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Abstract: The importance of the predatory 
mites Mesostigmata of the litter lies in its 
function of population regulation to maintain 
the balance of soil organisms. Leaf litter is 
one of the main habitats of these organisms, 
however, the effect of its properties on the 
spatial distribution of mites is still unknown. 
The objective of this research was to know the 
effect of physical and chemical properties of 
litter on the abundance of mites. Litter from 
coniferous, deciduous, and mixed forests was 
sampled, these forests were located 90 km 
northwest of Peace River, Alberta, Canada. 
The generalized additive model (GAM) with 
the negative binomial distribution modeled 
the overdispersion of the mite frequency, 
with an explained deviance of 71.8%. 
Second degree non-linear relationships were 
significant between the total abundance of 
Mesostigmata mites and the variables of 
Elevation, depth, temperature, humidity and 
pH. The relationship between abundance 
and geographic coordinates was fifth order, 
indicating that the greater abundance of 
mites was the result of geographic variability. 
The optimal conditions for the production of 
Mesostigmata mites are: Elevation below 700 
meters above sea level, depth greater than 12 
cm, temperature between 11 to 12 degrees 
centigrade and acidic pH. The least favorable 
percentage of humidity is between 60 to 
90%. The number of mites in the coniferous 
forest (CD) was statistically equal to that 
in the deciduous forest (DD), but different 
from the mixed forest (MX) with p<0.05, the 
latter having a higher abundance of mites. It 
is concluded that GAM models are useful to 
estimate the abundance of mites and predict 
them in adjacent areas that have not been 
sampled.
Keywords: predatory mites, Mesostigma, 
boreal forest, generalized additive model, 
geospatial, GAM.

INTRODUCTION
Mites constitute the most diverse group of 

arachnids with a cosmopolitan distribution, 
they inhabit terrestrial and aquatic 
environments, they present a great variety 
of feeding habits and establish different 
relationships with practically all living beings 
(Pérez, et al., 2014). In particular, the boreal 
forest has a large amount of soil fauna within 
which the Mesostigmata mites are identified, 
which affect various soil processes (Díaz et 
al., 2013). These processes produce distinctive 
biochemical and physical characteristics 
that are closely related to the development 
of deciduous, coniferous and mixed forest 
stands. Under the premise that forest soil 
communities are closely associated with 
physical and chemical soil characteristics, 
it is essential to identify the optimal 
conditions for the production of predatory 
mites (Mesostigmata), which are essential 
to maintain the balance of soil organisms. 
These soil organisms have been the subject 
of study to produce them as biocontrollers 
for commercial agricultural products such as 
onions (Rivest and Kharouba, 2021). Chaires-
Grijalva, et al. (2015) have studied them for 
their importance as biological control agents 
for bark beetles.

Regarding statistical modeling, Mineriro 
et al. (2009) have studied the distribution of 
mites in the soil, using the Shannon diversity 
index. Minor and Cianciolo (2007) applied 
bootstrap resampling to study the effect of 
various types of land use on the abundance 
of various Mesostigmata mite species, while 
Manu et al. (2022) applied multivariate analysis 
to find a relationship between communities of 
soil mites (Acari: Mesostigmata) with some 
environmental variables in experimental 
grasslands of the Bucegi mountains in 
Romania. Although the literature review 
reports classic statistical methods to evaluate 
strictly linear relationships between the 
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abundance of mites and various variables of 
interest, no research is reported where possible 
non-linear relationships are identified. Due 
to the above, this research proposes the 
use of GAM models (Wood, 2017), whose 
characteristics are discussed below.

MATERIALS AND METHODS
GENERALIZED ADDITIVE MODEL
The Generalized Additive Model (GAM) 

proposed by Hastie and Tibshirani (1986) is 
an extension of the Generalized Linear Model 
(GLM) of Nelder and Wedderburn (1972). It 
is a non-parametric regression that relaxes the 
assumption of linearity between the response 
variable and the covariates, which allows the 
discovery of non-linear relationships between 
them. The linear predictor of the GAM models 
is expressed as:

g(μi) = Xi*θ + f1 (x1i) + f2 (x2i) + f3 (x3i, 
x4i) + ...

Where Xi*θ is a fixed effects function such 
that Xi* is the i-th row of the design matrix of 
the fixed effects model θ is a parameter vector. 
smoothing functions fi (xi), they allow, in a 
very flexible way, to specify the dependency 
between the response and the covariates 
(Wood, 2017). In particular, E[yi] = μi, where 
has a distribution belonging to the exponential 
family and it is a known function, called 
the link function that connects to   with the 
linear predictor. Like the GLMs, the GAMs 
allow the modeling of response variables with 
distributions belonging to the exponential 
family, which includes both continuous 
(normal, gamma, and inverse Gaussian) and 
discrete (binomial and Poisson) distributions. 
A distribution belonging to the exponential 
family can be written as:

where a, b and c are arbitrary functions, θ 
is a natural parameter of the distribution and 

 a scale parameter. It must be noted that a 
difference between the GLM and GAM models 
is that the former are restricted to modeling 
independent observations in contrast to 
the latter, which can model dependent 
and independent observations, through 
time or space (Toriz-Robles et al., 2019). 
Additionally, the GAM models have been 
adapted to incorporate the negative binomial 
distribution, X˜BN(θ*, μ), where prob = θ*/
(θ* + μ), θ* is the dispersion parameter, a μ 
represents the number of failures before 
achieving desired number of successes, in 
particular, var(X) = μ + ; θ*>0). The link 
function for this distribution is g = log.

REPRESENTATION OF A 
SMOOTHING FUNCTION
A smoothing function depends on the 

observations of a given point known as a 
node (knot, for its acronym in English) and 
the neighboring observations. The most 
commonly used smoothing functions are 
polynomials (splines). The nodes divide the 
range of each covariate (x) in regions. Splines 
depend on three elements, the degree of the 
polynomial, the number of nodes, and the 
location of the nodes. The most used function is 
the cubic spline, which is a curve built through 
the sum of polynomials around each node, 
which are assembled to form a continuous 
curve. Their flexibility lies in the fact that 
they have continuous second derivatives and 
inflection points (Mamouridis, 2011 and 
Wood, 2017). GAM models are preferred over 
lowees models (locally weighted least squares 
regression (Cleveland, 2007), because the 
latter can produce predictions less than zero 
or greater than 1 when dealing with binomial 
data (Agresti, 2015).

A smoothing function: (f) can be 
represented as:
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where bi(x) is a known basis function, q 
is the degree of the polynomial, and βi is the 
regression parameter associated with: bi(x). A 
spline of degree, is a curve, formed by sections 
of polynomials. For example for the cubic 
spline (q=3), the bases are: b1(x) = 1, b2(x) 
= x, b2(x) = x2, b2(x) = x3. Regression versus 
smoothing functions (f) it is also known as 
spline regression (Wood, 2017). It must be 
noted that the R software has at least two 
types of smoothing functions, for the cases: 
isotropic, that is, for when the covariates are 
on the same scale; and the tensor product, 
for when the covariates have a different unit 
of measurement or have a different variance 
(Wood, 2003).

ESTIMATION OF THE SPLINE 
PARAMETERS
For the case of an explanatory variable, the 

penalized maximum likelihood estimation 
of the vector: β = (β1, β2,..., βq) is achieved 
by minimizing by maximum likelihood the 
expression:

||y - xβ||2 + λβT Sβ                    (1)

where S is a matrix of known coefficients 
associated with the basis functions: (b(x)) 
and l is the smoothing parameter, which 
sets a tradeoff between goodness-of-fit 
and smoothness, allowing less overfitting. 
The second component of (1) penalizes for 
the excess “waviness” of the “spline”. The 
estimator of: β is β = (XTX + λS)-1XTy. In the 
case of covariates, the likelihood function to 
be maximized can be written.

What: , where is the 
likelihood function of a generalized linear 
model and λj ; j = 1,2,...,p, are the smoothing 

parameters that are estimated rather than set 
arbitrarily (Wood, 2017).

EVALUATION OF A GAM MODEL
The most important measures to evaluate 

a GAM model are the deviance and the GCV 
score. The first is defined as:

where  is the maximum likelihood 
function of the saturated model and  
is the maximum likelihood function of 
the fitted model. The saturated model is a 
model with one parameter for each data. 
The scaled deviance is: , where  
is a scale parameter. Scaled deviances play 
an important role in likelihood ratio tests, 
since the difference in scaled deviances of two 
models is a distribution:

, with    y        degrees of freedom. The 
GCV score is the generalized cross-validation 
function of the fitted GAM model. The GCV 
score can be used as the Akaike and Shewhartz 
information criteria are used, to compare 
variousmodels (Wood, 2017). when known: 

, one measure for comparing models is the
Unbiased Risk Estimator (UBRE), which is 

a scaled AIC.
The software R (2019) and RStudio (2022), 

in its version 4.2.0, was used to generate the 
results.

STUDY CASE
The study to determine the abundance of 

Mesostigmata mites was carried out in the boreal 
forest, located 90 km northwest of Peace River, 
Alberta, Canada (Longitude: -118.419712,-
118.324707. Latitude: 56.745673, 56.818255). 
This forest was included in the Ecosystem 
Management Emulating Natural Disturbance 
(EMEND) project. EMEND is a large-scale 
(1000 ha) variable retention forest harvesting 
experiment established within an area of 7000 
ha. The climate of this region is characterized 
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by long, cold winters and short, moderately 
hot summers. Average temperatures range 
between -15.4 °C in January and 16.4 °C 
in July, the frost-free period is less than 
90 days, and the average annual rainfall is 
378 mm, occurring mainly in June and July 
(Environment Canada, 2011). The study area 
is located at an elevation between 689 and 838 
masl with a gently undulating topography. 
The soils have formed predominantly on fine-
textured glaciolacustrine parent materials, 
with the exception of the southwestern 
part of the experimental site where the soils 
developed on heterogeneous sediments of 
glacial “till” origin (Lindsay et al., 1958). Most 
of the area is Luvisols Orthic and Dark Gray 
soils, while soils of the Brunisols, Gleysolic 
and Solonetzic orders are found in a smaller 
proportion (Kishchuk, 2004); soils vary from 
fair to imperfectly drained depending on 
texture and slope position.

In this study, the abundances of 
Mesostigmata litter mites in naturally 
disturbed forests were evaluated, that is, the 
control stands constituted three types of 
successional vegetation cover that originated 
from forest fires ~80 and 140 years ago. In 
the control forests, there are no records of 

disturbance by recent fires or insect outbreaks, 
nor any form of anthropogenic disturbance 
in the last 80 years. Based on the type of tree 
cover, they were classified as: i) Deciduous or 
coniferous forest with > 70% trembling aspen 
(Populus tremuloides Michx.), ii) Coniferous 
forest dominated by > 70% white spruce (Picea 
glauca (Moench) Voss), and iii) Mixed forest 
composed of approximately 35% P. glauca and 
65% P. P. tremuloides.

FIELD SAMPLE
For this study, three replicate stands of 

each forest type with an extension of ~10 ha 
each, distributed randomly in the EMEND 
project area, were chosen. The stands of the 
deciduous forest were 852, 862 and 940, those 
of the mixed forest were 867, 902 and 928 and 
those of the coniferous forest were 889, 918 
and 930 (Figure 1).

Leaf litter samples from each replicate were 
collected for Mesostigmata predatory mites 
in September 2006. Three subsamples were 
collected from each replicate stand in three of 
the six permanent plots (which are 2m x 40m in 
width and length). m); which were randomly 
selected in each replica of each experimental 

Figure 1. Study zone. Country Canada. Province: Alberta. Region: Northern Alberta. Length: -118.419712,-
118.324707. Latitude: 56.745673, 56.818255.
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stand (for more details, see Volney et al., 
1999), obtaining a total of 9 subsamples per 
forest type and analyzing a total of n=27 
subsamples. To avoid interference with other 
projects and minimize the influence of human 
disturbance, sampling points were set 10m 
apart from the left side along the 40m vertical 
side of each permanent plot.

Predatory mites were the least abundant, 
constituting <5 to 20% of the total Acari 
found in litter and soil (Petersen and Luxton, 
1982). In this study, a 25 cm diameter metal 
cylinder was used to take samples of the 
forest litter and guarantee the collection of a 
greater number of individuals in each sample. 
At each sampling site, three measurements 
of explanatory variables were taken, such 
as forest litter thickness and temperature, 
around the cavity in the L-F-H organic 
horizons, using a digital thermometer. In 
addition, additional samples of the litter were 
taken at each sampling point to determine the 
moisture content and estimate the pH, with a 
0.01 M CaCl2 solution, in a ratio of 1:10 using 
10 g of ground litter ( Davey and Conyers, 
1988).

The litter samples were placed in 
hermetically sealed plastic bags and stored in 
a portable cooler for transport, maintaining an 
average temperature of 10°C using cryopacks 
for transport and once in the laboratory, the 
samples were stored at 5 °C until the extraction 
of the mites (for more details on the collection 
of litter variables, see Díaz-Aguilar et al., 
2013).

MITE EXTRACTION AND 
IDENTIFICATION
Mesostigmata mites were extracted from 

litter samples using Tullgren-type funnels 
(24.8 cm in diameter) according to the 
recommendation of Crossley Jr. and Blair 
(1991) and Edwards (1991), who recommend 
them for organic soils; in most cases the 

extraction efficiency exceeded 80% (van 
Straalen and Rijninks, 1982). The samples 
were kept in the funnels for ~5 days and 
the litter microarthropods were collected in 
plastic vials with 70% ethanol. Mesostigmatan 
mites were separated, sorted and counted 
under a stereoscopic microscope at 15 to 40x 
magnification, rinsed in 85% lactic acid for 
one to several hours depending on the degree 
of transparency required for each specimen, 
mounted on slides in medium. PVA (polyvinyl 
alcohol from BioQuip Products Inc.) and then 
dried at 45°C for 4-5 days using a hot iron.

A total of 4,045 specimens were counted, 
including adults and immature stages such as 
deutonymphs and protonymphs, they were 
classified into morphospecies and, later, mites 
of the order Mesostigmata were identified 
under optical and phase contrast microscopy, 
identifying those of the Gamasina and 
Uropodina cohorts, as well as the mites of the 
Sejida suborder, for this the use of electronic 
keys at different taxonomic levels such as 
those of Walter and Proctor (2001) and Walter 
(2006) was required.

A particularly interesting feature of the 
fauna was the great diversity of species 
of zerconids of the genus Mixozercon 
(Halašková, 1963), including M. albertaensis, 
M. jasoniana and M. borealis, species found 
exclusively in western boreal forests.

RESULTS AND DISCUSSION
The descriptive statistics of 27 observations 

of the abundance of mites (Table 1), showed 
the presence of overdispersion by showing 
a variance much greater than the mean. The 
significance levels to test the null hypothesis 
regarding the Poisson and negative binomial 
distributions were zero and 0.08, respectively. 
Therefore, all analyzes were performed with 
the negative binomial distribution.

The software used was R (2022) and 
RStudio (2022). The main packages used were: 
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dplyr: pipeline programming, RcmdrMisc: 
descriptive statistics, ggplot2: plotting, 
fitdistrplus: negative binomial distribution fit, 
vcd: goodness-of-fit for discrete distributions, 
car: qq plots, MASS: BN regression, grDevices: 
font backgrounds, mgcv: fit of GAM models 
and mgcViz: analysis of residuals of GAM 
models

The GAM model adjusted with k=3 knots 
was:

 y  (2)

Where:
yi: number of mites; Bj: type of forest, where 

=1: coniferous forest, j =2: deciduous forest, 
j = 3: mixed forest; ele: Elevation in msnm; 
temp: temperature in degrees centigrade; 
pro: depth in cm; ph: pH; hum: moisture in 
%; X: Longitude in geographic coordinates, 
Y Latitude in geographic coordinates and ei 
experimental error with normal distribution 
and constant variance. the softener te is the 
product tensor and k=3 is the number of 
knots.

The explained deviance of the model was 
71.8%, with a value of UBRE= 14.79 and a 
scale statistic =1. This model indicated that 
the number of mites in the coniferous forest 

(CD) was equal to (DD), but different from 
the mixed (MX) with a value of p<0.05 
(Figure 2).

The Shapiro Wilks test indicated that 
the distribution of the residuals was normal 
(p-value= 0.679). The residuals presented a 
random behavior (Figure 3) and the regression 
between the adjusted values explained by 
the predicted ones showed an intercept with 
a value of 8.0317 that was not significant 
(p-value = 0.679) and a slope with a value of 
0.9437 that was significant (p-value = 1.84). 
e-08).

The relationship between each predictor 
with the response variable was significant and 
non-linear, the smoothing functions were of 
second degree (Figure 4).

The highest abundances of mites predicted 
by model 2 were obtained at elevations below 
730 masl. The temperature between 11 and 
14 0C favors the abundance of Mesostigmata 
mites. Depths greater than 13 cm, acid pH 
(below 4.5) and humidity below 70% and above 
90% also favor the presence of Mesostigmata 
mites (Figure 4).

Elevation, in combination with temperature 
between 11 and 120 C, increases the presence 
of mites (Figure 5). The same happens in 
combination with the depth between 13 and 
18 cm (Figure 6) and with a pH below 4.5.

Variable Average Variation D.E.† Min Max

Abundance (frequency) 145.81 7553.39 86.91 6.00 341.00

Elevation (msn) 750.72 2853.405 53.42 689.70 838.30

Humidity (%) 74.99 177.84 13.34 55.21 100.00

Temperature (0C) 10.44 1.97 1.40 8.50 14.10

pH 4.90 0.31 0.55 3.60 5.80

Depth (cm) 8.46 15.67 3.96 4.00 20.50

† D.E. Standard deviation. Minimum: Minimum. Max: Maximum.

Table 1. descriptive statistics of the chemical and physical variables of litter and abundance of Mesostigmata 
mites from boreal forest in Alberta, Canada.
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Figure 2. Box-and-whisker plot of the number of Mesostigmata mites in coniferous (CD), deciduous (DD) 
and mixed (MX) forests.

Figure 3. Plots for Residual Analysis.
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Figure 4. Relationship between predictor variables (horizontal axis) and Mesostigmata mite abundance 
(vertical axis)).

Figure 5. Prediction of Mesostigmata mites as a function of elevation and temperature.

Figure 6. Prediction of Mesostigmata mites as a function of elevation and depth.
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Humidity produces greater abundance 
below 60% and above 90%. This pattern was 
consistent with depth between 18 and 20 cm 
(Figure 7) and pH below 4.5 (Figure 8).

Temperature in the range of 11 to 130C 
and a depth of 11 to 20 cm produces greater 
abundance of mites (Figure 9) and with pH 
values below 4.5 (Figure 10).

The relationship between abundance 
and geographic coordinates was fifth order, 
indicating that the greatest variation in 
abundance of predatory mites was the result 
of spatial variability. The greatest abundance 
was observed to the east and south (Figure 
11).

Figure 7. Prediction of Mesostigmata mites as a function of depth (cm) and humidity (%).

Figure 8. Prediction of Mesostigmata mites as a function of pH and humidity (%).
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Figure 9. Prediction of Mesostigmata mites as a function of Temperature (0C) and depth (cm).

Figure 10. Prediction of Mesostigmata mites as a function of Temperature (0C) and pH.

Figure 11. Prediction of Mesostigmata mites as a function of longitude and latitude in geographic 
coordinates.
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CONCLUSIONS
The spatial variability of the physical 

and chemical variables of the litter, have 
a non-linear influence on the abundance 
of predatory mites. The mixed forest was 
characterized by having a higher number 
of Mesostigmata mites than the coniferous 
and deciduous forests. Geography, measured 
by geographic coordinates, significantly 

influences the presence of mites, which have 
a greater presence to the east and south of 
the sampling area. It is concluded that the 
application of a statistical model is useful to 
quantify the abundance of mites in adjacent 
areas that were not sampled. The predicted 
total abundances were consistent with those 
found in the field, which validated the model.
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