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PREFÁCIO 
 
  
Essa apostila é baseada em livros de cálculos e materiais utilizados durante a faculdade de 
matemática. 
Seu objetivo é facilitar o estudo, visto que todo o conteúdo do semestre está apresentado de 
maneira sucinta, com listas de exercícios, testes e gabaritos. 
Visando a compreensão do conteúdo e a construção dos conceitos, deixamos espaços em 
branco para resolução de exemplos e desenvolvimento de algumas demonstrações. 
 

Profª. Ms. Graça Peraça 
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1. Introdução 

 

1.1 Espaço Euclidiano  

 

 Conceito de espaço Euclidiano : 

Def.1.1.(a) Para todo x do espaço n dimensional nA , X é o conjunto ordenado de n números 
reais. 
 

nkxxxxxAx kn
n ,1,),...,,(: 21   

kx  é a k-ésima coordenada. Os pontos x,y  nA  são da forma x=  nxxx ,...,, 21  e                        

y=  nyyy ,...,, 21  e x=y se kx = ky  nk ,1  

 

Def.1.1(b) nA  é chamado linear ou vetorial se nesse espaço estão introduzidas as seguintes 
operações: 

1. 
nAyx  ,  

 
   

  n
nn

nn

Ayxyxyxyx

yyyyxxxx





,...,,

,...,,;,...,,

2211

2121
 

2. nAx , o elemento    aAaxaxaxax n
n ,,...,, 21  

 
Def.1.1(c) Seja X um espaço ou conjunto, vamos dizer que esse espaço é métrico se Xyx  ,  

é introduzida uma função real ),( yx com as seguintes condições: 

1.  yxyxyx  0),(;0),(   

2. métricadasimetriaxyyx ),(),(    

3. triangulardedesigualdaXzyxyzzxyx  ,,),(),(),(   

 
Exemplo 1.1.(a): 

kk yxmáxyx ),(  

Vejamos as condições: 

1. 0),(  kk yxmáxyx  

nkyxyxmáxyxse kkyk ,100),(    

 
2. ),(),( xyyx    

),(),( xyxymáxyxmáxyx kkkk    

 
3. ),(),(),( yzzxyx    

kkkk yzmáxyzzxmáxzx  ),(),(   

kkkk
yzmáxzxmáxyzzx  ),(),(   

    ),(),(||),( yzzxyzmáxzxmáxyzzxmáxyxmáxyx
kkkkkkkkkk

 

 
 

n

n
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Def.1.1.(d) Um espaço linear n-dimensional nA , com métrica  



n

k

kk yxyx
1

2
),(  é 

chamado espaço EUCLIDIANO e denotado por n . 
 

 n=1; realeixo1
 

   yxyxyx 
2

),(   

 

 n=2;  realplano2
 

    222

2

11),( yxyxyx      

 
 

 n=3: realespaço3
 

      233

2

22

2

11),( yxyxyxyx   

 
 
 

 Conjunto no espaço  

 
Def.1.1.(e) (Bola aberta) 

Seja a um ponto do espaço n  e r um número real positivo. Definimos de bola aberta com 

centro em a a todo x  n  tal que a distância dos pontos x até a seja menor que r. 

 raxRxraBrRrRa nn  ),(:),(     0,,   

 
 
 
Def.1.1.(f) (Bola fechada) 

Definimos de bola fechada com centro em a à todo x  n  tal que a distância dos pontos x até 
a seja menor  ou igual que r. 

 raxRxraBrRrRa nn  ),(:),(     0,,   

 
 
 
Def.1.1.(g) (Esfera) 

Definimos de esfera com centro em a a todo x  n  tal que a distância de x até a seja igual a r. 

Esfera:  raxxraS n  ),(:),(   

 
 
 
Def.1.1.(h) (vizinhança)  

Seja 
nRa , 0r , a bola aberta com centro em a e raio r  é chamada r-vizinhança do 

ponto a e denotada por ),()( raBaU r  . 

 
Chamamos de r-vizinhança perfurada do ponto a, a toda r-vizinhança que não contém o ponto 

a e é denotada por  araBaU r \),()(
0

 . 

 
 

n
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Def.1.1.(i) (ponto interior) 

Seja X um conjunto do espaço n   nX   e a um ponto de X. O ponto a é chamado ponto 

interior do conjunto X se existe um número r positivo tal que toda vizinhança do ponto a esteja 
contida no conjunto X. 
 
 
 
 
Def.1.1.(j) (ponto limite) 

Seja nRX  , a é ponto limite de X se, em qualquer vizinhança perfurada do ponto a, existe 

pelo menos um elemento do conjunto X. 

 XaUr r )(:0
0

ø  

 
 
 
Def.1.1.(k) (conjunto fechado) 

Seja nX  , o conjunto X é chamado fechado se esse  conjunto contém todos os seus pontos 
limites. 
 
 
 
 
Def.1.1.(l) (conjunto aberto) 

Seja nX  , o conjunto X é chamado aberto se qualquer ponto é ponto interior desse 
conjunto (isto é, toda vizinhança pertence a X). 
 
 
 
 
Def.1.1.(m) (conjunto limitado) 

nX   é chamado limitado se 0 r  tal que todo conjunto esteja contido na bola fechada 

com centro em a e raio r. 
 
 
 
 
Def.1.1.(n) (conjunto compacto) 

nX   é chamado compacto se esse conjunto é limitado e fechado. Ou seja,   contém todos 
os seus pontos limites. Todos os pontos limites são interiores. 
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2 Funções vetoriais de uma variável 

 

2.1 Conceito de funções vetoriais 

 
Def.2.1.(a) 

Uma função vetorial de uma variável é uma função do tipo 
kIf : . Vamos trabalhar 

com funções que associam a cada valor de   num intervalo  , um vetor  )(tf  no espaço. 

Se )(tf  é um vetor no espaço 
3 ,  )(),(),()()()()( 321321 tftftfktfjtfitftf   . 

 
Exemplos 

2.1.(a) )(tf =             2.1.(b) )(tf =             

 
Domínio da função vetorial de uma variável real: é o intervalo     que satisfaz todas as   
coordenadas da função. 
 
Exemplos 

2.1.(c) Analise o intervalo de domínio da função  ⃗    (√    
 

    
   ) 

 
 
 
 
 
 

2.2 Hodógrafo de uma função vetorial 

 
Def.2.2 

O hodógrafo de uma função vetorial Itktfjtfitftf  ,)()()()( 321
, é o lugar 

geométrico dos pontos do espaço que têm posição  ⃗   . O hodógrafo representa a imagem da 
função vetorial. 
 
Exemplo 
Descreva a trajetória L de um ponto móvel   cujo deslocamento é expresso por: 

a)  ⃗      ⃗    ⃗    ⃗⃗   b)     ⃗                

 

 

 

 

 

 

 

 

 

c)  ⃗          ⃗     ⃗           ⃗⃗ 
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 Operações com funções vetoriais: 

 

Dadas as funções ktfjtfitftf )()()()( 321   e ktgjtgitgtg )()()()( 321   

definidas para It , são definidas as seguintes operações: 
 

a)      2

3

2

2

2

1 )()()()( tftftftf   

b)      ktgtfjtgtfitgtftgtf )()()()()()()()( 332211   

c) )(

)()()(

)()()()()(

321

321 th

tgtgtg

tftftf

kji

tgtf   

d) )().()().()().()()( 332211 tgtftgtftgtftgtf   

e) ktftsjtftsitftstfts )()()()()()()().( 321   

 
 

2.3 Limites e propriedades das funções vetoriais de uma variável 

 
Def.2.3.(a) 

Seja )(tff   uma função vetorial num intervalo aberto I que contém 0t . Dizemos que o 

limite de )(tf  quando t tende a 0t  é a , se: 

  atftt )(0:0,0 0
 

Proposição: 

Seja ktfjtfitftf )()()()( 321   e kajaiaa 321  .  

)3,2,1()(lim)(lim
00




iatfatf ii
tttt

 

 

Exemplo 2.3.(a): ),,()( tettf t  

)(lim
0

tf
t

= 

 
 
 

 Propriedades dos limites 

Sejam )()( tgetf  duas funções vetoriais e h(t) uma função escalar definidas num mesmo 

intervalo: 

Se entãomthebtgatf
tttttt




)(lim)(lim,)(lim
000

 

a)   batgtf
tt




)()(lim
0

 

b)   batgtf
tt

.)().(lim
0




 

c)   batgtf
tt




)()(lim
0

 

d)   amtfth
tt

.)().(lim
0



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2.4 Continuidade das funções vetoriais de uma variável 

 

Uma função vetorial )(tf definida num intervalo I é contínua em 0t , ponto de I, se 

)()(lim 0
0

tftf
tt




 

* )(tf é contínua em 0t  se e somente se suas componentes são funções contínuas em 0t . 

 

Exemplo 2.4.(a) Analise o intervalo de continuidade da função  ⃗    (     
 

 
) 

 
 
 
 
 
 
 
 

 Derivadas das funções vetoriais de uma variável 

 
Def. 2.4.(a) 

Seja  ⃗    uma função vetorial. A derivada de  ⃗                          é a função vetorial  

 ⃗            
 ⃗        ⃗   

  
        (

              

  
 
              

  
   

              

  
) para 

todo   em que o limite existe. Se a derivada existe em todos os pontos de um intervalo  , 

então dizemos que ⃗     é derivável em  . 
 
Exemplos 

2.4.(b) Derive a função  ⃗       ⃗         ⃗   √  ⃗⃗ 

 

 

 

 
2.4.(c) Derive a função  ⃗                   

 

 

 

 
 
 

 Interpretação geométrica da derivada de funções vetoriais 

Seja )(tf uma função vetorial derivável em I. Quando 

t percorre I,  ⃗    descreve uma curva C no espaço. 
Dados dois pontos P e Q sobre a curva, a reta suporte do 

vetor   ⃗⃗⃗⃗ ⃗⃗  é secante à curva. Quando 0t , a reta 
secante se aproxima da reta tangente, originando o vetor 

  ⃗⃗ ⃗⃗     tangente à curva no ponto  . 

O segmento orientado    é representado pelo vetor   ⃗⃗ ⃗⃗⃗. 
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Denominamos de vetor tangente unitário o vetor  ⃗⃗    
  ⃗⃗⃗⃗⃗   

|  ⃗⃗⃗⃗⃗   |
   

 
 
 

 Interpretação física da derivada de função vetorial 

Ao mover-se no espaço, uma partícula desenvolve uma trajetória   cuja equação é dada por 
 ⃗    quando   varia. A velocidade instantânea desta partícula é dada pela expressão 

 ⃗           
 ⃗        ⃗   

  
, quando o limite existe. 

Analogamente, se  ⃗    é derivável, então  ⃗      ⃗    
 
Exemplo 

2.4.(d) O vetor posição de uma partícula em movimento no plano é  ⃗      ⃗  
 

   
 ⃗    . 

Determine o vetor velocidade e o vetor aceleração em           e esboce o hodógrafo. 
 
 
 
 
 
 
 
 

 Propriedades das derivadas das funções vetoriais de uma variável  

 

Sejam )(tf e )(tg  funções vetoriais e )(th uma função escalar, todas deriváveis em 

I. Então, It  temos: 

 
 
 
  )(')()()(')()()

)(')()()(')()()

)()(')(')()()()

)(')(')()()

'

'

'

´'

tgtftgtftgtfd

tgtftgtftgtfc

tfthtfthtfthb

tgtftgtfa









 

 
 

 Derivadas sucessivas: 

 

Seja )(tf uma função vetorial derivável em I. Sua derivada )(' tf é uma função vetorial 

definida em I. Se )(' tf é derivável em It , então sua derivada é chamada derivada segunda 

e indicamos )()(''
)2(

tfoutf . Da mesma forma podemos obter )(),...,('''
)(

tftf
n

. 

Exemplo 

2.4.(e) Calcule a terceira derivada da função ksentjtietf t  ³2)( 2  
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2.5 Parametrização de curvas 

 
Sejam       ,        e        funções contínuas 
de uma variável  , definidas para   [   ]. Chamamos 
de curva o conjunto de todos os pontos         
determinados por esta equação. As equações       , 
       e        são chamadas paramétricas de 
parâmetro  . Para obter uma equação vetorial de uma 
curva, basta considerar o vetor posição   ⃗         ⃗  

     ⃗       ⃗⃗ de cada ponto da curva. 
 

 
 
Def.2.5.(a) 
Uma curva PLANA é uma curva que está contida num plano do espaço. Uma curva que não é 
plana é chamada de curva REVERSA. 
 
OBS: Se as funções     ,      e      forem constantes, a curva degenera-se em um ponto. 
 

 
 
 
 
 
 

 
 

 Parametrização da reta 

A equação vetorial de uma reta qualquer é dada pela função posição   ⃗     ⃗   ⃗⃗ , 

onde  ⃗ e  ⃗⃗ são vetores constantes e   é um parâmetro real:   ⃗     ⃗     ⃗     ⃗⃗,  ⃗⃗     ⃗  

   ⃗     ⃗⃗.  

A reta que passa pelo ponto A, que tem vetor posição  ⃗ e tem direção do vetor  ⃗⃗, apresenta as 
seguintes equações paramétricas: 

{

           

           

           

     

 
 
 
Exemplos 

2.5.(a) Considere a equação vetorial  ⃗      ⃗    ⃗    ⃗⃗, determine as equações paramétricas 
e a curva. 
 
 
 
 
 
 
2.5.(b) Determine a representação paramétrica da reta que passa pelo ponto A(2,1,-1) e tem a 

direção do vetor  ⃗⃗   ⃗    ⃗    ⃗⃗. 
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 Parametrização da circunferência 

A equação vetorial de uma circunferência qualquer de raio  , com centro na origem do plano 

   , é dada pela função  ⃗          ⃗        ⃗       . Quando a circunferência não 
está centralizada na origem, temos a equação  ⃗      ⃗⃗⃗ ⃗    ⃗⃗⃗ ⃗   , onde   ⃗⃗⃗ ⃗     ⃗     ⃗ e  
  ⃗⃗⃗ ⃗          ⃗        ⃗       , cujas equações paramétricas são: 
 

{
             

             
 

 
Exemplos 
2.5.(c) Obtenha a equação paramétrica da circunferência                , no 
plano    . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5.(d) A equação vetorial  ⃗      ⃗        ⃗         ⃗⃗⃗ ⃗       , representa uma 
circunferência. Determine a equação cartesiana correspondente. 
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 Parametrização da elipse 

A equação vetorial de uma elipse no plano    , com centro na origem, é dada pela equação 
 ⃗          ⃗        ⃗       . Quando a elipse não está centralizada na origem, temos 
a equação  ⃗      ⃗⃗⃗ ⃗    ⃗⃗⃗ ⃗    onde   ⃗⃗⃗ ⃗     ⃗     ⃗ e    ⃗⃗⃗ ⃗          ⃗        ⃗       , 
cuja equação paramétrica é: 
 

{
             

             
 

 
Exemplo 
2.5.(e) Escreva a equação vetorial e a equação paramétrica da elipse           , no 
plano    . 
 
 
 
 
 
 

 Parametrização da hélice circular 

A equação vetorial de uma hélice no plano    , com centro na origem, é dada pela equação 

 ⃗          ⃗        ⃗    ⃗⃗    . Quando o cilindro base não estiver centralizado na 
origem, temos a equação  ⃗      ⃗⃗⃗ ⃗    ⃗⃗⃗ ⃗    onde   ⃗⃗⃗ ⃗     ⃗     ⃗ e    ⃗⃗⃗ ⃗          ⃗        ⃗  

  ⃗⃗   cuja equação paramétrica é: 
 

{

             

             

      

 

 Se                           

 Se                       

 
Exemplo 

2.5.(f) Represente graficamente a hélice circular  ⃗         ⃗       ⃗  
 

 
 ⃗⃗     

  

 
  bem 

como os vetores velociade e aceleração para     . 
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2.6 Curvas 

 
Def.2.6.(a) (curva suave) 

Uma curva   é chamada suave se as funções x(t), y(t) e z(t) contínuas, têm derivadas e, além 

disso, x’(t)²+y’(t)²+z’(t)² 0 ],[ bat . 

Ou ainda, podemos dizer que uma curva é suave se não contém pontos angulosos, ou seja, se 
em cada um de seus pontos a curva tem tangente única que varia continuamente quando se 
move sobre a curva. 
 
 
 
 
Def. 2.6.(b) (curva suave por partes) 
A curva   é chamada suave por partes se é possível dividir essa curva em um número finito de 
partes de tal modo que cada parte seja uma curva suave e nos pontos de encontro das 
diferentes partes, essas funções x(t), y(t) e z(t) tenham derivadas unilaterais. 
  
 
 
 
 
Exemplos 

2.6.(a)    {
   

             [    ] 

 
 
 
 
 
 

2.6.(b)   {
   

               [    ] 

 
 
 
 
 
 
Def. 2.6.(c) (curva simples) 
Uma curva é chamada simples se para quaisquer valores de   ,      [   ],                               
       ⃗      ⃗      
 
Def.2.6.(d) (curva fechada) 
Uma curva simples é chamada fechada se     ,      [   ],        ⃗      ⃗      mas 
 ⃗     ⃗   . 
 
 
 
 
 
 

Curvas simples fechadas curvas que não são simples, 
pois possuem ponto de 
intersecção 



17 

 

 Orientação de uma curva 

Seja   uma curva suave, representada por   ⃗         ⃗       ⃗       ⃗⃗   [   ]. 
Chamamos de sentido positivo sobre   o sentido no qual a curva é traçada quando   cresce de 
a até b. O sentido oposto é chamado de sentido negativo. 
 
 
 
 
 

 Curva oposta 

Uma curva orientada  , representada por  ⃗         ⃗       ⃗       ⃗⃗   [   ], tem como 

curva oposta, a curva – , de equação   ⃗      ⃗                 ⃗        

   ⃗           ⃗⃗. 
 
Exemplo 
2.6.(c) Achar a curva oposta à curva   ⃗          ⃗        ⃗   [    ]. 
 
 
 
 

 

2.7 Comprimento de Arco 

 
Teorema 2.7.(a) (cálculo do comprimento de arco) 
Se   é uma curva suave parametrizada por  ⃗         , então 

  ∫   ⃗       
 

 

 

Demonstração: 
 

Seja   uma curva dada pela equação   ⃗         ⃗       ⃗       ⃗⃗   [   ] e sejam os 
pontos 
      ⃗         ⃗         ⃗             ⃗           ⃗             ⃗         

Então o comprimento do arco de um intervalo       ⃗      ⃗       . Somando-se todos os 

arcos de todos os intervalos, temos: 
 

    ∑   ⃗      ⃗        ∑ |[             ] ⃗  [             ] ⃗  [             ] ⃗⃗|  
 
   

 
    

 ∑√               
                 

                 
 

 

   

 

 
     

     
           ⃗      ⃗        

Continuação em aula 
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OBS.: 
Se   é suave por partes, o comprimento do seu arco é dado por: 

  ∫   ⃗        ∫   ⃗       
  

  

  

 

   ∫   ⃗       
 

    

 

Onde [    ] [     ]   [      ] são subintervalos de [   ], nos quais a curva é suave. 
 
 
Exemplo 

2.7.(a) Encontre o comprimento da curva cuja equação vetorial é  ⃗      ⃗   
 

  ⃗      . 

Rta. 
 

  
[(  √ 

 
  )

 

    √  ] 

 
 
 

 
 
 
 
 
OBS.: 

Se na integral   ∫   ⃗       
 

 
, substituirmos o limite superior por   (  é um limite variável, 

   [   ]), obteremos uma função      chamada de comprimento de arco, que possibilitará 

medi-lo para qualquer ponto     [   ].      ∫   ⃗       
 

 
. 

 
Exemplo 2.7.(b) Escreva a função comprimento de arco da circunferência de raio r. 
 
 
 
 
 
 
 
 
Exemplo 2.7.(c) Escreva a função comprimento de arco da hélice circular                             
 ⃗                    
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2.8 Integrais de Funções vetoriais de uma variável 

 
Sejam as funções                 integráveis num intervalo [   ], então: 

∫  ⃗      
 

 

∫        ⃗  ∫        ⃗  ∫        ⃗⃗
 

 

 

 

 

 

 

 

Exemplo 2.8.(a) Calcule ∫      
 

 
 ⃗       ⃗          ⃗⃗       Rta.                

 
 
 
 
 
 
 
 

Exemplo 2.8.(b) Calcule ∫     
 

 
 ⃗     ⃗    ⃗⃗         Rta. (16;-8;6) 

 
 
 
 
 
 
 
 

Exemplo 2.8.(c) Calcule ∫     
 

  
 ⃗      ⃗      ⃗⃗        Rta. (0,0,-2) 

 
 
 
 
 
 
 

Exemplo 2.8.(d) Calcule ∫      
 

 
 

 ⃗       ⃗       ⃗⃗        Rta. ((  
√ 

 
)   

√ 

 
  

 

 
   ) 
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3 Funções escalares de várias variáveis 

 

3.1 Funções de várias variáveis 

 
Def.3.1.(a) (função de duas variáveis) 
Uma função real de duas variáveis reais é uma relação que transforma em um único número 
real z cada par ordenado (x,y) de números reais de um certo conjunto D, chamado de domínio 
da função. Se a relação f transforma no número real z o par ordenado (x,y) em D, então 
escrevemos z=f(x,y). 
O conjunto de todos os valores possíveis de z é denominado de     IMAGEM da função f.  
Definimos o GRÁFICO de uma função f de duas variáveis como o conjunto de todos os pontos 

(x,y,z) no espaço cartesiano tridimensional, tal que 
(x,y) pertence ao domínio D de f,  e z=f(x,y). O 
domínio D pode ser representado através de um 
conjunto de pontos no plano xOy e o gráfico de f 
como uma superfície cuja projeção perpendicular ao 
plano xOy é D. 
 
 
 
 
 

 
Exemplos: 

3.1.(a) Qual o domínio da função f dada por ?
25²²

1
),(




yx
yxf  

 

 
 

3.2.(b) Ache o domínio de definição da função cuja fórmula é 
1

1
),(






x

yx
yxf . 
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Def.3.1.(b) (função de várias variáveis) 
Uma função real f a n variáveis é uma relação que transforma em um único número real w 

cada n-upla ordenada  nxxx ,...,, 21  de números reais de um certo conjunto D, chamado de 

Domínio da função f. Escrevemos          

Se a relação f transforma no número w a n-upla ordenada  nxxx ,...,, 21  então escrevemos 

 nxxxfw ,...,, 21  

tesindependeniáveisxxx

dependenteiávelw

n var,...,,

var

21 


 

O conjunto de todos os valores possíveis de w que obtemos aplicando a relação f às n-uplas 

 nxxx ,...,, 21  em D, é denominado IMAGEM de f. 

 n=2: z=f(x,y) 

 n=3: w=f(x,y,z) 
 
Se uma função f de várias variáveis está definida por uma equação ou uma fórmula, então (a 
não ser que esteja estipulado o contrário) entende-se por domínio de f  o conjunto de todas as 
n-uplas de variáveis independentes para as quais a equação ou fórmula admite resposta. 

* n-upla ou êneuplas de números reais: da mesma forma que denotamos um ponto em   por 

um número real, um ponto em 2  por um par ordenado de números reais (x,y) e um ponto 

em 3  por uma terna ordenada (x,y,z), um ponto no espaço numérico n-dimensional n , é 

representado por uma n-upla de números reais  nxxx ,...,, 21  

 
 
Exemplo 

3.1.(c) Encontre e esboce o domínio de )ln(),( 2 xyxyxf   

 

 
 
 
 
 
 
 

 Gráficos e curvas de nível 

Com o auxílio de seu gráfico pode-se visualizar como uma função f de duas variáveis x e y 
“funciona”. O gráfico de f é o gráfico da equação z=f(x,y). Assim, o gráfico de f é o conjunto de 
todos os pontos do espaço com coordenadas (x,y,z) que satisfazem a equação z=f(x,y). 
A intersecção do plano horizontal z=k com a superfície z=f(x,y) é chamada CURVA DE 
CONTORNO de altura k na superfície. A projeção vertical, no plano xOy desta curva de 
contorno é a CURVA DE NÍVEL f(x,y)=k da função f. As curvas de nível de f são simplesmente os 
conjuntos em que o valor de f é constante. 
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Fonte: http://ciconiastur.blogspot.com.br/2011/12/el-relieve.html. Acessado em 29/03/2012 

 

As curvas de nível dão uma maneira bidimensional de representar uma superfície 
tridimensional z=f(x,y). 
Nos gráficos  acima, cada ponto da curva de nível corresponde a um único ponto na superfície 
que está k unidades acima (k>0, mas seriam k unidades abaixo se k<0) considerando diferentes 
valores para a constante k (isto é, vários planos paralelos que interseccionam f), obtemos um 
conjunto de curvas de nível chamado de  MAPA DE CONTORNO. O conjunto de todos os 
valores possíveis de k é a imagem da função f e cada curva de nível f(x,y)=k no mapa de 
contorno consiste em pontos (x,y) do domínio de f, tendo o mesmo valor funcional k. 
 
Exemplo 
3.1.(d) Desenhe as curvas de nível típicas da função              

 
 

  

Fonte:http://geographicae.wordpress.com/2007/06/09/f

ormas-de-relevo-e-curvas-de-nivel/. Acessado em 

29/03/2012 

 

Fonte:http://pontenformacatalina.blogspot.com.br/2013/

06/orientacion-sobre-el-plano.html. Acesso em 

09/02/2015 

http://ciconiastur.blogspot.com.br/2011/12/el-relieve.html.%20Acessado%20em%2029/03/2012
http://geographicae.wordpress.com/
http://pontenformacatalina.blogspot.com.br/
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 Gráficos e superfícies de nível 

É muito difícil visualizar uma função   de três variáveis por seu gráfico, uma vez que 
estaríamos em um espaço de quatro dimensões. Entretanto ganhamos algum conhecimento 
de   desenhando suas SUPERFÍCIES DE NÍVEL, que são as superfícies com equação    
          , onde k é uma constante. Se um ponto         se move ao longo de uma 
superfície de nível, o valor de          permanece fixo. 
 
Exemplo 
3.1.(e) Determine as curvas de superfície da função                     
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3.2 Teoria de limites 

 
 Limite de função de duas variáveis 

Def.3.2.(a) 
Seja       e          uma função definida neste conjunto. Esta função tem valores no 
conjunto dos números reais  e o ponto               é ponto limite de  . 
 
Vamos dizer que        tem limite   quando            tender a  , se: 
 

      




  LyxfyyxxaUXx ),(0)(:0)(,0

2

0

2

0

0

  

 

 
 
Generalizando para funções vetoriais de várias variáveis 
 

Seja nRX   e        uma função definida neste conjunto. Esta função tem valores no 

espaço KR  e o ponto   é ponto limite de  . 















X de limite ponto  ,:

X no definido  )(

aRXf

xfy

RX

K

n

 

Vamos dizer que      tem limite   (ponto com k coordenadas), quando   tender a  , se: 

    


)),((),(0)(:0)(,0
0

AxfaxaUXx kn  

 
 
Teorema 3.2.(a) 

Seja nRX  ,        definida no conjunto  . X de limite ponto  ,:  aRXf K
. 

A função      tem limite   quando   tende a  , onde   é ponto com coordenadas 

  K

k RAAA ,...,, 21
 se, e somente se cada coordenada dessa função tem limite e esse limite 

é igual à coordenada correspondente do ponto  . 

 
kjAxxfAxf jnj

aaxxax nn

,1     ),...,(lim)(lim 1
,...,),...,( 11



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 Propriedades elementares dos limites 

Seja ),...,()( 1 nxxfxfy  definida em  , nf :  e seja ),...,()( 1 nxxgxg   ng : . 

E seja ainda, a o ponto limite de  . 
 
1. Se :,)(lim)(lim entãoBxgeAxf

axax



 

 

)0(/))(/)((lim)

.))().((lim)

))()((lim)













BseBAxgxfc

BAxgxfb

BAxgxfa

ax

ax

ax

 
 
2. Se :),(,)(lim entãoCAouBAAxf

ax



 

 )())(()( aUXxCxfouBxf
o

  

1. Se CACxfXxAxf
ax




)(,)(lim  

2. )()()( xhxgxfXx n   

  SandwichdeTeoremaAxgentãoAxheAxfSe
axaxax




)(lim,)(lim)(lim  

3. Acxfcxfc
axax

.)(lim.)(.lim 


 

4. Axfxf
axax




)(lim)(lim
 

 

 
 Limites múltiplos e limites iterados 

Vamos considerar uma função de duas variáveis .:),( 2  yxfu  

EdeitepontoyxE lim),(², 00  

 
Def.3.2.(b) (limite iterado) 

Fixamos qualquer 0yy   tal que o ponto pertença ao conjunto  . 

Consideramos )(),(lim),,(lim
00

yyxffixoyyxf
xxxx




 

Agora consideremos Ayxfy
xxyyyy




),(limlim)(lim
000

 . 

Se esse limite existe, é chamado de LIMITE ITERADO. 
 
 

Fixamos qualquer 0xx   tal que o ponto pertença ao 

conjunto E. 
Consideramos 

)(),(lim),,(lim
00

xyxffixoxyxf
yyyy




 

Agora consideremos Byxfx
yyxxxx




),(limlim)(lim
000

 . 

Se esse limite existe, é chamado de LIMITE ITERADO. 
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Def.3.2.(c) (limite múltiplo) 
É o limite de       , calculado no ponto, quando ele existe. 
 
Afirmação:  
Se existe limite múltiplo e existe limite iterado, então este limite iterado coincide com o limite 
múltiplo. 
Se existem os limites iterados e são iguais entre si, não garante que exista o limite múltiplo. 
 
Conclusão: 
Se os limites iterados existem e são diferentes, então, o limite múltiplo não existe. 
 
Exemplo 

3.2.(a) Analise a existência do limite da função f no ponto dado. 

)0,0(
²²

),(
yx

xy
yxf


  

Analisemos, primeiramente, os limites iterados: 

1) 00lim
²

0
limlim

²²
limlim

00000


  xyxyx xyx

xy
   

2) 00lim
²

0
limlim

²²
limlim

00000


  yxyxy yyx

xy

 

Vimos que os limites iterados existem e são iguais. Com esse resultado, não podemos afirmar 

nada ainda. Vamos calcular o limite em outra direção. 
 

3) 
2

1

²2

²
lim

²²

²
lim),(lim

000





 x

x

xx

x
yxf

xxxy  
Como o resultado do limite deu diferente dos limites iterados, podemos afirmar que não existe

 

),(lim
)0,0(),(

yxf
yx 

 

 
 
 
Exemplos 

3.2.(b) 
   
   

)1,1(
11

11
),(

22

44






yx

yx
yxf
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3.2.(c) Utilize a definição para demonstrar a existência do limite               
     

      

 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.(d) Analise a existência do limite               
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3.3 Continuidade de funções de várias variáveis 

 
Def.3.3.(a) (função contínua no ponto) 

Seja X um conjunto no espaço n  e )0(x =  )0()0()0( ,...,,
21 n

xxx  um ponto de  . Seja a função 

       definida no conjunto  , Xf : . 

Vamos dizer que a função      é contínua no ponto )0(x  se existe o limite da função      

quando )0(xx   e esse limite é igual ao valor da função no ponto )0(x . 

)()(lim )0(

)0(
xfxf

xx




 

 
 
Propriedades 

Sejam ),...,()(),...,()( 11 nn xxgxgexxfxf  contínuas no ponto )0(x   nE  , então: 

 0)()(/)(.3

)().(.2

)()(.1

)0( 



xgxgxf

xgxf

xgxf

   São contínuas no ponto )0(x  

 
Def.3.3.(b) (função contínua no conjunto) 

Seja   um conjunto no espaço n ,      definida em X, Xf : . Vamos dizer que a função 

     é contínua no conjunto   se a função      é contínua em qualquer ponto desse 
conjunto. 
 
Exemplo 
3.3.(a) Verifique a continuidade de  : 

       {
    

    
                  

                             
  

 
 
 
 
 
 
 

3.3.(b)        
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Teorema 3.3.(a) (Continuidade) 
Toda função é contínua no seu domínio. 
 
Exemplos 
3.3.(c) Determine o conjunto de continuidade da função                  
 
 
 
 
 
 
 
 

3.3.(d) Determine o conjunto de continuidade da função        
  

    
 

 
 
 
 
 
 
3.3.(e) Determine todos os pontos em que   é contínua sendo                                           

       {
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Def.3.3.(c) (função composta) 

Seja .:,)(, kn XfXnodefinidaxfyX   Denotamos por )(XfY   a imagem 

do conjunto X com transformação f. 

Seja .:,)( mYgYnodefinidaygu   Então vamos dizer que no conjunto X  é definida 

uma função composta )())(( xhxfgu   com valor no espaço   mn XhX  :  
 

  
 
Teorema 3.3.(a) (continuidade da função composta) 
Seja 

  YnodefinidayguYXfYXfXnodefinidaxfyX kkn )(,)(,:,)(,     
mYg :   )())(( xhxfgu   

Se f(x) é contínua num ponto )0(x  X e a função g(y) é contínua num ponto )( )0()0( xfy   

(valor da função no ponto )0(x ), então a função composta )())(( xhxfg   é contínua no ponto 
)0(x . 

 
 
Exemplo 
3.3.(f) Dadas as funções                  e               . Verifique se a função 
composta           é contínua no ponto (1,2). 
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3.4 Propriedades globais de funções contínuas 

 
Def.3.4.(a) (conjunto linearmente conexo) 

O conjunto nX   é chamado linearmente conexo se para quaisquer pontos x(1), x(2) desse 
conjunto, existe, pelo menos, uma curva   (gama) 

]),[)());(),...,(),(()( 21 banocontínuastxtxtxtxtx jn  tal que  x(a)=x(1), x(b)=x(2)  

Xtxbat  )(],[  

 
 
Teorema 3.4.(a)  (1º Teorema de Bolzano-Cauchy- existência da raíz) 

Seja 
1:,  XfX n
. Se X é linearmente conexo e f é contínua no X e se Xxx  )2()1( ,  

tal que 0)().( )2()1( xfxf  então existe pelo menos um 0)(: )0()0(  xfXx  

 

               
 
Teorema 3.4.(b)  (2º Teorema de Bolzano-Cauchy) 

Seja 
1:,  XfX n
. Se X é linearmente conexo e f é contínua no X e se Xxx  )2()1( ,  

onde BABxfAxf  )(,)( )2()1(
, então para qualquer valor C entre A e B, existe pelo 

menos um ponto CxfXx  )(: )0()0(
 

                                     
 
 
 
 
 
Teorema 3.4.(c)  (1º Teorema de Weiertrass) 

Seja nX   um conjunto compacto. 
kXf : . Se f(x) é contínua no X, então Y=f(X), a 

imagem Y, é limitada no k  
 
 
 
 
 
 
Teorema 3.4.(d)  (2º Teorema de Weiertrass) 

Seja nX   um conjunto compacto. 
kXf : . Se f(x) é contínua no X então 

Xxx  )2()1( ,  tais que os valores de )()( )2()1( xfexf  são valores máximos e mínimos da 

função f nesse conjunto. 
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3.5 Derivadas parciais  

 
Def.3.5.(a) (derivada parcial) 
Seja        uma função de uma variável real. Sua derivada primeira é: 

(1) 
x

xfxxf

dx

dy

x 






)()(
lim

0
 e pode ser interpretada como a taxa instantânea de variação 

de   em relação à  . Para uma função          de duas variáveis, necessita-se de uma 
interpretação análoga da taxa à qual   varia quando   e   
variam (isolada ou simultaneamente). Vejamos: 
Começa-se mantendo   fixo e fazendo    variar. A taxa de 

variação de   em relação à   é então denotada por 
x

z




 e tem o 

valor (2)      
  

  
        

                

  
 . 

 
 
O valor desse limite, se existir, é chamado DERIVADA PARCIAL DE   EM RELAÇÃO À  . Da 
mesma forma pode-se manter   fixo e fazer   variar. A taxa de variação de   em relação a   é 
então a DERIVADA PARCIAL DE   EM RELAÇÃO À  , definida como: 
  

  
        

                

  
. 

 

 Notações usadas para derivadas parciais: 

 ),(),(),( 1 yxfDyxfDyxf
x

f

x

z
xx 









 

Observe que se o símbolo y na equação 2, for omitido, o resultado é o limite na equação 1. Isso 

significa que se pode calcular 
x

z




 como uma derivada simples em relação à  , simplesmente 

considerando-se   como uma constante durante o processo de diferenciação. Analogamente, 

pode-se calcular 
y

z




 como uma derivada simples, encarando-se   como a única variável e   

como uma constante durante o cálculo. 
 
Exemplo 

²34²22

³²2²),(

yxy
y

z
yx

x

z

yxyxyxf












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 Interpretação geométrica das derivadas parciais 

 
As derivadas parciais    e    são os coeficientes 

angulares de retas tangentes a certas curvas na 
superfície           
 
A figura 1 ilustra a intersecção desta superfície com 
um plano vertical     que é paralelo a    . Ao 
longo da curva,   varia e   permanece fixo        
Consideramos um ponto   na curva           . 
Passando por  , traçamos a reta tangente à curva e 
contida no plano. Vejamos a projeção paralela da 
reta tangente no plano    , da curva   na superfície 
e do ponto   (figura 2). 
 

 
Pode-se agora “ignorar” a presença de     e considerar          como uma função de 
única variável  . O coeficiente angular da reta tangente à curva   original por  , é igual ao 

coeficiente angular 












x

z
 da reta tangente na figura 2.  

 
 

Mas, pelo cálculo de uma variável, este último coeficiente angular é               

dado por: ),(
),()),((

lim
0

baf
x

bafbxaf
x

x







 

 
 
 
 

Significado Geométrico de ),( yxf
x

z
x




 

O valor ),( baf x  é o coeficiente angular da reta tangente, em          à curva   no ponto   

na superfície          
 

Significado Geométrico de ),( yxf
y

z
y




 

O valor ),( baf y  é o coeficiente angular da reta tangente, em          à curva   no ponto   

na superfície          

 
  

Figura 2 

Figura 1 
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 Plano Tangente 

As duas retas tangentes que encontramos determinam um plano único pelo ponto 
               
 
Def.3.5.(b) (plano tangente a         ) 
Suponha-se que a função        tenha derivadas parciais contínuas em um retângulo no 
plano    contendo       em seu interior. Então o PLANO TANGENTE à superfície          
no ponto               é o plano que passa por   e contém as retas tangentes às duas 
curvas: 
        ,        (curva x) 
        ,       (curva y) 
 
* Equação de um plano: 
 
                      ⃗⃗    (vetor normal ao plano) 

 
   
 ⃗⃗           ⃗  são os vetores tangentes às curvas   e   respectivamente. 
Como se viu, a curva   tem coeficiente angular         em   e assim, pode-se tomar 

 ⃗   ⃗          ⃗⃗ como seu vetor tangente em  . A curva  , tem como coeficiente angular 

        em   e assim, pode-se tomar  ⃗⃗   ⃗          ⃗⃗  como seu vetor tangente. 
 
 ⃗⃗   ⃗               

 ⃗⃗   ⃗  |
 ⃗  ⃗  ⃗⃗
         

         

|          ⃗          ⃗   ⃗⃗   ⃗⃗ 

 ⃗⃗  (
  

  
      

  

  
        )                    

 
Logo, a equação do plano tangente à superfície no ponto   é: 

),(,*

),()()(

0)],([)).(,()).(,(

bapontonocalculadassão
y

z

x

z

bafcondeby
y

z
ax

x

z
czou

bafzbybafaxbaf yx






















 

Exemplo 
3.5.(a) Escreva a equação do plano tangente ao paraboloide         no ponto           
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3.6 Derivadas de ordem superior 

 

Seja a função  .:;,),...,()( 1  XfXxxfxfu n
n  Vamos supor que f(x) tem 

derivadas parciais no conjunto X: nk
x

f

k

,1, 



 , considerar num ponto 

Xxxx n  ),...,( )0()0(
1

)0(
, consideramos uma  r-vizinhança perfurada do ponto x(0). 

).,...,,( 21 nk

k

xxxg
x

f





 Se existe derivada parcial dessa função, então: 

pordemdeparcialderivada
xxx

f

xx

f

xxxx

f

ff
xx

f

x

f

xx

g

kpkk

p

kkp

p

kpkxpkp

p

xxxx

kjkjj

k

jkjk

,...,,,...,...,

;"
²

21

)(

11

1

11

2
































































 

 
Quando jk   

jkkj xx

f

xx

f







 22

 são as derivadas mistas, a primeira em relação a xk e a segunda em 

relação a xj. 
 
Exemplo 
3.6.(a) Calcule as derivadas de segunda ordem de                      
 
 
 
 
 
 
 
 
 
 
 
 
 

 Algumas propriedades das derivadas parciais 

 

Se as funções f(x) e g(x),  XgfX n :,,  tem derivadas parciais, isto é: 

jj x

xg

x

xf










)(
,

)(
 no ponto Xx 0 , então temos: 

0)(
²

..

)(

)(
.3

..))().((.2

))()((.1

0 


















































xg
g

f
x

g
g

x

f

xg

xf

x

f
x

g
g

x

f
xgxf

x

x

g

x

f
xgxf

x

jj

j

jjj

jjj
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 Se 
jx

xf






)( 0

 (derivada da função f(x) no ponto x0 em relação à variável xj) então f(x) é 

contínua no x0 em relação à variável xj; 
 

 Se f tem todas as derivadas parciais em relação a cada variável, então esta função é 
contínua no x0 em relação a cada variável separada; 

 

 Da existência de todas as derivadas parciais em um ponto, não segue a continuidade 
no conjunto de todas as variáveis. 

 
 

Exemplo 

3.6.(b)












)0,0(),(0

)0,0(),(
²)²(),(

yx

yx
yx

xy

yxf  
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3.7 Diferenciabilidade 

 
 Diferencial de função de duas variáveis 

 
Def.3.7.(a) Se   for uma função de duas variáveis   e  , então o incremento de   no ponto 
       , denotado por           é dado por                                    

 
 
 
Def.3.7.(b) Se   for uma função de duas variáveis   e   e o incremento de   no ponto         
puder ser escrito como: 
                                           , onde    e    são funções de     e 

  , tais que      e      quando              , então diremos que f é diferenciável 
em        . 
 
Exemplo 
3.7.(a) Verifique que a função               é diferenciável para todos os pontos de   . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



38 

 

 Diferencial de função de várias variáveis 

 
Def.3.7.(c)  (incremento total) 

XxxxxxxxxxxxxxxXx

fXnodefinidaxxxfxfuSeja

nnnn

nn
n





),...,,(),...,,()),,...,,((

::,),...,,()(

0
2

0
21

0
121

00
2

0
1

00

21
 

 

)(por    denotada  é  e    totalincremento  de nome  o   tem))f(x-(f(x) diferença  essa

),...,(),...,()()()()()(

),...,,(

00

00

1

0

1

0

1

0000

0

21

0

xf

xxfxxxxfxfxxfxfxfxf

xxxxxxxxx

nnn

n







 

 
Def.3.7.(d) (diferenciabilidade) 

Vamos dizer que a função      é diferenciável no ponto ),...,( 00

1

0

nxxx   se o incremento 

total dessa função pode ser representado da seguinte forma: 

   onde  ...)(...)()()( 2211
0

2
0

21
0

1
0

jnnnn xxxxxfxxxfxxxfxxf   são funções 

que dependem de njxxx n

xx

jjj

n

,10),...,( 1

0),...,( 1



















  

 
Def. 3.7.(e) (diferenciação total) 

Se   é uma função de n variáveis ( nxx ,...,1 ) e o incremento de   em ),...,( 00

1

0

nxxx   é escrito 

como 
nnnn xxxxxfxxxfxxxfxxf   ...)(...)()()( 2211

0

2

0

21

0

1

0 , onde 

                 quando                          , então   é diferenciável 
em   . 
Se   é uma função de n variáveis e   é diferenciável em   , então a diferencial total de 
             é expressa por: 
 

      
           

             
        

 
Observações: 

1) Se        é diferenciável no ponto Xx 0 ,            é contínua no ponto 0x ; 

2) Se      não for contínua no Xx 0 , então   não é diferenciável no Xx 0 . 

3) Se        é diferenciável no ponto 
nXx 0

, então essa função tem todas as 
derivadas parciais nesse ponto; 

4) A existência das derivadas parciais no ponto Xx 0 , não garante que a função seja 

diferenciável no Xx 0 . 
 

Def.3.7.(f) )),...,(),...,,...,(()(,:,),( 111 nkn
knn xxfxxfxffXxfuSeja  vamos 

dizer que essa função é diferenciável num ponto Xx 0  ou em todo   se cada coordenada 

njxxf nj ,1),...,( 1   é diferenciável no mesmo ponto Xx 0  ( ou no X). 
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 Esquema 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exemplo 

3.7.(b) Verifique a diferenciabilidade da função        {

  

                    

                
 

 
 
 
 
 
 
 
 
 

 Significado geométrico da diferencial de        

 
 
 
 
 
 
 
 
 
 
 
 

 
A função         que é diferenciável em        , possui um plano tangente nesse ponto. 
  

𝑓 𝑥  é diferenciável 

𝑓 𝑥  é contínua no x
0
 

em relação ao 

conjunto das variáveis 

Existe limite múltiplo 

no ponto 𝑥  

 

𝑓 𝑥  é contínua no 𝑥  

em relação a cada 

variável separada 

Existem limites 

iterados e são iguais 



40 

 

 Condição suficiente de diferenciabilidade da função de várias variáveis. 

Teorema 3.7.(b) (condição suficiente de diferenciabilidade da função) 
 

Seja u= f(x) definida no  XfX n :,  e o ponto x0 é ponto interior de X. 

Se f(x) tem todas as derivadas parciais numa vizinhança do ponto x0 e essas derivadas são 
contínuas no x0, então essa função é diferenciável no x0. 
 
Exemplos 
3.7.(c) Prove que                   é diferenciável          . 
 
 
 
 
3.7.(d) Seja um cone circular reto cuja altura é aumentada de 5cm para 5,01cm e o raio, 
diminuído de 4cm para 3,98cm. Encontre uma aproximação para a variação do volume. 
 
 
 
 
 
 
 
 
 
 
3.7.(e) Três resistências de x ohms, y ohms e z ohms são conectadas em paralelo para dar uma 

resistência equivalente w tal que   
   

        
. Cada resistência é de 300 ohms mas está 

sujeita a 1% de erro. Qual é o erro máximo aproximado? 
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3.8 Diferenciação da função composta (Regra da cadeia) 

 
Teorema 3.8.(a)  

Seja uma função )(tgx   definida no espaço )(por    denotamos ,:, TgXTgT nk  , 

a imagem do conjunto T sobre transformação g )( nX  .  

Seja a função X.  conjunto  no  definida:),(  nfxfy  Se a função g(t) é 

diferenciável no ponto Tt 0
 e a função f(x) é diferenciável no ponto )( 00 tgx  , então a 

função composta ))(()( tgfthw   é função diferenciável no ponto 
0t . 

 
 A regra de cadeia 

Caso 1: 
Suponha uma função        de uma variável real, diferenciável de x. Suponha        
uma função de variável real t, diferenciável de t. 
Então   é diferenciável de   e 

  

  
 

  

  

  

  
 

Caso 2: 
Suponha uma função          de duas variáveis reais, diferenciável de x e y, onde        
e        são funções diferenciáveis de t. 
Então z é diferenciável de   e 

  

  
 

  

  

  

  
 

  

  

  

  
 

Caso 3: 
Suponha uma função          de duas variáveis reais, diferenciável de x e y, onde 
         e          são funções diferenciáveis de s e de t. 
Então z é diferenciável de   e 

  

  
 

  

  

  

  
 

  

  

  

  
 

  

  
 

  

  

  

  
 

  

  

  

  
 

Caso geral: 
Suponha que   seja uma função diferenciável de   variáveis           , onde cada    é uma 

função diferenciável de   variáveis           . Então   é uma função de            e  
 

  

   
 

  

   

   

   
 

  

   

   

   
   

  

   

   

   
 

Para cada            
 
Exemplos 

3.8.(a) Sejam ³², tyetxew xy   

 
 
 
 
 

3.8.(b) Sejam )²(²² srzsryrsxyzxzxyu   
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3.8.(c) A tensão V, no resistor, em um circuito elétrico simples está decrescendo lentamente à 
medida que a bateria se descarrega. A resistência R está aumentando com o aumento de calor 
do resistor. Use a Lei de Ohm (V=IR) para achar como a corrente I está variando no momento 

em que                    
  

  
  

     

 
    

  

  
              (Rta: -0,000031 A/s) 

 
 
 
 
 
 
 
 
 

3.9 Derivada Direcional e Gradiente 

 
 Vetor Gradiente 

.³:³,  no  definida ),,(  fDzyxfwSeja  A variação no valor da função w 

no ponto P(x,y,z) para o ponto vizinho ),,( zzyyxxQ   é dada pelo incremento 

)1()()( PfQfw   

  )2(,,,, zyx
z

f

y

f

x

f
z

z

f
y

y

f
x

x

f
w 



































  

Pode-se expressar esta aproximação em termos do VETOR GRADIENTE f  da função f, que 

se define como: 

)3(),,(),,(),,(),,( zyxfkzyxfjzyxfizyxf zyx   

 

Ou k
z

f
j

y

f
i

x

f

z

f

y

f

x

f
f



























 ,,  

Então, a equação (2) mostra que o incremento )()( PfQfw  é dado 

aproximadamente por  

Q. a P de todeslocamen vetor o é ),,(

)4().(

zyxPQvonde

vPfw





 

 
Exemplo 

3.9.(a) Se ²2²),,( zxyyzxzyxf  , então a definição do vetor gradiente na equação 

(3):, no ponto (2,1,3) dá: 
 

)5,1,2()61()43()24()3,1,2(

)2()2()22(),,(





kjif

kzyjxziyxzyxf
 

Para calcular )1,3;2,1;9,1(,).( QsendovPfw   então )1.0,2.0,1.0( PQv  

Logo, 9.05.02.02.0)1.0,2.0,1.0()5,1,2( w  
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 Derivadas Direcionais 

As derivadas parciais ),,(),,,(),,,( zyxfzyxfzyxf zyx
representam as taxas de variação 

de w=f(x,y,z) no ponto P(x,y,z) nas direções x,y e z respectivamente. Pode-se agora, aplicar o 

vetor gradiente   ⃗⃗ ⃗⃗⃗  para calcular a taxa de variação de   em  , em uma direção arbitrária 
(uma direção fica definida por um vetor unitário  ⃗⃗) 
 

 
  Seja Q um ponto do raio de P na direção de  ⃗⃗. A taxa 
média de variação de   em relação à distância entre   e 
  é: 

 
         

|  ⃗⃗ ⃗⃗ ⃗⃗ |
 

  

  
 onde    |  ⃗⃗⃗⃗ ⃗⃗ |    ⃗   é a 

distância de   à  . Então, a aproximação da equação (4) 

dá: 
  

  
 

  ⃗⃗⃗⃗⃗⃗      ⃗⃗

  ⃗⃗ 
   mas, 

 ⃗⃗

  ⃗⃗ 
   é o vetor unitário  ⃗⃗  na 

direção de   a  . Logo: 
  

  
   ⃗⃗ ⃗⃗ ⃗     ⃗⃗ 

Ao tomarmos o limite da taxa média de variação 
  

  
 quando     , obteremos a TAXA 

INSTANTÂNEA DE VARIAÇÃO 
  

  
        

  

  
   ⃗⃗ ⃗⃗ ⃗     ⃗⃗. 

 
Def.3.9.(a)  (derivada direcional) 
 

  ⃗⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗      ⃗⃗⃗  é a derivada direcional de   em          na direção  ⃗⃗. 
 
Exemplo 
3.9.(b) Suponha que a temperatura no ponto        , com a distância medida em 

quilômetros, seja dada por yzxzxyzyxfw  10),,(  (em graus Celsius). Ache a taxa 

de variação (em graus por quilômetro) da temperatura no ponto          na direção do vetor                   
 ⃗           
Solução: 
 
  

 

P 

Q 
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 Afirmação: 

Se a função            é diferenciável numa vizinhança do ponto    , então a derivada 
direcional dessa função existe ao longo de qualquer direção que passa por esse ponto. 
 

 Interpretação do vetor gradiente 

 
* As fórmulas para as derivadas direcionais para as funções de duas ou mais de três variáveis, 
são análogas. 
 

  ⃗⃗ ⃗⃗⃗      
  

  
 ⃗  

  

  
 ⃗              ⃗⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗⃗   

  

  
  

  

  
      ⃗⃗        

 
 
 

Se  é o ângulo de inclinação de u  (medido no sentido 
anti-horário a partir do eixo x positivo), então a=cos  e 
b=sen  e a equação anterior fica: 
 
 

  ⃗⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗        ⃗⃗⃗  
  

  
     

  

  
     

 

 O vetor gradiente   ⃗⃗ ⃗⃗ ⃗ admite uma interpretação 

importante, que envolve a derivada direcional MÁXIMA de  . Se   é o 

ângulo entre    ⃗⃗⃗⃗⃗⃗⃗ no ponto   e o vetor unitário  ⃗⃗⃗, então a fórmula 

  ⃗⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗      ⃗⃗⃗
  

 fica   ⃗⃗⃗     |  ⃗⃗ ⃗⃗ ⃗⃗    |        (ver quadro 

abaixo) porque   ⃗⃗   . O valor máximo de cos  é 1, quando  =0. Isto 

ocorre quando  ⃗⃗ é o vetor unitário particular 
  ⃗⃗⃗⃗⃗⃗    

|  ⃗⃗⃗⃗⃗⃗    |
 que aponta na 

direção do próprio vetor gradiente. Neste caso, a fórmula fica: 

  ⃗⃗⃗     |  ⃗⃗ ⃗⃗ ⃗⃗    | e assim, o valor da derivada direcional é o 

comprimento (módulo) do vetor 
gradiente, o que prova o seguinte 
teorema: 
 
 
Teorema 3.9.(a) (significado do vetor 
gradiente) 
Obtém-se o valor máximo da derivada 

direcional )(PfDu  quando u  é o vetor na direção do vetor gradiente   ⃗⃗ ⃗⃗ ⃗     ( ⃗⃗  
  ⃗⃗ ⃗⃗ ⃗⃗ ⃗   

|  ⃗⃗ ⃗⃗ ⃗⃗ ⃗   |
). 

O valor máximo da derivada direcional é |  ⃗⃗ ⃗⃗ ⃗   |, que é o comprimento (módulo) do vetor 

gradiente. O valor mínimo da derivada direcional é  |  ⃗⃗ ⃗⃗ ⃗⃗⃗   |. 
 
 
 
 
 

 P 

 

 

 
P 

 

𝑐𝑜𝑠  
 𝑓⃗⃗ ⃗⃗ ⃗ ∙ 𝑢⃗⃗

| 𝑓⃗⃗ ⃗⃗ ⃗| ∙  𝑢⃗⃗ 
    𝑓⃗⃗ ⃗⃗ ⃗ ∙ 𝑢⃗⃗

 | 𝑓⃗⃗ ⃗⃗ ⃗| ∙  𝑢⃗⃗ ∙ 𝑐𝑜𝑠  

𝑒 𝑐𝑜𝑚𝑜  𝑢⃗⃗    𝑡𝑒𝑚𝑜𝑠 𝑞𝑢𝑒  

 𝑓⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝑢⃗⃗⃗  | 𝑓⃗⃗ ⃗⃗ ⃗⃗ | 𝑐𝑜𝑠  
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Teorema 3.9.(b) (vetor gradiente como vetor normal) 
Suponha-se que            tenha derivadas 
parciais de primeira ordem contínuas, e seja 

),,( 0000 zyxP  um ponto do gráfico da equação 

           com 0)( 0  PF . 

Se      é uma curva diferenciável nessa superfície 

com 0000 ,,)( zyxtr  , então: 

0)(')(
00
 trPF  Assim, )(

0
PF  é perpendicular ao vetor tangente r’(t0), conforme  figura: 

(Dica para demonstração: Escreva a equação da superfície como função composta e aplique a 
regra da cadeia). 
 

O vetor gradiente F  é normal a toda curva na superfície           . 
 

 A reta normal a uma superfície no ponto    é aquela que passa por    e tem 
             como vetor diretor. Suas equações simétricas são dadas por 

    

      
 

    

      
 

    

      
                                        

 
Exemplo 

3.9.(c) Escreva uma equação do plano tangente ao elipsoide 45²²4²2  zyx  no ponto      

(2,-3,-1): 
Solução: 
 
 
 
 
 
A intersecção de duas superfícies F(x,y,z)=0 e G(x,y,z)=0 é, em geral, uma curva no espaço. 

Pode-se representar essa curva 
parametricamente na vizinhança de todo ponto 

onde os vetores gradientes F  e G  não 
sejam paralelos. Esta curva C é normal a ambos 

os vetores F  e G . Isto é, se P é um ponto 
de C, então o vetor tangente a C em P é 

perpendicular a ambos os vetores )(PF  e 

)(PG . Decorre que o vetor GFT   é 

tangente à curva intersecção das superfícies 
F(x,y,z)=0 e G(x,y,z)=0. 
 

 
OBS.: se as superfícies em questão não se interseccionam mas são 
tangentes em um ponto            , então existe um plano neste 
ponto tangente às duas superfícies e é válida a relação: 

                            
 
 
Exemplo 
3.9.(d) Escreva as equações simétricas da reta tangente à curva de intersecção das superfícies 
                               em P(3,-3,3). 
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Exemplo 

3.9.(e) O ponto P(1,-1,2) pertence ao paraboloide 0²²),,(  zyxzyxF  e ao elipsoide 

09²²3²2),,(  zyxzyxG . 

Escreva uma equação do plano que contém P, normal à curva de 
intersecção dessas superfícies: 
Solução: 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 Sobre derivadas de ordem superior 

 
Teorema: 

Seja a função u=f(x,y), definida no  22 :, fX . O ponto ),( 000 yxM   é ponto 

interior do conjunto X. 
Se: 

1) 
xy

f

yx

f

y

f

x

f


















22

,,,  numa vizinhança do ponto M0 Ur(M0); 

2) Se as derivadas mistas 
xy

f

yx

f







 22

,  são contínuas no ponto M0; 

Então essas derivadas mistas são iguais. 
 
OBS.: A mesma afirmação é verdadeira para funções de quaisquer números de variáveis e para 
derivadas mistas para qualquer ordem.  
 
3.9.(f) Calcule as derivadas mistas da função               
 
 
 
3.9.(g) Calcule as derivadas mistas da função                
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3.10 Derivação de funções implícitas 

 
Teorema 3.10.(a) 
Dadas as funções          e        definidas e diferenciáveis, respectivamente em 

2D  e ],[ bax . Seja   a função definida implicitamente por         , ou seja, 

            para ],[ bax . Então: 

y

F

x

F

dx

df










   ],[ bax  onde as derivadas do segundo membro devem ser   

   calculadas em          e supondo 0




y

F
 

 
Exemplos 

3.10.(a) Seja ,0cos³),(  xyxyxF  determine 
dx

dy
 

 
 
 
 
 
 

3.10.(b) Calcule 
dx

dy
 sabendo que        é definida implicitamente por 

0²)²2²3(),(  yxyxF  

 
 
 
 
 
 
 
 
 
 
Teorema 3.10.(b) 

Dadas as funções ),(),,( yxfzezyxFF   definidas e diferenciáveis no 

²³  SeD  respectivamente, seja   a função de       definida implicitamente por 

F(x,y,z)=0, ou seja, F(x,y,f(x,y))=0 em  . Então: 

0






























z

F

z

F

y

F

y

f
e

z

F

x

F

x

f
  Syx  ),(  

As derivadas do segundo membro são calculadas em               
Exemplo 

3.10.(c) Calcule 
y

f
e

x

f








 sendo          definida implicitamente por 

03³³),,(  xzyxzyxF  
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Se           definida implicitamente por           , for diferenciável, então: 

dy
y

f
dx

x

f
df









  ou seja  dy

z

F

y

F

dx

z

F
x

F

df


















  

 
OBS: Se        é definida implicitamente pelo sistema de equações            e 
          , dos quais é possível obter a função implícita          e         , tal que 
                      , então: 
 

z

G

y

G
z

F

y

F

x

G

z

G
x

F

z

F

dx

dy































   

z

G

y

G
z

F

y

F

y

G

x

G
y

F

x

F

dx

dz































  

 
Exemplo 
3.10.(d) Sejam                       e                       , 

calcule 
dx

dy
 e 

x

z





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Se              e              onde   e   são funções implícitas de   e  , então: 
 
 

v

G

u

G
v

F

u

F

v

G

x

G
v

F

x

F

x

u



































 Da mesma forma define-se: 

y

u




,

x

v




,

y

v




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Exemplo 

3.10.(e) Dada                      e                  , determine 
x

u




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3.11 Extremos das funções de mais de uma variável 

 
 Extremos relativos 

 

a) Uma função de duas variáveis 
tem um valor máximo relativo 
       no ponto       se existe um 
disco circular de raio     com 
centro em      , tal que se       é 
ponto interior desta vizinhança, 
então       está no domínio de   e 

),(),( bafyxf  . 

 
 

b) Uma função f de duas variáveis tem um valor mínimo relativo        no ponto       se 
existe um disco circular de raio     com centro em       tal que se       é um ponto 

interior desta vizinhança, então       está no domínio de   e ),(),( bafyxf  . 

 

Na figura temos:  , ponto máximo relativo de  , pois ),( 11 baf é maior que os valores 

próximos de           é o mínimo relativo de  , já que ),( 33 baf é menor que os valores 

próximos de           não é nem máximo nem mínimo relativo, pois os valores de        
aumentam quando nos aproximamos de   e diminuem quando nos aproximamos de  ;   não 

é ponto de mínimo relativo porque ),( 44 ba  não é centro de nenhum disco inteiramente 

contido em  . 
 
Conclusão: Só podem ser extremos relativos de uma função, pontos interiores do domínio. 
  
Teorema 3.11.(a) (Condição necessária para extremos relativos) 
Seja       um ponto interior do domínio de uma função          cujas derivadas parciais 
        e         existem. Então se   tem extremo relativo em       é necessário que 

                 , isto é,  ⃗⃗⃗        ⃗⃗, ou seja, no ponto em que a função tem extremo 

relativo, seu gradiente ou não existe ou é o vetor nulo. 
 
* os pontos em que a função tem extremos relativos são chamados de PONTOS CRÍTICOS, no 
entanto, alguns pontos críticos podem ser somente “pontos de sela”, ou seja, pontos críticos 
onde a função não tem máximo nem mínimo. 
 
Teorema 3.11.(b) (Teste da segunda derivada) 
Seja       um ponto interior do domínio de   tal que as primeiras derivadas parciais de 
  existem e são contínuas em algum disco circular com centro em       contido no domínio 
de  . Se       é um ponto crítico de  , isto é,                   e 

))²,((),().,(
),(),(

),(),(
bafbafbaf

bafbaf

bafbaf
xyyyxx

yyxy

xyxx
  então: 

 
                                                                                                    

a) Se 0),(0  bafe xx , então f tem máximo relativo em        

b) Se 0),(0  bafe xx , então f tem mínimo relativo em      ; 

c) se 0 , então f tem um ponto de sela em      ; 

Figura 1 

http://pt.wikipedia.org/wiki/S%C3%A9culo_XIX
http://pt.wikipedia.org/wiki/Alemanha
http://pt.wikipedia.org/wiki/Ludwig_Otto_Hesse
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d) se 0 , não podemos afirmar nada. Temos que utilizar outros testes. 
Exemplo 
3.11.(a) Determine e classifique todos os pontos críticos de                      . 
(0,0) sela, (0,4) sela, (3,0) sela e (1,4/3) Max relativo. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.11.(b) Determine os pontos críticos de 
44),( yxyxf  e classifique-os como ponto de 

máximo ou mínimo relativo ou ponto de sela. 
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3.11.(c) Deseja-se construir um depósito retangular sem tampa, com volume       . O 
custo do metro quadrado de material a ser usado é de           para o fundo,           e 
          para os lados distintos. Determine as dimensões do depósito que minimizam os 
custos. 
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 Extremos Absolutos 

 
Def.3.11(a): Uma função   de duas variáveis tem um valor máximo absoluto        no ponto 

      de seu domínio   se ),(),( bafyxf   para todo ponto       em  . Analogamente,   

tem um valor mínimo absoluto ),( dcf  em       de seu domínio  , se ),(),( dcfyxf   

para todo ponto       de  . 
 
Teorema 3.11.(c) (existência do extremo absoluto) 
Seja   uma função de duas variáveis cujo domínio   seja compacto. Então   tem um valor de 
máximo absoluto e um valor de mínimo absoluto. 
 
Observações: 
a) Um extremo absoluto que ocorre em um ponto interior do domínio   é automaticamente 
um extremo relativo de  ; um extremo absoluto de   que não é um extremo relativo, localiza-
se em algum ponto da fronteira de  . 

b) Na figura 1,   é ponto de máximo absoluto e também relativo, pois Dba ),( 11
;   é 

mínimo absoluto, mas não é mínimo relativo, pois ),( 44 ba está na fronteira de  , mas não é 

ponto interior. 
c) Para localizarmos o extremo absoluto de  , primeiro encontramos todos os extremos 
relativos e comparamos o maior e o menor valor destes com os valores de   ao longo da 
fronteira de  . 
 
Exemplo 

3.11.(d) Ache os valores máximos e mínimos atingidos pela função 3),(  yxxyyxf  

em pontos da região triangular   do plano   , com vértices em                      
      máximo absoluto,       mínimo absoluto,       sela. 
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3.12 Multiplicadores de Lagrange 

 
 A figura mostra a curva da restrição 
juntamente com várias curvas de nível da função 
        . Essas curvas de nível tem equação 
        , onde              . 
 Maximizar        sujeita à          é 
achar o maior valor de   tal que a curva de nível 
         intercepte         . Parece, da figura, 
que isso acontece quando essas curvas se tocam, ou 
seja, quando essas curvas têm uma reta tangente em 

comum (caso contrário, poderíamos aumentar o valor de “ ”). Isso significa que as retas 
normais no ponto        , onde as duas curvas se tocam, devem ser as mesmas. Logo, seus 
vetores gradientes são paralelos: 
 

           ∙                           
 
Teorema 3.12.(a) (Multiplicadores de Lagrange – um vínculo) 
Sejam        e        funções com derivadas parciais de primeira ordem contínuas. Se o 
máximo (ou mínimo) de    sujeito à condição         , ocorre em um ponto   onde 

0)(  Pg , então )()( PgPf    para alguma constante  . 

 
Corolário 3.12.(a) 
Os pontos em que uma função   de duas variáveis tem extremos relativos sujeitos ao vínculo 

         estão incluídos entre os pontos       que satisfazem o sistema: 















0),(

),(),(

),(),(

yxg

yxgyxf

yxgyxf

yy

xx





 

Se a função   for uma função de três variáveis, então o sistema fica:  





















0),,(

),,(),,(

),,(),,(

),,(),,(

zyxg

zyxgzyxf

zyxgzyxf

zyxgzyxf

zz

yy

xx







 

 
 
Exemplo 
3.12.(a) Encontre os extremos de           se       está restrito à elipse         . 
 

 
 
 
 
 

𝑓 𝑥 𝑦    

𝑓 𝑥 𝑦     

 𝑥  𝑦   

𝑥 

𝑦 

𝑓 𝑥 𝑦     

𝑓 𝑥 𝑦    
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3.12.(b) Calcule o volume da maior caixa retangular de lados paralelos aos planos coordenados 
que pode ser inscrita no elipsoide                  (em m³). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.12.(c) Encontre os pontos extremos da função                que pertence à curva 
de intersecção do cilindro                    com o plano                                    
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Observação 
Algumas aplicações podem envolver mais de um vínculo. Em particular, se          estiver 
associada a dois vínculos             e            , então     ∙     ∙    

{
 
 

 
 
    ∙      ∙    

    ∙      ∙    

    ∙      ∙    

          

          

 

Analogamente, definimos o método dos multiplicadores de Lagrange para o caso de n 
expressões de vínculo. 
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4 Funções de várias variáveis e integrais espaciais 

 

4.1 Integrais duplas 

 
São integrais de duas variáveis. Sua aplicação inclui o cálculo de área, volume, massa e área de 
superfície. 
 

 Conceito:  

Seja   um conjunto quadrável no plano (tem área), ²D . Vamos avaliar as regiões, no  , 

fechadas. Nesse conjunto, é definida uma função i

n

i

DDyxf
1

).,(


  . 

 
 

),(,
iiiii

yxMDM   calculamos o valor da função neste 

ponto ),( ii yxf  

 
 
 
 

Calculamos  ,max)( ''''''

iiiiiii
DMMMMDd  e anotamos por 

  niDdmáx ii ,1)(   
                   ∑              

     ∑             
 
    

 

Def.4.1.(a) Se ii

n

i

i Ayxf  



).,(lim

1
0

 e esse limite é o mesmo para qualquer partição de D e 

para qualquer escolha dos pontos em cada parte dessa região, então esse limite é chamado 
INTEGRAL DUPLA da função f ao longo da região D e denotado por: 

YdAyxfAyxf

D

ii

n

i

i  



),().,(lim

1
0

 

OBS: Se   é a região quadrável,        é função contínua na região  , então 

YdAyxf

D

 ),(  

 
 Propriedades: 

1) Se as funções        e        são integráveis na região  , então a função ),(),( yxgyxf   

também é integrável e temos a seguinte igualdade: 

 

DDD

dAyxgdAyxfdAyxgyxf ),(),()),(),((

 

2) Se        é integrável na região  , então, ),(., yxfcRc  é integrável em   e: 

 

D D

dAyxfcdAyxfc ),(),(.  

3) Se a região   é dividida em duas partes sem pontos interiores em comum: 

),(21 yxfeDDD   é integrável, então: 
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  

D D D

dAyxfdAyxfdAyxf

1 2

),(),(),(  

 

4) )1),(()(  yxfDAdA

D

 

 

5) Seja        integrável em   e além disso é limitada: DyxMm  ),(|,  temos 

)(.),()(.),( DAMdAyxfDAmentãoMyxfm

D

   

6) Se        e        são integráveis ,),( Dyx   então: 

 

DD

dAyxgdAyxfyxgyxf ),(),(),(),(  

 
 
 

 Sentido geométrico da integral dupla 

 
 

Seja 0),(  yxfz  a superfície que fica acima da região D 

 
 
 
 
 
 

 
 
 

 i

basedaárea

i

altura

ii QDAyxf 


)(.)(  

 

 )(),( QVdAyxf

D

  

 
 
 
 

 
 

 Cálculo da Integral Dupla 

1º) 
 

 

   



d

c

b

a

b

a

d

cD

dxdyyxfdydxyxfdAyxf

DnocontínuayxfSeja

gularreregiãoDdycbxayxD

),(),(),(

),(

)tan(,:²),(

 

Ou ainda 

 𝑥𝑖 𝑦𝑖 𝑓 𝑥𝑖 𝑦𝑖   

 𝑥𝑖 𝑦𝑖  

𝑄𝑖 

𝑄 
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dydxyxfdxdyyxfdAyxf

d

c

b

a

b

a

d

cD

   






























 xa relação emy a relação em

),(),(),(  

 
Exemplo 

4.1.(a)    1;23;1²6³4),(  Dxyxyxf    
(312 uv) 

 
 
 
 
 
 
 
 
2º) 
 

 )()(,:²),( 21 xyyxybxayxD   

)(),( 21 xyxy  são funções contínuas no [   ] e        é contínua no D. 

 

   





























b

a

d

c

yx

yx

xy

xyD

dydxyxfdxdyyxfdAyxf

)(

)(

)(

)(

2

1

2

1

),(),(),(  

 
Exemplo 

4.1.(b) Calcule  

D

dAyx ²)26( , onde D é a região limitada pela parábola      e pela reta 

     .  (99/2) uv 
 
 
 
 
 
 
 
 
 
 

  



59 

 

4.2 Mudança de Variável na integral dupla 

 
 Integrais duplas em coordenadas polares 

Em muitas situações para facilitar a descrição de regiões de integração, se faz necessária uma 
mudança de variáveis. Apresentaremos nesta seção a mudança de variáveis para coordenadas 
polares. 

Def.4.2.(a) Uma região polar simples num sistema de coordenadas polar é uma região 
compreendida entre dois raios,     e    , e duas curvas polares contínuas,         e 
       , onde as equações dos raios e das curvas polares satisfazem as seguintes condições: 

(a)       (b)         (c)               

As coordenadas polares       de um ponto estão relacionadas com as coordenadas 
retangulares pelas equações: 

           

          

         

 

Assim, para convertermos de coordenadas retangulares para 
coordenadas polares em uma integral dupla, escrevemos         e        , usamos 
os limites de integração apropriados para   e  , e substituímos    por      . (mostrar) 

∬         ∫ ∫            

     

     

  

   

 

Exemplo 

4.2.(a) Calcular ∬       
    

 
, sendo   {                           } 

Rta. 
 

 
        

 

 

 
4.2.(b) Ache o volume do sólido no primeiro octante, limitado pelo cone de equação 

  √      e pelo cilindro de equação         . 
Rta. 6 uv 

 
 
 
 
 

4.2.(c) Determine a área da figura que é externa ao círculo         e interna à cardioide 
        .  Rta. Pi/4 ua 
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 Integral dupla no plano    (Jacobiano) 

 
No cálculo de integrais de funções de uma variável real, um dos métodos utilizados foi o de 

substituição de variáveis, que é baseado na fórmula ∫        ∫  (    )       
 

 

 

 
, onde g 

é uma função com derivada contínua em um intervalo I que contém c e d, e onde c e d são tais 
que        e       . Além disso, supomos   contínua na imagem de  . 
Uma mudança de variáveis num subconjunto do    é dada por uma transformação  

            
                           . 

 
 
Como vamos trabalhar com domínios de integração, consideremos     um subconjunto do 
  , limitado e com área. 
Vamos supor que                     admitem derivadas parciais de primeira ordem 
contínuas, e   injetora, o que significa que não existem dois pontos com a mesma imagem. 

 
 
Seja     {           } uma partição de um retângulo que contém     e         , 
para             
Observe a figura a seguir, onde    é um “pequeno” retângulo no plano    cujo canto inferior 
esquerdo é o ponto         e cujas dimensões são    e   . 
A imagem de   por   é a região   no plano   , onde em um dos pontos da fronteira está 
                . 
 

 
Considerando  ⃗             ⃗         ⃗ o vetor posição da imagem do ponto      ,   

  a 

curva de imagem, por  , do lado inferior de   , ou seja, correspondente a      e    
  a curva 

de imagem do lado esquerdo de   , ou seja, correspondente a     .  
 

Note que, podemos representar   
       

  vetorialmente por 

  
    ⃗               ⃗          ⃗   [        ]  
  
    ⃗               ⃗          ⃗   [       ]  
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Assim, o vetor tangente a   
  em         é   ⃗⃗⃗⃗  

  

  
        ⃗  

  

  
        ⃗ e o vetor tangente a 

  
  em         é   ⃗⃗⃗ ⃗  

  

  
        ⃗  

  

  
        ⃗. 

A figura a seguir, ilustra os vetores  ⃗ e  ⃗⃗, secantes às curvas   
       

 , respectivamente. 

 
 
 
Note que, podemos aproximar a região          pelo paralelogramo determinado pelos 

vetores  ⃗ e  ⃗⃗. 
 ⃗   ⃗            ⃗        

 ⃗⃗   ⃗            ⃗        
Uma aproximação mais conveniente de    pode ser obtida aproximando-se esses vetores 
secantes por vetores tangentes, como segue: 
 
 

 ⃗  
 ⃗            ⃗       

  
      ⃗⃗⃗⃗     

 ⃗⃗  
 ⃗            ⃗       

  
      ⃗⃗⃗ ⃗    

 
Logo, podemos aproximar    pelo paralelogramo determinado pelos vetores   ⃗⃗⃗⃗     e   ⃗⃗⃗ ⃗   , 
cuja área é dada por 

      ⃗⃗⃗⃗       ⃗⃗⃗ ⃗        ⃗⃗⃗⃗    ⃗⃗⃗ ⃗       
onde  
 

  ⃗⃗⃗⃗    ⃗⃗⃗ ⃗  
|

|

 ⃗  ⃗  ⃗⃗
  

  

  

  
 

  

  

  

  
 

|

|
 (

  

  

  

  
 

  

  

  

  
)  ⃗⃗ 

 
Observe que podemos reescrever a expressão acima como 
 

  ⃗⃗⃗⃗    ⃗⃗⃗ ⃗  |

  

  

  

  
  

  

  

  

|  ⃗⃗ 

 
O determinante acima é chamado JACOBIANO da transformação  . 
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Def.4.2(b) 
 Se   for a transformação do plano    no plano   , definida pelas equações          e 

        , então o Jacobiano de   é denotado por           ou 
      

      
 e é definido por 

          
      

      
 |

  

  

  

  
  

  

  

  

| 

 
Com essa notação podemos obter uma aproximação da área    de   , como  
 
 

                   
 
Onde o Jacobiano é calculado em        . 
 
Observação 
Prova-se que o erro no cálculo de    tende a zero quando       e     . 
Assim, considerando          uma função contínua em           , temos: 

 

∑             ∑ (                 )                   

  

   

  

   

 

 
Lembrando da definição de integrais dupla, por somas de Riemann, isso nos leva a pensar que 
 

∫∫            
   

∫∫                                
   

 

 
Teorema 4.2.(a) 
Seja        limitado e com área, e      um conjunto aberto que contém    . Seja 
                              uma transformação com derivadas parciais de 
primeira ordem contínuas em  , injetora no interior de     e com               para todo 
      no interior de    . Nessas condições, se          é contínua em          ),  

temos:  

∫∫            
   

∫∫                                
   

 

 
 
Exemplo 

4.2.(d) Calcule ∫∫
      

   
    

   
, sendo     o domínio limitado pelas retas      , 

     ,       e      . Rta. 
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Exemplo 

4.2.(e) Calcule ∫∫    
 

 
        

 

 
         

   
, sendo     a região triangular de 

vértices                      . Rta. (  
    

 
) 
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Exemplo 

4.2.(f) Calcule ∫∫ √         
   

, sendo     a região triangular de vértices 

                       Rta.  
√      √    
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4.3 Área de Superfície 

 
Seja S a superfície com a equação         , onde   tem derivadas parciais contínuas. 
Para simplificar a dedução da fórmula da área, vamos supor que          e que o domínio 

  de   seja um retângulo. 
Vamos dividir   em retângulos pequenos     com área 

       . Se         é o canto de    mais próximo da 
origem, seja                    o ponto de   
diretamente acima dele (figura 1). O plano tangente a   
em    é uma aproximação de   perto de   . Assim, a 
área     da parte desse plano tangente (um 
paralelogramo) que está diretamente acima de    é 
uma aproximação da área     da parte de   que está 
diretamente acima de    . Então a soma ∑    é uma 

aproximação da área total de  , a qual parece melhorar 
à medida que aumentamos o número de retângulos. 
Portanto definimos a área de superfície de   como 

 

        
   

∑   

 

   

 

 
 

Tomemos os vetores  ⃗ e  ⃗⃗ como os vetores que 
começam em    e correspondem aos lados do 
paralelogramo com área     (Figura 2). Então 

    | ⃗   ⃗⃗|. Lembre-se que           e           são 

as inclinações das retas tangentes a    com direções de 

 ⃗ e  ⃗⃗. Portanto 
 
 

 ⃗     ⃗              ⃗⃗ 

 ⃗⃗     ⃗              ⃗⃗ 

 

 ⃗   ⃗⃗  |

   

              

              
|                 ⃗                ⃗       ⃗⃗   

 

 [           ⃗            ⃗   ⃗⃗]   

 
Logo, 

    | ⃗   ⃗⃗|  √[         ]
  [         ]

 
      

 
 
 
 
Da definição, temos: 

        
   

∑   

 

   

    
   

∑√[         ]
  [         ]

 
     

 

   

 

 
E, por definição de integral dupla podemos obter a seguinte fórmula: 

Figura 1 

Figura 2 
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     ∬√[         ]
  [         ]

 
     

 

 

 

 Podemos estabelecer fórmulas análogas, no caso de a superfície ter projeções 
convenientes nos planos    ou   : 

              ∬√[  (  
   )]

 
 [  (  

   )]
 
     

 

 

              ∬√[ 
 
       ]

 
 [ 

 
       ]

 
     

 

 

 

 
 
Exemplos 
4.3.(a) Determine a área de superfície da parte da superfície         que está acima da 

região triangular   no plano    com vértices                    .   Rta 
 

  
     √   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3.(b) Determine a área da parte do paraboloide         que está abaixo do plano    . 

Rta. 
 

 
   √      
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Teorema 4.3.(a) 

Seja   positiva em [   ] e    contínua em [   ]  Se      for a medida da área da superfície de 
revolução obtida girando-se a curva         com bxa  , em torno do eixo  , então: 

 

b

a

dxxfxf 1)²(')(2A(S)   

Dem.: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exemplo 

4.3.(c) Calcule a área do paraboloide de revolução, gerada pela rotação da parte superior da 
parábola y²= 4px, com hx 0 , em torno do eixo x. 
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4.4 Integral Tripla 

 
 Problema motivador 

 
Qual é a massa de um sólido  , cuja densidade de massa em cada ponto         é dada pela 
função         , considerando-se   contínua e positiva? 
 
Analisemos a construção da integral tripla. 
 

Seja u=f(x,y,z) definida no conjunto ,:³;  QfQ  Q é cubicável (tem volume). 

Particionamos Q, de tal modo que cada subconjunto QQi  , seja cubicável e ni ,1 , não 

existam pontos interiores em comum. 

Tomamos qualquer ponto iiiii QzyxM ),,( e calculamos o valor da função nesse ponto 

),,(: iiii zyxfM . Fazemos isso para todos os subconjuntos de Q. 

Agora, multiplicamos o valor da função calculada no ponto iiiii zyxM ),,( pelo volume de iQ  e 

somamos esse resultado para todos os subconjuntos da partição feita. 


)(int),,(

)(1

fegralsomaVzyxf

iQV

i

n

i

iii 


 

Introduzimos o comprimento de partição 
iiiiiii QMMMMdistmáxQdd  '''''' ,)(  

)  partição  da  ocompriment(,  idmáx  

E calculamos     i

n

i

iii Vzyxff  



1

00
).,,(lim)(lim


  

 
Def.4.4.(a) (Integral Tripla) 

 Se i

n

i

iii Vzyxff  



1

00
).,,(lim)(lim


  e esse limite não depende nem do jeito da partição 

nem da escolha dos pontos em cada parte dessa região, então esse limite é chamado 

INTEGRAL TRIPLA pela região Q, e denotada  por 
Q

dVzyxf ),,(  

 
 Cálculo da Integral Tripla 

 
1º) Se  temos paralelepípedo retangular: 
 

 

        



d

c

b

a

f

e

b

a

f

e

d

cD

b

a

d

c

f

e

dzdxdyzyxfdydzdxzyxfdzdydxzyxfdVzyxf

fzedycbxazyxQ

),,(),,(),,(),,(

;;³,),,(

 

 
Exemplo 
4.4.(a) f(x,y,z)=xy+yz. Q consiste nos pontos (x,y,z) do espaço tais que: 

.10;32;11  zyx
  

Rta. 
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2º)  
 

  



xyD

yxz

yxzQ

xy

dzdyzyxfdVzyxf

zyxf

yxzyxz

yxzzyxzquadrávelregiãoDyxzyxQ

),,(),,(

Q  no  contínua ),,(

D  região  na  contínuas  funções ),(),,(

),(),()(),(:³),,(

),(

),(

xy21

21

2

1

  
3°) 

 

  



xzD

zxy

zxyQ

xz

dydzzyxfdVzyxf

zyxf

zxyzxy

zxyyzxyquadrávelregiãoDzxzyxQ

),,(),,(

Q  no  contínua ),,(

D  região  na  contínuas  funções ),(),,(

),(),()(),(:³),,(

),(

),(

xz21

21

2

1

  
Exemplos 
4.4.(b) Ache o volume do segmento oblíquo de um paraboloide delimitado pelo paraboloide 

        e pelo plano      . Rta. 
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4.4.(c) Calcule o volume do sólido cuja base é o triângulo de vértices                           

e é delimitado pelos planos     e      . Rta. 
 

 
   

 
 
 
 
 
 
 
 
 
 
 
 
 

 Propriedades da Integral Tripla 

 

1. Se as funções          e          são integráveis na região 3Q , Q é cubicável. 

Então gf   também  é integrável e  

 

QQQ

dVzyxgdVzyxfdVzyxgzyxf ),,(),,()),,(),,((  

 

2. Se o sólido   for dividido em duas partes sem pontos interiores em comum: 21 QQQ   e 

a função          é uma função integrável então: 

 

21

),,(),,(),,(

QQQ

dVzyxfdVzyxfdVzyxf  

 

3. Se a função          é integrável no 3Q , então: 

  cdVzyxfcdVzyxfc

QQ 2

),,(),,(.  

 
4. Se as funções          e          são integráveis no Q e 

Qz)y,(x, z)y,g(x,  z)y,f(x,  , então: 

dVzyxgdVzyxf

QQ

  ),,(),,(  

 

5. cubicável  sólidoqualquer    é  Q  onde)(QVdV

Q

  

 
 
 

4.5 Mudança de variáveis na Integral Tripla 

O método é semelhante ao utilizado em integrais duplas, exceto pelo fato de que agora 
trabalharemos com transformações de regiões tridimensionais, em vez de bidimensionais. 
 
Uma mudança de variáveis num subconjunto do    é dada por uma transformação  
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Onde      é um subconjunto limitado e com área,   possui derivadas parciais de primeira 
ordem contínuas e é injetora. 
 
Def.4.5.(a) 
Se   for a transformação do espaço de variáveis     no espaço    , definida pelas equações 
                       e          então o JACOBIANO de   é denotado por 

            ou 
        

        
 e é definido por 

            
        

        
 

|

|

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

|

|
 

Teorema 4.5.(a) 
Seja         limitado e com volume, e      um conjunto aberto que contém     . Seja 
                                             uma transformação com derivadas 
parciais de primeira ordem contínuas em  , injetora no interior de      e com 
                para todo         no interior de     . Nessas condições, se                     
           é contínua em            ) e  temos:  

∫∫∫           
    

  

  ∫∫∫                                                 
    

 

 
Exemplo 

4.5.(a) Calcule ∫∫∫           
    

, onde      é a região delimitada pelos planos    , 

   ,    ,       e os hiperboloides   
 

 
     

 

 
. Rta.      
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 Integrais Triplas em coordenadas Cilíndricas e Esféricas 

 
As substituições em coordenadas cilíndricas e esféricas são casos especiais do método de 
mudanças de variáveis em integrais triplas como transformações de regiões tridimensionais. 
 
Coordenadas Cilíndricas 

A representação em coordenadas cilíndricas de um ponto   é a terna ordenada  zr ,, , onde 

  e   são as coordenadas polares da projeção de   no plano polar e   é a distância orientada 
deste plano até  . 
 

 
 
 
 
 
 
 
 
 
A lei da transformação   de coordenadas cilíndricas         para coordenadas cartesianas 
        é dada por: 
 

         (                          )                  

E o Jacobiano             é definido por 

            
|

|

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

|

|
 |

           
          
   

|    

 
Assim, uma integral tripla retangular pode ser escrita em coordenadas cilíndricas como: 
 
 

∫∫∫           
    

 ∫∫∫                        
    

 

 
 
Exemplo 
4.5.(b) Calcule a massa do sólido de densidade             , limitado pelo cone 

  √      e o plano    . Rta. 
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Exemplo 
4.5.(c) Determine o volume do sólido   delimitado pelos paraboloides         e 
            . Rta.         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Coordenadas esféricas 
 
 

 
 

Num sistema de coordenadas esféricas há um plano polar e um eixo perpendicular ao plano 
polar, com a origem do eixo z na origem do eixo polar. Um ponto P em coordenadas esféricas é 

dado pela terna ordenada        , onde OP ,    é o ângulo que   ⃗⃗⃗⃗ ⃗⃗  forma com o eixo 

   positivo         e   é o ângulo das coordenadas cilíndricas. 
Note que, considerando o triângulo     , retângulo em   , temos        . Como 
        e        , podemos escrever             e            . Assim, a lei da 
transformação   de coordenadas esféricas         para coordenadas cartesianas é dada por: 
 

                                     
 
E, o Jacobiano             é definido por: 
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|

|

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

|

|

 |

                           
                          

           
|          

 
Logo, uma integral tripla retangular pode ser escrita em coordenadas esféricas como: 
 

∫∫∫           
    

 ∫∫∫                                         
    

 

 
Exemplos 
4.5.(d) Ache a equação cartesiana da superfície         e identifique-a. 
 
 
 
 
 
4.5.(e) Escreva a equação do paraboloide        , em coordenadas esféricas. 
 
 
 
 
 
4.5.(f) Calcule o volume do sólido   limitado acima pela esfera             e abaixo 

pelo cone    √       . Rta.
   

 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5.(g) Calcule o volume do sólido delimitado abaixo pela esfera                e 

acima pelo cone   √     . Rta. 
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5 Campos vetoriais (funções vetoriais de várias variáveis)  

 

5.1 Conceito de campo vetorial 

 
Def.5.1.(a) (campo vetorial) 
Um campo vetorial definido em uma região   do espaço, é uma função   com valores vetoriais 
que associa a cada ponto         de  , um vetor 

kzyxRjzyxQizyxPzyxF ),,(),,(),,(),,(  . 

Pode-se descrever mais sucintamente o campo vetorial   em termos de suas componentes  , 
  e  , escrevendo-se                e   são funções escalares (com valores reais). 

 Um campo vetorial no plano, é uma função  , com valores vetoriais, que associa a 
cada ponto       de   , um vetor. 

 Cada vetor é representado por uma seta de tamanho           tendo       como seu 
ponto inicial. 

 
Exemplo 

5.1.(a) Campo vetorial jyixyxF ),(  

 
Para cada ponto       no plano coordenado,        é 
simplesmente seu vetor posição. Aponta diretamente a 

partir da origem e tem comprimento          

ryxjyix  ²² , igual à distância da origem a 

       
 
 
* Um campo de velocidade é um campo vetorial em que 

cada ponto está associado um vetor velocidade e um campo de forças é aquele que atribui a 
cada ponto, um vetor força. 
 
Def. 5.1.(b) (campos vetoriais estacionários) 
Chamamos campos vetoriais estacionários os campos em que os vetores são independentes 
do tempo. 
 
Exemplo 
5.1.(b) Mostre numa figura as representações, tendo como ponto inicial em        dos vetores 

do campo vetorial jxiyyxF ),(  (campo de vetores velocidade associado a um 

rodamoinho de água em torno da origem, com velocidade angular constante, no sentido anti-
horário). 
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5.2 Limite e continuidade de campos vetoriais 

As funções vetoriais de várias variáveis são uma generalização das funções vetoriais de uma 
variável e suas propriedades e definições são análogas. 
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5.3 Derivada direcional de um campo vetorial 

 
 

Consideremos um campo vetorial  

kzyxRjzyxQizyxPzyxF ),,(),,(),,(),,(  . 

Escolhemos um ponto P no espaço e uma direção em   

dada por um vetor unitário b . Seja   uma semi-reta cuja 

origem é   e possui a direção de b  e seja   um ponto 
sobre   cuja distância de   a   é  . A derivada direcional 
de um campo em um ponto   é dada por: 
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 Interpretação física da derivada direcional de um campo vetorial 

 
Consideremos um fluído movendo-se em uma região  , em regime estacionário, isto é, a 
velocidade em qualquer ponto          é independente do tempo. Então, a cada ponto   de 
  está associado um vetor  ⃗          que é a velocidade do fluido em  . A derivada 

direcional de  ⃗ em  , numa direção   ⃗⃗, expressa a variação da velocidade do fluido, em  , na 

direção de  ⃗⃗. 
 
 
 
 
Exemplo  
 

5.3.(a) Determine a derivada direcional em        do campo vetorial radial jyixyxF ),( , 

na direção de um vetor  ⃗   ⃗   ⃗.  
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5.4 Rotacional 

 

Def.5.4.(a) Seja kzyxRjzyxQizyxPzyxF ),,(),,(),,(),,(  , onde  ,   e   tem derivadas 

parciais em alguma região. O rotacional de   é dado por: 
 

RQP

zyx

kji

FrotF













  
 
 

 Interpretação física do rotacional 

 
O rotacional de um campo vetorial aparece em diversas situações na física, como por exemplo: 

 Na análise de campos de velocidade na mecânica dos fluídos; 
 Na análise de campos de forças eletromagnéticas; 
 Pode ser interpretado como uma medida de movimento angular de um fluído, e a 

condição     ⃗   ⃗⃗, para um campo de velocidade  ⃗, caracteriza os chamados fluxos 
irrotacionais; 

 A equação     ⃗⃗   ⃗⃗, onde  ⃗⃗ é a força elétrica, caracteriza que somente forças 
eletrostáticas estão presentes no campo elétrico. 

 Quando aplicado à dinâmica de fluídos, o rotacional de um campo mede, localmente, 
o quanto que o campo de velocidade de um fluído está girando. 

 
 Propriedades 

 

Sejam  ⃗ e  ⃗ campos vetoriais e   uma força escalar, todas definidas em um domínio   ( ⃗ e  ⃗ 
com derivadas parciais de 1ª ordem contínuas em   e   diferenciável em  ). Então: 

i.    ( ⃗   ⃗)      ⃗      ⃗ 

ii.    (   ⃗)        ⃗         ⃗ 

 
 
 
 
Exemplos 

5.4.(a) Se ,²³)²2(²),,( 4 kzyjzyxizxyzyxF   determine      ⃗. 

 
 
 
 
 
 
 

5.4.(b) Um escoamento é representado pelo campo velocidade kjyixV 301010  . 

Verifique se o campo é irrotacional. 
 
 
 
 

Existe uma relação entre o rotacional e a velocidade 
angular num escoamento. A ocorrência de um movimento 
de rotação de um fluído é descrita por um vetor rotacional 
não nulo. 
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5.5 Divergência 

 
Def.5.5.(a) 

Seja kzyxRjzyxQizyxPzyxF ),,(),,(),,(),,(  , com  ,   e   tendo derivadas parciais 

em alguma região. A divergência de   é dada por: 

z

R

y

Q

x

P
FdivF














 .

 
 

 Interpretação física 

O divergente de um vetor mede a variação do fluxo desse vetor. 
 

Se  ⃗ é um campo de velocidade de um fluído ou gás, então     ⃗ informa sobre o fluxo de 

massa: se em um ponto  ,     ⃗   , significa que há maior quantidade de massa fluindo para 

o ponto do que saindo dele, isto é, existe um poço em  ; agora de     ⃗   , significa que flui 

maior quantidade de massa de   do que para  , isto é, há uma fonte em  ; e se     ⃗   , o 
que é possível para fluídos incompressíveis1, então não há poço nem fonte em  . 

Da mesma forma, se  ⃗ representa o fluxo de calor e se     ⃗ em   é maior que zero, então há 
uma fonte de calor em  , isto é, o calor está deixando   e, assim, a temperatura em   está 

decrescendo. Do contrário, se     ⃗   , o calor está sendo absorvido em  , ou seja, a 
temperatura está aumentando. 
 
Exemplo 
5.5.(a) Um fluído escoa com velocidade uniforme  ⃗    ⃗. Mostre que todas as partículas se 
movem em linha reta e que o campo de velocidade representa um escoamento 
incompressível. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Propriedades 

Sejam  ⃗ e  ⃗ funções vetoriais definidas em um domínio   e   uma função escalar 

diferenciável em  . Se existe     ⃗ e     ⃗, então: 

FhdivFhFhdivii

divGdifFGFdivi

..).()

)()





 

                                                 
1
 Ver item 13.5 “Leituras Complementares: fluídos incompressíveis.” 

Fluxo = 
𝑞𝑢𝑎𝑛𝑡𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑓𝑙𝑢𝑖𝑑𝑜

𝑡𝑒𝑚𝑝𝑜
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 CONCLUSÕES 

 

1) k=1, RRRf n  1:  

 ),...,,()( 21 nxxxfxfy   

     transforma em um único número real, cada n-upla ordenada 

   Xxxx n ,...,, 21  

2)  n>1, k>1, 
Kn RRf :  

 ),...,,( 21 kyyyy   

 )),...,,(),...,,...,,(),,...,,(()( 21212211 nknn xxxfxxxfxxxfxfy   

   transforma em k-uplas ordenadas ),...,,( 21 kyyy KR , cada n-upla ordenada 

   Xxxx n ,...,, 21 . 

3)  n=1, k>1, 
KRRf :  

- 

 ),...,,( 21 kyyyy   

 ))(),...,(),(()( 21 xfxfxfxfy k  

 f transforma cada número real em k-ulpas ordenadas ),...,,( 21 kyyy KR . 
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5.6 Integral curvilínea de primeira espécie 

 

Temos uma curva     ⃗         ⃗       ⃗       ⃗⃗ onde   é um parâmetro real,  [   ], 
 ⃗        , é função vetorial. 
 
Seja    uma curva suave por partes e seja a função          definida na curva  . Agora 
começamos a construir a integral. 

   n

kk 1
  (partição gerada sobre a curva)  n

kktba
1

];[


  (partição no [a;b]) 

 
 
 
 
 

       )();();( kkkkkk tzztyytxx   

 
Chamaremos de   o comprimento da curva e de    a variação desse comprimento. Sendo 
assim,     indicará a variação, do comprimento da curva, no k-ésimo subintervalo da partição. 
Agora calculamos o comprimento de todas as partes da curva após a partição. 
Escolhemos o maior deles:  

  nklmáx k ,1,   

Pegamos qualquer ponto sobre a curva, no k-ésimo subintervalo, ),,( kkkk zyxM , e 

calculamos o valor da função          nesse ponto. Depois multiplicamos esse valor pelo 
comprimento do respectivo arco. 

Finalmente, somamos os resultados   ̅ ,      ̅̅ ̅̅̅ 

k

n

k

kkk lzyxf 


.),,(
1

  

 
Def.5.6.(a) 
Seja    o maior comprimento de intervalo da partição, 

Se  k

n

k

kkk lzyxf  



.),,(lim

1
0

 e esse limite não depende nem do jeito da partição da curva 

gama nem da escolha dos pontos em cada parte da curva, então esse limite é chamado de 
INTEGRAL CURVILÍNEA DE 1ª ESPÉCIE da função ao longo da curva gama e denotamos do 
seguinte modo: 

 



 de m real  massa),,(.),,(lim

1
0

dlzyxflzyxf k

n

k

kkk


 

 

 Qualquer interpretação física da integral curvilínea 


dlzyxf ),,( , depende da 

interpretação física da função f. Se            representa a densidade linear num 

ponto         de um arame fino com o formato de  , então 


dlzyxf ),,(   

representará a massa m do arame. 
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 Cálculo da Integral Curvilínea de 1ª espécie 

 

,)()()()( ktzjtyitxtr   t[a;b] 

h(t)=f(x(t),y(t),z(t)) 

 ))²('())²('())²('(

arco do ocompriment

tztytxllk    

dttztytxtztytxfdlzyxf

b

a

))²('())²('())²('()).(),(),((),,(  


 

 
No plano z(t)=0: 

dttytxtytxfdlyxf

b

a

))²('())²('()).(),((),(  


 

 
 
 
Exemplos 

 5.6.(a) Calcular a integral curvilínea 


xydl  onde   é o quarto de circunferência do primeiro 

quadrante parametrizado por x=cost, y=sent 
2

0


 t .  Rta. 1/2 

 
 
 
 
 

5.6.(b) Calcule 


xdl2  onde  é formada pelo arco    da parábola                     , 

seguido pelo segmento de reta vertical                   . Rta
.  

 
( √   )   

 

 
 
 
 
 
 
 
 
 
 

5.6.(c) Calcule 


ysenzdl  onde  é a hélice circular dada pelas equações              , 

          . Rta. √   

 
 
 
 
 
 
 
 
 



82 

 

5.7 Integral Curvilínea de 2ª espécie 

 

Seja   uma curva simples suave ou suave por partes no ²)³(  ou . 

,)()()()(: ktzjtyitxtr   funções                  têm derivadas contínuas ],[ bat . 

x’(t)²+y’(t)²+z’(t)² 0 

Seja a função          definida na curva  ; 

Seja nklk ,1  o comprimento do intervalo da partição da curva; 

Seja 
klmáx  o maior comprimento de intervalo da partição; 

),,(, kkkkkk zyxMlM   calculamos o valor da função no ponto kM ,  P ),,( kkk zyx ; 

Seja 



n

k

kkkk xzyxP
1

1 ).,,( . 

Def.5.7.(a) 

Se 
1

0
lim


  e esse limite não depende nem do jeito da partição da curva  , nem da escolha 

dos pontos de cada parte da curva  , então esse limite é chamado INTEGRAL CURVILÍNEA DE 

2ª ESPÉCIE da função P ao longo da curva  . 
 






















dzzyxRzzyxR

dyzyxQyzyxQ

dxzyxPxzyxP

n

k
kkkk

n

k
kkkk

n

k
kkkk

),,().,,(limlim

),,().,,(limlim

),,().,,(limlim

1
0

3
0

1
0

2
0

1
0

1
0













 

No caso geral temos: 
33:),,(),,(),,(  FkzyxRjzyxQizyxPF  




 dzzyxRdyzyxQdxzyxPdzzyxRdyzyxQdxzyxP ),,(),,(),,(),,(),,(),,(  

 

Se as funções         são contínuas na curva   suave ou suave por partes, então a integral 
curvilínea de segunda espécie, existe. 
 

 








b

a

dttztztytxRtytztytxQtxtztytxP

dzzyxRdyzyxQdxzyxP

)(')).(),(),(()(')).(),(),(()(')).(),(),((

),,(),,(),,(

 

=  
b

a

dttztytxtztytxRtztytxQtztytxP )(')('),(')).((),(),(()),(),(),(()),(),(),((  

=   
b

a

dttztytxRQP )('),('),(',,  

Podemos ainda, escrever a integral na forma vetorial: 




 drFdttrtrF .).(')).((  

 
 

 Significado físico 

Podemos definir o trabalho realizado por um campo de forças sobre uma partícula em 

movimento ao longo de uma curva em 3  como uma integral de linha. 



83 

 

Exemplo 
5.7.(a) Uma partícula se move ao longo de uma parábola       do ponto        ao ponto 
     . Ache o trabalho total realizado, se o movimento for causado pelo campo de forças 
                       . Suponha que os arcos sejam medidos em metros e a força 
em Newtons. 
Rta. 

   

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Def.5.7.(b) 

Seja   uma curva suave por partes tal que estas partes sejam n ,...,, 21 . Então a integral de 

linha kzyxRjzyxQizyxPF ),,(),,(),,(  sobre  , é definida como: 

 
 
















n

i
i

drtrfFdr
1

))(( . 

 
Exemplo 

5.7.(b) Calcule a integral de linha 


 dyxyxxydx )3²2(4 , se a curva   consiste no segmento 

de reta de         a       e no arco do primeiro quadrante da circunferência         e 
se for percorrida no sentido anti-horário.  Rta. 25J 
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5.8 Integrais de linha independentes do caminho 

 

Se   e   forem dois pontos de uma região aberta   no espaço, o trabalho 


drF. realizado 

para mover uma partícula de   para   por um campo   definido em  , geralmente depende 
do caminho percorrido. Para alguns campos especiais, entretanto, o valor da integral é o 
mesmo para todos os caminhos de   a  . Se isso for verdade para todos os pontos   e   em 

 , dizemos que 


drF. é independente do caminho em  , e que   é conservativo em  . 

Def.5.8.(a) (Campos conservativos e função potencial) 

O campo vetorial F, definido na região D é CONSERVATIVO, se existe uma função escalar f 

definida em D, tal que fF   em todos os pontos de D. Nesse caso, f é chamada FUNÇÃO 

POTENCIAL do campo vetorial F. 

* em algumas aplicações físicas, a função escalar f é chamada de função potencial do campo 

vetorial F se fF   

 
Teorema 5.8.(a) 
 

Seja   uma curva suave (ou suave por partes) contida na região D com extremidades nos 

pontos ),,(),,( 222111 zyxBezyxA . Se F for um campo vetorial conservativo em D e se   

for uma função potencial para F, então a integral curvilínea 


drF.  será independente do 

caminho   e 


drF. = ),,( 222 zyx - ),,( 111 zyx . 

 
* Para a aplicação deste teorema, é necessário saber se o vetor dado representa o gradiente 

de uma função, para encontrarmos a função potencial 
1 , e para isso, temos os seguintes 

teoremas: 
 
Teorema 5.8.(b) 
 

Sejam P e Q funções de duas variáveis x e y, definidas em 2D , tais que Py e Qx sejam 
contínuas em D. Então o vetor P(x,y)i+Q(x,y)j será um gradiente em D, se e somente se 
Py(x,y)=Qx(x,y) para todos os pontos de D. 
 
 
Teorema 5.8.(c) 

Sejam P, Q e R funções de três variáveis x, y e z definidas em 3
2 D , tais que 

                  sejam contínuas em 2D . Então o vetor                                             

         ⃗           ⃗           ⃗⃗  será um gradiente em 2D  se, e somente se 

                                         e                     para todos os 

pontos de 2D . 
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Exemplo 
5.8.(a) Determine uma função potencial do campo conservativo                  
              , sendo a trajetória retilínea do ponto        ao ponto B(x1,y1), 

parametrizada por x=x1(t), y=y1(t) para 10  t  

 

 

 

 

5.8.(b) Seja                              , mostre que a integral 


drF.  é 

independente do caminho e calcule seu valor de                Rta. 3 

 

 

 

 

 

 

5.8.(c) Seja                    ⃗            ⃗            ⃗⃗, mostre que a 

integral 


drF.  é independente do caminho e calcule seu valor de (4,-2,1) a (-1,2,0). Rta. -13 
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Teorema 5.8.(e) 

Seja   uma curva fechada suave (ou suave por partes), contida em um disco aberto 2B . 

Se   for um campo vetorial conservativo em B, então 


drF. =0 

1º caso) Se tivermos dois caminhos de   para  , um deles pode ser invertido para formar uma 
curva fechada. 

  

 

 

Dem.: 

 

 

 

2º caso) Se   e   estiverem sobre uma curva fechada, podemos inverter parte da curva para 
fazer dois caminhos de      . 

 

 

 

 

Dem.: 

 

 

 

 

 

Exemplo 

5.8.(d) Uma partícula movimenta-se sobre a circunferência 20,2cos2)(  tjsentittr

Calcule o trabalho total realizado pelo campo de forças j
y

x
i

x
yyxF 



















41
3ln4),(  

 

𝐴 

𝐵 Γ  

Γ  

𝐴 

𝐵 

 Γ  

Γ  

𝐴 

𝐵 
Γ  

 

Γ  

 
𝐴 

𝐵 
Γ  

 

Γ  
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5.9 Teorema de Green e Teoremas correlacionados 

Teorema 5.9.(a) (Teorema de Green no plano) 

Sejam   e   funções de duas variáveis   e  , de tal modo que tenham derivadas parciais de 

primeira ordem, contínuas em um disco aberto 2B . Se   for uma curva suave (ou suave 
por partes), contida inteiramente em  , e se   for a região limitada por  , então: 

 


















 D

dA
y

P

x

Q
dyyxQdxyxP ),(),(  

   Por convenção, no Teorema de Green, tomamos o sentido anti-horário 
da curva. 

O Teorema de Green estabelece uma relação entre uma integral 

curvilínea ao longo de uma curva fechada, plana, simples ( ) e uma 
integral dupla usual sobre a região plana  , delimitada por  . 

 

Exemplos 

5.9.(a) Aplique o Teorema de Green para calcular a integral curvilínea 

  dyexdxxy arctgy)5()³92( , sendo   a circunferência x²+y²=4. Rta.     

 

 

 

 

 

5.9.(b) Calcule a integral curvilínea   dyxxydx ²23  onde   é a fronteira da região  , 

delimitada acima pela rela     e abaixo pela parábola        .  Rta. 27/4 
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* No exemplo anterior, viu-se que a integral dupla é mais fácil de calcular do que a integral 
curvilínea. Às vezes, entretanto, a situação se inverte. A consequência seguinte, do Teorema 

de Green, ilustra a técnica de calcular uma integral dupla 
D

dAyxf ),(  transformando-a em 

uma integral curvilínea 


QdyPdx . 

 Corolário do teorema de Green 

A área   da região  , delimitada pela curva fechada simples, parcialmente suave,  , é dada 

por:  


 xdyydxA
2

1

 

Para verificar que a integral de linha acima calcula a área da região  , basta aplicar o teorema 
de Green para o campo              : 

Teremos:                  

∮    ∬         ∬         
 

 
∮    ∬        

A integral  
 

 
∮         
 

 não é a única que calcula a área da região  , delimitada por  , 

mas é a mais simples. 

Exemplo 

5.9.(c) Use o teorema e o corolário de Green, para calcular a integral de linha 

dyxydxyx )4³2()3( 4 


, onde   é a elipse 1
4

²

9

²


yx
. Rta.              
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 A divergência e o fluxo de um campo vetorial 

Considere o fluxo estacionário de uma camada delgada de fluído no plano (como uma camada 

de água espalhando-se pelo assoalho). Seja        seu campo de velocidade vetorial, ),( yx  

a densidade do fluído no ponto      . A expressão FLUXO ESTACIONÁRIO significa que   e   

dependem apenas de   e   e não do tempo  . Deseja-se calcular a taxa à qual o fluído sai da 

região  , delimitada por uma curva fechada simples  . A integral curvilínea 


 ndsF.  é 

chamada FLUXO DO CAMPO VETORIAL  ⃗⃗⃗ ATRAVÉS DA CURVA  , ou seja, o fluxo   de  ⃗ 

através de  , é dado por   ∮  ⃗ ∙  ⃗⃗
 

  , onde  ⃗⃗ é o vetor normal unitário, exterior à  . 

No caso presente, do fluxo de um fluído com velocidade vetorial  ⃗⃗, o fluxo   de F= .V, é a 

taxa à qual o fluído está saindo de   através da curva de fronteira  , em unidades de massa 
por unidades de tempo. Mas a mesma terminologia é usada no caso de um campo vetorial 

arbitrário  ⃗    ⃗    ⃗. Assim é que se pode falar do fluxo de um campo elétrico ou 

gravitacional através de uma curva  . 

A forma vetorial da integral 


ndsF.  é 
D

dAF.  

 


















 DD

dA
y

Q

x

P
dAFndsF



Green de teorema
 do  vetorialforma

..          onde 
y

Q

x

P
difFF











 

Vejamos: 

Se   é dada pela equação vetorial  ⃗         ⃗       ⃗   para       então o versor 

tangente de  ⃗ é       
      ⃗       ⃗

  ⃗     
 e o versor normal de  ⃗ é dado por      

      ⃗       ⃗

  ⃗     
 

(verifique que o produto escalar entre os vetores tangente e normal é nulo). 

Então,  

∮  ∙     

 

 ∮  ∙      

 

 

  ⃗        ∮ [
                 

  ⃗     
 

                 

  ⃗     
]   ⃗       

 

 

 

 ∮ (         )         (         )       

 

 

 ∫         ∬(
  

  
 

  

  
)  

  ⏟                      
                  

 

Como o integrando na integral dupla é a divergência de  ⃗, temos uma segunda forma vetorial 
do Teorema de Green: 

  ∮  ∙     

 

 ∬             
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Exemplo 

5.9.(d) Calcule o fluxo exterior do campo  ⃗        ⃗     ⃗ através do quadrado delimitado 
pelas retas       e     .   Rta. 4 

 
 
 
 
 
 
 
 

 Laplaciano 

Def.5.9.(a): Laplaciano  

Seja  ⃗ um campo vetorial definido numa região do espaço, tal que                                 

 ⃗                 ⃗           ⃗           ⃗⃗   Se as derivadas parciais de segunda ordem 
de     e   são contínuas, chamamos LAPLACIANO à expressão: 

²²²
.)(

222
2

z

F

y

F

x

F
FFFgraddiv
















 

    ∙   É chamado operador de Laplace ou laplaciano, por sua relação com a equação de 
Laplace. 

Def.5.9.(b) (equação de Laplace) 

Se 0²  F , então esta expressão é chamada de EQUAÇÃO DE LAPLACE. 

* uma função escalar que satisfaz a equação de Laplace é chamada FUNÇÃO HARMÔNICA, 
esta função está intimamente ligada ao estudo da transferência de calor, radiação 
eletromagnética e outros ramos da física. 

Exemplo de interpretação física do Laplaciano em transferência de calor 

Equação de difusão do calor: 

 

 ⏟
  

  
    

                  

 Exemplo em que não há geração de energia interna) 

(relembrar o significado geométrico da segunda derivada para funções de uma variável real) 

Se calcularmos o laplaciano num determinado ponto do sistema e seu resultado for positivo, 
     , temos concavidade voltada para cima, então no ponto 
em que estamos calculando, a temperatura é menor do que a 
temperatura média na vizinhança do ponto. E se a temperatura 
no ponto é menor do que a temperatura média da vizinhança, 
ocorre transferência de energia na forma de fluxo de calor, da 
vizinhança para o ponto. A vizinhança transmite energia para o 
ponto e a temperatura no ponto tende a aumentar. 
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Se calcularmos o laplaciano num determinado ponto do sistema e seu resultado for negativo 
     , temos concavidade voltada para baixo, então no ponto em que estamos calculando, 
a temperatura é maior do que a temperatura média da 
vizinhança do ponto. E se a temperatura no ponto é maior 
do que a temperatura média da vizinhança, ocorre 
transferência de energia na forma de fluxo de calor, do 
ponto para a vizinhança. O ponto transmite energia para a 
vizinhança e a temperatura no ponto tende a diminuir. 

Se o laplaciano no ponto for nulo, não há transferência de 
energia. 

 
 
Exemplo 

5.9.(d) Verifique se as funções zeyxzyxf y  ²),,(1  e yzxyzyxf  2),,(2  são 

harmônicas. 
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6 Sequências e Séries  

6.1 Sequência numérica 

 
Sequência numérica é uma sucessão de números dispostos numa ordem definida. Exemplo 

1, 2, 3, 4, ..., n, ... 
              
            ...,    ... 

 
1 é levado em   , 2 é levado em   , e assim por diante. Os números              são os 
termos da sequência. O número    é o enésimo termo da sequência e a sequência toda é 
denotada por {  }. 
As sequências podem ser finitas ou infinitas. 
 
Exemplos 
6.1a) 1, 3, 5, 7, 9   Sequência dos números ímpares naturais menores que 10. 

6.1b) 1, 4, 9, 16, 25, ...   Sequência dos quadrados de     . 

O termo geral pode especificar uma sequência através de uma regra ou fórmula. 
       1, 2, 3, 4, ... 
        2, 4, 6, 8, ... 

   
 

 
     

 

 
 

 

 
 
 

 
   

        ∙
 

    
      

 

 
  

 

 
 
 

 
    

Em uma sequência podem aparecer termos repetidos. 
               
                         
 
Definição: Uma sequência é uma função cujo domínio é o conjunto dos números inteiros 
positivos. Deste modo, f(1) é o primeiro termo, f(2) é o segundo termos, etc, e em geral f(n) é 
chamado enésimo termo da sequência f. 
Exemplos 

6.1c) {
 

    
}   

 

 
 
 

 
 
 

  
 
 

  
   

 

    
    

6.1d) {    }                   

6.1e) {    }                   

 
 Limite de uma sequência 

Seja   um número real. O limite da sequência {  } é  , denotado por           , se para 
cada    , existe     tal que          sempre que    . Se o limite   da sequência 
existir, dizemos que a sequência converge para  . Se o limite da sequência não existir, então a 
sequência diverge. 
Exemplos 

6.1f) {  }  {     }    
 

  
 

 

   
 

 

    
   

 

         

   
    

 

     
    

    

  

   
   ∙    

    

 

   
                      

 
6.1g) {  }  {     }                                     
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6.1h) {  }  {
 

    
}   

 

 
 
 

 
 
 

  
 
 

  
   

 

    
    

   
    

 

    
    

    

 
 

    
 

 
 

 
                    

 
 Propriedades dos limites de uma sequência. 

Sejam dadas as sequências {  } e {  } que convergem, respectivamente, para os números A e 
B. Então: 

a)             

b)         ∙     ∙                

c)                                          

d)            ∙              ∙            ∙    

e)         (
  

  
)  

         

         
 

 

 
         

f)         (
 

  )   , sempre que   for uma constante positiva. 

g) Se                  
                   {  }              

Exemplos 

6.1i) {
         

        
}  

 
 
 

6.1j) {
  

    }  

 
 
 

6.1k) {
     

     
}  

 
 
  

6.1l) {
      

 
}  

 
 
 
 

6.1m) { ∙    (
 

  
)}  
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 Sequências monótonas e limitadas 

Mesmo que você não possa encontrar o limite de uma sequência particular, ainda assim pode 
ser útil saber se essa sequência converge. Para isso, inicialmente, vamos definir sequência 
monótona. 
Definição de sequência monótona: Uma sequência é monótona se seus termos são não 
decrescentes                 ou se seus termos são não crescentes       
          
Exemplos 

6.1n) {
    

    
}  

 
 
 
 
 
 
 

6.1o) {
   

       
}  

 
 
 
 
 
 
 

6.1p) {   (
  

 
)}  

 

 

 

 

 

 
Definição de sequência limitada: Dizemos que uma sequência é limitada superiormente se 
existe um número   para o qual         (  é chamado cota superior ou limitante 
superior da sequência). Uma sequência é limitada inferiormente se existe um número   para o 
qual         (  é chamado cota inferior ou limitante inferior da sequência). Se uma 
sequência for limitada superior e inferiormente, dizemos que ela é limitada. 

Exemplos 

6.1q) {
 

   
}  

 
 
 
 
 
 

6.1r) {
        

    
}  
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Observação: Se uma sequência é convergente, então ela é limitada. Se uma sequência é 
limitada, não necessariamente ela é convergente. 
Exemplo 
6.1s) {       }  

 
 
 
 
 
Teorema 1 
Toda sequência crescente limitada superiormente é convergente; analogamente, toda 
sequência decrescente limitada inferiormente é convergente. 
 
Teorema 2 
O limite de uma sequência monotonamente crescente convergente é uma cota superior; 
analogamente, o limite de uma sequência monotonamente decrescente convergente é uma 
cota inferior. 
 
Exemplo 
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6.2 Séries 

 
 Séries infinitas 

Definição: Uma soma indicada de todos os termos de uma sequência infinita {  } é chamada 
série infinita ou simplesmente série.  
É representada por ∑                     

    
A soma    dos   termos de uma série ∑   

  
    é chamada de n-ésima soma parcial, isto é: 

                 ∑   

 

   

 

A sequência {  } é chamada sequência das somas parciais da série. Observemos que, para 
cada inteiro positivo  , temos: 

             
Exemplo 

6.2a) {
 

    }  

 
 
 
 
 
 
 
 
 
Definição: Se a sequência {  } das somas parciais da série infinita ∑   

  
    converge para um 

limite            , dizemos que ∑   
  
    converge e sua soma é  . (escrevemos 

 =∑   
  
   ); caso contrário, dizemos que ela diverge. 

Exemplo 

6.2b) ∑
 

  
  
     

 
 
 
 
 

 Série Geométrica 

Uma série geométrica é uma série na forma  

∑      

  

   

                            

Onde cada termo após o primeiro é obtido pela multiplicação de seu antecessor imediato por 
uma constante  , chamada razão da série. 
Observe que uma séria geométrica fica completamente especificada através de seu primeiro 
termo   e sua razão  . 
Exemplos 

6.2c)        
 

 
  

 
 

6.2d)    
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A n-ésima soma parcial    de uma série geométrica ∑        
    é dada por 

    (
    

   
)            

Pela propriedade (g) dos limites de uma sequência, temos: 

Se                                                (
    

   
)  

 

   
  

Se                     . 
 
Exemplos 
Determine se as séries abaixo convergem ou divergem. Se convergirem, calcule sua soma. 

6.2e) ∑
 

    
  
    

 
 
 

6.2f)    
 

 
 

 

 
 

 

  
 

  

  
   

 
 
 

6.2g) ∑ (
 

 
)
 

  
    

 
 
 

 Propriedades das séries infinitas 

Teorema (propriedades lineares das séries): Se ∑   
  
    e ∑   

  
    são séries convergentes, 

então ∑    
  
         ∑   

  
     ∑   

  
    é convergente e, sendo   uma constante 

qualquer, ∑  ∙   
  
     ∙ ∑   

  
     também é convergente. 

 
Exemplo: 

6.2h) Determinar se é convergente a série ∑ (
 

     
 

    )
  
    e, se for, calcular o valor da 

soma. 

 

 

 

Teorema (condição necessária de convergência): Se uma série infinita ∑   
  
     converge, 

então            . Se            ou se            , então a série é divergente. 
Exemplos: Mostre que as séries abaixo divergem. 

6.2i) ∑
   

 
  
    

 
 
 
 
 

6.2j) ∑        
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Observação: Atenção à lateralidade do teorema anterior: se a série é convergente, então     
            mas, se            , a série poderá ou não ser convergente. 

∑  

  

   

                
    

     

   
    

        ∑   

  

   

             

Exemplo 

6.2k) ∑   
 

   
  
    

 
 
 
 
 
 
 
 
 
 
 
 
 
Teorema: divergência de uma série de somas. 
Se a série ∑   

  
    converge e a série ∑   

  
    diverge, então                                            

∑    
  
         ∑   

  
     ∑   

  
    diverge. 

 
Exemplo: 

6.2l) ∑ (  
 

   
 

 

  )
  
    

 
 
 
 
 
 
Observação: A soma de duas séries divergentes pode originar uma série convergente. 
 
Exemplo: 
6.2m) ∑    

    e ∑     
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 Séries de termos não negativos 

 
Analisaremos, agora, por vários testes distintos, a convergência ou divergência das séries de 
termos não negativos. 
 
Teste da integral 
Suponhamos que a função   é contínua, decrescente e não negativa em [    [. 

i. Se ∫       
  

 
 converge, então a série infinita ∑       

    converge. 

ii. Se ∫       
  

 
  diverge, então a série infinita ∑       

    diverge. 

 
Observação: No teste da integral, não há necessidade de iniciar a série infinita em    , 
podendo aparecer, por exemplo: 

6.2n) ∑ (
 

    
)  

    

 
 
 
 
 
 
 
 
 

6.2o) ∑ (
 

      
 

 ⁄
)  

    

 
 
 
 
 
 
 
 

 Série  : 

É uma série do tipo ∑ (
 

  )
  
   , onde   é uma constante. Se    , a série ∑ (

 

 
)  

    é chamada 

harmônica e é sempre divergente. 
 
Convergência e divergência da série   

A série ∑ (
 

  )
  
    converge se     e diverge se    . 

 
Exemplo 

6.2p) ∑ (
 

  )
  
    

 

 

 

 

6.2q) ∑ (
 

√ 
 )  
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Teste da comparação 
Sejam dadas ∑   

  
    e ∑   

  
    duas séries cujos termos são não negativos e          . 

Então: 
i. Se ∑   

  
    converge, então ∑   

  
    converge. 

ii. Se ∑   
  
    diverge, então ∑   

  
    diverge. 

 
Exemplos: 

6.2r) ∑ (
 

     
)  

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2s) ∑ (
 

√   
)  

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2t) ∑ (
 

   
)  
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Teste da comparação na forma do limite 
 
Seja ∑   

  
    uma série de termos não negativos e suponha que ∑   

  
    é uma série de 

termos positivos tal que        
  

  
    , então, ou ambas as séries convergem ou ambas 

divergem. 
Exemplos: 

6.2u) ∑ (
 

√    
 )  

    

 
 
 
 
 
 
 
 
 
 
 

6.2v) ∑ (
    

         )
  
    

 
 
 
 
 
 
 
 
 
 
Teste adaptado da comparação no limite 
 
Seja ∑   

  
    uma série de termos não negativos e suponha que ∑   

  
    é uma série de 

termos positivos. 

i. Se         
  

  
   e  ∑   

  
    converge, então ∑   

  
    converge. 

ii. Se         
  

  
    e  ∑   

  
    diverge, então ∑   

  
    diverge. 

 
Exemplos: 

6.2w) ∑ (
   

  )
  
    

 
 
 
 
 
 
 
 

6.2x) ∑ (
 

√    
)  
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 Séries cujos termos mudam de sinal 

 
Consideremos agora testes para o estudo da convergência de séries cujos termos trocam de 
sinal, também chamadas de séries alternadas. 
Exemplo: 

6.2y) ∑          
   

 

 
  

 

Série harmônica alternada. 
 

6.2z) ∑      ( 
 

 
)
   

  
     

 

Série geométrica de razão  
 

 
. 

 
 Séries alternadas cujos termos decrescem em valor absoluto 

 
Seja {  }  uma sequência de termos positivos. Então a soma parcial    da série alternada                      
                          satisfaz as condições: 

i.                 

ii.                  

iii. Se   é um inteiro positivo par, então             . 

iv. Se   é um inteiro positivo par, então             . 

 
Exemplo 

6.2aa) ∑         (
 

 
)
 

  
     

 
 
 
 
 
 
 
 
 
 
 
 
 
Teorema 2 (teste de Leibniz para séries alternadas): 
 
Se {  } é uma sequência decrescente de termos positivos com            , então a série 
alternada                           é convergente. Além disso, se   é sua 
soma e se     é sua n-ésima soma parcial então: 

                   
Observe que      é o erro envolvido quando se estima a soma  
∑           

  
     pela n-ésima soma parcial    ∑           

  
   . Se   é par, então  

                   e    está se aproximando de   por baixo. Se   é ímpar, então  
                      e    está se aproximando de   por cima. Em qualquer caso 
           , isto é, o valor absoluto do erro de aproximação não excede o valor absoluto 
do primeiro termo abandonado. 
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Exemplos 

6.2bb) Mostre que a série ∑             

      
  
    é convergente, encontre a soma parcial    e 

encontre um limite para o valor absoluto de erro envolvido na aproximação da soma por 

  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2cc) ∑
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Definição: (convergência absoluta e condicional). 
 

i. Se a série ∑     
  
    converge, dizemos que a série ∑   

  
    é absolutamente 

convergente. 

ii. Se a série ∑   
  
    é convergente, mas a série ∑     

  
    é divergente, dizemos que a 

série ∑   
  
    é condicionalmente convergente. 

 
Exemplos: 
 

6.2dd) ∑
     

    
  
    

 
 
 
 
 
 
 

6.2ee) ∑           

   
  
    

 
 
 
 
 
 
 

6.2ff) ∑
     

   
  
    

 
 
 
 
 
 
 
Teorema 3 (convergência absoluta implica convergência) 
 
Se uma série ∑   

  
    é absolutamente convergente, então ela é convergente. 

 
Exemplo: 

6.2gg) ∑
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Teorema 4 (teste da razão) 
Se ∑   

  
    é uma série de termos não nulos, então: 

i. Se        |
    

  
|        a série é absolutamente convergente. 

ii. Se        |
    

  
|               (

    

  
)           a série é divergente 

iii. Se        |
    

  
|        não podemos afirmar nada. 

 
Exemplos: 

6.2hh) ∑
  

       
  
    

 
 
 
 
 
 
 
 
 
 
 
 
 

6.2ii) ∑
         

  
  
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2jj) ∑
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Teorema 5 (teste da raiz) 
Seja dada a série ∑   

  
   . 

i. Se        √    
 

       absolutamente convergente. 

ii. Se        √    
 

     ou se        √    
 

          divergente. 

iii. Se        √    
 

        não podemos afirmar nada. 

Exemplos 

6.2kk) ∑
     

[        ] 
  
     

 
 
 
 
 
 
 
 

 Séries de potência (definição) 

Uma série definida na forma  

∑                   

  

   

                     

É chamada série de potência em   ou simplesmente, série de potência. As constantes 
              são chamadas de coeficientes da série de potência e a constante   é chamada 
de centro. Uma série de potência com centro em     toma a forma 

∑                  

  

   

      
       

    

Caracterizando um polinômio em  . 

Na série de potências ∑           
   ,   pode ser visto como uma quantidade que pode ser 

variada à vontade, podendo a série convergir para alguns valores e para outros não. 
Naturalmente, quando    , vemos que a série converge e sua soma é   . 
Exemplo 

6.2ll) ∑      
 

  
  
   ∙      
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 Séries de Taylor e de Maclaurin 

Seja a função   infinitamente diferenciável em um intervalo aberto J e seja   um número em J. 

Então, a série de Taylor para   em   é a série de potências ∑           
     onde    

     

  
, 

    . A série de Taylor para     é chamada série de Maclaurin. 
Exemplos 

6.2mm) Encontre a série de Taylor para           em   
 

 
. 

 
 
 
 
 
 
 
 
6.2nn) Encontre a série de Maclaurin para        . 

 
 
 
 
 
 
 

6.2oo) Encontre a série de Taylor para           em   
 

 
. 

 
 
 
 
 
 
 
 
 

 Algumas séries de potências importantes 

a)    ∑
  

  
  
       

b)      ∑      
     

       
  
       

c)      ∑      
   

     
  
       

d)          ∑      
    

     
  
          

e)           ∑      
     

      
  
          

f) 
 

   
 ∑     

          

g) 
 

   
 ∑          
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6.3 Resumo dos Testes de Convergências 

 
 
 

Teste da Integral (   contínua, decrescente e positiva) 
 

    ∫       
  

 
 converge      ∑       

    converge 

    ∫       
  

 
 diverge      ∑       

    diverge 

 

Teste da Comparação 
 
Sejam  ∑   

  
     e  ∑   

  
    séries positivas e             

 

 Se  ∑   
  
    converge     ∑   

  
    converge. 

 Se  ∑   
  
    diverge     ∑   

  
    diverge. 

 

Teste da Comparação na forma do limite 
 
Sejam  ∑   

  
     e  ∑   

  
    séries positivas: 

Se        
  

  
      então ou ambas séries convergem ou ambas divergem. 

 

Teste adaptado da Comparação na forma do limite 
 

 Se        
  

  
   e  ∑   

  
    converge    ∑   

  
    converge. 

 Se        
  

  
    e  ∑   

  
    diverge    ∑   

  
    diverge. 

 

Teste da razão 
 
Se  ∑   

  
     é uma série de termos não nulos, então: 

 Se        |
    

  
|                 ∑   

  
    é absolutamente convergente. 

 Se        |
    

  
|                (

    

  
)            ∑   

  
    é divergente. 

 Se        |
    

  
|   , então nada podemos afirmar. 

 

Teste da raiz 
 
Dada a série  ∑   

  
   : 

 

 Se        √    
 

  , então a série  ∑   
  
    é absolutamente convergente. 

 Se        √    
 

  , ou        √    
 

   , então a série  ∑   
  
    divergente. 

 Se        √    
 

  , então nada podemos afirmar. 
 

Teste de Leibniz para séries alternadas 
 
Se {  } é uma sequência decrescente de termos positivos com            , então a 

série alternada ∑          
  
    converge. 
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7 Exercícios 

 

7.1 Lista 1 

 
1. Represente graficamente as seguintes bolas: 

a) B ( P0 ; r ) P0 = ( 1, 2, -1 ) e r = 31  

     P0 = ( 1, ½, 2 ) e r = 1 

b) B  ( P0 ; r ) P0 = ( -1, -1, -1 ) e r = 1 
P0 = ( ½ , 2 ) e r = ½ 

 
2. Identifique se as inequações abaixo representam bolas abertas, fechadas ou não 

representam bolas; caso representem, determine P0 e r: 
a) x2 + y2 – 2y + 1 < 3 

b) x2 + y2 + z2 
 2x + 2y + 2z 

c) x2+y2   z2 
d) x2 + y2 – 1 > 0 
e) x2 + 4x + y2 < 5 
f) x2 + y2 + z < 2 
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7.2 Lista 2 

 
1. Esboce o hodógrafo das seguintes funções vetoriais: 

a) 


)(tr = (4,4cost,9sent) 

b) 


)(tr = (t,3,sent) 

c) f(t)= (4, t, t2 + 2) 

d) f(t) = (t, tant, 3) 
  

 
   

 

 
 

e) f(t) = (t, t , 3). 

 
2. A posição de uma partícula é dada por r(t) = (t – 1, 2t2 – 4t + 1). Esboce a trajetória, 

bem como os vetores velocidade e aceleração, em t = 1. Verifique se estes vetores são 
perpendiculares entre si. 

 

3. O movimento de um besouro que desliza sobre a superfície de uma lagoa é expresso 

pelas funções x(t) = 
m

tcos1
 e y(t) = 2t + 

m

tt sen
, onde m é a massa do besouro. 

Determine: a equação vetorial que expressa o movimento do besouro e sua posição 

em t = 3 

4. A equação r (t) = (2t, 8 - 2t2) descreve a trajetória de uma partícula no plano xoy.  
a) esboce a trajetória da partícula e os vetores velocidade e aceleração em t = 1;                 
b) verifique se os vetores do item a) são perpendiculares entre si 

 

5. Sejam 


)(tf = 








1t

2t
,te3t,  e  0,2,

2
)( 



tttg , calcule: 

a) ))(.)(2(
1

lim




tgtf

t
 

b) ))()((
2

lim








tgtf

t
 

6. Sejam as funções f (t) = (e2t, ln(t+1), 3t) e g (t) = (sen2t, 2t + 1, (t + 1)2), calcule 

  gff
t




"'lim
0

 

7. Sejam as funções f(t) = e2t i + 
t

t

2

2sen
j e g(t) = 2cost i + 2t2 j + k. Calcule 

))()((

2

lim)(3
0

lim tgtf
t

tf
t





 

 

 

8. Verifique se a função 


)(tr = 




































3,7

0,3

3,0,

3

9sen

tk

tj

ttj

t

t
i

t

t

é contínua em t = 0. 



111 

 

9. Verifique se a função 






























0;
2

1

0;21

1

1

)(

tji

tjtei
ttttf é contínua para t = 0. 

10. Calcule p de modo que a função 
 











3,ln3

3;22
)(

2

2

tjei

tjiptt
tf seja contínua 

11. Verifique se a função 

































0,
3

32

0;
33

2

)(

tj

tj
t

t
ti

tf é contínua para t = 0. 

 
 

12. A posição de uma partícula é dada por 


)(tr = .)12
2

(

4

1
)1(

2

1 





 jttit Determine: 

a) os vetores velocidade e aceleração em t = 5 s ;   

b) esboce a trajetória da partícula e os vetores do item a) ;   

c) verifique se os vetores do item a) são perpendiculares entre si 

 
13. Escreva a equação vetorial da curva 12x2 = - (y + 1)2 + 24 ; z = 12 e descreva a curva 

 

14. Escreva a equação cartesiana e a equação vetorial da elipse que tem centro no ponto 

(-2,3) e cujos valores dos semi-eixos focais são a = 5 e b = 2. 
 

 
15. Sejam 0,²32)(,³3²2)(  tktjtitgktjttitf  

a) 
  


)()(lim

1
tgtf

t  

b)  


)()(lim
1

tgtf
t

  

c) 
 


)()2/1()(3lim

1
tgtf

t  

d)   


)().(lim
1

tgtf
t

  

e)  


)()(lim
1

tgtf
t

  

f)  


)().1(lim
1

tft
t

 

g)  


)()(lim
0

tgtf
t

 

 
16. Calcule o limite e analise a continuidade das funções  vetoriais abaixo, nos pontos 

indicados: 

a) 























 




0,2

0,
22

)(

tj

tj
t

t
ti

tf  
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b) 















2,1),0,0,0(

2,1,5
2

4

1

2

)(

tt

ttkj
t

i
ttf  

 
17. Indique o intervalo de continuidade das funções vetoriais abaixo: 

a) kejti
t

tg t )1²(
1

)(   

b) ),tan,()( tetsenttw     

c) 













 )2ln(,

1

1²
,)( 2 t

t

t
etr t

 

 
18. Determine a derivada das funções vetoriais: 

a) )²,tan,³(cos)( tsentttf    

b) ),cos()( 2tetsenttg   

c) kjeietf tt   2)(    

d) tktjtitg  ln)(  

e) 












 5²),1ln(,

12

25
)( t

t

t
th  

19. Determine os vetores velocidade e aceleração para qualquer instante t, bem como o 
módulo destes vetores instante dado. 

a) 2ln)( 2   tjeietr tt
 

b) 2)²23()(  tktittr  

c) 4/35cos2)(  tksentjtitr  

 
20. Determine um vetor tangente às funções dadas, no ponto indicado: 

a) f(t) = (t, t2, t3) ; P(-1, 1, -1) 
b) g(t) = (t, et) ; P(1, e) 

c) h(t)=(sent, cost,t); P(1,0,/2) 

d) p(t) = 











t
t

1

1
,1 ; P(-1,-1) 

e) r(t) = (2t, lnt, 2) ; P(2, 0, 2) 
 

21. No instante t, a posição de uma partícula no espaço é dada por x(t) = t2,  y(t) = 2 t  e 

z(t) = 4 3t . 

a) Escreva a equação vetorial que descreve a trajetória da partícula; 
b) Determine um vetor tangente à trajetória no ponto P(1, 2, 4); 
c) Determine a posição, velocidade e aceleração da partícula quando t = 4: 

 
22. As equações abaixo descrevem a trajetória de uma partícula no espaço. Determine os 

vetores velocidade e aceleração no tempo dado e esboce a trajetória da partícula, bem 
como estes vetores: 

 
a) r(t) = (t, 4, 4 – t2) ; t = 0 

b) r(t) = 









t

t
,

1

1
 ; t = 1 

c) r(t) = (0, t2, t6) ; t = 0 
d) r(t) = (1 – t, 1 + t) ; t = 1 
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23. Se r(t) é o vetor posição de uma partícula em movimento, mostre que o vetor 

velocidade é perpendicular a ele e que o vetor aceleração é perpendicular ao vetor 
velocidade: 
 
a) r(t) = (cost, sent) 
b) r(t) = (cos3t, sen3t) 

 

24. Se g(t) = 
1

1

t
 e f(t) = t i + t2 j , determine (g(t)f(t))’: 

 
25. Esboce o gráfico da curva quando P(x, y) se move pela variação de t no intervalo dado. 

Determine a equação cartesiana da curva em cada item: 

a) 








ty

tx

sen2

cos2
 ; 0  t  2 

b) 















2

sen4

cos4

z

ty

tx

 ; 0  t  2 

c) 








senty

tx

23

cos42
 ; 0  t  2 

d) 














2

4

1

2

z

ty

tx

 ; t   

 
26. Obtenha a equação cartesiana das curvas abaixo: 

 
a) r(t) = (1/2 t, 3t + 5) 
b) r(t) = (t – 1, t2 – 2t + 2) 
c) r(s) = (s2 – 1, s2 + 1, 2) 

 
27. Determine a representação paramétrica da reta que passa por A e tem direção do 

vetor b: 

 
a) A(1, ½, 2) ; b = (2, -1, 0) 
b) A(0, 2) ; b = (5, -1) 
c) A(-1, 2, 0) ; b = (5, -2, 5) 

d) A( ,2 2, 3 ); b= (5, 0, -3) 

 
28. Encontre a equação vetorial das curvas abaixo: 

 
a) x2 + y2 = 4 ; z = 4  
b) y = 2x2 ; z = x3 
c) 2(x + 1)2 + y2 = 10 ; z = 2 
d) y = x1/2 ; z = 2 
e) x = ey ; z = ex 
f) y = x ; z = x2 + y2 
g) segmento de reta de  A(2, 1, 2) a B(-1, 1, 3) 
h) circunferência de C(2, 2) e     r = 2, no sentido horário 
i) segmento de reta de C(0, 0, 1) a D(1, 0, 0) 
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29. Verifique quais das curvas abaixo são suaves: 

a) r(t) = t3 i + t2 j ; t  [-1, 1] 

b) r(t) = t3 i + t2 j ; t  [1/2, 1] 

c) r(t) = 2(t–sent) i + 2(1–cost) j ; t  [, 3] 

d) r(t) = (3cos3t, 3sen3t) ;             t  [/6,
  /3] 

e) r(t) = (2cost, 3sent) ;                t  [0,2] 
 

30. Determine o comprimento do arco das curvas abaixo: 

a) r(t) = (etcost, etsent, et) ; 0  t  1 

b) r(t) = (2t3, 2t, 6 t2) ; 0  t  3 

c) r(t) = (2cost, 4t, 2sent) ; de P(2, 0, 0) a P1(0, 2, 2) 
d) r(t) = y = x2/3, z = 0 ; de P(0, 0, 0) a P1(8, 4, 0) 
 

31. Escreva a função comprimento de arco de: 

 
a) r(t) = (sent/2, cost/2, 2t) 
b) r(t) = (cos2t, sen2t, 4) 
c) r(t) = (t, t2) 

d) r(t) = (cos2t, sen2t) ; t  [0, ] 

e) hipociclóide r(t) = (acos3t, asen3t) ; t  [0,/2] 

 
32. Encontre o vetor tangente unitário às curvas abaixo, nos pontos indicados: 

a) r(t) = (tcos2t, tsen2t) ; t  [0, + [ ; t = /2 

b) r(t) = (2cost, 3sent) ; t  [0, 2] ; t = /4 

c) r(t) = (t, t2 + 1) ; t  [0, 4] ; P(2, 5) 
d) r(t) = (2cost, 2sent, 2 – 2sent) ; P(0, 2, 0) 

e) r(t) = (1/2cost, 1/2sent) ; P














4

2
;

4

2
 

f) r(t) = (etcost, etsent, 2) ; P(1, 0, 2) 
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7.3 Lista 3 

1. Determinar o domínio da cada função de duas variáveis e esboçar seu gráfico. 

a) 1),(  yxyxf  

b) 632),(  yxyxf    

c) 
²²4),( yxyxf 

  

d) ²²),( yxyxf   

e) 
²²93),( yxyxf 

 

f) 10),( yxf  

g) xyxf ),(   

h) 
²²),( yxyxf 

 
 

2. Calcule cada expressão, usando as funções f, g e h definidas por: 

²²²

2
),,(,),(,7²5),(

zyx

zxy
zyxhxyyxgxyxyxf






 
a)        

b) ),( baf   

c) )0,cos,( tsenth  

 
3. Especifique o domínio da função e calcule f(x,y) para os valores dados: 

 

a) 164,4),(  yxyxyxf  

b) 
4

1
,²²1),(  yxyxxyxf  

c) ),...,3,2,1(...),...,( 11 nfesimplifiquecalculexxxxfSe nn   

 
4. Desenhe o mapa de contorno do gráfico de z=f(x,y) mostrando as linhas de contorno 

correspondentes aos valores de z dados:  
 

a) 2,1,0,1123),(  zzzzyxyxf  

b) 3,2,1,0²²9),(  zzzzyxyxf  

c) 
2

1
,1,0

9

²

4

²
1),( 

















 zzz

yx
yxf  

d) 2,0,1²),(  zzzyxyxf  

e) 3,2,1,0),(  zzzzxyyxf  

f) 3,2,1,0
²²

2
),( 


 zzzz

yx

x
yxf  

5. Esboce algumas curvas de nível típicas da função f. 
a) yxyxf ),(  

b) ²²),( yxyxf   

c) ²4²),( yxyxf   

 
6. Encontrar o domínio, imagem, curvas de nível e construir o gráfico das superfícies 

dadas: 

a) ²4²25100),( yxyxf   

b) ²9²4),( yxyxf   

c) 16²4²),(  yxyxf  
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7. Determine o domínio de cada função vetorial: 

a) kyxyjxiyxf ²²52),(    

b) j
x

y
ixyxg ),(  

c) 









z
y

x
zyxh

1
,,

1
),,(     

d) 









zyx
zyxp

1
,

1
,

1
),,(  

e) 







 xy

xy
yxq ,

1
),(  

 
 

7.4 Lista 4 

1. Calcular os limites duplos e iterados 
 

a) 
)²1(²

)1(
lim

44

)1,0(),( 



 yx

yx

yx
 

b) 
²²

²
lim

)0,0(),( yx

x

yx 
 

c) 
²)²²(

³2²²3
lim

4

),0,0(),( yx

xyyxx

yx 




 

d) 3

)4,2(),(
2³lim yxy

yx



 

 
2. Encontrar o domínio, imagem, curvas de nível e superfície. 

a) f(x,y)=4x²+25y²  
b) f(x,y)=1-|x|-|y|  

c) ²25²4),( yxyxf   

 
3. Estudar os limites e  a continuidade da função. Se for o caso, remover a 

descontinuidade. 

 

a) )0,0(
²²

),(
22 yx ee

ysenxsen
yxf




    

b) )0,0(
²)²(

),(
6

9

yx

yx
yxf


  

c) 












)0,0(),(0

)0,0(),(
²²

),( 44

yx

yx
yx

yx

yxf  
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7.5 Lista 5 

1. Seja 
yx

yx
yxfw




 ),(  , determine f(-3, 4), f(1/2, 

1/3), f(x + 1, y – 1) e  f(-x, y) – f(x, -

y) 
 

2. Seja g(x, y, z) = 
2224 zyx  , determine g(1, -1, -1), g(-1, 1/2, 

3/2) e g(x/2, 
y/2, 

z/2) 

 
3. Determine o domínio da função f e esboce a região de R2 que a representa: 

 
      a) f(x, y) = (x2 + y2 –1)-1 

      b) f(x, y) = 
221 yx   

      c) f(x, y) = 122  yx  

      d) f(x, y) = 
22

44

yx

yx




 

      e) f (x, y) = ln(xy-1) 
 

4. Determine o domínio de f e descreva a região que o representa: 

      a) f(x, y, z) = 
222 416 zyx   

      b) f(x, y, z) = ln(4 – x2 – y2) + z  

 

5. Dadas f(x, y) = x – y, g(t) = t  e h(s) = s2 , ache (gof)(5, 1), f(h(3), g(9)), f(g(x), h(y)) e 

(goh)(f(x, y)) 

 
6. Calcule o limite das funções: 

a) 
yx

yx

yx 4

23
lim

)1,2(),( 





 

b) 
2)1(2

4)1(4

lim
)1,0(),( 



 yx

yx

yx
 

c) 2223lim
)3,2(),(

yxyx

yx




 

d) )/arctan(lim
)2,2(),(

xy

yx 
 

e) 
yxyx 43

1
lim

)2,4(),( 
 

 

f) 
zy

yzxy

zyx sec

secsec
lim

),1,3/(),,( 



 
 

g) 
ze

y
exe

ze
y

exe

zyx
222

2)(
lim

)0,0,0(),,( 




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7. Dadas as funções abaixo, prove que ),(lim
)0,0(),(

yxf
yx 

 não existe:  

 

a) f(x, y) = 
22

22

yx

yx




 

b) f(x, y) = 
342

44

)( yx

yx


 

c) f(x, y) = 
226

9

)( yx

yx


 

 
8. Determine todos os pontos em que a função é contínua: 

a) f(x, y) = 
1

2

y

x
 

b) h(x, y) = sen(y/x) 
c) g(x, y) = ln(25 – x2 – y2) 

 

d) 

















)0,0(),(,0

)0,0(),(,
),( 22

yx

yx
yx

yx

yxf  

e) 

















0,1

0,
)(

),(

yx

yx
yx

yxsen

yxf  

 

9. Mostre que a função 











54,3

54,4
),(

22

2222

yx

yxyx
yxg  é contínua em todos os pontos 

de (x, y)  R2 com exceção dos que estão sobre a elipse x2 + 4y2 = 5 
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7.6 Lista 6 

1. Calcule as derivadas parciais e o diferencial 
a) f(x,y)=3xy-6x-y²  

b) 
yx

yx
yxf






²

2
),(  

c) u = x²y-3xy²+2yz 
d) u = 4xyz+ln(2xyz) 

 
2. Considerando a função f(x,y)=3x²+2xy-y², calcule: 

a) incremento no ponto (1,4) 

b)  f(1,4)  x=0,03  y= -0,02 
c) df(1,4) 

d) df(1,4)  x= 0,03  y= -0,02 
 

3. Considerando a função  f(x,y)=2x²+5xy+4y², calcule: 

a)  f(2,-1) 

b)  f(2,-1) se  x= -0,01 e  y= 0,02 

4. Seja z=ln(x²+xy+y²) prove que 2









y

z
y

x

z
x  

5. x

y

xexyzSeja  , prove que zxy
y

z
y

x

z
x 









 

6. 

z

y

x
xyuSeja 








  calcule due

z

u

y

u

x

u












,,  

 
7. Encontre a diferencial dw: 

a) ³24²3 yxyxw    

b) 
²)²( yxew     

c) 
²²1 yxw 

 

d) 
yxxyew    

e) )(xyzsenw    

f) )1ln( rsw   

g) 
ts

ts
w




   

h) 
²)(² veuw   

 

8. Obtenha, por meio de diferenciais, uma aproximação de )()( PfQff   

a) ²²),( yxyxf    P(3,4),  Q(2.97, 4.04) 

b) 
yx

yxf



1

1
),(   P(3,6),  Q(3.02, .6,05) 

c) 
xyzezyxf ),,(   P(1,0,-2), Q(1.02, 0.03, -2.02) 

 

9. Calcule 
t

w




 aplicando a regra de cadeia e explicitando w como função e t antes 

de diferenciar. 
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a) 
²²

1

vu
w


   u=cos2t, v=sen2t 

b) senxyzw    x=t,  y=t²,  z=t³ 

c) )ln( zvuw   u=cos²t, v=sen²t, z=t² 

 

10. Calcule 
s

w




 e 

t

w




. 

a) strtsqtsprqsenpw  2)(.  

b) 
ttt ezsevsseneuzvuw 4)cos(3)(3²²²   

c) ²²2²2²²2²2 tsztsytsxxyzxyzw   

 
11. Escreva uma equação do plano tangente, no ponto P, à superfície de equação 

dada: 

a) 9²²²  zyx    P(1,2,2) 

b) 14²2²2²  zyx    P(2,1,-2) 

c) xyzzyx 5³³³     P(2,1,1) 

d) 13²²²)(³  yxzyxz   P(2,2,1) 

 

12. Determine o vetor gradiente f  no ponto P indicado. 

a) )39;17(;73),( Pyxyxf     

b) )3;2(²;5²3),(  Pyxyxf  

c) )1;3(;
4

1
),( 








 Pxysenyxf     

d) )0,1,2(³;3²),,( Pzyzxzyxf   

e) )3,4,3(;2),,(  Pxyzzyxf    

f) )3,1,5(;)532(),,( 5  Pzyxzyxf  

 

13. Determine a derivada direcional de f em P na direção do vetor v , isto é: 

determine 
v

v
uPDuf   onde  )(  

a) )1,1()1,2(²,32²),(  vPyxyxyxf  

b) )1,1()4/,0(),(),(  vPyseneyxf x   

c) kjivPxyzzyxf 22)2,1,2(,),,(   

d) kjivPzyxzyxf 322)1,1,1(²);²²1ln(),,(   

 
14. Determine a derivada direcional máxima de f em P e a direção em que isso 

ocorre. 

a) )1,1(²43²2),( Pyxyxyxf    

b) )2,5,1(²4²²3),,(  Pzyxzyxf  

c) )2,2,2(³²),,( Pzxyzyxf   
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15. Escreva uma equação da reta (ou plano) tangente à curva (ou superfície) dada, 

no ponto indicado. 
 

a) )3,2(35²3²2 Pyx    

b) )3,2(19²4  Pyxyx  

c) )3,2,2(73²5²4²3 Pzyx   
d) )1,1,1(13/13/13/1  Pzyx  

e) )3,2,5(14³²2²  Pzyxxyz  

 

16. Dadas as funções, calcule 
xy

f

yx

f

y

f

x

f















 ²
,

²
,

²

²
,

²

²
 e verifique que 

xy

f

yx

f








 ²²
 

a) ²57²6),( yxyxyxf   
b) ²cos),( yyxyxf   

c) 2

3

²)²(),( yxyxf   

d) 
yxexyyxf 2cos),(   

e) )2(),( xysenyxf   

f) yxyxf 2cosh5),(   

 
17. Determine as derivadas direcionais nos pontos dados, na direção do vetor 

unitário: 

a) )2/2,2/2(),0,0(1²3²2  uPyxz  

b) )2/3,2/1()2,1(²2²  uPxyyxz  

c) )1,5(),4/,2(²cos  aPyxz   

d) 















2

1
,

2

3
),1,1(37 uPyxz  

 

18. Determine o valor máximo da derivada direcional e um vetor u   na direção da 
derivada direcional máxima no ponto dado. 

a) )1,1(²47²),(  Pyxyxyxf  
b) )2/,1(²²),( Psenyyxyxf   

 
19. Encontre os pontos críticos das funções abaixo e classifique-os como máximo 

local, mínimo local ou ponto de sela. 

a) )²1(²),(  yxyxf  

b) yxyxyxf 44),( 44   

c) yxxyyxf ),(  

 

20. Calcule 
dx

dy
 das funções implícitas 

a) 0
)cos(

)(
),( 






yx

yxsen
yxF  
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b) )ln(1),( xyxy eexyyxF   

c) 0)32(),(  yxseneyxF xy
 

 

21. Calcule 
x

u




 das funções implícitas 

a) uxvvevuyxGvxyuevuyxF yv  ),,,(;),,,(  

b) 
44³),,,(²;²³),,,( vuyxvuyxGvuyxvuyxF   

 
22. Utilize os multiplicadores de Lagrange para encontrar os pontos críticos 

 

a) 08²56²5),(²,²),(  yxyxyxGyxyxf  

b) 01²²),(;²²),(  yxyxGyyxyxf  
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7.7 Lista 7 

 
1. Calcule as derivadas parciais das funções abaixo: 

a) 
x

f




, f (x, y) = 7x2 + 5x2y + 2 

b) hx, h (x, y) = sen x cos 7y 

c) 
x

w




,  w = 

22

22

xy

yx




 

d) f (r, ), f (r, ) = r2 cos7 
e) fz (x, y, z), f(x, y, z) = 6xyz + 3x2y + 7z 

f) 
x

w




, w = xy2 + yz2 + x2y 

 
2. Encontre a deriva parcial indicada, utilizando a regra de cadeia: 

 

a) 
  

  
   √           

b) 
x

w




, w = ln u, u = 7x2 + 4y3 

c) h1 (x, y), h (x, y) = arctan (xy) 
 

d) 
x

w




, w = (x2 + y2 + z2)-3/2 

 
3. Verifique as igualdades abaixo com relação às funções dadas: 

a) x 
x

w




 + y 

y

w




 =  5w, para a função w = x3y2 – 2 xy4 + 3 x2y3 

b) x 
x

w




 + y 

y

w




 + z  

z

w




 = nw, dada a função w = (ax + by + cz)n , onde a, b e c são 

constantes. 
 

4. Encontre as derivadas parciais, utilizando a regra de cadeia: 

a) 
u

z




,

v

z




, z = 3x2 – 4y2, x = u.v, y=u 

b) 
u

z




,

v

z




, z = 4x3 – 3x2y2, x = ucosv e y = vsenu 

c) 
x

w




,

y

w




, w = ln(u2 + v2), u = x2 + y2 e v = 2x2 + 3xy 

d)  
r

u




,

s

u




, u = cosh(3x + 7y), x = r2e-s e y = re3s 

 

5. Encontre o coeficiente angular da reta tangente à curva de intersecção entre a 
superfície e o plano no ponto dado: 
a) superfície: z = 3x – 5y + 7, plano y = 2, no ponto A (1, 2, 0). 

b) superfície: z =
22 3231 yx  , plano y = 2, no ponto B(3, 2, 1) 

c) superfície: z = e
2x sen 3y, plano x = 1, no ponto C(1, 0, 0) 

 
6. Verifique se as funções abaixo são diferenciáveis nos pontos indicados: 

a) f (x, y) = xe-y, em (x, y) 
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b) f (x, y) =
33

3

yx

xy


, em (1, 2) 

c) f (x, y) = 
yx

xy



2

.cos e
22 yx  , em (1,1) 

7. A potência P consumida por uma resistência elétrica é dada por P= 

R

E 2

 watts, onde E 

é a força eletromotriz em volts e R é a resistência em ohms. Se, em um dado instante, 
E = 100 volts e R = 5 ohms, aproximadamente de quanto irá variar a potência se E 
decrescer de 2 volts e R decrescer de 0,3 ohms ? 

  
8. As dimensões de uma caixa retangular são 5, 6 e 8 cm. Se cada dimensão aumenta em 

0,01 cm, qual é aproximadamente o volume resultante? 
 

9. Dadas  as funções abaixo, calcule 
2

2

x

f




, 

2

2

y

f




, 

yx

f




2

, 
xy

f




2

 e verifique que              

yx

f




2

=
xy

f




2

 : 

 
a) f (x, y) = 6x2 + 7xy + 5y2 
b) f (x, y) = xcos y – y2 
c) f (x, y) = (x2 + y2)3/2 
d) f (x, y) = ycos x – xe2y 
e) f (x, y) = sen(x + 2y) 
f) f (x, y) = 5xcosh 2y 

 

10. Se w = (Ax2 + By2)3, onde A e B são constantes, verifique que  
yx

w




2

3

=
2

3

xy

w




 

  



125 

 

7.8 Lista 8 

1. Encontre as coordenadas cartesianas dos pontos dados em coordenadas polares:       
 

a) 









3

2
,2


  b) 








8

5
,4


  c) 








4

13
,3


  d) (1, 0) 

 
2. Encontre um par de coordenadas polares dos pontos dados em coordenadas 

cartesianas: 
a) (1,1)   b) (-1, 1)  c) (-1, -1)  d) (1, -1) 
 

3. Transforme as equações abaixo para coordenadas polares: 
a) x2 + y2 = 4 
b) x = 4 
c) y = 2 
d) y + x = 0 
e) x2 + y2 – 2x = 0 
f) x2 + y2 – 6y = 0 

 
4. Transforme as equações abaixo para coordenadas cartesianas: 

a) r = cos 

b) r = 2sen 

c) r = (cos + sen)-1 
d) r = a (a > 0) 

 
 

5. Ache as coordenadas cartesianas dos pontos cujas coordenadas cilíndricas são dadas 
abaixo: 

a) 







1,

3
,4


  b) 







4,

2
,3


  c) 







2,

6
,5


 

 

6. Ache as coordenadas cilíndricas com r  0 e 0    2 dos pontos cujas coordenadas 
cartesianas são dadas: 

a) (4, 0, 1)  b)  0,6,32    c)  0,3,33  

 
7. Ache as coordenadas cartesianas dos pontos cujas coordenadas esféricas são dadas 

abaixo: 

a) 








3
,

6
,2


  b) 











,

2
,7   c) 









3

2
,

6

5
,12


 

 

8. Ache as coordenadas esféricas com   0 e 0    2 e 0     dos pontos cujas 
coordenadas cartesianas são dadas: 
a) (0, -1, 0)  b) (0, 0, 5)  c) (0, 0, 0) 

 
9. Converta as equações cartesianas em equações cilíndricas e esféricas 

correspondentes. Classifique a curva ou superfície encontrada: 
a) z = 2(x2 + y2) 
b) x = 2 
c) x2 + y2 = 5z2 
d) x2 + y2 = 25 
e) x2 + y2 - z2 = 1 
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10. Converta as equações cilíndricas em equações cartesianas e esféricas 
correspondentes. Classifique a curva ou superfície encontrada: 
a) z = r2 

b) 1
49

22


zr

 

c) r = 4cos 
 

11. Converta as equações esféricas em equações cartesianas e cilíndricas 
correspondentes. Classifique a curva ou superfície encontrada: 

a)  = 2 

b) sen = 3 

c)  = /3 
 

12. Identifique as superfícies abaixo e esboce o gráfico: 
a) 2x2 + 4y2 + z2 – 16 = 0 
b) x2 – 4y2 + 2z2 = 8 
c) z2 – 4x2 – 4y2 = 4 
d) x2 – 4y + z2 = 0 
e) 4x2 – y2 = z 
f) x2 + y2 = z2 

 
13. Calcule a área da região limitada pela cardioide         . 

 
14. Calcule a área de interseção das regiões limitadas pelas curvas         e 

        . 
 

15. Calcule a área da região limitada pela curva dada. 
a)          
b)               
c)         
 

16. Calcule a área de interseção das regiões limitadas pelas curvas dadas em coordenadas 
polares. 
a)          e          
b)        e          
c)         e         (     
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7.9 Lista 9 

 
1. Calcule, utilizando integrais duplas: 

a)  
2

1

2

0

3
x

dydxxy  

b)  
1

0 0

2

dxdye
y

y
x

 

c)  
1

0

2
1

2
)(

y

y
dxdy

x
y  

d)  
R

dAyx )cos( , onde R é a região limitada pelas retas y = x e x =  e o eixo x 

e) R dA
x

y 2)( , onde R é a região limitada pelas retas y = x, y = 2 e a hipérbole  

    xy = 1 
f) a área da região no plano x0y; limitado pelas curvas x2 e y = 4x – x2 
g) a área da região no plano x0y limitado pelas curvas x2 + y2 = 16 e y2 = 6x 
 

2. Calcule as integrais duplas, utilizando coordenadas polares: 

a) dxdyyx
R  224 ;                    

b) dxdyyx
R  22

; R: 1≤ x2 + y2 ≤ 2, 0 ≤ y ≤ 3 x 

c)   
R

dxdyyx ; R: x2 + y2 ≤ 9, x ≥ 0, y ≥ 0 

d) dydxe
x

x

yx

 






3

3

9

9

2

2

22

 

e)  



a ya

dxdyyx
0 0

2/322
22

)(  

 
3. Ache o volume do sólido: 

a) Que está no primeiro octante, limitado pelo parabolóide z = 1 – r2 e pelo cilindro  r 
=1 

b) Que é formado pela parte inferior da esfera x2 +y2 + z2 = 25 e pela parte externa do 
cilindro x2 +y2 = 9 

c) Formado pelo cone z2 =  x2 +y2, pelo cilindro de r = 2, acima do plano x0y. 
  

4. Ache a área da superfície: 
a) Delimitado ao plano 2x + y+ z = 4 pelos planos x = 0, x = 1, y = 0 e y = 1 
b) No plano 36x + 16y +9z = 144, delimitada pelos planos coordenados 
c) Da parte do gráfico de z – 5x – y2 = 2 que está sobre a região triangular do plano 

x0y que tem vértices (0, 0, 0), (0, 4, 0) e (2, 4, 0) 
 

5. Calcule, utilizando integrais triplas: 

a)   
2

1

ln

0

2y

y

x

zdzdxdyye   

b) dydxdz
z

y
z

xz

  
2

0

2

0
cos

 

 

c) o volume do sólido delimitado pela curva z + x2 = 4 e pelos planos y + z =4, y = 0 e 
z= 0 

d) o volume do sólido cuja base é o triângulo de vértices (1, 1, 0), (0, 1, 0) e (0, 0, 0) e 
é delimitado pelos planos z = 0 e y + z = 1 
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6. Calcule as integrais triplas, utilizando coordenadas cilíndricas: 

a) dxdydzyx
s  22

, onde S é o sólido de primeiro octante limitado pelos planos 

coordenados, pelo plano z = 4 e pelo cilindro x2 + y2 = 25 

b) 


S
dxdydzyx 122 )( , onde S é o sólido limitado pelos planos z = 4 e z = 1 e 

pelo cilindro x2 + y2 = 16 
 
7. Calcule, em coordenadas esféricas: 

a) a massa da parte superior de uma esfera com centro na origem e raio a, se a 
densidade em qualquer ponto é proporcional à distância do ponto ao centro da 
esfera. 

b) o volume do sólido delimitado acima pela esfera  = 2 e abaixo pelo cone   = c,                

0  c 
2

   
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7.10 Lista 10 

 
1. Calcule a área entre a parábola y=x2 e a reta y=x+2. 

  

2. Ache o volume da região 
3B , limitada pelos planos coordenados x=0, y=0, z=0 e 

x+y+z=1.  
 

3. Determine o volume do sólido cuja base é a região do plano xy delimitada pela 
parábola y=2-x2 e pala reta y=x e cuja parte superior está contida no plano z=x+2.  

 
 
 
 
 
 
 
 
 

4. Desenhe a região de integração referente à integral  






2

1

4

4

2

2

x

x

dydx  

5. Encontre o volume do sólido limitado pelos gráficos x2+y2=9 e y2+z2=9.  
 

6. Calcule  
D

dxdyyx 22 , onde D é o domínio do plano xy limitado por x2+y2=4 e 

x2+y2=9.  
 

7. Determine o volume compreendido entre as superfícies z=8-x2-y2 e z=x2+3y2. 
 

8. Utilize coordenadas cilíndricas para calcular dsxy
R

4  onde R é a região cilíndrica 

x2+y21, .10  z   
 

9. Utilize coordenadas esféricas para calcular dsz
B


2

 onde B é a região x2+y2+z2 1.  

10. Calcule o volume do sólido V limitado pelo paraboloide z=4-x2-y2 e pelo plano xy. 
Sugestão: utilize coordenada polar. 

  
11. Calcule o volume do sólido limitado pelo cilindro x2+y2=4 e os planos y+z=4 e z=0.  

 

12. Calcule a integral tripla 
G

dvzxy 3212 , na caixa retangular 















20

30

21

z

y

x

  

13. Seja G a cunha do primeiro octante secionada do sólido cilíndrico 122  zy  pelos 

planos y=x e x=0. Calcule 
G

zdv .  

14. Calcule o volume do tetraedro limitado pelos planos coordenados e pelo plano 
2x+3y+6z=12 
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7.11 Lista 11 

 
Calcule as integrais abaixo nas regiões indicadas, utilizando uma mudança adequada de 
variáveis (método do Jacobiano): 

 

1. ∭
      

     
  

 
; G é a região compreendida entre os planos 0   x – y + z   1,                 

1   x + y – z   2 e 0   z   1 

2. ∬
    

    
  

 
; R é a região retangular envolvida pelas retas x – 2y = 1, x – 2y = 4,           

2x + y = 1 e 2x + y = 3. 

3. ∬            
  

 
; R é a região retangular envolvida pelas retas x+y = 0, x + y = 1,   

x – y = 1 e x – y = 4. 

4. ∬
    

    
  

 
; R é a região envolvida pelas retas y = 4x, y = 4x + 2, y = 2 – 4x,                    

y = 5 – 4x 

5. ∭            
 

; G é a região compreendida pelas superfícies x = 1, x = 3, z = y,       

z = y + 1,    xy = 2, xy = 4. 

6. ∬           
 

; R é a região compreendida pelas curvas xy =  , xy = 2 , xy4 = 1,        

xy4 = 2. 

7. ∬     
 

; R é a região do primeiro quadrante compreendida pelas hipérboles             

x2 – y2 = 1,  x2 – y2 = 4 e os círculos x2 + y2 = 9, x2 + y2 = 16. 
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7.12 Lista 12 

 
1. Represente graficamente os campos vetoriais abaixo: 

a) F (x, y) =


 jyix  

b) F (x, y, z) =


 kzjyix  

c) F (x, y) =


 jxiy  

d) F (x, y) =


i2  

e) F (x, y) =


 ji2  

2. Seja D um sólido esférico de raio r. A temperatura em cada um dos pontos é 
proporcional à distância do ponto até a superfície da esfera. 
a) Usando coordenadas cartesianas, determine a função que define o campo de 
temperatura; 
b) Determine as superfícies isotermas do campo de temperatura em D, isto é, onde a 
temperatura é constante. 
 

3. Um tanque tem a forma de um paralelepípedo retângulo cuja base tem dimensões 
1mX2m e cuja altura é 1,5m. O tanque está cheio de uma substância com densidade 
variável. Em cada ponto, a densidade proporcional à distância do ponto até a 
superfície superior do tanque: 
a) Determine a função que define o campo de densidade; 
b) Determine as superfícies onde a densidade é constante. 
 

4. Calcule lim rro



f (x, y, z), sendo: 

a) F (x, y, z) = 0
2

22 ;
4

2
,,















 r

x

x

z
xy

yx = (2, 1, 1) 

b) F (x, y, z) = 


o

x rzyx
y

y
e );,

sen
,(  ( 1, 0, 1/2) 

c) F (x, y, z) = ( zx
yx

yx
,, 2




) ; 



or = (2, 1, 4) 

5. Determine os pontos em que as funções são contínuas: 

a) F (x, y, z) =


 kjxzie xy 2ln  

b) F (x, y, z) = 









z

x

z

yx

x
,,  

c) F (x, y, z) =




a

a3
, onde 



 kzjyixa  

6. Encontre a derivada direcional de P nos campos vetoriais dados, na direção do vetor 


a

= 


 kji2 : 

a) F (x, y, z) =


 kjyix 452 ; P(1, 1, 2) 
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b) F (x, y, z) =


 kzjyxiyx )()( ; P(0, 0, 0) 

c) F (x, y, z) =





  kjeie yxyx 2 ; P(1, 1, 0) 

7. Seja 


v (x, y, z) o campo de velocidade de um fluido em movimento. Determine a 

variação de 


u no ponto e na direção indicados:  

a) 


v (x, y, z) = (2x, 2y, 
2

1  z); Po ( 1, 1, 2); 


 kjia  

b) 


v (x, y, z) = (-x2, -y2, z2); Po (0, 0, 1); 


 kia 2  

 
8. Encontre a divergência e o rotacional dos campos vetoriais abaixo: 

a) F (x, y) = (ex cos y, ex sen y) 
b) F (x, y, z) = (xyz3, 2xy3, -x2yz) 

c) F (x, y, z) =


















22
,

22
yx

x

yx

y
, (x, y)  (0, 0) 

9. Verifique se o campo dado é irrotacional: 

a) F (x, y, z) = ),,( xyzxyzxyz xyexzeyze  

b) F (x, y, z) = )sen,sen,cos2( yzxyyzxyyzx   

c) F (x, y, z) = (x2, y2, z2) 

10. Um fluido escoa em movimento uniforme com velocidade 


v dada. Verifique se 


v  
representa um possível fluxo incompressível: 

a) 


v = 


 kyjxiz 22  

b) 


v =


 kjxi2  

c) 


v =


 jxixy2  
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7.13 Lista 13 

 
1. Calcule as integrais de linha: 

a) F (x, y, z) =


 kxyjxziyz  e C  é a elipse x2 + 9y2 = 36 no plano z = 2 

b)  
C

dzzdyydxx 222
e C é o arco da hélice circular dada por R(t) = 

(4cost,4sent, 8t), t  [0, 2] 

c)  
C

xdzydyzdx e C é a intersecção das superfícies 8 zy  e 

08222  zzyx  (considere os dois possíveis sentidos da curva) 

d) F (x, y) =


 jyix e C é o quadrado de vértices (-1, -1), (-1, 1), (1, 1) e     (1, -1) 

e)  
C

dyyxdxyx )23()63( 2
e C é a parábola y = x2, do ponto (0,0) ao ponto 

(1,1). 
 

2. Calcule o trabalho (em Joules): 

a) Realizado por 





  jyixyxF 11 )3()2(),( para deslocar uma partícula em 

linha reta do ponto A(3, 4) até o ponto B(-1, 0) 

b) Realizado por 


 kzixzyxF 2),,(  para deslocar uma partícula ao longo da 

linha poligonal que une os pontos A(0, 0, 0), B(0, 1, 0), C(0, 1, 1) e    D(1, 1, 1), no 
sentido de A para D 

 
3. Mostre que o valor da integral de linha é independente do caminho e calcule-o 

utilizando o teorema da função potencial: 

a)  
C

xdyydx entre os pontos (1, 4) e (3, 2) 

b)  
C

xx ydyesenydxe cos , de A(0, 0) até B(2, /2) 

c)  
C

dyxyyxdxyxy )232()2( 2232
, de (-3, -1) até (1, 2) 

d)  
C

dzyzdyzxdxyx )3()3()( 2
, de (-3, 1, 2) até (3, 0, 4) 

 
4. Calcule a integral de linha, utilizando o teorema de Green: 

a)  
C

xydydxyx )( ; C é a curva fechada delimitada pelo eixo x, pela reta x = 2 e 

pela curva 4y = x3 

a)  
C

dyxx )( 2
; C é a  curva fechada delimitada pela reta x – 2y = 0 e pela 

parábola x= 2y2 

b)  
C

xdyydx coscos , C é o retângulo com vértices (0, 0), (/3, 0), (/3, /4),         

(0, /4) 

c)  
C

yx dyeydxex )(cos)(sen 324
; C é a circunferência x2 + y2 = 4 

 
5. Calcule o valor da área da região dada, utilizando o teorema da área: 

a) A região limitada pelos gráficos y = x2 e y = x  
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b) Região limitada pelo hipociclóide que tem tax 3cos  e tay 3sen

)20,0(  ta como equações paramétricas 

 
6. Utilize o teorema de Green para encontrar o trabalho total realizado pelo campo de 

forças F (x, y) = 


iyx )3(  (4x – 5y) j para mover um objeto no sentido anti-horário, 

uma volta em torno da elipse x2 + y2 = 16 (suponha que o arco seja medido em metros 
e a força em Newtons)  
 

7. Calcule a integral curvilínea C xyds2 , onde C é o quarto de círculo do primeiro 

quadrante parametrizado por x=cost e y=sent com 4/0  t . 
 

8. Calcule a integral curvilínea  
C

xdyydx 2  sendo C: 

a) O segmento de reta no plano, de A(1,1) a B(2,4); 
b) A trajetória plana de A(1,1) a B(2,4) ao longo do gráfico da parábola y=x². 

 
9. Determine uma função potencial para os campos vetoriais dados: 

a) F(x,y)=(2x+3y)i+(3x+2y)j 
b) F(x,y)=(3x²+2y²)i+(4xy+6y²)j;  
c)F(x,y,z)=(2x-y-z)i+(2y-x)j+(2z-x)k 

 

10. Aplique o teorema de Green para calcular a integral  
C

QdyPdx ao longo da curva 

fechada C especificada: P=x+y2,  Q=y+x2, C é o quadrado de vértices (1,1) e (-1,-1) 
 

11. Calcule a área da região indicada, aplicando o corolário do teorema de Green: A região 
delimitada por y=x² e por y=x³ 
 

12. Esboce o gráfico de cada curva abaixo, indicando a orientação positiva. 
 
a)  ⃗                       
b)  ⃗                   
c)  ⃗                     
d)  ⃗                            

 
13. Calcule as integrais de linha ao longo do caminho indicado: 

a) ∫          
 

                         

b) ∫          
     

      
                            . 

c) ∫
 

 
   

 

 
  

      

      
                          

d) ∮                      
 

            

e) ∫     
 

                     

f) ∫     
 

                              

g) ∫         
 

                                                  

 

14. Calcule, ∫  ⃗   ⃗
 

, nos seguintes casos: 

a)  ⃗                                      . 

b)  ⃗                                               
                . 
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c)  ⃗               
                                                          

d)  ⃗                                                     . 
 

15. Com o auxílio do Teorema de Green, calcule as seguintes integrais de linha: 

a) ∮                           
 

  

                                           

b) ∮                                
 

  

c) ∮           
 

                                . 

 
16. Verifique se o campo é conservativo e no caso afirmativo, encontre a função potencial. 

a)  ⃗               

b)  ⃗                   

c)  ⃗                            

d)  ⃗                   

e)  ⃗                          

f)  ⃗                             

g)  ⃗                               

h)  ⃗                                          
 

17. Em cada caso abaixo calcule a integral de linha indicada, observando que a mesma 
independe do caminho. 

a) ∫                   
     

      
    

b) ∫               
       

      
    

c) ∫
         

       
     

     
    

d) ∫                        
       

       
    

e) ∫                                              
       

       
    

f) ∫                       
 

                                       (  
 

 
)    
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7.14 Lista 14 

 
1. Determine se cada sequência converge ou diverge. Se convergir, calcule seu valor. 

a) 








n

100    b) 












nn

nn

27

5
3

3

  c) 








13

5 2

n

n  

d) 





















n
sen

n

nn

21

2 2   e) 












1

)1ln(

n

n
  f) 









 )4ln(

)1ln(

n

n  

g) 









 nn 1

1

2

  h) 






















n

n

1
1  

 
2. Diga se cada sequência é crescente, decrescente ou não-monótona e também se é 

limitada superior ou inferiormente. Indique se é convergente ou divergente. 

a) 












23

12

n

n
  b)  nn 3   c)  2

)1( n  

 

d) 












1

)1(

n

nn

  e) 









n

n2
1   f)  









n

nsen 4  

 
3. Calcule os cinco primeiros termos de cada série e os cinco primeiros termos da 

sequência {Sn}. Determine uma fórmula simples para a enésima soma parcial Sn em 
função de n e, se a série for convergente, calcule o valor limite da série. 

a) 


 1 )12)(12(

1

k kk
  b) 

 



 



1
22 1

12

k kk

k  

 
4. Encontre o termo inicial e a razão de cada série geométrica. Determine se a série 

converge ou diverge e, se convergir, calcule seu valor. 

a) ...
343

8

49

4

7

2
1   b) 














1 6

7

k

k

 c) 1 – 1 + 1 – 1 + 1 – 1 + ... 

d) 







1
1

1

4

3

k
k

k

  e) 0,9 + 0,09 + 0,009 + ... f) 






1

5
k

k  

 
5. Mostre que as séries abaixo divergem 

a) 


 1 75k k

k   b) 













1 512

5
ln

k k

k
  c) 



 



1
2

2

2137

53

k kk

kk  

d) 













1 4k

k
sen

   e) 













1

1

k k
ksen  

 
6. Utilize as propriedades lineares das séries para calcular as somas abaixo 

a) 


 




























1 4

1

3

1

k

kk

  b) 
























 










1

11

3

1

2

1

k

kk

 

c) 



























1

1

4

3

)1(

1

k

k

kk
  d) 




 











1
17

1

6

32

k
kk

kk

 

 
7. Determine se as séries convergem ou divergem, utilizando o teste da integral. 

a) 


1
3

1

k kk
  b) 



 1
3

2

16

3

k k

k   c) 













1

2
1000

k n
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d) 


2

ln

k k

k   e) 






1j

jje   f) 


2 ln

1

k kk
 

 
8. Use o teste da comparação direta com uma série p ou com uma série geométrica 

para determinar se a série dada converge ou diverge. 

a) 


 1
4

2

13k kk

k     b) 


1 5

1

k
kk

 

c) 


 



1 7)2(

1

j
jj

j     d) 


 1
3 1

8

k k
 

 
9. Use o teste da comparação no limite com uma série p ou com uma série geométrica 

para determinar se a série dada converge ou diverge. 

a) 


 1
3 2 5

1

k k
  b) 



 1

2

)4)(3)(2)(1(

5

k kkkk

k   c) 


 1
3

2

1k k

k
 

 
10. Determine se a série converge ou diverge. Use o teste de Leibniz para séries 

alternadas sempre que ele se aplicar. 

a) 






1
2

1)1(

k

k

k
     b) 










1
3

1

2
)1(

k

k

k

k  

 

c) 











1

1

7

1
)1(

k

k

k

k     d) 


 


0 )2ln(

1
)1(

k

k

k
 

 
 
11. Obtenha a soma dos n primeiros termos, dê um limite em valor absoluto para o erro 

envolvido nesta aproximação e determine se a aproximação é por cima ou por baixo. 

a) 











1

1

5;
13

)1(

k

k

n
k

 b) 









1
2

1

4;
)1(

k

k

n
k

 c) 







1

3;
5

)1(

k
k

k

n
k

 

 
12. Determine se as séries são absolutamente convergente ou divergente, utilizando o 

teste da razão ou o teste da raiz. 
 

a) 





1

1

4

5
)1(

k
k

k
k

k
  b) 






1

1

)!3(

7
)1(

k

k
k

k
  c) 






1

4
1

)02,1(
)1(

k
k

k k  

d) 







1 2

1
)1(

k
k

k

k e
  e) 


















1

1

13
)1(

k

k

k

k

k
  f)










1

1

)12(
)1(

k
k

k
k

kk

k
 

 
13. Determine a série de Taylor (ou Maclaurin) para a função dada, no ponto indicado. 

a) 
6

  ;   )(


 axsenxf   b) 2  ;  
1

)(  a
x

xf  

c) 4  ;  )(  aexf x   d) 0  ;  )(
2

  aexf x  
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8 Respostas 

8.1 Respostas da Lista 1 

2.a)Bola aberta           √   2.b) Bola fechada             √  
2.c) Não representa bola  2.d) Não representa bola 
2.e) Bola aberta                2.f) Não representa bola 
 

8.2 Respostas da Lista 2 

 

 

1.a) 

 

 

1.b) 

 

 

1.c) 

 

1.d) 

 

 

 

1.e) 

 

 

2.  ⃗           ⃗          

São perpendiculares 

 

3.   ⃗    (
      

 
)  ⃗  (   

      

 
)  ⃗ 

      ⃗     (
 

 
    

  

 
) 

 

4.a)  ⃗            ⃗           

4.b) não são perpendiculares. 

 

5.a)     √  

5.b) ( 
 

 
 
  

 
       ) 
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6. 6 

7. (       
    

 
) 

8. Não é contínua em t=0 

9. Não é contínua em t=0 

10.   
  

 
 

11. Não é contínua em t=0 

12.a)  ⃗    (
 

 
  )   ⃗    (  

 

 
) 12.c) Não são perpendiculares. 

13.  ⃗    (√     ) ⃗   (√        ) ⃗      ⃗⃗ 

14.  ⃗    (√       ) ⃗            ⃗ 

15.a)          15.b)           15.c) (  
  

 
 
  

 
)      15.d) -5     

15.e)           15.f)          15.g)         
 
16.a)                                          
16.b)      

   
            

   
                                          

 
17.a)                         

17.b)                      
 

 
        

17.c)                               
 

18.a)                                     18.b)                            

18.c)                         18.d)      (
 

 
    )  

18.e)       (
  

       
 
   

    
  ) 

 

19.a)  ⃗                  ⃗              ⃗                 ⃗     √   

19.b)  ⃗    (
 

 √ 
         )    ⃗            ⃗    (

  

 √  
      )    ⃗        

19.c)  ⃗                       ⃗             ⃗                        ⃗         
 
20.a) (1; -2; 3)  20.b) (1; e) 20.c) (0; -1; 1)  20.d) (-1; 1) 20.e) (2; 1; 0) 
 

21.a) (t2 , 2√  , 4√   ) 21.b) (2, 1, 6) 21. c) (16, 4, 32); (8, ½, 12); (  
  

  
 
 

 
) 

 

22.a) (1, 0, 0); (0, 0, -2) 22.b) (
  

 
  ), (

 

 
  ) 22.c) (0, 0 ); (2, 0)  22.d) (-1,1); (0, 0) 

 
23. Demonstração 
 

24. (
  

      
  

     

      
)  

25.a) 
  

 
 

  

 
    25.b) x2 + y2 = 16 ; z = 2  

25.c) 
      

  
 

      

 
   25.d) y = (x – 1)2 + 4 

 
26.a) y = 6x + 5 26.b) y = x2 + 1 26.c) y = x + 2;  z = 2  (x   -1) 
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27.a) (1 + 2t, ½ - t, 2)  27.b) (5t, 2 – t)   

27.c) (-1 + 5t, 2 – 2t, 5t) 27.d) (√  + 5t, 2, √  – 3t) 
 
28.a) (2cost, 2sent, 4) , t  [    ] 28.b) (t, 2t2, t3)   

28.c) (-1 + √ cost, √   sent, 2) , t  [    ] 28.d) (t, √  , 2) , t   0 
28.e) (t, lnt, et) , t > 0  28.f) (t, t, 2t2)  28.g) (2 – 3t, 1, 2 + t) , t  [   ] 
28.h) (2 + 2 cost, 2 – 2sent) , t  [    ]  28.i) (t, 0, 1 – t) , t  [   ] 
 
29.a) não 29.b) sim 29.c) não 29.d) sim 29.e) sim 
 

30.a) √  (e – 1) 30.b) 60 30.c) √    30.d) 
 

  
[  √    ] 

 

31.a) 
√  

 
 x 31.b) 2x 31.c) 

 

 
[  √          | √        |] 

31.d) 2x 31.e) 
  

 
        

 

32.a) (
  

√    
  

  

√    
)  32.b) (

  √  

  
  

 √  

  
)  33.c) (

√  

  
  

 √  

  
) 

32.d) (-1, 0, 0)   32.e) (
 √ 

 
  

√ 

 
)  32.f) (

√ 

 
  

√ 

 
   ) 

 
 
 

8.3 Respostas da Lista 3 

 
1.a)           
1.b)            
1.c)      {                }     
 

 
1.d)           
1.e)      {                }  
 
   
1.f)         
1.g)            
1.h)         
 

2.a)      2.b)      √    2.c)           

3.a)      {                }           √  

3.b)      {                }  (
 

 
 
 

 
)  

√  

  
 

3.c)                    
    

 
 

4.a)     4.b)    4.c)    
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4.d)    4.e)     4.f) 

   

5.a)    5.b)     5.c) 

   

6.a)      {                     },       [    ] 

Gráfico da região de domínio:  Mapa de contorno:  Gráfico da função: 

      
6.b)         ,       [    [ 

Gráfico da região de domínio:  Mapa de contorno:  Gráfico da função: 

Todo o plano    
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6.c)       {                  },       [    [ 

Gráfico da região de domínio:  Mapa de contorno:  Gráfico da função: 

   
 
7.a)      {                  }  7.b)      {            } 
7.c)      {                        }  
7.d)      {                        } 7.e)      {             } 
 

8.4 Respostas da Lista 4 

 
1.a)                         1.b)                       

1.c)                        1.d)                         

 
2.a)               [    [ 

Gráfico da região de 
domínio 

Mapa de contorno Gráfico da função 

Todo o plano 

 

 
 
2.b)               ]     ] 

Gráfico da região de 
domínio 

Mapa de contorno Gráfico da função 
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Todo o plano 

 

 
2.c)               [    [ 

Gráfico da região de 
domínio 

Mapa de contorno Gráfico da função 

Todo o plano 

 

 

3.a)                                                      

3.b)                                                 

3.c)                                                 

 

8.5 Respostas da Lista 5 

 

1) 
  

 
 , 5, 

   

     
 , 0 

2) 1, 
√ 

 
 , 

 

 
√            

 
3.a) D(f) = {(x, y)      /       1} 
3.b) D(f) = {(x, y)      /       1} 
3.c) D(f) = {(x, y)      /       1} 
3.d) D(f) = {(x, y)      /     } 
3.e) D(f) = {(x, y)      / xy >  } 
 
4.a) D(f) = {(x, y, z)      /             16}, elipsoide 
4.b) D(f) = {(x, y, z)      /        }, cilindro C(0, 0) e r = 2 
 

5.a)2 5.b) 6 5.c) √       5.d)       
 

6.a) – 4  6.b) 0  6.c) 0  6.d) 
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6.e) 
 

 
   6.f) 

 

 
   6.g) 3 

 
7. Mostrar que, em direções diferentes temos limites diferentes; logo, o limite múltiplo não 
existe. 
 
8.a) contínua   (x, y) que não esteja sobre  a reta y = 1 
8.b) contínua   (x, y) que não esteja sobre o eixo y 
8.c) contínua   (x, y) que está dentro da circunferência de raio 5 
8.d) contínua   (x, y)   (0, 0) 
8.e) contínua   (x, y)      

8.6 Respostas da Lista 6 

 
1.a)                       

1.b)    (
         

       
)    (

     

       
)    

1.c)                                     

1.d)    (    
 

 
)   (    

 

 
)    (    

 

 
)   

 
2.a)                                     
2.b)                 2.c)                   2.d)              
 
3.a)                                      
3.b)                 
 

6.    [ (   
 

 
)
   

(
    

 
)]    [ (   

 

 
)
   

(
     

  )]    [(   
 

 
)
 

  (   
 

 
)]    

 
7.a)                         

7.b)    (          
)   (          

    

7.c)    (
 

√       
)   (

 

√       
)   

7.d)                                      
7.e)                                           

7.f)    (
 

    
)    (

 

    
)    

7.g)    (
   

      
)    (

  

      
)   

7.h)    (      
)   (         

)   

 
8.a)                8.b)                 8.c)                 
 

9.a) 
  

  
     9.b) 

  

  
           9.c) 

  

  
 

  

    
 

 

10.a) 
  

  
                           

  

  
                            

10.b) 
  

  
 

          

√        
 

          

√        
 

    

√        
 
  

  
 

          

√        
 

          

√        
   

10.c)   
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11.a)               11.b)              
11.c)            11.d)                  
 

12.a)   ⃗⃗ ⃗⃗⃗                12.b)   ⃗⃗ ⃗⃗⃗                

12.c)   ⃗⃗ ⃗⃗⃗       (
√  

 
 
  √  

 
) 12.d)   ⃗⃗ ⃗⃗⃗                  

12.e)   ⃗⃗ ⃗⃗⃗          (
  

 
 
  

 
 
   

 
) 12.f)   ⃗⃗ ⃗⃗⃗                        

13.a)          
  

√ 
  13.b)    (  

 

 
)     

13.c)              
 

 
 13.d)             

 

√  
 

 

14.a)      
       √    14.b)      

            √                 14.c)      
         √   

A derivada direcional máxima ocorre na direção do vetor gradiente. 
 

15.a)      
 

 
  

  

 
  15.b)     

  

 
  

  

 
   

15.c)                  
15.d)             15.e)                   
 
16.a)                                                                

            

16.b)                                                                 

                     

16.c)           √                √      
   

√     
          

   

√     
 

                    √                √      
   

√     
 

16.d)                                                        

                                             

16.e)                                                            

                                                  

16.f)                                                                     

                                 

 

17.a)             17.b)                17.c)    (  
 

 
)        

17.d)                 
 

18.a)      
               18.b)      

 (  
 

 
)       

 
19.a)                                19.b)                                  
19.c)                     
 

20.a) –
       

       
      

                                     
 

 
                     

               
 

 
                    

20.b) 
  

 
   20.c) 

–                  
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21.a) 
             

              
  21.b) 

         

          

 

22.a)   (
√ 

 
 
√ 

 
)     ( 

√ 

 
  

√ 

 
)                             

  ( √  √ )     (√   √ )                              

22.b)   (
√  

 
 
  

 
)      ( 

√  

 
 
  

 
)                            , 

                                 
 

8.7 Respostas da Lista 7 

 

1.a) 14x + 10xy  1.b) cosxcos7y  1.c) 
    

        
  1.d) 2rcos7  

1.e) 6xy + 7  1.f) y2 + 2xy 
 

2.a) 
  

        
 
 

  2.b) 
   

         2.c) 
 

       

2.d) 
   

√           
 

 
4 .a) 6xv-+ 8y, 6xu 4.b) (12x2 – 6xy2)cosv – 6x2yvcosu , (12x2 – 6xy2)(-usenv) – 6x2ysenu  
 

4.c) 
           

      , 
       

                

 4.d) 6re-rsenh(3x+7y) + 7e3ssenh(3x + 7y) ,  -3r2e-ssenh(3x+7y) + 21re3ssenh(3x + 7y) 
 

5.a) 3  5.b) – 6  5.c) 
 

 
 

 
6.a) diferenciável 6.b) diferenciável 6.c) diferenciável 
 
7) 40 watts  
 
8) 1, 18 cm3  
 

9.a) 12, 10, 0 9.b) 0, - xcosy – 2, - seny 9.c)  √      
   

√     
  √      

   

√     
 

   

√     
  

9.d) –ycosx, –4xe2y, –senx – 2e2y 9.e) –sen(x + 2y), –4sen(x + 2y), –2sen(x + 2y) 
9.f) 0, 20xcosh2y, 10senh2y 
 

8.8 Respostas da Lista 8 

 

1.a) (1; -√ ) 1.b) (-1,5307; 3,6955) 1.c) (
  √ 

 
  

  √ 

 
) 1.d) (1; 0) 

 

2.a) (√   
 

 
) 2.b) (√   

  

 
) 2.c) (√   

  

 
) 2.d) (√   

  

 
) 
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3.a) r =    3.b) 4 = rcos  3.c) 2= rsen  3.d)   = 
  

 
 + K    

3.e) r = 2cos  3.f) r = 6sen  
 
4.a) x2 – x + y2 = 0 4.b) x2 + y2 – 2y = 0 
4.c) x + y = 1  4.d) x2 + y2 = a2 

5.a) (2; 2√ ; 1)  5.b) (0; 3; 4)  5.c) (
 √ 

 
  

 

 
    ) 

6.a) (4;  ; 1)  6.b) ( √   
  

 
   ) 6.c) (   

  

 
   ) 

 

7.a) (
 

 
  

√ 

 
   )  7.b) (0;0;-7)  7.c) (-9; 

√ 

 
      

 

8.a) (   
  

 
  

 

 
)  8.b) (5; ; 0)  8.c) (0;  ;  ) 

 
9.a) z = 2r2,      = 2ρ     , paraboloide 
9.b) rcos   = 2,                , Reta 

9.c) r2 = 5z2, tan  = √ , cone 
9.d) r = 5, ρsen  = 5, circunferência 
9.e) r2 = 1 + z2,                , Hiperboloide 
 
10.a) z = x2 + y2, ρ = cos csc2 , paraboloide 

10.b) 
     

 
 

  

 
  , ρ2 (9cos2 +  4sen2 ) = 36, elipsoide 

10.c) y2 + (x – 2)2 = 4, ρ sen  = 4 cos  , circunferência 
 
11.a) x2 + y2 + z2 = 4, r2 + z2 = 4,  elipsoide (esfera) 
11.b) x2 + y2 = 9, r = 3,  circunferência 
10.c) x2 + y2 – 3z2 = 0, 3z2 = r2,  Cone 
 
12.a) elipsoide 
12.b) hiperboloide de uma folha – eixo y 
12.c) hiperboloide de duas folhas – eixo z 
12.d) paraboloide – eixo y 
12.e) paraboloide hiperbólico – eixo z 
12.f) cone – eixo z 
 

13) 
  

 
   14)  

  

 
   

15.a) 
  

 
    15.b) 1u.a 15.c) 

 

 
   

16.a) 
  

 
  √     16.b) 

   

 
    16.c)   

√ 

 
   

8.9 Respostas da Lista 9 

1.a) 42  1.b) ½  1.c) 1/5  1.d) -2 

1.e) 9/4  1.f) 8/3  1.g) 
   

 
 

 √ 

 
 

 

2.a) 
  

 
  2.b) 

 

 
  √     2.c) 0  2.d)   

 

   2.e) 
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3.a) 
 

 
  3.b) 

   

 
   3.c) 

  

 
  

 

4.a) √   4.b)  √      4.c) 
 

  
(   √     √  ) 

 

5.a) 
  

  
  5.b) 

 

 
    5.c) 

   

 
  5.d) 1/6 

6.a) 
    

 
 6.b) 24  

 

7.a) 
    

 
 7.b) 

   

 
 (1 – cos c) 

8.10 Respostas da Lista 10 

1) 
 

 
     2)  

 

 
    3) 

  

 
    5) 144  6)

  

 
   7)   √  

8) 0  9) 
 

  
   10)     11)      12) 648  13) 

 

 
        14) 8 

 
8.11 Respostas da Lista 11 

1) 
 

 
(1 – e) ln2  2) 

 

 
 ln3  3) 

 

 
 (e4 – e – 3)   

4) 
 

 
 ln

 

 
   5) 2 ln3  6)  

 

 
 ln2 7) 

   

 
 

8.12 Respostas da Lista 12 

1.a) 

 

1.b) 

 
1.c) 

 

1.d) 

 
1.e)  
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2.a)          (  √        )  

2.b)      √                   
 
3.a)                   

3.b)       
  

 
                             

 

4.a) (    
 

 
)  4.b) (    

 

 
)  4.c)         

 
5.a) {               }  
5.b) {                    }  
5.c) {                          } 
 

6.a) (
 √ 

 
 
  √ 

 
  ) 6.b) (

√ 

 
 
√ 

 
 
√ 

 
) 6.c) (

√ 

 
   

√ 

 
  ) 

 

7.a) (
 √ 

 
 
 √ 

 
 
 √ 

 
) 7.b) (    

  √ 

 
) 

 
8.a)                                     
8.b)                                                      

8.c)                 (    
 

√     
) 

 
9.a) irrotacional 9.b) rotacional  9.c) irrotacional 
 
10.a) incompressível 10.b) incompressível 10.c) compressível (y>0 -> fonte, y<0  -> poço) 

 

8.13 Respostas da Lista 13 

 

1.a)     1.b) 
      

 
 1.c)   √    1.d) 0  1.e) 2 

 

2.a)   (
 

  
) 2.b) 

 

 
 

 
3.a) 2  3.b)     3.c) -4  3.d) 15 
 

4.a)  
 

 
 4.b)  

 

 
 4.c) 

 

  
(   √ ) 4.d) 0 
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5.a) 
 

 
  5.b) 

   

 
  

 

6.      7. 0,5  8.a) 
  

 
  8.b) 

  

 
   

 
9.a)              9.b)                

9.c)                  10. 0   11. 
 

  
 

 
 
 
 
 
 
 

12.a) 

 

12.b) 

 

12.c) 

 

12.d) 

 

12.e) 

 

12.f) uma espiral 

 

13.a)  
  

 
 13.b) 0  13.c)   (

 

 
)    13.d) 

 

 
   

13.e) 
√ 

 
  13.f)    13.g) 

 

 
 

 

14.a) 
    

 
 14.b) 

  

 
  14.c) 

 

 
  14.d) 

   

  
 

15.a) 0  15.b)    15.c) 0 
 

16.a)        
 

 
           16.b)              

16.c)                      16.d)          
 

 
             

16.e)            
 

 
          16.f) não conservativo 

16.g) não conservativo    16.h) não conservativo 
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17.a) 
  

 
  17.b) 4  17.c) 0  17.d) 3  17.e) 4  17.f) e 

8.14 Respostas da Lista 14 

 
1.a) converge para 0 1.b) converge para 1/7  1.c) diverge 1.d) converge para   
1.e) converge para 0 1.f) converge para -1  1.g) diverge 1.h) converge para “e” 
 
2.a) converge para 2/3; monotonamente crescente, limitada entre 3/5 e 2/3 
2.b) divergente, monotonamente crescente, limite inferior = 2 
2.c) não monótona, divergente, limitada entre -1 e 1 
2.d) não monótona, divergente, limitada entre -1 e 1 
2.e) monotonamente decrescente, limite superior = - 1, divergente 

2.f) não monótona, limitada entre ( 
√ 

 
 
√ 

 
), convergente para 0 

3.a) 
2

1
      

12
  ;

11

5
,

9

4
,

7

3
,

5

2
,

3

1
  ;

99

1
,

63

1
,

35

1
,

15

1
,

3

1
paraconverge

n

n
Sn


  

3.b) 1      
)1(

1
1  ;

36

35
,

25

24
,

16

15
,

9

8
,

4

3
  ;

900

11
,

400

9
,

144

7
,

36

5
,

4

3
2

paraconverge
n

Sn


  

 
4.a) converge para 7/5  4.b) diverge  4.c) diverge    
4.d) converge para ¼  4.e) converge para 1 4.f) converge para ¼ 
 
5. todos os valores dos limites são diferentes de zero 
5.a) 1/5  5.b) ln(5/12)  5.c) 3/7  5.d) oscila 5.e) 1 
 
6.a) 5/6  6.b) 23/12  6.c) -3  6.d) 31/21 
 
7. (quando convergem, estão indicados os valores da integral imprópria) 
7.a) 3; convergente  7.b) divergente      7.c) 1000000; convergente    
7.d) divergente      7.e) 2/e; convergente  7.f) divergente 
 

 
8. (as séries utilizadas para a comparação estão indicadas) 

8.a) converge; 


1
4

1

k k
 8.b) converge; 



1 5

1

k
k

 8.c) converge; 


1 7

1

j
j

 8.d) diverge; 


1
3

1

k k
 

 
9. (as séries utilizadas para a comparação estão indicadas) 

9.a) diverge; 


1
3 2

1

k k

 9.b) converge; 


1
2

1

k k
 9.c) diverge; 



1

1

k k
 

 
10. (em todas é possível usar o teste de Leibniz) Convergem a, b e d; c diverge 

 

11.a)
3080

1249
5 S , estimado por cima com erro menor que 1/17 

11.b) 
144

115
4 S , estimado por baixo, com erro menor que 1/25 
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11.c) 
750

137
3 S , estimado por baixo, com erro menor que 1/2500 

 
12. (os resultados dos limites estão indicados) 
12.a) 5/4; divergente    12.b) 0; absolutamente convergente  
12.c)1/1,02;absolutamente convergente 12.d) e/2; divergente 
12.e) 1/3; absolutamente convergente  12f)1/2;absolutamente convergente 
 

13.a) ...
6!42

1

6!32

3

6!22

1

62

3

2

1

6

432

0




























































xxxxxC

k

k

k
 

13.b) 





 


0
1

1

2

)2(
)1(

k
k

k
k x  13.c) 






0

4

)4(
!k

kx
k

e  13.d) 





0

2

!
)1(

k

k
k

k

x  
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9 Teste seus conhecimentos 

9.1 Teste 1 

 
1. Conceitue função vetorial de uma variável e dê dois exemplos (um com imagem no    e 

outro com imagem no   ). 

 

2. Esboce o hodógrafo da função vetorial   ⃗            ⃗          ⃗  (
 

 
)  ⃗⃗ para 

       e represente os vetores velocidade e aceleração para   
  

 
 (Tome pontos 

a cada 
 

 
). 

 

3. Verifique a continuidade de  ⃗    para     e para    . 

 ⃗    

{
 
 

 
        

 
 ⃗  

       

√     
 ⃗  

    

       
 ⃗⃗                      

  ⃗    ⃗⃗                                                                                             

     ⃗        √     ⃗   ⃗⃗                                                            

 

 

4. Verifique se a curva  ⃗    (√                 ) é suave para   [   ]. 

 

5. Determine a função comprimento de arco para a curva  ⃗    (       
 

 
        

 

 
) e 

calcule o comprimento para   [   ]. 

6. Verifique se a função abaixo é contínua para t = 0. 
































2;ln

0;
1

2

12

2;0;
2

4
2

)(

tit

tj
t

t
i

t
e

ttj
t

t
i

t

sent

tf




 

7. A trajetória de uma partícula é dada por )(tr


= 2t i


+ ( t2 – 4 ) j


, -2  t  3. Determine o 

vetor velocidade para t = 1 e esboce a trajetória da partícula e o vetor velocidade. 
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9.2 Teste 2 

 

1. Analise a existência do limite               
   

     . Se existir calcule-o, caso contrário 

mostre que não existe. 
 
 

2. Determine o domínio e a imagem da função         
 

√      
. Esboce o gráfico do 

domínio. 
 
3. Esboce todas as famílias de curvas de nível típicas da função           

 
 

4. Analise a existência do limite. Se existir calcule-o, caso contrário mostre que não existe. 

324

44

)0,0(),( )(
lim

yx

yx

yx 
 

5. Na função abaixo, encontre o domínio e faça seu gráfico, a imagem, faça o mapa de 
contorno e o gráfico da superfície indicando a parte que representa a função: 

2221),( yxyxf   

6. Analise a existência do limite. Se existir calcule-o, caso contrário mostre que não existe. 

   
           

    

     
 

 

7. Represente graficamente o domínio da função f dada por        √    √   .  

 

8. Esboce todas as famílias de curvas de nível típicas da função               
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9.3 Teste 3 

 
 

1. Determine a derivada direcional da função          
 

 
          no ponto P(-

1,0,3), na direção do vetor  2,1,1u


. Qual seu valor máximo? Qual a relação entre 
derivada direcional e derivadas parciais? 
 

2. Encontre uma equação para o plano tangente e encontre as equações paramétricas da 
reta normal ao cone elíptico           no ponto          pertencente ao cone. 
 

3. Determine a equação do plano tangente e da reta normal à superfície z – e3y sen3x = 0 , 

no ponto P(/6,0,1). 
 

4. Explique a relação existente entre derivadas parciais e derivadas direcionais. 
 

5. Determine a derivada direcional da função                          no ponto 

P(-1,2,4), na direção do vetor  2,1,2 u


. Qual seu valor máximo? Dê uma 
interpretação geométrica para essa derivada. 
 

6. Seja   o ângulo entre os lados iguais de um triângulo isósceles e seja x o comprimento 

destes lados. A taxa de crescimento de x é 
 

 
 metro por hora e a taxa de crescimento de 

  é 
 

  
 radianos por hora. Calcule a taxa de crescimento da área quando x=6 e   

 

 
. 

 
7.  

(a) O que significa dizer que f é contínua no ponto        ? 
(b) Escreva as expressões para as derivadas parciais                       como 

limites. 
(c) Qual a interpretação geométrica para    e   ? 

(d) Defina o vetor gradiente de uma função de duas variáveis e explique o 
significado geométrico do gradiente. 
 

8. Determine a equação da reta tangente à curva de intersecção da superfície        
      com o plano     , no ponto           . 
 

9. A água está fluindo para dentro de um tanque em formato de cilindro circular reto, a 

uma taxa de 
 

 
       . O tanque está aumentando de tal forma que se mantenha 

cilíndrico, com o raio crescendo a uma taxa de 0,2cm/min. Quão rápido está se elevando 
a superfície da água quando o raio for 2m e o volume da água no tanque for de      ? 
 

10.  
(a) O que significa dizer que f é diferenciável no ponto        ? Qual a relação 

entre diferenciabilidade e continuidade? 
(b) Escreva as expressões para as derivadas parciais                         como 

limites. 
(c) Qual a relação existente entre o vetor gradiente de uma função de duas 

variáveis em um ponto e seu mapa de contorno? Exemplifique. 
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11. Discuta a diferenciabilidade da função f na origem, sendo f definida por        

{
    

                         

                         
 

 
 

12. A altura de um cone circular reto está decrescendo a uma taxa de 15cm/min e o raio 
crescendo a uma taxa de 6cm/min. Determine a taxa de variação do volume no instante 
em que a altura é 50cm e o raio é 15cm. 
 

13. A temperatura em um ponto (x,y) de uma placa de metal plana é T graus Celsius e 
              . 

(a) Trace um esboço do mapa de contorno da função f  mostrando as curvas de 
nível def em 12, 8, 4, 1 e 0. Explique o que este mapa representa. 

(b) Determine a direção na qual a temperatura decresce mais rapidamente em 
Q(0,2) e a taxa de variação de f nesta direção. 
 

14. Um circuito elétrico simples consiste em um resistor R e uma força eletromotriz V. Em 
certo instante, V é 80 volts e aumente à taxa de 5 volts/min, enquanto R é 40 ohms e 

decresce à razão de 2 ohms/min. Use a lei de Ohm,   
 

 
, e uma regra da cadeia, para 

achar a taxa à qual a corrente   (em ampéres) varia.  
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9.4 Teste 4 

 
1. Uma caixa retangular sem tampa deve ter um volume de 12 metros cúbicos. Encontre as 

dimensões da caixa que terá área de superfície mínima. (utilize o método de 
multiplicadores de Lagrange) 
 

2. Utilize o método dos multiplicadores de Lagrange para calcular a área máxima do 
retângulo que pode ser inscrito em um quarto da circunferência de raio 4 (utilize as 
medidas no primeiro quadrante). 
 

3. Um contêiner (na forma de um sólido retangular) deve ter um volume de 480 metros 
cúbicos. A base custará R$ 5,00 por metro quadrado para ser construída, e os lados e o 
topo custarão R$ 3,00 por metro quadrados para serem construídos. Use os 
multiplicadores de Lagrange para encontrar as dimensões de um contêiner deste 
volume que tenha custo mínimo. 
 

4. Determine o paralelepípedo retângulo de volume máximo, com arestas paralelas aos 

eixos coordenados, inscritos no elipsoide 
  

 
 

  

 
 

  

  
  . 

 
5. Encontre o volume da maior caixa retangular fechada no primeiro octante que tenha 

três faces nos planos coordenados e um vértice no plano 
 

 
 

 

 
 

 

 
  , onde 

             . 
 

6. Considere a função        dada por                         : 
(a) Encontre os pontos críticos desta função, se existirem, classifique-os. 
(b) Encontre a equação do plano tangente à superfície          no ponto 

         . 
 

7. Determine os extremos absolutos da função f  dada por                   
sobre o conjunto fechado e limitado R: região retangular com vértices (0,0), (0,2), (3,2) e 
(3,0). 
 

8. Determine o volume máximo da caixa retangular com três faces nos planos 
coordenados e um vértice no primeiro octante sobre o plano          . 
 

9. Seja a função               , sabendo que z é uma função de x e y determine 
  

  
 e 

  

  
. 
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9.5 Teste 5 

 

1. Encontre o volume do sólido no primeiro octante, limitado superiormente por 

        , inferiormente pelo plano    e lateralmente pelo cilindro      e pelo 

plano    . 

2. Use uma integral dupla para calcular a área da região no interior do círculo         e 

no exterior da cardioide         . 

3. Ache a área interna ao círculo        e externa ao cardióide         . 

4. Use integração tripla para calcular o volume do sólido limitado superiormente pelo 

cilindro parabólico        e limitado inferiormente pelo parabolóide elíptico 

        . 

5. Encontre o volume do sólido limitado pelo hiperbolóide             e a parte 

superior do cone            . 

6. Utilize uma mudança de variáveis apropriada para calcular a área da elipse       

         . 

7. Calcule a área da parte do plano         que fica no interior do cilindro 

        . 

8. Calcule ∬       
 

, utilizando mudança de variáveis, onde R é a região no primeiro 

octante limitada pelas curvas                                    

 . 

9. Encontre a área de superfície da parte do cilindro parabólico      que fica acima do 

triângulo com vértices em                    no plano   . 

10. Escreva a integral   ∫ ∫ ∫  (        )
   

      
√       

 √       

√    

 √    

 

  
 em coordenadas 

esféricas e calcule-a. 

11. Ao se estabelecer a integral dupla que dará o Volume V sob o paraboloide 22 yxz   e 

acima de uma certa região R do plano xy, chegou-se a seguinte expressão: 

  




2

1

2

0

22
1

0 0

22 )()(

yy

dxdyyxdxdyyx . Desenhe a região R. 

12. Encontre o volume do sólido   limitado pela superfície                      . 

13. Calcule a integral a seguir, utilizando as mudanças de variáveis adequadas: 

∫ ∫  
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14. Determine o volume da região delimitada acima pela superfície de equação       

     e abaixo pela superfície de equação        . 

15. Determine a área do paraboloide           que está acima do plano z=5. 

16. Determine o volume V do sólido D limitado pelos planos            e pelos 

cilindros                      . 

17. Calcule ∬                    
 

, onde D é o domínio dado pelo paralelogramo 

de vértices A(0,0), B(1,1), C(2,0) e D(3,1). 

18. Determine o volume do sólido situado no 1º octante limitado por        e 

      . 

19. Converta as seguintes integrais para coordenadas polares 

a) ∫ ∫       
    

√    

 

 

 
      b) ∫ ∫ √         

 

 √    

 

  
 

20. Determine o volume do sólido que está abaixo do parabolóide           , acima 

do plano xy e dentro do cilindro        . Além disso, o sólido está no 1º octante. 

21. Utilize uma mudança de variável adequada para calcular a integral ∬
        

         
  

 
 onde 

R é a região trinagular envolvida pelas retas y=0, y=x e          

22. Use uma transformação apropriada para calcular a integral                            

∫ ∫               
    

 

   

 
 escrevendo-a como uma integral sobre uma região G no 

plano uv. 

23. Determine o volume do elipsóide de equação 
  

   
  

   
  

     utilizando mudança de 

variável. 
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9.6 Teste 6 

 

1. Determine a área da parte da superfície      que está dentro do cilindro                 

       .  

 
2. Utilize integral tripla para calcular o volume do tetraedro limitado pelos planos                       

        ,     ,          . 

 
3. Utilize integrais triplas para calcular o volume do sólido, no primeiro octante, que é 

formado pelo cilindro y2 + z2 = 1  e pelos planos x = 0 e y = x. 

 

4. Utilize coordenadas cilíndricas para calcular ∭           
 

, onde E é o sólido do 

primeiro octante que está abaixo do paraboloide          . 

 
5. Utilize coordenadas esféricas para calcular o volume do sólido que está dentro da esfera 

          , acima do plano    e abaixo do cone         . 

 

6. Utilize mudança de variável adequada para calcular a integral ∬    (
   

   
)   

 
, onde R 

é a região trapezoidal com vértices                          .  

 

7. Encontre a área de superfície gerada pela rotação do arco   
 

 
  , de     a     

em torno do eixo  . 
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9.7 Teste 7 

 

 
1. Atribua V para uma sentença verdadeira e F para uma falsa. Justifique tanto as 

sentenças verdadeiras quanto as falsas. 

Um fluido escoa com velocidade uniforme  ⃗     ⃗  

a) ( ) Todas as partículas se movem em linha reta. 

b) ( ) O campo velocidade representa um escoamento incompressível. 

c) ( ) O fluxo de  ⃗ é irrotacional. 

2. Integre o campo vetorial             ⃗     ⃗     ⃗⃗ ao longo da cúbica enrolada 

 ⃗      ⃗     ⃗     ⃗⃗, de           até        .  

3. A força        
 

 
   ⃗    ⃗  é aplicada continuamente em um objeto que percorre 

uma elipse em posição normal. Calcule o trabalho realizado durante a órbita e a área da 
elipse. Encontre uma relação entre o trabalho e a área. 

4. Mostre que a integral de linha ∫                    
 

 é independente do 

caminho e calcule a integral, se   for qualquer curva seccionalmente suave, de        a 
      .  

5. Um fio em forma de um quarto de circunferência               ⃗       ⃗    [  
 

 
] 

tem densidade de massa variável                onde   é uma constante positiva. 
Encontre a massa total do fio. 

6. Utilizando o teorema de Green, calcule a integral ∮          
 

, onde                           

                 .  

7. Esboce a região   limitada pelas curvas      e       e use o corolário do 
teorema de Green para encontrar a área de  . 
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10 Respostas dos testes 

10.1 Respostas do teste 1 

 
1. Uma função vetorial de uma variável é uma função do tipo         . Essas 

funções associam a cada valor real do intervalo  , um vetor  ⃗    no espaço   . 

 Exemplo:  ⃗              ,   ⃗                    
 

2.   
 

3. f é contínua para t=0 e não é contínua para t=1. 

4. Para   
 

 
 [   ]     ⃗       logo, a curva não é suave nesse intervalo. 

5.      
√  

 
          

√  

 
       

6. Contínua  
7.            
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10.2 Respostas do teste 2 

 
1.                       

2.      {               }       ]    [ 

  

Região de domínio 3. 

  
 

       
4.                        

 

5.      {                   }       [   ] 

Região de domínio 
 

Gráfico da função Mapa de contorno 
 

 

 
 

      
6. Usar definição 

7. A intersecção (parte mais forte)  8. 
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10.3 Respostas do teste 3 

 

1.        
 

√ 
      

     √  . As derivadas parciais são as derivadas direcionais 

calculadas nas direções dos vetores na base canônica ortonormal. 

2.                {
      
      
      

   

3.              {
  

 

 

    
     

 

4. Ver resposta da questão 2. 

5.        
   

   
      

     √
   

    
 

6. 
  

  
          

7. a) que possui limite nesse ponto, que é definida nesse ponto e que o valor do limite é 

igual ao valor da função nesse ponto. b) 

       
                    

  
        

                    

  
 . c)       representa o 

coeficiente angular da reta que tangencia a curva   (curva de intersecção da superfície 

z=f(x,y) com o plano     ) no ponto P, em relação ao eixo ox.       Representa o 

coeficiente angular da reta que tangencia a curva   (curva de intersecção da superfície 

z=f(x,y) com o plano     ) no ponto P, em relação ao eixo oy. d) Vetor que possui suas 

componentes sendo as derivadas parciais da função f. É um vetor normal à superfície 

z=f(x,y) num ponto P. 

8.    {

      
    

    
 

 

 

9.            

10. a) que podemos escrever seu incremento da seguinte forma:           

                                   , sempre que             quando 

             . Se f é diferenciável no ponto P então f é contínua no mesmo ponto. 

b)        
                      

  
        

                      

  
. c) O vetor grad(f) é 

ortogonal às curvas de nível de f, no ponto dado. Ex:              

 
11. A função não é contínua no ponto dado logo, não é diferenciável. 

12.               
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13.  

Este mapa representa as faixas de variação da temperatura. 
Exemplo: entre as curvas obtidas para z=0 e z=1 temos a 
primeira faixa de temperatura que varia de        . b) 
     

              e ocorre na direção do vetor 

gradiente, porém em sentido contrário. 
 
 
 

14.           

 

10.4 Respostas do teste 4 

 

1.  √ 
 

   √ 
 

    √ 
 

  

2.        

3.  √  
 

   √  
 

    
 

 
√  
 

  

4. 
 √ 

 
     √     

 √ 

 
    

5. 
   

  
     

6. a)                                                         

                                                        

 
7.                                                            

 (
  

 
  )                          

 
8. 

 

 
      

9. 
  

  
 

                               

                       
,  
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10.5 Respostas do teste 5 

 

1.  
  

  
   

2.      

3.  
   

 
 

4.       

5. 
    

 
(√   )   

6.        

7.    √     

8.  
  

 
 

9. 
 

  
( √   )    

10. 
 

 
       

12. 
  

  
    

13.  
 

 
        

14. 
( √   ) 

 
    

15. 
 

 
(  √    )   

16. 
  

 
   

17.               

18. 
 

 
   

19.  

a) ∫ ∫    
     

 

 

 

 
 

  

b) ∫ ∫       
 

 

  

 
 

 

 

20.       

21. U 

22. 
 

 
     

23. 
  

 
       

 

10.6 Respostas do teste 6 

 

1. 
  

 
( √   )     2. 

 

 
     3. 

 

 
 4. 

 

  
 5. 

 √  

 
      6. 

     

 
     7. 

 

 
(  √    ) 

 

10.7 Respostas do teste 7 

1-a.(V) 

1-b.(V) 
  

  
 

  

  
 

  

  
  . Logo, o escoamento é incompressível. 

1-c.(F)     ⃗         . Logo, o fluxo não é irrotacional. 
2. 10/7 
3.       , Área=   . Relação: Área=|  | 
4. -18 
5.         
6.    
7.   

  (
  

 
      )    
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11 Provas passadas 

11.1 Prova 1 2017/1 

 

Questão 1. A curvatura de uma curva é calculada por      
  ⃗      ⃗      

  ⃗      
. Considere a curva                                

C:  ⃗       ⃗  
 √ 

 
 
 

  ⃗     ⃗⃗. 

a) (1,0) Calcule a curvatura da curva no ponto    
 √ 

 
     

b) (1,0) Escreva a função comprimento de arco para a curva C. 
 

Questão 2. A curva abaixo recebe o nome de “Lágrima” e possui equação         
                     ,     . 
 

a) (1,0) A curva   é simples ou não simples? Por quê? 
b) (1,0) A curva é suave no intervalo de [   ]? Mostre. 

 

Questão 3.  (1,0) Mostre que a equação do plano tangente ao elipsoide 
  

   
  

   
  

    , no 

ponto            pode ser escrita como 
   

   
   

   
   

    . 

 

Questão 4. (1,0) Investigue a continuidade da função        {
(   

 

  )                    

                       
 

no ponto      . 

 
Questão 5. (0,8) A fórmula do tamanho do lote de Wilson, utilizada na economia, afirma que 

a quantidade mais econômica Q de bens (rádio, sapatos, vassouras, o que quer que seja) 

para uma loja pedir é dada pela expressão            √
   

 
, onde   é o custo do 

pedido,   é o número de itens vendidos por semana e h é o custo de estocagem semanal 
para cada item. Determine a expressão para o cálculo do diferencial total da função  . 
 

Questão 6. Uma placa fina de metal está situada no plano   . A temperatura         no 
ponto      é inversamente proporcional ao quadrado de sua distância até à origem. 

 
a) (0,5) Expresse   como função de   e  . 
b) (0,6) Indique o domínio e a imagem da função. 
c) (0,5) Esboce um conjunto representativo das curvas de nível. 
d) (0,4) Suponha que a temperatura no ponto       seja    . Qual é a temperatura no 

ponto      ?   

 
Questão 7. (0,6 cada) Verifique se as afirmações abaixo são verdadeiras (V) ou falsas (F). Se 

forem verdadeiras, explique-as; se forem falsas, reescreva-as de modo a ficarem 
verdadeiras. 

a) ( ) Todo espaço linear n-dimensional é euclidiano. 
b) ( ) No ponto de tangência entre duas superfícies há um plano tangente a ambas 

cujo vetor normal pode ser a subtração dos gradientes (quando distintos) de cada 
superfície. 
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11.2 Trabalho 1 2017/1 

 
Questão 1. Uma placa metálica circular com um metro de raio está colocada com centro na 

origem do plano    e é aquecida de modo que a temperatura num ponto       é dada por                          

         (   –             ) graus, onde   e   estão em metros. Encontre a 

maior e a menor temperatura na placa.  

 
Questão 2. Um galpão retangular deve ser construído num terreno com a forma de um 

triângulo, conforme a figura a seguir. Determinar a área máxima possível para o galpão. 
(Dica: represente o esquema no plano cartesiano). Utilize Lagrange.  

 
 
Questão 3. Projete uma caixa retangular de leite com largura  , comprimento   e altura  , 

que contenha         de leite. Os lados da caixa custam                e o topo e o 
fundo custam               . Ache as dimensões da caixa que minimizem o custo total. 
Qual é esse custo? (Não utilize Lagrange). 

 

Questão 4. A equação               define   implicitamente como função de   e 

de  , numa vizinhança do ponto          . Calcule 
  

  
, 
  

  
 e 

   

    
 no ponto         . 

 
Questão 5. Dadas as equações                                  e                                   

                        . Sabendo que              e               determine 
  

  
 

. 
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11.3 Prova 2 2017/1 

 

Questão 1. A área de uma figura é calculada pela soma das integrais ∫ ∫     
√  
√  

 

 
 

 
+ 

∫ ∫     
√    

√  

 

 
√ 

 
. Esboce a região que delimita essa área e calcule-a, utilizando uma nova 

integral composta de apenas um fator. 

 
 

Questão 2. Escreva duas integrais triplas equivalentes para calcular o volume da figura 

abaixo. Calcule-as. 

 
 

 

Questão 3. Calcule ∭            
 
   

 
, sabendo que   é a região delimitada pela esfera                            

            e pelos cones   √         e   √
     

 
 .  

 
 

Questão 4. Calcule ∬                 
 

, sabendo que D é a região delimitada por 

    –        –              e          

 
 

Questão 5. Encontre a área da superfície gerada pela rotação em torno do eixo   da parte 

da curva      entre       e      .  

 
 

Questão 6. Calcule a área que fica acima da limaçon             e dentro da cardioide 

           . 
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11.4 Prova 3 2017/1 

 
Questão 1. (1,0) Dado o campo                    calcule o trabalho necessário para 

deslocar uma partícula do ponto   ao ponto  , passando por B. 
 

 

Questão 2. (1,0) Calcule a integral ∫ (   √ )  
 

 onde   é a o arco da parábola      , 

no plano    , entre os pontos          e         .  
 

Questão 3. (1,0) Utilize o teorema de Green para calcular ∮              
  

 
  , 

sabendo que a região de integração é limitada pelas curvas      e         

 

Questão 4. (1,0) Dado o campo            
 

               , mostre que ele é 

independente do caminho e calcule ∫    
 

 
  onde                            

 
Questão 5. (0,5 cada) Tomando como referência o campo do exercício 4, determine se as 

afirmações abaixo são verdadeiras ou falsas, justificando-as em ambos os casos. 
a)   é contínuo no   .  
b)              .  
c) Vetores paralelos terão mesmo módulo.  

 
Questão 6. (1,0 cada) Aplique algum teste conveniente para verificar a convergência ou 

divergência das séries abaixo: 

a) ∑       
       

b) ∑
     

     
 
    

Questão 7. (1,5) Teste a série ∑
       

     
 
    para convergência ou divergência e, se possível, 

estime sua soma pela quinta soma parcial, indicando se aproximação é por cima ou por 

baixo. 

 

Questão 8. (1,0) Encontre a série de Maclaurin para             onde   é um número 

real. 
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12 Respostas das Provas passadas 

12.1 Respostas da Prova 1 2017/1 

 

1a) 
√ 

  
    1b)            

2a) Simples e fechada  2b) Não suave no   
 

 
 

3) Demonstração 
4) Não existe limite no (0,0), logo não é contínua no (0,0). 
5)  

6a)        
 

      6b)      {                    }  

      ]    [            ]    [         
6c) Conjunto de circunferências concêntricas com centro na origem. 
6d)            
 
7a) Apenas os que possuem uma métrica definida para ser Euclidiano. 
7b) Os gradientes são colineares e como a subtração gera um vetor colinear a ambos, sim pode 
ser. 
 

12.2 Respostas do Trabalho 1 2017/1 

 

1) Ponto interior   ( 
 

 
  

 

 
) ponto de mínimo relativo 

Fronteira:   ( 
 

 
  

√ 

 
) ponto de máximo absoluto,   ( 

 

 
   

√ 

 
);         

O ponto   ( 
 

 
  

 

 
) é também mínimo absoluto. 

2) Área máxima =      
3)          ,             e              Custo           

4) 
  

  
         

  

  
      

   

    
      

5) 
  

  
 

                  

          
 

12.3 Respostas da Prova 2 2017/1 

 

1) 
 

 
   

2) 
 

  
    ∫ ∫ ∫       

   

 

 

√ 

 

 
 ∫ ∫ ∫       

  

 

   

 

 

 
 

3) 
 

 
       (√   ) 

4) 
 

 
                              

5) 
 

 
(  √    √ )   

6)  √            
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12.4 Respostas da Prova 3 2017/1 

 

1)    
 

 
  

2) 
 

 
(  √    ) 

3)  
  

 
 

4)        
5) a) não é contínuo na origem; b) verdadeiro;  c) Falso (verificar (1,0,0) e (2,0,0)) 
6) a) convergente    b) convergente 
7) convergente (T. Leibniz)                por cima 

8) 
 

  
 

 

  
  

 

  
        

 

  
               

 

  
          ∙  ∙         
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13 Apêndice 

 

13.1 Identidades trigonométricas 

1.               
2.              
3.                  

4.       
 

 
             

5.       
 

 
             

6.              ∙      
7.                     
8.              ∙          ∙      
9.              ∙          ∙      

 

13.2 Tabela de derivadas 

c=constant, u=f(x) 

1. y = c  y  = 0                                                                                                     

2. y = x  y  = 1 

3. y = c.u   y  = c. u    

4. y = u + v  y = u  + v  

5. y = u . v  y = v. u  + u. v     

6. y = u / v   y  = ( v.u  - u v) / v2       

7. y = u   y  =  u -1.u  

8. y = au   y  = au lna.u  

9. y = eu   y  = eu.u  

10.    ea.logu / u'  'y  u  alogy   

11. y = ln u  y  = ( u / u) 

12. y = uv   y  = v. uv -1. u  + uv. ln u. v  

13. y = sen u   y  = cos u. u  

14. y = cos u   y  = - sen u. u  

15. y = tg u   y  = sec2 u. u  

16. y = cotg u   y  = - cosec2 u. u  

17. y = sec u   y  = sec u. tg u. u  

18. y = cosec u   y  = - cosec u. cotg u. u  

19. y = arc sen u   y  = u  / 2u1  

20. y = arc cos u   y  = - u  / 2u1  

21. y = arc tg u   y  = u  / (1 + u2 ) 

22. y = arc cotg u   y  = - u  / (1 + u2 ) 

23. y = arc sec u   y  = u  / 1u.u 2   

24. y = arc cosec u   y  = - u  / 1u.u 2   

25. y = senh u   y  = coshu. u  

26. y = cosh u   y  = senh u. u  

27. y = tgh u   y  = sech2 u. u  

28. y = cotgh u   y  = - cosech2 u. u             

29. y = sech u   y  = - sech u. tgh u. u               

30. y = cosech u   y  = - cosechu. cotghu. u           

31. y = arg senh u    y  = u  / 1u 2   

32. y = arg cosh u    y  = u  / 1u 2   

33. y = arg tgh u   y  = u  / (1 - u2 ) 

34. y = arg cotgh u   y  = u  / (1 - u2 ) 

35. y = arg sech u   y  = - u  / 2u-1u.  

36. y = arg cosech u   y  = - u  / 2u1.u   
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13.3 Tabela de integrais 

 

1. C u du   

2. C  uln 
u

du
  

3. C  
1α

u
duu

1α

α 





  

4. C  
lna

a
dua

u
u   

5. C  edue uu   

6. C u  cos dusenu   

7. C u sen ducosu   

8. C  seculndutgu   

9. C  senulnducotgu   

10. C  cotgucoseculnducosecu   

11. C  tguseculndusecu   

12. C tgu duu sec2   

13. C cotgu  - duu cosec2   

14. C secu dusecu.tgu   

15. C cosecu  - dugu cosecu.cot   

16. C  
a

u
sen arc

ua

du
22




  

17. C 
a

u
 tgarc

a

 1

ua

du
22




  

18. C 
a

u
sec arc

a

 1

auu

du
22




  

19. C coshu dusenhu   

20. C senhu ducoshu   

21. C tghu duu sech2   

22. C cotghu  - duu cosech2   

23. C sechu  du sechu.tghu   

24. C cosechu  - dutghu cosechu.co   

25. C  auuln
au

du 22

22



  

26. C  
au

au
ln

2a

1

ua

du
22








  

27. C  
aa

ln
1

u  au

du 22

22








u

u

a
 

 

 

13.4 Alfabeto Grego 

 

                        
                        

alfa beta gama delta épsilon zeta eta teta iota Capa lambda mi 
 
 

                        
                        
ni csi ômicron pi rô sigma tau ípsilon fi qui psi ômega 
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13.5 Leituras complementares 

 
Links com exemplos de aplicações do cálculo nas Engenharias Elétrica e Química. 
 

 Funções de duas variáveis, derivas e integrais. 
http://conferencias.utfpr.edu.br/ocs/index.php/sicite/2012/paper/view/718/616 
 
http://www.usp.br/massa/pessoal/riveros/tutorial/intro.pdf  
 

 Fluídos incompressíveis. 
http://www.hottopos.com/regeq2/sao_os_liquidos_incompressiveis.htm 

 
 Campos escalares e vetoriais... 

http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDM
QFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=
Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.599
30103,d.eW0 
 
http://www.lemma.ufpr.br/wiki/images/0/0b/MecFlu-v3-8cap.pdf 
 

 
 Equações de Laplace e Poisson, integrais de linha... 

http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQ
QFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengen
hariaeletrica%2Fpos-graduacao%2F218-
dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaAp
bpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0 

  

http://conferencias.utfpr.edu.br/ocs/index.php/sicite/2012/paper/view/718/616
http://www.usp.br/massa/pessoal/riveros/tutorial/intro.pdf
http://www.hottopos.com/regeq2/sao_os_liquidos_incompressiveis.htm
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.lemma.ufpr.br/wiki/images/0/0b/MecFlu-v3-8cap.pdf
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
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