
1
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

Journal of
Engineering
Research

v. 3, n. 6, 2023

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

PERCPECTIVES OF
PUBLISH-SUBSCRIBE
MIDDLEWARES
IN SMART CITIES:
PRINCIPLES,
ARCHITECTURE AND
CHALLENGES FOR
EMERGENCY SERVICES

Sediane C. L. Hernandes
UTFPR

Rosana Lachowski
UTFPR

Hermano Pereira
UTFPR

2
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

Abstract: Publish-subscribe middlewares are
important communication models for smart
devices in the Internet of Things environment.
Publish-subscribe middlewares connect
applications and service providers while
hiding questions of connectivity, security and
event handling. In this context, a publish-
subscribe middleware manages events sent
to and from smart city applications in order
to offer common services and facilitate their
deployment and development. Emergency
services can adopt the Publish-Subscribe
paradigm to notify mobile units as soon as
possible with minimal human intervention.
Factors such as proximity to the emergency
event and traffic conditions can be considered
when selecting the mobile units to handle the
event. This paper presents a survey of publish-
subscribe middlewares in smart cities, with
an overview of the principles, architectures,
and perspectives of challenges for emergency
services.
Keywords: Publish-Subscribe Middlewares;
Emergency Services; Internet of Things,
Smart Cities.

INTRODUCTION
Smart Cities explore the Information

and Communication Technologies (ICTs)
aiming to improve the quality of services
(QoS) offered to their citizens (QIAN et al.,
2019). Fifty percent of the global population
lived in cities in 2012 (ALKANDARI;
ALNASHEET; ALSHAIKHLI, 2012) and
according to the report from United Nations
by 2050 it is expected a world population
increase of seventy percent (UNITED,
2017). Consequently, new difficulties arise
in the cities, as urban traffic management,
noise pollution monitoring, scarce resources
management and fast emergency response
times.

The Internet of Things (IoT) is a powerful
tool to face the challenges of modern cities

(ALDELAIMI et al., 2020). The IoT connects
devices (smart objects) such as computers,
smartphones, sensors, actuators, appliances
and vehicles (MOHANTY; CHOPPALI;
KOUGIANOS, 2016), that exchange
information, react to events and make
decisions without human intervention. In an
urban context, smart objects can offer services
that greatly assist the public administration
of cities and businesses (ZANELLA et al.,
2014). For instance, IoT can be of great help
in spreading the required information and
collecting critical data in emergencies, like
accidents, fires, flooding.

The publish-subscribe paradigm is
often adopted by smart objects in smart
cities (ANTONIC et al., 2015). In this case,
smart objects (publishers) send data to the
infrastructure independent of the application
(middleware). Clients register as subscribers
for certain events via the middleware and
receive events of interest (BALDONI et al.,
2005), (EUGSTER et al., 2003); exploiting the
functional decomposition between the layers
(BALDONI et al., 2005) and the decoupling
of the communicating entities in time and
space (EUGSTER et al., 2003). Publishers
notify subscribers through the middleware
(RAZZAQUE et al., 2016). Publish-subscribe
middlewares carry out the management of
events sent to subscribers (HERNANDES et
al., 2020).

Therefore, a publish-subscribe middleware
provides a mechanism for selecting event
notification delivery (CARZANIGA,
ROSENBLUM, 2001). The selection
separates published notifications according
to subscriptions. Concretely, the publish-
subscribe middleware applies a filter to
verify the match of event notification and
subscriptions. So, only the event notifications
that correspond to the subscriptions are
delivered to subscribers (i.e., notification
delivery). These middlewares facilitate the

3
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

development of applications and optimize the
communication in the network (ANTONIC
et al.m 2015).

However, the simple event matching
allows all subscribers receive the events that
realized the subscriptions. But, in many
services like emergency services, this is not
appropriate because only the subscribers
who need to handle the emergency must
be notified. So, an event double-filtering
is necessary. In emergency services it is
more efficient to notify subscribers who
can respond to the event more quickly.
Besides, not all subscribers must be notified,
but only those required to attend the event
(HERNANDES et al., 2020).

In (RAZZAQUE et al., 2016) a survey
introducing the key characteristics of
middlewares for IoT is presented and
(BELLAVISTA, CORRADI, 2014) discusses
a study about middleware publish-subscribe
evaluating QoS. However, these studies do not
consider requirements related to middlewares
for emergency services, specially according
to event filtering to meet the requirements of
delay-sensitive applications. This paper goes
in a different direction, presenting a survey
of publish-subscribe middlewaes for smart
cities including main concepts, subscription
models, architectures, event routing, and
a comparison of selected middlewares. In
particular, we evaluate the performance of
event filtering to modify the event notification
for emergency services in smart cities from the
perspective of event double-filtering. Besides
that, we present enabling technologies for
smart citiest. Urban IoT challenges in smart
cities for emergency response services are also
explored.

The paper is organized as follows. Concepts
about smart cities and challenges related to
IoT in smart cities for emergency response
services are presented in Section 2. Publish-
subscribe middlewares for smart cities are

discussed in Section 3. Section 4 presents a
comparation between middlewares publish-
subscribe for Smart Cities. Finally, Section 5
concludes the paper.

SMART CITIES
Smart City is an urban environment that

uses ICTs to increase the quality of the city
processes and their effectiveness (KHAN et
al., 2012). In (UBEDA, 2018), authors present
a Smart Sustainable City concept “to improve
the quality of life, the efficiency of urban
services and operations and competitiveness,
while ensuring the needs of present and
future generations in economic, social and
environmental aspects}’’. The IoT is the core
of smart cities applications by supplying the
connectivity between processes and smart
objects.

Technological advances mainly drive
IoT, but it moves towards the needs of
users in a specific context, such as some
services and applications for smart cities
(VERMESAN et al., 2011). By connecting
smart objects to the Internet, IoT has enabled
the emergence of a large number of smart
applications. Smart objects have limited
communication, processing and sensing
capabilities (KORTUEM et al., 2009). They
can be providers and consumers of services
to and from other objects or applications and
can be remotely controlled. In addition, the
produced data can be used for analysis and
decision making. IoT provides the means for
device integration and communication, while
the Smart City can be seen as the ecosystem of
applications and service providers.

Some examples of applications that offer
possible services in smart cities using IoT in the
urban environment are shown in Figure 1. These
services meet the United Nation’s sustainable
development goals, especially Sustainable
Cities and Communities (https://brasil.
un.org/pt-br/sdgs/11). Smart Grid consists

4
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

of an electrical network, a communication
network, as well as hardware and software
for network monitoring and control (AL et
al., 2015). Many cities around the world are
investing to move their traditional power
grid to a Smart Grid (COLAK, BAYINDIR,
SAGIROGLU, 2020).

Figure 1. Examples of some smart city
applications.

Intelligent Transportation Systems (ITSs)
also offers several benefits: improvement
of safety, efficiency and convenience
of land transport, for people and for
transport vehicles (DIMITRAKOPOULOS,
DEMESTICHAS, 2010). Smart parking,
based on sensors deployed on the streets and
smart displays, reduces the searching time
for a parking space, resulting in less CO2
emissions, less traffic.

Smart Home solutions provide
lighting, power and temperature control
from everywhere. In addition, safety
and protection are enhanced by alarms,
temperature and motion sensors. Smart
Monitoring can be applied in several
areas: air quality, noise, traffic congestion,
structural health of buildings, among others.
Smart Waste Management uses smart bins to

detect the load level. This simple information
can optimize the routes of the trucks and
reduce the costs of garbage collection. In
(GUTIERREZ et al., 2015), authors present
a smart garbage collection system. Sensors
send collected data to a server over the
Internet. Thus, the daily selection of bins to
be collected is monitored and optimized by
a system that calculates routes. The system
makes decisions based on the level of daily
trash and based on predictions of the future
state and traffic congestion.

Smart Emergency Services allow mobile
units to move to the location of the emergen-
cy in order to provide services as soon as
possible. The provision of Smart Emergency
Services occurs in at least two phases:

•	 Services triggering: After the
notification, the service sets the urgency
and intensity of the action in order to
decide how many and which mobile
units are needed.

•	 Services execution: Mobile units are
transferred to the emergency location.

To provide Smart Emergency Services
is a complex task. Therefore, smart cities
should provide computational systems, as
a middleware, to overcome the challenges.
These computational systems should require
minimal human intervention for achieving
high efficiency. Drones could supervise the
emergency care and smart devices could be
deployed around the city in order to detect
emergencies or to activate mobile units
(HERNANDES et al., 2019). In addition,
mobile units could have sensors deployed
in mobile units could gather data from the
environment.

CHALLENGES
Urban IoT in smart cities faces several

challenges, especially for emergency response
services:

5
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

•	 Naming -- Each smart object requires
a unique identity. An identity
management system is necessary to
manage the identity of objects and an
efficient naming mechanism.

•	 Interoperability -- Many devices use
different technologies and services. The
standardization of these technologies
and services is critical to provide
interoperability.

•	 Security and privacy -- IoT devices are
commonly constrained. Soon, they are
vulnerable to threats and attacks (KHAN
et al., 2012). In addition, applications for
smart cities use personal information.
Strategies to overcome challenges
related to security and privacy include
authentication to verify the identity
of devices and access control policies.
Moreover, protocols must implement
end-to-end secure communication
mechanisms (ZANELLA et al., 2014).

•	 Geo-distribution and low latency --
Smart objects can be distributed in the
city and low latency is necessary for
many applications. Fog Computing, a
distributed computational paradigm
specially placed between IoT objects
and Cloud Data Centers, that is at the
edge of the network.

•	 (AKRIVOPOULOS ET AL.), 2017),
may be exploited for minimizing
latency. However, Fog Computing is
not able to provide functionalities such
as complex data analysis, data access to
large numbers of users and historical
data storage.

•	 Mobility support and location aware-
ness - Smart objects move around
the city and often need to connect to
another object or network to provide
data and event notifications. Mobility

support is essential, as well as location
awareness.

•	 Context-aware computing -- Smart
applications employ context-aware
computing to store context information
associated with smart objects. It is
important to send this information to
a cloud computing platform for storage
and knowledge discovery.

•	 Event model -- It is necessary to propose
solutions for applications that do not
require notifying all objects about a
specific event.

The event model is the focus of this paper
apply to emergency response services.

ENABLING TECHNOLOGIES
IoT technology as devices (i.e., smart

objects) and wireless communication
(MAHMOOD, ZUBAIRI, 2019), (COSTA,
DURAN-FAUNDEZ, 2018) have driven
the development of new services and
applications for Smart Cities. Therefore, the
characteristics of these smart objects and
how they communicate are significant for the
development of services and application for
Smart Cities, as well as other contexts like a
simple smartphone application.

The infrastructure of smart cities is
constructed using various types of smart
objects that work collaboratively to perform
uncountable tasks (MAHMOOD, ZUBAIRI,
2019).

a) Devices
The features of smart objects and how

they communicate directly impact on the
development of new applications and services
for smart cities (ZANELLA et al., 2014). Figure
2 shows the devices and the communication
flow between ones. Normally in the smart city
model, the information exchange is established
between three main types of devices:

6
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

•	 Backend Servers: Collect, store and
process data from smart objects
to provide information for smart
city services. Backend Servers are a
fundamental component of an urban
IoT and facilitate the access to the
services.

•	 Gateways: Interconnect IoT devices to
the main communication infrastructure
of the system (backend servers).
Gateways provide the interconnection
between link-layer technologies in
the core of the IoT network and IoT
peripheral nodes.

•	 IoT Nodes: Usually called smart objects,
IoT nodes are heterogeneous devices
that generate the data delivered to the
backend servers. Many times, IoT nodes
perform some action in the environ-
ment like actuators.

Figure 2. Smart city devices and the
communication flow between ones.

The heterogeneity of smart objects, such
as smartphones, laptops, sensors, actuators,
and RFID tags, arises because of the
different capabilities (i.e., processing power,
memory, communication and energy) and
characteristics of the applications and services.
They can interact with each other and make
decisions based on context, circumstances or
environments (smartness). Interactions are

highly dependent on their physical context,
such as localization, surrounding object and
presence of people (context-aware computing).
Besides, interactions between smart objects
can happen when an object enters the
communication range of each other, leading
to the spontaneous generation of events.
Typically, an event is generated and pushed
into the system without human intervention
when an interaction with a smart object
occurs (ROSE et al., 2015). The spontaneous
generation of events among a large number of
objects can produce an enormous amount of
data. This large number of events reduces the
event processing capacity of the objects and
cause network congestion.

Smart objects can interact in a small
environment e.g.}, office, home, store) or in
a huge one in a distributed way (ZANELLA
et al., 2014). Thus, IoT presents different
scales, from global to local, depending on
the application area. Often, the network is
decentralized, dynamic, and unstructured
(ZANELLA et al., 2014).

The communication between smart objec-
ts follows several communication models
(TSCHOFENIG ET AL., 2015) and (ARA et
al., 2016):

•	 Device-to-Device (D2D): Smart objects
communicate directly with each other.
An intermediate application server is
not required.

•	 Device-to-Cloud (D2C): A cloud
service is directly connected to smart
objects.

•	 Device-to-Gateway (D2G): A cloud
service is connected to smart objects
through an application-level gateway
service, see Figure 3 (a).

•	 Back-End Data Sharing: Smart objects
send and receive data to and from many
application service providers. This
approach is an extension of the D2C
communication model, see Figure 3.

7
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

Depending on the application or
service, smart objects can use one or more
communication technology at the same
time (TSCHOFENIG ET AL., 2015). The
development of applications for mobile
devices can facilitate interaction with IoT
objects and the entire system. Figure 3 shows
examples of protocols that can be used in each
communication model.

Besides that, many softwares (e.g.,
operating systems) and hardware platforms
(e.g., Arduino and Raspberry PI) were
developed to execute IoT applications in
smart cities (AL-FUQAHA et al., 2015).
Cloud Computing is another part of the
IoT. Cloud computing is a shared pool of
conFigureble resources (e.g., servers, storage,
networks, applications and services) that can
be quickly offered and released with minimal
management or interaction effort with the
service provider (MELL et al., 2011). Cloud
Computing platforms refers to software
systems, hardware, and the possibility of
developing applications directly in the cloud
offered as a service, found in data centers
(i.e., service providers) that offer these
functionalities (ARMBRUST ET AL, 2010).
Facilities are provided by these platforms for

smart objects to send their data to the cloud
(AL-FUQAHA et al., 2015). Thus, collected
data or big data can be processed in real-
time, near real-time, or offline to generate
knowledge to end users (AL-FUQAHA et
al., 2015). Azure Cloud and Amazon Web
Services are examples of cloud platforms
(KOTAS et al., 2018).

PUBLISH-SUBSCRIBE
MIDDLEWARES
An event notification service is defined

as the event-based middleware which
implements an event-based protocol
(i.e., event model), offering event-based
communication to an event-based application
(i.e., event system) (MEIER, CAHILL, 2002).
An event model consists of a set of rules
describing how event-based communication
occurs (CUGOLA, JACOBSEN, 2002).
An application that uses a middleware is
called event-based system. The components
of the application interact through event
notifications. Applications using an event-
based middleware are organized as a collec-
tion of standalone components, the clients
that emit the subscriptions for the event
classes they are interested (i.e., subscribers)

Figure 3. (a) Device-to-Gateway Communication Model; (b) Back-end Data Sharing Communication

Model (TSCHOFENIG ET AL., 2015), (ARA et al., 2016).

8
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

and the publishers that send event
notifications (CUGOLA, JACOBSEN, 2002).
The subscriptions and the event notifications
are sent to event-based middleware. It
manages the subscriptions and the event
delivery. Figure 4 shows a generic view of an
event-based middleware.

Figure 4. An event-based middleware.

The event notification service must
implement (CARZANIGA, ROSENBLUM,
2001):

a) The selection of the event, which
consists of determining which events
or notifications correspond to the
subscriptions, also known as matching;

b) The delivery or notification of the event,
which forwards the corresponding events
from the publishers to the subscribers.
For the matching in the notification

selection, filters should be defined in
subscriptions by subscribers. This means
specifying a set of attributes and restrictions
on the values of these event attributes.
Matching is one of the processes performed
by the event notification service and its
function is to check if an event matches to
a subscription, thus determining whether it
will be triggered for the subscriber or not
(Baldoni et al., 2005).

SUBSCRIPTION MODELS
Subscriptions can be made in different

ways (EUGSTER et al., 2003) , based on
topics, based on content, based on type,
ontologies and location-adaptable. In

the topic-based subscription, subscribers
subscribe to a topic and all events related to
this topic are received by subscribers. The
topic is like a logical channel connecting the
publisher with all subscribers. Therefore,
subscribers are known a priori and topics
can also be organized in hierarchical
form. The advantage is the simplicity of
implementation. However, the disadvantage
of this subscription model is the limited
expressiveness due to its static behaviour.

In the content-based subscription,
a subscriber subscribes to an event by
specifying filters in the subscriptions.
Therefore, subscribers cannot be determined
before publication. It is a more expressive
and general model than the previous one.
However, it requires protocols that will have
greater overhead when publishing events
because of the comparisons that need to be
made.

In the type-based subscription model, the
subscriber specifies in the subscription the
type that wants to receive and event matching
is performed based on the specified type.
Therefore, events are filtered according to
their type. In this model, events are objects
with attributes and methods. Additional
expressiveness can be acquired by applying
content-based filters in the context of types to
express restrictions on the values of objects.

Other subscription models can be
found such as ontologies (i. e., concept-
based publish-subscribe) and the location-
adaptable publish-subscribe (Baldoni et
al., 2005). Ontology subscription allows
subscriptions based on a specific domain.
The location-adaptive subscription allows
you to subscribe based on your location.
Figure 5 shows the subscription models
presented. The advantage and disadvantage
of subscription models are summarized in
Tabela 1.

9
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

Figure 5. Publish-subscribe middleware
subscription models.

Subscription
model Main Advantage Main

Disadvantage

Topic-based Simplicity of
implementation

Limited
expressiveness

Content-
based

Expressive and
general

Sophisticated
protocols for

filtering (hard)

Type-based Type is ensure at
compile-time

Sophisticated
protocols for

filtering (easy)

Ontologies
Describe events at
a higher level of

abstraction

Sophisticated
protocols for

filtering (median)

Location-
adaptative

Ability to monitor
subscriber mobility

Off-location
subscribers do not

receive events

Tabela 1. Subscription Models.

ARCHITECTURE OF THE
MIDDLEWARE
The architecture of middleware can be

centralized, distributed or even peer-to-
peer (CUGOLA, JACOBSEN, 2002) as
illustrated in Figure 6. In the centralized
architecture, there is a central entity
responsible for managing subscriptions,
including storage, and forwarding events
acting like as a dispatcher of events (Baldoni
et al., 2005). This central entity is known as
a broker or event broker. Asynchronism is

implemented by having producers sending
messages to the broker, which stores and then
forwards messages to subscribers on-demand
(EUGSTER et al., 2003). However, it depends
on the method of receiving messages. If push,
broker forwards messages to subscribers,
otherwise, if pull, the subscriber retrieves
messages from the broker. In this architecture,
this single central broker introduces a point
of failure, as well as decreases scalability when
the rate of events or the number of subscribers
and publishers grows significantly. How-
ever, it allows easy management of available
resources and simple implementation.

In the peer-to-peer architecture
(BELLAVISTA, CORRADI, 2014)) the flow
of events goes from publishers to subscribers
without intermediate nodes. The functions
of collecting subscriptions, matching and
routing are performed by the participants. In
a peer-to-peer architecture participants may
be publishers and subscribers. Asynchronism
is implemented by the use of smart
communication primitives which employ
routing and storage mechanisms in both
publisher and subscriber processes (EUGSTER
et al., 2003). The gain of this architecture is
the suitability for the dissemination of events
with small-scale geographic deployment due
to latency and high throughput of events
among a limited number of participants
(HERNANDES et al., 2020).

In the distributed architecture, there is
no central entity (EUGSTER et al., 2003)
in the event notification service, which
reduces the network load and increases
scalability. The distributed architecture is
known as Broker Overlay (BELLAVISTA,
CORRADI, 2014) in which the interactions
between the participants follow the client-
server model. Participants may be brokers,
subscribers or publishers. The middleware is
organized as a network of distributed servers
(application-level routers), also known as

10
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

dispatching servers, which collaborate in
collecting subscriptions from subscribers
and routing events (MOTTOLA, CUGOLA,
PICCO, 2008). This network of distributed
servers can be viewed as an overlay network
over a physical network. Consequently,
the event matching and routing are
performed by algorithms distributed over
the network. The event notification service
ends up being a set of distributed nodes
that dispatch published events only to
interested subscribers. Communication is
asynchronous and anonymous without the
need for an intermediary entity, as is the case
with centralized architecture. This type of
architecture makes it possible to manage a
large number of broker, subscribers, publishers
and events because the responsibility and
complexity of the matching functions and
the routing decisions are divided among the
overlay network of brokers. The topology
of the brokers and the strategies to manage
subscriptions and to deliver events change
from middleware to middleware. Tabela 2
summarizes the middleware architectures.

Architecture Main Advantage Main
Disadvantage

Centralized

A centralized
component

introducing a central
point of failure

decreasing scalability
according to the

number of subscribers,
publishers, or the

rate of events grows
significantly

Easy
administration

of available
resources

and simple
implementation

Distributed
or Broker
Overlay

Allow manage a large
number of participants

and events

Complex
administration

of available
resources
and hard

implementation

Peer-to-peer

Allows the
dissemination of

events with small-scale
geographic

Unsuited for the
dissemination of
events with high-
scale geographic

Tabela 2 . Broker architecture in middlewares
publish-subscribe.

BROKER TOPOLOGIES
The broker topology represents the

logical organization of the brokers in a
distributed middleware architecture. Many
topologies can be created depending on
the environment in which the brokers are
located. Examples shown in Figure 7 include
the following topologies: hierarchical, acyclic
peer-to-peer and cyclic peer-to-peer (i.e.,

Figure 6. Broker architecture in a publish-subscribe middleware (EUGSTER et al., 2003).

11
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

general peer-to-peer). The dotted arrows
represent subscriptions.

The hierarchical topology is structured
in levels of broker in which the higher level
is the root. Peers of connected brokers
communicate like in the client-server model,
asymmetrically. A broker can have only a
connection with their up broker and many
connections of input from other brokers,
thus forming a hierarchy. This topology is
represented by an oriented graph and has a
root broker.

In the acyclic peer-to-peer topology, peers
are brokers that communicate symmetrically.
A protocol that allows a bidirectional flow
of subscriptions, announcements and
notifications is adopted. An acyclic non-
directed graph is used to represent this
topology. In the general peer-to-peer
topology, bidirectional communication
between two brokers also is allowed. Hybrid
topologies (CARZANIGA, ROSENBLUM,
2001) are also possible.

In the acyclic peer-to-peer and hierarchical
topologies, the disadvantage is the lack of
redundancy. However, the main disadvantage
of the hierarchical topology is the overhead
of the highest brokers in the hierarchy. If a
broker fails, the brokers connected to it are
isolated from the rest of the network. Routing
algorithms that should handle failures if

they happen. General peer-to-peer topology
is more advantageous than others, since it
offers redundancy due to the various paths
between brokers. However, specifics routing
algorithms must be developed to avoid cycles.
Tabela 3shows a summary about the above
discussed topologies.

Topology Main Advantage Main
Disadvantage

Hierarchical
Events are not

broadcast to the
entire hierarchy

Overhead of
the highest
brokers and

lack of brokers
redundancy

Acyclic peer-to-
peer

There is an
unique path

between brokers

Lack of brokers
redundancy

General peer-to-
peer

Offers
redundancy due

to the various
paths between

brokers

Specific routing
algorithms must

prevent cycles

Tabela 3. Topologies Comparison of publish-
subscribe middlewares.

EVENT ROUTING
The delivery of an event to subscribers

that did a corresponding subscription
to the event before publication is event
routing (Baldoni et al., 2005). Normally,
in a distributed architecture, once the
organization and the topology of the brokers

Figure 7. Topologies for the brokers in a distributed middleware architecture.

12
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

are defined, appropriate routing paths
are established to ensure that published
notifications will be correctly delivered to all
subscribers (CARZANIGA, ROSENBLUM,
2001). There are basically three event-routing
categories (RAZZAQUE et al., 2016): (1)
Flooding algorithms: event and subscription
flooding; (2) Selective algorithms: filter
and rendezvous-based; (3) Event gossiping
algorithms.

In the event flooding algorithm, each
event is propagated from the publisher to
all participants in the event notification
service. In the selective algorithms (filter-
based and rendezvous-based), events are
compared with subscriptions to delivery
for interested subscribers. In the filter-
based algorithm, when an event reaches a
participant it is compared with the stored
subscriptions match-first (CHAND, FELBER,
2003) and forwarded only to interested
subscribers. Rendezvous-based algorithm
all subscriptions for the same event can
be stored in the same participant and the
delivery of events is simplified, consisting of
the creation of a diffusion tree with a single
root starting from brokers and spreading to
all subscribers. In gossip-based algorithms,
each participant exchanges information with
one or some participants (COSTA et al.,
2003). They do not require maintaining the
event routing data structure at each node.
The bottleneck of this approach is a message
overhead due to the redundancy of messages.

MIDDLEWARES FOR SMART
CITIES
In a smart city, users can produce or

consume information for the provision of
smart services aimed at improving the quality
of life of citizens. A user can be an event
producer (publisher) or an event consumer
(subscriber). A middleware is a mediator
(HERNANDES et al., 2020). It must provide

storage and management of subscriptions
and efficient event delivery (EUGSTER et al.,
2003). In this paper, we analyze several event
based middlewares regarding their suitability
to urban IoT, specially for emergency services
response. We study subscription models,
architecture, event routing and, specially,
event filtering.

Siena (CARZANIGA, ROSENBLUM,
2001) presents a distributed architecture
that implements several topologies. The
Siena middleware adopts a content-
based subscription model and employs
advertisements to construct paths for
subscriptions and to send events. It is designed
to work on wireless environments. The Hermes
middleware (PIETZUCH, BACON, 2002)
presents a distributed architecture and a cyclic
peer-to-peer topology. It uses an adaptation
of the subscription model based on type and
content. Besides, Hermes middleware uses
selective event routing such as rendezvous
and is designed for wired networks. Siena
and Hermes do not allow to choose only a
few subscribers among those in which the
matching is affirmative.

Steam (MEIER, CAHILL, 2002) is an
event service to distribute events between
publishers and subscribers that resides on
mobile devices. It was specially designed
for the domain of traffic management
applications. In this scenarios, subscribers
(cars and ambulances) and publishers (e.g.,
traffic lights, cars) share the same physical
area. Events are related to the current traffic
situation. Publishers are in charge of defining
the geographical area of the events and the
middleware is in charge of delivering events
to subscribers physically located in the region.
For this, Steam considers that all entities
(publishers and subscribers) estimate their
location. Steam also adopts a peer-to-peer
architecture. Therefore, interactions between
publishers and subscribers do not involve a

13
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

central infrastructure. Selecting subscribers
considering only the distance from the event
may not be efficient. This is because the
subscribers closest to the event may not be
available or may not be sufficient. Therefore,
other factors must be considered.

SensorBus (RIBEIRO et al., 2005) has
a centralized architecture in which a bus
for communication between subscribers
and publishers is used. The content-
based subscription model is adopted. The
middleware was implemented for use with
sensor networks. Subscribers run in user
computers and publishers run in sensor
nodes. The method of receiving messages is
pull, that is, the subscriber retrieves messages
from the bus. The EMMA middleware
(MUSOLESI, MASCOLO, HAILES, 2006)
is an adaptation of the Java Message Service
(JMS). It has a distributed architecture with
epidemic routing and the subscription model
is topic-based. EMMA works on ad-hoc
networks. Publish-subscribe communication
model was implemented and the point-to-
point communication model. Mires (SOUTO
et al., 2006) has a distributed architecture
with a cyclic peer-to-peer topology. The
subscription model of Mires is topic-based
and for event routing it uses multi-hop. It
was developed to be used along with sensor
networks especially for environmental
monitoring. The RUNES middleware
(COSTA et al., 2005) was designed for a
disaster scenario at a road tunnel. It has a
distributed architecture with a hierarchical
topology. Its subscription model is content-
based and it was designed for wireless
sensor networks. Always, events are sent to
firefighters who have expressed interest, but
without the possibility of sending events to
the most suitable subscribers.

In the Publish-Subscribe Notification
Middleware for Vehicular Networks - PSN
(LEONTIADIS, 2007) vehicles are mobile

sensors. They are publishers when informing
about events (i.e., traffic conditions,
accidents) and subscribers whenever
receiving events. Subscriptions are locally
stored at subscribers to perform matching.
A navigation system evaluates a received
event and recalculates a route according to
the interest. Vehicles report the collected
event to the nearest base station or to a WiFi
hotspot using vehicle-to-vehicle routing or
connecting directly to the a base station. PSN
works with subscriber-side filters that do not
help the selection of only the most suitable
subscribers.

PSWare middleware (LAI, CAO, ZHENG,
2009) adopts a distributed architecture with
hierarchical topology. The subscription
model is content-based. It was designed for
wireless sensor networks. TinyDDS (Tiny)
(BOONMA, SUZUKI, 2012) is a publish-
subscribe middleware that implements
an OMG (Object Management Group)
publish-subscribe protocol specification.
The middleware offers interoperability
between access networks and wireless sensor
networks, data aggregation and event routing.
It was designed for wireless networks. Three
strategies can be applied for event routing:
routing based on spanning trees, distributed
hash table and Moonson. A gateway called
DDS (Data Distributed Service) is used for
communication between wireless sensor
networks and the Internet. The gateway
interacts with TinyDDS middleware that runs
on sensor nodes. When a DDS subscriber
subscribes to a topic, the subscription is
sent over the DDS access network. The
DDS gateway store the subscription into a
subscription list. Thus, when a sensor node
publishes an event, the event is distributed
on the sensor network and get by the DDS
gateway. If the topic of the published event
matches a topic in the subscription list, it is
sent to interested subscribers according to the

14
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

configured protocol. The routing algorithm
does not send an event to only the most
suitable subscribers.

In PRISMA middleware (SILVA et al.,
2014), subscriptions are made by topics
and the architecture is centralized. It is a
resource-oriented middleware for wireless
sensor networks in which each node can
provide a resource or a set of resources. For
this, PRISMA adopts REST (Representational
State Transfer) to support interoperability
between other networks and the middleware.
Besides that, REST facilitate access to
network data and their interfaces interact
with client applications. The communication
is realized by a WebService and a broker is
used for asynchronous communication. The
middleware adopts the publish-subscribe
paradigm to notify subscribers about events.
However, it is not possible to selectively send
events.

Apache Kafka (APACHE, 2018) enables
to send messages between publishers and
subscribers through topics. It is a distributed
streaming platform. When a producer
generates a message on the topic, consumers
of that topic are notified with a copy of the
published message. Topics are distributed on
brokers, but before the topics are divided into
partitions. However, routing does not allow
selective event delivery.

RabbitMQ (RabbitMQ, 2019) is an open-
source messaging broker originally develo-
ped to implement the AMQP protocol, but also
implements other protocols such as MQTT.
It supports multiple communication models
such as peer-to-peer, publish-subscribe, and
request/reply. It uses a simple consumer
model and a smart broker delivers messages
to subscribers according to rate in which they
can receive messages. Selective event delivery
is not allowed.

In (ZHOU et al., 2019), the authors
propose NISU (New Index Structure on

Uncertain Data), an event matching solution
for uncertain data (inaccurate data). The
Probabilistic Skyline (P-Skyline) model is
used to filter events based on subscription
adopting constraint satisfaction criteria for
the matching. The subscription is realized
by content and it is sent to the nearest
broker. After receiving the event, the broker
checks and process the content. The broker
uses the P-Skyline to filter messages from
the subscribers. So, it finds a matching
subscription list for each subscriber and
delivers the event to them. In (OZTURK,
OZDEMIR, 2019), a content-based (CB)
routing protocol is proposed for a point-
to-point communication model. Event
subscription and forwarding includes a
filter for sending events. In this way, node
transmission with its neighboring nodes
uses the same filter. The node interested in
the event is reached by passing through some
nodes.

MiddSS middleware implements an
event-based communication model called
SmartMid-Event in order to send events
only to the most suitable participants. The
middleware was proposed by the authors of
this paper in (HERNANDES et al., 2019). and
(HERNANDES et al., 2020) . MiddSS applies
a double filtering: (i) topic-based and (ii)
the most suitable subscriber (most suitable
filtering). The second filter uses a fitness value
calculated on subscriptions. SmartMid-Event
was proposed to provide a communication
model for middlewares designed for
emergency services. Subsequently, SmartMid-
Event was extended to other smart services,
such as smart transportation (HERNANDES
et al., 2020). The aim is to notify the necessary
and more appropriate mobile units (i. e.,
subscribers) in the shortest possible time
in order to save lives (HERNANDES et al.,
2020). The SmartMid-Event uses a fitness
value to choose the more appropriate available

15
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

subscribers. The subscriber goes to the event to
handle it. For fitness calculation, the following
assumptions were considered:

•	 The subscriber is unavailable while
handling the event.

•	 The highest the subscriber ranking, the
greatest is its fitness value.

•	 Intense traffic means a longer time for a
subscriber to reach a reference point of
the event.

•	 The longer the work journey of a
subscriber or the team associated with
it, the greater is the level of fatigue
associated with that subscriber.

The fitness metric was defined based
on three main parameters, the traffic level,
the fatigue level and the ranking level. The
traffic level between the subscriber and the
reference point associated with the event.
It takes into account the traffic condition as
being low, moderate, or intense. The fatigue
level considers the accumulated time period
of attendance of events. The ranking level
measures the degree of satisfaction that users
of the service confer on the subscriber. The
better the ranking, the greater the value of
fitness.

In this way, SmartMid-Event commu-
nication model allows a differentiated
notification of subscribers. A middleware can
implement SmartMid like MiddSS. MiddSS
is composed of subscribers, publishers and
brokers. It presents a distributed organization
in which distributed brokers cooperate with
each other to deliver events to the most suitable
subscribers (HERNANDES et al., 2020). The
brokers are part of the fixed infrastructure
and subscribers can be mobile or fixed nodes,
acting as distributed actuators that perform
some activity when notified. Device-to-
Gateway communication model is adopted.
The broker is a gateway that communicates
with subscribers and other brokers, makes

event forwarding decisions and transmits the
collected data to a cloud service. It focuses on
the activating mobile units phase and supports
subscribers mobility.

Moreover, MiddSS uses overlay networks
to notify the subset of most suitable
subscribers. Events happen at a reference
point and brokers construct an overlay
network for each service and reference
point. So, when an event occurs, the overlay
network is located and subscribers with the
highest fitness values are activated. In each
connection of the root node with another
node, the fitness value is calculated. Each
overlay network follows a hierarchical tree
topology dynamically updated according
to the movement of subscribers in the city.
This logical organization is used to minimize
the delay to forward messages between
the middleware entities. Figure 8 shows
the example of MiddSS event notification.
The publisher broker is the root node and
the mobile units are the leaf nodes that are
notified. The broker b1 receives the event
and processes it. For the event attendance,
two mobile units are required. The fitness
values allows that broker b1 chooses the
subscribers. Therefore, it sends a publish
message to broker b2, which in turn notifies
the mobile unit v13 and the subscriber v12.
Each subscriber is activated according to the
fitness value. Red lines in Figure 8 represent
the flow of messages related to the event.

Figure 8. Example of MiddSS’s Event
Notification (HERNANDES et al., 2020) .

16
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

Therefore, brokers take coordinate
decisions (i.e., the system state is shared)
about which subscribers must handle the
event. This process is initiated by the root
broker of the overlay network where the
event took place. Updates of fitness values
are performed to ensure the computational
effectiveness of the event system that adopts
MiddSS. Fitness values could be updated
periodically or in reaction an event.

COMPARISON OF MIDDLEWARES
FOR SMART CITIES
The Figure 9 presents a synthesis of the

main middlewares for smart cities. SensorBus,
PRISMA and Apache Kafka use the pull
method for retrieving messages, while the
other middlewares use the push method. All
these middlewares implement the publish-
subscribe paradigm, except EMMA. EMMA
middleware implements the point-to-point
and publish-subscribe paradigms. The
programming style provided by the evaluated
middlewares is not flexible enough. The lack
of flexibility found in the programming style
of event based middlewares occurs due to
the adopted models for sending events, that
is the point-to-point and publish-subscribe
models. In the point-to-point model,
subscribers might register to specific queues,
retrieve asynchronous messages and confirm
the delivery. Publishers send messages to
queues. This communication model is also
called one-to-one communication, as each
message is produced and consumed only
once through a message queue. In one-to-one
communication model, only one subscriber
consumes the message retrieved. However, it
allows that several subscribers to connect to
the queue. Moreover, the messages are stored
inside the queue until a subscriber is ready for
retrieving, and they are always delivered.

In the publish-subscribe model,
subscribers or event consumers subscribe
to events of interest and publishers or
event producers produce events, which
are asynchronously sent to all registered
subscribers (EUGSTER et al., 2003). That
is, the middleware receives the events by
publishers and delivers the events to the
subscribers who expressed their interest
to receive them by subscriptions (OZALP,
TEKIN, 2014). It is the role of the middleware
to route subscription messages to publishers
and event messages to subscribers. The
publish-subscribe model is used as a synonym
for the one-to-many communication
paradigm, guarantees message delivery for
all subscribers (EL et al., 2014). This type
of middleware has the advantage the strong
decoupling of time, space, and synchronism
between publishers and event subscribers
(EUGSTER et al., 2003). Time decoupling
occurs because subscribers and publishers
may not participate in the interaction at
the same time. Space decoupling happens
because publishers and subscribers do
not need to know each other. In addition,
synchronization decoupled publishers and
subscribers can perform simultaneous
activities while events are produced and
consumed. As a consequence, producers and
subscribers are independent and the global
middleware architecture becomes more
complex (MAGNONI, 2015).

Therefore, most middlewares, except
MiddSS, do not allow a subset of subscribers
with high priority (or most suitable
according to some specific event based
system or application criteria) to be notified
about an event. Notifying a subset of high
priority subscribers is a key requirement for
many urban IoT applications, such as smart
garbage collection system and emergency
service calls, making MiddSS very relevant
in this context.

17
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

*MSF:Most suitable filtering.

Figure 9. Comparation of middlewares for Smart Cities.

18
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

FINAL CONSIDERATIONS
This paper presents a survey about

publish-subscribe middlewares for
emergency response services in smart
cities. We evaluated in each middleware the
event filtering to verify their suitability for
attendance emergencies. So, event filtering
was evaluated in each middleware. MiddSS
middleware allows differentiated notification
in emergencies. MiddSS middleware
allows differentiated event notification in
emergencies. It notifies the most suitable
subscribers. The MiddSS mechanism based
on a fitness function allows select specific
subscribers to receive an event, showing
suitable for emergency services response.
Publish-subscribe middlewares are suitable
for managing time-sensitive events between
smart city applications.

Emergency management and response is
a critical service that must be provided by
cities. Nowadays, ICTs have helped in this
regard. As challenges and future research
directions for middlewares for emergency
services in smart cities, we highlight the
following:

•	 Geo-distribution and low latency:
emergencies happen in any place in the
city and geo-distribution is important
for attending them as soon as possible.
Infrastructure for this must be provided
for the smart objects to communicate
with low latency. To save lives is the
main goal.

•	 Mobility support and location
awareness: in an emergency attendance,
smart objects move around the city
and have to connect to another object
or to a network in order to provide
data to emergency control centers or to
notificate other smart objects. Mobility
support must be offered. Location
awareness is important for supporting

emergencies. Frequently it is important
to know the location of the mobile units;
for instance, hospitals can be located
in the emergency proximity and the
mobile units can be directed to them.

•	 Security and privacy: authentication
to verify the identity of devices and
users and access control policies must
be provided, especially in the back-
end servers because they can have
data about emergency situations that
help decision-making. In many cases,
protocols must implement end-to-end
secure communication mechanisms.

•	 Interoperability: smart objects from
different manufacturers communicate
with each other in a collaborative
network to respond to emergency
situations, thus they must interoperate.

•	 Context-aware computing: the store
of context information associated with
smart objects can help enhance the
quality of emergency response services
provided in the city.

Finally, publish-subscribe middlewares
are very relevant in smart cities. They can
be developed for specific applications will
be optimized for an alone application or a
specific group of applications.

ACKNOWLEDGMENTS
The authors would like to thank CAPES

and CNPq for the financial support and
UTFPR-Campus Guarapuava for the financial
aid with the publication fee.

19
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

REFERENCES
(QIAN ET AL., 2019) Y. Qian et al. “The internet of things for Smart Cities: Technologies and applications”. IEEE Network, v.
33, n. 2, 2019, p. 4-5.

(ALKANDARI et al., 2012) ALKANDARI, A; ALNASHEET, M; ALSHAIKHLI, IFT. Smart cities: survey. Journal of Advanced
Computer Science and Technology Research, v. 2, n. 2, p. 79–90, 2012.

(UNITED, 2017) United Nations. “Population Division”. Available in: www.un.org/en/development/desa/population/, Dec.
2017.

(ALDELAIMI et al., 2020) M. N. Aldelaimi et al. “Building Dynamic Communities of Interest for Internet of Things in Smart
Cities”. Sensors, v. 20, n. 10, 2020, p. 2986.

(MOHANTY; CHOPPALI; KOUGIANOS, 2016) S. P. Mohanty, U. Choppali and E. Kougianos. “Everything you wanted to
know about Smart Cities: The internet of things is the backbone”. IEEE Consumer Electronics Magazine, v. 5, n. 3, 2016, p. 60-70.

(ZANELLA et al., 2014) A. Zanella et al. “Internet of things for Smart Cities”. IEEE Internet of Things journal, v. 1, n. 1, 2014,
p. 22-32.

(ANTONIC et al.m 2015) A. Antonic et al. “Comparison of the CUPUS middleware and MQTT protocol for Smart City
services”. International Conference on Telecommunications (ConTEL). IEEE, 2015. p. 1-8.

(BALDONI ET AL., 2005) R. Baldoni and A. Virgillito. “Distributed event routing in publish/subscribe communication systems:
a survey”. DIS, Universita di Roma La Sapienza, Tech. Rep, 2005.

(EUGSTER et al., 2003) P. T. Eugster et al. “The many faces of publish/subscribe”. ACM computing surveys, v. 35, n. 2, 2003, p.
114-131.

(RAZZAQUE et al., 2015) M. A. Razzaque et al. “Middleware for internet of things: a survey”. IEEE Internet of things journal,
v. 3, n. 1, 2015, p. 70-95.

(HERNANDES et al., 2020) S. C. L. Hernandes et al. “A New Event Model for Event Notification Services Applied to Transport
Services in Smart Cities”. International Conference on Information Networking (ICOIN), 2020, p. 202-207.

(CARZANIGA, ROSENBLUM, 2001) A. Carzaniga, D. S. Rosenblum, A. L. Wolf. “Design and evaluation of a wide-area event
notification service”. ACM Transactions on Computer Systems (TOCS), v. 19, n, 3, 2001, p. 332-383.

(AL et al., 2015) AL NUAIMI, Eiman et al. Applications of big data to smart cities. Journal of Internet Services and Applications,
v. 6, n. 1, p. 1-15, 2015.

(UBEDA, 2018) ÚBEDA, Reyna. ITU transforming cities in smarter and more sustainable. In: Third Meeting of the United for
Smart Sustainable Cities Initiative, 26 Apr, Malaga, Spain, by ITU and UNECE. 2018.

(VERMESAN et al., 2011). O. Vermesan et al. “Internet of things strategic research roadmap. Internet of things-global
technological and societal trends”. 1, 2011, p. 9-52.

(KORTUEM et al., 2009) G. Kortuem et al. “Smart objects as building blocks for the internet of things”. IEEE Internet Computing,
v. 14, n. 1, 2009, p. 44-51.

(COLAK, BAYINDIR, SAGIROGLU, 2020) COLAK, Ilhami; BAYINDIR, Ramazan; SAGIROGLU, Seref. The effects of the
smart grid system on the national grids. In: 2020 8th International Conference on Smart Grid (icSmartGrid). IEEE, 2020. p.
122-126.

(Dimitrakopoulos, Demestichas, 2010) G. Dimitrakopoulos and P. Demestichas. “Intelligent transportation systems”. IEEE
Vehicular Technology Magazine, v. 5, n. 1, 2010, p. 77-84.

(GUTIERREZ et al., 2015) J. M. Gutierrez et al. “Smart waste collection system based on location intelligence”. Procedia
Computer Science, v. 61, 2015, p. 120-127.

20
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

(MAHMOOD, ZUBAIRI, 2019) I. Mahmood and A. J. Zubairi. “Efficient Waste Transportation and Recycling: Enabling
technologies for smart cities using the Internet of Things”. IEEE Electrification Magazine, v. 7, n. 3, 2019, p. 33-43.

(COSTA, DURAN-FAUNDEZ, 2018) D. G. Costa and C. Duran-Faundez. “Open-source electronics platforms as enabling
technologies for smart cities: Recent developments and perspectives”. Electronics, v. 7, n. 12, 2018, p. 404.

(ROSE et al., 2015) Rose et al. “The internet of things: An overview”. The Internet Society (ISOC), v. 80, 2015, p. 1-50.

(TSCHOFENIG ET AL., 2015) H. Tschofenig et al. “Architectural considerations in smart object networking”. IETF RFC 7452,
2015.

(ARA et al., 2016) T. Ara et al. “Internet of Things architecture and applications: a survey”. Indian Journal of Science and
Technology, v. 9, 2016, n. 45, p. 1-7.

(AL-FUQAHA et al., 2015) A. AL-FUQAHA et al. “Internet of things: A survey on enabling technologies, protocols, and
applications”. IEEE communications surveys \&tutorials, v. 17, n. 4, 2015, p. 2347-2376.

(ARMBRUST ET AL, 2010) M. Armbrust et al. “A View of Cloud Computing”. Communications of the ACM, vol. 53, n. 4, 2010,
p. 50-58.

(KOTAS et al., 2018) C. Kotas et al. “A comparison of Amazon Web Services and Microsoft Azure cloud platforms for high
performance computing”. IEEE International Conference on Consumer Electronics (ICCE), 2018. p. 1-4.

(KHAN et al., 2012) R. Khan et al. “Future internet: the internet of things architecture, possible applications and key challenges”.
International conference on frontiers of information technology. IEEE, 2012. p. 257-260.

(AKRIVOPOULOS ET AL.), 2017) O. Akrivopoulos et al. “On the deployment of healthcare applications over fog computing
infrastructure”. Computer software and applications conference (COMPSAC), v. 2, 2017, p. 288-293. IEEE.

(MEIER, CAHILL, 2002) R. Meier and V. Cahill. “Steam: Event-based middleware for wireless ad hoc networks”. International
Conference on Distributed Computing Systems Workshops, 2002, p. 639-644.

(CUGOLA, JACOBSEN, 2002) G. Cugola and H. A. Jacobsen. “Using publish/subscribe middleware for mobile systems”. ACM
SIGMOBILE Mobile Computing and Communications Review, v. 6, n. 4, 2002, p. 25-33.

(BELLAVISTA, CORRADI, 2014) P. Bellavista, A. Corradi, A. Reale. “Quality of service in wide scale publish—Subscribe
system”. IEEE Communications Surveys \& Tutorials, v. 16, n. 3, 2014, p. 1591-1616.

(MOTTOLA, CUGOLA, PICCO, 2008) L. Mottola, G. Cugola and G. P. Picco, G. P. “A self-repairing tree topology enabling
content-based routing in mobile ad hoc networks”. IEEE Transactions on Mobile Computing, v. 7, n. 8, 2008, p. 946-960.

(COSTA et al., 2005) P. Costa et al. “The RUNES middleware: A reconFigureble component-based approach to networked
embedded systems”. International Symposium on Personal, Indoor and Mobile Radio Communications, v. 2, 2005, p. 806-810.

(LAI, CAO, ZHENG, 2009) S. Lai, J. Cao and Y. Zheng. “PSWare: A publish/subscribe middleware supporting composite event
in wireless sensor network”. International Conference on Pervasive Computing and Communications, 2009, p. 1-6.

(SOUTO et al., 2006) E. Souto et al. “Mires: a publish/subscribe middleware for sensor networks”. Personal and Ubiquitous
Computing, v. 10, n. 1, 2006, p. 37-44.

(OZALP, TEKIN, 2014) N. Ozalp and Y. Tekin. “Content-based routing for wireless sensor network using intelligent agents”.
International Symposium on Computational Intelligence and Informatics (CINTI), 2014, p. 345-350.

(COSTA et al., 2003) P. Costa et al. “Introducing reliability in content-based publish-subscribe through epidemic algorithms”.
International workshop on Distributed event-based systems, 2003, p. 1-8.

(PIETZUCH, BACON, 2002) P. R. Pietzuch and J. M. Bacon. “Hermes: A distributed event-based middleware architecture”.
International Conference on Distributed Computing Systems, 2002, p. 611-618.

21
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173623160210

(RIBEIRO et al., 2005) A. R. Ribeiro et al. “SensorBus: a middleware model for wireless sensor network”. International IFIP/
ACM Latin American conference on Networking, 2005, p. 1-9.%b74

(MUSOLESI, MASCOLO, HAILES, 2006) Musolesi, C. Mascolo, S. Hailes. “Emma: Epidemic messaging middleware for ad hoc
networks”. Personal and Ubiquitous Computing, v. 10, n. 1, 2006, p. 28-36.

(LEONTIADIS, 2007) I. Leontiadis. “Publish/subscribe notification middleware for vehicular networks”. Middleware doctoral
symposium. ACM, 2007, p. 1-12.

(BOONMA, SUZUKI, 2012) P. Boonma and J. Suzuki. “TinyDDS: An interoperable and conFigureble publish/subscribe
middleware for wireless sensor networks”. Wireless Technologies: Concepts, Methodologies, Tools and Applicatio, IGI Global,
2012, p. 819-846.

(SILVA et al., 2014) J. R. Silva et al. “PRISMA: A publish-subscribe and resource-oriented middleware for wireless sensor
networks”. Advanced International Conference on Telecommunications, v. 2024, 2014, p. 87-97.

(APACHE, 2019) Apache. “Apache Kafka: A distributed streaming plataform”. Available in kafka.apache.org/. 2019.

(RabbitMQ, 2019) RabbitMQ. Available in www.rabbitmq.com. 2019.

(ZHOU et al., 2019) H. Zhou et al. “NISU: A Novel Index Structure on Uncertain Data in Large-Scale Publish/Subscribe
Systems”.IEEE International Conference on Smart City, 2019, p. 1205-1211.

(OZTURK, OZDEMIR, 2019) F. Ozturk and A. M. Ozdemir. “Content-based publish/subscribe communication model between
IoT devices in Smart City environment”. International Istanbul Smart Grids and Cities Congress and Fair (ICSG), 2019, p. 189-
193.

(EL et al., 2014) A. El Rheddane et al. “Elastic message queues”. International Conference on Cloud Computing, 2014, p. 17-23.

(MAGNONI, 2015) L. Magnoni. “Modern messaging for distributed systems”. Journal of Physics: Conference Series, v. 608, n.
1, 2015.

(CHAND, FELBER, 2003) CHAND, Raphaël; FELBER, P. A. A scalable protocol for content-based routing in overlay networks.
In: Second IEEE International Symposium on Network Computing and Applications, 2003. NCA 2003. IEEE, 2003. p. 123-130.

(MELL et al., 2011) MELL, Peter et al. The NIST definition of cloud computing. 2011.

