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NÚMEROS COMPLEXOS 
 

Até o momento, utilizamos o conjunto dos números reais que 

satisfaz a solução de quase todas as equações desenvolvidas. 

Vamos admitir, agora, a existência da equação x2+1=0, que muito 

preocupou os matemáticos durante o século XV. Como sabemos, esta equação 

não possui solução no campo dos números reais, pois não existe nesse campo 

raiz quadrada de número negativo ( ). 

Para que as equações fossem sempre possíveis, houve a 

necessidade de ampliar o universo dos números. 

Criou-se então um número cujo quadrado é –1. Este número é 

representado pela letra i, denominado unidade imaginária, e é definido por : 

 

A partir desta definição, surge um nono conjunto de números 

denominado conjunto dos números complexos, que indicaremos por . 

 

1 FORMA ALGÉBRICA 
 

Todo número complexo pode ser escrito na forma , com        

a, b Î Â, denominada forma algébrica. 

O número real a é denominado parte real de Z, e o número real b é o 

coeficiente da parte imaginária e i é a unidade imaginária. 

 

Portanto, um número é real quando a parte imaginária do número 

complexo é nulo, e imaginário puro, quando a parte real do número complexo é 

nulo e b¹0. 

 

 
Exemplos: 1.  Þ é um número imaginário;  

1-±=x

112 -=Þ-= ii

biaZ +=

ï
ï
î

ï
ï
í

ì

Þ
Þ
Þ
Þ

+=

imaginária unidade 
;imaginário ecoeficient 

;imaginária parte 
real; parteou  real ecoeficient 

i
b
bi
a

biaZ

î
í
ì

Þ=+=
Þ=+=

+=
puro. imaginário número um é 0

real; número um é )0(
bibiZ
aiaZ

biaZ

iZ 34 +=
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2.  Þ é um número real; 

3. Þ é um número imaginário puro. 

4. Considerando  o número complexo , 

determinar m e n de modo que Z seja: 

a) um numero real. 

Resolução: 

Para que Z seja real, devemos ter: 

 

 

b) um número imaginário puro. 

Resolução: 

Para que Z seja imaginário puro, devemos ter: 

 

 

(1) Exercícios 
 

1. Determine k de modo que o número complexo  seja 

imaginário puro. 

 

2. Ache m para que o número complexo   seja um 

número real. 

 

3. Determine x e y, para que o número complexo 

 seja: 

a) um número real; b) um número imaginário puro. 

 

4. Sendo , determine os números reais m e n tal 

que . 

 

5. Resolva as equações no universo dos números complexos: 

a) x2+25=0  b) x2-6x+13=0  c) 4x2-4x+5=0 

2=Z

iZ 7=

inmZ )25()3( 2 -+-=

ÂÎÞÂÎ-
±=Þ=Þ=-

mm
nnn

)3(
525025 22

525025
303
22 ±¹Þ¹Þ¹-

=Þ=-

nnn
mm

ikZ 4)5( -+=

imZ )81(1 2 -+=

iyxZ )16()6( 2 --+=

inmZ )1()54( -+-=

0=Z
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6. Determine os valores de x para que os complexos sejam reais. 

a) 2+(3x –1)i  

b) (x+2) – (x2 –5x)i  

c) (5x –10)+ (2x –4)i 

 

2 IGUALDADE DOS NÚMEROS COMPLEXOS  
 

Dois números complexos  e , são iguais se, e 

somente se, suas respectivas partes reais são iguais, e as respectivas partes 

imaginárias são iguais. 

 

Exemplo: Determinar a e b de modo que os números complexos  e 

 sejam iguais. 

Resolução: 

Usando a relação , temos: 

 

 

(2) Exercícios 
 

1. Determine a e b de modo que . 

 
2. Ache a e b de modo que . 

 

3. Sabendo que  e , determine x e y, 

para que Z’ seja igual a Z”. 

 
3 CONJUGADO DE UM NÚMERO COMPLEXO 

 

Sendo , defini-se como complexo conjugado de Z o 

complexo . Observe que as partes reais dos dois complexos   e  

biaZ +=' dicZ +="

ï
î

ï
í

ì

=

=
Û+=+Þ=

db
e
ca

dicbiaZZ "'

biaZ +='

iZ 35" +=

dicbia +=+

3
5

=
=

b
a

ibia 42+=-

iibaba 98)23(2 +-=++-

iyxZ )4(1' 2 -+-= iZ 103" -=

biaZ +=

biaZ -= Z Z
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são iguais e as partes imaginárias, simétricas. 

 

Exemplo: ; 

; 

 

 

3.1 Propriedades do conjugado 
 

P1 Þ   

Se , então . 

 

P2 Þ  

O conjugado da soma é igual à soma dos conjugados. 

 

P3 Þ  

O conjugado do produto é igual ao produto dos conjugados. 

 

P4 Þ  

O conjugado de uma potência é igual à potência de um conjugado. 

 
(3) Exercícios 

 

1. Dê o conjugado dos seguintes números complexos: 

a)   b)   c)  

 

2. Determine o conjugado do números complexos a seguir: 

a)   b)   c)  

 

 
 
 
 

iZiZ 4343 -=Þ+=

iZiZ 55 -=Þ=

22 =Þ= ZZ

ZZ =

biaZ += biabiaZbiaZ +=-=Þ-=

"'"' ZZZZ +=+

".'"'. ZZZZ =

)( NnZZ
nn Î=

iZ 26+= iZ 34+-= iZ 53 -=

4+= iZ iZ 3-= iZ 10=
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4 OPERAÇÕES COM NÚMEROS COMPLEXOS 
 

4.1 Adição e subtração 
 

Somamos ou subtraímos números complexos, somando ou 

subtraindo, respectivamente, suas partes reais e imaginárias, separadamente. 

Isto é: 

 

 

Exemplo: Efetuar: a)  

Resolução: 
 

 

b)  

Resolução: 
 

 

4.2 Multiplicação 
 

Multiplicando dois números complexos de acordo com a regra da 

multiplicação de binômios e sabendo que , temos: 

 

 

 

Exemplo: Efetue a multiplicação . 

Resolução: 

 

 

4.3 Divisão 
 

A divisão de dois números complexos  e  pode 

ser obtida, escrevendo-se o quociente sob a forma de fração; a seguir, 

idbcadicbia
idbcadicbia
)()()()(
)()()()(

-+-=+-+
+++=+++

)46()32( ii +++

iiiii 784632)46()32( +=+++=+++

)32()56( ii +-+

iiiii 243256)32()56( +=--+=+-+

12 -=i

ibcadbdacdicbiabdibciadiacdicbia )()())(())(( 2 ++-=++Þ+++=++

)31)(42( ii ++

iiiiiiii 10101246212462)31)(42( 2 +-=-++=+++=++

biaZ +=' dicZ +="
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procedendo-se de modo análogo ao utilizado na racionalização do 

denominador de uma fração, multiplicam-se ambos os termos da fração pelo 

número complexo conjugado do denominador. Isto é: 

 

 

Exemplo: Sendo  e , obter  

Resolução: 

 

 

(4) Exercícios 
 

1. Calcule: 

a)    b)  

c)   d)  

e)    f)  

g)    h)   i)  

 

2. Calcule a e b, para que: . 

 

3. Determine o número complexo Z tal que . 

 

4. Dados ,  e , calcule: 

a)  

b)  

 

5. Determine o número complexo Z que satisfaz a igualdade 

. 

"".
"'.

"
'

ZZ
ZZ

Z
Z

=

iZ 23' += iZ +=1"
"
'
Z
Z

i
i

iii
i
i

i
i

Z
Z

i
i

Z
Z

2
1

2
5

1
2233

1
1.

1
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"
'

1
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"
'

2

2

-=
-

-+-
=

-
-

+
+

=Þ
+
+

=

)2()56( ii -++ )35()24()6( iii --++-

)24(
2
1

3
2 iii -+÷

ø
ö

ç
è
æ --÷

ø
ö

ç
è
æ + )2)(5( ii -+

)3)(21( ii ++- )52)(43( ii +-+-

i
i
35

2
-
+

i
i+5

i
i
32 +

biaii +=+--+ )31()54(

iZZ -=+ 432

iZ += 4' iZ 21" +-= iZ 35''' -=

'''"' ZZZ -+

'''
2
1"4'2 ZZZ +-

iZZ
3
2

6
1

42
+-=-
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6. Sabendo que , determine os números reais m e n de 

modo que . 

 

7. Determine x e y de modo que . 

 

8. Consideres os complexos , ,  e , 

calcule: 

a) (a+b)(c+d) 

b) (a–b)(c–d) 

c) ab–cd  

d) abcd 

 

9. Coloque na forma a+bi a expressão . 

 

10. Dada as funções   e  , calcule  

. 

11. Calcule . 

 

12. Determine a e b, de modo que . 

 

5 POTÊNCIAS DE i 
 

Vejamos algumas potências de i. Observando os resultados abaixo, 

verificamos que eles se repetem   a cada grupo de quatro potências, 

assumindo os valores 1, i, -1 e –i.  Podemos concluir que expoente maior que 

4, divide-se por 4 e considera-se o resto. 

iZ += 4

ZnimZ +=- 6

iyixi
2
1)2)(4( +=-+

ia += 2 3-= ib ic +=1 id 23 --=

21
1

-
+

+
-

i
i

i
i

12)( 2 +-= xxxf xxxg += 2)(

)1(
)2(
ig
if

-
+

2

32
51
÷
ø
ö

ç
è
æ

+
+-
i
i

i
ibia
25
34

-
+

=+
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Exemplo: i77=i1=i 

 
 77  4  
- 4  19  
 37    
 36    
 01 Þ Resto  

 
 

(5) Exercícios 
 

1. O conjugado do número complexo  é: 

a) 1-i b) –1-i  c) –1+i d) –i  e) i 

 

2. Se o complexo Z é tal que Z=3-2i, então ( )2 é igual: 

a) 5 b) 5-61 c) 5+12i      d) 9+4i     e) 13+12i 

 

3. A soma dos números complexos  e  é: 

a) (25+5i)/2    b) 15+10i    c) –10-10i    d) 15-10i     e) 30+20i 

 

4. Encontre a, se  é um imaginário puro: 

a) ±2  b) 4  c) ±1  d) ±4   e) -3 

 

5. Para que (a+3)+(3b-a)i seja igual ao conjugado de 2a-3i, o valor 

de a+b é: 

a) –2  b) 1  c) 2  d) 3  e) 5 

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ë

é

===

=--==

-=-==

-=--==

=-

.

.

.
ii.1i.ii

1)1).(1(i.ii
ii.1i.ii

1)1.()1(i.ii

i1

45

224

23

2
1

2
1

2

( )
43

2

i1
i1Z

-
+

=

Z

i1
i55

+
+

i1
20
-

ai2
ai2

+
-
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6. Dê o valor do produto: P=i.i2.i3.i4...i100, sendo i2=-1. 

a) 1  b) –1  c) i  d) –i  d) -25 

 

7. O valor da expressão y=i+i2+i3+...i1001 é: 

a) 1  b) i  c) –i  c) –1  e) 1+i 

 

 

8. Para que o número Z=(x-2i).(2+xi) seja real, devemos ter (xÎÂ) tal 

que: 

a) x=0  b) x=±½    c) x=±2    d) x=±4    e) n.d.a. 

 

6. REPRESENTAÇÃO GEOMÉTRICA DE UM NÚMERO COMPLEXO 
 

Todo complexo  pode ser representado por um par 

ordenado (a, b). A este par associamos um ponto P de um plano. 

Este plano é chamado de plano de Argand-Gauss. O Ponto P é 

chamado de afixo ou imagem geométrica de Z. Assim, no plano x0y, no eixo 

das abscissas representa-se a parte real de Z; no eixo das ordenadas, a parte 

imaginária de Z. 

 
 
Obs: Não é definido para o campo dos complexos a relação de ordem, isto é, 

não existe um complexo maior ou menor que outro. 

 
 

 
 
 
 

biaZ +=
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7 MÓDULO DE UM NÚMERO COMPLEXO 
 

Ao representarmos graficamente um número complexo , 

podemos calcular a distância entre a origem 0 do sistema e o afixo P de Z. A 

essa distância d0P denominamos módulo de Z e indicamos por |Z| ou r. 

Aplicando o teorema de Pitágoras no 

triângulo 0Pa, temos: 

, isto é 

 

 

 

Exemplo: Determinar o módulo do complexo . 

Resolução:  

 

 

7.1 Propriedades do módulo 
 

O módulo de um número complexo, verifica as seguintes 

propriedades: 

 

P1 Þ  

O módulo de um número complexo é um número, é um número real 

não-negativo. 

 

P2 Þ  

O módulo do produto de dois ou mais números complexos é igual ao 

produto dos números complexos fatores. 

 

P3 Þ  

O módulo do quociente de dois números complexos é igual ao 

quociente do módulo do complexo dividindo pelo módulo do complexo divisor. 

biaZ +=

22
0

222
0 badbad PP +=Þ+=

22|| baZ +== r

iZ 43 +=

52516943|| 22 ==+=+=Z

0³Z

2121 .. ZZZZ =

2

1

2

1

Z
Z

Z
Z

=
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P4 Þ  

O módulo de um número complexo e de seu conjugado são iguais. 

 

Exemplo: O módulo do número complexo  é: 

Resolução: 

Utilizando a propriedade P3, temos: 

 

 

(6) Exercícios 
 

1. O módulo de  para a, b reais é: 

a) a2+b2   b) 2  c) 1  d) a2-b2     e) n.d.a. 

 

2. Se Z é um complexo tal que Z. =25, então  o módulo de Z é: 

a)   b) 5  c) 5  d) 25  e) 50 

 

3. O módulo do número complexo é: 

a) 2   b) 2  c) 5  d) 2  e) 15/2 

 

4. Calcule  

a) 2  b) 4  c)6  d)8  e)10 

 

5. O módulo do número complexo cosa-isena é: 

a) –1  b) –i  c) i  d) i4  e) n.d.a. 

 

 

 
 

 

ZZ =

3i22
3i1Z

+

-
=

2
1

124
31

)32()2(

)3()1(

3i22

3i1

22

22

+

+
=

+

-+
=

+

-

bia
bia

-
+

Z

5 5

÷
ø

ö
ç
è

æ --= 1
i
2).i31(Z

2 3 2 2

i1
)i22).(i43(

+
+--
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8 Argumento de um número complexo 
 

Consideremos o número complexo  e o ponto P que o 

represente. 

Denomina-se argumento do 

complexo i a medida do angulo a, formado por 

 como o eixo 0X, medido no sentido         

anti-horário, conforme indica a figura. 

 

 

Esse ângulo a deve satisfazer a condição . 

Dado um número complexo , obtemos a a partir de duas 

relações que podemos estabelecer entre os valores de a, b e |Z|. 

 e  

 

Exemplo: Determinar o argumento  do complexo . 

Resolução:  

 

 e  

Logo  

 
(7) Exercícios 

 

1. Determine o módulo dos seguintes números complexos: 

a)  b)  c)   d)  

 

2. Determine o argumento dos complexos a seguir e faça sua 

representação geométrica: 

a)  b)  c)  d)  

biaZ +=

P0

)arg(z=a

pa 20 ££

biaZ +=

Z
b

=asen
Z
a

=acos

iZ += 3

( ) 2413|| 22
==+=Z

2
3coscos =Þ= aa

Z
a

2
1sensen =Þ= aa

Z
b

6
pa =

iZ -= 4 iZ 5-= iZ += 2 8=Z

iZ -=1 iZ 322+= iZ 4= iZ 322 +=
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9 FORMA TRIGONOMÉTRICA OU POLAR 
 

A qualquer número complexo  podemos associar um par 

ordenado (a,b). 

 
Þ O ângulo a é denominado de argumento de Z. 

Þ O ponto P(a,b) é denominado de afixado e é também é imagem de Z=a+bi 

Þ . 

Þ Está representação geométrica chama-se de plano de Argand-Gauss. 

 

9.1 Desenvolvimento da forma trigonométrica ou polar 
 

 

Substituindo em ; 

 

 

 Þ Forma trigonométrica do complexo Z. 

 

Exemplo: O número complexo  na forma trigonométrica. 

Resolução: 

 

, nete caso a Î 1ºQ. Logo  

Então:  

biaZ +=

p£a£ 20

ï
ï
î

ï
ï
í

ì

a=Þ=a

a=Þ=a

cosZa
Z
acos

senZb
Z
bsen

bia +

)sen.(cossencos aaaa iZZZiZ +=\+

)sen.(cos aa iZZ +=

iZ +=1

211|| =+=Z

2
2

2
1

||
cos ===

Z
aa rad

4
pa =

÷
ø
ö

ç
è
æ +=Þ+=

4
sen.

4
cos.2)sen.(cos ppaa iZiZZ
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9.2 Operações na forma trigonométrica 
 

Dados os números complexos Z’ e Z” na forma trigonométrica: 

 

 

a) Multiplicação:  

 

 

b) Divisão:  

 

 

c) Potenciação: 

 

 

(8) Exercícios 
 

1. O complexo  é igual a: 

a) –1/64   b) –1/32   c) (1+i)   d) 1/12   e) 1/12i 

 

2. Sejam os números complexos  e . 

Achar y=Z6+W6. 

 

3. O módulo do número complexo (1+3i)4 é: 

a) 256  b) 100  c) 81  d) 64  e) 16 

 

4. Quando  e  tem-se que 

Z1+Z2 e Z1.Z2 valem respectivamente: 

a) 0 e 0    b)  e 0    c) 2  e –4 

d) 4  e –4 e) 2 +2  e 4 

)"seni"(cos"Z"Z

)'seni'(cos'Z'Z

a+a=

a+a=

))"'sen(i)"'(cos("Z'Z"Z'.Z a+a+a+a=

))"'sen(i)"'(cos(
"Z
'Z

"Z
'Z

a-a+a-a=

))nsen(i)n(cos(ZZ nn a+a=

12)i1(
1
-

÷
ø

ö
ç
è

æ p
+

p
=

3
seni

3
cos2Z iiiW ++= 23

÷
ø

ö
ç
è

æ p
+

p
=

4
seni

4
cos2Z1 ÷

ø

ö
ç
è

æ p
+

p
=

4
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5. O número complexo Z=a+bi é tal que =1. 

a) a=-b  b) a=b  c) a=2b d) a=3b2   e)a=-7b 

 

6. Considere o ponto P(5 ,5) representado no gráfico abaixo: 

 
A forma trigonométrica no nº complexo Z, representado pelo ponto p 

é: 

a) 10.(cos30º+isen30º) 

b) 5.(cos30º+isen30º) 

c) 10.(cos45º+isen45º) 

d) 5.(cos45º+isen45º) 

e) 5.(cos90º+isen90º) 

 

7. O produto dos três números complexos 
 

 

 é igual a: 

a) 3- i   b) 3-3 i   c) 2+2 i   d) 6+ i  e) + i  

 

8. Passe para a forma trigonométrica os seguintes números 

complexos: 

a)  b)   c)  

d)   e)   f)  

 

 

 

 

1Z
iZ

-
-

3

)º40seniº40.(cos2Z1 +=

)º135seniº135.(cos3Z2 +=

)º125seniº125.(cos1Z3 +=

3 3 2 3 3 2

iZ 434 --= iZ 8= iZ 77 --=

iZ 31-= 5-=z iz
2
3

2
3
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9. Passe para a forma algébrica os complexos: 

a)   b)  

c)   d)  

 

10. Coloque o número complexo Z na forma trigonométrica: 

a)   b)  

 

 

(9) Exercícios complementares  
 

1. É dado um número complexo , onde x é um 

número real positivo. Se |Z| = 5, então: 

a) Z é um imaginário puro.   

b) Z é um número real positivo.       

c) o ponto imagem de Z é (-1;2). 

d) o conjugado de Z é . 

e) o argumento principal de Z é 180º 

 

2. Seja o número  complexo .Escrevendo Z 

na forma , com  a e b reais é correto concluir que: 

a) Z é um número imaginário puro 

b) Z é um número real 

c) a = b 

d) a = -b 

e)  

 

3.  A condição para que o número complexo da forma seja real 

é que: 

a)    b) bc = 0   c)    d) ad = 0   e)  

)
3
5sen

3
5.(cos22 pp iZ += )º315senº315.(cos2 iZ +=
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=
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4. Seja , onde i é a unidade imaginária. Pode se afirmar que 

Z8 é igual a: 

a) 16  b)16i   c)32  d) 32i   e) 32 + 16i 

 

5. Uma das raízes quadradas do número complexo 4i é: 

a)-2i  b)   c)  d)  e)  

 

6. A representação trigonométrica do número complexo é: 

a)  b)  

c)   d)    

e)  

 

7. Se , então Z8 vale: 

a) –16i  b) -16  c) 8i  d) 16  e) 1 + i  

 

8. Dado o número complexo , podemos afirmar que o 

número complexo Z100 é: 

a)    b)    c)   

d)   e) 1 + i 

 

9. A expressão é igual a: 

a) 0  b) 1  c) i  d)   e)  

 

10. O número Z=(m-3)+(m2-9)i será um número real não nulo para: 

a) m=-3.   b) m<-3 ou m>3.   c) –3<m<3.   d) m=3.   e) m>0. 
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11. Considere  e . A representação trigonométrica 

de  é: 

a)  b)  

c)  d)  

e)  

 

12. (UFSM/1996)  

 
Z1, Z2 e Z3 são números complexos conforme a figura e A é a origem 

do plano coordenado xy. 

Então Z3 é igual a: 

a) 3Z1+Z2.  b) 3Z1-(1/3)Z2.  c) ½Z2-2Z1.  

d) 2Z2-½Z1.  e) Z1-Z2. 

 

13. (UFSM/1997) Seja a matriz , onde . 

Então o determinante de A é: 

a) 0    b)   c)   d)   e)  

 

14. (UFSM/1998) Seja Z=a+bi um número complexo, onde b¹0. 

Então a expressão  é igual a 

a)   b)   c) Z  d) 1/Z  e) Z2 
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15. (UFSM/1999) Seja Z=a+bi um número complexo, onde a, bÎÂ, 

a¹0 e b¹0. A área do polígono, cujos vértices são Z1=Z, Z2= , Z3= -Z, Z4=bi, é 

igual a 

a) ab  b) (3/2)a/b  c) 2ab  d) 3ab  e) 6ab 

 

16. (UFSM/2000) Considerando o número complexo Z=1+ i, 

numere a 1º coluna de acordo com a 2º. 

(   ) Z  (   )  (   ) Z2 (   ) 2Z 

1.  2.  

3.  4.  

5.  6.  

A seqüência correta é 

a) 2 – 6 – 3 – 4.  b) 2 – 1 – 5 – 3.  c) 6 – 4 – 3 – 5. 

d) 2 – 6 – 1 – 3.  e) 6 – 2 – 5 – 4. 

 

17. (UFSM/2001) Se (1+ai)(b-i)=5+5i, com a e bÎÂ, então a e b são 

raízes da equação 

a) x2-x-6=0  b) x2-5x-6=0  c) x2+x-6=0 

d) x2+5x+6=0  e) x2-5x+6=0 

 

18. (UFSM/2002) Dados dois números complexos na forma 

z=r(cosa+isena) e w=s(cosb+isenb), pode-se afirmar que z.w é igual a 

a) rs[cos(ab)-sen(ab)] 

b) rs[cos(a+b)-isen(a+b)] 

c) rs[cos(a-b)-isen(a-b)] 

d) (r+s)(cosa.cosb-isenasenb) 

e) (r+s)[cos(a+b)+isen(a+b)] 
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19. (UFSM–PEIES/1998) A soma das raízes cúbicas do número 

complexo Z=8i é 

a) –4i  

b) -2 i  

c) 0  

d) 2 i  

e) 4i 

 

20. (UFSM–PEIES/1999) Considere o número complexo . 

Sua representação na forma trigonométrica é _____. O valor de Z6 é igual        

a ____. 

Assinale a alternativa que completa, corretamente, as lacunas. 

a) ; -1. 

b) ; 1. 

c) ; -1. 

d) ; -1. 

e) ; i. 

 

3
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POLINÔMIOS 
 

10 DEFINIÇÃO 
 
Chama-se polinômio toda função do tipo: 

P(x)=anxn+an-1xn-1+an-2xn-2+...+a2x2+a1x+a0, nÎN 

 

No polinômio P(x): 

Þ a1, a2, ... an são os coeficientes. 

Þ ap.xn-p é um terno do polinômio  

Þ O grau do polinômio é o maior expoente de x no polinômio. 

 

Exemplos: P(x)=7 ou P(x)=7x0 é um polinômio constante; 

P(x)=2x-1 é um polinômio de 1º grau; 

P(x)=3x5+ix4 é um polinômio de 5º grau. 

 

11 VALOR NUMÉRICO 
 

Valor numérico de um polinômio P(x), para x=a, é o número que se 

obtém substituindo-se x por a e efetuando-se todas as operações indicadas 

pela forma do polinômio. 

 
Exemplo: Se P(x)=x3+2x2-x-1, o valor numérico de P(x), para x=2, é: 

Resolução: 

P(x)=x3+2x2-x-1 Þ P(2)=23+2.22-2-1 Þ P(2)=8+8-2-1 Þ P(2)=13 

 

11.1 Raiz de um polinômio 
 

Quando o valor numérico para P(x)  resulta zero.  

 

Exemplos: 1. P(x)=x2-7x+10 

P(-3)=9+21+10=40¹0, não é raiz 

P(5) = 25-35+10=0, logo 5 é raiz de P(x) 
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2. Sabendo-se que –2 e 3 são raízes de P(x)=x3+ax2+b, calcular os 

valores de a e b. 

Resolução: 

Como –2 e 3 são raízes de P(x), temos: 

P(-2)=0 Þ (-2)3+-2a+b=0 Þ -2a+b=8   (1) 

P(3)=0  Þ 33+3a+b=0      Þ 3a+b=-27 (2) 

Resolvendo o sistema formado pelas equações (1) e (2), obtemos: 

a= -7 e b= -6 

 

12 GRAU DE UM POLINÔMIO 
 

Dado um polinômio P(x), dizemos que o grau do polinômio é o maior 

expoente da variável x que apresenta coeficiente diferente de zero. Indicamos 

por gr(P) o grau do polinômio. 

 

Exemplos: 1. P(x)=x5-3 Þ gr(P)=5 

2. P(x)=3x9+4x3+x2+x Þ gr(P)=9 

3. P(x)=5x2+2x+4 Þ gr(P)=2 

4. P(x)=3 Þ gr(P)=0 

5. P(x)=0.x3+0.x2+0x Þ não se define o grau 

 

6. Calcular mÎÂ, para  que o polinômio P(x)=(m2-1)x3+(m+1)x2-x+4 

seja: 

a) do 3º grau;  b) do 2º grau;  c) do 1º grau. 

Resolução: 

Fazendo os coeficientes de x3 e x2 iguais a zero, temos: 

m2-1=0  m+1=0 

m= ±1  m= -1 

a) se m¹1 e m¹ -1, o polinômio é do 3º grau; 

b) se m=1, o polinômio é do 2º grau; 

c) se m= -1, o polinômio é do 1º grau. 
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(10) Exercícios 
 

1. Considere os polinômios A(x)=x2-x+1; B(x)= -2x2+3 e          

C(x)=x3-x+2. Represente sob a forma de polinômio reduzido e dê o grau de: 

a) A-2B+C   b) (A–B)2 -3(C+B) 

 

2. Transforme num polinômio reduzido e ordenado segundo as 

potências decrescentes de x para cada um dos polinômios: 

a) P1(x)=5x+1-[(x+1)2 -x(3-x)2] 

b) P2(x)=4(x-½)(1/4 –x)-2(2-x)2  

 

3. Dado o polinômio P(x)=2x3-x2+x+3, calcular [P(2)-2P(-1)] / P(½). 

 

4. Dados os polinômios A(x)= x3-x2+x-1 e B(x)= -3x2+x+2, calcule: 

a) A(½)-B(-1) 

b) A(0)+B(1)  

 

5. Sendo P(x)=x2-2x+1, calcule: 

a) P(i) 

b) P(1+i) 

c) P(2-i) 

 

6. Sabendo que –3 é raiz de P(x)=x3+4x2-ax+1, calcule o valor de a. 

 

7. Seja o polinômio P(a+2)=2a2 -3a+1. 

a) Calcule P(-1) e P(4). 

b) Determine P(a). 

 

13 IGUALDADE ENTRE POLINÔMIOS OU POLINÔMIOS IDÊNTICOS 
 

Dois polinômios A(x) e B(x) são iguais (ou idênticos) quando 

assumem valores numéricos iguais para qualquer valor comum atribuído à 

variável x. 
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A condição necessária e suficiente para que dois polinômios  A(x) e 

B(x) sejam iguais é que os coeficientes dos termos correspondentes sejam 

iguais. 

A(x)ºB(x) Û A(a)=B(a), " a Î complexos. 

 

Exemplos: 1. Calcular a, b e c, sabendo que x2-2x+1ºa(x2+x+1)+(bx+c)(x+1). 

Resolução: 

Eliminando os parênteses e somando os termos semelhantes no 2º 

membro, temos: 

x2-2x+1+ax2+ax+a+bx2+bx+cx+c 

1x2-2x+1=(a+b)x2+(a+b+c)x+(a+c) 

Igualando-se os coeficientes correspondentes, vem: 

a+b=1    Þ 1 

a+b+c=-2  Þ 2 

a+c=1  Þ 3 

Resolvendo o sistema, obtemos: 

a=4, b=-3 e c=-3. 

 

2. Sabendo-se que , calcular A e B. 

Resolução: 

Observamos que (x+4)(x-1)ºx2+3x-4; portanto, temos: 

 Þ  

 

Logo A=2 e B=-3. 

 

3. Calcular o valor de a, para que o polinômio  seja 

um “quadrado perfeito”. 

Resolução: 

Se P(x) é do 2º grau, ele deve ser identificado ao quadrado de um 

binômio de forma (mx+n), isto é: 

4x3x
10x5

1x
B

4x
A

2 -+
+

º
-

+
+

4x3x
10x5

)1x)(4x(
)4x(B)1x(A

2 -+
+

º
-+

++-
4x3x

10x5
)1x)(4x(
B4BxAAx

2 -+
+

º
-+
++-

î
í
ì

=+-
=+

-+
+

º
-+

+-++
104

5
 log ,

43
105

)1)(4(
)4()(

2 BA
BA

o
xx

x
xx

BAxBA

ax
3
8x)x(P 2 ++=



Colégio Técnico Industrial de Santa Maria 
Professores Elisia Chiapinotto e Mauricio Lutz 

 

25 

P(x)º(mx+n)2 Þ  

Igualando-se os coeficientes, vem: 

 

Como . 

 

(11) Exercícios 
 

1. Determine m, n e p, de modo que (mx2+nx+p)(x+1)º2x3+3x2-2x-3.  

 

2. Sendo x3+1º(x+1)(x2+ax+b), para todo x real, determine os 

valores de a e b. 

 

3. Calcule a, b e c pertencentes ao conjunto dos números reais de 

modo que para todo valor real de x se tenha 3x2+ax+b=(x-b)2+cx2+x. 

 

4. Considere os polinômios A(x)=x2-3x+1, B(x)=(x+4)(2-5x) e 

C(x)=mx2+(n+4)x-2p. Determine m, n e p de modo que A(x)+B(x)=C(x). 

 

5. Determine A, B e C na decomposição . 

 

6. Determine A,B e C, sabendo que . 

 

14 POLINÔMIO IDENTICAMENTE NULO 
 

Denomina-se polinômio identicamente nulo aquele cujos coeficientes 

são todos iguais a zero. 

P(x)º0 Û P(x)=0, " x. 

Obs: Não se atribui grau a polinômio identicamente nulo. 
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Exemplo: Calcular a, b e c para os quais o polinômio                  

P(x)=(a+b)x2+(a-b-4)x+(b+2c-6) seja identicamente nulo. 

Resolução: 

Se P(x)=0 

a+b=0       Þ (1) 

a-b-4=0    Þ (2) 

b+2c-6=0  Þ (3) 

De (1) e (2) vem: 

a+b=0 e a-b=4 Þ a=2 e b= -2 

Substituindo-se b= -2 na equação (3), vem: 

-2+2c+6=0 Þ c=4. 

 

(12) Exercícios 

 

1. Calcule a, b, c e d, de modo que: 

a) (a-b-c+d)x3+(2b-c)x2+(c-d)x+4d-8=0 

b) (a+b+c)x3+(b-d)x2+cx+d=0 

 

2. Dados A(x)=(a+1)x2+(b-1)x+c e B(x)=ax2+bx-3c, calcule a, b e c, 

para que A(x)+B(x)=0. 

 

(13) Exercícios complementares 
 

1. Calcule os valores de a, b, c para os quais o polinômio      

P(x)=(2a-1)x3-(5b-2)x2+(3-2c) seja identicamente nulo. 

 

2. Dado o polinômio P(x)=xn+xn-1+...+x2+x+3, se n for ímpar, então 

P(-1) vale: 

a) –1  b) 0  c) 2  d) 1  e) 3 

 

3. Se , então 2A+B é igual a: 

a) –3/2    b) ½  c) 1  d) 3/2  e) -1  
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4. O polinômio P(x)=ax3+bx2+cx+d é idêntico a Q(x)=5x2-3x+4. Então 

podemos dizer que a+b+c+d é igual a: 

a) 6  b) 5  c)4  d) 0  e) 4 

 

5. O polinômio P(x)=2x3+4x2-4x+c é idêntico ao polinômio 

Q(x)=(a+b)x3+(c+2)x2-ax+(a-2). Então a soma a+b+c é: 

a) 8  b) 4  c) 0  d) 6  e) -2 

 

6. A equação 6x2-5x+m=0 admite uma raiz igual a ½. O valor de m, 

na equação, é:  

a) 1  b) –1  c) 3  d) 1/9  e) 1/3 

 

15 OPERAÇÕES COM OS POLINÔMIOS 
 

15.1 Soma e Subtração 
 

Para somar ou subtrair dois ou mais polinômios, basta reunir os 

termos de mesmo graus. 

 

Exemplo: P1(x)= 3x4-2x+7 e P2(x)=2x3-x4-x2-3x-8 

Resolução: 

P1(x)+P2(x)=2x4 +2x3-x2-5x-1 

 

15.2 Multiplicação 
 

Para multiplicarmos 2 polinômios entre si, operamos de forma trivial, 

ou seja, todos os termos multiplicam-se entre si. 

 

 
 
Exemplo: A(x)=x2-3x+8 e B(x) x+5 

Resolução: 

A(x).B(X)= (x2-3x+8)(x+5)=x3+5x2-3x2-15x+8x+40=x3+2x2-7x+40. 
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15.3 Divisão 
 

Efetuar a divisão do polinômio A(x) pelo polinômio B(x), com B(x)¹0, 

é determinar dois polinômios Q(x) e R(x) que satisfazem as seguintes 

condições: 
 

A(x) B(x) 
R(x) Q(x) 

Þ 1º) A(x)ºQ(x).B(x)+R(x) 

Þ gr(R)<gr(B) ou R(x)=0 

onde A(x) é o dividendo, B(x) é o divisor, Q(x) é o quociente e R(x) é 

o resto da divisão. 

 

15.3.1 Método da chave 
 

Vejamos alguns exemplos de divisão de polinômios pelo método da 

chave. 

 

Exemplos: 1. Determinar o quociente de A(X)=X3+4x2+x-6 por B(x)=x+2. 

Resolução: 
x3 +4x2 +x -6 x+2      

  -x3 -2x2   x2+2x-3 Þ Quociente: Q(x) 
  2x2 +x -6          
 -2x2 -4x           
  -3x -6          
  +3x +6          
   0 Þ Resto: R(x)      

 

Verificamos, facilmente que: 

x3+4x2+x-6º(x+2)(x2+2x-3) 
         A(x)          B(x)       Q(x)  
 

Logo  o produto da divisão é x2+2x-3. 

 

2. Determinar o quociente de A(x)=x4+x3-7x2+9x-1 por B(x)=x2+3x-2. 

Resolução: 
x4 +x3 -7x2 +9x -1 X2+3x-2     
-x4 -3x3 2x2   X2-2x+1 Quociente: Q(x) 



Colégio Técnico Industrial de Santa Maria 
Professores Elisia Chiapinotto e Mauricio Lutz 

 

29 

 -2x3 -5x2 9x -1      
 +2x3 +6x2 -4x       
  X2 +5x -1      
  X2 -3x +2      
   2x +1 Þ Resto: R(x) 

Verificamos, facilmente que: 

x4+x3-7x2+9x-1º(x2+3x-2)(x2-2x+1)+(2x+1) 
              A(x)                 B(x)           Q(x)         R(x)  
 

Logo  o produto da divisão é x2-2x+1. 

 

Logo podemos concluir que: 
 

P(x) x-a 
R(x) Q(x) 

P(x)=(x-a).Q(x)+R(x) 

 

15.3.2 Método de Descarte ou método dos coeficientes a determinar 
 

Baseado na identidade de polinômios, vamos estudar um novo 

método para determinar o quociente e o resto de uma divisão de polinômios. 

 

Exemplos: Determinar o quociente e o resto da divisão de A(x)=x4+x3-7x2+9x-1 

por B(x)=x2+3x-2. 

Resolução: 

O grau do quociente é dado por: 

gr(Q)=gr(A)-gr(B) Þ gr(Q)=4-2 Þ gr(Q)=2 

Se o quociente tem grau 2, ele é do 2º grau, logo: 

Q(x)=ax2+bx+c 

O resto tem grau máximo igual a 1 [gr(R)<gr(B)], logo: 

R(x)=dx+e 

Aplicando a definição,  temos: 

A(x)=B(x).Q(x)+R(x) 

x4+x3-7x2+9x-1º(x2+3x-2)( ax2+bx+c)+(dx+e) 

x4+x3-7x2+9x-1ºax4+(b+3a)x3+(c+3b-2a)x2+(3c-2b+d)x+(-2c+e) 

Igualando-se os coeficientes, vem: 

a=1 
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b+3a=1 Þ b+3(1)=1 Þ b=1-3 Þ b= -2 

c+3b-2a=-7 Þ c+3(-2)-2(1)=7 Þ c=1 

3c-2b+d=9 Þ 3(1)-2(-2)+d=9 Þ d=2 

-2c+e= -1 Þ -2(1)+e= -1 Þ e=1 

Se: 

Q(x)= ax2+bx+c Þ Q(x)= x2-2x+1 

R(x)=dx+e Þ R(x)= 2x+1 

 

(14) Exercícios 
 

1. Determine o quociente e o resto da divisão de f(x)=2x3+x2-x+2 por 

g(x)=x2+3x+1. 

 

2. Ache Q(x) e R(x) na divisão de A(x)=x4 –1 por B(x)=x+1. 

 

3. Determine a e b para que seja exata a divisão de 

A(x)=2x3+ax2+bx-1 por B(x)=2x2-x-1. 

 

16 DIVISÃO DE UM POLINÔMIO POR UM BINÔMIO DE 1º GRAU 
 

O resto da divisão de um polinômio P(x) pelo binômio (ax+b) é igual 

a . 

 
Demonstração: 
 

P(x) ax+b 
r Q(x) 

Como o resto da divisão é independente de x, isto é, é igual a uma 

constante, chamaremos R(x) de r. 

Sabemos que P(x)=(ax+b).Q(x)+r 

Se x for igual à raiz do divisor, isto é, , vem: 
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Exemplo: Calcular o resto da divisão de P(x)=4x2-2x+3 por B(x)=2x-1. 

Resolução: 

 

P(½)=r  

P(½)=1-1+3=3 

R(x)=3 

 

(15) Exercícios 
 

1. Calcule o resto da divisão de: 

a) x2+5x-1 por x+1 

b) x4-x2+4x por x-2 

c) x5+2 por 2x –1 

d) 6a3+2a2-a+3 por 2a 

 

2. Dê o resto da divisão de P(x)=x3+7x2-2x +1 por: 

a) x-3   b) x+3   c) 2x-5 

 

16.1 Dispositivo de Briott-Ruffini 
 

Vamos utilizar um dispositivo muito simples e prático para efetuar a 

divisão de um polinômio por um binômio de 1º grau da forma ax+b. Vejamos o 

roteiro da divisão abaixo.. 

 

(3x3-5x2+x-2)÷(x-2) 

 

1º Colocamos a raiz do divisor e os coeficientes do dividendo 

(ordenadamente)  no seguinte dispositivo. 
 
Raiz do divisor Coeficientes do dividendo 

r
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  2 3 -5 1 -2 
    
 

Observação: Se o polinômio P(x) não tivesse o termo em x2, o coeficiente 

desse termo seria igual a 0 (zero). 

 

2º Repetimos (abaixando) o primeiro coeficiente do dividendo. 

 
  2 3 -5 1 -2 

   ß 
3 

   

 

3º Multiplicamos a raiz do divisor pelo coeficiente repetido e 

somamos o produto com o segundo coeficiente do dividendo, colocando o 

resultado abaixo deste. 

 
  2 3 -5 1 -2 

   3 1 Þ2.3-5=1 
 

4º  Multiplicaremos a raiz do divisor pelo número colocado abaixo  

do segundo coeficiente e somamos o produto com o 3º coeficiente, colocando 

o resultado abaixo deste, e assim sucessivamente. 

 
  2 3 -5 1 -2 

   3 1 3 Þ2.1+1=3 
 

5º Separamos o último número formado, que é igual ao resto da 

divisão; os números que ficam à esquerda deste são os coeficientes do 

quociente. 
 

  2 3 -5 1 -2 
   3 1 3 4 
   Coeficiente do quociente Resto 

 

Portanto, Q(x)=3x2+x+3  e R(x)=4. 

Ou ainda P(x)=(x-2)( 3x2+x+3)+4. 

 

Logo conclui-se que P(x)=(ax+b).Q(x)+R(x) 
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Observação:  

Þ Na divisão por ax+b, o elemento –b/a é chamado raiz do divisor. 

Þ No dispositivo de Briott-Ruffini o último elemento (coeficiente) já é 

o resto da divisão. 

 

16.2 Teorema do resto 
 

O resto da divisão de P(x) por x-a é P(a). 

 

Demonstração:  
Devemos ter P(x)º(x-a)Q(x)+R(x). 

Como o divisor x-a é  de grau 1, o resto será de grau0, ou seja, uma 

constante. 

Fazendo R(x)=r, constante, temos: 

P(x)º(x-a).Q(x)+r 

Para x=a, vem: 

P(a)=(a-a).Q(a) +r Þ P(a)=0.Q(x)+r Þ r=P(a). 

 

Exemplos: 1. Utilizando o exemplo anterior sem aplicar o dispositivo de Briott-

Ruffini qual é o resto  da divisão (3x3-5x2+x-2)÷(x-2). 

Resolução: 

x-2=0 Þ x=2 

P(2)=R(X) Þ 3.(2)3-5.(2)2+2-2=4 

Logo o resto é 4. 

 

2. Determinar k, de modo que o resto da divisão de         

P(x)=x3+3x2-kx+4 por (x-2) seja 10. 

Resolução:  

Pelo teorema do resto, devemos ter 

P(2)=10, ou seja: 

(2)3+3.(2)2-k(2)+4=10 Þ 8+12-2k+4=10 Þ 24-2k=10 Þ k=7 
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(16) Exercícios 

 

1. Determine o resto da divisão de: 

a) x2+x+2 por x-1 

b) 5x3+2x2-x+4 por x 

c) x7-x6 por x+1 

d) x6-x4+x2 por x+2 

 

2. Determine a de modo que: 

a) x3+2ax2-(a+1)x-990 seja divisível por (x-10); 

b) (a+3)x2-x+2a seja divisível por (x+2). 

 
3. Determine o resto da divisão do polinômio P(x)=x8-5x3+x2-1 por 

x+½. 

 

4. Determine o valor de a, para que o resto da divisão do polinômio 

P(x)=ax3-2x+1 por x-3 seja 4  

 
5. O polinômio P(x)=5x3-4x2+px+q é divisível  por x-2, e P(½)=213/8. 

Calcule p e q. 

  

17 DECOMPOSIÇÃO DE UM POLINÔMIOS EM FATORES 
 

1º Caso: O polinômio é do 2º grau. 

ax2+bx+c=a(x-a1)(x-a2) 

Onde a1 e a2 são as raízes da equação. 

 

2º Caso: O polinômio é  de 3º grau. 

 ax3+bx2+cx+d=a(x-a1)(x-a2)(x-a3) 

Onde a1, a2 e a3 são as raízes da equação. 

3º Caso: Polinômios com grau ³ a 4. 

 anxn+an-1xn-1+...+a1x+a0=an(x-a1)(x-a2)...(x-an) 

Onde a1, a2...an são as raízes da equação 
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Exemplo: Transformar o polinômio P(x)=x4+2x3-9x2-2x+8 num produto de 

fatores de 1º grau, sabendo-se que 2 e –1 são duas raízes do polinômio. 

Resolução: 

Utilizando o dispositivo de Briott-Ruffini, temos: 
2 1 2 -9 -2 8  
-1 1 4 -1 -4 0  
 1 3 -4 0   

 

Logo: P(x)=(x-2)(x+1)(x2+3x-4) 

As raízes de Q(x)= x2+3x-4 são 1 e –4 

Portanto x2+3x-4=(x-1)(x+4) 

Substituindo-se, vem P(x)=(x-2)(x+1)(x-1)(x+4). 

 

(17) Exercícios 

 

1. Escreva como um produto de fatores de 1º grau os seguintes 

polinômios: 

a) x2-x-20 

b) x2+6x-7 

c) x2+13x+30 

d) -x2 -10x-9 

 

2. Decompor em fatores do 1º grau: 

a) x3-x 

b) x3-3x2-10x 

 

3. Fatore o polinômio P(x)=x3+8x2+4x-48, sabendo que –4 é uma de 

suas raízes. 

 

 

4. Decomponha 2x3-6x2-12x+16 em fatores do 1º grau, sabendo que 

1 é raiz do polinômio. 
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5. Decomponha o polinômio P(x)=x5-3x4-5x3+27x2-32x+12 num 

produto de fatores lineares, sabendo que 1 é uma raiz dupla e –3 é uma raiz 

simples. 

 
18 MULTIPLICIDADE DE UMA RAIZ 

 

Significa quantas vezes a raiz será a mesma no polinômio  

considerado. 

Se duas, três ou mais raízes forem iguais, dizemos que são raízes 

duplas, triplas, etc. 

 

Exemplo: Dê a multiplicidade da raiz 3 do polinômio P(x)=x4-7x3+13x2+3x-18. 

Resolução: 

Aplicando-se o dispositivo de Briott-Ruffini, vem: 
3 1 -7 13 3 -18   
3 1 -4 1 6 0 resto  
3 1 -1 -2 0 resto   
 1 2 4 resto    

Na terceira aplicação da regra o resto é 4¹0; logo, 3 é raiz dupla do 

polinômio. 

 

19 EQUAÇÕES POLINOMIAIS 
 

Toda equação algébrica P(x)=0, de grau n(n³1), tem pelo menos 

uma raiz real ou complexa. 

 

Exemplos: 1. Seja a equação algébrica x(x-2)4(x+1)3=0.  

Þ Quantas raízes tem a equação? 

Resolução: 

A equação tem 8 raízes, sendo: 

x=0 Þ raiz simples; x=2Þ raiz quádrupla; 

x=-1 Þ raiz tripla. 

Þ Determinar o conjunto solução da equação; 

Resolução: 

S={-1,0,2} 
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2. Sabendo-se que –1 é raiz dupla da equação  x4-3x3-3x2+7x+6=0, 

determinar o seu conjunto solução. 

Resolução: 

A equação dada pode ser indicada da seguinte forma: 

(x+1)2.Q(x)=0 

Para determinarmos Q(x), que é do 2º grau, aplicaremos duas vezes 

o dispositivo de Briott-Ruffini, abaixando para 2º grau da equação dada. 
-1 1 -3 -3 7 6 
-1 1 -4 1 6 0 
 1 -5 6 0  
 Coeficiente de Q(x)   

 

Logo, Q(x)=x2-5x+6. 

As outras raízes soluções da equação são 2 e 3 

Logo S={-1,2,3} 

 

3. Sabendo que 2 é raiz da equação x3+2x2-5x+c=0. Determinar o 

conjunto solução. 

Resolução: 

Se x=2 é raiz, temos: 

23+2.22-5.2+c=0 Þ c=-6 

Aplicando Ruffini, obtemos: 
2 1 2 -5 -6    
 1 4 +3 0    

 

Logo o quociente é x2+4x+3 que tem as raízes 3 e 1. 

Portanto o conjunto solução é S={1,2,3}. 
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(18) Exercícios 

 

1. Resolva as equações: 

a) x3+3x2-x-3=0 

b) x3+2x2+25x+50=0 

 

2. Utilizando a fatoração, resolva as equações polinomiais: 

a) x3-4x2+3x=0 

b) x3+2x2+9x+18=0 

 

3. Sabendo que 2 é uma raiz simples da equação x3+2x2-13x+10=0, 

determine o seu conjunto solução. 

 

4. Resolva a equação x3+5x2-18x-72=0 sabendo que –3 é uma de 

suas raízes. 

 

5. Sabendo que 1 e 3 são raízes da equação x4-8x3+24x2-32x+15=0, 

determine o seu conjunto solução.  

 

6. Resolva a equação polinomial x4-7x3+13x2+3x-18=0, sabendo que 

3 é raiz dupla da equação. 

 

20 RAÍZES COMPLEXAS 
 

Considere o polinômio 

P(x)=an(x-a1)(x-a2)...(x-an) 

 

Teorema: Se um número complexo (a+bi) é raiz da equação 

algébrica P(x)=0, de coeficientes reais, o complexo conjugado (a-bi) é também 

raiz da mesma equação. 

  

Exemplo: Sendo 3+i uma raiz do polinômio P(x)=x4-9x3+30x2+42x+20, 

encontre as outras raízes. 
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Resolução: 

Pelo teorema das raízes o conjugado 3-i também é raiz. 

Aplicando Briott-Ruffini para abaixar o grau da equação, vem: 
3+i 1 -9 30 -42 20  
3–i 1 -6+i +11-3i -6+2i 0  

 1 -3 2 0   
 Coeficiente de Q(x)    

[x-(3+i)][x-(3-i)].Q(x)=0 

[x-(3+i)][x-(3-i)].(x2-3x+2)=0 

As outras raízes são determinadas fazendo Q(x)=0. 

São 1 e 2 

Logo o conjunto solução é S={1,2,3+i,3-i} 

 

(19) Exercícios 
 

1. Determine o conjunto solução da equação x4-x3-11x2-x-12=0, 

sabendo que i é uma de suas raízes. 

 

2. Determine o valor de m, para que a equação x4-3x3+6x2+mx+8=0 

tenha como uma de suas raízes 2i. 

 

3. Resolva a equação 3x3-7x2+8x-2=0, sabendo que uma de suas 

raízes é 1-i. 

 

(20) Exercícios complementares 

 

1. Se p(x)=3x3-cx2+4x+2c é divisível por x+1, então 

a) c=-1/3   b) c=1/3   c) c=7   d) c=39   e) c=-7 

 

2. O resto da divisão do polinômio p(x)=2x4-3x+1 por g(x)=2x-1, é: 

a) 4/5  b) –4/5 c) 3/8  d) –3/8 e) 2/5 

 

3. Se o número 2 é raiz de multiplicidade 3 da equação                   

x5-4x4-3x3+34x2-52x+24=0, então a soma das outras duas raízes vale 

a) 4  b) 6  c) –2  d) 0  e) –6 
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4. A equação 3x3+20x2+11x-6=0, admite uma raiz igual a –1. Então 

as outras raízes são: 

a) –1/3 e 6   b) 1 e –3   c) –2 e 1   d) 1/3 e –6   e) n.d.a. 

 

5. Resolva a equação x5+5x4+6x3-2x2-7x-3=0, sabendo que –1 é raiz 

tripla de equação. 

 

6. Sabe-se que 5 é raiz da equação x3-5x2+x+m=0. 

a) determine o valor de m. 

b) Resolva a equação. 

 

7. Resolva a equação polinomial x4-7x3+13x2+3x-18=0, sabendo-se 

que 3 é raiz dupla da equação. 

 

8. Resolva a equação x3+5x2-18x-72=0, sabendo que  –3 é uma de 

suas raízes. 

 

9. Sabendo que 1 e 3 são raízes da equação x4-8x3+24x2-32x+15=0, 

determine o seu conjunto solução. 

 

10. Determine k, de modo que 2 seja uma das raízes da equação 

x3+kx2+20x-12=0. 

 

21 RAÍZES RACIONAIS 
 

Propriedade: Se a fração racional p/q for raiz da equação algébrica de grau n 

e de coeficiente inteiros, anxn+an-1xn-1+...+a2x2+a1x+a0=0, então p é um divisor 

de a0 e q é um divisor de an. 

 

Exemplo: Determinar o conjunto solução da equação 2x3-7x2+7x-2=0. 

Resolução: 

Observando que a equação algébrica dada tem todos os 

coeficientes inteiros, temos: 
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p é um divisor de –2; logo: p=±1 ou p=±2 

q é um divisor de 2; logo: q=±1 ou q=±2 

Os possíveis valores das raízes racionais são dados pela razão p/q; 

logo: 

p/q Î {-2, -1, -½, ½, 1, 2} 

Fazendo a verificação de quais valores tornam a equação 

verdadeira, encontramos as raízes x=1, x=2 e x=½ . 

Portanto S={½, 1, 2}  

 
(21) Exercícios 

 

1. Resolva as equações: 

a) x3-6x2-x+30=0 

b) 2x3-x2-2x+1=0 

c) 4x4-4x3-3x2+4x-1=0 

d) x(x-4)2+10x(x-2)-8=0 

 

2. Determine o conjunto solução da equação  x4-3x3+4x2-2x=0. 

 

3. Resolva a equação  x4-2x3-7x2+8x+12=0. 

 

4. Ache o conjunto solução da equação  x3-7x+6=0. 

 

22 RELAÇÕES DE GIRARD 
 

Neste item vamos mostrar as relações existentes entre os 

coeficientes de uma equação algébrica e as suas raízes. 

Vejamos alguns casos: 

 

1º Caso: Equação do 2º grau. 

 ax2+bx+c=0 Þ ax2+bx+c=a(x-a1)(x-a2) 

(com a¹0) 
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Igualando os coeficientes, obtemos: 

 

 

2º Caso: Equação do 3º grau. 

 ax3+bx2+cx+d=0 Þ ax3+bx2+cx+d=a(x-a1)(x-a2)(x-a3) 

(com a¹0) 

 

Igualando os coeficientes, obtemos: 

 

 

Exemplos: 1. Resolver a equação x3-5x2+7x-3=0, sabendo que uma raiz é 

dupla. 

Resolução: 

Se uma raiz é dupla, vamos indicar as raízes por: a, a, b. 

Pelas relações de Girard, 

 

Da relação 1, temos: 

2a+b=5 Þ b=5-2a  

Substituindo na relação 2, temos: 

 a2+2ab=7 Þ a2+2a(5-2a)=7 Þ a2+10a-4a2-7=0 

 a2-10a+7=0, onde a’=7/3 e a”=1 
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Vamos verificar qual dos valores de a é raiz da equação: 

P(7/3)=-44/9 Þ 7/3 não é raiz de P(x) 

P(1)=0 Þ 1 é raiz de P(x). 

 

Como 1 é raiz dupla de P(x), podemos escrever: 

P(x)=(x-1)2.Q(x) 
 
1 1 -5 7 -3   
1 1 -4 3 0   
 1 -3 0    

 

Então Q(x)=x-3 Þ x=-3=0 Þ x=0 

Logo a solução é S={1,3} 

 

2. Seja a equação x3+x2+kx+t=0, onde k e t são coeficientes reais. 

Sabendo que o complexo 1-2i é uma das raízes dessa equação, determinar, o 

seu conjunto solução e os valores de k e t. 

Resolução: 

Se a equação tem coeficientes reais e 1-2i é raiz, 1+2i também o 

será. Supondo que as raízes sejam a=1+2i, b=1-2i e c, pelas relações de 

Girard, temos: 

 a+b+c=-1 Þ 1+2i+1-2i+c=-1 Þ c=-3 

 

 ab+ac+bc=k Þ (1+2i)(1-2i)+(1+2i)(-3)+(1-2i)(-3)=k 

(1+4)+(-6)=k  Þ k=-1 

 

 abc=-t Þ (1+2i)(1-2i)(-3)=-t 

(1+4)(-3)=-t 

t=15 

 

S={-3, 1-2i, 1+2i} 
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(22) Exercícios 

 

1. Sabendo que a, b e c são raízes da equação x3-6x2+11x-6=0, 

calcular o valor de . 

 

2. Dada a equação polinomial x4+2x3-13x2-14x+24=0, de raízes a, b, 

c e d, calcule: 

a)  

b)  

 

(23) Exercícios complementares 
 

1. A soma das raízes da equação   x3+2x2-x-2=0 é: 

a) –2  b) 2  c) 0  d) 3  e) n.d.a. 

 

2. O valor de k para que a equação kx2-kx-k-1=0 admita duas raízes 

iguais é: 

a) 0  b) 2/5  c) –4/5 d) 4/5  e) 4  

 

3. A soma dos inversos das raízes da equação 2x3-5x2+4x+6=0 é: 

a) 3/2  b) 2/3  c) 1/3  d) –2/3 e) –3/2 

 

4. Sabendo que x=-1 é uma raiz de multiplicidade três da equação 

x5-x4-x3+13x2+20x+8=0, então a soma das demais raízes dessa equação é 

igual a: 

a) 1  b) –5  c) 4  d) 3  e) 4+4i 

 

5. A soma e o produto das raízes da equação x4-5x3+4x-6=0 formam 

que par de valores? 

a) –5, 6    b) 5, -6   c) 3, 4   d) 1, 6   e) 4, 3 

 

÷
ø
ö

ç
è
æ ++

cb
ppp

a
sen

dcba +++

dcb
111

a
1

+++
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6. O produto de duas raízes da equação 2x3-19x2+37x-14=0 é 1. A 

soma das duas maiores raízes da equação é: 

a) 7  b) 8  c) 9  d) 19/2 e) n.r.a. 

 

7. Se a soma das raízes da equação  kx2+3x-4=0 é 10, podemos 

afirmar que o produto das raízes é: 

a) 40/3  b) –40/3   c) 80/3    d) –80/3     e) –3/10 

 

8. (UFSM/1995) Uma solução da equação ax3+9x2+9x+5=1995 é 

x=10. Para que a equação ax4+5x3+bx2+3x+2=15432 tenha também x=10 

como uma das soluções, o valor de b é 

a) –4  b) –2  c) 0  d) 2  e)4 

 

9. (UFSM/1995) Considere os polinômios P(x)=ax2-3x e Q(x)=x(b-x) 

onde a e b são números reais não nulos. Dividindo-se o polinômio P(x)+1 pelo 

polinômio Q(x+1), obtém-se, como resto dessa divisão, o polinômio R(x)=x+1, 

Nessas condições, pode-se afirmar que P(-1) vale 

a) 2  b) 1  c) 0  d) –1  e) -2 

 

10. (UFSM/1997) Sabendo-se que os restos das divisões do 

polinômio x2+ax+1 por x-1 e x+2 são iguais entre si, então a vale 

a) –2  b) –1  c) 0   d) 1  e) 2 

 

11. (UFSM/1997) O gráfico representa uma função f:Â®Â em que 

f(x) é um polinômio do 3º grau. Para a equação f(x)=0,  

afirma-se o seguinte: 

I – O termo independente é igual a 3. 

II – As raízes são –3,3 e 1. 

III – As raízes são –3,-3 e1. 

IV – As raízes são –3, 1 e 1. 

Está(ão) correta(s) 

a) II apenas.  b) III apenas. 

c) I e II apenas.  d) I e III apenas.  e) I e IV apenas. 

 

f(x)

x

y

-3

3

1
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12. (UFSM/1998) Se r1, r2 e r3 são raízes do polinômio          

f(x)=x3+5x2 +10x+1, então o determinante da matriz  é 

a) 10  b) 6  c) 5  d) 2  e) 1 

 

13. (UFSM/1999) Assinale verdadeiro (V) ou falsa (F) em cada uma 

das afirmações a seguir referentes ao polinômio                                 

p(x)=anxn+na-1xn-1+...+ a2x2+a1x+a0, onde n³1 e a0, a1, a2, ..., an  são números 

reais. 

(   ) O polinômio p(x) é divisível por (x-a), se e somente se p(a)¹0. 

(   ) O resto da divisão de p(x) por  (x-a) é p(a). 

(   ) Se z=a+bi, com a, bÎÂ e b¹0, é raiz da equação p(x)=0, então o 

conjugado de Z,  é também raiz da equação. 

a) F – V – V. 

b) F – F – V. 

c) V – V – V. 

d) F – V – F. 

e) V – F – F. 

 

14. (UFSM/1999) Sabendo que umas das raízes da equação           

2x3-3x2-x+m=0 é solução de , com   , então o produto das 

raízes da equação polinomial é 

a) –½   b) 3/2  c) 12  d) 16  e) 24  

 

15. (UFSM/2000)  Uma das raízes da equação x4-4x3+12x2+4x-13=0 

é (2-3i). A soma de todas as raízes dessa equação é ____, o produto é ____ e 

a soma das raízes reais é ____. 

Assinale a alternativa que completa corretamente as lacunas. 

a) 4; -13; 0  b) 1; 12; 0  c) –13; 4; -4 

d) 4; -13; 13  e) 0; 13;-12 

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

3

2

1

r
1
1

1
r
1

1
1
r

A

Z

1
6
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16. (UFSM/2001) Se –1 e 5 são duas raízes da equação 

x3+ax2+3x+b=0, então a e b valem, respectivamente, ___ e ___ e a outra raiz 

da equação é ___. 

Assinale a alternativa que completa corretamente as lacunas. 

a) –6; -10; 2 

b) –6; -10; -2 

c) 6; -10; -2 

d) 6; 10; -2 

e) –6; 10; 2 

 

17. (UFSM/2002) Sejam p(x) e g(x) dois polinômios com coeficientes 

reais e com grau p(x) > grau g(x). Ao dividir-se p(x) por g(x), obteve-se resto 

r(x)=2x-1,. Sabendo que 3 é raiz de g(x), pode-se afirmar que 

I.  

II. grau g(x)>1 

III. p(3)=5 

IV. p(x) não tem raízes inteiras 

Está(ão) correta(s) 

a) apenas I. 

b) apenas I e II. 

c) apenas I e III. 

d) apenas II e III. 

e) apenas IV. 

 

18. (UFSM-PEIES/1998) Sabendo que –1 é raiz do polinômio    

p(x)=x3-4x2+x+k, k constante, então o produto das outras raízes é 

a) 3.  b) 4.  c) 5.  d) 6.  e) 7. 

 

19. (UFSM-PEIES/1998) Na divisão do polinômio 

P(x)=2x5+ax4+4x3+9x2+3x+1, pelo polinômio Q(x)=bx3+4x2+1 obtiveram-se o 

quociente H(x)=x2+2 e o reto R(x)=3x+c, onde a, b e c são números reais. 

Então o valor de 1/5(a+b+c) é 

a) 1.  b) 2.  c) 3.  d) 4.  e) 5. 

 

5)x(g grau3 <£
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20. (UFSM-PEIES/1999) O polinômio P(x)=ax3+4x2+bx+c é tal que 

P(0)=1. Dividindo-se P(x) por Q(x)=-4x2+d, obtém-se o quociente H(x)=x-1 e o 

resto R(x)=x+3. O valor de a+b+c+d é 

a) –2.  b) –1.  c) 0.  d) 1.  e) 2. 

 

21. (UFSM-PEIES/1999) Sendo i (unidade imaginária dos números 

complexos) uma das raízes do polinômio P(x)=x3-3x2+x-3, a soma dos 

quadrados das outras duas raízes é 

a) 6.  b) 7.  c) 8.  d) 9.  e) 10. 

 

22. (UFSM-PEIES/2000) O polinômio p(x)=x3+ax2-4x+b é divisível 

por q(x)=x2-4. Se p(0)=4 então sua decomposição em um produto de fatores do 

1º grau é 

a) p(x)=(x+2)2(x-1) 

b) p(x)=( x-2)2(x+1) 

c) p(x)=( x-2)2(x+2) 

d) p(x)=(x+1)(x-2)(x+2) 

e) p(x)=(x-1)(x-2)(x+2) 

 

23. (UFSM-PEIES/2000) A equação polinomial x5-2x4-x+2=0 possui  

a) 3 raízes reais distintas e 2 raízes complexas conjugadas. 

b) 2 raízes reais distintas e 2 raízes complexas conjugadas. 

c) 5 raízes reais distintas. 

d) 1 raiz real e 4 raízes complexas conjugadas duas a duas. 

e) 2 raízes reais iguais e 3 raízes complexas. 

 

24. (UFSM-PEIES/2001) A equação ax3+bx2+8x+12=0, sendo a e b 

números reais, admite a unidade imaginária i como raiz. Então a soma dos 

quadrados das três medidas é 

a) 1 

b) 17/4 

c) 9/4 

d) 0 

e ¼   
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GABARITO 
 

(1) 1. K= –5      2. a) m=9 ou m= –9   

      3. a) xÎÂ e y=4 ou xÎÂ e y = –4    b) x= –6 e y¹e e y¹ –4 

      4. m=5/4 e n=1      5. a) S={-5i, 5i}    b) S={3-2i, 3+2i}    c) S={½ -i, ½ +i} 

      6. a) x=1/3    b) x=0 ou x=5    c) x=2           

 

(2) 1. a=2 e b= –4      2. a= –1 e b=6      3. x=2 e y=14 ou x= –2 e y=14 

 

(3) 1. a)     b)     c)  

      2. a)     b)    c)  

 

(4) 1. a) 8+4i    b) 5+4i    c) 25/6    d) 11-3i    e) –5+5i    f) 7+26i     

      g) (7/34)+(11/34)i    h) 1-5i    i) (3/13)+(2/13)i 

      2. a=5 e b=2      3. (4/5)+ i      4. a) –2+6i    b) (29/2)–(15/2)i 

      5. – (2/3) + (8/9)i      6. m=5/2 e n=7/2        7.  x=17/2 e y=36 

      8. a) 4–3i    b) 20+15i    c) –6+4i    d) 2+36i      9. (1/5)–(7/5)i 

      10. –(3/5)+(1/5)i      11. 2i      12. a=14/29 e b= 23/29 

 

(5) 1. a       2. c      3. b      4. a      5. e      6. b      7. b      8. c. 

 

(6) 1. c       2. b      3. c      4. e      5. d. 

 

(7)  1. a)     b) 5    c)     d) 8      2. a) 7p/4    b) p/3    c) p/2    d) 2p/3 

 

(8) 1. a       2. 65       3. b      4. c      5. b      6. a      7. b 

        8. a)     b)  

        c)     d)  

        e)     f)  

        9. a)      b)     c)     d)   

        10. a)     b)  

iZ 26-= iZ 34--= iZ 53 +=

iZ -= 4 iZ 3= iZ 10-=

17 3

)º210senº210.(cos8 iZ += )º90senº90.(cos8 iZ +=

)º225senº225.(cos27 iZ += )º300senº300.(cos2 iZ +=

)º180senº180.(cos5 iZ += )º120senº120.(cos3 iZ +=

iZ 62 -= iZ 22 -= iZ -= 3 iZ
2
3

2
3

+-=

)º270senº270.(cos1 iZ += )º225senº225.(cos2 iZ +=
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(9) 1. a       2. b      3. c      4. a     5. d     6. b     7. d      8. a      9. e 

       10. a     11. b      12. c      13. c      14. c      15. d      16. a      17. e 

       18. b      19. c      20. d. 

 

(10) 1. a) x3+5x2-2x-3, grau 3    b) 9x4-9x3-5x2+7x-11, grau 4 

        2. a) x3–7x2+12x    b) –6x2+11x -(17/2)      3. 38/7      4. a) 11/8    b) -1 

        5. a) –2i    b) –1    c) –2i      6. a= -10/3       

        7. a) P(-1)=28 e P(4)=3    b) P(a)=2a2-11a+15 

 

(11) 1. m=2, n=1 e p= -3      2. a= -1 e b=1       

        3.  a=1, b=0 e c=2 ou a= -1, b=1 e c=2      4. m= -4, n= -25 e p= -9/2 

        5. a=1/3    b= -1/3    c= -2/3      6. a=5/6    b=½     c= -4/3 

 

(12) 1. a) a=1, b=1, c=2 e d=2    b) a=b=c=d=0      2. a= -½ , b=½ e 

c=0. 
 

(13) 1. a=½; b=2/5 e c=3/2.       2. c      3. d      4. a      5. b      6. a. 

 

(14) 1. Q(x)=2x-5 e R(x)=12x+7      2. Q(x)=x3-x2+x-1 e R(x)=0       3. a=1 e b=-2 

 

(15) 1. a) –5    b) 20    c) 65/32    d) 3      2. a) 85    b) 43    c) 443/8 

 

(16) 1. a) 4    b) 4    c) –2    d) 52      2. a) a=0    b) a= -7/3 

        3. –31/256      4. 1/3      5. P=-34 e q=44 

 
(17) 1. a) (x+4)(x-5)    b) (x-1)(x+7)    c) (x+3)(x+10)    d) (-x-1)(x+9) 

        2. a) x(x-1)(x+1)    b) x(x+2)(x-5)      3. P(x)=(x+6)(x-2)(x+4) 

        4. 2(x-1)(x-4)(x+2)      5. P(x)=(x-1)2(x-2)2(x+3) 

 

(18) 1. a) S={-3, -1}    b) S={-2, -5i, 5i}      2. a) S={0, 1, 3}    b) S={-2, -3i, 3i} 

        3. S={-5, 1, 2}      4. S={-6, -3, 4}      5. S={1, 3, 2-i, 2+i}      6. S={-1, 2, 3} 
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(19) 1.  {-3, 4, -i, i}      2. –12      3. {1/3, 1-i, 1+i} 

 

(20) 1. c      2. d      3. c      4. d       5. {-3,-1,1}     6. m=-5 e {-5,-i,i} 

        7. {-1,2,3}       8. {-6,-3,4}       9. {1,3,2-i,2+i}      10. k=-9. 

 

(21) 1. a) {-2, 3, 5}    b) {-1, 1, ½}    c) {-1, 1, ½}    d) {-2,2}      2. {0, 1, 1+i, 1-i} 

        3. {-2, -1, 2, 3}      4. {-3, 1, 2} 

 

(22) 1. –½      2. a) –2    b) 7/12  

 

(23) 1. a       2. c      3. d      4. c      5. b      6. c      7. a      8. e       9. d       

        10. d       11. e      12. b      13. a     14. c     15. a      16. e     17. d 

        18. d       19. a      20. e      21. c     22. e      23. a     24. e. 
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