soma dos elementos de cada coluna, como mostra a Tabela 4.

𝑖
Ano
(𝑥𝑖)

Número de
habitantes

(𝑦𝑖)
𝑥𝑖
2 𝑥𝑖𝑦𝑖

1
2
3
4
5

1940
1960
1980
1990
2000

19600
19800
20000
20100
20200

3763600
3841600
3920400
3960100
4000000

38024000
38808000
39600000
39999000
40400000

 ∑𝑥𝑖

𝑛

𝑖=1

= 9870 ∑𝑦𝑖

𝑛

𝑖=1

= 99700 ∑𝑥𝑖
2

𝑛

𝑖=1

= 19485700 ∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

= 196831000

Tabela 4 – Estão os valores de 𝑥𝑖 , 𝑦𝑖, 𝑥𝑖
2, 𝑥𝑖𝑦𝑖 , ∑ 𝑥𝑖

𝑛
𝑖=1 , ∑ 𝑦𝑖

𝑛
𝑖=1 , ∑ 𝑥𝑖

2𝑛
𝑖=1 e ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 .

Cálculo Numérico com Python no Google Colaboratory

73

Com os valores da Tabela 4 podemos calcular os coeficientes 1 e 0 , da seguinte forma:

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1)𝑛

𝑖=1
2 =

5 ∗ 196831000 − 9870 ∗ 99700

5 ∗ 19485700 − 196831000
= 10

𝛼0 =
∑ 𝑦𝑖
𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1)𝛼1

𝑛
=
99700 − (9870)10

5
= 200

Com isto a função de ajuste é

𝑦̂ = 200 + 10𝑥

cujo gráfico está mostrado na Figura 3 juntamente com os pontos amostrados.

Figura 3 – A reta representa o gráfico da função ajustada 𝑦̂ = 200 + 10𝑥 e os pontos os

valores amostrados. Podemos perceber o bom ajuste da curva.

O número de habitantes em 1970 é obtido pela fórmula 𝑦̂ = 200 + 10𝑥, da

seguinte forma:

𝑦̂ = 200 + 10 ∗ 1970 = 19900, logo tivemos 19900 habitantes em 1970.

Exemplo:

Com base dos dados amostrados dispostos na tabela a seguir encontre o valor quando

𝑥 = 3, segundo uma aproximação linear.

𝑖 𝑥𝑖 𝑦𝑖
1
2
3
4
5
6
7

 0.5000
 1.0000
 1.5000
 2.0000
 2.5000
 3.5000
 4.0000

 2.5500
 4.5000
 5.6000
 7.0000
 9.2000
 11.0000
 13.0000

1930 1940 1950 1960 1970 1980 1990 2000 2010
1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03
x 10

4

Cálculo Numérico com Python no Google Colaboratory

74

Solução

Devemos completar a tabela com os valores 𝑥𝑖
2e 𝑥𝑖𝑦𝑖

i 𝑥𝑖 𝑦𝑖 𝑥𝑖
2 𝑥𝑖𝑦𝑖

1
2
3
4
5
6
7

 0.5000
 1.0000
 1.5000
 2.0000
 2.5000
 3.5000
 4.0000

 2.5500
 4.5000
 5.6000
 7.0000
 9.2000
 11.0000
 13.0000

 0.2500
 1.0000
 2.2500
 4.0000
 6.2500
 12.2500
 16.0000

 1.2750
 4.5000
 8.4000
 14.0000
 23.0000
 38.5000
 52.0000

 ∑𝑥𝑖

𝑛

𝑖=1

= 15 ∑𝑦𝑖

𝑛

𝑖=1

= 52.8500 ∑𝑥𝑖
2

𝑛

𝑖=1

= 42 ∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

= 141.6750

De onde temos

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1)𝑛

𝑖=1
2 =

7 ∗ 141.6750 − 15 ∗ 52.8500

7 ∗ 42 − 141.6750
= 2.8837

𝛼0 =
∑ 𝑦𝑖
𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1)𝛼1

𝑛
=
52.8500 − (15)2.8837

7
= 1.3707

Com isto a função de ajuste é

𝑦̂ = 1.3707 + 2.8837𝑥;

Logo quando 𝑥 = 3  𝑦̂ = 10.0217

ATIVIDADE

(01) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 𝑥 = 0.5, segundo uma aproximação linear.

𝑖 𝑥𝑖 𝑦𝑖
1
2
3
4
5
6
7

 0.0000
 0.2000
 0.4000
 0.6000
 0.8000
 1.0000
 1.2000

 -0.2000
 0.8000
 1.8000
 2.8000
 3.8000
 4.8000
 5.8000

Cálculo Numérico com Python no Google Colaboratory

75

5.2. AJUSTE POLINOMIAL

 O ajuste linear é um caso particular do ajuste polinomial, onde ajustaremos aos

pontos amostrados um polinômio, 𝑦̂, de grau n.

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3+. . . +𝛼𝑛𝑥
𝑛.

Os são coeficientes 𝛼0, 𝛼1, 𝛼2, 𝛼3, . . . , 𝛼𝑛 são obtidos através de um sistema da forma:

𝑋𝐴 = 𝐵

 Para que você entenda claramente a construção deste sistema iniciaremos

abordando o ajuste linear segundo esta perspectiva.

 Para ajustarmos uma reta (polinômio do 1º grau) 𝑦̂ = 𝛼0 + 𝛼1𝑥, devemos

minimizar a função 𝐷(𝛼0, 𝛼1) = ∑ [𝑦𝑖 − (𝛼0 + 𝛼1𝑥)]
2𝑛

𝑖=1 , para isto devemos fazer

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼0
= 0  𝑛𝛼0 + (∑ 𝑥𝑖

𝑛
𝑖=1)𝛼1 = ∑ 𝑦𝑖

𝑛
𝑖=1

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
= 0  𝛼0∑ 𝑥𝑖

𝑛
𝑖=1 + 𝛼1∑ 𝑥𝑖

2𝑛
𝑖=1 = ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

Podemos escrever este sistema na forma matricial

[

 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1]

[
𝛼0
𝛼1
] =

[

 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1]

Comparando com o sistema BAX = , temos que:

𝑋 = [
𝑛 ∑ 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1

], 𝐴 = [
𝛼0
𝛼1
] e 𝐵 = [

∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

]

Com a resolução do sistema, encontraremos 𝐴 que possibilitará a determinação do

polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥.

Cálculo Numérico com Python no Google Colaboratory

76

Para entendermos como interpolar um polinômio de grau n, observe a tabela:

Polinômio a interpolador Sistema a ser determinado

𝑦̂ = 𝛼0 + 𝛼1𝑥

[

 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1]

[
𝛼0
𝛼1
] =

[

 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1]

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2

[

 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1]

[

𝛼0
𝛼1
𝛼2
] =

[

 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1]

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3

[

 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
6

𝑛

𝑖=1]

[

𝛼0
𝛼1
𝛼2
𝛼3

] =

[

 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
3𝑦𝑖

𝑛

𝑖=1]

Seguindo o raciocínio da tabela, podemos afirmar que para ajustarmos o polinômio:

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3+. . . +𝛼𝑛𝑥
𝑛

Devemos resolver o sistema:

Cálculo Numérico com Python no Google Colaboratory

77

[

 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+1

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
6

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+3

𝑛

𝑖=1

⋮ ⋮ ⋮ ⋮ ⋮

∑𝑥𝑖
𝑛

𝑛

𝑖=1

∑𝑥𝑖
𝑛+1

𝑛

𝑖=1

∑𝑥𝑖
𝑛+2

𝑛

𝑖=1

∑𝑥𝑖
𝑛+3

𝑛

𝑖=1

⋯ ∑𝑥𝑖
2𝑛

𝑛

𝑖=1]

[

𝛼0
𝛼1
𝛼2
𝛼3
⋮
𝛼𝑛]

=

[

 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
3𝑦𝑖

𝑛

𝑖=1

⋮

∑𝑥𝑖
𝑛𝑦𝑖

𝑛

𝑖=1]

Para você entender como montar este sistema, observe o próximo exemplo.

Exemplo: Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 3=x , segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2.

i 𝑥𝑖 𝑦𝑖

1
2
3
4
5
6
7

 0.5000
 1.0000
 1.5000
 2.0000
 2.5000
 3.5000
 4.0000

 1.2500
 3.0000
 5.2500
 8.0000
 11.2500
 19.2500
 24.0000

Solução

Para montarmos o sistema devemos completar a tabela com as informações:

i 𝑥𝑖 𝑦𝑖 𝑥𝑖
2 𝑥𝑖

3 𝑥𝑖
4 𝑥𝑖𝑦𝑖 𝑥𝑖

2𝑦𝑖

1
2
3
4
5
6
7

0.5000
1.0000
1.5000
2.0000
2.5000
3.5000
4.0000

 1.2500
 3.0000
 5.2500
 8.0000
11.2500
19.2500
24.0000

 0.2500
 1.0000
 2.2500
 4.0000
 6.2500
12.2500
16.0000

 0.1250
 1.0000
 3.3750
 8.0000
15.6250
42.8750
64.0000

 0.0625
 1.0000
 5.0625
 16.0000
 39.0625
150.0625
256.0000

 0.6250
 3.0000
 7.8750
16.0000
28.1250
67.3750
96.0000

 0.3125
 3.0000
 11.8125
 32.0000
 70.3125
235.8125
384.0000

∑

𝑛

𝑖=1

 15 72 42 135 467.2500 219 737.2500

Desta forma o sistema para o ajuste do polinômio 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2, adquire a forma:

[
7 15 42
15 42 135
42 135 467.2500

] [

𝛼0
𝛼1
𝛼2
] = [

72
219

737.2500
]

Cálculo Numérico com Python no Google Colaboratory

78

De onde obtemos o seguinte polinômio 𝑦̂ = 0 + 2𝑥 + 𝑥2, cujo gráfico está mostrado na

Figura 4 juntamente com os pontos amostrado. Logo quando 𝑥 = 3  𝑦̂ = 15.

Figura 4 – Polinômio interpolador 𝑦̂ = 0 + 2𝑥 + 𝑥2 e pontos amostrados.

PROGRAMA EM PYTHON

Ajuste Linear

import numpy as np

Entrada

x0 = 3

p = 2 # Grau do polinómio

print("Ajuste Linear")

D = np.array(

 [[0.5000 , 1.2500],

 [1.0000 , 3.0000],

 [1.5000 , 5.2500],

 [2.0000 , 8.0000],

 [2.5000 , 11.2500],

 [3.5000 , 19.2500],

 [4.0000 , 24.0000]]

)

md = np.size(D[:,1])

nd = np.size(D[1,:])

pp = 2*p

xi = np.zeros((md , pp+1))

ssxi = np.zeros((1 , pp+1))

sxi = np.zeros((1 , pp+2))

yi = np.zeros((md , pp+1))

syi = np.zeros((1 , pp+1))

M = np.zeros((p+1 , p+2))

xi[:,0] = D[:,0]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

20

25

30

Cálculo Numérico com Python no Google Colaboratory

79

yi[:,0] = D[:,1]

print(" x y")

for i in range(0 , md , 1):

 for j in range(0 , nd , 1):

 print("%8.4f"%D[i,j], end=' ')

 print(" ")

print("\nf(%8.4f"%x0 , ") = ???")

print("Grau do polinômio: %d"%p + " grau")

for j in range(1 , pp , 1):

 for i in range(0 , md , 1):

 xi[i , j] = xi[i , 0]**(j+1)

s = 0

for j in range(0 , pp , 1):

 s = 0

 for i in range(0 , md , 1):

 s = s + xi[i,j]

 ssxi[0,j] = s

sxi[0,0] = md

for j in range(0 , pp , 1):

 sxi[0,j+1] = ssxi[0,j]

#print(" x x^2 x^3 x^4")

#for i in range(0 , md , 1):

 #for j in range(0 , pp , 1):

 #print("%10.4f"%xi[i,j], end=' ')

 #print(" ")

#for j in range(0 , pp , 1):

 #print("%10.4f"%ssxi[0,j], end=' ')

#print(" ")

#for j in range(0 , pp+1 , 1):

 #print("%10.4f"%sxi[0,j], end=' ')

#print(" ")

for j in range(1 , p+1 , 1):

 for i in range(0 , md , 1):

 yi[i , j] = (xi[i , 0]**(j))*yi[i , 0]

s = 0

for j in range(0 , p+1 , 1):

 s = 0

 for i in range(0 , md , 1):

Cálculo Numérico com Python no Google Colaboratory

80

 s = s + yi[i,j]

 syi[0,j] = s

#print(" (x^0)y (x^1)y (x^2)y")

#for i in range(0 , md , 1):

 #for j in range(0 , p+1 , 1):

 #print("%10.4f"%yi[i,j], end=' ')

 #print(" ")

#for j in range(0 , p+1 , 1):

 #print("%10.4f"%syi[0,j], end=' ')

#print(" ")

k = 0

for i in range(0 , p+1 , 1):

 for j in range(0 , p+3 , 1):

 if(j+k <= p+2):

 a = sxi[0,j+k]

 if(j+k > p+2):

 a = 0

 if(j < p+1):

 M[i,j] = a

 k = k + 1

for i in range(0 , p+1 , 1):

 M[i,p+1] = syi[0,i]

print("sistema")

for i in range(0 , p+1 , 1):

 for j in range(0 , p+2 , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

linha = np.size(M[:,1])

coluna = np.size(M[1,:])

#print('Linha: {:d}'.format(linha))

#print('Coluna: {:d}'.format(coluna))

Zera Triangulo Infrerior

t = 1

fm = 0

for j in range(0 , linha , 1):

 for i in range(t , linha , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

Cálculo Numérico com Python no Google Colaboratory

81

 M[i , k] = fm * M[j , k] + M[i , k]

 t = t + 1

#print("Zera Triangulo Infrerior")

#for i in range(0 , linha , 1):

 #for j in range(0 , coluna , 1):

 #print("%8.4f"%M[i,j], end=' ')

 #print(" ")

t = 1

fm = 0

for j in range(linha - 1 , 0 , -1):

 for i in range(0 , linha - t , 1):

 fm = - M[i,j]/M[j,j]

 for k in range(0 , coluna , 1):

 M[i,k] = fm * M[j,k] + M[i,k]

 t = t + 1

#print("Zera Triangulo Superior")

#for i in range(0 , linha , 1):

 #for j in range(0 , coluna , 1):

 #print("%8.4f"%M[i,j], end=' ')

 #print(" ")

fm = 0

for i in range(0 , linha , 1):

 fm = M[i,i]

 for j in range(0 , coluna , 1):

 M[i,j] = M[i,j]/fm

#print("Matriz Normalizada")

#for i in range(0 , linha , 1):

 #for j in range(0 , coluna , 1):

 #print("%8.4f"%M[i,j], end=' ')

 #print(" ")

print("\nSolução")

print("f(x)= a0 + a1 x + a2 x^2 + a3 x^3 + a4 x^4")

for i in range(0 , linha , 1):

 print("a%d"%i , "= %8.4f"%M[i , coluna-1])

fx0 = 0

for i in range(0 , linha , 1):

 fx0 = fx0 + M[i , coluna-1] * x0**i

print(" ")

Cálculo Numérico com Python no Google Colaboratory

82

print("f(%8.4f"%x0 , ") = %8.4f"%fx0)

print(" ")

print(" ")

import matplotlib.pyplot as plt

import numpy as np

xii = np.linspace(-10, 10, 100)

nd2 = np.size(xii)

fxii = np.zeros((1 , nd2))

for j in range(0 , nd2 , 1):

 fxii[0,j] = 0

 for i in range(0 , linha , 1):

 fxii[0,j] = fxii[0,j] + M[i , coluna-1] * xii[j]**i

fig = plt.figure()

plt.plot(D[:,0], D[:,1], '*')

plt.plot(xii[:], fxii[0,:])

plt.grid()

SAÍDA DO PROGRAMA

Ajuste Linear

 x y

 0.5000 1.2500

 1.0000 3.0000

 1.5000 5.2500

 2.0000 8.0000

 2.5000 11.2500

 3.5000 19.2500

 4.0000 24.0000

f(3.0000) = ???

Grau do polinômio: 2 grau

sistema

 7.0000 15.0000 42.0000 72.0000

 15.0000 42.0000 135.0000 219.0000

 42.0000 135.0000 467.2500 737.2500

Solução

f(x)= a0 + a1 x + a2 x^2 + a3 x^3 + a4 x^4

a0 = 0.0000

a1 = 2.0000

a2 = 1.0000

f(3.0000) = 15.0000

Cálculo Numérico com Python no Google Colaboratory

83

ATIVIDADE

(01) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 3=x , segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2.

𝑖 𝑥𝑖 𝑦𝑖
1
2
3
4
5
6
7

 0.5000
 1.0000
 1.5000
 2.0000
 2.5000
 3.5000
 4.0000

 0.7500
 2.0000
 3.7500
 6.0000
 8.7500
 15.7500
 20.0000

(02) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 𝑥 = 0.3, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2.

𝑖 𝑥𝑖 𝑦𝑖
1
2
3
4
5
6
7

 0.0000
 0.2000
 0.4000
 0.6000
 0.8000
 1.0000
 1.2000

 0.0000
 -0.1600
 -0.2400
 -0.2400
 -0.1600

 0.0000
 0.2400

 (03) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 𝑥 = 0.7, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2.

i ix iy

1
2
3
4
5
6
7

 0.0000
 0.2000
 0.4000
 0.6000
 0.8000
 1.0000
 1.2000

 0.0000
 0.1200
 0.0800
 -0.1200
 -0.4800
 -1.0000
 -1.6800

(04) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor

quando 𝑥 = 0.5, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3.

𝑖 𝑥𝑖 𝑦𝑖
1
2
3
4
5
6
7

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000

0.0000
0.2320
0.4960
0.7440
0.9280
1.0000
0.9120

Cálculo Numérico com Python no Google Colaboratory

84

6. INTERPOLAÇÃO

 Em um dado experimento foram feitas 4 amostras, cujos valores estão dispostos na

tabela abaixo e cuja representação gráfica está na figura a seguir.

Tabela 1

Número da amostra (i) 𝑥𝑖 𝑦𝑖

1 0.5 0.25
2 1.2 1.44
3 3.0 9.00
4 4.5 20.25

Figura 1. Representação gráfica dos dados da Tabela 1.

Quanto vale 𝑦𝑖 quando 𝑥𝑖 = 2 ?

 Semelhante a este problema, onde 𝑦 = 𝑓(𝑥), existem muitos outros, onde muitas

funções são conhecidas apenas em um conjunto finito e discreto de pontos de um

intervalo [𝑎, 𝑏].

 Nestes casos, onde não se tem a forma analítica da função 𝑦 = 𝑓(𝑥), devemos

substituí-la por outra função 𝑔(𝑥), que é uma aproximação da função 𝑦 = 𝑓(𝑥) e que é

deduzida a partir de dados da tabelados.

 Para determinarmos o valor de 𝑦𝑖 quando 𝑥𝑖 = 2, iremos determinar a função

𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, que é denominada de polinômio interpolador. Para os dados da

Tabela 1, obteremos a função 𝑔(𝑥) = 1𝑥2 + 0𝑥 + 0, cujo gráfico está mostrado na figura

a seguir juntamente com os dados da tabela 1.

-1 0 1 2 3 4 5 6
-5

0

5

10

15

20

25

Cálculo Numérico com Python no Google Colaboratory

85

Figura 2. Gráfico da função 𝑔(𝑥) = 1𝑥2 + 0𝑥 + 0 juntamente os pontos da tabela 1.

Substituindo 𝑥𝑖 = 2 no polinômio interpolador obtemos o valor de 𝑦𝑖 quando 𝑥𝑖 = 2.

𝑔(2) = 1 ⋅ 22 + 0 ⋅ 2 + 0 = 4

 Este tipo de solução, também é utilizado quando se têm funções cuja forma

analítica é complicada e de difícil manuseio, nestes casos, devemos substituir a

expressão analítica por outra mais simples.

 Como foi obtido o polinômio interpolador? Iremos explicar detalhadamente como

calcular o polinômio interpolador, mas primeiro devemos definir o que é interpolação.

CONCEITO DE INTERPOLAÇÃO

 Seja a função)(xfy= , cujos valores estão em uma tabela. Se desejarmos

determinar)(xf sendo:

(a)),(0 nxxx  e ixx  onde ni ,...,2,1,0=

(b)),(0 nxxx 

O item (a) representa um problema de interpolação, isto é, x está dentro do intervalo

amostrado, logo devemos calcular um polinômio interpolador, que é uma aproximação

da função tabelada.

 O item (b) representa um problema de extrapolação, isto é, x está fora do

intervalo amostrado. Nos trataremos apenas de problemas de interpolação neste

capítulo.

-1 0 1 2 3 4 5 6
-5

0

5

10

15

20

25

𝑔(𝑥) = 𝑥2

Cálculo Numérico com Python no Google Colaboratory

86

6.1. INTERPOLAÇÃO LINEAR

Para que você entenda claramente o que é interpolação, explicaremos interpolação

linear através de um exemplo prático ilustrado a seguir.

(01) Na tabela está a produção seguir está assinalado o número de habitantes de uma

cidade A em quatro censos.

Tabela 1

ANO 1950 1960
Nº de Habitantes 352.724 683.908

Determinar o número aproximado de habitantes na cidade A em 1955. O grau do

polinômio interpolador é uma unidade menor que o número de pontos conhecidos

Solução

Neste caso, o polinômio interpolador terá grau 1, isto é, será da forma

𝑃1(𝑥) = 𝑎1𝑥 + 𝑎0

Para se determinar os coeficientes, 0a e 1a devemos fazer

{
𝑃1(𝑥0) = 𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑃1(𝑥1) = 𝑎1𝑥1 + 𝑎0 = 𝑦1

  {
𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑎1𝑥1 + 𝑎0 = 𝑦1

Para 𝑥0 = 1950 e 𝑦0 = 352.724 temos que

𝑎11950 + 𝑎0 = 352.724

Para 𝑥1 = 1960 e 𝑦1 = 683.908 temos que

𝑎11960 + 𝑎0 = 683.908

Com isto temos o seguinte sistema

{
𝑎11950 + 𝑎0 = 352.724
𝑎11960 + 𝑎0 = 683.908

onde 𝑎1 = 33118,40 e 𝑎0 = −64228156 logo teremos

𝑃1(𝑥) = 33118,40𝑥 − 64228156

como queremos saber o número aproximado de habitantes na cidade A em 𝑥 = 1955,

temos

𝑃1(𝑥) = 33118,40 ⋅ 1955 − 64228156 = 518.316habitantes

Cálculo Numérico com Python no Google Colaboratory

87

ATIVIDADE

Obs. Utilize o programa de ajuste linear e e faça a interpolação com o grau máximo que os

dados permitem.

(01) Na tabela a seguir está a produção de uma certa indústria.

ANO 1990 2000
Nº de peças 340 680

Determinar o número de peças no ano 1995.

(02) Com base na tabela a seguir encontre o valor de y para 7=x .

X 2 10
Y 9 25

 (03) Com base na tabela a seguir encontre o valor de y para 5=x .

X 2 8
Y 2 20

(04) Com base na tabela a seguir encontre o valor de y para 7=x .
X 2 5 9
Y -2 7 47

ERRO DE TRUNCAMENTO

Para que você entenda o erro de truncamento, observe o gráfico mostrado a figura

a seguir.

Figura - 𝑓(𝑥) é a função tabelada e 𝑃1(𝑥) um polinômio interpolador de 1º grau.

Podemos observar que, neste caso, 𝑃1(𝑥) não aproxima bem a solução.

Teoricamente o erro de truncamento cometido no ponto x é dado pela fórmula

𝐸𝑇(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋅ 𝐴,

onde 𝐴 é uma constante a determinar, como a função erro de truncamento.

Valor Aproximado

Valor real

Cálculo Numérico com Python no Google Colaboratory

88

 No cálculo de 𝐴, utilizaremos a função auxiliar 𝐺(𝑡) definida por:

𝐺(𝑡) = 𝑓(𝑡) − 𝑃1(𝑡) − 𝐸𝑇(𝑡).

Para que você tenha melhor entendimento, calcularemos o erro de polinômio

interpolador do primeiro grau, onde

𝑃1(𝑡) = 𝑎1𝑡 + 𝑎0 e 𝐸𝑇(𝑡) = (𝑡 − 𝑥0)(𝑡 − 𝑥1) ⋅ 𝐴,

substituindo, obteremos:

𝐺(𝑡) = 𝑓(𝑡) − 𝑃1(𝑡) − (𝑡 − 𝑥0)(𝑡 − 𝑥1) ⋅ 𝐴,

onde a função 𝐺(𝑡) se anula em pelo menos em três pontos 𝑡 = 𝑥0, 𝑡 = 𝑥1 e 𝑡 = 𝑥̄.

TEOREMA DE ROLLE

Se a função 𝑓(𝑥) é contínua no intervalo [𝑎 , 𝑏] e diferenciável no intervalo (𝑎 , 𝑏) e

𝑓(𝑎) = 𝑓(𝑏), então, existe um 𝜉 ∈ (𝑎, 𝑏), tal que 𝑓′(𝜉) = 0

Considerações:

Se 𝑓(𝑡) é contínua em [𝑥0, 𝑥1] e diferenciável em (𝑥0 , 𝑥1), pode-se concluir que 𝐺(𝑡)

também o é, tendo em vista que 𝑃1(𝑡) e 𝐸𝑇(𝑡) são funções polinomiais de 1º e 2º graus,

respectivamente, logo

Existe 𝜉1 ∈ (𝑥0, 𝑥̄) tal que 𝐺(𝜉1) = 0 e

Existe 𝜉2 ∈ (𝑥̄, 𝑥1) tal que 𝐺(𝜉2) = 0

Aplicando o teorema de Rolle na função 𝐺′(𝑡), teremos:

Existe 𝜉 ∈ (𝜉1, 𝜉2) e portanto 𝜉 ∈ (𝑥0, 𝑥1), tal que 𝐺′′(𝑡) = 0, logo teremos

𝐺′′(𝜉) = 𝑓′′(𝜉) − 2𝐴 = 0  𝐴 =
𝑓′′(𝜉)

2

de onde obteres a expressão para o cálculo do erro de truncamento

𝐸𝑇(𝑡) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋅
𝑓′′(𝜉)

2

para algum 𝜉 ∈ (𝑥0, 𝑥1).

Exemplo 1. Seja a função 𝑓(𝑥) = 𝑠𝑒𝑛𝑥. Determine:

(a) O valor aproximado para 𝑓 (
𝜋

2
) a partir dos pontos (1,0 ; 0,84) e (2,0 ; 0,91).

(b) O erro de truncamento cometido no cálculo do item anterior.

Solução

(a) Para determinarmos 𝑓 (
𝜋

2
) devemos primeiro calcular o polinômio interpolador

𝑃1(𝑥) = 𝑎1𝑥 + 𝑎0

Para 𝑥0 = 1,0 e 𝑦0 = 0,84 temos que

Cálculo Numérico com Python no Google Colaboratory

89

𝑎11,0 + 𝑎0 = 0,84

Para 𝑥1 = 2,0 e 𝑦1 = 0,91 temos que

𝑎12,0 + 𝑎0 = 0,91

que resulta no sistema:

{
𝑎1 + 𝑎0 = 0,84
2𝑎1 + 𝑎0 = 0,91

 cuja solução é {
𝑎1 = 0,07
𝑎0 = 0,77

então teremos

𝑃1(𝑥) = 0,07𝑥 + 0,77  𝑃1 (
𝜋

2
) = 0,07 (

𝜋

2
) + 0,77 = 0,88

(b) Para determinarmos o erro de truncamento devemos calcular a 1º e a 2º derivada da

função 𝑓(𝑥)

𝑓(𝑥) = 𝑠𝑒𝑛𝑥  𝑓′(𝑥) = 𝑐𝑜𝑠 𝑥  𝑓′′(𝑥) = −𝑠𝑒𝑛𝑥

|𝐸𝑇(𝜉)| ≤ |(𝜉 − 𝑥0)(𝜉 − 𝑥1) ⋅
𝑓′′(𝜉)

2
|

|𝐸𝑇 (
𝜋

2
)| ≤ |(

𝜋

2
− 1) (

𝜋

2
− 2) ⋅

(−1)

2
|

 ou seja

|𝐸𝑇 (
𝜋

2
)| ≤ 0,12 ou −0,12 ≤ 𝐸𝑇 (

𝜋

2
) ≤ 0,12

Cálculo Numérico com Python no Google Colaboratory

90

6.2. INTERPOLAÇÃO DE LAGRANGE

As interpolações apresentadas anteriormente (interpolação linear) são casos

particulares da interpolação de Lagrange. Agora vamos determinar outra forma de se

obter o polinômio interpolador 𝑃(𝑥) de grau menor ou igual a 𝑛, sendo dado para isto,

𝑛 + 1 pontos distintos.

 Para podemos ter uma boa compreensão da interpolação de Lagrange, temos que

primeiro entender o teorema apresentado a seguir.

Teorema

Sejam (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2, . . . , 𝑛, 𝑛 + 1 pontos distintos, isto é, 𝑥𝑖 ≠ 𝑥𝑗 para 𝑖 ≠ 𝑗. Existe um

único polinômio 𝑃(𝑥) de grau não maior que 𝑛, tal que 𝑝(𝑥𝑖) = 𝑦𝑖, para todo 𝑖. O

polinômio 𝑃(𝑥) pode ser escrito na forma:

𝑃𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3+. . . +𝑎𝑛𝑥
𝑛

ou da seguinte forma

𝑃𝑛(𝑥) =∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 Observe que 𝑃(𝑥) é, no máximo, de grau 𝑛, se 𝑎𝑛 ≠ 0. Para determinar o polinômio

)(xP devemos conhecer os valores 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛. Como 𝑃(𝑥) contém os pontos (𝑥𝑖, 𝑦𝑖)

podemos escrever 𝑝(𝑥𝑖) = 𝑦𝑖, da seguinte forma

S:

{

𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0

2 + 𝑎3𝑥0
3+. . . +𝑎𝑛𝑥0

𝑛 = 𝑦0
𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1

2 + 𝑎3𝑥1
3+. . . +𝑎𝑛𝑥1

𝑛 = 𝑦1
𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2

2 + 𝑎3𝑥2
3+. . . +𝑎𝑛𝑥2

𝑛 = 𝑦2
. .
𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛

2 + 𝑎3𝑥𝑛
3+. . . +𝑎𝑛𝑥𝑛

𝑛 = 𝑦𝑛

A solução do sistema S são os valores 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, com os quais determinamos o

polinômio 𝑃𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3+. . . +𝑎𝑛𝑥
𝑛.

O polinômio 𝑃(𝑥) é único? Para verificarmos que tal polinômio é único, basta

calcularmos o determinante da matriz 𝐴 (matriz dos coeficientes) e verificar que ele é

diferente de zero.

Cálculo Numérico com Python no Google Colaboratory

91

𝐴 =

[

1 𝑥0 𝑥0

2 . . . 𝑥0
𝑛

1 𝑥1 𝑥1
2 . . . 𝑥1

2

.
1 𝑥𝑛 𝑥𝑛

2 . . . 𝑥𝑛
2]

Observe que a matriz 𝐴, tem a forma da matriz de Vandermonte, também conhecida

como matriz das potências. Seu determinante, segundo a Álgebra Linear, é dado pela

expressão:

𝑑𝑒𝑡(𝐴) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑖>𝑗 , com 𝑥𝑖 ≠ 𝑥𝑗

Sabemos que 𝑑𝑒𝑡(𝐴) ≠ 0, logo isto prova que 𝑃(𝑥) é único.

Obtenção da Fórmula

 Para que você entenda a interpolação de Lagrange é necessário que compreender

como é obtida a fórmula de recorrência deste método.

 O teorema fundamental da Álgebra garante que podemos escrever o polinômio

𝑃(𝑥) da seguinte forma

𝑃(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)

onde 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 são as raízes do polinômio 𝑃(𝑥). Montaremos agora, uma

sequência de polinômios auxiliares da seguinte forma

1º polinômio: se retirarmos (𝑥 − 𝑥0) obteremos o polinômio

𝑝0(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)

2º polinômio: se retirarmos (𝑥 − 𝑥1) obteremos o polinômio

𝑝1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)

3º polinômio: se retirarmos (𝑥 − 𝑥2) obteremos o polinômio

𝑝2(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)

Seguindo este raciocínio obteremos os polinômios 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑛(𝑥). Estes

polinômios podem ser escritos na forma sintética:

𝑝𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑛
𝑗=0
𝑗≠𝑖

, (𝑖 = 0,1,2,3, . . . , 𝑛)

Tais polinômios possuem as seguintes propriedades

(a) 𝑝𝑖(𝑥𝑖) ≠ 0, para todo i.

(b) 𝑝𝑖(𝑥𝑗) = 0, para todo 𝑗 ≠ 𝑖.

Cálculo Numérico com Python no Google Colaboratory

92

e são conhecidos como polinômios de Lagrange. O polinômio 𝑃(𝑥) pode ser escrito como

uma combinação linear dos polinômios 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑛(𝑥), da seguinte forma:

𝑃(𝑥) = 𝑏0𝑝0(𝑥) + 𝑏1𝑝1(𝑥) + 𝑏2𝑝2(𝑥)+. . . +𝑏𝑛𝑝𝑛(𝑥)

ou

𝑃(𝑥) =∑𝑏𝑖𝑝𝑖(𝑥)

𝑛

𝑖=0

Mas, como 𝑝𝑖(𝑥𝑗) = 0, para todo 𝑗 ≠ 𝑖 e 𝑝𝑖(𝑥𝑖) ≠ 0, para todo i, temos que

𝑃𝑛(𝑥𝑛) = 𝑏𝑛𝑝𝑛(𝑥𝑛)

logo 𝑏𝑛 =
𝑃𝑛(𝑥𝑛)

𝑝𝑛(𝑥𝑛)

e como 𝑃𝑛(𝑥𝑖) = 𝑦𝑖, teremos 𝑏𝑖 =
𝑦𝑖

𝑝𝑖(𝑥𝑖)

substituindo este valor no somatório será

𝑃(𝑥) =∑
𝑦𝑖

𝑝𝑖(𝑥𝑖)
𝑝𝑖(𝑥)

𝑛

𝑖=0

de onde teremos 𝑃(𝑥) = ∑ 𝑦𝑖
𝑝𝑖(𝑥)

𝑝𝑖(𝑥𝑖)

𝑛
𝑖=0

como 𝑝𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑛
𝑗=0
𝑗≠𝑖

 então

𝑃(𝑥) =∑𝑦𝑖∏
(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=0
𝑗≠𝑖

𝑛

𝑖=0

denominada de fórmula de interpolação de Lagrange.

Calma! Parece complicado, mas garantimos que não é! Acompanhe cuidadosamente o

próximo exemplo e você certamente entenderá como interpolar com o método de

Lagrange.

Exemplo 1. A partir das informações existentes na tabela, determine:

i 𝑥𝑖 𝑦𝑖

0
1
2
3

0.0
0.2
0.4
0.5

0.000
2.008
4.064
5.125

(a) O polinômio interpolador de Lagrange

(b) 𝑃(0.3)

Solução

(a) Como temos 4 pontos, o polinômio interpolador será de grau 3, logo

Cálculo Numérico com Python no Google Colaboratory

93

𝑃3(𝑥) = ∑ 𝑦𝑖∏
(𝑥−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)

3
𝑗=0
𝑗≠𝑖

3
𝑖=0 , ou seja

𝑃3(𝑥) = 𝑦0
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)(𝑥0 − 𝑥3)
+

+𝑦1
(𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
+

+𝑦2
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
+

+𝑦3
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)

substituindo os valores da tabela, teremos

𝑃3(𝑥) = 0.000
(𝑥 − 0.2)(𝑥 − 0.4)(𝑥 − 0.5)

(0.0 − 0.2)(0.0 − 0.4)(0.0 − 0.5)
+

+2.008
(𝑥 − 0.0)(𝑥 − 0.4)(𝑥 − 0.5)

(0.2 − 0.0)(0.2 − 0.4)(0.2 − 0.5)
+

+4.064
(𝑥 − 0.0)(𝑥 − 0.2)(𝑥 − 0.5)

(0.4 − 0.0)(0.4 − 0.2)(0.4 − 0.5)
+

+5.125
(𝑥 − 0.0)(𝑥 − 0.2)(𝑥 − 0.4)

(0.5 − 0.0)(0.5 − 0.2)(0.5 − 0.4)

simplificando a expressão, temos o seguinte polinômio interpolador

𝑃3(𝑥) = 𝑥
3 + 10𝑥

(b) 𝑃3(0.3) = 0. 3
3 + 10 ⋅ 0.3 = 3.027

Exemplo 2. A partir das informações existentes na tabela, determine:

I ix iy

0
1
2

1
2
4

1
4

16

(a) O polinômio interpolador de Lagrange

(b) 𝑃(3)

Solução

(a) Como temos 3 pontos, o polinômio interpolador será de grau 2, logo

𝑃2(𝑥) = ∑ 𝑦𝑖∏
(𝑥−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)

2
𝑗=0
𝑗≠𝑖

2
𝑖=0 , ou seja

𝑃2(𝑥) = 𝑦0
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+ 𝑦1

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+ 𝑦2

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)

substituindo os valores da tabela, teremos

Cálculo Numérico com Python no Google Colaboratory

94

𝑃2(𝑥) = 1
(𝑥 − 2)(𝑥 − 4)

(1 − 2)(1 − 4)
+ 4

(𝑥 − 1)(𝑥 − 4)

(2 − 1)(2 − 4)
+ 16

(𝑥 − 1)(𝑥 − 2)

(4 − 1)(4 − 2)

que é o polinômio interpolador

(b) 𝑃2(3) = 1
(3−2)(3−4)

(1−2)(1−4)
+ 4

(3−1)(3−4)

(2−1)(2−4)
+ 16

(3−1)(3−2)

(4−1)(4−2)

 𝑃2(3) = 9

PROGRAMA EM PYTHON

Interpolação de Lagrange

import numpy as np

Entrada

x0 = 0.3

D = np.array(

 [[0.0 , 0.000],

 [0.2 , 2.008],

 [0.4 , 4.064],

 [0.5 , 5.125]]

)

print("Interpolação de Lagrange")

print(D)

#print(D[0,:])

Variáveis auxiliares

s = 0

p = 1

matriz linha X coluna

linha = np.size(D[:,1])

coluna = np.size(D[1,:])

#print("[linha, coluna] = " + format([linha, coluna]))

s = 0

for i in range(linha):

 p = 1;

 for j in range(linha):

 if(i == j):

 p = p

 if(i != j):

 p = p * ((x0 - D[j,0])/(D[i,0] - D[j,0]));

 s = s + D[i, 1] * p

Cálculo Numérico com Python no Google Colaboratory

95

print("\n interpolacao em x: {:.3f}" .format(x0))

print(" y interpolado: {:.3f}" .format(s))

SAÍDA DO PROGRAMA

Interpolação de Lagrange

[[0. 0.]

 [0.2 2.008]

 [0.4 4.064]

 [0.5 5.125]]

 interpolacao em x: 0.300

 y interpolado: 3.027

ATIVIDADE

(01) A partir das informações existentes na tabela, determine:

i 𝑥𝑖 𝑦𝑖

0
1
2
3

0.0
0.2
0.4
0.6

0.0000
1.0400
2.1600
3.3600

(a) O polinômio interpolador de Lagrange (b) 𝑃(0.3)

(02) A partir das informações existentes na tabela, determine:

i 𝑥𝑖 𝑦𝑖

0
1
2
3

0.1
0.3
0.5
0.7

0.1010
0.3270
0.6250
1.0430

(a) O polinômio interpolador de Lagrange

(b) 𝑃(0.4)

(03) A partir das informações existentes na tabela, determine:

i 𝑥𝑖 𝑦𝑖

0
1
2
3

0.0
0.2
0.4
0.6

0.0000
0.4080
0.8640
1.4160

(a) O polinômio interpolador de Lagrange

(b) 𝑃(0.5)

(04) A partir das informações existentes na tabela, determine:

I 𝑥𝑖 𝑦𝑖

0
1
2
3

0.1
0.3
0.5
0.7

0.0110
0.1170
0.3750
0.8330

(a) O polinômio interpolador de Lagrange (b) 𝑃(0.6)

Cálculo Numérico com Python no Google Colaboratory

96

6.3. INTERPOLAÇÃO DE NEWTON

Para que você tenha uma boa compreensão do método de interpolação de Newton

com diferenças divididas, iniciaremos este tópico, discorrendo sobre o conceito de

diferenças divididas.

CONCEITO DE DIFERENÇAS DIVIDIDAS

Seja 𝑦 = 𝑓(𝑥) uma função que contém 𝑛 pontos distintos (𝑥𝑖 , 𝑦𝑖), onde 𝑖 =

0,1,2, . . . , 𝑛. Representaremos diferença divididas, por 𝑓[]. Definiremos diferença

dividida de ordem zero a própria função, isto é,

𝑓0[𝑥1] = 𝑓(𝑥1) = 𝑦1.

A diferença dividida de 1ª ordem para os argumentos 𝑥0 e 𝑥1 é uma aproximação

da 1ª derivada, isto é,

𝑓1[𝑥0, 𝑥1] =
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
,

onde temos a seguinte propriedade 𝑓[𝑥1, 𝑥0] = 𝑓[𝑥0, 𝑥1]. Considerando 𝑦𝑖 = 𝑓(𝑥𝑖),

podemos escrever as diferenças divididas de 1º ordem, de forma geral, por:

𝑓1[𝑥𝑖 , 𝑥𝑖+1] =
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
.

A diferença dividida de 2ª ordem para os argumentos 𝑥0, 𝑥1 e 𝑥2 é dada por:

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
.

A diferença dividida de 3ª ordem para os argumentos 𝑥0, 𝑥1, 𝑥2 e 𝑥3 é dada por:

𝑓3[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
𝑓2[𝑥1,𝑥2,𝑥3]−𝑓

2[𝑥0,𝑥1,𝑥2]

𝑥3−𝑥0
.

Genericamente, a diferença dividida de ordem 𝑛 é dada por:

𝑓𝑛[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑖+𝑛] =
𝑓𝑛−1[𝑥𝑖+1,𝑥𝑖+2,...,𝑥𝑖+𝑛]−𝑓

𝑛−1[𝑥𝑖,𝑥𝑖+1,𝑥𝑖+2,...,𝑥𝑖+𝑛−1]

𝑥𝑖+𝑛−𝑥𝑖
.

Para que você compreenda melhor como fazer estas diferenças dividida observe o

próximo exemplo numérico.

Exemplo 1. Dada a função tabelada calcule a diferença dividida de segunda ordem.

i 𝑥𝑖 𝑦𝑖
0
1
2

0.3
1.5
2.1

3.09
17.25
25.41

Solução

Devemos calcular as diferenças divididas de primeira ordem

𝑓1[𝑥0, 𝑥1] =
𝑦1−𝑦0

𝑥1−𝑥0
=
17.25−3.09

1.5−0.3
= 11.80

Cálculo Numérico com Python no Google Colaboratory

97

𝑓1[𝑥1, 𝑥2] =
𝑦2−𝑦1

𝑥2−𝑥1
=
25.41−17.25

2.1−1.5
= 13.60

com todas as diferenças divididas de primeira ordem calculadas, vamos então

calcular a de segunda ordem

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
=
13.60−11.80

2.1−0.3
= 1.0

Para facilitar os procedimentos numéricos e organizar os nossos cálculos

colocaremos na própria tabela o desenvolvimento do cálculo da seguinte forma:

i 𝑥𝑖 𝑦𝑖 𝑓1[𝑥𝑖 , 𝑥𝑖+1] 𝑓2[𝑥0, 𝑥1, 𝑥2]

0 0.3 3.09 𝑓1[𝑥0, 𝑥1] 𝑓2[𝑥0, 𝑥1, 𝑥2]
1 1.5 17.25 𝑓1[𝑥1, 𝑥2]

2 2.1 25.41

Fazendo a substituição numérica temos:

i 𝑥𝑖 𝑦𝑖 𝑓1[𝑥𝑖 , 𝑥𝑖+1] 𝑓2[𝑥0, 𝑥1, 𝑥2]

0 0.3 3.09 11.80 1.00
1 1.5 17.25 13.60
2 2.1 25.41

Agora que já sabemos como calcular as diferenças divididas, iremos nos concentrar

na fórmula de recorrência para interpolação de Newton.

A fórmula de recorrência de interpola, de Newton com diferenças dividida,

depende do número de pontos existente na tabela.

1º Caso: Existem só dois pontos na tabela

A fórmula, de interpolação, é obtida a partir da expressão de diferença divididas de

primeira ordem,

𝑓1[𝑥0, 𝑥1] =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=
𝑓(𝑥0) − 𝑓(𝑥1)

𝑥0 − 𝑥1

onde isolando 𝑓(𝑥) , para obter a fórmula de interpolação:

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥0, 𝑥1]

assumiremos 𝑥 = 𝑥0, onde 𝑥 é qualquer valor dentro do intervalo [𝑥0, 𝑥1].

2º Caso: Existem só três pontos na tabela

A fórmula de interpolação, neste caso, é obtida a partir da expressão de diferença

divididas de segunda ordem,

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
=
𝑓1[𝑥0,𝑥1]−𝑓

1[𝑥1,𝑥2]

𝑥0−𝑥2

Cálculo Numérico com Python no Google Colaboratory

98

onde isolando 𝑓1[𝑥1, 𝑥2] , obtemos:

𝑓1[𝑥0, 𝑥1] = 𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2]

Substituindo na primeira fórmula de interpolação, temos

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1){𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2]}

que pode ser escrita por

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2]

que é a fórmula de interpolação para este caso, onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é

qualquer valor dentro do intervalo [𝑥0, 𝑥2].

3º Caso: Existem só quatro pontos na tabela

A fórmula de interpolação, neste caso, é obtida a partir da expressão de diferença

divididas de terceira ordem,

𝑓3[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
𝑓2[𝑥1, 𝑥2, 𝑥3] − 𝑓

2[𝑥0, 𝑥1, 𝑥2]

𝑥3 − 𝑥0
=
𝑓2[𝑥0, 𝑥1, 𝑥2] − 𝑓

2[𝑥1, 𝑥2, 𝑥3]

𝑥0 − 𝑥3

onde isolamos 𝑓2[𝑥0, 𝑥1, 𝑥2] , para obter:

𝑓2[𝑥0, 𝑥1, 𝑥2] = 𝑓
2[𝑥1, 𝑥2, 𝑥3] + (𝑥0 − 𝑥3)𝑓

3[𝑥0, 𝑥1, 𝑥2, 𝑥3]

Substituindo na segunda fórmula de interpolação, temos

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2){𝑓

2[𝑥1, 𝑥2, 𝑥3] + (𝑥0

− 𝑥3)𝑓
3[𝑥0, 𝑥1, 𝑥2, 𝑥3]}

que pode ser expresso por:

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2)𝑓

2[𝑥1, 𝑥2, 𝑥3] + (𝑥0 − 𝑥1)(𝑥0

− 𝑥2)(𝑥0 − 𝑥3)𝑓
3[𝑥0, 𝑥1, 𝑥2, 𝑥3]

que é a fórmula de interpolação para este caso, onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é

qualquer valor dentro do intervalo [𝑥0, 𝑥3].

4º Caso: Generalização para n pontos na tabela

Para uma tabela de n pontos, a fórmula de interpolação pode ser expressa, segundo o

mesmo raciocínio, por:

𝑓(𝑥0) = 𝑓(𝑥1) +∑𝑓𝑖[𝑥0, . . . , 𝑥𝑖]∏(𝑥 − 𝑥𝑗)

𝑖−1

𝑗=0

𝑛

𝑖=0

onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é qualquer valor dentro do intervalo [𝑥0, 𝑥𝑛].

Cálculo Numérico com Python no Google Colaboratory

99

Exemplo 1. Determinar o valor aproximado de 𝑓(0.4), usando todos os pontos
tabelados

I ix iy

0 0.0 1.008
1 0.2 1.064
2 0.3 1.125
3 0.5 1.343
4 0.6 1.512

Solução

i 𝑥𝑖 𝑦𝑖 = 𝑓[] 𝑓1[] 𝑓2[] 𝑓3[] 𝑓4[]

 0 0.0000 1.0080 0.2800 1.1000 1.0000 -0.0000
 1 0.2000 1.0640 0.6100 1.6000 1.0000 0.0000
 2 0.3000 1.1250 1.0900 2.0000 0.0000 0.0000
 3 0.5000 1.3430 1.6900 0.0000 0.0000 0.0000
 4 0.6000 1.5120 0.0000 0.0000 0.0000 0.0000

Utilizamos os valores em azul no momento a substituição
𝑓(0.4) = 𝑓[] + (0.4 − 𝑥0)𝑓

1[] + (0.4 − 𝑥0)(0.4 − 𝑥1)𝑓
2[] +

+(0.4 − 𝑥0)(0.4 − 𝑥1)(0.4 − 𝑥2)𝑓
3[] + (0.4 − 𝑥0)(0.4 − 𝑥1)(0.4 − 𝑥2)(0.4 − 𝑥3)𝑓

4[]

𝑓(0.4) = 1.2160

Exemplo 2. Determinar o valor aproximado de 𝑓(0.2), usando todos os pontos
tabelados

i 𝑥𝑖 𝑦𝑖

0 0.0 1.000
1 0.1 2.001
2 0.3 4.081
3 0.6 8.296
4 1.0 21.000

i 𝑥𝑖 𝑦𝑖 = 𝑓[] 𝑓1[] 𝑓2[] 𝑓3[] 𝑓4[]

 0 0.000 1.0000 10.0100 1.3000 10.0000 10.0000
 1 0.1000 2.0010 10.4000 7.3000 20.0000 0.0000
 2 0.3000 4.0810 14.0500 25.3000 0.0000 0.0000
 3 0.6000 8.2960 31.7600 0.0000 0.0000 0.0000
 4 1.0000 21.0000 0.0000 0.0000 0.0000 0.0000

Utilizamos os valores em azul no momento as substituição
𝑓(0.2) = 𝑓[] + (0.2 − 𝑥0)𝑓

1[] + (0.2 − 𝑥0)(0.2 − 𝑥1)𝑓
2[] +

+(0.2 − 𝑥0)(0.2 − 𝑥1)(0.2 − 𝑥2)𝑓
3[] + (0.2 − 𝑥0)(0.2 − 𝑥1)(0.2 − 𝑥2)(0.2 − 𝑥3)𝑓

4[]
𝑓(0.2) = 3.0160

PROGRAMA EM PYTHON

Cálculo Numérico com Python no Google Colaboratory

100

Interpolação de Newton

import numpy as np

Entrada

x0 = 0.4 #valor a ser interpolado

D = np.array(

 [[0.0 , 1.008],

 [0.2 , 1.064],

 [0.3 , 1.125],

 [0.5 , 1.343],

 [0.6 , 1.512]]

)

print("Interpolação de Newton")

print("Dado")

print(D)

#print(D[0,:])

Variáveis auxiliares

s = 0

p = 1

matriz linha X coluna

linha = np.size(D[:,1])

coluna = np.size(D[1,:])

#print("[linha, coluna] = " + format([linha, coluna]))

s = 0

shape = (linha, linha)

M = np.zeros(shape)

M[:,0] = D[:,1]

t = 0

for j in range(0 , linha , 1):

 t = t + 1

 for i in range(1 , linha - j , 1):

 #print([i , j , M[i,j-1] , M[i-1,j-1], D[i+j , 0] , D[i+j-t , 0]])

 M[i-1,j+1] = (M[i , j] - M[i-1 , j]) / (D[i+j , 0] - D[i+j-t , 0])

 #print("%2d"%(i-1), "%2d"%(j+1), "%8.4f"%M[i-1,j+1], "%8.4f"%M[i ,

j] , "%8.4f"%M[i-1 , j], "%8.4f"%D[i+j , 0], "%8.4f"%D[i+j-t , 0])

print("Tabela")

print(' f[] f1[] f2[] f3[] f4[]')

Cálculo Numérico com Python no Google Colaboratory

101

for i in range(0 , linha , 1):

 for j in range(0 , linha , 1):

 print("%8.4f"%M[i,j], end=' ')

 print(" ")

s = M[0,0]

for j in range(1 , linha , 1):

 p = 1;

 for i in range(0 , j , 1):

 p = p * (x0 - D[i , 0])

 s = s + M[0 , j] * p

print('\nValor de x é: {:8.4f}'.format(x0))

print('Valor interpolado é: {:8.4f}'.format(s))

SAÍDA DO PROGRAMA

Interpolação de Newton

Dado

[[0. 1.008]

 [0.2 1.064]

 [0.3 1.125]

 [0.5 1.343]

 [0.6 1.512]]

Tabela

 f[] f1[] f2[] f3[] f4[]

 1.0080 0.2800 1.1000 1.0000 -0.0000

 1.0640 0.6100 1.6000 1.0000 0.0000

 1.1250 1.0900 2.0000 0.0000 0.0000

 1.3430 1.6900 0.0000 0.0000 0.0000

 1.5120 0.0000 0.0000 0.0000 0.0000

Valor de x é: 0.4000

Valor interpolado é: 1.2160

ATIVIDADE

Cálculo Numérico com Python no Google Colaboratory

102

(01) Determinar o valor aproximado de 𝑓(0.3), usando todos os pontos tabelados
i 𝑥𝑖 𝑦𝑖

0 0.0 0.0000

1 0.2 0.0480

2 0.4 0.2240

3 0.6 0.5760

4 0.8 1.1520

(02) Determinar o valor aproximado de 𝑓(0.4), usando todos os pontos tabelados

i 𝑥𝑖 𝑦𝑖
0 0.1 0.1010

1 0.3 0.3270

2 0.5 0.6250

3 0.7 1.0430

4 0.9 1.6290

(03) Determinar o valor aproximado de 𝑓(0.3), usando todos os pontos tabelados

i 𝑥𝑖 𝑦𝑖

0 0.0 0.1000

1 0.2 0.1080

2 0.4 0.1640

3 0.6 0.3160

4 0.8 0.6120

Cálculo Numérico com Python no Google Colaboratory

103

7. INTEGRAÇÃO NUMÉRICA

 Ao se resolver certos problemas, são comuns soluções que recaiam no cálculo de

área de figuras plana onde se conhece as equações que contornam a figura. O problema a

seguir, é um bom exemplo desta situação.

Exemplo 1. Um móvel se desloca ao longo de uma trajetória retilínea segunda a equação

horária 𝑣 = 4𝑡 − 𝑡2, onde o tempo é medido em segundos e a distância em metros. O

gráfico da função horária está mostrado a figura a seguir.

Figura 1 – Gráfico da função 𝑣 = 4𝑡 − 𝑡2, onde o tempo está em segundos e a velocidade

em m/s.

 O deslocamento deste móvel nos primeiros 4 segundos é determinado calculando a

área plana compreendida entre a equação 𝑣 = 4𝑡 − 𝑡2 e o eixo dos tempos, isto é,

determinar a área rachurada mostrada na figura 2.

Figura 2 – Gráfico da função 𝑣 = 4𝑡 − 𝑡2, onde o t é tempo (seg) e v é a velocidade (m/s).

A parte rachurada corresponde ao deslocamento do móvel.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

t

v

t

v

Cálculo Numérico com Python no Google Colaboratory

104

Como calcular esta área? Se a função 𝑓(𝑥) é contínua em um intervalo [𝑎, 𝑏] e sua

primitiva 𝐹(𝑥) é conhecida, então a área é calculada pela integral definida desta função

no intervalo definido e é dada por:

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎)

onde 𝐹′(𝑥) = 𝑓(𝑥).

Como é feito em situações práticas? Em muitas situações práticas, onde não se tem

uma fórmula analítica para a função 𝑓(𝑥), e sim uma tabela de pontos que expressão seu

comportamento, para calculamos a área através do valor da integra definida de 𝑓(𝑥) é

necessário a utilização de métodos numéricos.

7.1. REGRA DOS TRAPÉZIOS

 Neste método, substituímos a rachurada que se deseja calcular pela área de um

trapézio como ilustra a figura a seguir.

Figura 3 – (a) Área rachurada compreendida pela função 𝑓(𝑥) e o eixo do 𝑥 no intervalo

[𝑥0𝑥1]. (b) Trapézio utilizado para aproximar a área rachurada do item (a).

O trapézio utilizado para aproximar a área rachurada é determinado, utilizando os

dois pontos do intervalo, onde passamos uma reta. Da geometria sabemos que a área

deste trapézio é dada por:

𝐴 =
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)]

A diferença entre a integral exata de 𝑓(𝑥) (área sob a curva 𝑓(𝑥)) e a integral

aproximada (área do trapézio) é denominada de erro de integração. A diferença dos

resultados não é muito grande?

x0 x0 x1 x1

f(x) f(x) f(x0)

f(x1) f(x1)

f(x0)

x

y

x

y

h h

(a) (b)

Cálculo Numérico com Python no Google Colaboratory

105

Uma forma de se melhorar o resultado estimado, isto é, diminuir a diferença entre

o resultado estimado e o exato na regra do trapézio é subdividir o intervalo [𝑥0 , 𝑥1] em 𝑛

intervalos de amplitude ℎ e em cada intervalo aplica-se a regra dos trapézios, como

ilustra a figura 4.

Figura 4 – Área compreendida pela função 𝑓(𝑥) e o eixo do 𝑥 no intervalo [𝑥0𝑥1] é

aproximada pela soma de n áreas dos trapézios de mesma base compreendidos no

intervalo [𝑥0𝑥1].

Desta forma, a área aproximada é calculada pela expressão:

𝐴 =
ℎ

2
(𝑦0 + 𝑦1) +

ℎ

2
(𝑦1 + 𝑦2)+. . . +

ℎ

2
(𝑦𝑛−1 + 𝑦𝑛)

Que pode ser simplificado para

𝐴 =
ℎ

2
(𝑦0 + 2𝑦1 + 2𝑦3+. . . +2𝑦𝑛−1 + 𝑦𝑛)

Onde 𝐸𝑖 é o erro cometido na aplicação da regra dos trapézios no intervalo cujos

extremos são 𝑥𝑖 e 𝑥𝑖+1, ou seja,

𝐸𝑖 =
−ℎ3

12
𝑓′′(𝜀)

Com isto o erro total cometido é a soma dos erros cometidos em cada intervalo,

logo

𝐸 =
−ℎ3

12
∑𝑓′′(𝜀𝑖)

𝑛−1

𝑖=1

e pela continuidade de 𝑓′′(𝜀), existe 𝑛 em 𝑎 ≤ 𝜀 ≤ 𝑏, tal que

𝐸𝑖 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏.

a = x0 b= xn

f(x)

x

y

h

x1

h

x2

h

x3

h

x4

h

xn-1

Cálculo Numérico com Python no Google Colaboratory

106

Exemplo 1 – Calcule a área entre o gráfico 𝑣 = 4𝑡 − 𝑡2 e o eixo do 𝑥, dentro do intervalo

[0 , 4].

A precisão do valor aproximado depende do número 𝑛 de trapézios, observe

Figura 5 – Mostrando a aproximação pela regra dos trapézios para diferentes valores de n.

Com 𝑣′(𝑡) = 4 − 2𝑡, e como 𝑣′′(𝑡) = −2, logo 𝑓′′(0) = −2 em todas as expressões, onde

0 ≤ 𝜀 ≤ 4.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

3

4

5

Resolução analítica:

𝐴 = ∫ (4𝑡 − 𝑡2)𝑑𝑡
4

0
= (2𝑡2 −

𝑡3

3
)0
4

)*()*(A
3

0
02

3

4
42

3
2

3
2 −−−=  666710

3

32
.A ==

Aproximação para n = 2

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 𝑦3)  𝐴 = 8

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)  𝐸 = 2.6667

Aproximação para n = 4

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 𝑦5)  𝐴 = 10

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)  𝐸 = 0.6667

Aproximação para n = 6

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 2𝑦5 + 2𝑦6 + 𝑦7)

𝐴 = 10.3704

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)  𝐸 = 0.2963

Aproximação para n = 30

𝐴 = 10.6548

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)  𝐸 = 0.0119

Cálculo Numérico com Python no Google Colaboratory

107

PROGRAMA EM PYTHON

Regra dos Trapézios

Entrada

xi = 0. # intervalo [xi , xf]

xf = 4.

n = 30 # número de trapézios

def f(x):

 return 4*x - x**2

print("Integração Numérica - Método dos Trapézios")

print('f(x) = 4*x - x**2')

import math

import numpy as np

variáveis auxiliar

h = 0

s = 0

h = (xf - xi)/n

vx = np.zeros((n+1))

vy = np.zeros((n+1))

vx[0] = xi

for i in range(1 , n+1 , 1):

 vx[i] = vx[i-1] + h

vy[0] = f(vx[0])

vy[n] = f(vx[n])

for i in range(1 , n , 1):

 vy[i] = 2 * f(vx[i])

#print(vx[:])

#print(vy[:])

s = 0

for i in range(0 , n+1 , 1):

 s = s + vy[i]

s = (h/2) * s

print("Número de trapézios: " , "%d"%n)

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]")

print('Valor da Integral: {:8.4f}'.format(s))

import matplotlib.pyplot as plt

import numpy as np

Cálculo Numérico com Python no Google Colaboratory

108

xi = np.linspace(xi, xf, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

SAÍDA DO PROGRAMA

Integração Numérica - Método dos Trapézios

f(x) = 4*x - x**2

Número de trapézios: 30

Intervalo: [0.0000 , 4.0000]

Valor da Integral: 10.6548

ATIVIDADE

(01) Dada a função 𝑓(𝑥) = 𝑥2 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
3

0
, usando a regra dos

trapézios e dividindo o intervalo em 6 partes.

(02) Dada a função 𝑓(𝑥) = 𝑙𝑛 𝑥 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
4

2
, usando a regra

dos trapézios e dividindo o intervalo em 6 partes.

(03) Dada a função 𝑓(𝑥) = 𝑥3 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
3

0
, usando a regra dos

trapézios e dividindo o intervalo em 6 partes.

(04) Dada a função 𝑓(𝑥) = 𝑒𝑥 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
4

2
, usando a regra dos

trapézios e dividindo o intervalo em 6 partes.

Cálculo Numérico com Python no Google Colaboratory

109

Você saiba que na regra dos trapézios, utilizamos uma aproximação de primeira ordem

do polinômio interpolador de Gregory-Newton 𝑃𝑛(𝑥) para representar a função 𝑓(𝑥).

𝑃𝑛(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧 − 1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧 − 1)(𝑧 − 2)

3!
∗ 𝛥3𝑦0+. . . +

+
𝑧(𝑧 − 1)(𝑧 − 2) ∗. . .∗ (𝑧 − 𝑛 + 1)

(𝑛 + 1)!
∗ 𝛥2𝑦0

Isto é, utilizamos na regra do trapézio, utilizamos 𝑃2(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 (n = 1), para aproximar

𝑓(𝑥), com isto a integral passou a ser determinada por

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0]𝑑𝑥
𝑏

𝑎

Como 𝑧 =
𝑥−𝑥0

ℎ
  𝑑𝑥 = ℎ𝑑𝑧,

e considerando 𝑎 = 𝑥0 e 𝑏 = 𝑥1 , temos que

para 𝑥 = 𝑎  𝑧 =
𝑥0−𝑥0

ℎ
= 0,

para 𝑥 = 𝑏  𝑧 =
𝑥1−𝑥0

ℎ
= 1

substituindo os limes na integral temos

𝐼 = ∫ [𝑦0 + 𝑧𝛥𝑦0]𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0]ℎ𝑑𝑧
1

0

= ℎ [𝑧𝑦0 +
𝑧2

2
𝛥𝑦0]

0

1

𝐼 = ℎ [1 ∗ 𝑦0 +
12

2
𝛥𝑦0] − ℎ [0 ∗ 𝑦0 +

02

2
𝛥𝑦0]

𝐼 = ℎ [𝑦0 +
1

2
𝛥𝑦0]  𝐼 = ℎ [𝑦0 +

1

2
(𝑦 − 𝑦0)]

𝐼 = ℎ [
𝑦+𝑦0

2
], foi esta a expressão utilizada no método dos trapézios.

Cálculo Numérico com Python no Google Colaboratory

110

7.2. PRIMEIRA REGRA DE SIMPSON

A vantagem, de revermos o método dos trapézios usando o polinômio interpolador

de Gregory-Newton (𝑃𝑛(𝑥)) e que na primeira regra de Simpson, utilizamos uma

aproximação de 2ª ordem deste polinômio, isto é, faremos:

 𝑓(𝑥) = 𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧−1)

2!
∗ Δ2𝑦0, onde 𝑧 =

𝑥−𝑥0

ℎ

Com isto o valor da integral ser:

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧 − 1)

2!
∗ Δ2𝑦0] 𝑑𝑥

𝑏

𝑎

Como 𝑧 =
𝑥−𝑥0

ℎ
  𝑑𝑥 = ℎ𝑑𝑧,

Para se aproximar a função 𝑓(𝑥) por um polinômio do 2º grau, serão necessários 3

pontos: 𝑥0, 𝑥1 e 𝑥2 (Figura 6).

Figura 6 – Gráfico de 𝑓(𝑥) juntamente com a aproximação de segunda ordem 𝑃2(𝑥).

Considerando 𝑎 = 𝑥0 e 𝑏 = 𝑥2 , temos que :

𝑥 = 𝑎  𝑧 =
𝑎−𝑎

ℎ
= 0,

𝑥 = 𝑏  𝑧 =
𝑏−𝑎

ℎ
= 2

Com isto, a integral será resolvida da seguinte forma

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧 − 1)

2!
∗ Δ2𝑦0] ℎ𝑑𝑧

2

0

Cujo resultado é:

𝐼 = ℎ [2𝑦0 + 2Δ𝑦0 +
1

3
Δ2𝑦0]

Como babemos que {
Δ𝑦0 = 𝑦1 − 𝑦0
Δ2𝑦0 = 𝑦2 − 2𝑦1 + 𝑦0

, então com a substituição teremos

𝐼 =
ℎ

3
[𝑦0 + 4𝑦1 + 𝑦2] que é denominado de 1ª regra de Simpson.

x0 x1

f(x)

f(x0) f(x2)

x

y

h h
x2

f(x1)

P2(x)

Cálculo Numérico com Python no Google Colaboratory

111

𝐼 = ℎ [
𝑦+𝑦0

2
], foi esta a expressão utilizada no método dos trapézios.

Para diminuir o erro, isto é, a diferença do valor estimado e do valor real, devemos

subdividir o intervalo de integração, da mesma forma que fizemos no método dos

trapézios, com isto, a integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, será aplicada em cada dupla de intervalos

da seguinte forma:

𝐼 =
ℎ

3
[𝑦0 + 4𝑦1 + 𝑦2]⏟
1º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+
ℎ

3
[𝑦2 + 4𝑦3 + 𝑦4]⏟
2º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+. . . +
ℎ

3
[𝑦𝑛−2 + 4𝑦𝑛−1 + 𝑦𝑛]⏟
ú𝑙𝑡𝑖𝑚𝑜𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

 O erro total cometido será a soma dos erros cometidos em cada aplicação da 1ª

regra de Simpson nas duplas de subintervalos e são determinados por:

𝐸 =
−(𝑏−𝑎)5

180𝑛4
𝑓(𝐼𝑉)(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏.

Exemplo 1. Calcule o valor da integral ∫
𝑑𝑥

1+𝑥2

1

0
, com 𝜀 ≤ 10−4.

Solução

Calcular esta integral significa calcular a área compreendida entre o gráfico e o eixo x,

como mostra a figura a seguir.

Figura 7 – Gráfico da função 𝑓(𝑥) =
1

1+𝑥2
, onde a área rachurada representa o resultado

da integral ∫
𝑑𝑥

1+𝑥2

1

0
.

Devemos definir qual dever ser o número n de subintervalos devemos usar, para isto

utilizaremos a nossa fórmula do erro total

𝐸 =
−(𝑏−𝑎)5

180𝑛4
𝑓(𝐼𝑉)(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏.

Como 𝑓(𝑥) =
1

1+𝑥2
 , então temos que

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Cálculo Numérico com Python no Google Colaboratory

112

𝑓𝐼𝑉(𝑥) =
24

(1+𝑥2)3
−

288𝑥2

(1+𝑥2)4
+

384𝑥4

(1+𝑥2)5
, onde 0 ≤ 𝜀 ≤ 1

Sabemos que o maior erro total será obtido quando 𝑥 = 0, logo |𝑓𝐼𝑉(𝑥)|𝑚𝑎𝑥, e

considerando 𝜀 ≤ 10−4, então temos:

−(1−0)5

180𝑛4
∗ 24 ≤ 10−4  𝑛4 ≥

24

180
104  𝑛 ≥ 6.042

Isto é, devemos escolher um número de subintervalos maior que 7, e escolheremos para

este caso 𝑛 = 8. O valor da aproximação foi obtido, para 𝑛 = 8, a partir da tabela a

seguir.

 i xi yi ci
 0 0.0000 1.0000
 1 0.1250 0.9846
 2 0.2500 0.9412
 3 0.3750 0.8767
 4 0.5000 0.8000
 5 0.6250 0.7191
 6 0.7500 0.6400
 7 0.8750 0.5664
 8 1.0000 0.5000

1
4
2
4
2
4
2
4
1

Tabela 1- ci são os coeficientes que devem ser aplicados yi para determinar a

aproximação do valor da integral.

Para calcularmos o valor da integral pela seguinte expressão

∫
𝑑𝑥

1 + 𝑥2

1

0

=
1

ℎ
{𝑦0 + 4𝑦1 + 2𝑦2 + 4𝑦3 + 2𝑦4 + 4𝑦5 + 2𝑦6 + 4𝑦7 + 𝑦8}

Substituindo os valores da tabela teremos ∫
𝑑𝑥

1+𝑥2

1

0
= 0.7854

PROGRAMA EM PYTHON

Primeira Regra de Simpson

Entrada

xi = 0. # intervalo [xi , xf]

xf = 1.

n = 8 # número de intervalos (deve ser um número maior que 7)

def f(x):

 return 1/(1 + x**2)

print("Integração Numérica - 1a regra de Simpson")

print('f(x) = 1/(1 + x**2)')

import math

import numpy as np

Cálculo Numérico com Python no Google Colaboratory

113

variáveis auxiliar

h = 0

s = 0

h = (xf - xi)/n

vx = np.zeros((n+1))

vy = np.zeros((n+1))

vx[0] = xi

for i in range(1 , n+1 , 1):

 vx[i] = vx[i-1] + h

vy[0] = f(vx[0])

vy[n] = f(vx[n])

for i in range(1 , n , 1):

 vy[i] = f(vx[i])

#print(vx[:])

#print(vy[:])

s = 0

for i in range(0 , n , 2):

 s = s + (h/3)*(vy[i]+4*vy[i+1]+vy[i+2])

#s = (1/h) * s

print("Número de intervalos: " , "%d"%n)

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]")

print('Valor da Integral: {:8.4f}'.format(s))

print(' ')

import matplotlib.pyplot as plt

import numpy as np

#xi = np.linspace(-10, 10, 100)

xi = np.linspace(xi, xf, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

SAÍDA DO PROGRAMA

Integração Numérica - 1a regra de Simpson

f(x) = 1/(1 + x**2)

Número de intervalos: 8

Intervalo: [0.0000 , 1.0000]

Valor da Integral: 0.7854

Cálculo Numérico com Python no Google Colaboratory

114

ATIVIDADE

(01) Calcule a integral ∫
𝑑𝑥

1+2𝑥2

1

0
, com 𝜀 ≤ 10−4, usando a 1ª regra de Simpson.

(02) Calcule a integral ∫ 𝑙𝑛(1 + 𝑥)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a 1ª regra de Simpson.

(03) Calcule o valor da integral ∫
𝑑𝑥

1+2𝑥3

1

0
, com 𝜀 ≤ 10−4, usando a primeira regra de

Simpson.

(04) Calcule o valor da integral ∫ 𝑙𝑛(1 + 𝑥2)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a primeira regra

de Simpson.

Cálculo Numérico com Python no Google Colaboratory

115

7.3. SEGUNDA REGRA DE SIMPSON

Na segunda regra de Simpson utilizamos uma aproximação de terceira ordem no

polinômio interpolador de Gregory-Newton (𝑃𝑛(𝑥)) o que resulta na expressão:

𝑃𝑛(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧−1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧−1)(𝑧−2)

3!
∗ 𝛥3𝑦0, onde 𝑧 =

𝑥−𝑥0

ℎ
.

Com isto o valor da integral ser:

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧 − 1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧 − 1)(𝑧 − 2)

3!
∗ 𝛥3𝑦0] 𝑑𝑥

𝑏

𝑎

como 𝑧 =
𝑥−𝑥0

ℎ
  𝑑𝑥 = ℎ𝑑𝑧,

Desta forma a solução da integral é:

𝐼 =
3ℎ

8
[𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3]

 O erro total neste método é dado pela expressão

𝐸 =
−3𝑥5

80
𝑓𝐼𝑉(𝜀), 𝑎 ≤ 𝜀 ≤ 𝑏.

 Para diminuir o erro quando o intervalo não for muito pequeno, devemos

subdividir o intervalo de integração da seguinte forma:

𝐼 =
3ℎ

8
[𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3]⏟

1º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+
3ℎ

8
[𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6]⏟

2º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+. . . +
3ℎ

8
[𝑦𝑛−3 + 3𝑦𝑛−2 + 3𝑦𝑛−1 + 𝑦𝑛]⏟

ú𝑙𝑡𝑖𝑚𝑜𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

Exemplo 1 – Calcule o valor da integral 𝐼 = ∫ 𝑙𝑛(𝑥3 + 𝑒𝑥)𝑑𝑥
4

1

Solução

Calcular esta integral significa determinar a área compreendida entre o gráfico e o eixo

x, como mostra a Figura 8. O valor da integral é obtido pela seguinte expressão:

∫ 𝑙𝑛(𝑥3 + 𝑒𝑥)𝑑𝑥
4

1

=
3ℎ

8
{𝑦0 + 3𝑦1 + 3𝑦2 + 2𝑦3 + 3𝑦4 + 3𝑦5 + 2𝑦6 + 3𝑦7 + 3𝑦8 + 𝑦9}

Os valores de 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑛 são obtidos na tabela a seguir,

 -1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

7

Cálculo Numérico com Python no Google Colaboratory

116

Figura 8 – Gráfico da função 𝑓(𝑥) = 𝑙𝑛(𝑥3 + 𝑒𝑥), onde a área rachurada representa o

resultado da integral ∫ 𝑙𝑛(𝑥3 + 𝑒𝑥)𝑑𝑥
4

1
.

O valor da aproximação foi obtido, para 𝑛 = 9, a partir da tabela a seguir.

 i xi yi ci
 0 1.0000 1.3133
 1 1.3333 1.8187
 2 1.6667 2.2950
 3 2.0000 2.7337
 4 2.3333 3.1362
 5 2.6667 3.5072
 6 3.0000 3.8520
 7 3.3333 4.1754
 8 3.6667 4.4821
 9 4.0000 4.7757

1
3
3
2
3
3
2
3
3
1

Tabela 2 - ci são os coeficientes que devem ser aplicados yi para determinar a

aproximação do valor da integral.

Substituindo os valores da tabela teremos∫ 𝑙𝑛(𝑥3 + 𝑒𝑥)𝑑𝑥
4

1
= 9.6880

PROGRAMA EM PYTHON

Segunda Regra de Simpson

Entrada

xi = 0. # intervalo [xi , xf]

xf = 1.

n = 9 # número de intervalos (deve ser um numeto maior que 8)

def f(x):

 return 1/(1 + x**2)

print("Integração Numérica - 2a regra de Simpson")

print('f(x) = 1/(1 + x**2)')

import math

import numpy as np

variáveis auxiliar

h = 0

s = 0

h = (xf - xi)/n

vx = np.zeros((n+1))

vy = np.zeros((n+1))

vx[0] = xi

for i in range(1 , n+1 , 1):

Cálculo Numérico com Python no Google Colaboratory

117

 vx[i] = vx[i-1] + h

vy[0] = f(vx[0])

vy[n] = f(vx[n])

for i in range(1 , n , 1):

 vy[i] = f(vx[i])

#print(vx[:])

#print(vy[:])

s = 0

for i in range(0 , n-2 , 3):

 s = s + (3*h/8)*(vy[i]+3*vy[i+1]+3*vy[i+2]+vy[i+3])

print("Número de intervalos: " , "%d"%n)

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]")

print('Valor da Integral: {:8.4f}'.format(s))

print(' ')

import matplotlib.pyplot as plt

import numpy as np

#xi = np.linspace(-10, 10, 100)

xi = np.linspace(xi, xf, 100)

fig = plt.figure()

plt.plot(xi, f(xi), '-')

plt.grid()

SAÍDA DO PROGRAMA

Integração Numérica - 2a regra de Simpson

f(x) = 1/(1 + x**2)

Número de intervalos: 9

Intervalo: [0.0000 , 1.0000]

Valor da Integral: 0.7854

Cálculo Numérico com Python no Google Colaboratory

118

ATIVIDADE

(01) Calcule o valor da integral ∫
𝑑𝑥

1+2𝑥2

1

0
, com 𝜀 ≤ 10−4, usando a segunda regra de

Simpson.

(02) Calcule o valor da integral ∫ 𝑙𝑛(1 + 𝑥)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a segunda regra

de Simpson.

(03) Calcule a integral ∫
𝑑𝑥

1+2𝑥3

1

0
, com 𝜀 ≤ 10−4, usando a 2ª regra de Simpson.

(04) Calcule a integral ∫ 𝑙𝑛(1 + 𝑥2)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a 2ª regra de Simpson.

Cálculo Numérico com Python no Google Colaboratory

119

FÁBIO JOSÉ DA COSTA ALVES - Licenciatura em Matemática pela União

das Escolas Superiores do Pará, Licenciatura em Ciências de 1º Grau

pela União das Escolas Superiores do Pará, Graduação em Engenharia

Civil pela Universidade Federal do Pará. Possui Mestrado e Doutorado

em Geofísica pela Universidade Federal do Pará e Pós-Doutorado pelo Programa de Pós-

Graduação em Ensino de Ciências e Matemática da Universidade Federal do Rio Grande

do Norte. Professor da Universidade do Estado do Pará. Docente do Programa de Pós-

Graduação em Educação/UEPA e Docente do Programa de Pós-Graduação em Ensino de

Matemática/UEPA. Líder do Grupo de Pesquisa em Ensino de Matemática e Tecnologias.

Experiência em desenvolvimento de software educativo para o ensino de matemática.

CINTHIA CUNHA MARADEI PEREIRA - Possui Graduação em

Licenciatura em Matemática e em Tecnologia em Processamento de

Dados, Especialização em Informática Médica, Mestrado em Ciências da

Computação e Doutorado em Genética e Biologia Molecular

(Bioinformática). Professora da Universidade do Estado do Pará. Docente do Programa

de Pós-Graduação em Ensino de Matemática/UEPA. Vice-líder do Grupo de Pesquisa em

Ensino de Matemática e Tecnologias.

