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APRESENTAÇÃO 

 

Prezado(a) Leitor(a) 

 

 O livro Cálculo Numérico com Python no Google Colaboratory foi desenvolvido 

para o desenvolvimento de habilidades de do pensamento computacional, importante 

para o futuro desenvolvimento profissional, ao mesmo tempo que se estuda os métodos 

do cálculo numérico, em uma abordagem prática-experimental. 

Na abordagem de cada método, é apresentada a demonstração das expressões 

e/ou o detalhamento do algoritmo recursivo, cuja exemplificação é apresentada com 

detalhes, havendo um programa de Python para ser executado na plataforma Google 

Colaboratory, possibilitando verificar os resultados das atividades, bem como 

aprofundar conhecimentos na programação em Python. 

É importante destacar que o Google Colaboratory é um ambiente de web, pode ser 

executado tanto no computador quanto no celular, e quem não há necessidade de 

instalação de nenhum programa ou app. Além disso, os programas Python são 

executados nos processadores dos computadores da Google, viabilizando a programação 

em qualquer tipo de computador ou celular, desde que os mesmos possam internet. 

Esperamos que com o livro Cálculo Numérico com Python no Google Colaboratory, 

você consiga adquirir conhecimentos e desenvolver habilidades que possam ajudá-los 

no desenvolvimento de atividades futuras tanto no âmbito da pós-graduação quanto no 

dia a dia sua vida profissional em sala de aula. 

 

Os Autores 
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1.  SISTEMA NUMÉRICO E ERROS 

Você já observou que no dia a dia estamos cercados de várias situações que 

representam problemas das mais diversas origens, como física, química, estatística, etc,  

e que alguns destes problemas são: queda livre de um objeto de cima de um prédio, o 

crescimento de uma população de uma cidade, o consumo de combustível de um carro, o 

consumo de energia de nossa casa, entre outros. Quando um problema é representado 

por uma fórmula ou procedimento matemático, que expressam as características 

principais deste problema, temos o modelo matemático do problema.  

 
Para que você compreenda melhor a seqüência lógica da solução de um problema, 

observe o diagrama a baixo. 

 

 

 

 

 

Observe que para resolvermos um problema, devemos primeiro fazer a 

modelagem deste problema, isto é, produzir um modelo matemático que descreva todo 

o comportamento do problema, em seguida devemos buscar a resolução numérica do 

modelo matemático, que representará a solução do problema. 

Você sabia que podemos obter a solução de um problema (físico), através de 

métodos numéricos. Porém, é importante ressaltar, que em certas situações a solução 

estimada, pelos métodos numéricos, se afasta da verdadeira solução do problema. Isto 

ocorre devido a presença de fontes de erro que podem ocorrer na fase de modelagem do 

problema ou na fase resolução do problema. 

Para que você possa compreender a fonte de erro no processo de modelagem, 

observe o exemplo a seguir. 

 

Exemplo: Uma bola cai de cima de um prédio e sua velocidade em cada instante é 

descrita pela equação horária: 

𝑠 = 𝑠𝑜 + 𝑣𝑜𝑡 +
𝑎

2
𝑡2 

onde 𝑠𝑜 é a altura do prédio, 𝑣𝑜 é a sua velocidade inicial e 𝑎 representa, neste caso, a 

gravidade. 

 

Problema 

 

 
 

 

 
 

Modelo 

Matemático 

 

Solução 

 

 
 

 
 

 

Modelagem 

 
 

 
 

 

 

Resolução 
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Se a altura do prédio for de 30 m (𝑠𝑜 = 30), a velocidade inicial da bola for zero (𝑣𝑜 = 0) 

e considerando a gravidade igual a 10 m/s2 (𝑎 = 10). A posição após 3 s após a queda é:  

𝑠 = 30 + 0.1 −
10

2
22       𝑠 = 10𝑚 

Você acha que este resultado é confiável? 

É bem provável que não, pois no modelo matemático não foram consideradas outras 

forças, como, por exemplo, a resistência do ar, a velocidade do vento, etc. 

 

 Já na fase de resolução, o erro é gerado no momento que se faz os cálculos na 

calculadora ou computador devido aos processos de arredondamentos. Para 

exemplificar observe o exemplo a seguir. 

 
Exemplo: Erros na fase de Resolução 

Observe que √2 = 1,41421356237310. Ao se resolver esta equação 
𝑥

105
− √2 = 0,   cuja 

solução é  𝑥 = 105√2. Observe que a resposta desta equação dependerá do número de 

dígitos significativos. 

se √2 = 1,41               𝑥 = 141.000 

se √2 = 1,4142          𝑥 = 141.420 

se √2 = 1,414213     𝑥 = 141.421,30 

 

MUDANÇA DE BASE 

 Para você compreender melhor a fonte de erro na fase de resolução, e necessário 

nos compreendermos como funciona de mudança de base. Você sabia sábia que os 
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números que usamos no nosso dia a dia estão na base 10. Para uma melhor 

compreensão observe a decomposição do seguinte número 

8052 = 8 ∗ 103 + 0 ∗ 102 + 5 ∗ 101 + 2 ∗ 100  

é assim que se decompõem um número na base dez. Se o numero tiver dígitos atrás da 

vírgula a decomposição fica da seguinte forma 

8052,406 = 8 ∗ 103 + 0 ∗ 102 + 5 ∗ 101 + 2 ∗ 100 + 4 ∗ 10−1 + 0 ∗ 10−2 + 6 ∗ 10−3  

de uma forma compacta podemos dizer que os números na base dez pode ser escritos 

por: 

∑𝑎𝑖. 10
𝑖

𝑚

𝑖=𝑛

= 𝑎𝑚. 10
𝑚+. . . +𝑎2. 10

2 + 𝑎1. 10
1 + 𝑎0. 10

0 + 𝑎−1. 10
−1𝑎−2. 10

−2+. . . +𝑎𝑛. 10
𝑛 

onde:    𝑎𝑖   ⎯   é  0  ou 1  e  𝑛,𝑚   ⎯   números inteiros, com 𝑛 ≤ 0  e  𝑚 ≥ 0 

 Um número na base 2 pode ser escrito como 

∑𝑎𝑖. 2
𝑖

𝑚

𝑖=𝑛

= 𝑎𝑚. 2
𝑚+. . . +𝑎2. 2

2 + 𝑎1. 2
1 + 𝑎0. 2

0 + 𝑎−1. 2
−1 + 𝑎−2. 2

−2+. . . +𝑎𝑛. 2
𝑛 

 

para compreender melhor observe os exemplos a seguir: 

1011 = 1. 23 + 0. 22 + 1. 21 + 1. 20  

1011,101 = 1. 23 + 0. 22 + 1. 21 + 1. 20 + 1. 2−1 + 0. 2−2 + 1. 2−3  

 

Você sabia, que as calculadoras e os computadores trabalham na base 2, que uma 

fonte de erro de resolução está nas aproximações que são, as vezes necessárias. Para que 

você possa entende melhor este problema, vamos, agora, estudar a conversão de um 

número a base 10 para a base 2. Para isto devemos decompô-lo com fizemos 

anteriormente, e em seguida efetuar a multiplicação dos dígitos binários pelas potências 

de base 2 adequadas. 

0123
2 2.12.12.02.11011 +++=         102 111011 =   

3210123 2.12.02.12.12.12.02.1101,1011 −−− ++++++=        102 63,111011 =  

Para transformar um número inteiro da base 10 para a base 2, utiliza-se o método 

de divisões sucessivas, que consiste em dividir o número por 2, a seguir dividi-se por 2 o 

quociente encontrado e assim o processo é repetido até que o último quociente seja 

igual a 1. O número binário será, então, formado pela concatenação do último quociente 

com os restos das divisões lidos em sentido inverso ao que foram obtidos, ou seja, 
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N 2     

r1 q1 2    

 r2 q2 2   

  r3 q3   

    qn-1 2 

    rn-1 1 

𝑁10 = 1. 𝑟𝑛−1. . . . . 𝑟3. 𝑟2. 𝑟1  

 

Exemplo: 

18 2    

0 9 2   

 1 4 2  

  0 2 2 

   0 1 

 

1810 = 100102 

11 2   

1 5 2  

 1 2 2 

  0 1 

 

1110 = 11012 

 

Para transformar números fracionários da base 10 para a base 2, utiliza-se o 

método das multiplicações sucessivas, que consiste em: 

 

1º Passo –  multiplicar o numero fracionários por 2; 

 

2º Passo –  deste resultado, a parte inteira será o primeiro dígito do número na base 2 e 

a parte fracionária é novamente multiplicada por 2. O processo é repetido até que a 

parte fracionária do último produto seja igual a zero. 
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Exemplo: transforme 0,187510 para a base 2 

  

 

 

 

logo   0,187510 = 0,00112 

 

Exemplo: transforme 13,2510 para a base 2 

13 2   

1 6 2  

 0 3 2 

  1 1 

1310 = 11012  

 

 

 

0,2510 = 0,012  ,   logo   13,2510 = 1101,012 

 

Você sabia que, de maneira geral, o número 𝑥 em uma base 𝛽 é representado por: 

𝑥 = ± [
𝑑1
𝛽
+
𝑑2
𝛽2
+
𝑑3
𝛽3
+. . . +

𝑑𝑡
𝛽𝑡
] . 𝛽𝑒𝑥𝑝 

onde: 

𝑑𝑖  ⎯ são os números inteiros contidos no intervalo  0 ≤ 𝑑𝑖 ≤ 𝛽,   𝑖 = 1,2, . . . , 𝑡 

𝑒𝑥𝑝 ⎯ representa o expoente de 𝛽 e assume valores entre 𝐼 ≤ 𝑒𝑥𝑝 ≤𝑆, 

𝐼, 𝑆 ⎯  os limites inferior e superior, respectivamente, para a variação do expoente 

[
𝑑1

𝛽
+
𝑑2

𝛽2
+
𝑑3

𝛽3
+. . . +

𝑑𝑡

𝛽𝑡
] ⎯ é chamado de mantissa e é a parte do número que representa 

seus dígitos significativos e 𝑡 é o número de dígitos significativos do sistema de 

representação, comumente chamado de precisão da máquina. 

0,1875 

       2 

0,3750 

0,375 

     2 

0,750 

0,75 

   2 

1,50 

0,50 

   2 

1,00 

0,25 

   2 

0,50 

0,50 

   2 

1,00 
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Exemplo: 

Sistema decimal 

0,35710 = [
3

10
+

5

102
+

7

103
] . 100   29,35710 = [

2

10
+

9

102
+

3

103
+

5

104
+

7

105
] . 102 

Sistema binário 

110012 = [
1

2
+

1

22
+

0

23
+

0

24
+

1

25
] . 25  

11001,012 = [
1

2
+

1

22
+

0

23
+

0

24
+

1

25
+

0

26
+

1

27
] . 25  

Saiba que cada dígito do computador é chamado de bit. Apresentaremos abaixo 

uma maquina fictícia de 10 bits para a mantissa, 4 bits para o expoente e 1 bit para o 

sinal da mantissa e outro bit para o sinal do expoente. 

                

 

 

 
 

Para você entender melhor, faremos um exemplo numérico. 

 

Exemplo: Numa máquina de calcular cujo sistema de representação utilizado tenha 𝛽 =

2, 𝑡 = 10, 𝐼 = −15 e 𝑆 = 15, o número 25 na base decimal é representado por 

                                    

                      −2510 = −110012 = −0,11001. 2
5 = −0,11001. 2101  

  

1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 

 

Observe que utilizamos bit = 0 para positivo e bit = 1 para negativo. 

Um parâmetro muito utilizado para avaliar a precisão de um determinado sistema 

de representação é o número de casas decimais exatas da mantissa e que este valor é 

Mantissa Expoente 

S
in

al
 d

a 

M
an

ti
ss

a 

S
in

al
 d

o
 

E
x
p
o
en

te
 

Obs: a mantissa é um 

número entre 0 e 1. 
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dado pelo valor decimal do último bit da mantissa, ou seja, o bit de maior significado, 

logo: 

𝑃𝑅𝐸𝐶𝐼𝑆Ã𝑂 ≤
1

𝛽𝑡
 

Apresentaremos a seguir, a titulo de curiosidade, os sistemas de representação de 

algumas máquinas. 

Máquinas 𝛽 𝑡 I S 

Burroughs 5500 8 13 - 51 77 
Burroughs 6700 8 13 - 63 63 
Hewlett-Packard 45 10 10 - 98 100 
Texas SR-5X 10 12 - 98 100 
PDP-11 2 24 - 128 127 
IBM/360 16 6 - 64 63 
IBM/370 16 14 - 64 63 
Quartzil QI 800 2 24 - 127 127 

 

 

ATIVIDADE 

(01) Os números a seguir estão na base 2, escreva-os na base 10. 

(a) 110112 =   (b) 1111002 =   (c) 1001112 = 

(02) Os números a seguir estão na base 10, escreva-os na base 2. 

(a) 1510 =    (b) 1210 =    (c) 3610 = 

(03) Considere uma máquina de calcular cujo sistema de representação utilizado tenha 

𝛽 = 2, 𝑡 = 10, 𝐼 = −15 e 𝑆 = 15. Represente nesta máquina os números: 

(a) 3510    (b) 8, 210    (c) −2410 
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2.  GOOGLE COLABORATORY 

Uma pesquisa em 2019 que investigou milhares de listas de empregos para 

cientistas de dados, verificou-se que entre as 15 tecnologias mais procuradas, Python 

ficou em primeiro lugar e foi de longe a palavra-chave mais frequente nas listas. Além 

disso, muitas empresas de tecnologia famosas como Google, Instagram e Netflix fazem 

uso dessa linguagem, contribuindo para a popularização da mesma. 

Python possui uma sintaxe simples se comparada com outras linguagens de 

programação, com isso a curva de aprendizado é mais rápida do que se comparada com 

outras opções. O Python é uma linguagem de programação amplamente usada em 

aplicações da Web, desenvolvimento de software, ciência de dados e machine learning 

(ML). Os desenvolvedores usam o Python porque é eficiente e fácil de aprender e pode 

ser executado em muitas plataformas diferentes. 

A plataforma Google Colaboratory, ou mais conhecida como “Colab”, 

abreviadamente, é um produto da Google Research, que permite que qualquer pessoa 

escreva e execute código Python por meio do navegador e é especialmente adequado 

para aprendizado, análise de dados e aplicações na educação.  

O primeiro passo para usar o Google Colab, para programar em Python, é fazer o 

login em uma conta do Google, depois acesse o endereço 

https://colab.research.google.com/ e acessará o Google Colab diretamente pelo 

navegador, sem precisar instalar nada em seu computador. Ao abrir o Google Colab, você 

será recebido com uma interface limpa e amigável. 

Os programas Python na plataforma no Google Colaboraty são escutados em um 

arquivo denominado de notebooks do Colab que executam código dos servidores em 

nuvem do Google, e isso significa que pode tirar proveito da potência de hardware do 

Google, como GPUs e TPUs, independentemente da potência da sua máquina, e só 

precisa de um navegador para isso. 

 

 

 

 

  

https://colab.research.google.com/#using-accelerated-hardware
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3.  RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES 

 Você sabia, que nas mais diversas áreas das ciências ocorrem situações que 

envolvem a resolução de uma equação do tipo 𝑓(𝑥) = 0 que não possui solução 

algébrica. Está é a razão porque devemos desenvolver métodos numéricos para 

resoluções as equações do tipo 𝑓(𝑥) = 0, podendo ser equações lineares ou não lineares.  

Iniciaremos uma nova etapa estudando os métodos para isolar e calcular as raízes 

de uma equação real. Tais métodos numéricos são usados na busca das raízes das 

equações, ou os zeros reais de 𝑓(𝑥). Embora estes métodos não forneçam raízes exatas, 

eles podem calcular as raízes com a exatidão que o problema requeira. 

Em geral, os métodos, utilizados apresentam duas fases distintas: 

Fase I – Localização ou Isolamento das Raízes 

Está fase consiste em obter um intervalo que contém a raiz da função 𝑓(𝑥) = 0, e 

em seguida iremos para a segunda fase. 

Fase II – Refinamento  

Nesta fase definimos a precisão que desejamos da nossa resposta e escolhemos as 

aproximações iniciais dentro do intervalo encontrado na Fase I. Em seguida 

melhoramos, sucessivamente, a aproximação da raiz da função 𝑓(𝑥) = 0, até se obter 

uma aproximação para a raiz dentro de uma precisão pré-fixada. 

 

ISOLAMENTO DE RAÍZES 

É importante, que você saiba que os métodos numéricos utilizados para calcular 

raízes da equação 𝑓(𝑥) = 0, só calculam uma raiz de cada vez!  

Esta é a razão porque devemos determinar um intervalo para cada raiz que 

desejamos calcular. Para entendermos melhor como isolar uma raiz de uma equação, 

nós devemos observar o teorema a seguir. 

 
Teorema 

“Se uma função contínua 𝑓(𝑥) assume valores de sinais oposto nos pontos 

extremos do intervalo [ a , b ] , isto é, 𝑓(𝑎). 𝑓(𝑏) < 0, então o intervalo conterá, no 

mínimo, uma raiz da equação 𝑓(𝑥) = 0, em outras palavras haverá no mínimo um 

número 𝜀, pertencente ao intervalo aberto (𝑎, 𝑏),  𝜀 ∈ (𝑎, 𝑏), tal que,  𝑓(𝜀) = 0” 
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Exemplo: 

Neste exemplo apresentamos uma função 𝑓(𝑥) que possui dentro do intervalo 

[𝑎, 𝑏] três raízes: 𝜀1, 𝜀2 e 𝜀3. Isto é, são três valores de 𝑥, para os quais a função 𝑓(𝑥) tem 

imagem igual a zero, isto é: 𝑓(𝜀1) = 0, 𝑓(𝜀2) = 0  e  𝑓(𝜀3) = 0.  

 
 
 

 

 

 

 

Observe no exemplo que 𝑓(𝑎) < 0  e  𝑓(𝑏) > 0, logo o produto 𝑓(𝑎). 𝑓(𝑏) < 0  

 

 

 

 

 

 

 

Observe que toda vez que dentro de um intervalo [𝑎, 𝑏], tivermos 𝑓(𝑎). 𝑓(𝑏) < 0, 

significa que neste intervalo temos pelo menos uma raiz da função 𝑓(𝑥), como vemos na 

figura a seguir. 

 

 

 

 

 

 

 

Observe, na figura a seguir, que quando uma função possui um número par de raízes 

dentro do intervalo [𝑎, 𝑏], temos 𝑓(𝑎). 𝑓(𝑏) > 0 

 

 

y 

x 
 

a 

b 

 

 0 

f(x) Se a função possui imagem 

zero nos pontos 𝜀1, 𝜀2 e 𝜀3, o 

gráfico da função 𝑓(𝑥), nestes 

pontos, intercepta o eixo dos 𝑥. 

 

y 

x 

a 

b 0 

f(x) f(b) 

f(a) 

y 

x  

a 

b 0 

f(x) 
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   𝑓(𝑎) < 0       𝑓(𝑎) > 0 

   𝑓(𝑏) < 0       𝑓(𝑏) > 0 

              logo     𝑓(𝑎). 𝑓(𝑏) > 0        logo     𝑓(𝑎). 𝑓(𝑏) > 0 

 

Observe, na figura a seguir, que quando uma função não possui raízes dentro 

dointervalo [𝑎, 𝑏], temos 𝑓(𝑎). 𝑓(𝑏) > 0 

 

 

 

 

 

 

 

   𝑓(𝑎) < 0       𝑓(𝑎) > 0 

   𝑓(𝑏) < 0       𝑓(𝑏) > 0 

              logo     𝑓(𝑎). 𝑓(𝑏) > 0        logo     𝑓(𝑎). 𝑓(𝑏) > 0 

 

O número de raizes de uma função 𝑓(𝑥), dentro do intervalo [𝑎, 𝑏] , que 

observamos nos exemplos anteriores, é formalmente expressõ pelo teorema que 

anunciaremos a seguir. 
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TEOREMA DE BOLZANO 

Seja 𝑃(𝑥) = 0 uma equação algébrica com coeficientes reais e 𝑥 ∈ (𝑎, 𝑏). 

• Se 𝑃(𝑎). 𝑃(𝑏) < 0, então existem um número ímpar de raízes reais no intervalo 

(𝑎, 𝑏). 

• Se 𝑃(𝑎). 𝑃(𝑏) > 0, então existem um número par de raízes reais no intervalo 

(𝑎, 𝑏) ou não existem raízes reais no intervalo (𝑎, 𝑏). 

 

EQUAÇÕES TRANSCENDENTES 

Saiba que a determinação do número de raízes de funções transcendentes é quase 

impossível, pois algumas equações podem ter um número infinito de raízes. Como 

exemplo temos as funções: 

 

                    Função Seno                                             Função Cosseno 

 

 

                   Função Tangente            Função Exponencial 

  

 

O método mais simples de se achar um intervalo que contenha só uma raiz de uma 

função, ou seja, isolar uma raiz, é o método gráfico que abordaremos a seguir. 
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MÉTODO GRÁFICO 

Lembre-se que uma raiz de uma equação 𝑓(𝑥) = 0 é um ponto onde a função 𝑓(𝑥) 

toca o eixo dos 𝑥. Observe a função 𝑓(𝑥) = 𝑥2 − 6𝑥 + 5 cujo gráfico está na figura a 

seguir.   

Saiba que uma outra forma de identificarmos as raízes da equação é substituir 

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), onde 𝑔(𝑥) − ℎ(𝑥) = 0. As raízes de 𝑓(𝑥) = 0  corresponderam a 

interseção das funções 𝑔(𝑥) e ℎ(𝑥). 

Para você entender melhor, observe o exemplo a seguir, onde utilizamos a função 

𝑓(𝑥) = 𝑥2 − 7𝑥 + 10  que possui raízes 2 e 5.  

Se fizermos 𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥), onde 𝑔(𝑥) = 𝑥2 e ℎ(𝑥) = 7𝑥 − 10 temos a 

interseção de 𝑔(𝑥) com ℎ(𝑥) acontece em 2 e 5. 

             

Observe no próximo exemplo que o método gráfico também funciona com funções 

mais complexas cujas raízes não são simples de se determinar. 

 

Exemplo: 

A aplicação do método utilizaremos a função 𝑓(𝑥) = 𝑒𝑥 − 2 − 𝑠𝑒𝑛𝑥  que possui 

raízes 2 e 5. Fazendo 𝑔(𝑥) = 𝑒𝑥 e ℎ(𝑥) = +2 + 𝑠𝑒𝑛𝑥, observe que é muito mais fácil 

fazer o gráfico de 𝑔(𝑥) e ℎ(𝑥) do que a fazer o gráfico da função 𝑓(𝑥). 

0 1 2 3 4 5 6 7

-10

0

10

Y

-1 0 1 2 3 4 5 6 7
-10

0

10

20

30

40

X

Y

1072 +−= xx)x(f  

2x)x(g =  

107 −= x)x(h  



Cálculo Numérico com Python no Google Colaboratory 

 

19 

              

Analisando o gráfico podemos afirmar que a nossa raiz esta próxima de 1, então 

este será nosso valor inicial para os nossos métodos numéricos. 

ATIVIDADE  

(01) Dada a função 𝑓(𝑥) = 0.2𝑥2 + 𝑠𝑒𝑛𝑥, separe está em duas funções e aproxime pelo 

menos uma de suas raízes pelo método gráfico. 

(02) Dada a função 𝑓(𝑥) = 𝑥2 − 4𝑥, separe está em duas funções e aproxime pelo menos 

uma de suas raízes pelo método gráfico. 

(03) Dada a função 𝑓(𝑥) = 𝑥2 − 𝑐𝑜𝑠 𝑥, separe está em duas funções e aproxime pelo 

menos uma de suas raízes pelo método gráfico. 

(04) Dada a função 𝑓(𝑥) = 𝑥3 + 𝑠𝑒𝑛𝑥, separe está em duas funções e aproxime pelo 

menos uma de suas raízes pelo método gráfico. 
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3.1. MÉTODO DA BISSEÇÃO 

Para utilizarmos este método devemos primeiro isolar a raiz dentro de um 

intervalo [𝑎, 𝑏], isto é, devemos utilizar o método gráfico para aproximar visualmente a 

raiz para em seguida isolá-la pelo intervalo (𝑎, 𝑏), onde esta raiz pertença a este 

intervalo. 

Para utilizarmos o método da bisseção é necessário que a função 𝑓(𝑥) seja uma 

continua no intervalo [𝑎, 𝑏] e que 𝑓(𝑎). 𝑓(𝑏) < 0. No método da bisseção devemos 

dividir o intervalo [𝑎, 𝑏] ao meio, obtendo assim 𝑥𝑜 , com isto temos agora dois intervalos 

[𝑎, 𝑥𝑜] e [𝑥𝑜 , 𝑏] 

 

 

 

 

 

 

 

Se 𝑓(𝑥𝑜) = 0, então, 𝜀 = 𝑥𝑜; Caso contrário, a raiz estará no subintervalo onde a 

função tem sinais oposto nos pontos extremos, ou seja, se  

𝑓(𝑎). 𝑓(𝑥𝑜) < 0  implica que a raiz está no intervalo [𝑎, 𝑥𝑜]. 

𝑓(𝑥𝑜). 𝑓(𝑏) < 0  implica que a raiz está no intervalo [𝑥𝑜 , 𝑏]. 

A partir daí construiremos um novo intervalo [𝑎1, 𝑏1] 
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O novo intervalo [𝑎1, 𝑏1] que contém 𝜀 é dividido ao meio e obtém-se 𝑥1 onde se  

𝑓(𝑎1). 𝑓(𝑥1) < 0 implica que a raiz está no intervalo [𝑎1, 𝑥1]. 

𝑓(𝑥1). 𝑓(𝑏1) < 0 implica que a raiz está no intervalo [𝑥1, 𝑏1]. 

O processo se repete até que se obtenha uma aproximação para a raiz exata 𝜀, com 

a tolerância ∈ desejada. Tolerância (∈) é um valor que o calculista define, que define a 

proximidade que deve ter do valor estimado do valor exato. A partir da tolerância, 

definimos o critério de parada, onde se para de refinar a solução e se aceita o valor 

aproximado calculado. A tolerância ∈, é muitas vezes avaliada por um dos três critérios 

abaixo: 

|𝑓(𝑥𝑛)| ≤ 𝐸 

|𝑥𝑛 − 𝑥𝑛−1| ≤ 𝐸 

|𝑥𝑛 − 𝑥𝑛−1|

|𝑥𝑛|
≤ 𝐸 

Para você compreender melhor a aplicação do método da bisseção, observe os 

próximos exemplos numéricos, onde determinaremos as raízes das funções 

determinadas. 

Exemplo: 

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3  com 𝐸 ≤ 0,01. 

Solução: Primeiro devemos determinar um intervalo onde está a raiz que desejamos 

calcular, para isto devemos fazer uma no seu gráfico. 

                              

A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3]. 
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Logo 

N an bn xn f(xn) E 

0 
1 
2 
3 
4 
5 
6 
7 

    1.0000              3.0000          2.0000         1.0000     
    1.0000              2.0000          1.5000        -0.7500          0.5000 
    1.5000              2.0000          1.7500         0.0625          0.2500 
    1.5000              1.7500          1.6250        -0.3594          0.1250 
    1.6250              1.7500          1.6875        -0.1523          0.0625 
    1.6875              1.7500          1.7188        -0.0459          0.0313 
    1.7188              1.7500          1.7344         0.0081          0.0156 
    1.7266              1.7344          1.7266        -0.0190          0.0078 

 

onde N   número da interação 

an    extremo inferior do intervalo [𝑎𝑛 , 𝑏𝑛]. 

bn    extremo superior do intervalo [𝑎𝑛 , 𝑏𝑛]. 

xn    ponto médio do intervalo [𝑎𝑛 , 𝑏𝑛]. 

f(xn)   valor da função em xn.    

E  erro calculado pela expressão |𝑥𝑛 − 𝑥𝑛−1| 

Construção da tabela 

1ª linha: Na iteração inicial ( N = 0 ) temos [𝑎𝑜𝑏𝑜] = [13] sendo o ponto médio 𝑥𝑜 = 2. 

2ª linha: ( N = 1 ) Como 𝑓(𝑎𝑜). 𝑓(𝑥𝑜) < 0,  substituímos 𝑏1 = 𝑥𝑜 , logo [𝑎1𝑏1] = [12] 

sendo o ponto médio 𝑥1 = 1,5. 

3ª linha: ( N = 2 ) Como 𝑓(𝑥1). 𝑓(𝑏1) < 0,  substituímos 𝑎2 = 𝑥1, logo [𝑎2𝑏2] = [1,52] 

sendo o ponto médio 𝑥2 = 1,75. 

......................................................................................................... 

8ª linha: ( N = 7 ) Como 𝑓(𝑎6). 𝑓(𝑥6) < 0,  substituímos 𝑎7 = 𝑥6, logo [𝑎7𝑏7] =

[1.7188    1.7344] sendo o ponto médio 𝑥7 = 1.7266. 

Como o erro é menor que tolerância (0.0078 < 𝐸) então a aproximação final é 𝑥 =

1,7266. 
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PROGRAMA EM PYTHON 

# Método da Bisseção 

# Entrada 

a = 1            # intervalo [a , b] 

b = 3 

tolerancia = 0.01   # tolerância 

nloop = 50          # número máximo de loop 

 

def f(x): 

  return x**2 - 3 

 

import math 

 

print("Método da Bisseção") 

print(" 

n      a        b       x       f(a)     f(x)     f(b)   f(a)*f(x)  err

o") 

 

n = 1 

fa = f(a) 

fb = f(b) 

xm2 = (a + b)/2 

fxm = f(xm2) 

v = fa*fxm 

erro = 10 

 

print("%2d"%n, "%8.4f"%a, "%8.4f"%b, "%8.4f"%xm2, "%8.4f"%fa, 

"%8.4f"%fb, "%8.4f"%fxm, "%8.4f"%v, "%8.4f"%erro) 

 

if v < 0: b = xm2 

if v > 0: a = xm2 

if v == 0: print("o valor da raiz é %4.4f" %xm2) 

 

while(erro > tolerancia): 

    xm1 = xm2 

    n = n + 1. 

    xm2 = (a + b)/2 

    fxm = f(xm2) 

    erro = math.fabs(xm1 - xm2) 

    v = fa*fxm 

    if v < 0: b = xm2 

    if v > 0: a = xm2 

    print("%2d"%n, "%8.4f"%a, "%8.4f"%b, "%8.4f"%xm2, "%8.4f"%fa,   

"%8.4f"%fb, "%8.4f"%fxm, "%8.4f"%v, "%8.4f"%erro) 

    if(n == nloop): 

        break 
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print("\nA raiz aproximada é %4.4f" %xm2) 

print('Loop para com no máximo 50 interações') 

 

import matplotlib.pyplot as plt 

import numpy as np 

xi = np.linspace(-10, 10, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 

 

 

SAÍDA DO PROGRAMA 

Método da Bisseção 

 n      a        b       x       f(a)     f(x)     f(b)   f(a)*f(x)  erro 

 1   1.0000   3.0000   2.0000  -2.0000   6.0000   1.0000  -2.0000  10.0000 

 2   1.5000   2.0000   1.5000  -2.0000   6.0000  -0.7500   1.5000   0.5000 

 3   1.5000   1.7500   1.7500  -2.0000   6.0000   0.0625  -0.1250   0.2500 

 4   1.6250   1.7500   1.6250  -2.0000   6.0000  -0.3594   0.7188   0.1250 

 5   1.6875   1.7500   1.6875  -2.0000   6.0000  -0.1523   0.3047   0.0625 

 6   1.7188   1.7500   1.7188  -2.0000   6.0000  -0.0459   0.0918   0.0312 

 7   1.7188   1.7344   1.7344  -2.0000   6.0000   0.0081  -0.0161   0.0156 

 8   1.7266   1.7344   1.7266  -2.0000   6.0000  -0.0190   0.0380   0.0078 

 

A raiz aproximada é 1.7266 

Loop para com no máximo 50 interações 
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ATIVIDADE 

(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])    Resposta: 2.2422 

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [0 , 3])   Resposta: 1.3535 

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥   com  𝐸 ≤ 0,01 utilizando o 

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5])   Resposta: 4.1016 

(04) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 5𝑠𝑒𝑛𝑥   com  𝐸 ≤ 0,01 utilizando o método 

da bisseção. (Sugestão utilizar intervalo de busca [1 , 3])  Resposta: 2.0000 

(05) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [2 , 4]) 

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥   com  𝐸 ≤ 0,01 utilizando o 

método da bisseção. (Sugestão utilizar intervalo de busca [0 , 2]) 

(07) Calcular a raiz da equação 𝑓(𝑥) = 𝑥3 − 12   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3]) 
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3.2.  MÉTODO DAS CORDAS 

 Este será o segundo método numérico para o cálculo de raízes que iremos estudar. 

Para utilizarmos este método devemos primeiro isolar a raiz dentro de um intervalo 

[𝑎, 𝑏], isto é, devemos, novamente, utilizar o método gráfico para aproximar visualmente  

a raiz para em seguida isolá-la pelo intervalo [𝑎 , 𝑏], sendo que a raiz pertença ao 

intervalo (𝑎 , 𝑏).  

Para utilizarmos o método das cordas é necessários que a função 𝑓(𝑥) seja uma 

continua no intervalo [𝑎 , 𝑏] e que derivada segunda com sinal constante, sendo 

𝑓(𝑎). 𝑓(𝑏) < 0 e que somente um número 𝜀 ∈ [𝑎 , 𝑏] tal que 𝑓(𝜀) = 0 

No método das cordas, ao invés de se dividir o intervalo [𝑎 , 𝑏] ao meio, ele é 

dividido em partes proporcionais à razão −𝑓(𝑎)/𝑓(𝑏), ou seja 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 

x b 

  

 

f(a) 

f(b) 

A existência da corda da origem 

a dois triângulos semelhantes, 
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esta relação nos conduz a um 

valor aproximado da raiz 

𝑥1 = 𝑎 + ℎ1 
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y 

x b 

 

Corda 

f(a) 

f(b) 

  

Ao se aplicar este procedimento ao novo intervalo que contém 𝜀, como mostra a 

figura a seguir, ([𝑎 , 𝑥1]  𝑜𝑢  [𝑥1 , 𝑏]), obtém-se uma nova aproximação 𝑥2 da raiz pela 

aproximação apresentada acima 

 

 

 

 

 

 

 

 

 

 

 

 

No método das cordas substituímos a curva 𝑦 = 𝑓(𝑥) por uma corda que passa 

pelos pontos 𝐴(𝑎 , 𝑓(𝑎))  e  𝐵(𝑏 , 𝑓(𝑏)) 

 

Observe, nas figuras a seguir, como no método das cordas é escolhido o extremo do 

intervalo [𝑎 , 𝑏] que deve ser igual ao valor 𝑥𝑜 .  
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𝑓′′(𝑥) > 0 

𝑓(𝑎) < 0 𝑒 𝑓(𝑏) > 0 

𝑐 = 𝑏 

𝑓′′(𝑥) > 0 

𝑓(𝑎) > 0  𝑒 𝑓(𝑏) < 0 

𝑐 = 𝑎 
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A fórmula de recorrência para a aproximação da raiz enésima é 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛)−𝑓(𝑐)
(𝑥𝑛 − 𝑐),   onde 𝑛 = 0,1,2, . .., 

onde o ponto fixado 𝑐 (ou “𝑎” ou “𝑏”) é aquele no qual o sinal da função 𝑓(𝑥) 

coincide com o sinal da segunda derivada 𝑓′′(𝑥), ou seja 𝑓′′(𝑐). 𝑓(𝑐) > 0. 

E
|x|

|xx|

n

nn 
− −1

 

Para você compreender melhor a aplicação do método das cordas, observe os 

próximos exemplos numéricos, onde determinaremos as raízes das funções. 

 

Exemplo: 

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3  com 𝐸 ≤ 0,01. 

Solução 

Primeiro devemos determinar um intervalo onde esta a raiz que desejamos 

calcular, para isto devemos fazer uma no seu gráfico. 
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A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3]. Logo 

 

N an bn xn f(xn) E 
0 
1 
2 
3 
4 

    1.0000           3.0000          3.0000         6.0000          1.5000 
    1.0000           1.5000          1.5000        -0.7500          0.3000 
    1.0000           1.8000          1.8000          0.2400          0.0857 
    1.0000           1.7143          1.7143         -0.0612         0.0226 
    1.0000           1.7368          1.7368           0.0166         0.0061 

onde  

N   número da interação 

an    extremo inferior do intervalo [𝑎𝑛 , 𝑏𝑛]. 

bn    extremo superior do intervalo [𝑎𝑛 , 𝑏𝑛]. 

xn    ponto médio do intervalo [𝑎𝑛 , 𝑏𝑛]. 

f(xn)   valor da função em xn. 

E  erro calculado pela expressão |𝑥𝑛 − 𝑥𝑛−1| 

Construção da tabela 

Como 𝑓′′(𝑥) = 2      𝑓′′(3) = 2 > 0  e  𝑓(3) = 32 − 3 = 6 > 0   

logo   𝑓′′(3). 𝑓(3) > 0 de onde temos que 𝑐 = 𝑎 = 1 usando a fórmula de recorrência  

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓(𝑥𝑛)−𝑓(𝑐)
(𝑥𝑛 − 𝑐) temos que 𝑥0 = 𝑏 = 3 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓(𝑥0)−𝑓(1)
(𝑥0 − 1) = 1.5000      [𝑎 , 𝑏] = [1.0    1.50] 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓(𝑥1)−𝑓(1)
(𝑥1 − 1) = 1.8000       [𝑎 , 𝑏] = [1.0  ,  1.80] 

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓(𝑥2)−𝑓(1)
(𝑥2 − 1) = 1.7143      [𝑎 , 𝑏] = [1.0    1.7143] 

𝑥4 = 𝑥3 −
𝑓(𝑥3)

𝑓(𝑥3)−𝑓(1)
(𝑥3 − 1) = 1.7368       [𝑎 , 𝑏] = [1.0    1.7368] 

Como o erro é menor que tolerância, então a aproximação é  𝑥 = 1,7368. 
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PROGRAMA EM PYTHON 

# Método das Cordas 

# Entrada 

a = 1               # intervalo [a , b] 

b = 3 

tolerancia = 0.01   # tolerância 

nloop = 50          # número máximo de loop 

 

def f(x): 

  return x**2 - 3 

 

def der1(x): 

# Derivada de primeira ordem 

  dxd1 = 0.0001 

  return ( f(x + dxd1) - f(x) ) / dxd1 

 

def der2(x): 

# Derivada de segunda ordem 

  dxd2 = 0.0001 

  d11 = ( f(x) - f(x - dxd2) ) / dxd2 

  d12 = ( f(x + dxd2) - f(x) ) / dxd2 

  return ( d12 - d11 ) / dxd2 

 

import math 

 

print("Método das Cordas") 

print(" n      a        b       xn      f(xn)    erro") 

 

vfa = 0 

vfb = 0 

vder2a = 0 

vder2b = 0 

 

if (f(a) >= 0): 

  vfa = 1 

 

if (f(b) >= 0): 

  vfa = 1 

 

if (der2(a) >= 0): 

  vder2a = 1 

 

if (der2(b) >= 0): 

  vder2b = 1 

 

if (vder2a == vfa): 

    xo = a 

    c = b 
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if (vder2b == vfb): 

    xo = b 

    c = a 

 

# Variáveis auxiliares 

para = 0 

xk = 0 

h = 0 

 

erro = 10 

 

if (vder2a == vfa): 

  print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

if (vder2b == vfb): 

  print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

 

while(para == 0): 

    xk = xo - (f(xo)/(f(xo)-f(c)))*(xo - c); 

    erro = abs(xk - xo) 

    xo = xk 

    h = h + 1 

    if (vder2a == vfa): 

      print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

    if (vder2b == vfb): 

      print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

    if ( erro < tolerancia): 

      if (h > 1): 

        para = 1 

 

print("\nA raiz aproximada é %4.4f \n" %xo) 

 

import matplotlib.pyplot as plt 

import numpy as np 

xi = np.linspace(-10, 10, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 
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SAÍDA DO PROGRAMA 

Método das Cordas 

 n      a        b       xn      f(xn)    erro 

 0   1.0000   3.0000   1.0000  -2.0000  10.0000 

 1   1.5000   3.0000   1.5000  -0.7500   0.5000 

 2   1.6667   3.0000   1.6667  -0.2222   0.1667 

 3   1.7143   3.0000   1.7143  -0.0612   0.0476 

 4   1.7273   3.0000   1.7273  -0.0165   0.0130 

 5   1.7308   3.0000   1.7308  -0.0044   0.0035 

 

A raiz aproximada é 1.7308 

 

 
 
ATIVIDADE  
 
(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])    Resposta: 2.2308 

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])   Resposta: 1.3545 

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥   com  𝐸 ≤ 0,01 utilizando o 

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5])   Resposta: 4.1032 

(04) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 5𝑠𝑒𝑛𝑥   com  𝐸 ≤ 0,01 utilizando o método 

da bisseção. (Sugestão utilizar intervalo de busca [2 , 3])  Resposta: 2.0870 

(05) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7   com  𝐸 ≤ 0,01 utilizando o método das 

cordas. (Sugestão utilizar intervalo de busca [2 , 4]) 

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥   com  𝐸 ≤ 0,01 utilizando o 

método das cordas. (Sugestão utilizar intervalo de busca [1 , 3]) 

(07) Calcular a raiz da equação 𝑓(𝑥) = 𝑥3 − 12   com  𝐸 ≤ 0,01 utilizando o método das 

cordas. (Sugestão utilizar intervalo de busca [1 , 3])  
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3.3. MÉTODO DE NEWTON 

 Iremos estudar agora, o método de Newton para o cálculo de raízes de uma 

equação que utiliza informação da primeira e segunda derivada. Semelhantes aos 

métodos da bisseção e da corda, devemos primeiro isolar a raiz que desejamos procurar 

dentro de um intervalo [𝑎 , 𝑏] utilizando para isto o método gráfico.  

Para utilizarmos o método de Newton é necessários que a função 𝑓(𝑥) seja uma 

continua no intervalo [𝑎 , 𝑏] e que 𝜀 o seu único zero neste intervalo; as derivada 𝑓′(𝑥) 

[𝑓′(𝑥) ≠ 0] e 𝑓′′(𝑥) devem também ser contínuas. Para se encontrar a expressão para o 

cálculo da aproximação 𝑥𝑛 para a raiz 𝜀 devemos fazer uma expansão em série de Taylor 

para 𝑓(𝑥) = 0, de onde temos 𝑓(𝑥) = 𝑓(𝑥𝑛) + 𝑓′(𝑥𝑛)(𝑥 − 𝑥𝑛) se fizermos 𝑓(𝑥) =

𝑓(𝑥𝑛+1) = 0 obteremos a seguinte expressão   𝑓(𝑥𝑛) + 𝑓′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) = 0, isolando o 

termo 𝑥𝑛+1 na temos     𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
,  de 𝑥𝑛+1 é uma aproximação de 𝜀. 

Você sabia, que o método de Newton é equivalente a substituir um pequeno arco 

de curva 𝑦 = 𝑓(𝑥) por uma reta tangente, traçada a partir de um ponto da curva? 

Observe, nas figuras a seguir como, no método de Newton, é escolhido o extremo do 

intervalo [𝑎 , 𝑏] deve ser igual ao valor 𝑥𝑜 . Para você compreender melhor a utilização do 

método de Newton, observe os exemplos numéricos a seguir. 

 

Exemplo: 

(01) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 3  com 𝐸 ≤ 0,01. 

Solução 
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Primeiro devemos determinar um intervalo onde está a raiz que desejamos 

calcular, para isto devemos fazer uma no seu gráfico. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                              

A raiz procurada está próxima de 2 e está dentro do intervalo [1 , 3]. Logo 
 

N na bn xn f (xn) E 
0 
1 
2 
3 

    1.0000             3.0000        3.0000        6.0000 
    1.0000             2.0000        2.0000        1.0000           0.2500 
    1.0000             1.7500        1.7500        0.0625           0.0179 
    1.0000             1.7321        1.7321        0.0003           0.0001 

 

Como 𝑓′(𝑥) = 2𝑥      𝑓′(3) = 6 > 0 e como   𝑓′′(𝑥) = 2 > 0  logo temos 𝑥0 = 𝑏 = 3     

usando a expressão 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
, temos a seguinte recorrência  

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
= 2.0000          [𝑎 , 𝑏] = [1.0    2.0] 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓′(𝑥1)
= 1.7500        [𝑎 , 𝑏] = [1.0    1.75] 

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓′(𝑥2)
= 1.7321    [𝑎 , 𝑏] = [1.0    1.7321] 

Como o erro é menor que tolerância então a aproximação final é 𝑥 = 1,7321. 
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PROGRAMA EM PYTHON 

# Método de Newton 

# Entrada 

a = 1               # intervalo [a , b] 

b = 3 

tolerancia = 0.01   # tolerância 

nloop = 50          # número máximo de loop 

 

def f(x): 

  return x**2 - 3 

 

def der1(x): 

# Derivada de primeira ordem 

  dxd1 = 0.0001 

  return ( f(x + dxd1) - f(x) ) / dxd1 

 

def der2(x): 

# Derivada de segunda ordem 

  dxd2 = 0.0001 

  d11 = ( f(x) - f(x - dxd2) ) / dxd2 

  d12 = ( f(x + dxd2) - f(x) ) / dxd2 

  return ( d12 - d11 ) / dxd2 

 

import math 

 

print("Método de Newton") 

print(" n      a        b       xn      f(xn)    erro") 

 

vfa = 0 

vfb = 0 

vder2a = 0 

vder2b = 0 

 

if (f(a) >= 0): 

  vfa = 1 

 

if (f(b) >= 0): 

  vfa = 1 

 

if (der2(a) >= 0): 

  vder2a = 1 

 

if (der2(b) >= 0): 

  vder2b = 1 

 

if (vder2a == vfa): 

    xo = a 

    c = b 
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if (vder2b == vfb): 

    xo = b 

    c = a 

 

# Variáveis auxiliares 

para = 0 

xk = 0 

h = 0 

 

erro = 10 

 

if (vder2a == vfa): 

  print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

if (vder2b == vfb): 

  print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

 

while(para == 0): 

    xk = xo - (f(xo)/der1(xo)); 

    erro = abs(xk - xo) 

    xo = xk 

    h = h + 1 

    if (vder2a == vfa): 

      print("%2d"%h, "%8.4f"%xo, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

    if (vder2b == vfb): 

      print("%2d"%h, "%8.4f"%c, "%8.4f"%xo, "%8.4f"%xo, "%8.4f"%f(xo), 

"%8.4f"%erro) 

    if ( erro < tolerancia): 

      if (h > 1): 

        para = 1 

 

print("\nA raiz aproximada é %4.4f \n" %xo) 

 

import matplotlib.pyplot as plt 

import numpy as np 

xi = np.linspace(-10, 10, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 
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SAÍDA DO PROGRAMA 

Método de Newton 

 n      a        b       xn      f(xn)    erro 

 0   1.0000   3.0000   1.0000  -2.0000  10.0000 

 1   2.0000   3.0000   2.0000   0.9998   1.0000 

 2   1.7500   3.0000   1.7500   0.0625   0.2500 

 3   1.7321   3.0000   1.7321   0.0003   0.0179 

 4   1.7321   3.0000   1.7321   0.0000   0.0001 

 

A raiz aproximada é 1.7321 

 

 

 

ATIVIDADES  

(01) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥2 − 10   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])    Resposta: 2.2381 

(02) Calcular a raiz da equação 𝑓(𝑥) = 2𝑥3 − 5   com  𝐸 ≤ 0,01 utilizando o método da 

bisseção. (Sugestão utilizar intervalo de busca [1 , 3])   Resposta: 1.7150 

(03) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 16 + 𝑠𝑒𝑛𝑥   com  𝐸 ≤ 0,01 utilizando o 

método da bisseção. (Sugestão utilizar intervalo de busca [3 , 5])   Resposta: 4.1035 

(04) Calcular a raiz da equação 𝑓(𝑥) = −𝑥2 + 7   com  𝐸 ≤ 0,01 utilizando o método de 

Newton. (Sugestão utilizar intervalo de busca [2 , 4]) 

(06) Calcular a raiz da equação 𝑓(𝑥) = 𝑥2 − 4 + 𝑐𝑜𝑠 𝑥   com  𝐸 ≤ 0,01 utilizando o 

método de Newton. (Sugestão utilizar intervalo de busca [1 , 3]) 
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COMPARAÇÂO DOS MÉTODOS: BISSEÇÃO, CORDAS E NEWTON 

Você observou que os exemplos utilizados nos três métodos (bisseção, cordas e de 

Newton) são iguais? Fizemos isto, para que você percebesse melhor as diferenças entre 

os três métodos! 

Retorne aos exemplos do método da bisseção e verifique que este método tem 

convergência lenta, embora este método não necessite de informações da primeira e 

nem da segunda derivada.  

Se você rever os exemplos do método da corda, observará que sua convergência 

depende da proximidade de 𝑥0 da raiz exata. Você, também irá perceber que este 

método necessita que sinal da segunda derivada permaneça constante no intervalo, para 

que haja convergência do resultado. Já o método de Newton necessita da forma analítica 

da primeira derivada, porém sua convergência e extraordinária. 
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4.  SISTEMAS DE EQUAÇÕES LINEARES 

 Em nosso dia a dia, a solução de muitos problemas, geralmente está 

relacionado com a resolução de um sistema. Um exemplo simples é a determinação do 

ponto de interseção de duas retas: 𝑦 + 𝑥 = 5  e  𝑦 − 𝑥 = 1.  

 

 

 

 

 

 

Para dar a solução deste problema, devemos resolver o seguinte sistema 

{
𝑦 + 𝑥 = 5
𝑦 − 𝑥 = 1

 

que tem a seguinte solução é 𝑥 = 2 e 𝑦 = 3. Onde o ponto (2 , 3) corresponde a 

coordenada da interseção das duas retas.  

 Para problemas simples, que envolvem um número reduzido de variáveis (2 

ou três variáveis), a solução pode ser facilmente obtida com procedimentos simples de 

substituição ou comparação que aprendemos ao longo do nosso curso primário e 

secundário. Porém, o grau de dificuldade, na resolução do sistema, aumenta 

consideravelmente quando aumenta o número de variáveis (acima de 4 variáveis), 

sendo inclusive necessário o uso de computador para a obtenção de sua solução. 

 No dia a dia, são vários os problemas que envolvem sistemas com grandes 

números de incógnitas, como por exemplo, a tomografia médica, onde os sistemas 

envolvidos chegam a ter mais de 5.000 incógnitas. 

 Para entendermos os métodos de resolução de sistemas lineares, devemos 

primeiro compreender que um sistema linear 𝑆𝑛 é uma coleção de 𝑛 equações lineares, 

como mostraremos a seguir 

𝑆𝑛 = {

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3+. . . +𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

que pode, também, ser representado por 

𝑆𝑛 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑖=1 = 𝑏𝑖,    onde 𝑖 = 0,1,2, . . . , 𝑛 

 e na forma matricial o sistema 𝑆𝑛 pode ser escrito como 

? 

𝑦 − 𝑥 = 1 

𝑦 + 𝑥 = 5 
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𝐴𝑥 = 𝑏 

onde 𝐴 é uma matriz quadrada de ordem 𝑛, 𝑥 e 𝑏 não matrizes 𝑛 × 1, isto é, com 𝑛 linhas 

e uma coluna. A matriz 𝐴 tem a seguinte forma 

𝐴 = [

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
. . . . . . . . . . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛

] 

onde 𝑎𝑖𝑗 é chamado coeficiente da incógnita 𝑥𝑗  e os 𝑏𝑖 são chamados termos 

independentes. Com a matriz dos coeficientes e a matriz dos termos independentes 

montamos a matriz 𝐵, denominada de matriz ampliada, que pode ser escrita por 

𝐵 = [𝐴: 𝑏] 

ou seja 

𝐵 = [

𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑎21 𝑎22 𝑎23 . . . 𝑎2𝑛
. . . . . . . . . . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3 . . . 𝑎𝑛𝑛

𝑏1
𝑏2
. . . .
𝑏𝑛

] 

Uma solução do sistema 𝑆𝑛 , são os valores 𝑥1, 𝑥2, ... , 𝑥𝑛 , que constituem a matriz coluna 

𝑥, denominada de matriz solução que pode ser escrita por 

𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) 

Os sistemas lineares 𝑆𝑛 podem ser classificados da seguinte forma: 

𝑆𝑛 =

{
 
 

 
 Homogêneo {Possível {

Determinado
Indeterminado

Não − Homogêneo {
Impossível

Possível {
Determinado
Indeterminado

 

Certamente, você deve estar se questionando sobre alguns itens do diagrama 

apresentado.  Um sistema 𝑆𝑛 (𝐴𝑥 = 𝑏) é denominado de homogêneo quando a matriz 𝑏, 

dos termos independentes, é nula, isto é, quando 

𝑏 = [

0
0
⋮
0

] 

Um sistema 𝑆𝑛 (𝐴𝑥 = 𝑏) é denominado de não-homogêneo quando a matriz 𝑏, não é 

nula, isto é, existe pelo menos um termo em 𝑏, que não é nulo. 
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Um sistema é dito impossível quando não há nenhuma solução que satisfaça o 

sistema, isto é, sua solução é o vazio. Um sistema é dito possível quando há, pelo menos, 

uma seqüência de valores 𝑥1, 𝑥2, ..., 𝑥𝑛 que satisfaça o sistema, isto é, a sua solução nunca 

é o vazio. Se existir uma única seqüência de valores que satisfaça o sistema 𝑆𝑛, então este 

sistema é dito Possível e determinado, se existir mais de uma sequência de valores 𝑥1, 

𝑥2, ... , 𝑥𝑛 que satisfaça o sistema 𝑆𝑛, estão podemos afirmar que o sistema é Possível e 

indeterminado. 

 

TRANSFORMAÇÕES ELEMENTARES 

 Você sabia, que o cálculo da solução de sistemas através de métodos interativos, 

consiste em uma seqüência de transformações, onde um sistema mais complexo é 

transformado em outro mais simples com a mesma solução. 

 As transformações utilizadas para modificar os sistemas de equações lineares são 

formadas pelas seguintes operações elementares: 

(1) Trocar a ordem de duas equações do sistema. 

(2) Multiplicar uma equação do sistema por uma constante não numa. 

(3) Adicionar duas equações do sistema. 

 

 A partir das operações apresentadas podemos transformar um sistema 𝑆1 em um 

sistema 𝑆2. Isto é, 𝑆1 e 𝑆2 são equivalentes. 

 Para que você possa entender bem estas transformações observe o exemplo a 

seguir. 

Exemplo: 

Calcule a solução do sistema    𝑆1 = {
𝑥 + 𝑦 + 𝑧 = 6
𝑧 = 3
𝑦 + 𝑧 = 5

 

Solução 

Para obtermos a solução do sistema teremos que fazer uma seqüência de 

transformações no sistema, observe! 

𝑆2 = {
𝑥 + 𝑦 + 𝑧 = 6
𝑦 + 𝑧 = 5
𝑧 = 3

 

O sistema 𝑆2 foi obtido do sistema  𝑆1 a partir da operação: “Trocar a ordem de duas 

equações do sistema”. 
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O sistema 𝑆3 foi obtido do sistema  𝑆2 a partir da operação: “Multiplicar uma equação do 

sistema por uma constante não numa.”  Multiplicamos a segunda equação por (−1). 

𝑆3 = {
𝑥 + 𝑦 + 𝑧 = 6
−𝑦 − 𝑧 = −5
𝑧 = 3

 

O sistema 𝑆4 foi obtido do sistema  𝑆3 a partir da operação: “Adicionar duas equações do 

sistema.”  Somamos a segunda com a terceira equação de 𝑆3 e colocamos a resposta na 

segunda equação de 𝑆4. 

𝑆4 = {
𝑥 + 𝑦 + 𝑧 = 6
−𝑦 = −2
𝑧 = 3

 

Observe que é muito mais fácil calcular a solução do sistema 𝑆4 do que a do sistema 𝑆1. E 

ambos sistemas possuem a seguinte solução: 𝑥 = 1, 𝑦 = 2 e 𝑧 = 3. 

Se o sistema que você tiver trabalhando tiver 25 incógnitas, como aplicar estas 

transformações para calcular a solução do seu sistema? 

 

MÉTODO DIRETO  

 Consiste de métodos que determinam a solução do sistema linear com um número 

finito de transformações elementares. 

 
4.1. MÉTODO DE GAUSS-JORDAN 

Explicaremos o método de Gauss-Jordan com o auxilio do exemplo a seguir. 

 

Exemplo 01 - Calcule a solução do sistema 

{

𝑥 + 2𝑦 − 𝑧 = 2
2𝑥 − 𝑦 + 2𝑧 = 6
3𝑥 + 2𝑦 − 𝑧 = 4

 

Solução 

Para facilitar a aplicação do método de Gauss-Jordan devemos, primeiramente, 

escrever o sistema na forma matricial, isto é: 

o sistema {

𝑥 + 2𝑦 − 𝑧 = 2
2𝑥 − 𝑦 + 2𝑧 = 6
3𝑥 + 2𝑦 − 𝑧 = 4

    deve ser escrito por [
1 2 −1
2 −1 2
3 2 −1

] [
𝑥
𝑦
𝑧
] = [

2
6
4
] 

onde 

𝐴 = [
1 2 −1
2 −1 2
3 2 −1

] é a matriz dos coeficientes e  
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𝑏 = [
2
6
4
] é a matriz dos termos independentes; 

Com estas duas matrizes montamos a matriz ampliada 𝐵, onde iremos aplicar as 

transformações elementares para obtenção da solução do sistema. 

𝐵 = [𝐴: 𝑏] = [
1 2 −1
2 −1 2
3 2 −1

 |  
2
6
4
] 

 As primeiras transformações que iremos fazer tem como objetivo zerar as 

posições 𝑎21 = 2 e 𝑎31 = 3 do sistema 𝐵.  

 

















−

−

−

=

4

6

2

123

212

121

0
B  

Para zerar  𝑎21 = 2, usaremos o elemento do pivô desta linha 𝑎11 = 1, para   

determinar 𝑚1
(0)

: 

  

𝑚1
(0)
=
−𝑎21

(0)

𝑎11
(0) =

−2

1
= −2    (0)   significa que tomaremos estes valores da matriz 𝐵0.  

 

Observe que:      𝑚 =
−(𝑣𝑎𝑙𝑜𝑟𝑞𝑢𝑒𝑠𝑒 𝑑𝑒𝑠𝑒𝑗𝑎𝑧𝑒𝑟𝑎𝑟)

(𝑉𝑎𝑙𝑜𝑟𝑑𝑜𝑝𝑖𝑣ô𝑛𝑒𝑠𝑡𝑎𝑐𝑜𝑙𝑢𝑛𝑎)
 

 

após determinar 𝑚1
(0)

, faremos a seguinte operação  

 

𝐿2
(1)
→ 𝑚1

(0)
𝐿1
(0)
+ 𝐿2

(0)
   

 
 
 
 
 
Observe que em todos os cálculos será obedecida esta sequência 

𝐿2
(1)
→ 𝑚1

(0)
𝐿1
(0)
+ 𝐿2

(0)
 

onde:  𝐿1
(0)
 é a linha onde está o pivô 

            𝐿2
(0)
 é a linha onde está o elemento que queremos zerar 

 

 

   tomaremos estes valores da matriz 𝐵0.  

 

 

   tomaremos estes valores da linha 1 da matriz 𝐵0.  

   colocaremos estes valores na matriz 𝐵1.  

   colocaremos estes valores na linha 2 da matriz 𝐵1.  
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isto é, cada elemento da linha 𝐿2
(1)

 é obtido da combinação linear das linhas 𝐿1
(0)

 e 𝐿2
(0)

 

uma matriz 𝐵0, da seguinte forma: 

𝑎21
(1)
= 𝑚1

(0)
. 𝑎11
(0)
+ 𝑎21

(0)
= −2 ∗ 1 + 2 = 0  

𝑎22
(1)
= 𝑚1

(0)
. 𝑎12
(0)
+ 𝑎22

(0)
= −2 ∗ 2 + (−1) = −5  

𝑎23
(1)
= 𝑚1

(0)
. 𝑎13
(0)
+ 𝑎23

(0)
= −2 ∗ (−1) + 2 = 4  

𝑎24
(1)
= 𝑚1

(0)
. 𝑎14
(0)
+ 𝑎24

(0)
= −2 ∗ 2 + 6 = 2  

 

















−

−

−

=

4

2

2

123

450

121

1
B  

Para zerar 𝑎31 = 3, usaremos o pivô desta linha 𝑎11 = 1, para   determinar 𝑚1
(0)

. 

















−

−

−

=

4

2

2

123

450

121

1
B  

𝑚2
(0)
=
−𝑎31

(0)

𝑎11
(0) =

−3

1
= −3  

após determinar 
)(m 0

1 , faremos a seguinte operação  

)()()()( LLmL 0
3

0
1

0
2

1
3 +→

 

isto é, cada elemento da linha 𝐿3
(1)

 é obtido da combinação linear das linhas 𝐿1
(0)

 e 𝐿3
(0)

 

uma matriz 𝐵0, da seguinte forma: 

𝑎31
(1)
= 𝑚1

(0)
. 𝑎11
(0)
+ 𝑎31

(0)
= −3 ∗ 1 + 3 = 0  

𝑎32
(1)
= 𝑚1

(0)
. 𝑎12
(0)
+ 𝑎32

(0)
= −3 ∗ 2 + 2 = −4  

𝑎33
(1)
= 𝑚1

(0)
. 𝑎13
(0)
+ 𝑎33

(0)
= −3 ∗ (−1) + (−1) = 2  

𝑎34
(1)
= 𝑚1

(0)
. 𝑎14
(0)
+ 𝑎34

(0)
= −3 ∗ 2 + 4 = −2  

 

















−−

−

−

=

2

2

2

240

450

121

1
B  

Vamos agora zerar o elemento 𝑎32 = −4, para isto, usaremos o pivô da segunda linha 

𝑎22 = −5, para   determinar 𝑚1
(1)

. 
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















−−

−

−

=

2

2

2

240

450

121

1
B  

𝑚1
(1)
=
−𝑎32

(1)

𝑎22
(1) =

−(−4)

−5
=
−4

5
  

após determinar 𝑚1
(1)

, faremos a seguinte operação  

𝐿3
(2)
→ 𝑚1

(1)
𝐿2
(1)
+ 𝐿3

(1)
  

isto é, cada elemento da linha 𝐿3
(2)

 é obtido da combinação linear das linhas 𝐿2
(1)

 e 𝐿3
(1)

 

uma matriz 𝐵1, da seguinte forma: 

𝑎31
(2)
= 𝑚1

(1)
. 𝑎21
(1)
+ 𝑎31

(1)
=
−4

5
∗ 0 + 0 = 0  

𝑎32
(2)
= 𝑚1

(1)
. 𝑎22
(1)
+ 𝑎32

(1)
=
−4

5
∗ (−5) + (−4) = 0  

𝑎33
(2)
= 𝑚1

(1)
. 𝑎23
(1)
+ 𝑎33

(1)
=
−4

5
∗ 4 + 2 =

−6

5
  

𝑎34
(2)
= 𝑚1

(1)
. 𝑎24
(1)
+ 𝑎34

(1)
=
−4

5
∗ 2 + (−2) =

−18

5
  

 

















−−

−

−

=

518

2

2

5600

450

121

2

//

B  

 
Observe que as operações realizadas resultaram em um sistema cujos elementos abaixo 

da diagonal principal (triangulo inferior) são iguais a zero. 

















−−

−

−

=

518

2

2

5600

450

121

2

//

B  

 

Agora o nosso objetivo é zerar o triangulo superior deste sistema 

















−−

−

−

=

518

2

2

5600

450

121

2

//

B  

Para isto devemos primeiramente zerar o elemento 𝑎23 = 4, para isto utilizaremos o 

pivô 𝑎33
(2)
= −6/5 para calcular 𝑚1

(2)
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















−−

−

−

=

518

2

2

5600

450

121

2

//

B  

𝑚1
(2)
=
−𝑎23

(2)

𝑎33
(2) =

−4

−6/5
=
10

3
  

após determinar 𝑚1
(2)

, faremos a seguinte operação  

𝐿2
(3)
→ 𝑚1

(2)
𝐿3
(2)
+ 𝐿2

(2)
  

isto é, cada elemento da linha 𝐿2
(3)

 é obtido da combinação linear das linhas 𝐿2
(2)

 e 𝐿3
(2)

 

uma matriz 𝐵2, da seguinte forma: 

𝑎21
(3)
= 𝑚1

(2)
. 𝑎31
(2)
+ 𝑎21

(2)
=
10

3
∗ 0 + 0 = 0  

𝑎22
(3)
= 𝑚1

(2)
. 𝑎32
(2)
+ 𝑎22

(2)
=
10

3
∗ 0 + (−5) = −5  

𝑎23
(3)
= 𝑚1

(2)
. 𝑎33
(2)
+ 𝑎23

(2)
=
10

3
∗ (−6/5) + 4 = 0  

𝑎24
(3)
= 𝑚1

(2)
. 𝑎34
(2)
+ 𝑎24

(2)
=
10

3
∗ (−18/5) + 2 = −10  

 

















−

−

−

−

−

=

518

10

2

5600

050

121

3

//

B  

Vamos, agora, zerar o elemento 𝑎13 = −1, para isto utilizaremos o pivô 𝑎33
(2)
= −6/5 

para calcular 𝑚2
(2)

 

 

















−

−

−

−

−

=

518

10

2

5600

050

121

3

//

B  

 

𝑚2
(2)
=
−𝑎13

(2)

𝑎33
(2) =

−(−1)

−6/5
=
−5

6
  

após determinar 𝑚2
(2)

, faremos a seguinte operação  

𝐿1
(3)
→ 𝑚2

(2)
𝐿3
(2)
+ 𝐿1

(2)
  

isto é, cada elemento da linha 𝐿1
(3)

 é obtido da combinação linear das linhas 𝐿1
(2)

 e 𝐿3
(2)

 

uma matriz 𝐵2, da seguinte forma: 

𝑎11
(3)
= 𝑚2

(2)
. 𝑎31
(2)
+ 𝑎11

(2)
=
−5

6
∗ 0 + 1 = 1  
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𝑎12
(3)
= 𝑚2

(2)
. 𝑎32
(2)
+ 𝑎12

(2)
=
−5

6
∗ 0 + 2 = 2  

𝑎13
(3)
= 𝑚2

(2)
. 𝑎33
(2)
+ 𝑎13

(2)
=
−5

6
∗ (−1) + (

−5

6
) = 0  

𝑎14
(3)
= 𝑚2

(2)
. 𝑎34
(2)
+ 𝑎14

(2)
=
−5

6
∗ 2 + (

−18

5
) = 5  

 

















−

−

−

−=

518

10

5

5600

050

021

3

//

B  

 
Vamos agora zerar o elemento 𝑎12 = 2, para isto, usaremos o pivô da segunda linha 

𝑎22 = −5, para   determinar 𝑚1
(3)

. 

 

















−

−

−

−=

518

10

5

5600

050

021

3

//

B  

𝑚1
(3)
=
−𝑎13

(3)

𝑎33
(3) =

−2

−5
=
2

5
  

após determinar 𝑚1
(3)

, faremos a seguinte operação  

𝐿1
(4)
→ 𝑚1

(3)
𝐿2
(3)
+ 𝐿1

(3)
  

isto é, cada elemento da linha 𝐿1
(4)

 é obtido da combinação linear das linhas 𝐿1
(3)

 e 𝐿2
(3)

 

uma matriz 𝐵3, da seguinte forma: 

𝑎11
(4)
= 𝑚1

(3)
. 𝑎21
(3)
+ 𝑎11

(3)
=
2

5
∗ 0 + 1 = 1  

𝑎12
(4)
= 𝑚1

(3)
. 𝑎22
(3)
+ 𝑎12

(3)
=
2

5
∗ (−5) + 2 = 0  

𝑎13
(4)
= 𝑚1

(3)
. 𝑎23
(3)
+ 𝑎13

(3)
=
2

5
∗ 0 + 0 = 0  

𝑎14
(4)
= 𝑚1

(3)
. 𝑎24
(3)
+ 𝑎14

(3)
=
2

5
∗ (−10) + 5 = 1  

 

















−

−

−

−=

518

10

1

5600

050

001

4

//

B  

 
Observe que as operações realizadas resultaram em um sistema cujos elementos acima 

da diagonal principal (triangulo superior) são iguais a zero. 
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















−

−

−

−=

518

10

1

5600

050

001

4

//

B  

Para obtermos a solução do sistema divida cada linha pelo seu respectivo pivô, com isto 

temos: 

     𝐿1
(5)
→

𝐿1
(4)

𝑎11
(4) =

𝐿1
(4)

1
;      𝐿2

(5)
→

𝐿2
(4)

𝑎22
(4) =

𝐿2
(4)

−5
;    𝐿3

(5)
→

𝐿3
(4)

𝑎33
(4) =

𝐿3
(4)

−6/5
. 

Com esta operação obtemos 

𝐵5 = [
1 0 0
0 1 0
0 0 1

|
1
2
3
]           {

𝑥 = 1
𝑦 = 2
𝑧 = 3

 

 

PROGRAMA EM PYTHON 

# Gauss - Jordan - Sistema 

 

import numpy as np 

 

# Entrada (sistema) 

 

M = np.array( 

    [[2.0   ,  -1.0   ,  1.0   ,  3.0], 

     [1.0   ,   2.0   ,  1.0   ,  8.0], 

     [2.0   ,   1.0   ,  2.0   , 10.0]] 

    ) 

 

print("Gauss - Jordan - Sistema") 

print("Matriz Ampliada") 

#print(D) 

 

linha = np.size(M[:,1]) 

coluna = np.size(M[1,:]) 

 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

print('Linha: {:d}'.format(linha)) 

print('Coluna: {:d}'.format(coluna)) 

 

# Zera Triangulo Infrerior 

t = 1 

fm = 0 
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for j in range(0 , linha , 1): 

  for i in range(t , linha , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 

      M[i , k] = fm * M[j , k] + M[i , k] 

  t = t + 1 

 

print("Zera Triangulo Inferior") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

t = 1 

fm = 0 

 

for j in range(linha - 1 , 0 , -1): 

  for i in range(0 , linha - t , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 

      M[i,k] = fm * M[j,k] + M[i,k] 

  t = t + 1 

 

print("Zera Triangulo Superior") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

fm = 0; 

 

for i in range(0 , linha , 1): 

  fm = M[i,i] 

  for j in range(0 , coluna , 1): 

    M[i,j] = M[i,j]/fm 

 

print("Matriz Normalizada") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

print("Solução do Sistema") 

for i in range(0 , linha , 1): 

  print("%8.4f"%M[i , coluna-1]) 
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SAÍDA DO PROGRAMA 

Gauss - Jordan - Sistema 

Matriz Ampliada 

  2.0000  -1.0000   1.0000   3.0000   

  1.0000   2.0000   1.0000   8.0000   

  2.0000   1.0000   2.0000  10.0000   

Linha: 3 

Coluna: 4 

Zera Triangulo Inferior 

  2.0000  -1.0000   1.0000   3.0000   

  0.0000   2.5000   0.5000   6.5000   

  0.0000   0.0000   0.6000   1.8000   

Zera Triangulo Superior 

  2.0000   0.0000   0.0000   2.0000   

  0.0000   2.5000   0.0000   5.0000   

  0.0000   0.0000   0.6000   1.8000   

Matriz Normalizada 

  1.0000   0.0000   0.0000   1.0000   

  0.0000   1.0000   0.0000   2.0000   

  0.0000   0.0000   1.0000   3.0000   

Solução do Sistema 

  1.0000 

  2.0000 

  3.0000 

 
ATIVIDADE  

 (01)  Resolva o sistemas  

(a) {

𝑥 + 𝑦 + 𝑧 = 6
𝑥 − 𝑦 − 𝑧 = −4
𝑥 − 𝑦 + 𝑧 = 2

   (b) {

𝑥 + 2𝑦 − 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 7
−𝑥 + 2𝑦 + 3𝑧 = 12

 

(02)  Resolva o sistemas  

(a) {

𝑥 + 2𝑦 + 3𝑧 = −1
−𝑥 + 5𝑦 + 2𝑧 = 5
−2𝑥 + 2𝑦 + 𝑧 = 0

  (b) {

𝑥 + 2𝑦 + 3𝑧 = 8
𝑥 + 𝑦 + 2𝑧 = 5
−2𝑥 + 𝑦 + 𝑧 = 1
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CÁLCULO DA INVERSA DE UMA MATRIZ 

Usaremos, agora, o método de Gauss-Jordan para calcular a inversa de uma matriz. 

Para que você entender facilmente explicaremos este método, de determinação da 

inversa de uma matriz, utilizando um exemplo. 

Exemplo 01 – Calcule a inversa da matriz 𝑀 = [
 1      1     2
 0   -1     4 
 1      1     1

] 

Solução: No cálculo da inversa de uma matriz (𝑀−1), a matriz ampliada 𝐵 é montada 

utilizando a matriz 𝑀 e uma matriz identidade 𝐼 da dimensão da matriz 𝑀. Isto é, a 

matriz identidade 𝐼 substitui a matriz dos termos independentes 𝑏, utilizada na 

resolução de sistemas lineares. Deste modo, a matriz 𝐵 fica da  forma: 𝐵 = [𝑀: 𝐼] 
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PROGRAMA EM PYTHON 

# Gauss - Jordan - Matriz Inversa 

import numpy as np 

 

# Entrada (matriz) 

 

MM = np.array( 

    [[-1.0   ,   2.0   ,  1.0], 

     [-1.0   ,   1.0   ,  1.0], 

     [-1.0   ,   1.0   , -1.0]] 

    ) 

 

print("Gauss - Jordan - Matriz Inversa") 

 

linha = np.size(MM[:,1]) 

coluna = np.size(MM[1,:]) 

 

print("Matriz a ser invertida") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%MM[i,j], end=' ') 

  print(" ") 

 

print('Linha: {:d}'.format(linha)) 

print('Coluna: {:d}'.format(coluna)) 

 

M = np.zeros((linha , 2*linha)) 

 

for j in range(0 , linha , 1): 

  M[: , j] = MM[: , j] 

 

M0 = np.eye(3) 

for j in range(linha , 2*linha , 1): 

  M[: , j] = M0[: , j - linha] 

 

print("Matriz a ser escalonada") 

for i in range(0 , linha , 1): 

  for j in range(0 , 2*linha  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

# Zera Triangulo Infrerior 

t = 1 

fm = 0 

 

for j in range(0 , linha , 1): 

  for i in range(t , linha , 1): 
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    fm = - M[i,j]/M[j,j] 

    for k in range(0 , 2*linha , 1): 

      M[i , k] = fm * M[j , k] + M[i , k] 

  t = t + 1 

 

print("Zera Triangulo Inferior") 

for i in range(0 , linha , 1): 

  for j in range(0 , 2*linha  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

t = 1 

fm = 0 

 

for j in range(linha - 1 , 0 , -1): 

  for i in range(0 , linha - t , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , 2*linha , 1): 

      M[i,k] = fm * M[j,k] + M[i,k] 

  t = t + 1 

 

print("Zera Triangulo Superior") 

for i in range(0 , linha , 1): 

  for j in range(0 , 2*linha  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

fm = 0; 

 

for i in range(0 , linha , 1): 

  fm = M[i,i] 

  for j in range(0 , 2*linha , 1): 

    M[i,j] = M[i,j]/fm 

 

print("Matriz Normalizada") 

for i in range(0 , linha , 1): 

  for j in range(0 , 2*linha  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

print("Matriz Inversa") 

for i in range(0 , linha , 1): 

  for j in range(linha , 2*linha  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 
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SAÍDA DO PROGRAMA 

Gauss - Jordan - Matriz Inversa 

Matriz a ser invertida 

 -1.0000   2.0000   1.0000   

 -1.0000   1.0000   1.0000   

 -1.0000   1.0000  -1.0000   

Linha: 3 

Coluna: 3 

Matriz a ser escalonada 

 -1.0000   2.0000   1.0000   1.0000   0.0000   0.0000   

 -1.0000   1.0000   1.0000   0.0000   1.0000   0.0000   

 -1.0000   1.0000  -1.0000   0.0000   0.0000   1.0000   

Zera Triangulo Inferior 

 -1.0000   2.0000   1.0000   1.0000   0.0000   0.0000   

  0.0000  -1.0000   0.0000  -1.0000   1.0000   0.0000   

  0.0000   0.0000  -2.0000   0.0000  -1.0000   1.0000   

Zera Triangulo Superior 

 -1.0000   0.0000   0.0000  -1.0000   1.5000   0.5000   

  0.0000  -1.0000   0.0000  -1.0000   1.0000   0.0000   

  0.0000   0.0000  -2.0000   0.0000  -1.0000   1.0000   

Matriz Normalizada 

  1.0000  -0.0000  -0.0000   1.0000  -1.5000  -0.5000   

 -0.0000   1.0000  -0.0000   1.0000  -1.0000  -0.0000   

 -0.0000  -0.0000   1.0000  -0.0000   0.5000  -0.5000   

Matriz Inversa 

  1.0000  -1.5000  -0.5000   

  1.0000  -1.0000  -0.0000   

 -0.0000   0.5000  -0.5000 

 

ATIVIDADE  

(01)  Determine a inversa das matriz abaixo  

(a) [
      1            1            1      
      1           -1           -1      
      1           -1            1 

]         Resposta = [

     1/2          1/2           0      
     1/2           0          -1/2     
      0          -1/2          1/2  

]     

(b) [
      1            2           -1      
      1            1            1      
     -1            2            3 

]        Resposta = [

    -1/10         4/5         -3/10    
     2/5         -1/5          1/5     
    -3/10         2/5          1/10

]     

(02) Determine a inversa das matrizes abaixo 

(a) [
1 2 3
−1 5 2
−2 2 1

]    (b) [
1 2 3
1 1 2
−2 1 1

] 
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CÁLCULO DO DETERMINANTE DE UMA MATRIZ 

O método de Gauss-Jordan, também pode ser utilizado para calcularmos o 

determinante de uma matriz. Para isto, devemos escalonar a matriz ampliada 𝐵, como 

fizemos no cálculo da solução do sistema e na determinação da matriz inversa, porém 

não devemos fazer o último passo, que é a normalização da matriz pelos elementos da 

diagonal principal. Para que você entender melhor observe o exemplo a seguir, onde 

iremos calcular o determinante de uma matriz utilizando o método de Gauss-Jordan. 

Exemplo 02 – Calcule o determinante da matriz 𝑀 = [
 1     3     0
 0     2     1
 1     2    -1

] 

Solução: Observe que a matriz que iremos calcular o determinante é a mesma do 

exemplo anterior. Fizemos isto, para que você entendesse melhor que os passos 

utilizados no calculo do determinante são os mesmo utilizados na inversa da matriz. 

Devemos primeiramente montar a matriz ampliada 𝐵 = [𝑀: 𝐼] 
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PROGRAMA EM PYTHON 

# Gauss - Jordan - Determinante 

 

import numpy as np 

 

# Entrada (sistema) 

 

M = np.array( 

    [[1.0   ,   2.0   ,  2.0], 

     [2.0   ,  -2.0   ,  2.0], 

     [2.0   ,  -1.0   ,  2.0]] 

    ) 

 

print("Gauss - Jordan - Determinante") 

print("Matriz") 

 

linha = np.size(M[:,1]) 

coluna = np.size(M[1,:]) 

 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

#print('Linha: {:d}'.format(linha)) 

#print('Coluna: {:d}'.format(coluna)) 

 

# Zera Triangulo Infrerior 

t = 1 

fm = 0 

 

for j in range(0 , linha , 1): 

  for i in range(t , linha , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 

      M[i , k] = fm * M[j , k] + M[i , k] 

  t = t + 1 

 

print("\nZera Triangulo Inferior") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

t = 1 

fm = 0 
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for j in range(linha - 1 , 0 , -1): 

  for i in range(0 , linha - t , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 

      M[i,k] = fm * M[j,k] + M[i,k] 

  t = t + 1 

 

print("Zera Triangulo Superior") 

for i in range(0 , linha , 1): 

  for j in range(0 , coluna  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

det = 1. 

 

for i in range(0 , linha , 1): 

  det = det * M[i,i] 

 

print("\nDeterminante: %8.4f" %det) 

 

 

SAÍDA DO PROGRAMA 

Gauss - Jordan - Determinante 

Matriz 

  1.0000   2.0000   2.0000   

  2.0000  -2.0000   2.0000   

  2.0000  -1.0000   2.0000   

 

Zera Triangulo Inferior 

  1.0000   2.0000   2.0000   

  0.0000  -6.0000  -2.0000   

  0.0000   0.0000  -0.3333   

Zera Triangulo Superior 

  1.0000   0.0000   0.0000   

  0.0000  -6.0000   0.0000   

  0.0000   0.0000  -0.3333   

 

Determinante:   2.0000 

 

ATIVIDADE 

(01) Determine o determinante das matrizes abaixo  

(a) [
      1            1            1      
      1           -1           -1      
      1           -1            1 

]  (b) [
      1            2           -1      
      1            1            1      
     -1            2            3 

]        

(02) Calcule o determinante das matrizes 

(a) [
1 2 3
−1 5 2
−2 2 1

]    (b) [
1 2 3
1 1 2
−2 1 1

] 
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MÉTODOS ITERATIVOS 

A outra forma de se determinar a solução de um sistema 𝐴𝑥 = 𝑏, que é através dos 

métodos iterativos. Os métodos iterativos consistem em determinar uma sequência de 

aproximações 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) , para a solução do sistema 𝑥, a partir de uma dada 

aproximação inicial 𝑥(0). 

Segundo este raciocínio, o sistema 𝐴𝑥 = 𝑏, é transformado em um outro sistema 

equivalente com a seguinte forma 

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑 

onde 𝐹 é uma matriz 𝑛 × 𝑛, 𝑥 e 𝑑 são matrizes 𝑛 × 1. 𝑥(𝑘+1) é uma aproximação obtida a 

partir da aproximação 𝑥(𝑘). Sendo a seqüência de aproximações obtida da seguinte 

forma 

𝑥(1) = 𝐹𝑥(0) + 𝑑 

𝑥(2) = 𝐹𝑥(1) + 𝑑 

𝑥(3) = 𝐹𝑥(2) + 𝑑 

...................... 

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑 

As aproximações são calculadas até que se tenha 

‖𝑥(𝑘) − 𝑥‖ = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑥𝑖
(𝑘)
− 𝑥𝑖} 

 O que garante que a sequência 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) converge para a solução? Se 

𝑙𝑖𝑚
𝑘→∞

‖𝑥(𝑘) − 𝑥‖ = 0, então a seqüência 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) converge para a solução 𝑥. 

 O que diferencia um método iterativo de outro são as de definirmos as matrizes 𝐹 e 

𝑑. A seguir apresentaremos o metido de Jacobi que será o nosso primeiro método 

iterativo. 

 
3.4. MÉTODO DE JACOBI 

 Para entendermos o método de Jacobi tomemos o sistema 

{

𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎𝑛1𝑥1 + 𝑎𝑏2𝑥2+. . . +𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

em cada equação do sistema devemos isolar o valor de 𝑥𝑖 , isto é, na primeira equação 

devemos isolar 𝑥1, na segunda equação devemos isolar 𝑥2, e assim por diante, com isto 

teremos: 
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{
 
 
 

 
 
 𝑥1 =

𝑏1 − (𝑎12𝑥2 + 𝑎13𝑥3+. . . +𝑎1𝑛𝑥𝑛)

𝑎11

𝑥2 =
𝑏2 − (𝑎21𝑥1 + 𝑎13𝑥3+. . . +𝑎2𝑛𝑥𝑛)

𝑎22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑥𝑛 =
𝑏𝑛 − (𝑎𝑛1𝑥1 + 𝑎𝑏2𝑥2 + 𝑎13𝑥3+. . . +𝑎𝑛𝑛−1𝑥𝑛−1)

𝑎𝑛𝑛

 

 

 É importante você observar que os elementos 𝑎𝑖𝑖 devem ser diferentes de zeros         

𝑎𝑖𝑖 ≠ 0, ∀𝑖, se não teremos divisão por zero. Caso isto não ocorra devemos reagrupar o 

sistema para que se consiga esta condição 

 Podemos colocar o sistema na seguinte forma 𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑, onde  

𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑛

]     𝑑 =

[
 
 
 
 
 
𝑏1

𝑎11
𝑏2

𝑎22

⋮
𝑏𝑛

𝑎𝑛𝑛]
 
 
 
 
 

 

𝐹 =

[
 
 
 
 
 
 
 
       0       −

𝑎12
𝑎11

    −
𝑎13
𝑎11

     . . .   −
𝑎1𝑛
𝑎11

−
𝑎21
𝑎22

            0       −
𝑎23
𝑎22

    . . .   −
𝑎2𝑛
𝑎22

−
𝑎31
𝑎33

      −
𝑎32
𝑎33

           0       . . .   −
𝑎3𝑛
𝑎33

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−
𝑎𝑛1
𝑎𝑛𝑛

      −
𝑎𝑛2
𝑎𝑛𝑛

   −
𝑎𝑛3
𝑎𝑛𝑛

    . . .         0
]
 
 
 
 
 
 
 
 

 

  

O método de Jacobi funciona da seguinte forma: 

1º Passo: Devemos escolher uma aproximação inicial 𝑥(0). 

2º Passo: Devemos gerar as aproximações 𝑥(𝑘) a partir das iterações 

𝑥(𝑘+1) = 𝐹𝑥(𝑘) + 𝑑,  𝑘 = 0,1,2, . .. 

3º Passo: Paramos de calcular as aproximações quando um dos critérios de parada 

abaixo for satisfeito. 

1º critério: 𝑚𝑎𝑥
1≤𝑖≤𝑛

|𝑥𝑖
(𝑘+1)

− 𝑥𝑖
(𝑘)
| ≤ 𝐸,    onde 𝐸 é a tolerância. 

2º critério: 𝑘 > 𝑀,   onde 𝑀 é o número máximo de iterações. 

A tolerância 𝐸 fixa o grau de precisão das soluções. Para você compreender melhor o 

método de Jacobi observe o exemplo a seguir. 
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Exemplo 01 – Resolva pelo método de Jacobi o sistema 

{
2𝑥1 − 𝑥2 = 1
𝑥1 + 2𝑥2 = 3

   com  𝐸 ≤ 10−2     ou      𝑘 > 10. 

Solução 

Isolando o valor de 𝑥1 na primeira equação e 𝑥2 na segunda equação, temos as equações 

de iteração 

{
𝑥1
𝑘+1 =

1

2
(1 + 𝑥2

𝑘)

𝑥2
𝑘+1 =

1

2
(3 − 𝑥1

𝑘)
         onde      𝑘 = 0,1,2, . .. 

Utilizaremos como aproximação inicial  𝑥(0) = [
0
0
]  para calcular 𝑥(1), como mostraremos 

a seguir 

Para 𝑘 = 0 

{
𝑥1
1 =

1

2
(1 + 𝑥2

0)

𝑥2
1 =

1

2
(3 − 𝑥1

0)
          {

𝑥1
1 =

1

2
(1 + 0) = 0.5

𝑥2
1 =

1

2
(3 − 0) = 1.5

     𝑥(1) = [
0.5
1.5
] 

Para 𝑘 = 1 

{
𝑥1
2 =

1

2
(1 + 𝑥2

1)

𝑥2
2 =

1

2
(3 − 𝑥1

1)
          {

𝑥1
1 =

1

2
(1 + 0.5) = 1.25

𝑥2
1 =

1

2
(3 − 1.5) = 1.25

       𝑥(2) = [
1.25
1.25

] 

repetiremos estes cálculos para 𝑘 = 2, 3, . . .. e colocamos os valores obtidos na tabela 

abaixo:  

k 𝑥1
𝑘 𝑥2

𝑘 𝐸 

         0                  0.0000           0.0000        0.0000 
         1                  0.5000           1.5000        1.5000 
         2                  1.2500           1.2500        0.7500 
         3                  1.1250           0.8750        0.3750 
         4                  0.9375           0.9375        0.1875 
         5                  0.9688           1.0313        0.0938 
         6                  1.0156           1.0156        0.0469 
         7                  1.0078           0.9922        0.0234 
         8                  0.9961           0.9961        0.0117 
         9                  0.9980           1.0020        0.0059 
       10                  1.0010          1.0010        0.0029 

 
como  

0.0029 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}          {
𝑥1 = 1.0010
𝑥2 = 1.0010

                 𝑥 = [
1.0010
1.0010

] 
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Exemplo 02 – Resolva pelo método de Jacobi o sistema 

{

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0 = 0
−0.25𝑥1 + 𝑥2 − 0 − 0.25𝑥4 = 0
−0.25𝑥1 + 0 + 𝑥3 − 0.25𝑥4 = −0.25
0 − 0.25𝑥2 + 0 + 𝑥4 = −0.25

 

com  𝐸 ≤ 10−2     ou      𝑘 > 10   e   𝑥 = [0000]. 

Solução 

Isolando o valor de 𝑥1 na primeira equação, 𝑥2 na segunda equação, 𝑥3 na terceira 

equação e 𝑥4 na quarta equação, obtemos as equações de iteração 

{
 
 

 
 𝑥1

𝑘+1 = 0.25𝑥2
𝑘 + 0.25𝑥3

𝑘

𝑥2
𝑘+1 = 0.25𝑥1

𝑘 + 0.25𝑥4
𝑘

𝑥3
𝑘+1 = 0.25𝑥1

𝑘 + 0.25𝑥4
𝑘 − 0.25

𝑥4
𝑘+1 = 0.25𝑥2

𝑘 − 0.25

         onde      𝑘 = 0,1,2, . .. 

Utilizaremos como aproximação inicial 𝑥(0) = [0000], com os valores das aproximações 

montaremos a próxima tabela.  

k 𝑥1
𝑘 𝑥2

𝑘 𝑥3
𝑘 𝑥4

𝑘 𝐸 

    0.0000            0.0000          0.0000          0.0000         0.0000         0.0000 
    1.0000            0.0000          0.0000         -0.2500       -0.2500         0.2500 
    2.0000          -0.0625         -0.0063         -0.2562       -0.2500         0.0625 
    3.0000          -0.0656         -0.0219         -0.2719       -0.2516         0.0156 
    4.0000          -0.0734         -0.0227         -0.2727       -0.2555         0.0078 
    5.0000          -0.0738         -0.0247         -0.2747       -0.2557         0.0021 
    6.0000          -0.0749         -0.0249         -0.2749       -0.2562         0.0010 
    7.0000          -0.0749         -0.0251         -0.2751       -0.2562         0.0003 

 

como  

0.0003 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}          {

𝑥1 = −0.0749
𝑥2 = −0.0251
𝑥3 = −0.2751
𝑥4 = −0.2562

            𝑥 = [

−0.0749
−0.0251
−0.2751
−0.2562

] 

 

PROGRAMA EM PYTHON 

#Jacobi - Sistema 

 

import numpy as np 

 

# Entrada (sistema) 

nloop = 50   # numero máximo de loop 

erro = 0.001  # tolerância 
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M = np.array( 

    [[3.0   ,   1.0   ,  1.0   ,  8.0], 

     [1.0   ,  -2.0   ,  2.0   ,  3.0], 

     [1.0   ,  -1.0   ,  3.0   ,  8.0]] 

    ) 

 

print("Jacobi - Sistema") 

 

tole = 10 

pare = 0 

v = 0 

i1 = 0 

i2 = 1 

m = np.size(M[:,1]) 

n = np.size(M[1,:]) 

 

print("Matriz Ampliada") 

for i in range(0 , m , 1): 

  for j in range(0 , n  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

#print('m: {:d}'.format(m)) 

#print('n: {:d}'.format(n)) 

 

R = np.zeros((nloop , m)) 

v = np.zeros((m)) 

va = 0; 

k = 0 

 

print('\n k    x1       x2       x3       Erro') 

 

while(pare == 0): 

  for i in range(0 , m , 1): 

    va = 0 

    for j in range(0 , m , 1): 

      if(i == j): 

        va = va + 0.0 

      if(i != j): 

        va = va + ( M[i,j] * R[i1,j] ) 

      R[i2,i] = (1/M[i,i])*(M[i,n-1]- va) 

  print("%2d"%k , "%8.4f"%R[k , 0] , "%8.4f"%R[k , 1] , "%8.4f"%R[k , 

2] , "%8.4f"%tole) 

  tole = 10 

  if (k >= 0): 

    for i in range(0 , m , 1): 

      v[i] = abs(R[i2,i] - R[i1,i]); 

      tole = max(v[:]); 

  if(tole < erro): 
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    print("\nSolução do sistema") 

    for t in range(0 , m  , 1): 

      print("%8.2f"%R[i2 , t], end=' ') 

    pare = 1 

 

  if(i1 == nloop): 

    pare = 1 

  i1 = i1 + 1 

  i2 = i2 + 1 

  k = k + 1 

 

 

SAÍDA DO PROGRAMA 

Jacobi - Sistema 

Matriz Ampliada 

  3.0000   1.0000   1.0000   8.0000   

  1.0000  -2.0000   2.0000   3.0000   

  1.0000  -1.0000   3.0000   8.0000   

 

 k    x1       x2       x3       Erro 

 0   0.0000   0.0000   0.0000  10.0000 

 1   2.6667  -1.5000   2.6667   2.6667 

 2   2.2778   2.5000   1.2778   4.0000 

 3   1.4074   0.9167   2.7407   1.5833 

 4   1.4475   1.9444   2.5031   1.0278 

 5   1.1842   1.7269   2.8323   0.3292 

 6   1.1469   1.9244   2.8476   0.1975 

 7   1.0760   1.9210   2.9258   0.0782 

 8   1.0510   1.9638   2.9483   0.0428 

 9   1.0293   1.9739   2.9709   0.0226 

10   1.0184   1.9856   2.9815   0.0117 

11   1.0110   1.9907   2.9891   0.0075 

12   1.0067   1.9945   2.9933   0.0042 

13   1.0041   1.9966   2.9959   0.0027 

14   1.0025   1.9980   2.9975   0.0016 

 

Solução do sistema 

    1.00     2.00     3.00 

 

ATIVIDADE  

(01) Resolva os sistemas, com 𝑥0 = [000], 𝐸 ≤ 10
−2 ou 𝑘 < 10, onde 𝑘 iterações. 

(a) {

2𝑥 − 𝑦 + 𝑧 = 2
𝑥 + 2𝑦 + 𝑧 = 4
2𝑥 + 𝑦 + 2𝑧 = 5

   (b) {

4𝑥 − 𝑦 + 𝑧 = 5
𝑥 + 2𝑦 + 𝑧 = 5
𝑥 − 3𝑦 + 3𝑧 = 4

 

(02) Resolva os sistemas  

(a) {

3𝑥 + 𝑦 − 𝑧 = 2
𝑥 + 5𝑦 + 𝑧 = 14
𝑥 − 𝑦 − 3𝑧 = −10

  (b) {

3𝑥 − 𝑦 + 𝑧 = 4
−𝑥 + 4𝑦 + 𝑧 = 10
−𝑥 − 𝑦 + 3𝑧 = 6
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4.5. MÉTODO DE GAUSS-SEIDEL 

 O método Gauss-Seidel é um outro método iterativo para calcular a solução de 

sistemas lineares. Sua conversão é mais rápida do que o método de Jacobi . 

 O método iterativo de Gauss-Seidel consiste em: 

1º Passo: Definirmos uma aproximação inicial 𝑥(0). 

2º Passo: Calcula-se a sequência de aproximações 𝑥(1), 𝑥(2), ... , 𝑥(𝑘) utilizando-se as 

seguintes fórmulas: 

 
 

 )k(
nn
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x 13133132121
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nn
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++++
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Observe que no cálculo da aproximação 𝑥𝑛
(𝑘+1)

, utilizamos as aproximações 𝑥1
(𝑘+1)

, 

𝑥2
(𝑘+1)

, ... , 𝑥𝑛−1
(𝑘+1)

 . Isto faz com que este método tenha convergência mais rápida. 

Explicaremos o método iterativo de Gauss-Seidel com o auxílio do exemplo a seguir. 

 

Exemplo 01 - Exemplo 01 – Resolva pelo método de Jacobi o sistema 

{
2𝑥1 − 𝑥2 = 1
𝑥1 + 2𝑥2 = 3

   com 𝑥(0) = [00],   𝐸 ≤ 10−2     ou      𝑘 > 10. 

Solução 

Isolando o valor de 𝑥1 na primeira equação e 𝑥2 na segunda equação, temos as equações 

de iteração 



Cálculo Numérico com Python no Google Colaboratory 

 

65 

{
𝑥1
𝑘+1 =

1

2
(1 + 𝑥2

𝑘)

𝑥2
𝑘+1 =

1

2
(3 − 𝑥1

𝑘+1)
         onde      𝑘 = 0,1,2, . .. 

O calculo das aproximações é feito da seguinte forma 

Para 𝑘 = 0 (1ª iteração) 

{
𝑥1
(1)
=
1

2
(1 + 𝑥2

(0)
)

𝑥2
(1)
=
1

2
(3 − 𝑥1

(1)
)
          {

𝑥1
(1)
=
1

2
(1 + 0) = 0.5

𝑥2
(1)
=
1

2
(3 − 0.5) = 1.25

     𝑥(1) = [
0.5
1.25

] 

Para 𝑘 = 1 (2ª iteração) 

{
𝑥1
(2)
=
1

2
(1 + 𝑥2

(1)
)

𝑥2
(2)
=
1

2
(3 − 𝑥1

(2)
)
      {

𝑥1
(2)
=
1

2
(1 + 1.25) = 1.125

𝑥2
(2)
=
1

2
(3 − 1.125) = 0.9375

      𝑥(2) = [
1.125
0.9375

] 

repetiremos estes cálculos para 𝑘 = 2,3, . . .. e colocamos os valores obtidos na tabela a 

seguir.  

K kx1  kx2  E  

    0            0.0000     0.0000    0.0000 
    1            0.5000    1.2500    1.2500 
    2            1.1250    0.9375    0.6250 
    3            0.9688    1.0156    0.1563 
    4            1.0078    0.9961    0.0391 
    5            0.9980    1.0010    0.0098 
    6            1.0005    0.9998    0.0024 
    7            0.9999    1.0001    0.0006 

como  

0.0006 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}          {
𝑥1 = 0.9999
𝑥2 = 1.0001

                 𝑥 = [
0.9999
1.0001

] 

 

 Perceba que este método converge mais rápido, comparando este exemplo com o 

primeiro exemplo do método Jacobi. Para facilitar a nossa comparação entre os métodos 

de Jacobi e Gauss-Seidel, resolveremos a seguir, pelo método de Gauss-Seidel, o exemplo 

resolvido pelo método de Jacobi. 
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Exemplo 02 – Resolva pelo método de Gauss-Seidel o sistema 

{

𝑥1 − 0.25𝑥2 − 0.25𝑥3 + 0 = 0
−0.25𝑥1 + 𝑥2 + 0 − 0.25𝑥4 = 0
−0.25𝑥1 + 0 + 𝑥3 − 0.25𝑥4 = −0.25
0 − 0.25𝑥2 + 0 + 𝑥4 = −0.25

 

com  𝐸 ≤ 10−2     ou      𝑘 > 10   e   𝑥(0) = [0000]. 

 

Solução 

Isolando o valor de 𝑥1 na primeira equação, 𝑥2 na segunda equação, 𝑥3 na terceira 

equação e 𝑥4 na quarta equação, obtemos as equações de iteração 

{
 
 

 
 𝑥1

(𝑘+1)
= 0.25𝑥2

(𝑘)
+ 0.25𝑥3

(𝑘)

𝑥2
(𝑘+1)

= 0.25𝑥1
(𝑘+1)

+ 0.25𝑥4
(𝑘)

𝑥3
(𝑘+1)

= 0.25𝑥1
(𝑘+1)

+ 0.25𝑥4
(𝑘)
− 0.25

𝑥4
(𝑘+1)

= 0.25𝑥2
(𝑘+1)

− 0.25

         onde      𝑘 = 0,1,2, . .. 

Utilizaremos como aproximação inicial 𝑥(0) = [0000], com os valores das aproximações 

montaremos a próxima tabela.  

k 𝑥1
𝑘 𝑥2

𝑘 𝑥3
𝑘 𝑥4

𝑘 𝐸 

    0.0000           0.0000           0.0000          0.0000        0.0000          0.0000 
    1.0000           0.0000           0.0000        -0.2500       -0.2500          0.2500 
    2.0000          -0.0625          -0.0219        -0.2719       -0.2555         0.0625 
    3.0000          -0.0734          -0.0247        -0.2747       -0.2562         0.0109 
    4.0000          -0.0749          -0.0251        -0.2751       -0.2563         0.0014 
    5.0000          -0.0751          -0.0252        -0.2752       -0.2563         0.0002 

 
como  

 

0.0002 ≤ 10−2

𝑜𝑢
𝑘 > 10?

}         {

𝑥1 = −0.0751
𝑥2 = −0.0252
𝑥3 = −0.2752
𝑥4 = −0.2563

          𝑥 = [

−0.0751
−0.0252
−0.2752
−0.2563

] 

 

PROGRAMA EM PYTHON 

#Gauss - Seidel - Sistema 

 

import numpy as np 

 

# Entrada (sistema) 

nloop = 50   # numero máximo de loop 

erro = 0.001  # tolerância 

 

M = np.array( 
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    [[2.0   ,  -1.0   ,  2.0   ,  6.0], 

     [1.0   ,   2.0   ,  2.0   , 11.0], 

     [1.0   ,  -1.0   ,  3.0   ,  8.0]] 

    ) 

 

print("Gauss - Seidel - Sistema") 

 

tole = 10 

pare = 0 

v = 0 

i1 = 0 

i2 = 1 

m = np.size(M[:,1]) 

n = np.size(M[1,:]) 

 

print("Matriz Ampliada") 

for i in range(0 , m , 1): 

  for j in range(0 , n  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

#print('m: {:d}'.format(m)) 

#print('n: {:d}'.format(n)) 

 

R = np.zeros((nloop , m)) 

v = np.zeros((m)) 

va = 0; 

k = 0 

 

print('\n k    x1       x2       x3       Erro') 

 

while(pare == 0): 

  for i in range(0 , m , 1): 

    va = 0 

    for j in range(0 , m , 1): 

      if(i == j): 

        va = va + 0.0 

      if(i != j): 

        if(i < j): 

          va = va + ( M[i,j] * R[i1,j] ) 

        if(i > j): 

          va = va + ( M[i,j] * R[i2,j] ) 

      R[i2,i] = (1/M[i,i])*(M[i,n-1]- va) 

  print("%2d"%k , "%8.4f"%R[k , 0] , "%8.4f"%R[k , 1] , "%8.4f"%R[k , 

2] , "%8.4f"%tole) 

  tole = 10 

  if (k >= 0): 

    for i in range(0 , m , 1): 

      v[i] = abs(R[i2,i] - R[i1,i]); 
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      tole = max(v[:]); 

  if(tole < erro): 

    print("\nSolução do sistema") 

    for t in range(0 , m  , 1): 

      print("%8.2f"%R[i2 , t], end=' ') 

    pare = 1 

 

  if(i1 == nloop): 

    pare = 1 

  i1 = i1 + 1 

  i2 = i2 + 1 

  k = k + 1 

 

SAÍDA DO PROGRAMA 

Gauss - Seidel - Sistema 

Matriz Ampliada 

  2.0000  -1.0000   2.0000   6.0000   

  1.0000   2.0000   2.0000  11.0000   

  1.0000  -1.0000   3.0000   8.0000   

 

 k    x1       x2       x3       Erro 

 0   0.0000   0.0000   0.0000  10.0000 

 1   3.0000   4.0000   3.0000   4.0000 

 2   2.0000   1.5000   2.5000   2.5000 

 3   1.2500   2.3750   3.0417   0.8750 

 4   1.1458   1.8854   2.9132   0.4896 

 5   1.0295   2.0720   3.0142   0.1866 

 6   1.0218   1.9749   2.9844   0.0971 

 7   1.0031   2.0141   3.0037   0.0392 

 8   1.0034   1.9946   2.9971   0.0195 

 9   1.0002   2.0028   3.0009   0.0082 

10   1.0005   1.9989   2.9994   0.0039 

11   1.0000   2.0006   3.0002   0.0017 

 

Solução do sistema 

    1.00     2.00     3.00 
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ATIVIDADE  

 (01)  Resolva o sistemas, com 𝑥0 = [0 , 0 , 0],  𝐸 ≤ 10
−2 ou 𝑘 ≤ 10, onde 𝑘 é o número 

de iterações. Utilize o método de Gauss Seidel. 

(a) {

2𝑥 − 𝑦 + 𝑧 = 2
𝑥 + 2𝑦 + 𝑧 = 4
2𝑥 + 𝑦 + 2𝑧 = 5

   (b) {

4𝑥 − 𝑦 + 𝑧 = 5
𝑥 + 2𝑦 + 𝑧 = 5
𝑥 − 3𝑦 + 3𝑧 = 4

 

(c) {

3𝑥 − 𝑦 − 𝑧 = −2
2𝑥 + 5𝑦 + 𝑧 = 15
−𝑥 − 𝑦 − 3𝑧 = −12

  (d) {

3𝑥 − 𝑦 − 𝑧 + 𝑡 = 2
2𝑥 + 5𝑦 + 𝑧 + 𝑡 = 19
−𝑥 − 𝑦 − 3𝑧 − 𝑡 = −16
𝑥 + 2𝑦 + 𝑧 + 5𝑡 = 28

 

(02) Resolva os sistemas, com 𝑥0 = [0 , 0 , 0],  𝐸 ≤ 10
−2 ou 𝑘 ≤ 10, onde 𝑘 é o número de 

iterações. Utilize o método de Gauss Seidel. 

(a) {

3𝑥 + 𝑦 − 𝑧 = 2
𝑥 + 5𝑦 + 𝑧 = 14
𝑥 − 𝑦 − 3𝑧 = −10

   (b) {

3𝑥 − 𝑦 + 𝑧 = 4
−𝑥 + 4𝑦 + 𝑧 = 10
−𝑥 − 𝑦 + 3𝑧 = 6

 

(c) {

3𝑥 + 𝑦 − 𝑧 = 2
−𝑥 + 4𝑦 + 2𝑧 = 13
−𝑥 + 𝑦 + 2𝑧 = 7

   (d) {

3𝑥 + 𝑦 − 𝑧 + 𝑡 = 6
𝑥 + 5𝑦 + 𝑧 + 𝑡 = 18
𝑥 − 𝑦 − 3𝑧 + 𝑡 = −6
𝑥 + 2𝑦 + 𝑧 + 5𝑡 = 28
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5.  AJUSTE DE CURVAS 

 Em muitas situações, principalmente as que estão relacionadas com levantamento 

de dados, conhecemos alguns valores da função, só nos pontos amostrados, e na maioria 

das vezes precisamos estimar o valor da função para pontos não amostrados. O exemplo 

a seguir apresenta um problema desta natureza. 

 

Exemplo – Em uma cidade A foi feito um foi feito um censo cujos resultado está 

mostrado na tabela a seguir. 

 

Tabela 1 – Resultado do censo feito na cidade hipotética A. 

 
 Quantos habitantes havia na cidade A em 1970? Para resolver este problema 

necessitamos estimar uma função que ajuste estes dados, e só então poderemos estimar 

o número de habitantes no ano em que se deseja. 

 

5.1.  AJUSTE LINEAR 

 Para calcularmos o número de habitantes no ano de 1970, devemos observar que 

os dados possuem um comportamento linear, como mostra a Figura 1, logo estes dados 

podem ser aproximados por uma reta da forma  

𝑦 = 𝛼0 + 𝛼1𝑥, 

onde 𝛼0 e 𝛼1 são denominados parâmetros do modelo.  

 

 

Figura 1 – Representação gráfica dos dados da Tabela 1. 

 

1930 1940 1950 1960 1970 1980 1990 2000 2010
1.94

1.95

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03
x 10

4

Ano Número de habitantes 

1940 
1960 
1980 
1990 
2000 

19600 
19800 
20000 
20100 
20200 
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Os valores de 𝛼0 e 𝛼1 que queremos estimar, para isto devemos fazer a seguinte 

consideração que é ilustrada com o gráfico da Figura 2. 

 

 

 

 

 

 

 

 

 
Figura 2 – As bolinhas representam os valores amostrados no campo e a reta 

representa a função ajustada nos pontos amostrados. No ponto 𝑥𝑖  o valor 𝑦𝑖 representa o 

valor amostrado, e 𝑦̂𝑖 o seu valor estimado pela função ajustada e 𝑑𝑖 = 𝑦𝑖 − 𝑦̂𝑖 é a 

diferença entre o valor amostrado (valor real do campo) e o valor estimado. 

Como estimar a função 𝑦̂ = 𝛼0 + 𝛼1𝑥? Para estimarmos a função 𝑦̂ = 𝛼0 + 𝛼1𝑥, o 

erro entre o valor amostrado 𝑦𝑖 e o valor estimado 𝑦̂𝑖 deve ser mínimo, para isto a soma 

dos quadrados do erro de todos os pontos deve ser a menor possível.  

Para você entender melhor, primeiro definiremos a função que representa a soma 

do quadrado dos erros: 

𝐷 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1 , 

onde temos n  é o número de pontos amostrados. A magnitude de 𝐷 depende da reta 

ajustada, ou seja, depende de 𝛼0 e 𝛼1. Assim como 𝑦̂ = 𝛼0 + 𝛼1𝑥, podemos escrever:

     𝐷(𝛼0, 𝛼1) = ∑ [𝑦𝑖 − (𝛼0 + 𝛼1𝑥)]
2𝑛

𝑖=1 . 

O mínimo de uma função de duas variáveis 𝐷(𝛼0, 𝛼1) ocorre quando as suas derivadas 

parciais 
𝜕𝐷(𝛼0 ,𝛼1)

𝜕𝛼0
 e 
𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
 são simultaneamente iguais a zero. 

 Então para determinarmos  𝛼0 e 𝛼1 da função 𝑦̂ = 𝛼0 + 𝛼1𝑥, devemos fazer 

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼0
= 0     e      

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
= 0, 

O que resulta nas expressões: 

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2−(∑ 𝑥𝑖

𝑛
𝑖=1 )𝑛

𝑖=1
2         e         𝛼0 =

∑ 𝑦𝑖
𝑛
𝑖=1 −(∑ 𝑥𝑖

𝑛
𝑖=1 )𝛼1

𝑛
. 

 

Y 
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Explicaremos o uso destas fórmulas através de um exemplo e você perceberá que sua 

aplicação é simples. 

 

Exemplo: Encontre o número de habitantes de uma cidade no ano de 1970 considerando 

os dados do censo mostrado na Tabela 2. 

i  
Ano 
(𝑥𝑖) 

Número de 
habitantes 

(𝑦𝑖) 
1 
2 
3 
4 
5 

1940 
1960 
1980 
1990 
2000 

19600 
19800 
20000 
20100 
20200 

Tabela 2 – Censo feito na cidade hipotética A. É o mesmo dado da Tabela 1. 

 

 Para calcularmos 𝛼1 e 𝛼0 devemos primeiro completar a tabela com as colunas 

contendo informação de 𝑥𝑖
2 e 𝑥𝑖𝑦𝑖 (ver Tabela 3) 

 

i  
Ano 
(𝑥𝑖) 

Número de 
habitantes 

(𝑦𝑖) 
𝑥𝑖
2 𝑥𝑖𝑦𝑖  

1 
2 
3 
4 
5 

1940 
1960 
1980 
1990 
2000 

19600 
19800 
20000 
20100 
20200 

3763600 
3841600 
3920400 
3960100 
4000000 

38024000 
38808000 
39600000 
39999000 
40400000 

Tabela 3 – Contém informações da Tabela 2 mais as colunas para 𝑥𝑖
2 e 𝑥𝑖𝑦𝑖 . 

 

 Agora calcularemos ∑ 𝑥𝑖
𝑛
𝑖=1 ,  ∑ 𝑦𝑖

𝑛
𝑖=1 ,  ∑ 𝑥𝑖

2𝑛
𝑖=1   e  ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1  que são obtidos 

simplesmente pela soma dos elementos de cada coluna, como mostra a Tabela 4. 

 

𝑖 
Ano 
(𝑥𝑖) 

Número de 
habitantes 

(𝑦𝑖) 
𝑥𝑖
2 𝑥𝑖𝑦𝑖  

1 
2 
3 
4 
5 

1940 
1960 
1980 
1990 
2000 

19600 
19800 
20000 
20100 
20200 

3763600 
3841600 
3920400 
3960100 
4000000 

38024000 
38808000 
39600000 
39999000 
40400000 

 ∑𝑥𝑖

𝑛

𝑖=1

= 9870 ∑𝑦𝑖

𝑛

𝑖=1

= 99700 ∑𝑥𝑖
2

𝑛

𝑖=1

= 19485700 ∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

= 196831000 

Tabela 4 – Estão os valores de 𝑥𝑖 , 𝑦𝑖, 𝑥𝑖
2, 𝑥𝑖𝑦𝑖 , ∑ 𝑥𝑖

𝑛
𝑖=1 ,  ∑ 𝑦𝑖

𝑛
𝑖=1 ,  ∑ 𝑥𝑖

2𝑛
𝑖=1   e  ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 . 
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Com os valores da Tabela 4 podemos calcular os coeficientes 1  e 0 , da seguinte forma: 

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 )𝑛

𝑖=1
2 =

5 ∗ 196831000 − 9870 ∗ 99700

5 ∗ 19485700 − 196831000
= 10 

 

𝛼0 =
∑ 𝑦𝑖
𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1 )𝛼1

𝑛
=
99700 − (9870)10

5
= 200 

Com isto a função de ajuste é 

𝑦̂ = 200 + 10𝑥 

cujo gráfico está mostrado na Figura 3 juntamente com os pontos amostrados. 

 

Figura 3 – A reta representa o gráfico da função ajustada 𝑦̂ = 200 + 10𝑥 e os pontos os 

valores amostrados. Podemos perceber o bom ajuste da curva. 

 

O número de habitantes em 1970 é obtido pela fórmula 𝑦̂ = 200 + 10𝑥, da 

seguinte forma: 

𝑦̂ = 200 + 10 ∗ 1970 = 19900,  logo tivemos 19900 habitantes em 1970. 

Exemplo:  

Com base dos dados amostrados dispostos na tabela a seguir encontre o valor quando 

𝑥 = 3, segundo uma aproximação linear. 

 

𝑖 𝑥𝑖  𝑦𝑖  
1 
2 
3 
4 
5 
6 
7 

  0.5000 
  1.0000 
  1.5000 
  2.0000 
  2.5000 
  3.5000 
  4.0000 

    2.5500 
    4.5000 
    5.6000 
    7.0000 
    9.2000 
   11.0000 
   13.0000 
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Solução 

Devemos completar a tabela com os valores 𝑥𝑖
2e 𝑥𝑖𝑦𝑖 

i  𝑥𝑖  𝑦𝑖  𝑥𝑖
2 𝑥𝑖𝑦𝑖  

1 
2 
3 
4 
5 
6 
7 

  0.5000 
  1.0000 
  1.5000 
  2.0000 
  2.5000 
  3.5000 
  4.0000 

    2.5500 
    4.5000 
    5.6000 
    7.0000 
    9.2000 
   11.0000 
   13.0000 

    0.2500 
    1.0000 
    2.2500 
    4.0000 
    6.2500 
   12.2500 
   16.0000 

    1.2750 
    4.5000 
    8.4000 
   14.0000 
   23.0000 
   38.5000 
   52.0000 

 ∑𝑥𝑖

𝑛

𝑖=1

= 15 ∑𝑦𝑖

𝑛

𝑖=1

= 52.8500 ∑𝑥𝑖
2

𝑛

𝑖=1

= 42 ∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

= 141.6750 

 
De onde temos 

𝛼1 =
𝑛∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛∑ 𝑥𝑖
2 − (∑ 𝑥𝑖

𝑛
𝑖=1 )𝑛

𝑖=1
2 =

7 ∗ 141.6750 − 15 ∗ 52.8500

7 ∗ 42 − 141.6750
= 2.8837 

 

𝛼0 =
∑ 𝑦𝑖
𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1 )𝛼1

𝑛
=
52.8500 − (15)2.8837

7
= 1.3707  

Com isto a função de ajuste é 

𝑦̂ = 1.3707 + 2.8837𝑥; 

Logo quando 𝑥 = 3  𝑦̂ = 10.0217 

 

ATIVIDADE  

(01) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 𝑥 = 0.5, segundo uma aproximação linear. 

𝑖 𝑥𝑖  𝑦𝑖  
1 
2 
3 
4 
5 
6 
7 

  0.0000 
  0.2000 
  0.4000 
  0.6000 
  0.8000 
  1.0000 
  1.2000 

   -0.2000 
    0.8000 
    1.8000 
    2.8000 
    3.8000 
    4.8000 
    5.8000 
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5.2.  AJUSTE POLINOMIAL 

 O ajuste linear é um caso particular do ajuste polinomial, onde ajustaremos aos 

pontos amostrados um polinômio, 𝑦̂, de grau n. 

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3+. . . +𝛼𝑛𝑥
𝑛. 

Os são coeficientes 𝛼0, 𝛼1, 𝛼2, 𝛼3, . . . , 𝛼𝑛 são obtidos através de um sistema da forma: 

𝑋𝐴 = 𝐵 

 Para que você entenda claramente a construção deste sistema iniciaremos 

abordando o ajuste linear segundo esta perspectiva. 

 Para ajustarmos uma reta (polinômio do 1º grau) 𝑦̂ = 𝛼0 + 𝛼1𝑥, devemos 

minimizar  a função 𝐷(𝛼0, 𝛼1) = ∑ [𝑦𝑖 − (𝛼0 + 𝛼1𝑥)]
2𝑛

𝑖=1 , para isto devemos fazer 

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼0
= 0    𝑛𝛼0 + (∑ 𝑥𝑖

𝑛
𝑖=1 )𝛼1 = ∑ 𝑦𝑖

𝑛
𝑖=1  

𝜕𝐷(𝛼0,𝛼1)

𝜕𝛼1
= 0    𝛼0∑ 𝑥𝑖

𝑛
𝑖=1 + 𝛼1∑ 𝑥𝑖

2𝑛
𝑖=1 = ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1  

Podemos escrever este sistema na forma matricial 

[
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1 ]
 
 
 
 
 

[
𝛼0
𝛼1
] =

[
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 

 

Comparando com o sistema BAX = , temos que: 

𝑋 = [
𝑛 ∑ 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1

],         𝐴 = [
𝛼0
𝛼1
]     e     𝐵 = [

∑ 𝑦𝑖
𝑛
𝑖=1

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

] 

Com a resolução do sistema, encontraremos 𝐴 que possibilitará a determinação do 

polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥. 
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Para entendermos como interpolar um polinômio de grau n, observe a tabela: 

 

Polinômio a interpolador Sistema a ser determinado 

𝑦̂ = 𝛼0 + 𝛼1𝑥 

 

[
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1 ]
 
 
 
 
 

[
𝛼0
𝛼1
] =

[
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 

 

  

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 

 

[
 
 
 
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

[

𝛼0
𝛼1
𝛼2
] =

[
 
 
 
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 

 

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3 

 

[
 
 
 
 
 
 
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
6

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 

[

𝛼0
𝛼1
𝛼2
𝛼3

] =

[
 
 
 
 
 
 
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
3𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Seguindo o raciocínio da tabela, podemos afirmar que para ajustarmos o polinômio: 

𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3+. . . +𝛼𝑛𝑥
𝑛 

Devemos resolver o sistema: 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+1

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+2

𝑛

𝑖=1

∑𝑥𝑖
3

𝑛

𝑖=1

∑𝑥𝑖
4

𝑛

𝑖=1

∑𝑥𝑖
5

𝑛

𝑖=1

∑𝑥𝑖
6

𝑛

𝑖=1

⋯ ∑𝑥𝑖
𝑛+3

𝑛

𝑖=1

⋮ ⋮ ⋮ ⋮ ⋮

∑𝑥𝑖
𝑛

𝑛

𝑖=1

∑𝑥𝑖
𝑛+1

𝑛

𝑖=1

∑𝑥𝑖
𝑛+2

𝑛

𝑖=1

∑𝑥𝑖
𝑛+3

𝑛

𝑖=1

⋯ ∑𝑥𝑖
2𝑛

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝛼0
𝛼1
𝛼2
𝛼3
⋮
𝛼𝑛]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
2𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖
3𝑦𝑖

𝑛

𝑖=1

⋮

∑𝑥𝑖
𝑛𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Para você entender como montar este sistema, observe o próximo exemplo. 

 

Exemplo: Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 3=x , segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2. 

 

i  𝑥𝑖  𝑦𝑖  

1 
2 
3 
4 
5 
6 
7 

  0.5000 
  1.0000 
  1.5000 
  2.0000 
  2.5000 
  3.5000 
  4.0000 

    1.2500 
    3.0000 
    5.2500 
    8.0000 
   11.2500 
   19.2500 
   24.0000 

 
Solução 

Para montarmos o sistema devemos completar a tabela com as informações:  

i  𝑥𝑖  𝑦𝑖  𝑥𝑖
2 𝑥𝑖

3 𝑥𝑖
4 𝑥𝑖𝑦𝑖  𝑥𝑖

2𝑦𝑖  

1 
2 
3 
4 
5 
6 
7 

0.5000 
1.0000 
1.5000 
2.0000 
2.5000 
3.5000 
4.0000 

  1.2500 
  3.0000 
  5.2500 
  8.0000 
11.2500 
19.2500 
24.0000 

 0.2500 
 1.0000 
 2.2500 
 4.0000 
 6.2500 
12.2500 
16.0000 

  0.1250 
  1.0000 
  3.3750 
  8.0000 
15.6250 
42.8750 
64.0000 

  0.0625 
  1.0000 
  5.0625 
 16.0000 
 39.0625 
150.0625 
256.0000 

 0.6250 
 3.0000 
 7.8750 
16.0000 
28.1250 
67.3750 
96.0000 

    0.3125 
    3.0000 
  11.8125 
  32.0000 
  70.3125 
235.8125 
384.0000 

∑

𝑛

𝑖=1

 15 72 42 135 467.2500 219 737.2500 

 

Desta forma o sistema para o ajuste do polinômio 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2, adquire a forma: 

[
7 15 42
15 42 135
42 135 467.2500

] [

𝛼0
𝛼1
𝛼2
] = [

72
219

737.2500
] 
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De onde obtemos o seguinte polinômio 𝑦̂ = 0 + 2𝑥 + 𝑥2, cujo gráfico está mostrado na 

Figura 4 juntamente com os pontos amostrado.  Logo quando 𝑥 = 3  𝑦̂ = 15. 

 
Figura 4 – Polinômio interpolador 𝑦̂ = 0 + 2𝑥 + 𝑥2 e pontos amostrados. 

 

 

PROGRAMA EM PYTHON 

# Ajuste Linear 

 

import numpy as np 

 

# Entrada 

x0 = 3 

 

p = 2       # Grau do polinómio 

 

print("Ajuste Linear") 

 

D = np.array( 

    [[ 0.5000   ,   1.2500], 

     [ 1.0000   ,   3.0000], 

     [ 1.5000   ,   5.2500], 

     [ 2.0000   ,   8.0000], 

     [ 2.5000   ,  11.2500], 

     [ 3.5000   ,  19.2500], 

     [ 4.0000   ,  24.0000]] 

    ) 

 

md = np.size(D[:,1]) 

nd = np.size(D[1,:]) 

pp = 2*p 

 

xi = np.zeros((md , pp+1)) 

ssxi = np.zeros((1 , pp+1)) 

sxi = np.zeros((1 , pp+2)) 

yi = np.zeros((md , pp+1)) 

syi = np.zeros((1 , pp+1)) 

M = np.zeros((p+1 , p+2)) 

 

xi[:,0] = D[:,0] 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15
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yi[:,0] = D[:,1] 

 

print("    x        y") 

for i in range(0 , md , 1): 

  for j in range(0 , nd  , 1): 

    print("%8.4f"%D[i,j], end=' ') 

  print(" ") 

 

print("\nf(%8.4f"%x0 , ") = ???") 

print("Grau do polinômio: %d"%p + " grau") 

 

for j in range(1 , pp , 1): 

  for i in range(0 , md  , 1): 

    xi[i , j]  = xi[i , 0]**(j+1) 

 

s = 0 

for j in range(0 , pp , 1): 

  s = 0 

  for i in range(0 , md  , 1): 

    s = s + xi[i,j] 

  ssxi[0,j] = s 

 

sxi[0,0] = md 

for j in range(0 , pp , 1): 

  sxi[0,j+1] = ssxi[0,j] 

 

#print("    x           x^2        x^3        x^4") 

#for i in range(0 , md , 1): 

  #for j in range(0 , pp  , 1): 

    #print("%10.4f"%xi[i,j], end=' ') 

  #print(" ") 

 

#for j in range(0 , pp  , 1): 

  #print("%10.4f"%ssxi[0,j], end=' ') 

#print(" ") 

 

#for j in range(0 , pp+1  , 1): 

  #print("%10.4f"%sxi[0,j], end=' ') 

#print(" ") 

 

for j in range(1 , p+1 , 1): 

  for i in range(0 , md  , 1): 

    yi[i , j]  = (xi[i , 0]**(j))*yi[i , 0] 

 

s = 0 

for j in range(0 , p+1 , 1): 

  s = 0 

  for i in range(0 , md  , 1): 
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    s = s + yi[i,j] 

  syi[0,j] = s 

 

#print("    (x^0)y     (x^1)y     (x^2)y") 

#for i in range(0 , md , 1): 

  #for j in range(0 , p+1  , 1): 

    #print("%10.4f"%yi[i,j], end=' ') 

  #print(" ") 

 

#for j in range(0 , p+1  , 1): 

  #print("%10.4f"%syi[0,j], end=' ') 

#print(" ") 

 

k = 0 

for i in range(0 , p+1 , 1): 

  for j in range(0 , p+3 , 1): 

    if(j+k <= p+2): 

      a = sxi[0,j+k] 

    if(j+k > p+2): 

      a = 0 

    if(j < p+1): 

      M[i,j] = a 

  k = k + 1 

 

for i in range(0 , p+1 , 1): 

  M[i,p+1] = syi[0,i] 

 

print("sistema") 

for i in range(0 , p+1 , 1): 

  for j in range(0 , p+2  , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

linha = np.size(M[:,1]) 

coluna = np.size(M[1,:]) 

 

#print('Linha: {:d}'.format(linha)) 

#print('Coluna: {:d}'.format(coluna)) 

 

# Zera Triangulo Infrerior 

t = 1 

fm = 0 

 

for j in range(0 , linha , 1): 

  for i in range(t , linha , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 
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      M[i , k] = fm * M[j , k] + M[i , k] 

  t = t + 1 

 

#print("Zera Triangulo Infrerior") 

#for i in range(0 , linha , 1): 

  #for j in range(0 , coluna  , 1): 

    #print("%8.4f"%M[i,j], end=' ') 

  #print(" ") 

 

t = 1 

fm = 0 

 

for j in range(linha - 1 , 0 , -1): 

  for i in range(0 , linha - t , 1): 

    fm = - M[i,j]/M[j,j] 

    for k in range(0 , coluna , 1): 

      M[i,k] = fm * M[j,k] + M[i,k] 

  t = t + 1 

 

#print("Zera Triangulo Superior") 

#for i in range(0 , linha , 1): 

  #for j in range(0 , coluna  , 1): 

    #print("%8.4f"%M[i,j], end=' ') 

  #print(" ") 

 

fm = 0 

 

for i in range(0 , linha , 1): 

  fm = M[i,i] 

  for j in range(0 , coluna , 1): 

    M[i,j] = M[i,j]/fm 

 

#print("Matriz Normalizada") 

#for i in range(0 , linha , 1): 

  #for j in range(0 , coluna  , 1): 

    #print("%8.4f"%M[i,j], end=' ') 

  #print(" ") 

 

print("\nSolução") 

print("f(x)= a0 + a1 x + a2 x^2 + a3 x^3 + a4 x^4") 

for i in range(0 , linha , 1): 

  print("a%d"%i , "= %8.4f"%M[i , coluna-1]) 

 

fx0 = 0 

for i in range(0 , linha , 1): 

  fx0 = fx0 + M[i , coluna-1] * x0**i 

 

print(" ") 
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print("f(%8.4f"%x0 , ") = %8.4f"%fx0) 

print(" ") 

print(" ") 

 

import matplotlib.pyplot as plt 

import numpy as np 

xii = np.linspace(-10, 10, 100) 

nd2 = np.size(xii) 

fxii = np.zeros((1 , nd2)) 

 

for j in range(0 , nd2 , 1): 

  fxii[0,j] = 0 

  for i in range(0 , linha  , 1): 

    fxii[0,j] = fxii[0,j] + M[i , coluna-1] * xii[j]**i 

 

fig = plt.figure() 

plt.plot(D[:,0], D[:,1], '*') 

plt.plot(xii[:], fxii[0,:]) 

plt.grid() 

 

 

SAÍDA DO PROGRAMA 

Ajuste Linear 

    x        y 

  0.5000   1.2500   

  1.0000   3.0000   

  1.5000   5.2500   

  2.0000   8.0000   

  2.5000  11.2500   

  3.5000  19.2500   

  4.0000  24.0000   

 

f(  3.0000 ) = ??? 

Grau do polinômio: 2 grau 

sistema 

  7.0000  15.0000  42.0000  72.0000   

 15.0000  42.0000 135.0000 219.0000   

 42.0000 135.0000 467.2500 737.2500   

 

Solução 

f(x)= a0 + a1 x + a2 x^2 + a3 x^3 + a4 x^4 

a0 =   0.0000 

a1 =   2.0000 

a2 =   1.0000 

  

f(  3.0000 ) =  15.0000 
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ATIVIDADE  

(01) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 3=x , segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2. 

𝑖 𝑥𝑖  𝑦𝑖  
1 
2 
3 
4 
5 
6 
7 

  0.5000 
  1.0000 
  1.5000 
  2.0000 
  2.5000 
  3.5000 
  4.0000 

    0.7500 
    2.0000 
    3.7500 
    6.0000 
    8.7500 
   15.7500 
   20.0000 

(02) Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 𝑥 = 0.3, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2. 

𝑖 𝑥𝑖  𝑦𝑖  
1 
2 
3 
4 
5 
6 
7 

  0.0000 
  0.2000 
  0.4000 
  0.6000 
  0.8000 
  1.0000 
  1.2000 

           0.0000 
   -0.1600 
   -0.2400 
   -0.2400 
   -0.1600 

           0.0000 
    0.2400 

 (03)  Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 𝑥 = 0.7, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2. 

i  ix  iy  

1 
2 
3 
4 
5 
6 
7 

  0.0000 
  0.2000 
  0.4000 
  0.6000 
  0.8000 
  1.0000 
  1.2000 

    0.0000 
    0.1200 
    0.0800 
   -0.1200 
   -0.4800 
   -1.0000 
   -1.6800 

(04)  Com base dos dados amostrados dispostos na tabela a seguir encontre o valor 

quando 𝑥 = 0.5, segundo o polinômio interpolador 𝑦̂ = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥
2 + 𝛼3𝑥

3. 

𝑖 𝑥𝑖  𝑦𝑖  
1 
2 
3 
4 
5 
6 
7 

0.0000 
0.2000 
0.4000 
0.6000 
0.8000 
1.0000 
1.2000 

0.0000 
0.2320 
0.4960 
0.7440 
0.9280 
1.0000 
0.9120 
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6.  INTERPOLAÇÃO 

 Em um dado experimento foram feitas 4 amostras, cujos valores estão dispostos na 

tabela abaixo e cuja representação gráfica está na figura a seguir. 

 

Tabela 1 

Número da amostra ( i ) 𝑥𝑖  𝑦𝑖  

1 0.5 0.25 
2 1.2 1.44 
3 3.0 9.00 
4 4.5 20.25 

  

 

 

 

 

 

 

 

 

 

Figura 1. Representação gráfica dos dados da Tabela 1. 

 

Quanto vale 𝑦𝑖 quando 𝑥𝑖 = 2 ? 

 Semelhante a este problema, onde 𝑦 = 𝑓(𝑥), existem muitos outros, onde muitas 

funções são conhecidas apenas em um conjunto finito e discreto de pontos de um 

intervalo [𝑎, 𝑏]. 

 Nestes casos, onde não se tem a forma analítica da função 𝑦 = 𝑓(𝑥), devemos 

substituí-la por outra função 𝑔(𝑥), que é uma aproximação da função 𝑦 = 𝑓(𝑥) e que é 

deduzida a partir de dados da tabelados. 

 Para determinarmos o valor de 𝑦𝑖 quando 𝑥𝑖 = 2, iremos determinar a função 

𝑔(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, que é denominada de polinômio interpolador. Para os dados da 

Tabela 1, obteremos a função 𝑔(𝑥) = 1𝑥2 + 0𝑥 + 0, cujo gráfico está mostrado na figura 

a seguir juntamente com os dados da tabela 1. 
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Figura 2. Gráfico da função 𝑔(𝑥) = 1𝑥2 + 0𝑥 + 0 juntamente os pontos da tabela 1. 

 

Substituindo 𝑥𝑖 = 2 no polinômio interpolador obtemos o valor de 𝑦𝑖 quando 𝑥𝑖 = 2. 

𝑔(2) = 1 ⋅ 22 + 0 ⋅ 2 + 0 = 4 

 Este tipo de solução, também é utilizado quando se têm funções cuja forma 

analítica é complicada e de difícil manuseio, nestes casos, devemos substituir a 

expressão analítica por outra mais simples.  

 Como foi obtido o polinômio interpolador? Iremos explicar detalhadamente como 

calcular o polinômio interpolador, mas primeiro devemos definir o que é interpolação. 

 

CONCEITO DE INTERPOLAÇÃO 

 Seja a função )(xfy= , cujos valores estão em uma tabela. Se desejarmos 

determinar )( xf  sendo:  

(a) ),( 0 nxxx     e   ixx    onde ni ,...,2,1,0=  

(b) ),( 0 nxxx   

O item (a) representa um problema de interpolação, isto é, x  está dentro do intervalo 

amostrado, logo devemos calcular um polinômio interpolador, que é uma aproximação 

da função tabelada.   

 O item (b) representa um problema de extrapolação, isto é, x  está fora do 

intervalo amostrado. Nos trataremos apenas de problemas de interpolação neste 

capítulo. 

 

 

 

-1 0 1 2 3 4 5 6
-5

0

5

10

15

20

25

𝑔(𝑥) = 𝑥2 



Cálculo Numérico com Python no Google Colaboratory 

 

86 

6.1.  INTERPOLAÇÃO LINEAR 

Para que você entenda claramente o que é interpolação, explicaremos interpolação 

linear através de um exemplo prático ilustrado a seguir. 

 

(01) Na tabela está a produção seguir está assinalado o número de habitantes de uma 

cidade A em quatro censos. 

Tabela 1 

ANO 1950 1960 
Nº de Habitantes 352.724 683.908 

 
Determinar o número aproximado de habitantes na cidade A em 1955. O grau do 

polinômio interpolador é uma unidade menor que o número de pontos conhecidos 

Solução 

Neste caso, o polinômio interpolador terá grau 1, isto é, será da forma 

𝑃1(𝑥) = 𝑎1𝑥 + 𝑎0 

Para se determinar os coeficientes, 0a  e 1a  devemos fazer 

{
𝑃1(𝑥0) = 𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑃1(𝑥1) = 𝑎1𝑥1 + 𝑎0 = 𝑦1

             {
𝑎1𝑥0 + 𝑎0 = 𝑦0
𝑎1𝑥1 + 𝑎0 = 𝑦1

 

Para 𝑥0 = 1950 e 𝑦0 = 352.724 temos que 

𝑎11950 + 𝑎0 = 352.724 

Para 𝑥1 = 1960 e 𝑦1 = 683.908 temos que 

𝑎11960 + 𝑎0 = 683.908 

Com isto temos o seguinte sistema 

{
𝑎11950 + 𝑎0 = 352.724
𝑎11960 + 𝑎0 = 683.908

 

onde 𝑎1 = 33118,40    e    𝑎0 = −64228156  logo teremos 

𝑃1(𝑥) = 33118,40𝑥 − 64228156 

como queremos saber o número aproximado de habitantes na cidade A em 𝑥 = 1955, 

temos 

𝑃1(𝑥) = 33118,40 ⋅ 1955 − 64228156 = 518.316habitantes 
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ATIVIDADE  

Obs. Utilize o programa de ajuste linear e e faça a interpolação com o grau máximo que os 

dados permitem.  

(01) Na tabela a seguir está a produção de uma certa indústria. 

ANO 1990 2000 
Nº de peças 340 680 

 
Determinar o número de peças no ano 1995. 

 

(02) Com base na tabela a seguir encontre o valor de y  para 7=x . 

X 2 10 
Y 9 25 

 
 
 (03) Com base na tabela a seguir encontre o valor de y  para 5=x . 

X 2 8 
Y 2 20 

 

(04) Com base na tabela a seguir encontre o valor de y  para 7=x . 
X 2 5 9 
Y -2 7 47 

 
ERRO DE TRUNCAMENTO 

Para que você entenda o erro de truncamento, observe o gráfico mostrado a figura 

a seguir. 

 
 
 
 
 
 
 
 
 
 
 
 
Figura - 𝑓(𝑥) é a função tabelada e 𝑃1(𝑥) um polinômio interpolador de 1º grau. 

Podemos observar que, neste caso,  𝑃1(𝑥) não aproxima bem a solução. 

Teoricamente o erro de truncamento cometido no ponto x  é dado pela fórmula 

𝐸𝑇(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋅ 𝐴, 

onde 𝐴 é uma constante a determinar, como a função erro de truncamento. 

  

 

  

 

 

Valor Aproximado 

Valor real 
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 No cálculo de 𝐴, utilizaremos a função auxiliar 𝐺(𝑡) definida por: 

𝐺(𝑡) = 𝑓(𝑡) − 𝑃1(𝑡) − 𝐸𝑇(𝑡). 

Para que você tenha melhor entendimento, calcularemos o erro de polinômio 

interpolador do primeiro grau, onde  

𝑃1(𝑡) = 𝑎1𝑡 + 𝑎0 e  𝐸𝑇(𝑡) = (𝑡 − 𝑥0)(𝑡 − 𝑥1) ⋅ 𝐴, 

substituindo, obteremos: 

𝐺(𝑡) = 𝑓(𝑡) − 𝑃1(𝑡) − (𝑡 − 𝑥0)(𝑡 − 𝑥1) ⋅ 𝐴, 

onde a função  𝐺(𝑡) se anula em pelo menos em três pontos 𝑡 = 𝑥0,  𝑡 = 𝑥1  e  𝑡 = 𝑥̄. 

 

TEOREMA DE ROLLE 

Se a função 𝑓(𝑥) é contínua no intervalo [𝑎 , 𝑏] e diferenciável no intervalo (𝑎 , 𝑏) e 

𝑓(𝑎) = 𝑓(𝑏), então, existe um 𝜉 ∈ (𝑎, 𝑏), tal que 𝑓′(𝜉) = 0 

Considerações: 

Se 𝑓(𝑡) é contínua em [𝑥0, 𝑥1] e diferenciável em (𝑥0 , 𝑥1), pode-se concluir que 𝐺(𝑡) 

também o é, tendo em vista que 𝑃1(𝑡) e 𝐸𝑇(𝑡) são funções polinomiais de 1º e 2º graus, 

respectivamente, logo 

Existe 𝜉1 ∈ (𝑥0, 𝑥̄) tal que 𝐺(𝜉1) = 0   e 

Existe 𝜉2 ∈ (𝑥̄, 𝑥1) tal que 𝐺(𝜉2) = 0 

Aplicando o teorema de Rolle na função 𝐺′(𝑡), teremos: 

Existe 𝜉 ∈ (𝜉1, 𝜉2) e portanto 𝜉 ∈ (𝑥0, 𝑥1), tal que 𝐺′′(𝑡) = 0, logo teremos 

𝐺′′(𝜉) = 𝑓′′(𝜉) − 2𝐴 = 0         𝐴 =
𝑓′′(𝜉)

2
 

de onde obteres a expressão para o cálculo do erro de truncamento 

𝐸𝑇(𝑡) = (𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋅
𝑓′′(𝜉)

2
 

para algum 𝜉 ∈ (𝑥0, 𝑥1). 

Exemplo 1. Seja a função 𝑓(𝑥) = 𝑠𝑒𝑛𝑥. Determine: 

(a) O valor aproximado para 𝑓 (
𝜋

2
) a partir dos pontos (1,0 ; 0,84)  e  (2,0 ; 0,91). 

(b) O erro de truncamento cometido no cálculo do item anterior. 

Solução 

(a) Para determinarmos 𝑓 (
𝜋

2
) devemos primeiro calcular o polinômio interpolador 

𝑃1(𝑥) = 𝑎1𝑥 + 𝑎0 

Para 𝑥0 = 1,0 e 𝑦0 = 0,84 temos que 
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𝑎11,0 + 𝑎0 = 0,84 

Para 𝑥1 = 2,0 e 𝑦1 = 0,91 temos que 

𝑎12,0 + 𝑎0 = 0,91 

que resulta no sistema: 

{
𝑎1 + 𝑎0 = 0,84
2𝑎1 + 𝑎0 = 0,91

     cuja solução é    {
𝑎1 = 0,07
𝑎0 = 0,77

 

então teremos 

𝑃1(𝑥) = 0,07𝑥 + 0,77                𝑃1 (
𝜋

2
) = 0,07 (

𝜋

2
) + 0,77 = 0,88 

 

(b) Para determinarmos o erro de truncamento devemos calcular a 1º e a 2º derivada da 

função 𝑓(𝑥) 

𝑓(𝑥) = 𝑠𝑒𝑛𝑥      𝑓′(𝑥) = 𝑐𝑜𝑠 𝑥    𝑓′′(𝑥) = −𝑠𝑒𝑛𝑥 

|𝐸𝑇(𝜉)| ≤ |(𝜉 − 𝑥0)(𝜉 − 𝑥1) ⋅
𝑓′′(𝜉)

2
| 

|𝐸𝑇 (
𝜋

2
)| ≤ |(

𝜋

2
− 1) (

𝜋

2
− 2) ⋅

(−1)

2
| 

 ou seja  

|𝐸𝑇 (
𝜋

2
)| ≤ 0,12       ou      −0,12 ≤ 𝐸𝑇 (

𝜋

2
) ≤ 0,12 
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6.2. INTERPOLAÇÃO DE LAGRANGE 

As interpolações apresentadas anteriormente (interpolação linear) são casos 

particulares da interpolação de Lagrange. Agora vamos determinar outra forma de se 

obter o polinômio interpolador 𝑃(𝑥) de grau menor ou igual a 𝑛, sendo dado para isto, 

𝑛 + 1 pontos distintos. 

 

 Para podemos ter uma boa compreensão da interpolação de Lagrange, temos que 

primeiro entender o teorema apresentado a seguir. 

 

Teorema 

Sejam (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2, . . . , 𝑛, 𝑛 + 1 pontos distintos, isto é, 𝑥𝑖 ≠ 𝑥𝑗   para 𝑖 ≠ 𝑗. Existe um 

único polinômio 𝑃(𝑥) de grau não maior que 𝑛, tal que 𝑝(𝑥𝑖) = 𝑦𝑖, para todo 𝑖. O 

polinômio 𝑃(𝑥) pode ser escrito na forma: 

𝑃𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3+. . . +𝑎𝑛𝑥
𝑛 

ou da seguinte forma 

𝑃𝑛(𝑥) =∑𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 

 Observe que 𝑃(𝑥) é, no máximo, de grau 𝑛, se 𝑎𝑛 ≠ 0. Para determinar o polinômio 

)(xP  devemos conhecer os valores 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛. Como 𝑃(𝑥) contém os pontos (𝑥𝑖, 𝑦𝑖) 

podemos escrever 𝑝(𝑥𝑖) = 𝑦𝑖, da seguinte forma 

 

S:    

{
 
 

 
 
𝑎0 + 𝑎1𝑥0 + 𝑎2𝑥0

2 + 𝑎3𝑥0
3+. . . +𝑎𝑛𝑥0

𝑛 = 𝑦0
𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥1

2 + 𝑎3𝑥1
3+. . . +𝑎𝑛𝑥1

𝑛 = 𝑦1
𝑎0 + 𝑎1𝑥2 + 𝑎2𝑥2

2 + 𝑎3𝑥2
3+. . . +𝑎𝑛𝑥2

𝑛 = 𝑦2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛

2 + 𝑎3𝑥𝑛
3+. . . +𝑎𝑛𝑥𝑛

𝑛 = 𝑦𝑛

 

 

A solução do sistema S são os valores 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛, com os quais determinamos o 

polinômio 𝑃𝑛(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3+. . . +𝑎𝑛𝑥
𝑛. 

 

O polinômio 𝑃(𝑥) é único? Para verificarmos que tal polinômio é único, basta 

calcularmos o determinante da matriz 𝐴 (matriz dos coeficientes) e verificar que ele é 

diferente de zero. 
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𝐴 =

[
 
 
 
1 𝑥0 𝑥0

2 . . . 𝑥0
𝑛

1 𝑥1 𝑥1
2 . . . 𝑥1

2

. . . . . . . . . . . . . . .
1 𝑥𝑛 𝑥𝑛

2 . . . 𝑥𝑛
2]
 
 
 
 

Observe  que a matriz 𝐴, tem a forma da matriz de Vandermonte, também conhecida 

como matriz das potências. Seu determinante, segundo a Álgebra Linear, é dado pela 

expressão: 

𝑑𝑒𝑡( 𝐴) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑖>𝑗 ,    com 𝑥𝑖 ≠ 𝑥𝑗  

Sabemos que 𝑑𝑒𝑡( 𝐴) ≠ 0, logo isto prova que 𝑃(𝑥) é único. 

 

Obtenção da Fórmula 

 Para que você entenda a interpolação de Lagrange é necessário que compreender 

como é obtida a fórmula de recorrência deste método.  

 O teorema fundamental da Álgebra garante que podemos escrever o polinômio 

𝑃(𝑥) da seguinte forma 

𝑃(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛) 

onde 𝑥0, 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 são as raízes do polinômio 𝑃(𝑥).  Montaremos agora, uma 

sequência de polinômios auxiliares da seguinte forma 

1º polinômio: se retirarmos (𝑥 − 𝑥0) obteremos o polinômio 

𝑝0(𝑥) = (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)  

 

2º polinômio: se retirarmos (𝑥 − 𝑥1) obteremos o polinômio 

𝑝1(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)  

 

3º polinômio: se retirarmos (𝑥 − 𝑥2) obteremos o polinômio 

𝑝2(𝑥) = (𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3). . . (𝑥 − 𝑥𝑛)  

 

Seguindo este raciocínio obteremos os polinômios 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑛(𝑥). Estes 

polinômios podem ser escritos na forma sintética: 

𝑝𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑛
𝑗=0
𝑗≠𝑖

,    (𝑖 = 0,1,2,3, . . . , 𝑛) 

Tais polinômios possuem as seguintes propriedades 

(a) 𝑝𝑖(𝑥𝑖) ≠ 0,  para todo i. 

(b) 𝑝𝑖(𝑥𝑗) = 0,  para todo 𝑗 ≠ 𝑖. 



Cálculo Numérico com Python no Google Colaboratory 

 

92 

e são conhecidos como polinômios de Lagrange. O polinômio 𝑃(𝑥) pode ser escrito como 

uma combinação linear dos polinômios 𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), . . . , 𝑝𝑛(𝑥), da seguinte forma: 

𝑃(𝑥) = 𝑏0𝑝0(𝑥) + 𝑏1𝑝1(𝑥) + 𝑏2𝑝2(𝑥)+. . . +𝑏𝑛𝑝𝑛(𝑥) 

ou 

𝑃(𝑥) =∑𝑏𝑖𝑝𝑖(𝑥)

𝑛

𝑖=0

 

Mas, como 𝑝𝑖(𝑥𝑗) = 0,  para todo 𝑗 ≠ 𝑖 e 𝑝𝑖(𝑥𝑖) ≠ 0,  para todo i, temos que  

𝑃𝑛(𝑥𝑛) = 𝑏𝑛𝑝𝑛(𝑥𝑛) 

logo      𝑏𝑛 =
𝑃𝑛(𝑥𝑛)

𝑝𝑛(𝑥𝑛)
 

e como 𝑃𝑛(𝑥𝑖) = 𝑦𝑖, teremos  𝑏𝑖 =
𝑦𝑖

𝑝𝑖(𝑥𝑖)
 

substituindo este valor no somatório será 

𝑃(𝑥) =∑
𝑦𝑖

𝑝𝑖(𝑥𝑖)
𝑝𝑖(𝑥)

𝑛

𝑖=0

 

de onde teremos    𝑃(𝑥) = ∑ 𝑦𝑖
𝑝𝑖(𝑥)

𝑝𝑖(𝑥𝑖)

𝑛
𝑖=0  

como 𝑝𝑖(𝑥) = ∏ (𝑥 − 𝑥𝑗)
𝑛
𝑗=0
𝑗≠𝑖

   então  

𝑃(𝑥) =∑𝑦𝑖∏
(𝑥 − 𝑥𝑗)

(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=0
𝑗≠𝑖

𝑛

𝑖=0

 

denominada de fórmula de interpolação de Lagrange. 

Calma! Parece complicado, mas garantimos que não é! Acompanhe cuidadosamente o 

próximo exemplo e você certamente entenderá como interpolar com o método de 

Lagrange. 

 

Exemplo 1. A partir das informações existentes na tabela, determine: 

i 𝑥𝑖 𝑦𝑖 

0 
1 
2 
3 

0.0 
0.2 
0.4 
0.5 

0.000 
2.008 
4.064 
5.125 

(a) O polinômio interpolador de Lagrange 

(b) 𝑃(0.3) 

Solução 

(a) Como temos 4 pontos, o polinômio interpolador será de grau 3, logo 
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𝑃3(𝑥) = ∑ 𝑦𝑖∏
(𝑥−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)

3
𝑗=0
𝑗≠𝑖

3
𝑖=0 ,    ou seja 

𝑃3(𝑥) = 𝑦0
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)(𝑥0 − 𝑥3)
+ 

+𝑦1
(𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
+ 

+𝑦2
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
+ 

+𝑦3
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
 

substituindo os valores da tabela, teremos 

𝑃3(𝑥) = 0.000
(𝑥 − 0.2)(𝑥 − 0.4)(𝑥 − 0.5)

(0.0 − 0.2)(0.0 − 0.4)(0.0 − 0.5)
+ 

+2.008
(𝑥 − 0.0)(𝑥 − 0.4)(𝑥 − 0.5)

(0.2 − 0.0)(0.2 − 0.4)(0.2 − 0.5)
+ 

+4.064
(𝑥 − 0.0)(𝑥 − 0.2)(𝑥 − 0.5)

(0.4 − 0.0)(0.4 − 0.2)(0.4 − 0.5)
+ 

+5.125
(𝑥 − 0.0)(𝑥 − 0.2)(𝑥 − 0.4)

(0.5 − 0.0)(0.5 − 0.2)(0.5 − 0.4)
 

simplificando a expressão, temos o seguinte polinômio interpolador 

𝑃3(𝑥) = 𝑥
3 + 10𝑥 

(b) 𝑃3(0.3) = 0. 3
3 + 10 ⋅ 0.3 = 3.027 

 

Exemplo 2. A partir das informações existentes na tabela, determine: 

I ix  iy  

0 
1 
2 

1 
2 
4 

1 
4 

16 

(a) O polinômio interpolador de Lagrange 

(b) 𝑃(3) 

Solução 

(a) Como temos 3 pontos, o polinômio interpolador será de grau 2, logo 

𝑃2(𝑥) = ∑ 𝑦𝑖∏
(𝑥−𝑥𝑗)

(𝑥𝑖−𝑥𝑗)

2
𝑗=0
𝑗≠𝑖

2
𝑖=0 ,    ou seja 

𝑃2(𝑥) = 𝑦0
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+ 𝑦1

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+ 𝑦2

(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

substituindo os valores da tabela, teremos 
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𝑃2(𝑥) = 1
(𝑥 − 2)(𝑥 − 4)

(1 − 2)(1 − 4)
+ 4

(𝑥 − 1)(𝑥 − 4)

(2 − 1)(2 − 4)
+ 16

(𝑥 − 1)(𝑥 − 2)

(4 − 1)(4 − 2)
 

que é o polinômio interpolador 

(b) 𝑃2(3) = 1
(3−2)(3−4)

(1−2)(1−4)
+ 4

(3−1)(3−4)

(2−1)(2−4)
+ 16

(3−1)(3−2)

(4−1)(4−2)
 

      𝑃2(3) = 9 

 

PROGRAMA EM PYTHON 

# Interpolação de Lagrange 

 

import numpy as np 

 

# Entrada 

x0 = 0.3 

 

D = np.array( 

    [[0.0   ,  0.000], 

     [0.2   ,  2.008], 

     [0.4   ,  4.064], 

     [0.5   ,  5.125]] 

    ) 

 

print("Interpolação de Lagrange") 

print(D) 

#print(D[0,:]) 

 

# Variáveis auxiliares 

s = 0 

p = 1 

 

# matriz linha X coluna 

linha = np.size(D[:,1]) 

coluna = np.size(D[1,:]) 

 

#print("[linha, coluna] = " + format([linha, coluna])) 

 

s = 0 

 

for i in range(linha): 

  p = 1; 

  for j  in range(linha): 

    if(i == j): 

      p = p 

    if(i != j): 

      p = p * ((x0 - D[j,0])/(D[i,0] - D[j,0])); 

  s = s + D[i, 1] * p 
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print("\n interpolacao em x: {:.3f}" .format(x0)) 

print(" y interpolado: {:.3f}" .format(s)) 

SAÍDA DO PROGRAMA 

Interpolação de Lagrange 

[[0.    0.   ] 

 [0.2   2.008] 

 [0.4   4.064] 

 [0.5   5.125]] 

 

 interpolacao em x: 0.300 

 y interpolado: 3.027 

 

ATIVIDADE  

(01) A partir das informações existentes na tabela, determine: 

i 𝑥𝑖 𝑦𝑖 

0 
1 
2 
3 

0.0 
0.2 
0.4 
0.6 

0.0000 
1.0400 
2.1600 
3.3600 

(a) O polinômio interpolador de Lagrange  (b) 𝑃(0.3) 

(02) A partir das informações existentes na tabela, determine: 

i 𝑥𝑖 𝑦𝑖 

0 
1 
2 
3 

0.1 
0.3 
0.5 
0.7 

0.1010 
0.3270 
0.6250 
1.0430 

(a) O polinômio interpolador de Lagrange 

(b) 𝑃(0.4) 

(03) A partir das informações existentes na tabela, determine: 

i 𝑥𝑖 𝑦𝑖 

0 
1 
2 
3 

0.0 
0.2 
0.4 
0.6 

0.0000 
0.4080 
0.8640 
1.4160 

(a) O polinômio interpolador de Lagrange 

(b) 𝑃(0.5) 

(04) A partir das informações existentes na tabela, determine: 

I 𝑥𝑖 𝑦𝑖 

0 
1 
2 
3 

0.1 
0.3 
0.5 
0.7 

0.0110 
0.1170 
0.3750 
0.8330 

(a) O polinômio interpolador de Lagrange   (b) 𝑃(0.6)  
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6.3.  INTERPOLAÇÃO DE NEWTON 

Para que você tenha uma boa compreensão do método de interpolação de Newton 

com diferenças divididas, iniciaremos este tópico, discorrendo sobre o conceito de 

diferenças divididas.  

 
CONCEITO DE DIFERENÇAS DIVIDIDAS 

Seja 𝑦 = 𝑓(𝑥) uma função que contém 𝑛 pontos distintos (𝑥𝑖 , 𝑦𝑖), onde 𝑖 =

0,1,2, . . . , 𝑛. Representaremos diferença divididas, por 𝑓[].  Definiremos  diferença 

dividida de ordem zero a própria função, isto é, 

𝑓0[𝑥1] = 𝑓(𝑥1) = 𝑦1. 

A diferença dividida de 1ª ordem para os argumentos 𝑥0 e 𝑥1  é uma aproximação 

da 1ª derivada, isto é, 

𝑓1[𝑥0, 𝑥1] =
𝑓(𝑥1)−𝑓(𝑥0)

𝑥1−𝑥0
, 

onde temos a seguinte propriedade 𝑓[𝑥1, 𝑥0] = 𝑓[𝑥0, 𝑥1]. Considerando 𝑦𝑖 = 𝑓(𝑥𝑖), 

podemos escrever as diferenças divididas de 1º ordem, de forma geral, por: 

𝑓1[𝑥𝑖 , 𝑥𝑖+1] =
𝑦𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
. 

A diferença dividida de 2ª ordem para os argumentos 𝑥0, 𝑥1 e 𝑥2 é dada por: 

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
. 

A diferença dividida de 3ª ordem para os argumentos 𝑥0, 𝑥1, 𝑥2 e 𝑥3 é dada por: 

𝑓3[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
𝑓2[𝑥1,𝑥2,𝑥3]−𝑓

2[𝑥0,𝑥1,𝑥2]

𝑥3−𝑥0
. 

Genericamente, a diferença dividida de ordem 𝑛 é dada por: 

𝑓𝑛[𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑖+𝑛] =
𝑓𝑛−1[𝑥𝑖+1,𝑥𝑖+2,...,𝑥𝑖+𝑛]−𝑓

𝑛−1[𝑥𝑖,𝑥𝑖+1,𝑥𝑖+2,...,𝑥𝑖+𝑛−1]

𝑥𝑖+𝑛−𝑥𝑖
. 

Para que você compreenda melhor como fazer estas diferenças dividida observe o 

próximo exemplo numérico. 

Exemplo 1. Dada a função tabelada calcule a diferença dividida de segunda ordem. 

i 𝑥𝑖 𝑦𝑖 
0 
1 
2 

0.3 
1.5 
2.1 

3.09 
17.25 
25.41 

Solução 

Devemos calcular as diferenças divididas de primeira ordem 

𝑓1[𝑥0, 𝑥1] =
𝑦1−𝑦0

𝑥1−𝑥0
=
17.25−3.09

1.5−0.3
= 11.80  
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𝑓1[𝑥1, 𝑥2] =
𝑦2−𝑦1

𝑥2−𝑥1
=
25.41−17.25

2.1−1.5
= 13.60  

com todas as diferenças divididas de primeira ordem calculadas, vamos então 

calcular a de segunda ordem 

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
=
13.60−11.80

2.1−0.3
= 1.0  

 

Para facilitar os procedimentos numéricos e organizar os nossos cálculos 

colocaremos na própria tabela o desenvolvimento do cálculo da seguinte forma: 

i 𝑥𝑖 𝑦𝑖 𝑓1[𝑥𝑖 , 𝑥𝑖+1] 𝑓2[𝑥0, 𝑥1, 𝑥2] 

0 0.3 3.09 𝑓1[𝑥0, 𝑥1] 𝑓2[𝑥0, 𝑥1, 𝑥2] 
1 1.5 17.25 𝑓1[𝑥1, 𝑥2]  

2 2.1 25.41   

 
Fazendo a substituição numérica temos: 

i 𝑥𝑖  𝑦𝑖  𝑓1[𝑥𝑖 , 𝑥𝑖+1] 𝑓2[𝑥0, 𝑥1, 𝑥2] 

0 0.3 3.09 11.80 1.00 
1 1.5 17.25 13.60  
2 2.1 25.41   

 
Agora que já sabemos como calcular as diferenças divididas, iremos nos concentrar 

na fórmula de recorrência para interpolação de Newton.  

A fórmula de recorrência de interpola, de Newton com diferenças dividida, 

depende do número de pontos existente na tabela. 

1º Caso: Existem só dois pontos na tabela 

A fórmula, de interpolação, é obtida a partir da expressão de diferença divididas de 

primeira ordem, 

𝑓1[𝑥0, 𝑥1] =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1 − 𝑥0
=
𝑓(𝑥0) − 𝑓(𝑥1)

𝑥0 − 𝑥1
 

onde isolando 𝑓(𝑥) , para obter a fórmula de interpolação: 

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥0, 𝑥1] 

assumiremos 𝑥 = 𝑥0, onde 𝑥 é qualquer valor dentro do intervalo [𝑥0, 𝑥1]. 

 

2º Caso: Existem só três pontos na tabela 

A fórmula de interpolação, neste caso, é obtida a partir da expressão de diferença 

divididas de segunda ordem, 

𝑓2[𝑥0, 𝑥1, 𝑥2] =
𝑓1[𝑥1,𝑥2]−𝑓

1[𝑥0,𝑥1]

𝑥2−𝑥0
=
𝑓1[𝑥0,𝑥1]−𝑓

1[𝑥1,𝑥2]

𝑥0−𝑥2
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onde isolando 𝑓1[𝑥1, 𝑥2] , obtemos: 

𝑓1[𝑥0, 𝑥1] = 𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2]  

Substituindo na primeira fórmula de interpolação, temos 

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1){𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2]}  

que pode ser escrita por 

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2)𝑓

2[𝑥0, 𝑥1, 𝑥2] 
 

que é a fórmula de interpolação para este caso, onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é 

qualquer valor dentro do intervalo [𝑥0, 𝑥2]. 

 

3º Caso: Existem só quatro pontos na tabela 

A fórmula de interpolação, neste caso, é obtida a partir da expressão de diferença 

divididas de terceira ordem, 

𝑓3[𝑥0, 𝑥1, 𝑥2, 𝑥3] =
𝑓2[𝑥1, 𝑥2, 𝑥3] − 𝑓

2[𝑥0, 𝑥1, 𝑥2]

𝑥3 − 𝑥0
=
𝑓2[𝑥0, 𝑥1, 𝑥2] − 𝑓

2[𝑥1, 𝑥2, 𝑥3]

𝑥0 − 𝑥3
 

onde isolamos 𝑓2[𝑥0, 𝑥1, 𝑥2] , para obter: 

𝑓2[𝑥0, 𝑥1, 𝑥2] = 𝑓
2[𝑥1, 𝑥2, 𝑥3] + (𝑥0 − 𝑥3)𝑓

3[𝑥0, 𝑥1, 𝑥2, 𝑥3] 

Substituindo na segunda fórmula de interpolação, temos 

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2){𝑓

2[𝑥1, 𝑥2, 𝑥3] + (𝑥0

− 𝑥3)𝑓
3[𝑥0, 𝑥1, 𝑥2, 𝑥3]} 

que pode ser expresso por: 

𝑓(𝑥0) = 𝑓(𝑥1) + (𝑥0 − 𝑥1)𝑓
1[𝑥1, 𝑥2] + (𝑥0 − 𝑥1)(𝑥0 − 𝑥2)𝑓

2[𝑥1, 𝑥2, 𝑥3] + (𝑥0 − 𝑥1)(𝑥0

− 𝑥2)(𝑥0 − 𝑥3)𝑓
3[𝑥0, 𝑥1, 𝑥2, 𝑥3] 

que é a fórmula de interpolação para este caso, onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é 

qualquer valor dentro do intervalo [𝑥0, 𝑥3]. 

 

4º Caso: Generalização para n pontos na tabela 

Para uma tabela de n pontos, a fórmula de interpolação pode ser expressa, segundo o 

mesmo raciocínio, por: 

𝑓(𝑥0) = 𝑓(𝑥1) +∑𝑓𝑖[𝑥0, . . . , 𝑥𝑖]∏(𝑥 − 𝑥𝑗)

𝑖−1

𝑗=0

𝑛

𝑖=0

 

onde assumiremos 𝑥 = 𝑥0, onde 𝑥 é qualquer valor dentro do intervalo [𝑥0, 𝑥𝑛]. 
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Exemplo 1. Determinar o valor aproximado de 𝑓(0.4), usando todos os pontos 
tabelados 

I ix  iy  

0 0.0 1.008 
1 0.2 1.064 
2 0.3 1.125 
3 0.5 1.343 
4 0.6 1.512 

 
 
Solução 

i 𝑥𝑖 𝑦𝑖 = 𝑓[] 𝑓1[] 𝑓2[] 𝑓3[] 𝑓4[] 

          0                   0.0000         1.0080          0.2800          1.1000         1.0000        -0.0000 
          1                   0.2000         1.0640          0.6100          1.6000         1.0000         0.0000 
          2                   0.3000         1.1250          1.0900          2.0000         0.0000         0.0000 
          3                   0.5000         1.3430          1.6900          0.0000         0.0000         0.0000 
          4                   0.6000         1.5120          0.0000          0.0000         0.0000         0.0000 

 
Utilizamos os valores em azul no momento a substituição 
𝑓(0.4) = 𝑓[] + (0.4 − 𝑥0)𝑓

1[] + (0.4 − 𝑥0)(0.4 − 𝑥1)𝑓
2[] + 

+(0.4 − 𝑥0)(0.4 − 𝑥1)(0.4 − 𝑥2)𝑓
3[] + (0.4 − 𝑥0)(0.4 − 𝑥1)(0.4 − 𝑥2)(0.4 − 𝑥3)𝑓

4[] 
 

𝑓(0.4) = 1.2160 
 
Exemplo 2. Determinar o valor aproximado de 𝑓(0.2), usando todos os pontos 
tabelados 

i 𝑥𝑖  𝑦𝑖  

0 0.0 1.000 
1 0.1 2.001 
2 0.3 4.081 
3 0.6 8.296 
4 1.0 21.000 

 
i 𝑥𝑖  𝑦𝑖 = 𝑓[] 𝑓1[] 𝑓2[] 𝑓3[] 𝑓4[] 

       0                      0.000              1.0000         10.0100           1.3000         10.0000         10.0000 
       1                      0.1000           2.0010         10.4000           7.3000         20.0000           0.0000 
       2                      0.3000           4.0810         14.0500         25.3000           0.0000           0.0000 
       3                      0.6000           8.2960         31.7600           0.0000           0.0000           0.0000 
       4                      1.0000         21.0000           0.0000           0.0000           0.0000           0.0000 

Utilizamos os valores em azul no momento as substituição 
𝑓(0.2) = 𝑓[] + (0.2 − 𝑥0)𝑓

1[] + (0.2 − 𝑥0)(0.2 − 𝑥1)𝑓
2[] + 

+(0.2 − 𝑥0)(0.2 − 𝑥1)(0.2 − 𝑥2)𝑓
3[] + (0.2 − 𝑥0)(0.2 − 𝑥1)(0.2 − 𝑥2)(0.2 − 𝑥3)𝑓

4[] 
𝑓(0.2) = 3.0160 

 
 
 
 
 
 
PROGRAMA EM PYTHON 
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# Interpolação de Newton 

 

import numpy as np 

 

# Entrada 

x0 = 0.4    #valor a ser interpolado 

 

D = np.array( 

    [[0.0   ,  1.008], 

     [0.2   ,  1.064], 

     [0.3   ,  1.125], 

     [0.5   ,  1.343], 

     [0.6   ,  1.512]] 

    ) 

 

print("Interpolação de Newton") 

print("Dado") 

print(D) 

#print(D[0,:]) 

 

# Variáveis auxiliares 

s = 0 

p = 1 

 

# matriz linha X coluna 

linha = np.size(D[:,1]) 

coluna = np.size(D[1,:]) 

 

#print("[linha, coluna] = " + format([linha, coluna])) 

 

s = 0 

 

shape = (linha, linha) 

M = np.zeros(shape) 

 

M[:,0] = D[:,1] 

 

t = 0 

 

for j in range(0 , linha , 1): 

  t = t + 1 

  for i in range(1 , linha - j , 1): 

    #print([i , j , M[i,j-1] , M[i-1,j-1], D[i+j , 0] , D[i+j-t , 0]]) 

    M[i-1,j+1] = (M[i , j] - M[i-1 , j]) / (D[i+j , 0] - D[i+j-t , 0]) 

    #print("%2d"%(i-1), "%2d"%(j+1), "%8.4f"%M[i-1,j+1], "%8.4f"%M[i , 

j] , "%8.4f"%M[i-1 , j], "%8.4f"%D[i+j , 0], "%8.4f"%D[i+j-t , 0]) 

 

print("Tabela") 

print('    f[]     f1[]     f2[]     f3[]     f4[]') 
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for i in range(0 , linha , 1): 

  for j in range(0 , linha , 1): 

    print("%8.4f"%M[i,j], end=' ') 

  print(" ") 

 

s = M[0,0] 

for j in range(1 , linha , 1): 

    p = 1; 

    for i in range(0 , j , 1): 

        p = p * ( x0 - D[i , 0] ) 

    s =  s + M[0 , j] * p 

 

print('\nValor de x é: {:8.4f}'.format(x0)) 

print('Valor interpolado é: {:8.4f}'.format(s)) 

 

SAÍDA DO PROGRAMA 

Interpolação de Newton 

Dado 

[[0.    1.008] 

 [0.2   1.064] 

 [0.3   1.125] 

 [0.5   1.343] 

 [0.6   1.512]] 

Tabela 

    f[]     f1[]     f2[]     f3[]     f4[] 

  1.0080   0.2800   1.1000   1.0000  -0.0000   

  1.0640   0.6100   1.6000   1.0000   0.0000   

  1.1250   1.0900   2.0000   0.0000   0.0000   

  1.3430   1.6900   0.0000   0.0000   0.0000   

  1.5120   0.0000   0.0000   0.0000   0.0000   

 

Valor de x é:   0.4000 

Valor interpolado é:   1.2160 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ATIVIDADE 
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(01) Determinar o valor aproximado de 𝑓(0.3), usando todos os pontos tabelados 
i 𝑥𝑖 𝑦𝑖 

0 0.0     0.0000 

1 0.2     0.0480 

2 0.4     0.2240 

3 0.6     0.5760 

4 0.8     1.1520 

 
(02) Determinar o valor aproximado de 𝑓(0.4), usando todos os pontos tabelados 

i 𝑥𝑖 𝑦𝑖 
0 0.1     0.1010 

1 0.3     0.3270 

2 0.5     0.6250 

3 0.7     1.0430 

4 0.9     1.6290 

 
(03)  Determinar o valor aproximado de 𝑓(0.3), usando todos os pontos tabelados 

i 𝑥𝑖 𝑦𝑖 

0 0.0     0.1000 

1 0.2     0.1080 

2 0.4     0.1640 

3 0.6     0.3160 

4 0.8     0.6120 
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7.  INTEGRAÇÃO NUMÉRICA 

 Ao se resolver certos problemas, são comuns soluções que recaiam no cálculo de 

área de figuras plana onde se conhece as equações que contornam a figura. O problema a 

seguir, é um bom exemplo desta situação. 

 

Exemplo 1. Um móvel se desloca ao longo de uma trajetória retilínea segunda a equação 

horária 𝑣 = 4𝑡 − 𝑡2, onde o tempo é medido em segundos e a distância em metros. O 

gráfico da função horária está mostrado a figura a seguir. 

 

Figura 1 – Gráfico da função 𝑣 = 4𝑡 − 𝑡2, onde o tempo está em segundos e a velocidade 

em m/s. 

  

 O deslocamento deste móvel nos primeiros 4 segundos é determinado calculando a 

área plana compreendida entre a equação 𝑣 = 4𝑡 − 𝑡2 e o eixo dos tempos, isto é, 

determinar a área rachurada mostrada na figura 2. 

 

Figura 2 – Gráfico da função 𝑣 = 4𝑡 − 𝑡2, onde o t é tempo (seg) e v é a velocidade (m/s). 

A parte rachurada corresponde ao deslocamento do móvel. 
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Como calcular esta área? Se a função 𝑓(𝑥) é contínua em um intervalo [𝑎, 𝑏] e sua 

primitiva 𝐹(𝑥) é conhecida, então a área é calculada pela integral definida desta função 

no intervalo definido e é dada por: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐹(𝑏) − 𝐹(𝑎) 

onde 𝐹′(𝑥) = 𝑓(𝑥).  

Como é feito em situações práticas? Em muitas situações práticas, onde não se tem 

uma fórmula analítica para a função 𝑓(𝑥), e sim uma tabela de pontos que expressão seu 

comportamento, para calculamos a área através do valor da integra definida de 𝑓(𝑥) é 

necessário a utilização de métodos numéricos.  

 

7.1.  REGRA DOS TRAPÉZIOS 

 Neste método, substituímos a rachurada que se deseja calcular pela área de um 

trapézio como ilustra a figura a seguir. 

 

 

 

 

 

 

 

 

Figura 3 – (a) Área rachurada compreendida pela função 𝑓(𝑥) e o eixo do 𝑥 no intervalo 

[𝑥0𝑥1]. (b) Trapézio utilizado para aproximar a área rachurada do item (a).  

  

O trapézio utilizado para aproximar a área rachurada é determinado, utilizando os 

dois pontos do intervalo, onde passamos uma reta. Da geometria sabemos que a área 

deste trapézio é dada por: 

𝐴 =
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] 

A diferença entre a integral exata de 𝑓(𝑥) (área sob a curva 𝑓(𝑥)) e a integral 

aproximada (área do trapézio) é denominada de erro de integração. A diferença dos 

resultados não é muito grande? 

 

x0 x0 x1 x1 

f(x) f(x) f(x0) 

f(x1) f(x1) 

f(x0) 

x 

y 

x 

y 

h h 

(a) (b) 
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Uma forma de se melhorar o resultado estimado, isto é, diminuir a diferença entre 

o resultado estimado e o exato na regra do trapézio é subdividir o intervalo [𝑥0 , 𝑥1] em 𝑛 

intervalos de amplitude ℎ e em cada intervalo aplica-se a regra dos trapézios, como 

ilustra a figura 4. 

 
 
 
 

 

 

 

 

Figura 4 – Área compreendida pela função 𝑓(𝑥) e o eixo do 𝑥 no intervalo [𝑥0𝑥1] é 

aproximada pela soma de n áreas dos trapézios de mesma base compreendidos no 

intervalo [𝑥0𝑥1].  

 

Desta forma, a área aproximada é calculada pela expressão: 

𝐴 =
ℎ

2
(𝑦0 + 𝑦1) +

ℎ

2
(𝑦1 + 𝑦2)+. . . +

ℎ

2
(𝑦𝑛−1 + 𝑦𝑛) 

Que pode ser simplificado para 

𝐴 =
ℎ

2
(𝑦0 + 2𝑦1 + 2𝑦3+. . . +2𝑦𝑛−1 + 𝑦𝑛) 

Onde 𝐸𝑖 é o erro cometido na aplicação da regra dos trapézios no intervalo cujos 

extremos são 𝑥𝑖  e 𝑥𝑖+1, ou seja, 

𝐸𝑖 =
−ℎ3

12
𝑓′′(𝜀) 

Com isto o erro total cometido é a soma dos erros cometidos em cada intervalo, 

logo 

𝐸 =
−ℎ3

12
∑𝑓′′(𝜀𝑖)

𝑛−1

𝑖=1

 

e pela continuidade de 𝑓′′(𝜀), existe 𝑛 em 𝑎 ≤ 𝜀 ≤ 𝑏, tal que  

𝐸𝑖 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏. 

 

 
 

a = x0 b= xn 

f(x) 
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h 
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Exemplo 1 – Calcule a área entre o gráfico 𝑣 = 4𝑡 − 𝑡2 e o eixo do 𝑥, dentro do intervalo 

[0 , 4]. 

A precisão do valor aproximado depende do número 𝑛 de trapézios, observe 

 

 

 

 

 
 
Figura 5 – Mostrando a aproximação pela regra dos trapézios para diferentes valores de n. 

Com 𝑣′(𝑡) = 4 − 2𝑡, e como 𝑣′′(𝑡) = −2, logo 𝑓′′(0) = −2 em todas as expressões, onde 

0 ≤ 𝜀 ≤ 4. 
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Resolução analítica: 

𝐴 = ∫ (4𝑡 − 𝑡2)𝑑𝑡
4

0
= (2𝑡2 −

𝑡3

3
)0
4  

)*()*(A
3

0
02

3

4
42

3
2

3
2 −−−=      666710

3

32
.A ==  

Aproximação para n = 2 

 

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 𝑦3)      𝐴 = 8  

 

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)      𝐸 = 2.6667 

Aproximação para n = 4 

 

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 𝑦5)    𝐴 = 10 

 

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)      𝐸 = 0.6667 

Aproximação para n = 6 

𝐴 =
ℎ

2
(𝑦1 + 2𝑦2 + 2𝑦3 + 2𝑦4 + 2𝑦5 + 2𝑦6 + 𝑦7) 

𝐴 = 10.3704  

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)      𝐸 = 0.2963 

 

Aproximação para n = 30 

𝐴 = 10.6548  

𝐸 = −
(𝑏−𝑎)3

12𝑛2
𝑓′′(𝜀)      𝐸 = 0.0119 
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PROGRAMA EM PYTHON 

# Regra dos Trapézios 

# Entrada 

xi = 0.        # intervalo [xi , xf] 

xf = 4. 

n = 30         # número de trapézios 

 

def f(x): 

  return 4*x - x**2 

 

print("Integração Numérica - Método dos Trapézios") 

print('f(x) = 4*x - x**2') 

 

import math 

import numpy as np 

 

# variáveis auxiliar 

h = 0 

s = 0 

 

h = (xf - xi)/n 

vx = np.zeros((n+1)) 

vy = np.zeros((n+1)) 

 

vx[0] = xi 

for i in range(1 , n+1 , 1): 

  vx[i] = vx[i-1] + h 

 

vy[0] = f(vx[0]) 

vy[n] = f(vx[n]) 

for i in range(1 , n , 1): 

  vy[i] = 2 * f(vx[i]) 

 

#print(vx[:]) 

#print(vy[:]) 

 

s = 0 

for i in range(0 , n+1 , 1): 

  s = s + vy[i] 

 

s = (h/2) * s 

 

print("Número de trapézios: " , "%d"%n) 

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]") 

print('Valor da Integral: {:8.4f}'.format(s)) 

 

import matplotlib.pyplot as plt 

import numpy as np 
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xi = np.linspace(xi, xf, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 

 

 

SAÍDA DO PROGRAMA 

Integração Numérica - Método dos Trapézios 

f(x) = 4*x - x**2 

Número de trapézios:  30 

Intervalo:  [   0.0000 ,   4.0000 ] 

Valor da Integral:  10.6548 

 

 

 

ATIVIDADE 

(01) Dada a função 𝑓(𝑥) = 𝑥2 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
3

0
, usando a regra dos 

trapézios e dividindo o intervalo em 6 partes. 

(02) Dada a função 𝑓(𝑥) = 𝑙𝑛 𝑥 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
4

2
, usando a regra 

dos trapézios e dividindo o intervalo em 6 partes. 

(03) Dada a função 𝑓(𝑥) = 𝑥3 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
3

0
, usando a regra dos 

trapézios e dividindo o intervalo em 6 partes. 

(04) Dada a função 𝑓(𝑥) = 𝑒𝑥 calcular o valor da integral 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
4

2
, usando a regra dos 

trapézios e dividindo o intervalo em 6 partes. 
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Você saiba que na regra dos trapézios, utilizamos uma aproximação de primeira ordem 

do polinômio interpolador de Gregory-Newton 𝑃𝑛(𝑥) para representar a função 𝑓(𝑥).  

𝑃𝑛(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧 − 1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧 − 1)(𝑧 − 2)

3!
∗ 𝛥3𝑦0+. . . + 

+
𝑧(𝑧 − 1)(𝑧 − 2) ∗. . .∗ (𝑧 − 𝑛 + 1)

(𝑛 + 1)!
∗ 𝛥2𝑦0 

Isto é, utilizamos na regra do trapézio, utilizamos 𝑃2(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 (n = 1), para aproximar 

𝑓(𝑥), com isto a integral passou a ser determinada por 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0]𝑑𝑥
𝑏

𝑎

 

Como  𝑧 =
𝑥−𝑥0

ℎ
   𝑑𝑥 = ℎ𝑑𝑧, 

e considerando 𝑎 = 𝑥0 e 𝑏 = 𝑥1 , temos que 

para 𝑥 = 𝑎  𝑧 =
𝑥0−𝑥0

ℎ
= 0, 

para 𝑥 = 𝑏  𝑧 =
𝑥1−𝑥0

ℎ
= 1 

substituindo os limes na integral temos 

𝐼 = ∫ [𝑦0 + 𝑧𝛥𝑦0]𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0]ℎ𝑑𝑧
1

0

= ℎ [𝑧𝑦0 +
𝑧2

2
𝛥𝑦0]

0

1

 

𝐼 = ℎ [1 ∗ 𝑦0 +
12

2
𝛥𝑦0] − ℎ [0 ∗ 𝑦0 +

02

2
𝛥𝑦0] 

𝐼 = ℎ [𝑦0 +
1

2
𝛥𝑦0]    𝐼 = ℎ [𝑦0 +

1

2
(𝑦 − 𝑦0)]   

𝐼 = ℎ [
𝑦+𝑦0

2
],  foi esta a expressão utilizada no método dos trapézios. 
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7.2.  PRIMEIRA REGRA DE SIMPSON 

A vantagem, de revermos o método dos trapézios usando o polinômio interpolador 

de Gregory-Newton (𝑃𝑛(𝑥)) e que na primeira regra de Simpson, utilizamos uma 

aproximação de 2ª ordem  deste polinômio, isto é, faremos: 

 𝑓(𝑥) = 𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧−1)

2!
∗ Δ2𝑦0,   onde 𝑧 =

𝑥−𝑥0

ℎ
  

Com isto o valor da integral ser: 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧 − 1)

2!
∗ Δ2𝑦0] 𝑑𝑥

𝑏

𝑎

 

Como  𝑧 =
𝑥−𝑥0

ℎ
   𝑑𝑥 = ℎ𝑑𝑧, 

Para se aproximar a função 𝑓(𝑥) por um polinômio do 2º grau, serão necessários 3 

pontos: 𝑥0,  𝑥1  e  𝑥2 (Figura 6).  

 

 
 
 
 

 

 

 

 

Figura 6 – Gráfico de 𝑓(𝑥) juntamente com a aproximação de segunda ordem 𝑃2(𝑥). 

Considerando  𝑎 = 𝑥0 e 𝑏 = 𝑥2 , temos que : 

𝑥 = 𝑎  𝑧 =
𝑎−𝑎

ℎ
= 0, 

𝑥 = 𝑏  𝑧 =
𝑏−𝑎

ℎ
= 2 

Com isto, a integral será resolvida da seguinte forma 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧Δ𝑦0 +
𝑧(𝑧 − 1)

2!
∗ Δ2𝑦0] ℎ𝑑𝑧

2

0

 

Cujo resultado é: 

𝐼 = ℎ [2𝑦0 + 2Δ𝑦0 +
1

3
Δ2𝑦0] 

Como babemos que {
Δ𝑦0 = 𝑦1 − 𝑦0
Δ2𝑦0 = 𝑦2 − 2𝑦1 + 𝑦0

, então com a substituição teremos 

𝐼 =
ℎ

3
[𝑦0 + 4𝑦1 + 𝑦2]   que é denominado de 1ª regra de Simpson. 

 

x0 x1 

f(x) 

f(x0) f(x2) 

x 

y 

h h 
x2 

f(x1) 

P2(x) 
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𝐼 = ℎ [
𝑦+𝑦0

2
],  foi esta a expressão utilizada no método dos trapézios. 

 

Para diminuir o erro, isto é, a diferença do valor estimado e do valor real, devemos 

subdividir o intervalo de integração, da mesma forma que fizemos no método dos 

trapézios, com isto, a integral  𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, será aplicada em cada dupla de intervalos 

da seguinte forma: 

𝐼 =
ℎ

3
[𝑦0 + 4𝑦1 + 𝑦2]⏟          
1º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+
ℎ

3
[𝑦2 + 4𝑦3 + 𝑦4]⏟          
2º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+. . . +
ℎ

3
[𝑦𝑛−2 + 4𝑦𝑛−1 + 𝑦𝑛]⏟            
ú𝑙𝑡𝑖𝑚𝑜𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

 

 

 O erro total cometido será a soma dos erros cometidos em cada aplicação da 1ª 

regra de Simpson nas duplas de subintervalos e são determinados por: 

𝐸 =
−(𝑏−𝑎)5

180𝑛4
𝑓(𝐼𝑉)(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏. 

Exemplo 1. Calcule o valor da integral  ∫
𝑑𝑥

1+𝑥2

1

0
, com 𝜀 ≤ 10−4. 

Solução 

Calcular esta integral significa calcular a área compreendida entre o gráfico e o eixo x, 

como mostra a figura a seguir. 

 

       

Figura 7 – Gráfico da função 𝑓(𝑥) =
1

1+𝑥2
, onde a área rachurada representa o resultado 

da integral ∫
𝑑𝑥

1+𝑥2

1

0
. 

 

Devemos definir qual dever ser o número n de subintervalos devemos usar, para isto 

utilizaremos a nossa fórmula do erro total  

𝐸 =
−(𝑏−𝑎)5

180𝑛4
𝑓(𝐼𝑉)(𝜀), onde 𝑎 ≤ 𝜀 ≤ 𝑏. 

Como 𝑓(𝑥) =
1

1+𝑥2
 , então temos que 
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𝑓𝐼𝑉(𝑥) =
24

(1+𝑥2)3
−

288𝑥2

(1+𝑥2)4
+

384𝑥4

(1+𝑥2)5
, onde 0 ≤ 𝜀 ≤ 1 

Sabemos que o maior erro total será obtido quando 𝑥 = 0, logo  |𝑓𝐼𝑉(𝑥)|𝑚𝑎𝑥,  e 

considerando 𝜀 ≤ 10−4, então temos: 

−(1−0)5

180𝑛4
∗ 24 ≤ 10−4       𝑛4 ≥

24

180
104   𝑛 ≥ 6.042 

 

Isto é, devemos escolher um número de subintervalos maior que 7, e escolheremos para 

este caso 𝑛 = 8. O valor da aproximação foi obtido, para 𝑛 = 8, a partir da tabela a 

seguir. 

     i         xi                   yi    ci 
     0         0.0000         1.0000 
     1         0.1250         0.9846 
     2         0.2500         0.9412 
     3         0.3750         0.8767 
     4         0.5000         0.8000 
     5         0.6250         0.7191 
     6         0.7500         0.6400 
     7         0.8750         0.5664 
     8         1.0000         0.5000 

1 
4 
2 
4 
2 
4 
2 
4 
1 

Tabela 1- ci são os coeficientes que devem ser aplicados yi para determinar a 

aproximação do valor da integral. 

 
Para calcularmos o valor da integral pela seguinte expressão 

∫
𝑑𝑥

1 + 𝑥2

1

0

=
1

ℎ
{𝑦0 + 4𝑦1 + 2𝑦2 + 4𝑦3 + 2𝑦4 + 4𝑦5 + 2𝑦6 + 4𝑦7 + 𝑦8} 

Substituindo os valores da tabela teremos  ∫
𝑑𝑥

1+𝑥2

1

0
= 0.7854 

 

PROGRAMA EM PYTHON 

# Primeira Regra de Simpson 

# Entrada 

xi = 0.        # intervalo [xi , xf] 

xf = 1. 

n = 8          # número de intervalos (deve ser um número maior que 7) 

 

def f(x): 

  return 1/(1 + x**2) 

 

print("Integração Numérica - 1a regra de Simpson") 

print('f(x) = 1/(1 + x**2)') 

 

import math 

import numpy as np 
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# variáveis auxiliar 

h = 0 

s = 0 

 

h = (xf - xi)/n 

vx = np.zeros((n+1)) 

vy = np.zeros((n+1)) 

 

vx[0] = xi 

for i in range(1 , n+1 , 1): 

  vx[i] = vx[i-1] + h 

 

vy[0] = f(vx[0]) 

vy[n] = f(vx[n]) 

for i in range(1 , n , 1): 

  vy[i] = f(vx[i]) 

 

#print(vx[:]) 

#print(vy[:]) 

 

s = 0 

for i in range(0 , n , 2): 

  s = s + (h/3)*(vy[i]+4*vy[i+1]+vy[i+2]) 

 

#s = (1/h) * s 

 

print("Número de intervalos: " , "%d"%n) 

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]") 

print('Valor da Integral: {:8.4f}'.format(s)) 

print(' ') 

 

import matplotlib.pyplot as plt 

import numpy as np 

#xi = np.linspace(-10, 10, 100) 

xi = np.linspace(xi, xf, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 

 

 

SAÍDA DO PROGRAMA 

Integração Numérica - 1a regra de Simpson 

f(x) = 1/(1 + x**2) 

Número de intervalos:  8 

Intervalo:  [   0.0000 ,   1.0000 ] 

Valor da Integral:   0.7854 
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ATIVIDADE  

(01) Calcule a integral  ∫
𝑑𝑥

1+2𝑥2

1

0
, com 𝜀 ≤ 10−4, usando a 1ª regra de Simpson. 

(02) Calcule a integral  ∫ 𝑙𝑛( 1 + 𝑥)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a 1ª regra de Simpson. 

(03) Calcule o valor da integral  ∫
𝑑𝑥

1+2𝑥3

1

0
, com 𝜀 ≤ 10−4, usando a primeira regra de 

Simpson. 

(04) Calcule o valor da integral  ∫ 𝑙𝑛( 1 + 𝑥2)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a primeira regra 

de Simpson. 
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7.3.  SEGUNDA REGRA DE SIMPSON 

Na segunda regra de Simpson utilizamos uma aproximação de terceira ordem no 

polinômio interpolador de Gregory-Newton (𝑃𝑛(𝑥)) o que resulta na expressão:  

𝑃𝑛(𝑥) = 𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧−1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧−1)(𝑧−2)

3!
∗ 𝛥3𝑦0, onde 𝑧 =

𝑥−𝑥0

ℎ
.  

Com isto o valor da integral ser: 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= ∫ [𝑦0 + 𝑧𝛥𝑦0 +
𝑧(𝑧 − 1)

2!
∗ 𝛥2𝑦0 +

𝑧(𝑧 − 1)(𝑧 − 2)

3!
∗ 𝛥3𝑦0] 𝑑𝑥

𝑏

𝑎

 

como  𝑧 =
𝑥−𝑥0

ℎ
   𝑑𝑥 = ℎ𝑑𝑧, 

Desta forma a solução da integral é: 

𝐼 =
3ℎ

8
[𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3] 

 O erro total neste método é dado pela expressão 

𝐸 =
−3𝑥5

80
𝑓𝐼𝑉(𝜀),   𝑎 ≤ 𝜀 ≤ 𝑏. 

 Para diminuir o erro quando o intervalo não for muito pequeno, devemos 

subdividir o intervalo de integração da seguinte forma: 

𝐼 =
3ℎ

8
[𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3]⏟              

1º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+
3ℎ

8
[𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6]⏟              

2º𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

+. . . +
3ℎ

8
[𝑦𝑛−3 + 3𝑦𝑛−2 + 3𝑦𝑛−1 + 𝑦𝑛]⏟                  

ú𝑙𝑡𝑖𝑚𝑜𝑠𝑢𝑏 𝑖𝑛𝑡 𝑒𝑟𝑣𝑎𝑙𝑜

 

 

Exemplo 1 – Calcule o valor da integral  𝐼 = ∫ 𝑙𝑛( 𝑥3 + 𝑒𝑥)𝑑𝑥
4

1
 

Solução 

Calcular esta integral significa determinar a área compreendida entre o gráfico e o eixo 

x, como mostra a Figura 8. O valor da integral é obtido pela seguinte expressão: 

∫ 𝑙𝑛( 𝑥3 + 𝑒𝑥)𝑑𝑥
4

1

=
3ℎ

8
{𝑦0 + 3𝑦1 + 3𝑦2 + 2𝑦3 + 3𝑦4 + 3𝑦5 + 2𝑦6 + 3𝑦7 + 3𝑦8 + 𝑦9} 

Os valores de 𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑛 são obtidos na tabela a seguir,  

 -1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

7

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

7
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Figura 8 – Gráfico da função 𝑓(𝑥) = 𝑙𝑛( 𝑥3 + 𝑒𝑥), onde a área rachurada representa o 

resultado da integral ∫ 𝑙𝑛( 𝑥3 + 𝑒𝑥)𝑑𝑥
4

1
. 

 

O valor da aproximação foi obtido, para 𝑛 = 9, a partir da tabela a seguir. 

     i         xi                   yi    ci 
       0       1.0000         1.3133 
       1       1.3333         1.8187 
       2       1.6667         2.2950 
       3       2.0000         2.7337 
       4       2.3333         3.1362 
       5       2.6667         3.5072 
       6       3.0000         3.8520 
       7       3.3333         4.1754 
       8       3.6667         4.4821 
       9       4.0000         4.7757 

1 
3 
3 
2 
3 
3 
2 
3 
3 
1 

Tabela 2 - ci são os coeficientes que devem ser aplicados yi para determinar a 

aproximação do valor da integral. 

Substituindo os valores da tabela teremos∫ 𝑙𝑛( 𝑥3 + 𝑒𝑥)𝑑𝑥
4

1
= 9.6880 

 
PROGRAMA EM PYTHON 

# Segunda Regra de Simpson 

# Entrada 

xi = 0.        # intervalo [xi , xf] 

xf = 1. 

n = 9          # número de intervalos (deve ser um numeto maior que 8) 

 

def f(x): 

  return 1/(1 + x**2) 

 

print("Integração Numérica - 2a regra de Simpson") 

print('f(x) = 1/(1 + x**2)') 

 

import math 

import numpy as np 

 

# variáveis auxiliar 

h = 0 

s = 0 

 

h = (xf - xi)/n 

vx = np.zeros((n+1)) 

vy = np.zeros((n+1)) 

 

vx[0] = xi 

for i in range(1 , n+1 , 1): 
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  vx[i] = vx[i-1] + h 

 

vy[0] = f(vx[0]) 

vy[n] = f(vx[n]) 

for i in range(1 , n , 1): 

  vy[i] = f(vx[i]) 

 

#print(vx[:]) 

#print(vy[:]) 

 

s = 0 

for i in range(0 , n-2 , 3): 

  s = s + (3*h/8)*(vy[i]+3*vy[i+1]+3*vy[i+2]+vy[i+3]) 

 

print("Número de intervalos: " , "%d"%n) 

print("Intervalo: " ,"[" , "%8.4f"%xi , "," ,"%8.4f"%xf, "]") 

print('Valor da Integral: {:8.4f}'.format(s)) 

print(' ') 

 

import matplotlib.pyplot as plt 

import numpy as np 

#xi = np.linspace(-10, 10, 100) 

xi = np.linspace(xi, xf, 100) 

 

fig = plt.figure() 

plt.plot(xi, f(xi), '-') 

plt.grid() 

 

SAÍDA DO PROGRAMA 

Integração Numérica - 2a regra de Simpson 

f(x) = 1/(1 + x**2) 

Número de intervalos:  9 

Intervalo:  [   0.0000 ,   1.0000 ] 

Valor da Integral:   0.7854 
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ATIVIDADE  

(01) Calcule o valor da integral  ∫
𝑑𝑥

1+2𝑥2

1

0
, com 𝜀 ≤ 10−4, usando a segunda regra de 

Simpson. 

(02) Calcule o valor da integral  ∫ 𝑙𝑛( 1 + 𝑥)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a segunda regra 

de Simpson. 

(03) Calcule a integral  ∫
𝑑𝑥

1+2𝑥3

1

0
, com 𝜀 ≤ 10−4, usando a 2ª regra de Simpson. 

(04) Calcule a integral  ∫ 𝑙𝑛( 1 + 𝑥2)𝑑𝑥
2

1
, com 𝜀 ≤ 10−4, usando a 2ª regra de Simpson. 
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