
Física Quântica Débora Coimbra UFU

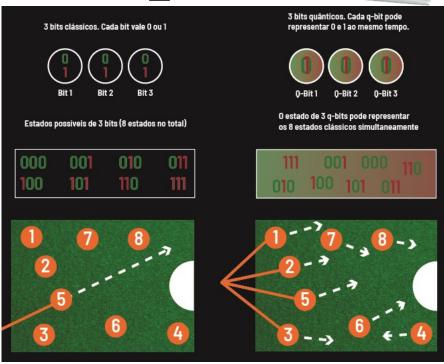
m novembro de 2017, a gigante da COMPUTAÇÃO IBM anunciou a CONSTRUÇÃO de um chip contendo 50 UNIDADES de INFORMAÇÃO quântica (50 q-bits), cuja capacidade de PROCES-SAMENTO é muito maior que a de gualquer computador da atualidade. Em março de 2018, a Google também divulgou sua VERSÃO de CHIP QUÂNTICO contendo 72 q-bits. O INVESTIMENTO de grandes empresas nessa nova tecnologia pode promover, em poucos anos, uma profunda REVOLUÇÃO no CO-NHECIMENTO. Como funcionam essas MÁQUINAS? E para que elas servem? (adaptado de Oliveira, et

. Na primeira tabela, as colunas **D** representam um número decimal associado à letra que se deseja representar, as colunas **B** trazem a representação desse na base 2 e as colunas **BITS** mostram como os mesmos seriam representados por 5 bits. Complete a Tabela seguindo o modelo, depois use os códigos das colunas BITS para identificar a palavra ao lado.

	D	В	BITS		D	В	BITS
A	1	20	00001	N	14		
В	2	21	00010	О	15		
C	3	20+21	00011	P	16	24	
D	4	22	00100	Q	17		
Е	5		00101	R	18		
F	6			S	19		
G	7			T	20		
Н	8	2 ³	01000	U	21		
I	9			V	22		
J	10			W	23		
K	11			X	24		
L	12			Y	25		
M	13	23+22+20		Z	26	2 ⁴ +2 ³ +2 ¹	11010

BITS	DECIMAL	LETRA
10001		
10101		
00001		
01110		
10100		
01001		
00011		
00001		

73 37 21 12 2+1 = 1+2 = 3 7 x 3 = 21 2 + 2 + 3=7


3. Escreva os palíndromos na base decimal: 1001001

10101 _ 111 _

11

Superposição

A grande capacidade de processamento de um computador quântico está baseada no princípio da superposição, segundo o qual os sistemas quânticos podem assumir múltiplos estados simultaneamente, como representado na *Figura 1.1*. Isso permite que um computador quântico analise bilhões de possibilidades ao mesmo tempo.

Possíveis estados do computador clássico (inferior à esquerda) e do quântico (direita). Fonte: extraído de Oliveira, et al. *Ciência Hoje*, julho/18.