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NUMEROS COMPLEXOS

Até o momento, utilizamos o conjunto dos numeros reais que
satisfaz a solugcado de quase todas as equacdes desenvolvidas.

Vamos admitir, agora, a existéncia da equagdo x?+7=0, que muito
preocupou os matematicos durante o século XV. Como sabemos, esta equagéo
nao possui solugdo no campo dos numeros reais, pois ndo existe nesse campo
raiz quadrada de nimero negativo (x =++/—1).

Para que as equacgdes fossem sempre possiveis, houve a
necessidade de ampliar o universo dos numeros.

Criou-se entdo um numero cujo quadrado € —1. Este numero é

representado pela letra i, denominado unidade imaginaria, e é definido por :

iP=-1=i=+-1
A partir desta definicdo, surge um nono conjunto de numeros

denominado conjunto dos numeros complexos, que indicaremos por C.

1 FORMA ALGEBRICA

Todo numero complexo pode ser escrito na forma Z =g + bi, com

a, b € 97, denominada forma algébrica.

O numero real a € denominado parte real de Z, e o numero real b é o
coeficiente da parte imaginaria e i € a unidade imaginaria.

a = coeficiente real ou parte real;

_|bi = parte imaginaria;
Z=a+bi . . oo
b = coeficiente imagindrio;
i = unidade imagindaria

Portanto, um numero é real quando a parte imaginaria do numero

complexo € nulo, e imaginario puro, quando a parte real do numero complexo é

nulo e b=0.

|Z =a+(0)i = a = ¢ um nimero real;
Z=a+bi o ) . o
Z =0+ bi = bi = ¢ um numero imaginario puro.

Exemplos: 1. Z =4 +3; = € um numero imaginario;



Colégio Técnico Industrial de Santa Maria 2
Professores Elisia Chiapinotto e Mauricio Lutz

2. 7 =2 = é um numero real;

3. Z =7i= é um numero imaginario puro.

4. Considerando o numero complexo Z=(m-3)+(n’>-25)i,
determinar m e n de modo que Z seja:

a) um numero real.
Resolugao:

Para que Z seja real, devemos ter:

n*-25=0=>n’=25=>n=15
(m-3)eR=>meN

b) um numero imaginario puro.

Resolugao:
Para que Z seja imaginario puro, devemos ter:
m—-3=0=>m=3

nt=2520=>n’ #25=>n#+5

(1) Exercicios

1. Determine k de modo que o niUmero complexo Z = (k+5)—4i seja

imaginario puro.

2. Ache m para que o numero complexo Z =1+ (m* —81)i Seja um

numero real.

3. Determine x e y, para que o0 numero complexo
Z=(x+6)—(y’ —16)i seja:

a) um numero real;  b) um numero imaginario puro.

4. Sendo Z = (4m-5)+(n—1)i, determine os numeros reais m e n tal

que Z=0.

5. Resolva as equacgdes no universo dos numeros complexos:
a) x2+25=0 b) x?-6x+13=0 c) 4x%-4x+5=0
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6. Determine os valores de x para que os complexos sejam reais.
a) 2+(3x —1)i

b) (x+2) — (x? —5x)i

c) (5x —10)+ (2x —4)i

2 IGUALDADE DOS NUMEROS COMPLEXOS

Dois numeros complexos Z'=a+bi € Z"=c+di, s&o iguais se, e
somente se, suas respectivas partes reais sao iguais, e as respectivas partes
imaginarias sao iguais.

a=c
Z'=7"=a+bi=c+di e
b=d
Exemplo: Determinar a e b de modo que 0s numeros complexos Z'=a+bi €
Z"=5+3i sejam iguais.
Resolugao:
Usando a relagdo a + bi =c + di, temos:

a=>5
b=3

(2) Exercicios

1. Determine a e b de modo que g —bi =2+4i.

2. Ache a e b de modo que 2g—b+(3a+2b)i =-8+9i.

3. Sabendo que Z'=x’-1+(4-y)i € Z"=3-10i, determine x e y,

para que Z’ seja igual a Z”.

3 CONJUGADO DE UM NUMERO COMPLEXO

Sendo Z=a+bi, defini-se como complexo conjugado de Z o

complexo Z = — bi. Observe que as partes reais dos dois complexos 7 e Z
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sdo iguais e as partes imaginarias, simétricas.

Exemplo: Z:3+4i:>2=3—4i;
7 =5i=7=-5i;

Z=2=7=2

3.1 Propriedades do conjugado

Pi= Z=7

Se Z—a+bi,entdo Z=a—bi= Z =a—bi=a+bi.

Poms 742" = 7+ 2"

O conjugado da soma é igual a soma dos conjugados.

Ps= 7'2"=2'2"

O conjugado do produto € igual ao produto dos conjugados.

Psi= Z"=Z" (neN)

O conjugado de uma poténcia é igual a poténcia de um conjugado.

(3) Exercicios

1. Dé o conjugado dos seguintes numeros complexos:

a) Z=6++2i b) Z=—4+3i c) Z=+/3-4/5i

2. Determine o conjugado do numeros complexos a seguir:

a) Z=i+4 b) Z =—/3i c) Z =10i
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4 OPERAGOES COM NUMEROS COMPLEXOS

4.1 Adigao e subtragao

Somamos ou subtraimos numeros complexos, somando ou
subtraindo, respectivamente, suas partes reais e imaginarias, separadamente.
Isto é:

(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)—(c+di)=(a—c)+(b—d)i

Exemplo: Efetuar: a) (2+3i)+(6+4i)
Resolugao:
(243i)+(6+4i)=2+3i+6+4i=8+7i

b) (6+5i)—(2+3i)
Resolucgéo:
(6+5)—(2+3i)=6+5i—-2-3i=4+2i

4.2 Multiplicagao

Multiplicando dois numeros complexos de acordo com a regra da

multiplicacdo de bindmios e sabendo que ;> = -1, temos:

(a+bi)(c+di) = ac + adi + bci+bdi* = (a +bi)(c +di) = (ac —bd) + (ad + bc)i

Exemplo: Efetue a multiplicagéo (2 + 4i)(1+ 3i).
Resolugao:

(2+4i))(1+3)=2+6i +4i +12i> =2+ 6i + 4i —12=—10 + 10i

4.3 Divisao

A divisdo de dois numeros complexos Z'=a+bi € Z"=c+di pode

ser obtida, escrevendo-se o quociente sob a forma de fragdo; a seguir,
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procedendo-se de modo analogo ao utilizado na racionalizagdo do
denominador de uma fracdo, multiplicam-se ambos os termos da fragao pelo

numero complexo conjugado do denominador. Isto é:

VARWAVA

AR ANA

'

Exemplo: Sendo 7'=3+2; € Z"=1+i, obter %

Resolugao:

Z' 342 Z' 342 1-i 3-3i+2i-2i* 5 1,

7" 1+i 7" 1+ 1-i 1—42 2

(4) Exercicios

1. Calcule:
a) (6+5)+(2-10) b) (6—1i)+(4+2i)—(5-3i)
) [§+ij—(%—ij+(4—2i) d) (5+1)2-1)
e) (—1+2i)(3+1i) f) (=3i+4)(-2+5i)
2+1i 5+1 . i
h) 2 "°
) 5-3i ) i L 2+3i

2. Calcule a e b, para que: (4+5i)—(-1+3i)=a+bi.

3. Determine o nimero complexo Z tal que 27 +3Z =4 —i.

4. Dados 7'=4+i, Z"=—-1+2i e Z'"'=5-3i, calcule:
a) Z'v7n_7m

b) 22'—4Z"+%Z”'

5. Determine o numero complexo Z que satisfaz a igualdade

VA 1 .
T rpy
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6. Sabendo que Z =4+, determine os numeros reais m e n de

modo que mZ —6=ni + Z.
7. Determine x e y de modo que (4+i)(x—2i)= y+%i-

8. Consideres os complexos ¢=2+i, b=i-3, c=1+i € d=-3-2i,

calcule:

a) (a+b)(c+d)

b) (a—b)(c—d)

c) ab—cd

d) ab

9. Coloque na forma a+bi a expressao 1-i + L.

1+i i-2

10. Dada as fungdes f(x)=x>-2x+1 e g(x)=x"+x, calcule
f(2+i0)
g(1-1)

AN\ 2
11. Calcule (‘”51) .
2430

4+3§

—2i

12. Determine a e b, de modo que g +bi =

5 POTENCIAS DE j

Vejamos algumas poténcias de i. Observando os resultados abaixo,
verificamos que eles se repetem a cada grupo de quatro poténcias,
assumindo os valores 1, i, -1 e —i. Podemos concluir que expoente maior que

4, divide-se por 4 e considera-se o resto.
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Exemplo: i""=i'=i

77 |4
- 4 19

37

36

= Resto

(5) Exercicios

1. O conjugado do numero complexo z = (1 +.4
-1

a)14  b) -1 c) -1+ d) —i e)i

@

2. Se o complexo Z é tal que Z=3-2i, entdo (z)? é igual:

a)5 b) 5-61 c) 5+12i d) 9+4i e) 13+12i
3. A soma dos numeros complexos 51+ ?’i e % é:
+i —i

a) (25+5i)2 b) 15+10i c)—10-10i d)15-10i e) 30+20i

2-—ai
2 +ai

a) +2 b) 4 c) 1 d) +4 e)-3

4. Encontre a, se € um imaginario puro:

5. Para que (a+3)+(3b-a)i seja igual ao conjugado de 2a-3i, o valor
de at+b é:
a) -2 b) 1 c)2 d)3 e)5



Colégio Técnico Industrial de Santa Maria 9
Professores Elisia Chiapinotto e Mauricio Lutz

6. Dé o valor do produto: P=i.i2.i3.i*...i"%, sendo i?=-1.
a) 1 b) —1 c)i d) —i d) -25

7. O valor da expressao y=i+i2+i3+,..i1001 é:
a)1 b)i c) —i c) -1 e) 1+i

8. Para que o numero Z=(x-2i).(2+xi) seja real, devemos ter (xeR) tal
que:

a) x=0 b) x=1% C) Xx=12 d) x=14 e)n.d.a.
6. REPRESENTAGAO GEOMETRICA DE UM NUMERO COMPLEXO

Todo complexo Z=a+bi pode ser representado por um par
ordenado (a, b). A este par associamos um ponto P de um plano.

Este plano € chamado de plano de Argand-Gauss. O Ponto P é
chamado de afixo ou imagem geométrica de Z. Assim, no plano x0y, no eixo
das abscissas representa-se a parte real de Z; no eixo das ordenadas, a parte

imaginaria de Z.

P.L Z=a+bi

Obs: Nao é definido para o campo dos complexos a relacdo de ordem, isto €,

nao existe um complexo maior ou menor que outro.
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7 MODULO DE UM NUMERO COMPLEXO

Ao representarmos graficamente um numero complexo Z =a+bi,
podemos calcular a distancia entre a origem 0 do sistema e o afixo P de Z. A
essa distancia dop denominamos modulo de Z e indicamos por |Z| ou p.

Aplicando o teorema de Pitagoras no

P.l.
b P

tridangulo OPa, temos:
dj,=a’+b*> =d,, =a’+b* ,isto é

|Z|= p=~a’ +b*

Exemplo: Determinar o modulo do complexo Z =3+ 4;.

Resolugao:

| Z =32 +4> =J9+16 =25 =5

7.1 Propriedades do médulo

O mddulo de um numero complexo, verifica as seguintes

propriedades:

P1:>|Z|20

O médulo de um numero complexo € um numero, € um numero real

nao-negativo.

P2=2,.2Z,|=|Z |z,
O modulo do produto de dois ou mais numeros complexos é igual ao

produto dos numeros complexos fatores.

Zl
ZZ

_lal

P; > =
1,

O modulo do quociente de dois numeros complexos é igual ao

quociente do modulo do complexo dividindo pelo médulo do complexo divisor.
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Ps= |z|=|7]

O médulo de um numero complexo e de seu conjugado sao iguais.

Exemplo: O mdédulo do numero complexo z = 1-13 é:
2+ 23

Resolugao:

Utilizando a propriedade P3, temos:

[1-iv3| NP8 Vw3 1

‘2+2i\/§‘ \/(2)2 +(243)? Ja+12 2
(6) Exercicios

1. O médulo de a+Ei para a, b reais é:

a-—Dbi
a) a’+b? b) 2 c) 1 d) a2-b? e)n.d.a.

2. Se Z é um complexo tal que Z. z=25, entdo o médulo de Z é:
a) J5 b) 5 c)5.5 d) 25 e) 50

3. O médulo do numero complexo z = (1 —3i){3_1jé:
|

a)2.2 b)2J3 )52 d) 2.2 e) 15/2

4. Calcule |(_3 — 42+ 2i)|
| 1+i

a) 2 b) 4 c)6 d)8 e)10

5. O médulo do numero complexo cosa-isena é:
a) -1 b) —i c)i d) i4 e) n.d.a.
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8 Argumento de um numero complexo

Consideremos o numero complexo Z=a+bi € 0 ponto P que o
represente.

P Denomina-se argumento do

b P

complexo i a medida do angulo «, formado por

0P como o eixo 0X, medido no sentido

anti-horario, conforme indica a figura.

a =arg(z)

P.R.

Esse angulo a deve satisfazer a condigdo 0 <o <27 .
Dado um numero complexo Z =a+bi, obtemos « a partir de duas

relagbes que podemos estabelecer entre os valores de a, b e |Z|.
b a
senag =— € cosa =—

4 2]

Exemplo: Determinar o argumento do complexo Z = 3 +i.

Resolugao:
1Z1=(3) +12 =Va =2

a 3 b
cosa=—=>cosa=— € sena=— =sena =

2] 2 2

Logo 05:Z
J 6

(7) Exercicios

1. Determine o0 modulo dos seguintes numeros complexos:

a) Z=4-i b) Z=-5i ¢) Z=A2+i d) z=8

2. Determine o argumento dos complexos a seguir e faga sua

representacdo geométrica:

a) Z=1-i b) Z =2+23i c) z=4i d) Z=2+23i
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9 FORMA TRIGONOMETRICA OU POLAR

A qualquer numero complexo Z =qa+hi podemos associar um par

ordenado (a,b).

= 0O angulo a é denominado de argumento de Z.
= O ponto P(a,b) é denominado de afixado e € também é imagem de Z=a+bi
= 0<a<2n.

= Esta representacdo geométrica chama-se de plano de Argand-Gauss.

9.1 Desenvolvimento da forma trigonométrica ou polar

sena =£:>b =|Z|sena

12

cosa =2 =a =|Z|cosa

2]
Substituindo em qa + bi;
|Z| cosa + i|Z|sena L= |Z|.(cosa +isenq)

zZ :|Z|.(cosa +isena) = Forma trigonométrica do complexo Z.

Exemplo: O numero complexo Z =1+ i na forma trigonométrica.

Resolugéo:
1Zl=J1+1=42
cosazizizﬂ, nete caso a € 1°Q. Logo a="rad
1Z| 2 2 4

Entdo: Z = |Z|.(cosa +isena)=7Z= ﬁ{cos% +i.sen %j
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9.2 Operagoes na forma trigonométrica

Dados os numeros complexos Z' e Z” na forma trigonométrica:
Z'=|Z|(cos o'+isena')

Z"=|Z"|(cos a"+isena")

a) Multiplicagéo:

Z'Z"=|Z|Z'|(cos(a'+a" ) + isen(o'+a"))

b) Divisgo:

Z_ H (cos(a'-a") +isen(a'—a"))
z' |z

¢) Potenciag&o:

Z' =|Z|" (cos(na) +isen(na))

(8) Exercicios

1

_ i)12

€ igual a:

1. O complexo i

a) —1/64 b)-1/32  c) (1+) d) 1/12 e) 1/12i

2. Sejam os numeros complexos z = 2(cosg+isengj e W=i+i’>+i.

Achar y=Z5+W?¢,

3. O moédulo do nimero complexo (1+3i)* é:
a) 256 b) 100 c) 81 d) 64 e) 16

4. Quando Z, =2(cos%+isen%j e Z, :2(cos%+iseni—nJ tem-se que

Z1+Z> e Z1.Z> valem respectivamente:
a)0e0 b) J3i €0 c) 2.2i e 4
dd4joie—4 e)2/2+2.\2i e4
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5. O numero complexo Z=a+bi é tal que ‘%‘ =1.

a) a=-b b) a=b c)a=2b  d)a=3b2  e)a=-7b

6. Considere o ponto P(5 /3 ,5) representado no grafico abaixo:

|
\ 53 X

A forma trigonométrica no n® complexo Z, representado pelo ponto p

a) 10.(cos30°+isen30°)

b) 5.(cos30°+isen30°)

c) 10.(cos45°+isen45°)

d) 5.(cos45°+isen45°)
)

e) 5.(cos90°+isen90°)

7. O produto dos trés numeros complexos
Z, =2.(cos40°+isen40°)
Z, = 3.(cos135°%isen135°)

Z, =1.(cos125%isen125°) € igual a:

a) 3-J3i b)3-3431 c)2+242i d)6+y3i  e) 3+ 2i

8. Passe para a forma trigonométrica os seguintes numeros
complexos:

a) Z=—-4J3 -4 b) 7z =8i C) Z=-7-7i

d)zzl—\/Ez' e) z=-5 f)z:—§+§i

2
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9. Passe para a forma algébrica os complexos:

a) Z= 2\/5.(cos5?ﬂ+ isens?ﬁ) b) Z =2.(cos315°+isen315°)
C) Z=2.(cosll6ﬁ+isenll6ﬁ) d) Z=\/§.(cos%z+isen2?ﬂ)

10. Coloque o numero complexo Z na forma trigonométrica:

.3 .
1+ b) Z i 3

a) Z=
1+

T14i 1-i

(9) Exercicios complementares

1. E dado um ndmero complexo z=(x-2)+(x+3), onde x & um
numero real positivo. Se |Z| = 5, ent&o:

a) Z € um imaginario puro.

b) Z € um numero real positivo.

)
)
c) o ponto imagem de Z é (-1;2).
d) o conjugadode Z é —1+2i.

)

e) o argumento principal de Z é 180°

2. Seja 0 numero complexo z = (5-3i) —[-2i-7i(4 +i)].Escrevendo Z

na forma ¢ + bi, com a e b reais é correto concluir que:
a) Z é um numero imaginario puro
b) Z € um numero real

Cc

o

3

)
)a=b

ya=-b
) 28 =1

D

a+bi
c+di

3. A condicdo para que o numero complexo da forma seja real

€ que:

0| o

bybc=0 ¢)2=-S dyad=0 e)z-2+i
b d

Ul



Colégio Técnico Industrial de Santa Maria 17
Professores Elisia Chiapinotto e Mauricio Lutz

4. Seja Z =1+1i, onde i € a unidade imaginaria. Pode se afirmar que
Z8é igual a:
a) 16 b)16i c)32 d) 32i e) 32 + 16i

5. Uma das raizes quadradas do numero complexo 4i é:

a)-2i b)vV2+i  ¢) —v2—-i d)J2(1+i) €)J2(1-i)

6. A representacédo trigonométrica do numero complexo z =1+jé:
a) 2(cos0 +isen0) b) \/E(cos%Jrisen%)

c) 2(cosZ+isen’)  d)y/2(cos” +isen’)
4 4 2 2

T T
€) 2(cos—+isen—
( 5 2)

7.Se z- \/E(cosgﬂsen %), entéo Z8 vale:

a) —16i b)-16 c) 8i d) 16 e)1+i

1 V3.

8. Dado o numero complexo z=_5+7|, podemos afirmar que o

numero complexo Z1%0 é:

1 3 1 1
a)——+—i b) 2! (== +/3i C) — ++/2i
)2+21 ) (2+\/_1) )\/5+\/_l
d)%+50\/§i e)1+i
9. A expresséo V3+i - \/g_ié igual a:

3—i AB3+i
a)0 b) 1 c)i d) 3 e) \3i

10. O numero Z=(m-3)+(m?-9)i sera um ndmero real ndo nulo para:

a) m=-3. b)m<-3oum>3. c¢)-3<m<3. d)m=3. e)m>0.
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11. Considere z, = -3+2i € Z, =4 +i. A representagéo trigonomeétrica
de z,+z, é:

a) [cosZX+isent b) v2|cos ™ +isen”
4 4 4 4
C) (cos?;—nﬂsen%j d) \/E(cos%ﬂsen?‘l—n]
n n
e) V2| cos -~ +isen~
) o’ s

12. (UFSM/1996)

Z,

L 4

Z1 A

Z41, Z> e Z3 sdo numeros complexos conforme a figura e A é a origem

do plano coordenado xy.

Entdo Z3 é igual a:

a) 3Z4+Z>. b) 3Z1-(1/3)Z>. C) %4Z2-2Z1.
d) 22>-22. e) Z1-Zo.
13. (UFSM/1997) Seja a matriz {Z ﬂ onde Z=c0323—n—isen23—n-

Entdo o determinante de A é:

a)0 by —1=¥ 13 4 3 e) ~ 113

2 2 2

14. (UFSM/1998) Seja Z=a+bi um numero complexo, onde b=O0.

Ent&o a expresséo y = ﬂ éigual a
2a+ 27|
a) 2 b) zZ c)Z d) 1/2 e) 22

2
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15. (UFSM/1999) Seja Z=a+bi um numero complexo, onde a, beR,
a=0 e b=0. A area do poligono, cujos vértices sao Z1=Z, Z>=z7, Z3= -Z, Zs=bi, é

igual a
a)ab b) (3/2)a/b c) 2ab d) 3ab e) 6ab

16. (UFSM/2000) Considerando o numero complexo Z=1+3i,

numere a 1° coluna de acordo com a 2°.
()Z ()z()Z3( )2z

1.2 cos2—n—isenﬁ 2.2 cosEJrisenE
3 3 3 3
3.4 cosﬁﬂsenﬁ 4. 4 cosEJrisenE
3 3 3 3

5.4 coszE+isenZE 6. 2 cosE—isenE
3 3 3 3

A sequéncia correta &
a)2-6-3-4. b)2-1-5-3. c)6-4-3-5.
d2-6-1-3. e)6-2-5-4.

17. (UFSM/2001) Se (1+ai)(b-i)=5+5i, com a e beR, entdo a e b séo
raizes da equacgao

a) x?-x-6=0 b) x2-5x-6=0 c) x2+x-6=0

d) x?+5x+6=0 e) x?-5x+6=0

18. (UFSM/2002) Dados dois numeros complexos na forma
z=r(cosatisena) e w=s(cosp+isenf3), pode-se afirmar que z.w é igual a

a) rs[cos(ap)-sen(ap)]
b) rs[cos(a+p)-isen(o+p)]
c) rs[cos(a-B)-isen(a-P)]
d

e

)
)
) (r+s)(cosa.cosB-isenasenf)
) (

r+s)[cos(a+p)+isen(a+p)]
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19. (UFSM-PEIES/1998) A soma das raizes cubicas do numero

complexo Z=8i é

20. (UFSM-PEIES/1999) Considere o numero complexo z = ngli.

2
Sua representagdo na forma trigonométrica é . O valor de Z° é igual

a

Assinale a alternativa que completa, corretamente, as lacunas.

a) cos X +isenX; -1.
6

b) cos yisenZ; 1.
6 6

c) cosX+isen’; -1.
3 3

d) cos ™ +isen’; -1.
6 6

e) cost +isenZ; .
3 3
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POLINOMIOS

10 DEFINIGAO

Chama-se polinbmio toda fung¢ao do tipo:

P(x)=anX"+an1X"+an.ox"2+. . +ax?+aix+ao, neN

No polinbmio P(x):
= ai, az, ... an S&0 os coeficientes.
= ap.X"P & um terno do polinbmio

= O grau do polinémio € o maior expoente de x no polinémio.

Exemplos: P(x)=7 ou P(x)=7x° & um polinémio constante;
P(x)=2x-1 € um polinbmio de 1° grau;

P(x)=3x5+ix* & um polindmio de 5° grau.

11 VALOR NUMERICO

Valor numérico de um polinémio P(x), para x=a, € o numero que se
obtém substituindo-se x por a e efetuando-se todas as operag¢des indicadas

pela forma do polinémio.
Exemplo: Se P(x)=x3+2x?-x-1, o valor numérico de P(x), para x=2, é:
Resolugao:

P(Xx)=x3+2x2-x-1 = P(2)=23+2.22-2-1 = P(2)=8+8-2-1 = P(2)=13
11.1 Raiz de um polinémio

Quando o valor numérico para P(x) resulta zero.
Exemplos: 1. P(x)=x?-7x+10

P(-3)=9+21+10=40-0, nao é raiz
P(5) = 25-35+10=0, logo 5 é raiz de P(x)
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2. Sabendo-se que -2 e 3 sdo raizes de P(x)=x3+ax?+b, calcular os
valores de a e b.
Resolugao:

Como -2 e 3 sao raizes de P(x), temos:

P(-2)=0 = (-2)3+-2a+b=0 = -2a+b=8 (1)

P(3)=0 = 3%+3a+b=0 = 3a+b=-27 (2)

Resolvendo o sistema formado pelas equacdes (1) e (2), obtemos:

a=-7eb=-6

12 GRAU DE UM POLINOMIO

Dado um polinémio P(x), dizemos que o grau do polinbmio € o maior
expoente da variavel x que apresenta coeficiente diferente de zero. Indicamos

por gr(P) o grau do polinémio.

Exemplos: 1. P(x)=x>-3 = gr(P)=5
2. P(x)=3x%+4x3+x?+x = gr(P)=9
3. P(x)=5x%+2x+4 = gr(P)=2
4. P(x)=3 = gr(P)=0

5. P(x)=0.x3+0.x?+0x = n3o se define o grau

6. Calcular meR, para que o polindmio P(x)=(m?2-1)x3+(m+1)x2-x+4
seja:

a) do 3° grau; b) do 2° grau; c) do 1° grau.
Resolugao:

Fazendo os coeficientes de x3 e x? iguais a zero, temos:

m2-1=0 m+1=0

m= +1 m= -1

a) se m#1 e m= -1, o polinébmio é do 3° grau;
b) se m=1, o polinbmio é do 2° grau;
c)

se m= -1, o polinébmio é do 1° grau.
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(10) Exercicios

1. Considere os polindmios A(x)=x>-x+1; B(x)= -2x?+3 e
C(x)=x3-x+2. Represente sob a forma de polindmio reduzido e dé o grau de:
a) A-2B+C b) (A-B)?-3(C+B)

2. Transforme num polinbmio reduzido e ordenado segundo as
poténcias decrescentes de x para cada um dos polinbmios:

a) P1(x)=5x+1-[(x+1)? -x(3-x)?]

b) P2(x)=4(x-"2)(1/4 —x)-2(2-x)?

3. Dado o polindmio P(x)=2x3-x2+x+3, calcular [P(2)-2P(-1)] / P(*%).

4. Dados os polindmios A(x)= x3-x>+x-1 e B(x)= -3x?+x+2, calcule:
a) A(%5)-B(-1)
b) A(0)+B(1)

5. Sendo P(x)=x?-2x+1, calcule:
a) P(i)

b) P(1+i)

c) P(2-i)

6. Sabendo que -3 é raiz de P(x)=x3+4x?-ax+1, calcule o valor de a.
7. Seja o polindbmio P(a+2)=2a?-3a+1.
a) Calcule P(-1) e P(4).
b) Determine P(a).
13 IGUALDADE ENTRE POLINOMIOS OU POLINOMIOS IDENTICOS
Dois polinbmios A(x) e B(x) sdo iguais (ou idénticos) quando

assumem valores numéricos iguais para qualquer valor comum atribuido a

variavel x.
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A condi¢ao necessaria e suficiente para que dois polinbmios A(x) e
B(x) sejam iguais é que os coeficientes dos termos correspondentes sejam
iguais.

A(x)=B(x) & A(a)=B(a), V a € complexos.

Exemplos: 1. Calcular a, b e ¢, sabendo que x?-2x+1=a(x?+x+1)+(bx+c)(x+1).
Resolugao:

Eliminando os parénteses e somando os termos semelhantes no 2°
membro, temos:

x2-2x+1+ax?+ax+a+bx?+bx+cx+c

1x2-2x+1=(a+b)x2+(a+b+c)x+(a+c)

Igualando-se os coeficientes correspondentes, vem:

a+b=1 =1
a+b+c=-2 =2
a+c=1 =3

Resolvendo o sistema, obtemos:
a=4, b=-3 e c=-3.

2. Sabendo-se que A, B __5x+10

X+4 x-1 x*+3x—4

, calcular A e B.

Resolugao:
Observamos que (x+4)(x-1)=x?+3x-4; portanto, temos:

A(x-1)+B(x+4) _ 5x+10 :>AX—A+BX+4B: 5x+10
(x+4)(x-1)  x*+3x-4 (x+4)(x-1)  x*+3x-4

(A+B)x+(-4+4B) _ 5x+10 oco A+B=35
+dx-1) 13-4 2% 4+4B=10

Logo A=2 e B=-3.

3. Calcular o valor de a, para que o polindmio P(x) = x? +%x+a seja

um “quadrado perfeito”.
Resolugao:
Se P(x) é do 2° grau, ele deve ser identificado ao quadrado de um

binbmio de forma (mx+n), isto é:
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|:’(X)E(TT1X"'I'1)2 = 1x* +§x +a=m?x?+2mnx +n?

Igualando-se os coeficientes, vem:
m?=1=m=+1

2mn:§:>n:i
3

w|

n° =a

(11) Exercicios

1. Determine m, n e p, de modo que (Mx?+nx+p)(x+1)=2x3+3x2-2x-3.

2. Sendo x3+1=(x+1)(x?+ax+b), para todo x real, determine os

valores de a e b.

3. Calcule a, b e c pertencentes ao conjunto dos numeros reais de

modo que para todo valor real de x se tenha 3x?+ax+b=(x-b)?+cx?+x.

4. Considere os polindmios A(x)=x2-3x+1, B(x)=(x+4)(2-5x) e

C(x)=mx2+(n+4)x-2p. Determine m, n e p de modo que A(x)+B(x)=C(x).

5. Determine A, B e C na decomposigao — - - 4, Bx+C
=1 x-1 x*+x+1

6. Determine A,B e C, sabendo que i:équ B + C_
x*=5x7+6x x x-2 x-3

14 POLINOMIO IDENTICAMENTE NULO

Denomina-se polinbmio identicamente nulo aquele cujos coeficientes
sdo todos iguais a zero.
P(x)=0 < P(x)=0, V x.

Obs: Nao se atribui grau a polinémio identicamente nulo.
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Exemplo: Calcular a, b e ¢ para o0s quais o polinbmio
P(x)=(a+b)x?+(a-b-4)x+(b+2c-6) seja identicamente nulo.

Resolugao:
Se P(x)=0
a+b=0 = (1)
a-b-4=0 = (2)

b+2¢c-6=0 = (3)

De (1) e (2) vem:

atb=0e a-b=4 = a=2 e b=-2
Substituindo-se b= -2 na equacéo (3), vem:
-2+2¢c+6=0 = c=4.

(12) Exercicios

1. Calcule a, b, c e d, de modo que:
a) (a-b-c+d)x3+(2b-c)x2+(c-d)x+4d-8=0
b) (a+b+c)x3+(b-d)x?+cx+d=0

2. Dados A(x)=(a+1)x?>+(b-1)x+c e B(x)=ax?+bx-3c, calcule a, b e c,

para que A(x)+B(x)=0.

(13) Exercicios complementares

1. Calcule os valores de a, b, ¢ para os quais o polinbmio
P(x)=(2a-1)x3-(5b-2)x?+(3-2c) seja identicamente nulo.

2. Dado o polindmio P(x)=x"+x""+.. +x2+x+3, se n for impar, entdo
P(-1) vale:
a) -1 b) 0 c) 2 d) 1 e)3

3 Se X +1 _ A + B
x?+2x-24 x-4 x+6

a) —3/2 b) v c) 1 d) 3/2 e) -1

, entdo 2A+B é igual a:
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4. O polindmio P(x)=ax3+bx?+cx+d é idéntico a Q(x)=5x?-3x+4. Entdo
podemos dizer que a+b+c+d é igual a:
a)6 b) 5 c)4 d)0 e)4

5. O polindmio P(x)=2x3+4x?-4x+c ¢é idéntico ao polindémio
Q(x)=(a+b)x3+(c+2)x?-ax+(a-2). Entdo a soma a+b+c é:
a) 8 b) 4 c) 0 d) 6 e) -2

6. A equagio 6x2-5x+m=0 admite uma raiz igual a .. O valor de m,
na equacao, é:

a) 1 b) —1 c)3 d) 1/9 e) 1/3
15 OPERAGOES COM OS POLINOMIOS

15.1 Soma e Subtragao

Para somar ou subtrair dois ou mais polinbmios, basta reunir os

termos de mesmo graus.

Exemplo: P1(x)= 3x*-2x+7 e P2(x)=2x3-x*-x2-3x-8
Resolugao:
P1(x)+P2(x)=2x* +2x3-x2-5x-1

15.2 Multiplicagao

Para multiplicarmos 2 polinbmios entre si, operamos de forma trivial,

ou seja, todos os termos multiplicam-se entre si.

Exemplo: A(x)=x2-3x+8 e B(x) x+5
Resolugao:
A(X).B(X)= (x2-3x+8)(x+5)=x3+5x2-3x?-15x+8x+40=x3+2x2-7x+40.
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15.3 Divisao

Efetuar a divisdo do polinbmio A(x) pelo polindbmio B(x), com B(x)=0,
é determinar dois polindbmios Q(x) e R(x) que satisfazem as seguintes
condicoes:

AX) [B(x)

R(x) Q(x)
= 1°) A(x)=Q(x).B(x)+R(x)

= gr(R)<gr(B) ou R(x)=0
onde A(x) é o dividendo, B(x) é o divisor, Q(x) é o quociente e R(x) &

o resto da divisao.
15.3.1 Método da chave

Vejamos alguns exemplos de divisdo de polinbmios pelo método da

chave.

Exemplos: 1. Determinar o quociente de A(X)=X3+4x?+x-6 por B(x)=x+2.

Resolugéo:
X +4x2 +x -6 | x+2
-x3 -2x? x?+2x-3 = Quociente: Q(x)
2x> +x -6
-2x% -4x
-3x -6
+3x +6
0 |= Resto: R(x)

Verificamos, facilmente que:

X3+4x2+x-6=(x+2)(x?+2x-3)
A(x) B(x) Q(x)

Logo o produto da divisdo & x?+2x-3.

2. Determinar o quociente de A(x)=x*+x3-7x?+9x-1 por B(x)=x?+3x-2.
Resolugao:

xt 4+x® S7x2 49x -1 | X?43x-2
x* 33 2x? X2-2x+1 Quociente: Q(x)
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-2x3 -bx?2 9x -1
+2x3  +6x2 -4x
X2 +5x -1
X2 3x +2
2x  +1 | = Resto: R(x)
Verificamos, facilmente que:

XHx3-Tx2+9xX-1=(x2+3%-2)(X2-2x+1)+(2x+1)
A(x) B(x) Q(x) R(x)

Logo o produto da divisdo & x?-2x+1.

Logo podemos concluir que:

P(x) |x-a
R(x) Q(x)
P(x)=(x-a).Q(x)+R(x)

15.3.2 Método de Descarte ou método dos coeficientes a determinar

Baseado na identidade de polinbmios, vamos estudar um novo

meétodo para determinar o quociente e o resto de uma divisao de polinbmios.

Exemplos: Determinar o quociente e o resto da divisdo de A(x)=x*+x3-7x%+9x-1
por B(x)=x2+3x-2.
Resolugao:
O grau do quociente é dado por:
gr(Q)=gr(A)-gr(B) = gr(Q)=4-2 = gr(Q)=2
Se o quociente tem grau 2, ele é do 2° grau, logo:
Q(x)=ax?+bx+c
O resto tem grau maximo igual a 1 [gr(R)<gr(B)], logo:
R(x)=dx+e
Aplicando a definicdo, temos:
A(x)=B(x).Q(x)+R(x)
x4+x3-7Tx2+9x-1=(x2+3x-2)( ax2+bx+c)+(dx+e)
x4+x3-7x2+9x-1=ax*+(b+3a)x3+(c+3b-2a)x?+(3c-2b+d)x+(-2c+e)
Igualando-se os coeficientes, vem:

a=1
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b+3a=1 = b+3(1)=1 = b=1-3 = b=-2
ct+3b-2a=-7 = c+3(-2)-2(1)=7 = c=1
3c-2b+d=9 = 3(1)-2(-2)+d=9 = d=2
-2cte=-1=-2(1)+e= -1 = e=1

Se:

Q(x)= ax?+bx+c = Q(X)= x?-2x+1

R(x)=dx+e = R(x)= 2x+1

(14) Exercicios

1. Determine o quociente e o resto da divisdo de f(x)=2x3+x2-x+2 por

g(x)=x2+3x+1.
2. Ache Q(x) e R(x) na divisdo de A(x)=x*—1 por B(x)=x+1.

3. Determine o e B para que seja exata a divisao de

A(X)=2x3+ax2+Bx-1 por B(x)=2x2-x-1.
16 DIVISAO DE UM POLINOMIO POR UM BINOMIO DE 1° GRAU

O resto da divisdo de um polindbmio P(x) pelo binbmio (ax+b) é igual

a P(— Ej =R(x) -
a

Demonstracao:

P(x) |ax+b
r Qx)
Como o resto da divisdo é independente de x, isto €, é igual a uma

constante, chamaremos R(x) de r.
Sabemos que P(x)=(ax+b).Q(x)+r

Se x for igual a raiz do divisor, isto €, x = (— EJ, vem:
a

P(— éj = (a. -b + ij(x) +r= P(— é) =(-b+ b)Q(_—bj +r
a a a a
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Exemplo: Calcular o resto da divisdo de P(x)=4x2-2x+3 por B(x)=2x-1.

Resolugao:

21

(15) Exercicios

1. Calcule o resto da divisao de:
a) x?+5x-1 por x+1
b

Cc

x*-x2+4x por x-2

x5+2 por 2x —1

)
)
)
d) 6a3+2a2-a+3 por 2a

2. Dé o resto da divisdo de P(x)=x3+7x2-2x +1 por:
a) x-3 b) x+3 C) 2x-5

16.1 Dispositivo de Briott-Ruffini

Vamos utilizar um dispositivo muito simples e pratico para efetuar a
divisdo de um polindbmio por um bindmio de 1° grau da forma ax+b. Vejamos o

roteiro da divisdo abaixo..
(3x3-5x%+x-2)+(x-2)

1° Colocamos a raiz do divisor e os coeficientes do dividendo

(ordenadamente) no seguinte dispositivo.

Raiz do divisor Coeficientes do dividendo
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2| 3 -5 1 -2

Observagdo: Se o polindmio P(x) ndo tivesse o termo em x2, o coeficiente

desse termo seria igual a O (zero).

2° Repetimos (abaixando) o primeiro coeficiente do dividendo.

2| 3 -5 1 -2

w =

3° Multiplicamos a raiz do divisor pelo coeficiente repetido e
somamos o produto com o segundo coeficiente do dividendo, colocando o

resultado abaixo deste.

2| 3 -5 1 -2
| 1 =235=1

4° Multiplicaremos a raiz do divisor pelo numero colocado abaixo

w

do segundo coeficiente e somamos o produto com o 3° coeficiente, colocando

o resultado abaixo deste, e assim sucessivamente.

2| 3 -5 1 -2
| 3 1 3 =21+1=3

5° Separamos o ultimo numero formado, que € igual ao resto da

divisdo; os numeros que ficam a esquerda deste sdo os coeficientes do

guociente.
2| 3 -5 1] -2
3 1 3 4
Coeficiente do quociente Resto

Portanto, Q(x)=3x?+x+3 e R(x)=4.
Ou ainda P(x)=(x-2)( 3x2+x+3)+4.

Logo conclui-se que P(x)=(ax+b).Q(x)+R(x)
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Observacao:
= Na divisdo por ax+b, o elemento —b/a é chamado raiz do divisor.
= No dispositivo de Briott-Ruffini o ultimo elemento (coeficiente) ja

o resto da divisdo.

16.2 Teorema do resto

O resto da divis&o de P(x) por x-a & P(a).

Demonstracao:
Devemos ter P(x)=(x-a)Q(x)+R(x).

Como o divisor x-a € de grau 1, o resto sera de grau0, ou seja, uma
constante.

Fazendo R(x)=r, constante, temos:

P(x)=(x-a).Q(x)+r

Para x=a, vem:

P(a)=(a-a).Q(a) +r = P(a)=0.Q(x)+r = r=P(a).

Exemplos: 1. Utilizando o exemplo anterior sem aplicar o dispositivo de Briott-
Ruffini qual é o resto da divisdo (3x3-5x2+x-2)+(x-2).
Resolugao:

x-2=0 = x=2

P(2)=R(X) = 3.(2)3-5.(2)?+2-2=4

Logo o resto € 4.

2. Determinar k, de modo que o resto da divisdo de
P(x)=x3+3x2-kx+4 por (x-2) seja 10.
Resolugao:

Pelo teorema do resto, devemos ter

P(2)=10, ou seja:

(2)3+3.(2)%-k(2)+4=10 = 8+12-2k+4=10 = 24-2k=10 => k=7
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(16) Exercicios

1. Determine o resto da divisao de:
a) x%+x+2 por x-1
b

Cc

)
) 5x3+2x2-x+4 por x
) X’-x8 por x+1

)

d) x8-x4+x? por x+2

2. Determine a de modo que:
a) x3+2ax?-(a+1)x-990 seja divisivel por (x-10);

b) (a+3)x3-x+2a seja divisivel por (x+2).

3. Determine o resto da divisdo do polindmio P(x)=x8-5x3+x°-1 por

X+5.

4. Determine o valor de a, para que o resto da divisdo do polinbmio

P(x)=ax3-2x+1 por x-3 seja 4

5. O polindmio P(x)=5x3-4x?+px+q € divisivel por x-2, e P(12)=213/8.
Calcule peq.

17 DECOMPOSIGAO DE UM POLINOMIOS EM FATORES

1° Caso: O polinémio € do 2° grau.
ax?+bx+c=a(x-ou1)(x-0.2)

Onde a1 € a2 sdo as raizes da equagao.

2° Caso: O polinbmio & de 3° grau.
ax3+bx?+cx+d=a(x-o1)(X-o2)(X-0i3)

Onde a1, a2 € az sSd0 as raizes da equacao.
3° Caso: Polinbmios com grau > a 4.

anX"+an1 X"+ +aix+ap=an(X-ou1 )(X-012)...(X-0in)

Onde a1, a2...an S80 as raizes da equagao
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Exemplo: Transformar o polindmio P(x)=x*+2x3-9x?-2x+8 num produto de
fatores de 1° grau, sabendo-se que 2 e —1 sao duas raizes do polinémio.
Resolugao:

Utilizando o dispositivo de Briott-Ruffini, temos:

2 1 2 9 -2 8
-1 1 4 -1 4 0
1 3 -4 0

Logo: P(x)=(x-2)(x+1)(x?+3x-4)

As raizes de Q(x)= x?>+3x-4 sdo 1 e -4
Portanto x?+3x-4=(x-1)(x+4)

Substituindo-se, vem P(x)=(x-2)(x+1)(x-1)(x+4).

(17) Exercicios

1. Escreva como um produto de fatores de 1° grau os seguintes
polinbmios:
a) x?-x-20
b) x2+6x-7
) x?+13x+30
d) -x?-10x-9

Cc

2. Decompor em fatores do 1° grau:
a) x3-x
b) x3-3x2-10x

3. Fatore o polindmio P(x)=x3+8x?+4x-48, sabendo que —4 € uma de

suas raizes.

4. Decomponha 2x3-6x?-12x+16 em fatores do 1° grau, sabendo que

1 € raiz do polinbmio.
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5. Decomponha o polindmio P(x)=x5-3x4-5x3+27x2-32x+12 num
produto de fatores lineares, sabendo que 1 € uma raiz dupla e —3 é uma raiz

simples.

18 MULTIPLICIDADE DE UMA RAIZ

Significa quantas vezes a raiz sera a mesma no polinbmio
considerado.
Se duas, trés ou mais raizes forem iguais, dizemos que sao raizes

duplas, triplas, etc.

Exemplo: Dé a multiplicidade da raiz 3 do polindmio P(x)=x*-7x3+13x?+3x-18.
Resolugao:

Aplicando-se o dispositivo de Briott-Ruffini, vem:

3 1 -7 13 3| -18
3 1 -4 1 6 0 resto
3 1 -1 -2 0 resto
1 2 4 | resto
Na terceira aplicagéo da regra o resto é 4+0; logo, 3 € raiz dupla do
polinémio.

19 EQUAGOES POLINOMIAIS

Toda equacgado algébrica P(x)=0, de grau n(n>1), tem pelo menos

uma raiz real ou complexa.

Exemplos: 1. Seja a equagao algébrica x(x-2)*(x+1)3=0.

= Quantas raizes tem a equagao?
Resolugao:

A equacéo tem 8 raizes, sendo:

x=0 = raiz simples; x=2= raiz quadrupla;

x=-1 = raiz tripla.

= Determinar o conjunto solugao da equagao;
Resolugao:

S={-1,0,2}
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2. Sabendo-se que —1 ¢ raiz dupla da equagdo x*-3x3-3x%+7x+6=0,
determinar o seu conjunto solugao.
Resolugao:

A equacéao dada pode ser indicada da seguinte forma:

(x+1)%.Q(x)=0

Para determinarmos Q(x), que € do 2° grau, aplicaremos duas vezes

o dispositivo de Briott-Ruffini, abaixando para 2° grau da equagéo dada.

-1 1 -3 -3 7 6
-1 1 -4 1 6 0
1 -5 6 0

Coeficiente de Q(x)

Logo, Q(x)=x?-5x+6.
As outras raizes solugcdes da equacdo sdo2e 3
Logo S={-1,2,3}

3. Sabendo que 2 ¢é raiz da equacgdo x3+2x2-5x+c=0. Determinar o

conjunto solugao.

Resolugao:
Se x=2 é raiz, temos:
23+42.22-5.2+¢c=0 = c=-6

Aplicando Ruffini, obtemos:

Logo o quociente & x?+4x+3 que tem as raizes 3 e 1.

Portanto o conjunto solugéo é S={1,2,3}.
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(18) Exercicios

1. Resolva as equacdes:
a) x3+3x2-x-3=0

b) x3+2x%+25x+50=0

2. Utilizando a fatoracgao, resolva as equacdes polinomiais:
a) x3-4x2+3x=0

b) x3+2x2+9x+18=0

3. Sabendo que 2 é uma raiz simples da equagéo x3+2x2-13x+10=0,

determine o seu conjunto solugao.

4. Resolva a equagdo x3+5x?-18x-72=0 sabendo que —3 é uma de

suas raizes.

5. Sabendo que 1 e 3 sdo raizes da equagdo x*-8x3+24x2-32x+15=0,

determine o seu conjunto solugao.

6. Resolva a equagéo polinomial x*-7x3+13x2+3x-18=0, sabendo que

3 é raiz dupla da equacéo.

20 RAIZES COMPLEXAS

Considere o polinbmio

P(x)=an(x-ou1)(x-0.2)...(X-0tn)

Teorema: Se um numero complexo (a+bi) € raiz da equagéo
algébrica P(x)=0, de coeficientes reais, o complexo conjugado (a-bi) é também

raiz da mesma equacgéao.

Exemplo: Sendo 3+i uma raiz do polindbmio P(x)=x*-9x3+30x?+42x+20,

encontre as outras raizes.
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Resolugao:
Pelo teorema das raizes o conjugado 3-i também é raiz.

Aplicando Briott-Ruffini para abaixar o grau da equagao, vem:

3+i 1 -9 30 -42 20
3-i 1 -6+ +11-3i | -6+2i 0
1 -3 2 0

Coeficiente de Q(x)
[x-(3+i)][x-(3-1)].Q(x)=0

[X-(3+0)][x~(3-i)].(x2-3x+2)=0

As outras raizes sao determinadas fazendo Q(x)=0.
Sdo1e?2

Logo o conjunto solugao € S={1,2,3+i,3-i}

(19) Exercicios

1. Determine o conjunto solugdo da equagdo x*-x3-11x?-x-12=0,

sabendo que i € uma de suas raizes.

2. Determine o valor de m, para que a equagéo x*-3x3+6x2+mx+8=0

tenha como uma de suas raizes 2i.

3. Resolva a equagdo 3x3-7x?+8x-2=0, sabendo que uma de suas

raizes & 1-i.

(20) Exercicios complementares

1. Se p(x)=3x3-cx?+4x+2c é divisivel por x+1, entdo
a) c=-1/3 b) c=1/3 c) c=7 d) c=39 e) c=-7

2. O resto da divisdo do polindmio p(x)=2x*-3x+1 por g(x)=2x-1, é:
a) 4/5 b) —4/5 c) 3/8 d) -3/8 e) 2/5

3. Se o numero 2 ¢é raiz de multiplicidade 3 da equagao
x5-4x4-3x3+34x2-52x+24=0, entdo a soma das outras duas raizes vale
a)4 b) 6 c) -2 d)0 e)—6
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4. A equagio 3x3+20x%+11x-6=0, admite uma raiz igual a —1. Entdo
as outras raizes sao:
a)-1/3e6 b)1e-3 c)-2e1 d)1/3e—-6 e)n.da.

5. Resolva a equagéo x5+5x*+6x3-2x2-7x-3=0, sabendo que —1 é raiz

tripla de equacéo.
6. Sabe-se que 5 é raiz da equacéo x3-5x%+x+m=0.
a) determine o valor de m.

b) Resolva a equacgéo.

7. Resolva a equagdo polinomial x*-7x3+13x%+3x-18=0, sabendo-se

que 3 é raiz dupla da equacgéao.

8. Resolva a equacgdo x3+5x2-18x-72=0, sabendo que -3 é uma de

suas raizes.

9. Sabendo que 1 e 3 sdo raizes da equagdo x*-8x3+24x2-32x+15=0,

determine o seu conjunto solugao.

10. Determine k, de modo que 2 seja uma das raizes da equagao
x3+kx2+20x-12=0.

21 RAIZES RACIONAIS

Propriedade: Se a fragédo racional p/q for raiz da equacgéo algébrica de grau n

e de coeficiente inteiros, anx"+an-1x""+...+axx?>+ax+ao=0, entdo p € um divisor

de ap e q € um divisor de an.

Exemplo: Determinar o conjunto solugédo da equagéo 2x3-7x2+7x-2=0.
Resolugao:
Observando que a equacdo algébrica dada tem todos os

coeficientes inteiros, temos:
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p € um divisor de —2; logo: p=+1 ou p=+2

g € um divisor de 2; logo: g=+1 ou q=%2

Os possiveis valores das raizes racionais sdo dados pela razao p/q;
logo:

p/q € {-2, -1, Vs, 2, 1, 2}

Fazendo a verificacdo de quais valores tornam a equacao

verdadeira, encontramos as raizes x=1, x=2 e x=% .
Portanto S={', 1, 2}

(21) Exercicios

1. Resolva as equacdes:
a) x3-6x?-x+30=0

b) 2x3-x2-2x+1=0

c) 4x4-4x3-3x2+4x-1=0

d) x(x-4)?+10x(x-2)-8=0

2. Determine o conjunto solugdo da equagdo x*-3x3+4x2-2x=0.

3. Resolva a equagédo x*-2x3-7x%+8x+12=0.

4. Ache o conjunto solugdo da equagdo x3-7x+6=0.
22 RELACOES DE GIRARD

Neste item vamos mostrar as relagdes existentes entre os
coeficientes de uma equagao algébrica e as suas raizes.

Vejamos alguns casos:

1° Caso: Equagao do 2° grau.

ax?+bx+c=0 = ax?+bx+c=a(x-o1)(X-0.2)

(com a=0)
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x? +§x+§=(x—a1)(x—a2)

2 b C_
X'+ =X+—=X"—(a, +0,)X+0,0,
a a

Igualando os coeficientes, obtemos:

o, +a, =——

2° Caso: Equagao do 3° grau.

ax3+bx2+cx+d=0 = ax3+bx2+cx+d=a(x-ou1)(X-012)(X-a3)

(com a=0)

b c d
X+ =X+ =X+ —=(X—0o,)(X—a,)(X—a,)

a a a
s b, cC d

X+ =x2+—X+—=
a a a

=X° — (0, + 0L, + 0 X2 + (0,00, + 0,0l + 0,0, )X — 0L, 0L, 0,

Igualando os coeficientes, obtemos:

o, +a, +a, =——

C
o0, + 0,0, + 0,0, = 3

o,0L,0, =——

42

Exemplos: 1. Resolver a equacgdo x3-5x?+7x-3=0, sabendo que uma raiz é

dupla.

Resolugao:

Se uma raiz € dupla, vamos indicar as raizes por: a, a, b.

Pelas relagdes de Girard,

a+a+b=5 2a+b=5 =1
aa+ab+ab=7 a’+2ab=7 =2
aab=3 a’b=3 =3

Da relagao 1, temos:
2a+b=5 = b=5-2a

Substituindo na relagao 2, temos:

a’+2ab=7 = a’+2a(5-2a)=7 = a%>+10a-4a-7=0

a2-10a+7=0, onde a’=7/3 e a"=1
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Vamos verificar qual dos valores de a é raiz da equacao:
P(7/3)=-44/9 = 7/3 nao é raiz de P(x)
P(1)=0 = 1 é raiz de P(x).

Como 1 é raiz dupla de P(x), podemos escrever:
P(x)=(x-1)2.Q(x)

-5 7 -3
4 3 0
3 o

Entdo Q(x)=x-3 = x=-3=0 = x=0

Logo a solugéo é S={1,3}

2. Seja a equagado x3+x%+kx+t=0, onde k e t sdo coeficientes reais.

Sabendo que o complexo 1-2i € uma das raizes dessa equacao, determinar, o

seu conjunto solugéo e os valores de k e t.

Resolugao:

Se a equacao tem coeficientes reais e 1-2i é raiz, 1+2i também o

sera. Supondo que as raizes sejam a=1+2i, b=1-2i e c, pelas relagcdes de

Girard, temos:

at+b+c=-1 = 1+2i+1-2i+c=-1 = ¢c=-3

ab+ac+bc=k = (1+2i)(1-2i)+(1+2i)(-3)+(1-2i)(-3)=k
(1+4)+(-6)=k = k=-1

abc=-t = (1+2i)(1-2i)(-3)=-t
(1+4)(-3)=-t

t=15

S={-3, 1-2i, 1+2i}
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(22) Exercicios

1. Sabendo que a, b e ¢ sdo raizes da equagéo x3-6x%+11x-6=0,

T T T
calcular o valor de sen| — + — + — |.
a b ¢

2. Dada a equagéo polinomial x*+2x3-13x2-14x+24=0, de raizes a, b,
c e d, calcule:
a) a+b+c+d

o L 11,1
a b ¢ d

(23) Exercicios complementares

1. A soma das raizes da equagdo x3+2x%-x-2=0 é:
a) -2 b) 2 c) 0 d) 3 e)n.d.a.

2. O valor de k para que a equagio kx?-kx-k-1=0 admita duas raizes
iguais é:
a)0 b) 2/5 c) —4/5 d) 4/5 e)4

3. A soma dos inversos das raizes da equacéo 2x3-5x?+4x+6=0 é:
a) 3/2 b) 2/3 c) 1/3 d)-2/3 e)-3/2

4. Sabendo que x=-1 € uma raiz de multiplicidade trés da equacao
x5-x4-x3+13x%+20x+8=0, entdo a soma das demais raizes dessa equacdo é
igual a:

a)1 b) -5 c)4 d)3 e) 4+4i

5. A soma e o produto das raizes da equacado x*-5x3+4x-6=0 formam
que par de valores?
a)-5, 6 b) 5, -6 c)3,4 d)1,6 e)4,3
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6. O produto de duas raizes da equacgado 2x3-19x?+37x-14=0 é 1. A
soma das duas maiores raizes da equacao é:
a)7 b) 8 c)9 d) 19/2 e) n.r.a.

7. Se a soma das raizes da equagdo kx?+3x-4=0 é 10, podemos
afirmar que o produto das raizes é:
a) 40/3 b) —40/3 c) 80/3 d) -80/3 e)-3/10

8. (UFSM/1995) Uma solugdo da equagdo ax3+9x?+9x+5=1995 é
x=10. Para que a equagdo ax*+5x3+bx?+3x+2=15432 tenha também x=10
como uma das solugdes, o valorde b é

a) —4 b) -2 c)0 d) 2 e)d

9. (UFSM/1995) Considere os polindmios P(x)=ax?-3x e Q(x)=x(b-x)
onde a e b s&o numeros reais nao nulos. Dividindo-se o polinémio P(x)+1 pelo
polinbmio Q(x+1), obtém-se, como resto dessa divisdo, o polindbmio R(x)=x+1,
Nessas condigdes, pode-se afirmar que P(-1) vale

a)2 b) 1 c)0 d) -1 e)-2

10. (UFSM/1997) Sabendo-se que os restos das divisbes do
polindmio x?+ax+1 por x-1 e x+2 s&o iguais entre si, entdo a vale
a)-2 b) —1 c)0 d) 1 e)2

11. (UFSM/1997) O grafico representa uma funcdo fR—R em que
f(x) € um polinbmio do 3° grau. Para a equacao f(x)=0,

afirma-se o seguinte:

| — O termo independente € igual a 3.

Il — As raizes séo -3,3 e 1.

Il — As raizes sdo —3,-3 e1. 3

IV — As raizes séo -3, 1 e 1. _3/
Esta(ao) correta(s)
a) Il apenas. b) Il apenas.

c) | e Il apenas. d) I e lll apenas. e) |l e IV apenas.
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12. (UFSM/1998) Se ri, r2 e r3 sdo raizes do polindbmio

11
f(x)=x3+5x? +10x+1, entdo o determinante da matriz A = {1 r, 1 } é
11

a) 10 b) 6 )5 d) 2 e) 1

13. (UFSM/1999) Assinale verdadeiro (V) ou falsa (F) em cada uma

das afirmacgdes a seqguir referentes ao polinbmio
p(X)=anX"+na1x™ 1+ .+ ax?+aix+ao, onde n>1 e ap, a1, az, ..., an S0 ndmeros
reais.

() O polindmio p(x) €é divisivel por (x-a), se e somente se p(a)#0.
() O resto da divisdo de p(x) por (x-a) € p(a).
() Se z=a+bi, com a, beR e b0, é raiz da equagao p(x)=0, entdo o

conjugado de Z, z é também raiz da equagao.

a)F-V-V.
b)F—F V.
c)V-V-V.
d)F-V-F.
e)V-F—F.

14. (UFSM/1999) Sabendo que umas das raizes da equacgao
2x3-3x%-x+m=0 é solucdo de Sen%e -1, com 0<0<mn, entdo o produto das

raizes da equagao polinomial é
a) -2 b) 3/2 c) 12 d) 16 e) 24

15. (UFSM/2000) Uma das raizes da equagao x*-4x3+12x?+4x-13=0
€ (2-3i). A soma de todas as raizes dessaequagdoé __ ,oprodutoé e
a soma das raizesreaise .

Assinale a alternativa que completa corretamente as lacunas.

a)4;-13;0 b)1;12; 0 c)-13; 4; -4

d)4;-13; 13 e)0; 13;-12
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16. (UFSM/2001) Se -1 e 5 sdo duas raizes da equagao
x3+ax?+3x+b=0, entdo a e b valem, respectivamente, e e a outra raiz
daequagdoe .

Assinale a alternativa que completa corretamente as lacunas.

a)—6; -10; 2

b) —6; -10; -2

c) 6; -10; -2

d) 6; 10; -2
e)—6; 10; 2

17. (UFSM/2002) Sejam p(x) e g(x) dois polinbmios com coeficientes
reais e com grau p(x) > grau g(x). Ao dividir-se p(x) por g(x), obteve-se resto
r(x)=2x-1,. Sabendo que 3 é raiz de g(x), pode-se afirmar que

l. 3<graug(x)<5

[I. grau g(x)>1

. p(3)=5

IV. p(x) ndo tem raizes inteiras

Esta(ao) correta(s)

a) apenas |I.

b) apenas | e Il.

d

e) apenas IV.

)

c) apenas | e lll.
) apenas Il e lll.
)

18. (UFSM-PEIES/1998) Sabendo que -1 é raiz do polinémio
p(x)=x3-4x?+x+k, k constante, entdo o produto das outras raizes é
a) 3. b) 4. c) 5. d) 6. e)7.

19. (UFSM-PEIES/1998) Na divisao do polindbmio
P(x)=2x5+ax*+4x3+9x?+3x+1, pelo polindmio Q(x)=bx3+4x?+1 obtiveram-se o
quociente H(x)=x?>+2 e o reto R(x)=3x+c, onde a, b e ¢ sdo numeros reais.
Entdo o valor de 1/5(a+b+c) &

a) 1. b) 2. c) 3. d) 4. e) 5.
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20. (UFSM-PEIES/1999) O polindmio P(x)=ax3+4x2+bx+c é tal que
P(0)=1. Dividindo-se P(x) por Q(x)=-4x%>+d, obtém-se o quociente H(x)=x-1 e 0
resto R(x)=x+3. O valor de a+b+c+d é

a) -2. b) —1. c) 0. d) 1. e) 2.

21. (UFSM-PEIES/1999) Sendo i (unidade imaginaria dos numeros
complexos) uma das raizes do polindmio P(x)=x3-3x?+x-3, a soma dos
quadrados das outras duas raizes €

a) 6. b) 7. c) 8. d) 9. e) 10.

22. (UFSM-PEIES/2000) O polindmio p(x)=x3+ax?-4x+b é divisivel

por q(x)=x?-4. Se p(0)=4 entdo sua decomposi¢cdo em um produto de fatores do

1° grau é
a) p(x)=(x+2)*(x-1)
b) p(x)=( x-2)*(x+1)
¢) p(X)=( x-2)%(x+2)
d) p(x)=(x+1)(x-2)(x+2)
e) p(x)=(x-1)(x-2)(x+2)

23. (UFSM-PEIES/2000) A equagéo polinomial x5-2x*-x+2=0 possui

a) 3 raizes reais distintas e 2 raizes complexas conjugadas.

3
)
b) 2 raizes reais distintas e 2 raizes complexas conjugadas.
c) 5 raizes reais distintas.

d) 1 raiz real e 4 raizes complexas conjugadas duas a duas.
)

e) 2 raizes reais iguais e 3 raizes complexas.

24. (UFSM-PEIES/2001) A equacgido ax3+bx?+8x+12=0, sendo a e b
numeros reais, admite a unidade imaginaria i como raiz. Entdo a soma dos
quadrados das trés medidas &

a) 1

b) 17/4

c) 9/4

d)0

eV
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GABARITO

(1)1.K=-5 2.a)m=9 oum=-9
3.a)xeRey=4ouxeRey=-4 Db)x=-6eyzeey—4
4. m=5/4en=1  5.a)S={-5i, 5i} b)S={3-2i, 3+2i} c) S={'%-i, 2 +i}
6.a)x=1/3 b)x=0oux=5 c)x=2

(2)1.a=2eb=—4 2.a=-1eb=6 3.x=2ey=14oux=-2ey=14

(3)1.a) Z=6-+2i b) Z=-4-3i ¢) Z=+3+5i
2.a) Z=4-i b) Z=+3i c) Z=-10i

(4) 1.2)8+4i b)5+4i c)25/6 d)11-3i €)-5+5i f)7+26i
g) (7/34)+(11/34)i  h) 1-5i i) (3/13)+(2/13)i
2.a=5eb=2 3.(4/5)0+i 4.a)—2+6i b)(29/2)~(15/2)i
5.—(2/3) + (8/9)i 6.m=5/2en=7/2 7. x=17/2 e y=36
8.a)4-3i b)20+15i c)—6+4i d)2+36i 9. (1/5)=(7/5)i
10. —(3/5)+(1/5)i  11.2i  12.a=14/29 e b= 23/29

(51.a 2.¢ 3.b 4a 5e 6.b 7.b 8.c

(6)1.c 2.b 3.¢c 4.e 5.4d.
(7) 1.a) V17 b)5 ¢c)+/3 d)8 2.a)7n/4 b)w/3 c)n/2 d)2n/3

8)1.a 265 3.b 4c 5b 6.a 7.b
8.a) Z =8.(cos210°+isen210°) b) Z =8.(cos90°+isen 90°)

C) Z =742.(cos225°+isen225°)  d) Z = 2.(cos 300°+i sen 300°)
e) Z=5.(cos180°+isen180°) f) Z=+/3.(cos120°+isen120°)

9.a) Zz=2-6i b)z=42-V2i ¢) Z=3-i d)Zz—?%i

10. @) Z =1.(cos270°+isen270°) b) Z =+/2.(cos225°+isen 225°)
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@1.a 2b 3.c 4a 5d 6.b 7.d 8a O9e
10.a 11.b 12.¢ 13.c¢ 14.c¢ 15.d 16.a 17.e
18.b  19.¢c  20.d.

(10) 1. a) x3+5x2-2x-3, grau 3  b) 9x*-9x3-5x2+7x-11, grau 4
2.8)x3-7Tx2+12x  b)—6x2+11x-(17/2)  3.38/7 4.a)11/8 b)-1
5.2)—2i b)-1 c)-2i 6.a=-10/3
7.a) P(-1)=28 e P(4)=3 b) P(a)=2a%-11a+15

(11) 1. m=2,n=1ep=-3 2.a=-1¢e b=1
3. a=1,b=0ec=2oua=-1,b=1ec=2 4.m=-4,n=-25¢ep=-9/2

5.a=1/3 b=-1/3 c¢=-2/3 6.a=5/6 b=l c=-4/3

(12) 1. a) a=1, b=1,c=2 e d=2 b) a=b=c=d=0 2.a=-%,b=re
c=0.

(13)1.a=V; b=2/5ec=3/2. 2.¢ 3.d 4.a 5b 6. a

(14) 1. Q(x)=2x-5 e R(x)=12x+7 2. Q(x)=x3-x>+x-1 e R(x)=0 3. a=1e p=-2

(15)1.a)-5 b)20 ¢)65/32 d)3 2.a)85 b)43 c)443/8

(16)1.a)4 b)4 c)-2 d)52 2.a)a=0 b)a=-7/3
3.-31/256  4.1/3 5.P=-34 e q=44

(17) 1. @) (x+4)(x-5) b) (x-1)(x+7) ¢) (x+3)(x+10) d) (-x-1)(x+9)
2. a) x(x-1)(x+1)  b) x(x+2)(x-5) 3. P(X)=(x+6)(x-2)(x+4)
4. 2(x-1)(x-4)(x+2) 5. P(x)=(x-1)2(x-2)2(x+3)

(18) 1. a) S={-3, -1} b) S={-2, -5i, 5}  2.a) S={0, 1,3} b) S={-2, -3i, 3i}
3.8={-5,1,2) 4.S=(-6,-3,4} 5.S={1,3,2-,2+} 6.S={1,2,3}
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(19)1. {-3,4,-i,} 2.-12  3.{1/3, 1-i, 1+i}

(2001.c 2.d 3.¢c 4.d 5.{3-1,1 6.m=-5e {5,
7.{412,3}  8.{6,-34}  9.{1,3,2-i2+i}  10.k=-9.

(21)1.a){-2, 3,5} b){-1,1,%} ¢){1,1,%} d){-2,2}
3.{2,-1,2,3} 4.{3,1,2

(22)1.-% 2.a)—=2 b)7/12

(23)1.a 2.¢c 3.d 4.c 5b 6.c 7.a

2.{0, 1, 1+i, 1-i}

8.e 9.d

10.d 11.e 12.b 13.a 14.c¢ 15.a 16.e 17.d
18.d 19.a 20.e 21.c¢c 22.e 23.a 24.e.
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