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PREFACIO

Essa apostila é baseada em livros de cdlculos e materiais utilizados durante a faculdade de

matematica.

Seu objetivo é facilitar o estudo, visto que todo o conteldo do semestre esta apresentado de
maneira sucinta, com listas de exercicios, testes e gabaritos.

Visando a compreensdo do conteldo e a construgdo dos conceitos, deixamos espacos em
branco para resolucdo de exemplos e desenvolvimento de algumas demonstragoes.
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1. Introducéo

1.1 Espaco Euclidiano ®"

> Conceito de espaco Euclidiano R":

Def.1.1.(a) Para todo x do espaco n dimensional A", X é o conjunto ordenado de n nimeros
reais.

VX e A" X = (X, Xp0n %) X €R, Yk =1
X, € a k-ésima coordenada. Os pontos xy € A" sdo da forma x=(xl,x2,...,xn) e
y=(yl,y2,..., yn) ex=yse X, =Y, vk=1n

Def.1.1(b) A" é chamado linear ou vetorial se nesse espaco estdo introduzidas as seguintes
operagoes:

1. Vx,y € A"
X= (%, X X0 )Y = (V10 Varee Vi)
X+ Y = (X 4 Y5, X + Voroons Xy + Y, ) € A
2. Vx e A", o elemento ax = (axl,axz,..., axn) e A"VaeR

Def.1.1(c) Seja X um espaco ou conjunto, vamos dizer que esse espaco é métrico se VX, y € X
¢ introduzida uma funcgdo real p(X,Yy) com as seguintes condi¢des:

1 p(x)20; (p(xy)=0=x=y)
2. p(x,y) = p(y,x) simetriada métrica
3. p(X, ) < p(x,2)+ p(z,y) VX,¥,ze X desigualdale triangular

Exemplo 1.1.(a):

p(x,y) = méx(x, -
Vejamos as condigoes:

1. p(X,y) = max|x, —y,| >0

se p(x,y)=0 = maxlx —y,[=0 = x =y, vkeln

2. p(x,y) = p(y,X)
pXy) = méX|Xk - Yk| = méX|Yk - Xk| = p(Y,X)

3. p(X%y) < p(x,2) + p(z,Y)
p(x,z) = mé'X|Xk - Zk| p(z,y) = mé'x|zk - Yk|
p(X,2)+ p(z,y) = Max|x, —z,|+max|z, —y,|

p(X,y) = max| x, —y, |= max|(x, —z,)+(z, -y, ) < max|x, —z,|+maxlz, - y,| = p(x,2) + p(z,y)



n
Def.1.1.(d) Um espaco linear n-dimensional A", com métrica p(X,Yy)= Z(Xk - Y )2 é
k=L

chamado espaco EUCLIDIANO e denotado por R".

e n=1;R'=R — eixo real

p(x,y) =(x—y) =[x-y]|

e n=2; W — plano real

p(xy) = \/(Xl - y1)2 + (Xz -Y )2

e n=3: R* — espaco real

p(Xy) = \/(Xl - yl)z +(, - Y, )2 + (Xs - YS)Z

v

> Conjunto no espago R"

Def.1.1.(e) (Bola aberta)

Seja a um ponto do espaco R" e r um ndmero real positivo. Definimos de bola aberta com
centro em a a todo x € R" tal que a distancia dos pontos x até a seja menor que r.
aecR" reRr>0 B(a,r)z{we R" :p(x,a)<r}

Def.1.1.(f) (Bola fechada)

Definimos de bola fechada com centro em a a todo x € R" tal que a distancia dos pontos x até
a seja menor ou igual quer.

aeR" reRr>0 g(a,r):{VXER” :p(x,a)gr}

Def.1.1.(g) (Esfera)
Definimos de esfera com centro em a a todo x € R" tal que a distancia de x até a seja igual a r.
Esfera: S(a.r) = {vx e R": p(x,a) =T/

Def.1.1.(h) (vizinhanga)

Seja a e R", Vr >0, a bola aberta com centro em a e raio r é chamada r-vizinhanga do
ponto a e denotada por U, (a) = B(a,r).

Chamamos de r-vizinhanca perfurada do ponto g, a toda r-vizinhan¢a que ndo contém o ponto

0
a e é denotada por U (@) = B(a, r) \ {a}.



Def.1.1.(i) (ponto interior)

Seja X um conjunto do espago R" (X c iRn) e a um ponto de X. O ponto a é chamado ponto

interior do conjunto X se existe um numero r positivo tal que toda vizinhanca do ponto a esteja
contida no conjunto X.

Def.1.1.(j) (ponto limite)
Seja X < R", a é ponto limite de X se, em qualquer vizinhanca perfurada do ponto a, existe
pelo menos um elemento do conjunto X.

0
vr>0:Ur(@NX =9

Def.1.1.(k) (conjunto fechado)

Seja X = R", o conjunto X é chamado fechado se esse conjunto contém todos os seus pontos
limites.

Def.1.1.(l) (conjunto aberto)

Seja X cR", o conjunto X é chamado aberto se qualquer ponto é ponto interior desse
conjunto (isto é, toda vizinhancga pertence a X).

Def.1.1.(m) (conjunto limitado)
X < R" é chamado limitado se 3 r > 0 tal que todo conjunto esteja contido na bola fechada
com centro em g e raio r.

Def.1.1.(n) (conjunto compacto)

X cR" é chamado compacto se esse conjunto é limitado e fechado. Ou seja, X contém todos
os seus pontos limites. Todos os pontos limites sdo interiores.



2 Funcdes vetoriais de uma variavel

2.1 Conceito de funcdes vetoriais

Def.2.1.(a)

Uma fungdo vetorial de uma variavel é uma fungdo do tipo f:l1 R —R*. Vamos trabalhar
com fungdes que associam a cada valor de f num intervalo I, um vetor f (t) no espago.

Se f(t) é um vetor no espaco R° FO)= O+ 0]+ HLOK=(,(t), . t), 2(t)) -

Exemplos
2.1.(a) f(t)=(2t t,sent);  2.1.(b) (t)=(2+¢ 2t ¢t/3)

Dominio da fungdo vetorial de uma variavel real: é o intervalo I € R que satisfaz todas as k
coordenadas da fungao.

Exemplos
2.1.(c) Analise o intervalo de dominio da func¢do g(t) = (\/t —-1; 4—Lt2; 3t)

2.2 Hodografo de uma funcgéo vetorial

Def.2.2
O hodégrafo de uma funcdo vetorial f(t)= fl(t)i+f2(t)]+f3(t)E, Vtel, é o lugar

geomeétrico dos pontos do espag¢o que tém posigdo f(t). O hoddgrafo representa a imagem da
fungdo vetorial.

Exemplo
Descreva a trajetéria L de um ponto mével P cujo deslocamento é expresso por:

a) f(t)=30+tj+tk b) F(O) = (tt—t2+4)




> Operagoes com fungoes vetoriais:

Dadas as fungdes f(t)=f, ()i+ f,(t)j+f,(Dk e g(t)=g,()i+g,(t)]+g,t)kK

definidas para t € | , s3o definidas as seguintes operagdes:

VO +(f,0) +(f,©)?
b) f(t)ig(t)=(f1<t)igl(t))i+(f2(t>igz<t>)i+(f3<t>ig3<t))i
i j k
o fOxgM)=f,@®) f,© f,0)=h
9. () g,(t) 950
d) f(£)-g(t) = £, (t).9,(t) + f,(t).9, (t) + F5 (1).95(®)
e) s(t). T (t) = s(t) f, (t)i +s(t) f, () j +S(t) f, (DK

2.3 Limites e propriedades das funcdes vetoriais de uma variavel

Def.2.3.(a)

Seja ? =?(t) uma funcdo vetorial num intervalo aberto | que contém to- Dizemos que o
limite de ?(t) quando ttende a {; é 5, se:

Vg>0,35>0:0<|t—t0|<5:>F(t)—gl‘<g

Proposi¢ao:

Seja f(t)=f,(O)i+f,t)j+f,()kea=ai+a, j+ak.

lim f(t) a<:>I|m f.)=a, (=123

t—ty

Exemplo 2.3.(a): ?(t) =(t,e', V1)
lim f(t)=

> Propriedades dos limites

Sejam ?(t) e a(t) duas fung¢des vetoriais e h(t) uma fungdo escalar definidas num mesmo

intervalo:
Se tI|nt1 f(t) a, I|nt1 g(t) = b e tI|m h(t)=m entéo

||m(f(t)+g(t)) a+h
im(F(0.9(0)=ab
¢ lim (f(t)xg(t)) axb
) lim (h(t). f(t))=ma

10



2.4 Continuidade das funcdes vetoriais de uma variavel

Uma fungdo vetorial f(t) definida num intervalo | é continua em t,, ponto de I, se

Alim f(t) = f(t,)
t—>ty
* f(t) écontinuaem 1, se e somente se suas componentes sdo fungdes continuas em 1.

Exemplo 2.4.(a) Analise o intervalo de continuidade da funcao f(t) = (t; et;%)

> Derivadas das fung¢des vetoriais de uma variavel

Def. 2.4.(a)

Seja f(t) uma funcdo vetorial. A derivada de f(t) = (f1(t), f>(t), ..., frn(t)) é a fungdo vetorial

21008 1 fE+aD-F() _ 4. [AHAD—F1(8) HUEFAD-F(8)  fo(t+AD)—f (D)
f1(0) = limye At = limyc ( At ’ At S At )

todo t em que o limite existe. Se a derivada existe em todos os pontos de um intervalo I,

para

entdo dizemos quef(t) é derivavel em I.

Exemplos
2.4.(b) Derive a funcdo f(t) = t37 — sen(t)] + 4tk

2.4.(c) Derive a funcdo g(t) = (—t?,et, tant)

> Interpretacdo geométrica da derivada de fungdes vetoriais

A Seja f(t) uma fungdo vetorial derivavel em I. Quando

t percorre |, f(t) descreve uma curva C no espaco.

Dados dois pontos P e Q sobre a curva, a reta suporte do
vetor P—Q) é secante a curva. Quando At >0, a reta
secante se aproxima da reta tangente, originando o vetor

» 5
»

f'(t) tangente a curva no ponto P.

O segmento orientado PQ é representado pelo vetor Kf

11
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. . Yy bl t
Denominamos de vetor tangente unitdrio o vetor u(t) = |%_Et;|

> Interpretacio fisica da derivada de fungdo vetorial

Ao mover-se no espaco, uma particula desenvolve uma trajetéria C cuja equacdo é dada por
7(t) quando t varia. A velocidade instantdnea desta particula é dada pela expressdo

> . F(t+At)—7(t . .
v(t) = limysg T(+A—zr(), guando o limite existe.

Analogamente, se ¥(t) é derivavel, entdo v'(t) = d(t)

Exemplo

F-3 ’ . ;s = - 1 -
2.4.(d) O vetor posi¢do de uma particula em movimento no plano é #(t) = ti +m],t = 0.
Determine o vetor velocidade e o vetor aceleragdoemt = 0 et = 1 e esboce o hoddgrafo.

» Propriedades das derivadas das fung¢oes vetoriais de uma variavel

Sejam f(t) e g(t) fungdes vetoriais e h(t) uma fungdo escalar, todas derivaveis em
l. Entdo, VI € | temos:

—

A(fo+30) =TO+gw
b)(h(t).?(t)) =h(t)- ') +h'(t)- T (t)
of®-30) = F0- 30+ T® 30
O(f)x30) = T Ox30+TOxg'0)

> Derivadas sucessivas:

Seja ?(t) uma funcdo vetorial derivavel em |. Sua derivada ?‘(t) é uma fungdo vetorial

definida em I. Se ?‘(t) é derivdvel em t € | , entdo sua derivada é chamada derivada segunda

- ® - —(n)
e indicamos f"(t) ou f (t) . Da mesma forma podemos obter f"(t),.,f (t) .
Exemplo

2.4.(e) Calcule a terceira derivada da fungdo ?(t) —e?i+ 2t3] +sentk

12



2.5 Parametrizacéo de curvas

Sejam x = x(t), y = y(t) e z = z(t) fungbes continuas
de uma variavel t, definidas para t € [a, b]. Chamamos
de curva o conjunto de todos os pontos (x,y,Zz)
determinados por esta equagdo. As equagdes x = x(t),
y=y(t) e z=2z(t) sdo chamadas paramétricas de
parametro t. Para obter uma equacdo vetorial de uma
curva, basta considerar o vetor posicdo 7(t) = x(t)T +

y(®)J + z(t)l_c) de cada ponto da curva.

v

Def.2.5.(a)
Uma curva PLANA é uma curva que estd contida num plano do espa¢o. Uma curva que ndo é
plana é chamada de curva REVERSA.

OBS: Se as fungdes x(t), y(t) e z(t) forem constantes, a curva degenera-se em um ponto.

> Parametrizac¢do da reta

A equacdo vetorial de uma reta qualquer é dada pela funcdo posicio f(t) =dad+

onde d e b sdo vetores constantes e t é um pardmetro real: @ = a;i+ a,j + ask, b = b,

b,j + bsk.

A reta que passa pelo ponto A, que tem vetor posi¢do d e tem dire¢do do vetor b, apresenta as

seguintes equagdes paramétricas: A
x(t) = ay + byt
y(t) = a, + byt
z(t) = az + bst

bt,
T+

v

Exemplos

2.5.(a) Considere a equacdo vetorial #(t) = ti + tj + tk, determine as equacdes paramétricas
e a curva.

2.5.(b) Determine a representacdo paramétrica da reta que passa pelo ponto A(2,1,-1) e tem a
direcdio do vetor b = 7 + 2j + 3k.

13



> Parametrizagao da circunferéncia

A equacdo vetorial de uma circunferéncia qualquer de raio a, com centro na origem do plano
xoy, é dada pela fungdo f(t) = acosti + asentj, 0 <t < 2m. Quando a circunferéncia ndo
estd centralizada na origem, temos a equacdo 7(t) =7, + 7,(t), onde 7, = x,U+ y,] e
7, (t) = acosti + asentj, 0 <t < 2m, cujas equa¢des paramétricas sio:

{x(t) = x, + acost
y(t) =y, + asent

Exemplos

2.5.(c) Obtenha a equa¢do paramétrica da circunferéncia x> + y> —6x—4y+4 =20, no
plano z = 3.

2.5.(d) A equacdo vetorial 7(t) = 21U+ 3cost] + 3sentk, 0 <t <2m, representa uma
circunferéncia. Determine a equacdo cartesiana correspondente.

14



> Parametrizagdo da elipse

A equagdo vetorial de uma elipse no plano xoy, com centro na origem, é dada pela equagdo
7(t) = acostl + bsentj,0 < t < 2. Quando a elipse ndo esta centralizada na origem, temos
a equagdo 7(t) =7, +1,(t) onde 1, = a,L + b,J e T{(t) = acosti+ bsentj, 0 <t < 2,
cuja equacgdo paramétrica é:

{x(t) =a, + acost
y(t) = b, + bsent

Exemplo

2.5.(e) Escreva a equagdo vetorial e a equagdo paramétrica da elipse 9x2 + 4y? = 36, no
plano xoy.

> Parametrizac¢do da hélice circular

A equagdo vetorial de uma hélice no plano xoy, com centro na origem, é dada pela equagao
7(t) = acostl + asentj + tk,t € R. Quando o cilindro base ndo estiver centralizado na
origem, temos a equagdo 7(t) =7, + 77 (t) onde 7, = a,l + b,J e 17(t) = acosti + asent] +
tE, cuja equacao paramétrica é:

x(t) = a, + acost
y(t) = b, + asent
z(t) =t
e Set>0 - sentido anti — horario
e Set <0 - sentido horario.

Exemplo
2.5.(f) Represente graficamente a hélice circular 7#(t) = costi + sent] + %l_c) 0<t< 52_n

como os vetores velociade e aceleragdo para t = 2.

bem

15



2.6 Curvas

Def.2.6.(a) (curva suave)

Uma curva ' é chamada suave se as fungdes x(t), y(t) e z(t) continuas, tém derivadas e, além
disso, X' (t)2+y’(t)%+2’(t)2# 0 Vte[a,b].

Ou ainda, podemos dizer que uma curva é suave se ndo contém pontos angulosos, ou seja, se
em cada um de seus pontos a curva tem tangente Unica que varia continuamente quando se
move sobre a curva.

/\/

Def. 2.6.(b) (curva suave por partes)

A curva I' é chamada suave por partes se é possivel dividir essa curva em um numero finito de
partes de tal modo que cada parte seja uma curva suave e nos pontos de encontro das
diferentes partes, essas fungdes x(t), y(t) e z(t) tenham derivadas unilaterais.

Exemplos

xX=t
2.6.(a) C: {y ~ onp tEL027]
2.6.(b) C: —t 0,2
.6.(b) '{y=|sent| t € [0,2m]

Def. 2.6.(c) (curva simples)
Uma curva é chamada simples se para quaisquer valores de t;, t, € [a,b],
ty # t; > T(ty) # 7(t)

Def.2.6.(d) (curva fechada)
Uma curva simples é chamada fechada se V t;, t, € [a,b], t; # t, = 7(t;) # 7(t;) mas
7(a) = 7(b).

O OO

Curvas simples fechadas curvas que ndo sao simples,
pois possuem ponto de
interseccao
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> Orientagdo de uma curva
Seja C uma curva suave, representada por 7(t) =x(t)I+y(t)]+ z(Ok, t € [a,b].

Chamamos de sentido positivo sobre C o sentido no qual a curva é tracada quando t cresce de
a até b. O sentido oposto é chamado de sentido negativo.

> Curva oposta

Uma curva orientada C, representada por 7(t) = x(t)T + y(t)] + z(Dk, t € [a,b], tem como
curva oposta, a curva -C, de equagdo 7 (t) =7(a+b—t)=x(a+b—-t)i+y(a+b—
) +z(a + b — t)k.

Exemplo
2.6.(c) Achar a curva oposta a curva 7(t) = acostt + asentj, t € [0,2m].

2.7 Comprimento de Arco

Teorema 2.7.(a) (calculo do comprimento de arco)
Se C é uma curva suave parametrizada por 7(t), a <t < b, entdo

b
l= f |7'(t)|dt
a
Demonstragao:
Seja C uma curva dada pela equacio 7(t) = x(6)T+ y(t)] + z(O)k, t € [a, b] e sejam os
pontos
PO == A == r-)(to), Pl == T_)(tl), PZ = ?(tz), ""Pi—l = F(tl—l)’Pl == F(tl), ...,Pn = B = F(tn)

Entdo o comprimento do arco de um intervalo A= |7(t;) — 7(t;—1)|. Somando-se todos os
arcos de todos os intervalos, temos:

Ly = X7 () —7(ti-)] = ?=1|[x(ti) —x(t_ DT+ [y (&) — y(t— DT + [2(¢) — Z(ti—l)]E| =

= > JG@) = x @)Y + 0 — &) + &) — 2(61)?
i=1

l= Altiirllo s Aty = |7(t;) — 7(ti—q)|

Continuagdo em aula
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OBS.:
Se C é suave por partes, o comprimento do seu arco é dado por:

tq t, b
l:J |F’(t)|dt+f |?’(t)|dt+---+] |7'(t)|dt
a tl t

n-1
Onde [a, t1], [t1, t2], ..., [tn—1, b] sd0 subintervalos de [a, b], nos quais a curva é suave.

Exemplo

2
2.7.(a) Encontre o comprimento da curva cuja equacdo vetorial é 7(t) =t + t3], 1 <t < 4.

3
Rta. - [(18% +4) - 13@]

OBS.:

. b - . . . . . 7 . . .7
Se na integral | = fa |7'(t)|dt, substituirmos o limite superior por x (x é um limite variavel,
Vx € [a, b]), obteremos uma fungdo S(x) chamada de comprimento de arco, que possibilitard
medi-lo para qualquer ponto ¢, ¢ € [a,x]. S(x) = f(f |7 (t)|dt.

Exemplo 2.7.(b) Escreva a funcdo comprimento de arco da circunferéncia de raio r.

Exemplo 2.7.(c) Escreva a fungdo comprimento de arco da hélice circular
7(t) = (2cost, 2sent, t)

18



2.8 Integrais de Funcdes vetoriais de uma variavel

Sejam as fungdes x(t), y(t)e z(t) integraveis num intervalo [a, b], entdo:

Jb?(t)dt =be(t)dt?+be(t)dtj+sz(t)dtl_é

Exemplo 2.8.(a) Calcule f02(12t3 T+ 4e2j+ (t+ 1) k) de Rta. (48; 2¢* — 2; [n3)
Exemplo 2.8.(b) Calcule foz(61:2 T—4t] + 3k ) dt Rta. (16;-8;6)

Exemplo 2.8.(c) Calcule f_ll(—St T+ 8t3] — 3t%k ) dt Rta. (0,0,-2)

Exemplo 2.8.(d) Calcule fog(sent T — cost] + tantk ) dt Rta. ((1 - g) ; —g; %lnz)
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3 Funcoes escalares de varias variaveis

3.1 Funcdes de varias variaveis

Def.3.1.(a) (fun¢ao de duas variaveis)
Uma funcdo real de duas variaveis reais € uma relacdo que transforma em um Unico nimero
real z cada par ordenado (x,y) de niUmeros reais de um certo conjunto D, chamado de dominio
da funcdo. Se a relacdo f transforma no numero real z o par ordenado (x,y) em D, entdo
escrevemos z=f(x,y).
O conjunto de todos os valores possiveis de z é denominado de IMAGEM da funcdo f.
Definimos o GRAFICO de uma funcio f de duas varidveis como o conjunto de todos os pontos
: (x,y,2) no espaco cartesiano tridimensional, tal que
(x,y) pertence ao dominio D de f, e z=f(x,y). O
dominio D pode ser representado através de um
conjunto de pontos no plano xOy e o grafico de f
como uma superficie cuja projecdo perpendicular ao
plano xOy é D.

Exemplos:

3.1.(a) Qual o dominio da fungdo f dada por f(x,y) =

JX+y+1

3.2.(b) Ache o dominio de defini¢do da fung¢do cuja férmula é f(X,Yy) =

Xx—1
61
O
N L
N |
4 2 \z\u\j\cz 4 6
1IN
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Def.3.1.(b) (fun¢do de varias variaveis)
Uma funcdo real f a n varidveis é uma relagao que transforma em um Unico nimero real w
cada n-upla ordenada (Xl,xz,..., Xn) de numeros reais de um certo conjunto D, chamado de
Dominio da fungdo f. Escrevemos f: X € R® - R
Se a relagdo f transforma no nimero w a n-upla ordenada (Xl,xz,..., Xn) entdo escrevemos
W= (X, Xype X;)
w — var iavel dependente
X, X0y X, —> Var idveis independertes
O conjunto de todos os valores possiveis de w que obtemos aplicando a relacado f as n-uplas
(Xl, X yeey Xn) em D, é denominado IMAGEM de f.

e n=2:z=f(x,y)

e n=3:w=f(x,y,z)

Se uma funcgdo f de varias variaveis esta definida por uma equacdo ou uma férmula, entdo (a
nao ser que esteja estipulado o contrario) entende-se por dominio de f o conjunto de todas as
n-uplas de varidveis independentes para as quais a equacao ou formula admite resposta.

* n-upla ou éneuplas de nimeros reais: da mesma forma que denotamos um ponto em R por
um numero real, um ponto em R2 por um par ordenado de numeros reais (x,y) e um ponto

em R* por uma terna ordenada (x,y,z), um ponto no espaco numérico n-dimensional R", é
representado por uma n-upla de nimeros reais (Xl, X yere Xn)

Exemplo
3.1.(c) Encontre e esboce o dominio de f (X, y) = xIn(y* —X)

> Gréaficos e curvas de nivel

Com o auxilio de seu gréfico pode-se visualizar como uma func¢do f de duas varidveis x e y
“funciona”. O grafico de f é o grafico da equacgdo z=f(x,y). Assim, o grafico de f é o conjunto de
todos os pontos do espago com coordenadas (x,y,z) que satisfazem a equagao z=f(x,y).

A interseccdo do plano horizontal z=k com a superficie z=f(x,y) é chamada CURVA DE
CONTORNO de altura k na superficie. A projecao vertical, no plano xOy desta curva de
contorno é a CURVA DE NiVEL f(x,y)=k da fungdo f. As curvas de nivel de f s3o simplesmente os
conjuntos em que o valor de f é constante.
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” Proyeccién de las curvas
A B de nivel en ol plano

Fonte:http://pontenformacatalina.blogspot.com.br/2013/
06/orientacion-sobre-el-plano.html. Acesso em

Fonte:http://geographicae.wordpress.com/2007/06/09/f
ormas-de-relevo-e-curvas-de-nivel/. Acessado em
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Fonte: http://ciconiastur.blogspot.com.br/2011/12/el-relieve.html. Acessado em 29/03/2012

As curvas de nivel ddo uma maneira bidimensional de representar uma superficie
tridimensional z=f(x,y).

Nos graficos acima, cada ponto da curva de nivel corresponde a um Unico ponto na superficie
que esta k unidades acima (k>0, mas seriam k unidades abaixo se k<0) considerando diferentes
valores para a constante k (isto é, varios planos paralelos que interseccionam f), obtemos um
conjunto de curvas de nivel chamado de MAPA DE CONTORNO. O conjunto de todos os
valores possiveis de k é a imagem da func¢do f e cada curva de nivel f(x,y)=k no mapa de
contorno consiste em pontos (x,y) do dominio de f, tendo o mesmo valor funcional k.

Exemplo
3.1.(d) Desenhe as curvas de nivel tipicas da fun¢do f(x,y) = x2 — y?
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>  Graficos e superficies de nivel

E muito dificil visualizar uma fungdo f de trés varidveis por seu grafico, uma vez que
estariamos em um espaco de quatro dimensdes. Entretanto ganhamos algum conhecimento
de f desenhando suas SUPERFICIES DE NIVEL, que s3o as superficies com equagdo
f(x,y,z) =k, onde k é uma constante. Se um ponto (x,y,z) se move ao longo de uma
superficie de nivel, o valor de f(x, y, z) permanece fixo.

Exemplo
3.1.(e) Determine as curvas de superficie da fungdo f(x,y,z) = 4x% + 9y? + z?2
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3.2 Teoriade limites

> Limite de fung¢do de duas variaveis

Def.3.2.(a)
Seja X € R%? e z = f(x,y) uma funcdo definida neste conjunto. Esta fungio tem valores no
conjunto dos nimeros reais e o ponto a (a = (x,,Y,)) é ponto limite de X.

Vamos dizer que f(x,y) tem limite L quando x(x = (x,y)) tender a a, se:

Ve >0,36(s)>0:Vxe X ﬂUors(a)(O<\/(x—x0)2 +(y—vy, ) <5):>|f(x, y)-L<e

Generalizando para fungdes vetoriais de varias variaveis

Seja X = R" e y = f(x) uma funcdo definida neste conjunto. Esta fun¢do tem valores no
espaco R eo ponto a é ponto limite de X.
X cR"
y = f(x) definido no X
f: X - R", a— pontolimite de X

Vamos dizer que f(x) tem limite A (ponto com k coordenadas), quando x tender a a, se:

Ve >0,35(5) > 0:¥x e X ﬂuos(a)(o < Py (,8) <) = p (F(0,A) <

Teorema 3.2.(a)
Seja X = R", y = f(x) definida no conjunto X. f:X —R", a— ponto limitede X .

A fungdo f(x) tem limite A quando x tende a a, onde A é ponto com coordenadas
(Al, A, ..., Ak)e R se, e somente se cada coordenada dessa func3o tem limite e esse limite

é igual a coordenada correspondente do ponto A.

im f()=As lm (e X) = A, Vj=1k

x—a (X e X )= (21,2,
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> Propriedades elementares dos limites

Seja y = f(X) = f(X,..., X,) definidaem X, f :R" > R eseja g(X) = g(X,.. X,) §:R" >R,
E seja ainda, a o ponto limite de X.

1.Se Jlimf(x)=A e 3limg(x)=B, entédo:
X—a X—a

a)lirr;(f (X)xg(x))=A+B
b)lirr;(f(x).g(x)) =AB

c)lirr;(f X)/g(x))=A/B (se B=0)

2.Se Alimf(x)=A, A>B(ou A<C),entéo:

X—a

f(X)>B (ou f(x)<C)VxeXnUs(a)
1. Sedlimf(x)=A VvxeX f(xX)<C= A<C

2. WxeXcR" f(x)<g(x)<h(x)
Sedlimf(x)=A e 3Flimh(x)=A, entdo3limg(x) = A(Teorema de Sandwich)

3. limc.f(x) =c.lim f (x) =c.A
X—a X—a

4. fim| £ (0] = lim £ (0] = |A

> Limites multiplos e limites iterados

Vamos considerar uma fun¢do de duas varidveis U= f(X,y):R® >R

E < R? (X,,Y,) ponto limite de E

Def.3.2.(b) (limite iterado)

Fixamos qualquer Yy # Y, tal que o ponto pertenga ao conjunto E.

Consideramos lim f(x,y), Vy fixo — lim f(x,y) = ¢(y)
X—>Xg X—>Xo

Agora consideremos lim ¢(y) = lim lim f(x,y) = A.
Yy—=Yo Y=>Yo X>Xo

Se esse limite existe, € chamado de LIMITE ITERADO.

Fixamos qualquer X # X, tal que o ponto pertenga ao

conjunto E.
Consideramos

Iim f(x,y), v¥x fixo — Ilim f(x,y)=w(x)
Y—=>Yo Yy—=>Yo

a

Agora consideremos lim y(x) = lim lim f(x,y)=B.
X=X Y=>Yo

X—>Xo

Se esse limite existe, € chamado de LIMITE ITERADO.
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Def.3.2.(c) (limite multiplo)
E o limite de f(x, ), calculado no ponto, quando ele existe.

Afirmacao:

Se existe limite multiplo e existe limite iterado, entdo este limite iterado coincide com o limite
multiplo.

Se existem os limites iterados e sdo iguais entre si, ndo garante que exista o limite multiplo.

Conclusao:
Se os limites iterados existem e sao diferentes, entdo, o limite multiplo ndo existe.

Exemplo

3.2.(a) Analise a existéncia do limite da func¢do f no ponto dado.

foy=—"— (00
+y
Analisemos, primeiramente, os limites iterados:

0
1) limlim—Y— = limlim— = lim0 = 0
x—0y—0 X2 +y2 x—0y—0 X2  x—0

0
2) limlim—Y— = limlim— = lim0 = 0
y—>0x—0 X2 +y2 y—0x—0 y2 y—0

Vimos que os limites iterados existem e sdo iguais. Com esse resultado, ndo podemos afirmar

nada ainda. Vamos calcular o limite em outra direcao.

X2 .oox2 1
3) I|m f(x, y)_I|m =lim—==

S0X24 X2 x002x2 2
Como o resultado do limite deu diferente dos limites iterados, podemos afirmar que ndo existe

f(x,y)

(x, y)—>(0 0)

Exemplos

3.2.(b) f(xy)= Ei :32 ;E)y/ :32 (L3
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4_ .4
3.2.(c) Utilize a definigdo para demonstrar a existéncia do limite lim(x,y)_)(oyo) ;Tf,z

2x%y

3.2.(d) Analise a existéncia do limite lim, ,)_, 0,0y P
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3.3 Continuidade de funcdes de varias variaveis

Def.3.3.(a) (fungdo continua no ponto)
Seja X um conjunto no espaco R" e X(O):(xfo),xgo),...,Xio)) um ponto de X. Seja a funcdo
y = f(x) definida no conjunto X, f: X - R.

(0)

Vamos dizer que a fungdo f(x) é continua no ponto X' se existe o limite da fungdo f(x)

qguando X — x© e esse limite é igual ao valor da fung¢do no ponto x,
3 lim f(x) = f(x?)
x—>x©

Propriedades

Sejam  f(X) = f (X X;) € G(X) = 9(X.,.. X,) continuas no ponto x? e EcR", entdo:
LE(X)£g(x)

2.1(x).g(x) S3o continuas no ponto x”

3.5(0/9(x) (9(x?)=0)

Def.3.3.(b) (fungdo continua no conjunto)
Seja X um conjunto no espago R", f(x) definidaem X, f : X — R . Vamos dizer que a funcio

f(x) é continua no conjunto X se a fungdo f(x) é continua em qualquer ponto desse
conjunto.

Exemplo
3.3.(a) Verifique a continuidade de f:

flx,y) = % se (x,y) # (1,3)
2 se (x,y) = (1,3)
3.3.(b) f(x,y) = x;;zz
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Teorema 3.3.(a) (Continuidade)
Toda fungdo é continua no seu dominio.

Exemplos

3.3.(c) Determine o conjunto de continuidade da fungdo h(x,y) = In(xy — 1)

3x
seny

3.3.(d) Determine o conjunto de continuidade da fun¢do h(x,y) =

3.3.(e) Determine todos os pontos em que f é

x* +y? sex?+y*<1
fan={ T
s sex“+y“>1

continua

sendo
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Def.3.3.(c) (funcdo composta)

Seja X < R", y = f(x)definida no X, f: X — R, Denotamos por Y = f(X) a imagem
do conjunto X com transformacao f.

Seja Uu=g(y)definida noY,g:Y — R"™. Entdo vamos dizer que no conjunto X é definida

uma fung¢do composta u = g(f (x)) = h(x) com valor no espago (X C‘R”) h: X > R"

XCc ]E“ ]Ek ]Em

Teorema 3.3.(a) (continuidade da fun¢do composta)

Seja

X ",y = f(x)definida no X, f:X >R Y =f(X) (¥ %) u=g(y) definidano Y
g:Y =>R" u=g(f(x)=h(x)

Se f(x) é continua num ponto x©

eX e a funcdo gly) é continua num ponto Y@ = f (x?)

(valor da fungdo no ponto Xx?), entfio a funcio composta g(f (x)) = h(x) é continua no ponto
(0)
X

Exemplo
3.3.(f) Dadas as fungdes f(x,y) = (x? + y2,x) e g(x,y) = (y,y + x). Verifique se a fungdo
composta g(f(x,y)) é continua no ponto (1,2).
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3.4 Propriedades globais de funcdes continuas

Def.3.4.(a) (conjunto linearmente conexo)

O conjunto X — R" é chamado linearmente conexo se para quaisquer pontos x?, x? desse
conjunto, existe, pelo menos, uma curva r (gama)
X(t) = (% (£), X, (t),., X, (1)); X; (1) continuas  no  [a,b]) tal que  x(@)=x", x(b)=x”
Vvt e[a,b] = x(t) € X

//" N \,\/ / N\
L A )
g \ O
\ B
—~—

Teorema 3.4.(a) (12 Teorema de Bolzano-Cauchy- existéncia da raiz)

Seja X < R", f : X > R. Se X é linearmente conexo e f é continua no X e se Ix®,x@ e X

tal que f(xY).f (x®) <0 entgo existe pelo menos um x@ e X : f(xX@) =0

Teorema 3.4.(b) (22 Teorema de Bolzano-Cauchy)

Seja X < R", f : X > K. Se X é linearmente conexo e f é continua no X e se Ix®,x@ e X
onde f(x®)=A, f(x?)=B A=B, entio para qualquer valor C entre A e B, existe pelo
menos um ponto X? e X : f(x?)=C

(R2%: teorema do valor intermediario)

Teorema 3.4.(c) (12 Teorema de Weiertrass)
Seja X < R" um conjunto compacto. f: X — R, se f(x) é continua no X, entdo Y=f(X), a

imagem Y, é limitada no R*

Teorema 3.4.(d) (22 Teorema de Weiertrass)

Seja X <R" um conjunto compacto. f:X >R se f(x) é continua no X entdo

XD x@ ¢ X tais que os valores de f(x®)e f(x?) sio valores méaximos e minimos da
funcdo f nesse conjunto.
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3.5 Derivadas parciais

Def.3.5.(a) (derivada parcial)
Sejay = f(x) uma fung¢do de uma variavel real. Sua derivada primeira é:

(1) dy _ lim f(x+Ax) - f(x)
dx Ax=0 AX

de y em relagdo a x. Para uma fungdo z = f(x,y) de duas varidveis, necessita-se de uma

interpretagdo analoga da taxa a qual z varia quando x e y  ,

variam (isolada ou simultaneamente). Vejamos:

Comecga-se mantendo y fixo e fazendo x variar. A taxa de

e pode ser interpretada como a taxa instantanea de variagdo

0z
variacdo de z em relacdo a x é entdo denotada por 8_ etemo
X

f(x+Ax'y)_f(x'y)
Ax '

0z .
valor (2) Py = hmAx—>0

I

O valor desse limite, se existir, ¢ chamado DERIVADA PARCIAL DE f EM RELACAO A x. Da
mesma forma pode-se manter x fixo e fazer y variar. A taxa de variacdo de z em relagdo a y é
entdio a DERIVADA PARCIAL DE f EM RELAGAO A y, definida como:

9z . fy+Ay)—f(x.y)
3y limyy, o 5 :

e Notagles usadas para derivadas parciais:

oz of
o —f(xy)=D,f(x,y)=D f(x,
- ox (X, ¥) =D, f(x,y) =D, f(xy)

Observe que se o simbolo y na equacao 2, for omitido, o resultado é o limite na equacao 1. Isso

0z
significa que se pode calcular 8_ como uma derivada simples em relacdo a x, simplesmente
X

considerando-se y como uma constante durante o processo de diferenciagdo. Analogamente,

0z . . . L
pode-se calcular — como uma derivada simples, encarando-se y como a Unica variavel e x

como uma constante durante o calculo.

Exemplo
f(x,y) =x2+2xy?—y3

g=2x+2y2 g:4xy—3y2
X oy
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> Interpretagdo geométrica das derivadas parciais

As derivadas parciais fy e f, sdo os coeficientes
angulares de retas tangentes a certas curvas na
superficie z = f(x, y).

A figura 1 ilustra a interseccdo desta superficie com
um plano vertical y = b que é paralelo a x0z. Ao
longo da curva, x varia e y permanece fixo (y = b).
Consideramos um ponto P na curva (P(a,b,c)).
Passando por P, tragamos a reta tangente a curva e
contida no plano. Vejamos a projecdo paralela da
reta tangente no plano x0z, da curva x na superficie
e do ponto P (figura 2).

Figura 1
Pode-se agora “ignorar” a presenca de y = b e considerar z = f(x,b) como uma fungdo de
Unica varidvel x. O coeficiente angular da reta tangente a curva x original por P, é igual ao

coeficiente angular (%) da reta tangente na figura 2.
X
r'y

Mas, pelo cdlculo de uma varidvel, este ultimo coeficiente angular é
. f((a+Ax),b)- f(a,b

dado por: lim (« ):0) = f( )= f, (a,b)
Ax—0 AX

/

Figura 2
— " oz
Significado Geométricode — = f, (X, )
OX

O valor f,(a,b) é o coeficiente angular da reta tangente, em P(a,b,¢) a curva x no ponto P
na superficie z = f(x,y)

_— . oz
Significado Geométrico de 5 =f,(xy)

O valor fy(a,b) é o coeficiente angular da reta tangente, em P(a, b,c) a curva y no ponto P

na superficie z = f(x,y)
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> Plano Tangente

As duas retas tangentes que encontramos determinam um plano Unico pelo ponto

P(a,b, f(a,Db)).

Def.3.5.(b) (plano tangente a z = f(x,y))
Suponha-se que a fungdo f(x,y) tenha derivadas parciais continuas em um retangulo no
plano xy contendo (a, b) em seu interior. Entdo o PLANO TANGENTE a superficie z = f(x,y)

no ponto P(a,b, f(a,b)) é o plano que passa por P e contém as retas tangentes as duas
curvas:

z=f(x,b), y=b (curvax)
z=f(a,y), x=a (curvay)

* Equagdo de um plano:

ax+by+cz+d=0 (a,b,c) =7 (vetor normal ao plano)

U e VU sdo osvetorestangentes as curvas x e y respectivamente.
Como se viu, a curva y tem coeficiente angular f,(a,b) em P e assim, pode-se tomar

v=J+f(a b)z como seu vetor tangente em P. A curva x, tem como coeficiente angular
fi(a,b) em P e assim, pode-se tomar i = + f,.(a, b)E como seu vetor tangente.

U X U = vetor normal
T 7k B
uxv=10 1 fy(a, b)| = f(a,b)T+ fy(a,b)f— k=1
1 0 fi(ab)

*—(az( 5,2 (a,b) 1) liti
n= Fp a, '3y a,b), forma analitica

Logo, a equacgdo do plano tangente a superficie no ponto P é:
f.(a,b).(x-a)+ f,(a,b).(y-b)-[z- f(a,b)]=0

0z 0z
ou z-c=—(x—-a)+—(y—b) onde c= f(ab
ax( ) ay(y ) (a,b)

0z oz
*_— — sdo calculadas no ponto (a,b)
OX oy
Exemplo
3.5.(a) Escreva a equacio do plano tangente ao paraboloide z = x* + y* no ponto P(2,—1,5)
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3.6 Derivadas de ordem superior

Seja a fungdo U= f(X)=f(X,.X,), X cR"; f:X >R Vamos supor que f(x) tem

derivadas parciais no conjunto X: EI%,szl,_n, considerar num  ponto
k

= (X(O),..., X,(]O)) € X, consideramos uma r-vizinhanca perfurada do ponto x.

(;i = 0, (X, Xp ey Xy )- Se existe derivada parcial dessa funcao, entdo:
Xk
o PN O I By
X, ox;lox ) Ox;0X, Sl
Pt p-lg £ (P . .
0 = 0 0 = derivada parcial de ordem p
OXipOXyp 100y O Oy | OXpep_g 500K Xkt Xk2 05 Xkp
Quando K # |
o f o f
sdo as derivadas mistas, a primeira em relacdo a x, € a segunda em
OX 0%, OX, OX;
relagdo a x;.
Exemplo

3.6.(a) Calcule as derivadas de segunda ordem de f(x,y) = x?y + cos(x + y)

» Algumas propriedades das derivadas parciais

Se as fungdes f(x) e g(x), X c R", f,g: X — R tem derivadas parciais, isto é:
Lot ag(9

, no ponto X% e X , entdo temos:
ax,. axj
6

1——uwwqu» 9

X; ax axj

of

2—4Hmmm———w-gf

J J a j

o 09

g-——1
0 (X)) _ 9 X; 0
X, [g(X)]_ 92 90) %0
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of (x° . N . s « .
e Se EIL (derivada da fungdo f(x) no ponto x° em relagdo a variavel x;) entdo f(x) é
i
continua no x° em relagdo a variavel x;;

e Se f tem todas as derivadas parciais em relagdo a cada varidvel, entdo esta fungdo é
continua no x° em relacdo a cada variavel separada;

e Da existéncia de todas as derivadas parciais em um ponto, ndo segue a continuidade
no conjunto de todas as varidveis.

Exemplo

Xy
36.0b) f(xy)=l(eryy V700

0 (xy)=(00)
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3.7 Diferenciabilidade

» Diferencial de fungdo de duas variaveis

Def.3.7.(a) Se f for uma funcdo de duas varidveis x e y, entdo o incremento de f no ponto
(X0, ¥o), denotado por Af (x,,¥,) € dado por Af (x,,¥,) = f(xo + Ax, yo + Ay) — f (X0, ¥o)-

y=f® superficie:z = f(x,y) e Af’yo GBI A

=+ A)‘ 7 «'/_ _________ 7’ -;'— Az
(" 7 o ;’ h

dy

dx = A'I\A (Xo:}’o.f(xod'o)) Ne /
. | .

0 a a+Ax X
reta tangente s J
y =f(a) +f(@)(x—a) L

+
&.
i

\ (xg +Ax, y, +4y,0)

(x0.70,0)  By=dy
plano tangente

Def.3.7.(b) Se f for uma fungdo de duas variaveis x e y e o incremento de f no ponto (x,,y,)
puder ser escrito como:

Af (%6, Y0) = fx (X0, Y0)Ax + f,, (X0, ¥5)Ay + 1A% + £;,Ay, onde &; e &, sdo fungbes de Ax e
Ay, tais que &, = 0 e &, = 0 quando (Ax,Ay) — (0,0), entdo diremos que f é diferencidvel
em (Xo, ¥o)-

Exemplo
3.7.(a) Verifique que a fungdo f(x,y) = 3x — xy? é diferenciavel para todos os pontos de R?.
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> Diferencial de funcdo de varias variaveis

Def.3.7.(c) (incremento total)
Seja u=f(x)=f(x,X,,..,X,) definidano X cR", f : R" > R:

VX2 e X (X% = (X2, X300y X)), X = (Xs X yeery X ) = (X + AXg, X3 + AXy,.oy X0+ AX,) € X

X=X = (AX,AXy,y AX ) =AX  X=X" + AX
AF(X°)=F(X) = F(X°) = F (X" +AX) — F(X°) = F(X) +AX oy X0+ AX ) = F(X0,..., X°)
essa diferenca (f(x) - f(x°)) tem o nome de incremento total e é denotada por Af (x°)

Def.3.7.(d) (diferenciabilidade)
0

Vamos dizer que a fungdo f(x) é diferencidvel no ponto x° = (x/,...,x’) se o incremento

total dessa funcao pode ser representado da seguinte forma:
A (x%) = T (X°)AX, + X, (XT)AX, +...+ X, (XO)AX, + &A%, +&,A%, +...+£,AX, onde &; sdo  fungBes

que dependem de  AX; [6‘] = & (AXy,...,AX,) —> Oj‘v’j :1,_n

Def. 3.7.(e) (diferenciagdo total)

Se f é uma fungdo de n varidveis ( X;,..., X,) e o incremento de f em x° = (x?,...,x) € escrito
como Af (x°) = fx, (X*)Ax, + X, (X°)AX, +...+ X, (X°)AX, + &AX, + £,AX, +...+ &,AX,, onde
&g - 0,6 -0,..,, — 0 quando (Axy,Ax,, ..., Ax,) — (0,0,...,0), entdo f é diferencidvel
em x°.

Se f é uma fun¢do de n varidveis e f é diferencidvel em x°, entdo a diferencial total de
w = f(x4,...,X,) € expressa por:

dw = fxl(xo)dxl + fxz (xo)dxz +-t+ fxn(xo)dxn

Observagoes:
1) Sewu = f(x) é diferenciavel no ponto X’ € X, entdo f(x) é continua no ponto x%;
2) Se f(x) ndo for continua no xX’eX, entdo f ndo é diferencidvel no X’ e X.

3) Seu = f(x) é diferenciavel no ponto x° e X cR", entdo essa fungdo tem todas as
derivadas parciais nesse ponto;

4) A existéncia das derivadas parciais no ponto x° e X , hdo garante que a funcdo seja

diferenciavel no x° € X .

Def.3.7.(f) Seja u=f(x),X cR", f:R" >R, £(X) = (F,(Xseer X1 )rovs Ty (Xgp0ns X)) vamos
dizer que essa fungdo é diferenciavel num ponto X’ € X ou em todo X se cada coordenada

fj(xl,..., X,) Vj :1,_n é diferencidvel no mesmo ponto x% e X (ou no X).

38



> Esquema

v

£ (x) é diferenciavel aaf; (:‘ ) yj=Tn

2

A

I

l e 1

£ (x) é continua no x° £ (x) é continua no x°
em relagéo ao em relacdo a cada
conjunto das variaveis variavel separada

l l

Existe limite maltiplo
no ponto x°

v

A

v

Existem limites
iterados e sdo iguais

A

Exemplo

xy
——,se(x,y) # (0,0
3.7.(b) Verifique a diferenciabilidade da fungdo f(x,y) = {xzﬂ/z (x.y) # (0.0)

0,se (x,y) = (0,0)

» Significado geométrico da diferencial de f(x,y)

v

A fungdo f(x,y), que é diferencidvel em (x,, y,), possui um plano tangente nesse ponto.



» Condigdo suficiente de diferenciabilidade da fun¢do de varias variaveis.

Teorema 3.7.(b) (condigdo suficiente de diferenciabilidade da fungéo)

Seja u= f(x) definidano X cR", f : X =R e o ponto x° é ponto interior de X.

Se f(x) tem todas as derivadas parciais numa vizinhanga do ponto x° e essas derivadas s3o
continuas no x°, ent3o essa funcdo é diferencidvel no X

Exemplos
3.7.(c) Prove que f(x,y) = x3 + 3xy — 5y3 é diferencidvel V(x,y) € RZ.

3.7.(d) Seja um cone circular reto cuja altura é aumentada de 5cm para 5,01cm e o raio,
diminuido de 4cm para 3,98cm. Encontre uma aproximacgao para a variagdo do volume.

3.7.(e) Trés resisténcias de x ohms, y ohms e z ohms sdo conectadas em paralelo para dar uma

. A . . XyzZ e A . , e
resisténcia equivalente w tal que w = xyTyz-i-yz Cada resisténcia é de 300 ohms mas esta
sujeita a 1% de erro. Qual é o erro maximo aproximado?
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3.8 Diferenciacado da fungcdo composta (Regra da cadeia)

Teorema 3.8.(a)
Seja uma fungdo X = g(t) definida no espaco T < R*, g:T —R", denotamos por X =g(T),

a imagem do conjunto T sobre transformagdo g (X < R").
Seja a fungio Y= f(x), f:R" > NRdefinida no conjunto X. se a funcio g(t) é
diferencidvel no ponto t°cT ea fungdo f(x) é diferenciavel no ponto x° = g(t°), entdo a

funcdo composta W= h(t) = f (g(t)) é funcdo diferenciavel no ponto t°.

» Aregra de cadeia

Caso 1:
Suponha uma fungdo y = f(x) de uma varidvel real, diferencidvel de x. Suponha x = g(t)
uma funcgdo de varidvel real t, diferencidvel de t.
Entdo y é diferencidvel de t e
dy dydx
dt dxdt

Caso 2:
Suponha uma fungdo z = f(x, y) de duas variaveis reais, diferencidvel de x e y, onde x = g(t)
e y = h(t) sdo fungSes diferenciadveis de t.
Entdo z é diferencidvel de t e

dz dJdfdx adfdy

dt ~ oxdt  dydt
Caso 3:
Suponha uma fun¢do z = f(x,y) de duas varidveis reais, diferencidvel de x e y, onde
x = g(s,t) ey = h(s, t) sdo funcbes diferencidveis de s e de t.
Entdo z é diferencidvel de t e

dz 0zdx 0dzady

ds 0xds * dy ds

dz 0zdx 0zady

3t _ ox ot ' ayat
Caso geral:
Suponha que u seja uma fungdo diferenciavel de n varidveis x4, x5, ..., X, onde cada X; é uma
fungdo diferencidvel de m variaveis t4, t, ..., t;,. Entdo u é uma fungdo de t4, t5, ..., t,, €

du Odudx; O0u 0x; bt du dx,
at; dx, dt; 9dx, Ot; dx, ot;

Paracadai =1,2,...,m.

Exemplos
3.8.(a) Sejam w=¢", x=t2 e y=t3

3.8.(b)Sejam U=Xy+XZ+Yyz X=rs y=r2—-s2 z=(r-s)?
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3.8.(c) A tensdo V, no resistor, em um circuito elétrico simples estd decrescendo lentamente a
medida que a bateria se descarrega. A resisténcia R estd aumentando com o aumento de calor

do resistor. Use a Lei de Ohm (V=IR) para achar como a corrente | esta variando no momento
0,01V

- - av_ _00w , dR _ ‘-
em queR =400Q, I =0,084, Fri € = 0,03 Q/s (Rta:-0,000031A/s)

3.9 Derivada Direcional e Gradiente

> Vetor Gradiente

Seja w= f(x,Yy,z)definida no D c RS, f :R3— NR. A variagdo no valor da fungio w
no ponto P(x,y,z) para o ponto vizinho Q(X+ AX, Y+ Ay, Z+Az) é dada pelo incremento
Aaw=1Q)-f(P) @
szﬂ-AX+i-Ay+i-AZ = (i,@,gj-(Ax,Ay,Az) 2)

OX oy 0z OX oy oz
Pode-se expressar esta aproximac3o em termos do VETOR GRADIENTE Vf da funcio f, que
se define como:

V(X Y, 2) =ifx(x, Y, z)+]fy(x, Y, z)+Efz(x, Y, 2) 3)

of of of of - of - of -
OUsz T~ v v =_|+_J+—k

OXx oy oz ox oy 0z
Entdo, a equacdo (2) mostra que o incremento Aw= f(Q)-f(P) é dado
aproximadamente por

AwW=Vi(P)v  (4)
onde v= @ =(Ax,Ay,Az) éowetor deslocamentode Pa Q.
Exemplo

3.9.(a) Se T(X,V,2)=Xx2+yz—2Xy—122, entdo a definicio do vetor gradiente na equagio
(3):, no ponto (2,1,3) da:

Vi(x,y,2) = (2x—2y)i +(z —2X)_j: + (y—Zz)E
Vi (213) = (4-2)i + (3-4) ] + (1-6)k = (2,-1,-5)

Para calcular Aw=Vf (P)v, sendo Q(L9;12:31) entdo v = PQ =(-0.1,0.2,0.1)
Logo, AW = (2,-1-5)-(-0.1,0.2,0.1) =—0.2-0.2-0.5=-0.9
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> Derivadas Direcionais

As derivadas parciais f, (x,y,2), f, (X,y,2), f,(X,y,2) representam as taxas de variagdo
de w=f(x,y,z) no ponto P(x,y,z) nas direcdes x,y e z respectivamente. Pode-se agora, aplicar o

vetor gradiente W para calcular a taxa de variacdo de W em P, em uma direcdo arbitraria
(uma direc3o fica definida por um vetor unitario )

4 Q. Seja Q um ponto do raio de P na direcdo de u. A taxa
média de variacdo de W em relagdo a distancia entre P e
Qé:
P 7 F@-f(P) _ Aw .
As ———=—— = — onde AS=|PQ|=|17| é a
|PQ| As
distancia de P a Q. Entdo, a aproximacdo da equacgado (4)
Aw  VF(P)B v .
dd: — = ——=— mas, = ¢é o vetor unitario u na
As v [

A - =
direcdode P a Q. Logo:A—‘: =Vf(P).u

v

Aw
Ao tomarmos o limite da taxa média de variacdo ™ guando As — 0, obteremos a TAXA

INSTANTANEA DE VARIACAO ‘i—': = limyg_,, AA—:’ = W(P). U.
Def.3.9.(a) (derivada direcional)
D;f(P) = W(P).Ti é a derivada direcional de f em P(x,y, z) na diregdo u.

Exemplo
3.9.(b) Suponha que a temperatura no ponto (x,y,z), com a distdncia medida em

quildmetros, seja dada por W= f(X,y,2) =10+ Xy +XZ+ yZ (em graus Celsius). Ache a taxa

de variagdo (em graus por quildmetro) da temperatura no ponto P(1,2,3) na diregdo do vetor
v=(12,-2)
Solucdo:
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> Afirmacdo:

Se a fungdo u = f(x,y,z) é diferenciavel numa vizinhanga do ponto P, , entdo a derivada
direcional dessa fungao existe ao longo de qualquer dire¢ao que passa por esse ponto.

> Interpretagdo do vetor gradiente

* As férmulas para as derivadas direcionais para as fungdes de duas ou mais de trés varidveis,
sdo analogas.

=2 of , of o7 . of of
Vf(x,y)=al+a—] e Dzf(x,y) = Vf(x,y).u=a$+b$, u = (a,b)
- Se « é o angulo de inclinacdo de U (medido no sentido

anti-horario a partir do eixo x positivo), entdo a=cosa e
b=sen « e a equagdo anterior fica:

— _ of of
Dyf(x,y) = Vf(x,y).u = acosa + Esen (o4
Vf. O vetor gradiente W admite uma interpretacdo

importante, que envolve a derivada direcional MAXIMA de f. Se ¢ é o

L angulo entre W no ponto P e o vetor unitario U, entdo a férmula

Daf(P) =Vf(P).U fica Dyf(P) = |Vf(P)|.cos@ (ver quadro

) abaixo) porque || = 1. O valor méaximo de cos¢ é 1, quando ¢ =0. Isto
Vi (P)
V7 ()]

direcdo do proprio vetor gradiente. Neste caso, a férmula fica:
Dzf(P) = |Vf(P)| e assim, o valor da derivada direcional é o

ocorre quando U é o vetor unitario particular gue aponta na

? 5 comprimento  (mddulo) do vetor
cos® = —u N V_f T gradiente, o que prova o seguinte
|Vf| - | teorema:
= |W| - U] - cos®
€ Comoﬂlj 1’_, temos que Teorema 3.9.(a) (significado do vetor
Vf-u= |Vf| cos gradiente)
Obtém-se o valor maximo da derivada

direcional D, f(P) quando U é o vetor na direcio do vetor gradiente Vi (P) (17 = %).

O valor maximo da derivada direcional é |Vf(P)|, que é o comprimento (mddulo) do vetor

gradiente. O valor minimo da derivada direcional é — |W)(P) |
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Teorema 3.9.(b) (vetor gradiente como vetor normal)
Suponha-se que F(x,y,z) =0 tenha derivadas
parciais de primeira ordem continuas, e seja

Po (XO, yo,zo) um ponto do grafico da equacdo
F(x,y,z) = 0 com VF(PR,) #0.

Se r(t) é uma curva diferencidvel nessa superficie
com r(ty) =(X,, Yo, Zo), entdo:

VE(R,)-r'(t,) =0 Assim, VF(P,) é perpendicular ao vetor tangente r’(to), conforme figura:

(Dica para demonstrag¢ao: Escreva a equacdo da superficie como fungdo composta e aplique a
regra da cadeia).

O vetor gradiente VF ¢ normal a toda curva na superficie F(x,y,z) = 0.

e A reta normal a uma superficie no ponto P, é aquela que passa por P, e tem
V£ (x0, Yo, 29) como vetor diretor. Suas equagdes simétricas sdo dadas por
X—Xo Y—Yo Z—Zg

fx(Po) ~ fy(Po) ~ fu(Po)’

se fx(Py) # 0, f,(Py) # 0 e f,(Py) # 0

Exemplo
3.9.(c) Escreva uma equacdo do plano tangente ao elipsoide 2X?+4Yy?+72=45 no ponto
(2,-3,-1):
Solugao:

A interseccdo de duas superficies F(x,y,z)=0 e G(x,y,z)=0 é, em geral, uma curva no espaco.
Pode-se representar essa curva
parametricamente na vizinhanca de todo ponto
onde os vetores gradientes VF e VG nio
sejam paralelos. Esta curva C é normal a ambos
os vetores VF e VG. Isto é, se P é um ponto
de C, entdo o vetor tangente a C em P é
perpendicular a ambos os vetores VF(P) e

VG(P) . Decorre que o vetor T =VF xVG ¢

tangente a curva interseccdo das superficies
F(x,y,2)=0 e G(x,y,z)=0.

OBS.: se as superficies em questdo ndo se interseccionam mas sdo
tangentes em um ponto P(xy, ¥y, Zo), €ntdo existe um plano neste
ponto tangente as duas superficies e é vdlida a relagdo: &

Vi (x0, Y0, 20) = k.Vg(x0, Y0, Zo)

-
O

Exemplo
3.9.(d) Escreva as equagOes simétricas da reta tangente a curva de interseccdo das superficies
3x24+2y?+2z2=49 e x2 +y%2— 222 =0 emP(3,-3,3).
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Exemplo
3.9.(e) O ponto P(1,-1,2) pertence ao paraboloide F(X,Y,2)=X2+Yy2—2=0 e ao elipsoide
G(x,y,2)=2x2+3y2+22-9=0.

Escreva uma equacgdo do plano que contém P, normal a curva de

/ intersec¢do dessas superficies:
=5| g Solugdo:
|

e
=0

> Sobre derivadas de ordem superior

Teorema:
Seja a funcdo u=f(x,y), definida no X c R, f ::R*> > R. 0 ponto M, =(X,,Y,) é ponto

interior do conjunto X.
Se:

of of o°f o%f
X' oy oxoy ' oyox

2) Se as derivadas mistas

numa vizinhanga do ponto My U (My);
2 f 2f

oxoy ' oyox

Entdo essas derivadas mistas sao iguais.

sdo continuas no ponto My;

OBS.: A mesma afirmacao é verdadeira para fungdes de quaisquer niumeros de varidveis e para
derivadas mistas para qualquer ordem.

3.9.(f) Calcule as derivadas mistas da fungdo f(x,y) = e*seny

3.9.(g) Calcule as derivadas mistas da fungdo f(x,y,z) = x2yz?
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3.10 Derivacéo de fungoes implicitas

Teorema 3.10.(a)

Dadas as fungbes F = F(x,y) e y = f(x) definidas e diferencidveis, respectivamente em

DcR? e xe[a,b]. Seja f a funco definida implicitamente por F(x,y) = 0, ou seja,
F(x, f(x)) = 0 para X €[a,Db]. Entdo:

_oF

df OX .

—=— X € [a,b] onde as derivadas do segundo membro devem ser
X

oy
oF
calculadas em (x, f(x)) e supondo — # 0

Exemplos

3.10.(a) Seja F(X, y) = x3+ycosx =0, determine dy

dx

3.10.(b) Calcule % sabendo que y=f(x) é definida
X

F(X,y)=(3x2+2y2)2=0

implicitamente por

Teorema 3.10.(b)

Dadas as fungdes F=F(x,y,z) e z=1f(X,y) definidas e diferencidveis no

Dc®R® e S cR? respectivamente, seja f a fungdo de (x, y) definida implicitamente por
F(x,y,z)=0, ou seja, F(x,y,f(x,y))=0 em S. Entdo:

oF oF
of ox of oy oF
— = = g —=-——= — =0 V(X
x o EYRY S (x,y) €S
oz 0z
As derivadas do segundo membro sdo calculadas em (x, y, f (x,¥)).
Exemplo

of of
3.10.(c) Calcule & e 5 sendo z = f(x,y) definida implicitamente por

F(x,y,2)=x3+y3-3xz=0
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Se z = f(x,y), definida implicitamente por F(x, y,z) = 0, for diferenciavel, entdo:

oF  OF

oo - gy Y
df —&dxntady ou seja df = de %dy

0z 674

OBS: Se y = h(x) é definida implicitamente pelo sistema de equag¢des F(x,y,z) =0 e
G(x,y,z) = 0, dos quais é possivel obter a fungdo implicita z = f(x,y) e z = g(x,y), tal que
H(x,y) = f(x,y) — g(x,y) = 0, entdo:

oF oF oF  oF

o o ox 0y

oG oG oG oG
dy loz  ox dz_|ox oy
dx [oF oF dx [oF oF

oy oz oy oz

oG oG G G

oy oz oy oz
Exemplo

3.10.(d) Sejam F(x,y,z)=x*+y*+2z°—1=0 e G(x,y,z) =x*—y*—2z"—1=0,

calcule ﬂ e a_z
dx OX

Se F(x,y,u,v) =0e G(x,y,u,v) = 0 onde u e v sdo fungdes implicitas de x e y, entdo:

oF oF

OX oV

Geaicl
U |ox  ov . ou ov v
= FT Da mesma forma define-se;: —,— ,—
ox ﬁ ﬁ ox oy

ou ov

oG oG

ou ov

48



Exemplo

3.10.(e) Dada F(x,y,u,v) =x —u®*+v* = 0e G(x,y,u,v) =y —uv = 0, determine g—u
X
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3.11 Extremos das funcdes de mais de uma variavel

> Extremos relativos
A

a) Uma funcdo de duas variaveis
tem um valor maximo relativo
f(a,b) no ponto (a, b) se existe um
disco circular de raio r >0 com
centro em (a, b), tal que se (x,y) é
ponto interior desta vizinhanga,
entdo (x,y) estd no dominio de f e

ot f(x,y)< f(ah).
Figural

b) Uma fungdo f de duas varidveis tem um valor minimo relativo f(a, b) no ponto (a, b) se
existe um disco circular de raio r > 0 com centro em (a, b) tal que se (x,y) é um ponto
interior desta vizinhanga, entdo (x,y) estad no dominiode fe f(X,y)> f(a,b).

Na figura temos: P, ponto maximo relativo de f, pois f(a,,b,)é maior que os valores

préximos de f(x,¥); Q é o minimo relativo de f, ja que f(a;,0;)é menor que os valores
proximos de f(x,y); S ndo é nem maximo nem minimo relativo, pois os valores de f(x,y)
aumentam quando nos aproximamos de P e diminuem quando nos aproximamos de R; R ndo
é ponto de minimo relativo porque (a4,b4) ndo é centro de nenhum disco inteiramente
contido em D.

Conclusao: S6 podem ser extremos relativos de uma fungao, pontos interiores do dominio.

Teorema 3.11.(a) (Condigao necessdria para extremos relativos)

Seja (a, b) um ponto interior do dominio de uma fungdo z = f(x,y) cujas derivadas parciais
fx(a,b) e f,(a,b) existem. Entdo se z tem extremo relativo em (a,b) é necessdrio que
fx(a,b) =0 = f,(a,b), isto &, Vf(a, b) = 0, ou seja, no ponto em que a fung¢do tem extremo
relativo, seu gradiente ou ndo existe ou é o vetor nulo.

* 0s pontos em que a funcdo tem extremos relativos s3o chamados de PONTOS CRITICOS, no
entanto, alguns pontos criticos podem ser somente “pontos de sela”, ou seja, pontos criticos
onde a fun¢do ndo tem maximo nem minimo.

Teorema 3.11.(b) (Teste da segunda derivada)

Seja (a,b) um ponto interior do dominio de f tal que as primeiras derivadas parciais de
f existem e sdo continuas em algum disco circular com centro em (a, b) contido no dominio
de f. Se (a,b) é um ponto critico de f, isto & fi(a,b)=0=f,(ab) e
f,(@b) f (ab)
f,(@ab) f, (ab)

— f,(a,b).f(a,b)—(f,(a,b)) entdo:

e A= determinante da matriz Hessiana, desenvolvida no século século XIX pelo alemao Ludwig Otto Hesse

a)Se A>0 e f (ab)<0,entdoftem maximo relativo em (a, b);
b)Se A>0 e f (ab)>0,entdoftem minimo relativo em (a, b);

c)se A<0, entdo f tem um ponto de sela em (a, b);
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d) se A =0, ndo podemos afirmar nada. Temos que utilizar outros testes.

Exemplo

3.11.(a) Determine e classifique todos os pontos criticos de f(x,y) = 12xy — 4x%y — 3xy2.
(0,0) sela, (0,4) sela, (3,0) sela e (1,4/3) Max relativo.

. . 4 4 .
3.11.(b) Determine os pontos criticos de f(X, y) =X+ VY e classifigue-os como ponto de
maximo ou minimo relativo ou ponto de sela.
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3.11.(c) Deseja-se construir um depdsito retangular sem tampa, com volume V = 12m3. O
custo do metro quadrado de material a ser usado é de R$ 400,00 para o fundo, R$ 300,00 e
R$ 200,00 para os lados distintos. Determine as dimensdes do depdsito que minimizam os
custos.
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> Extremos Absolutos

Def.3.11(a): Uma fungdo f de duas variaveis tem um valor maximo absoluto f(a, b) no ponto
(a, b) de seu dominio D se T(X,Yy) < f(a,b) paratodo ponto (x,y) em D. Analogamente, f

tem um valor minimo absoluto f(C,d) em (c,d) de seu dominio D, se f(X,y)> f(c,d)
para todo ponto (x,y) de D.

Teorema 3.11.(c) (existéncia do extremo absoluto)
Seja f uma funcdo de duas varidveis cujo dominio D seja compacto. Entdo f tem um valor de
maximo absoluto e um valor de minimo absoluto.

Observagoes:

a) Um extremo absoluto que ocorre em um ponto interior do dominio D é automaticamente
um extremo relativo de f; um extremo absoluto de f que ndo é um extremo relativo, localiza-
se em algum ponto da fronteira de D.

b) Na figura 1, P é ponto de méximo absoluto e também relativo, pois (a,,b,)eD; R é
minimo absoluto, mas ndo é minimo relativo, pois (a4 , b4) esta na fronteira de D, mas ndo é
ponto interior.

c) Para localizarmos o extremo absoluto de f, primeiro encontramos todos os extremos
relativos e comparamos o maior e o menor valor destes com os valores de f ao longo da
fronteira de D.

Exemplo
3.11.(d) Ache os valores maximos e minimos atingidos pela fungio f(X,y)=Xy—Xx—-y+3
em pontos da regido triangular D do plano xy, com vértices em (0,0), (2,0) e (0,4).

(0; 0) maximo absoluto, (0; 4) minimo absoluto, (1; 1) sela.
b
\

|
f
\

7= 8,25 |

=45

z=0.75

[

O
[ i
F x

L
L~ ‘ . . [

53



3.12 Multiplicadores de Lagrange

A figura mostra a curva da restricdao
juntamente com varias curvas de nivel da funcdo
f(x,y) =z. Essas curvas de nivel tem equagdo
XOY0) f(x,y) =c,ondec=8,9,10e 11.
flxy) =11 Maximizar f(x,y) sujeita a g(x,y) =k é
{("y ) =10 achar o maior valor de c¢ tal que a curva de nivel
f(x y) =8 f(x,y) = c intercepte g(x,y) = k. Parece, da figura,
> que isso acontece quando essas curvas se tocam, ou
\ seja, quando essas curvas tém uma reta tangente em

“" ”)

comum (caso contrario, poderiamos aumentar o valor de Isso significa que as retas
normais no ponto (xg,y,), onde as duas curvas se tocam, devem ser as mesmas. Logo, seus
vetores gradientes sdo paralelos:

Vf(x0,¥0) = 2:Vg(x0,y0) paraalgum A

Teorema 3.12.(a) (Multiplicadores de Lagrange — um vinculo)

Sejam f(x,y) e g(x,y) fungdes com derivadas parciais de primeira ordem continuas. Se o
maximo (ou minimo) de f sujeito a condi¢do g(x,y) = 0, ocorre em um ponto P onde
Vg(P) #0, entdo Vf(P)=AVQ(P) para alguma constante 4.

Corolario 3.12.(a)
Os pontos em que uma fung¢do f de duas variaveis tem extremos relativos sujeitos ao vinculo
g(x,y) =0 estdo incluidos entre os pontos (x,y) que satisfazem o sistema:

f, (X, y)=49,(xY)
f,(xy)=29,(x,y)
g(x,y)=0

Se a fungdo f for uma fungdo de trés varidveis, entdo o sistema fica:
f.(xy,2)=49,(x,y,2)
fy(x,y,2) =19, (x,y,2)
f,(xy,2)=19,(xy,2)
g(x,y,2)=0

Exemplo
3.12.(a) Encontre os extremos de f(x,y) = xy se (x,y) estd restrito a elipse 4x? + y? = 4.
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3.12.(b) Calcule o volume da maior caixa retangular de lados paralelos aos planos coordenados
que pode ser inscrita no elipsoide 16x? + 4y + 9z% = 144 (em m?3).

3.12.(c) Encontre os pontos extremos da fungdo f(x,y,z) = x + y + z que pertence a curva
de intersecgdo do cilindro G(x,y,2) =x>+y2-2=0 com o} plano
H(x,y,z) =x4+2z—-1=0

Observagao
Algumas aplicagées podem envolver mais de um vinculo. Em particular, se f(x,y, z) estiver
associada a dois vinculos g(x,y,z) =0 e h(x,y,z) =0,entdoVf =A1-Vg+u-Vh
fx =)L'V.gx‘l'.u'th
fy=241-Vg, +u-Vh,
fz=24-Vg, +u-Vh,
g9(x,y,z) =0
h(x,y,z) =0
Analogamente, definimos o método dos multiplicadores de Lagrange para o caso de n
expressoes de vinculo.
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4 Func0es de varias variaveis e integrais espaciais

4.1 Integrais duplas

Sdo integrais de duas varidveis. Sua aplicacdo inclui o calculo de area, volume, massa e area de
superficie.

> Conceito:

Seja D um conjunto quadravel no plano (tem area), D — $’2. Vamos avaliar as regides, no D,

n
fechadas. Nesse conjunto, é definida uma fungdo f(x,y).D=UD;.
i=1

VM, eD;,, M,(X;,Y;) calculamos o valor da fungdo neste
ponto f(X;,V;)

v

Calculamos d,(D,)= max|Mi' - Mi"| VM, M, €D, e anotamos por
s=max{d;(D,)} Vi=1n
‘ A(D;) = area de D; *.D;=areadeD Yl f(x, v:). AA;

n
Def.4.1.(a) Se EI!;ingz f(X;,y;)-AA, e esse limite é o mesmo para qualquer particdo de D e
o

para qualquer escolha dos pontos em cada parte dessa regido, entdo esse limite é chamado
INTEGRAL DUPLA da funcao f ao longo da regido D e denotado por:

lim > £ (6,304 = [[ 1 (x y)dA=Y

OBS: Se D é a regido quadravel, f(x,y) é fungdo continua na regido D, entdo

aﬁf(x, y)dA=Y

» Propriedades:

1) Se as fungdes f(x,y) e g(x, y) sdo integraveis na regido D, entdo a fungdo (X, ¥)+g(x,y)
também é integrdvel e temos a seguinte igualdade:

[J(rey£g(xyda= [ f(x y)daz [[o(x y)da
D D D

2) Se f(x,y) é integravel na regido D, entdo, VCe€R, C.f(X,y) éintegravelem D e:

Hc.f(x, y)dA:cI f(x,y)dA

D D

3) Se a regido D é dividida em duas partes sem pontos interiores em comum:
D=D,uD, e f(xy) éintegrivel, entdo:
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j j f(x,y)dA= j j f(x, y)dA+” f(x, y)dA
D D D,

4) [[dA=AD) (F(xy)=D)

5) Seja f(x,y) integravel em D e além disso é limitada: IM M |V(X,y)eD temos
m<f(x,y)<M entdo m.A(D)s”f(x,y)dAs M.A(D)
D

6) Se flx,y) e g(x,y) sdo integraveis V(x,y) €D, entdo:
o) <900y = [[ F o y)da< [[o(x v)dA
D D

> Sentido geométrico da integral dupla

»z=flxy) Seja z=T(XY)>0 asuperficie que fica acima da regido D

Gy f G p)
- f(xy). AD) =Q

It 4 da b
o altura area a ase
z= flx,y)

j j f(x,y)dA~V(Q)

* (X, 90)

» Calculo da Integral Dupla
10)

D={(x,y)ei¥{2:a£x§b,csysd}(D—>regiﬁo retan gular)
Seja f(x,y) continua no D

” f(x,y)dA= ﬁ f(x, y)dydx=ﬁ f (x, y)dxdy
ODu ainda . o
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j j f(x,y)dA= T[i f(x, y)ddex = TU f(x, y)dx}dy

emrelagdoa y emrelagdoa x
Exemplo
4.1.(a) f(x,y) =4x3+6xy? D =[13]x[- 2]
(312 uv)
29)

D={(x,y)eR2:a<x<b,y, () <y<y,(x)}

Y, (X), ¥,(X) sdo fungdes continuas no [a, b] e f(x,y) é continua no D.

b( V2(x) d( x(y)
” f(x,y)dA= j ( j f(x, y)dy]dx= j { j f(x, y)dx}dy

a\ y1(x) c\ xa(y)

Exemplo

4.1.(b) Calcule ”(6X+2y2)dA, onde D é a regido limitada pela parabola x = y* e pela reta
D

x+y=2.(99/2) uv
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4.2 Mudanca de Variavel na integral dupla

» Integrais duplas em coordenadas polares

Em muitas situacbes para facilitar a descricdo de regides de integracao, se faz necessaria uma
mudanca de varidveis. Apresentaremos nesta secdo a mudanca de varidveis para coordenadas
polares.

Def.4.2.(a) Uma regido polar simples num sistema de coordenadas polar é uma regido
compreendida entre dois raios, § = @ e 8 = [, e duas curvas polares continuas, r = r;(0) e
r = 1,(0), onde as equagdes dos raios e das curvas polares satisfazem as seguintes condigbes:

(@) a<p (b)) —a<2m ()0 <1r(8) <1ry(6)

As coordenadas polares (r,8) de um ponto estdo relacionadas com as coordenadas
retangulares pelas equacdes:

\ / \
2 _ 24 2

re=xt+y For dh=(x, )
Wprp=—————— *
X = rcos@ <
v
y = rsend / i
i :

X X

Assim, para convertermos de coordenadas retangulares para
coordenadas polares em uma integral dupla, escrevemos x = rcosf e y =rsenfl, usamos
os limites de integracdo apropriados para r e 8, e substituimos dA por rdrd8. (mostrar)

62 12(0)
j f(x,y)dA=j f f(r,0)rdrdd
D 61 71(0)

Exemplo
4.2.(a) Calcular [f, et dxdy, sendo R: {(x,y) e R |1 < x> +y2 < 16e—x < y < x}

Rta. g (el® —e)

4.2.(b) Ache o volume do sélido no primeiro octante, limitado pelo cone de equagdo

z = \/x2 + y? e pelo cilindro de equagdo x? + y? = 3y.
Rta. 6 uv

4.2.(c) Determine a area da figura que é externa ao circulo r = 3cos6 e interna a cardioide
r =1+ cos6. Rta.Pi/4 ua
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> Integral dupla no plano uv (Jacobiano)

No calculo de integrais de fungdes de uma variavel real, um dos métodos utilizados foi o de
N P . , b d

substituicdo de variaveis, que é baseado na formula fa f(x)dx = fc f(g(u))g’(u)du, onde g
é uma fung¢do com derivada continua em um intervalo | que contém c e d, e onde c e d sdo tais
que g(c) = ae g(d) = b. Além disso, supomos f continua na imagem de g.

Uma mudanca de variaveis num subconjunto do R? é dada por uma transformacio

T:D,, € R? - R?
(w,v) » (x,y) = (x(w,v),y(w,v)).

Como vamos trabalhar com dominios de integragdo, consideremos D,,;,, um subconjunto do
R?, limitado e com &rea.

Vamos supor que x = x(u,v) e y = y(u, v) admitem derivadas parciais de primeira ordem
continuas, e T injetora, o que significa que ndo existem dois pontos com a mesma imagem.

UA YA

Ri| R,

0 U; u i+Au u 0 X

Seja Py, = {R1, Ry, ..., Rym} uma particdo de um retangulo que contém D,,, e S; = T(R)),
parai =1,2,..,nm.

Observe a figura a seguir, onde R; é um “pequeno” retangulo no plano uv cujo canto inferior
esquerdo é o ponto (u;, v;) e cujas dimensdes sdo Au e Av.

A imagem de R por T é a regido S no plano xy, onde em um dos pontos da fronteira esta

(xi, ) = T(w;, vy).

/ AL: curva com i constante
/ §
‘.
\ _— (. v ) o<
e

A} curva com Uj constante

0 u 0 ¥

Considerando #(u, v) = x(u, v)T + y(u, v)] o vetor posicdo da imagem do ponto (u,v), A} a
curva de imagem, por T, do lado inferior de R;, ou seja, correspondente a v = v; e A a curva
de imagem do lado esquerdo de R;, ou seja, correspondente a u = u;.

Note que, podemos representar A} e A vetorialmente por
A 7w, vy) = x(u, v)T + y(u, vy)J, uelug, u; + Aul,
Ay P (uy, v) = x(uy, v)T+ y(u;, v)j, uelv, v; + Avl.
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. [ ;, —> 0 - 5} -
Assim, o vetor tangente a A} em (x;,y;) é7, = ﬁ(ui, vl + ﬁ (u;, v;)J e o vetor tangente a
i ; —> dx N ay >
Az em (x;,y;) én, = P (g, v)T + 0 (ui, v)J.

- i \ . . .
A figura a seguir, ilustra os vetores d e b, secantes as curvas A} e 15, respectivamente.

-
r(u;,v; +Av)

A
/b
Y. 0,) &

Q‘ & ».'
I ”1"11

S;

Note que, podemos aproximar a regido S; = T(R;) pelo paralelogramo determinado pelos
vetores d e b.

a=r(w + Au,v;) — 7 (u;, v;)

b= 7(u;, v; + Av) — 7(u;, v;)
Uma aproximagdo mais conveniente de S; pode ser obtida aproximando-se esses vetores
secantes por vetores tangentes, como segue:

7(u; + Au,v;) — 7 (u;, vp) .
Au =

C_l)= Au = u.Au
- Tlu, v + Av) — 7(uy, v; -
b= (v A1)7 G l).AvErv.Av

Logo, podemos aproximar S; pelo paralelogramo determinado pelos vetores 7,.Au e 7,.Av,
cuja area é dada por
AA = |1, Au X 7, Av| = |1, X 7| Audv,

onde
i ] k
dx Jdy
xr =37 37 0]|= 0x 0y _0x0y\+
u® = 0u du dudv odvou
dx 0dy 0
Jv OJv

Observe que podemos reescrever a expressdo acima como

Ox Ox
X T = g; g;z
ou ov

O determinante acima é chamado JACOBIANO da transformacgdo T.
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Def.4.2(b)

Se T for a transformagdo do plano uv no plano xy, definida pelas equagbes x = x(u,v) e
y = y(u, v), entdo o Jacobiano de T é denotado por J(T)(u, v) ou % e é definido por
dx O0x '
_0xy) _|ou ov
- d(u,v) |9y Oy
ou v

J(T)(u, v)

Com essa notagdo podemos obter uma aproximacgao da area AA de S;, como

AA = |J(T)(u,v)|Audv
Onde o Jacobiano é calculado em (u;, v;).
Observagao

Prova-se que o erro no calculo de AA tende a zero quando Au - 0 e Av — 0.
Assim, considerando f = f(x,y) uma fungdo continua em D,,, = T(D,), temos:

D O yAS) = D f(xug, v,y (s, v0) (T (s v IARD.
i=1 i=1

Lembrando da definicdo de integrais dupla, por somas de Riemann, isso nos leva a pensar que

J

Teorema 4.2.(a)

Seja Dy, € R? limitado e com &rea, e & € R? um conjunto aberto que contém D,,,,. Seja
T:Q - R2,T(u,v) = (x(u,v),y(u,v)) uma transformacdo com derivadas parciais de
primeira ordem continuas em (), injetora no interior de D,,;, e com |[J(T)(u, v)| # 0 para todo
(u,v) no interior de D,,. Nessas condi¢Bes, se f = f(x,y) € continua em Dy, = T(Dyy),

temos:

£, y)dxdy = f £ (e v,y () (T (, v) | dudy

Dyy Dyy

fooydxdy = [ [ G,y )@ v)ldudy

Dyy Dy

Exemplo

y—x
x+y=4y—-x=1ley—x=3. Rta.%ln(3)(41°—310)

9
4.2.(d) Calcule ffD dedy, sendo Dy, o dominio limitado pelas retas x +y =3,
xy
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Exemplo

4.2.(e) Calcule ffD Sen%(x+y)cos%(x—y)dxdy, sendo D, a regido triangular de
xy
vértices A(0,0), B(2,0)e C(1,1). Rta. (1 - “2”2)
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Exemplo
4.2.(f) Calcule ffD Jx? +y?dxdy, sendo D,, a regido triangular de vértices
xy

A(0,0), B(1,0)e C(1,1). Rta. M
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4.3  Area de Superficie

Seja S a superficie com a equagdo z = f(x,y), onde f tem derivadas parciais continuas.

Para simplificar a dedugdo da férmula da area, vamos supor que f(x,y) = 0 e que o dominio
D de f seja um retangulo.

Vamos dividir D em retangulos pequenos R;; com area
AA = AxAy. Se (x;,y;) é o canto de R; mais proximo da
origem, seja P;(x;,v;, f(x;,y;)) o ponto de S
diretamente acima dele (figura 1). O plano tangente a S
em P; é uma aproximacao de S perto de P;. Assim, a
area AT; da parte desse plano tangente (um
paralelogramo) que estd diretamente acima de R; é
uma aproximagdo da area AS; da parte de S que esta
diretamente acima de R;;. Entdo a soma ) AT; é uma
aproximacdo da drea total de S, a qual parece melhorar
a medida que aumentamos o numero de retangulos.

A

v

Figura 1 . ) ..
Portanto definimos a drea de superficie de S como
n
A(S) = lim AT;
e
A
Tomemos os vetores d e b como os vetores que
comegam em P; e correspondem aos lados do
paralelogramo com drea AT; (Figura 2). Entdo
AT; = |& X l_;| Lembre-se que f,(x;, ;) e f,(x;, ;) sdo
» as inclinagBes das retas tangentes a P; com dire¢des de
d e b. Portanto
G = AxT + £, (x;, y;) Dxk
Figura 2 b = Ayj + f,, (x;, y;) Ayk
i j k
axb=|Ax 0 filx,y)Dx| = —f(x;, y)AxAyT — f, (x5, y)AxAy] + AxAyk =
0 Ay fy(x;,y)Ay
= [~ fo (e, ¥)T— £, (xi, ¥)T + k| AA
Logo,

AT; = |Ei X B| = \/lfx(xi!yi)]z + [fy(xi'yt')]z +144

Da defini¢do, temos:

A = Jim > 7= Jim " ([5G 01 + [ 0] + 14
i=1 i=1

n—oo

E, por definicdo de integral dupla podemos obter a seguinte férmula:
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1) = [[ U5yl + [ ool + 144
D

e Podemos estabelecer férmulas andlogas, no caso de a superficie ter proje¢des
convenientes nos planos yz ou xz:

x=h(y,z) - A(S) = ff \/[hy(yl., zi)]2 + [hz(yl., zl-)]2 +1dA

y=9(,z)— AS) = ﬂ \/[gx(xi,zi)]z +[g,(x2)]" + 144
D

Exemplos
4.3.(a) Determine a drea de superficie da parte da superficie z = x? + 2y que estd acima da

regido triangular T no plano xy com vértices (0,0), (1,0) e (1,1). Rta % (27 — 5V5)

4.3.(b) Determine a area da parte do paraboloide z = x2 + y? que est4 abaixo do plano z = 9.
Rta. g (37\37 - 1)

66



Teorema 4.3.(a)

Seja f positiva em [a; b] e f’ continua em [a; b]. Se A(S) for a medida da area da superficie de
revolugdo obtida girando-se a curvay = f(x), com a<x<b, em torno do eixo x, entdo:

b
A®S) =27zj f (x)/F(x)2+1dx

Dem.:
AY AY
Cy = I(X) E
: N X
a b ;
Exemplo

4.3.(c) Calcule a area do paraboloide de revolucdo, gerada pela rotacdo da parte superior da
parabola y?= 4px, com 0< x <h, em torno do eixo x.
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4.4 Integral Tripla

> Problema motivador

Qual é a massa de um solido D, cuja densidade de massa em cada ponto (x,y, z) é dada pela
funcdo p(x,y, z), considerando-se p continua e positiva?

Analisemos a construgao da integral tripla.

Seja u=f(x,y,z) definida no conjunto Q  R3; f :Q — R, Q é cubicavel (tem volume).

Particionamos Q, de tal modo que cada subconjunto Q, < Q, seja cubicével e Vi=1n, n3o
existam pontos interiores em comum.
Tomamos qualquer ponto M;(X,Y;,Z) € Qe calculamos o valor da fungdo nesse ponto

M; : (X, Vi, Z;). Fazemos isso para todos os subconjuntos de Q.
Agora, multiplicamos o valor da fungdo calculada no ponto M, (X, ¥;, ), pelo volume de Q, e
somamos esse resultado para todos os subconjuntos da particdo feita.

n
. ——
= V(Q)
Introduzimos o comprimento de particgio  d, = d(Q,) = max dist|M —M ,| vM;,M; €Q,
o=maxd;, oJi(comprimento da particéo 7)

E calculamos (L!Todl( f)= !;',To; f(x,V,z)AV,

Def.4.4.(a) (Integral Tripla)

n
Se dlimoi(f)= IimZ:f(xi,yi,zi)AVi e esse limite ndo depende nem do jeito da particdao
01—0 o1—0 i
nem da escolha dos pontos em cada parte dessa regido, entdo esse limite é chamado
INTEGRAL TRIPLA pela regido Q, e denotada por ” j f(x,y,2)dV
Q

» Calculo da Integral Tripla

12) Se temos paralelepipedo retangular:

Q={V(xy,z)eRa<x<hc<y<de<z<f}

”.[f (x,y,2)dV = j’.j.j‘ f(xy, z)dzdydx=j1j‘ij[ f(xy, z)dydzdx=}ij f(x,y,z)dzdxdy

Exemplo
4.4.(a) f(xy,z)=xy+yz. Q consiste nos pontos (xy,z) do espaco tais que:
-1<x<12<y<30<z<1.

5
Rta. 2 um
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29)
Q=1{v(x,y,z) e R2:(x,y) € D, (regidoquadravel) z,(x, y) <2< z,(X, )

(%, Y),Z,(x, y) funcBes continuas na regido D,,

f(X,y,z)continua no Q
2;(X,Y)

[[[focy.av =[] [ f(xy.2)dzdy
Q

ny Zi(X:Y)

3°)
Q ={V(x,y,z) € R3: (x,z) € D,, (regido quadravel) y; (x,z) < y <y, (x, z)}

Y, (X, 2),Y,(x, z) fungbes continuas na regido D,,

f(x,y,z)continua no Q
¥a(x.2)

J.”f(x, y,2)dV = ” I f (x,y,z)dydz
Q

Dy, y1(x.2)

Exemplos

4.4.(b) Ache o volume do segmento obliquo de um paraboloide delimitado pelo paraboloide
2 2 81w

z=x"+y“epeloplanoz =y + 2. Rta. —= uv
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4.4.(c) Calcule o volume do sélido cuja base é o triangulo de vértices (1,1,0), (0,1,0) e (0,0,0)

e é delimitado pelos planosz=0ey + z = 1. Rta. %uv

> Propriedades da Integral Tripla

1. Se as fungdes f(x,y,z) e g(x, v, z) sdo integraveis na regido Q c %%, Q é cubicavel.

Entso T £ J também é integravel e

”j(f(x, y,2) £ g(x, ,2))dV =mf(x, y, 2)dV i”jg(x, y,z)dV
Q Q Q

2. Se o sélido Q for dividido em duas partes sem pontos interiores em comum: Q=Q,UQ, e

a fungdo f(x,y, z) é uma fungdo integravel entdo:

([Tt o0y 20v = [[[ 00 y.2av + [[]F(x.y. 290V
Q Q &

3. Se afungdo f(x,y, z) é integravel no Q R*, entdo:
j”c.f(x, y,2)dV =cmf (x,y,2)dV VceR
Q Q2

4. Se as fungbes f(x,y,z) e g(x,y,z) sdo
f(XY yl Z) < g(X1 y, Z) V(Xa ya Z) € Q , entao:

” f(x,y,2)dV s”jg(x, y,2)dVv
Q Q

5. ”IdV =V (Q) onde Q é qualquer soélido cubicawel
Q

4.5 Mudanca de variaveis na Integral Tripla

integrdveis no Q e

O método é semelhante ao utilizado em integrais duplas, exceto pelo fato de que agora
trabalharemos com transformacdes de regides tridimensionais, em vez de bidimensionais.

Uma mudanca de variaveis num subconjunto do R3 é dada por uma transformacio

T:Dypw € R3 > R3

T(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w))
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Onde Dy, € um subconjunto limitado e com d4rea, T possui derivadas parciais de primeira
ordem continuas e é injetora.

Def.4.5.(a)
Se T for a transformacdo do espaco de varidveis uvw no espag¢o xyz, definida pelas equacdes
x=xwv,w), y=yu,v,w) e z(uv,w) entdo o JACOBIANO de T é denotado por

]UOOLUJN)ou%%%f%eédeﬁmdopor
dx Ox Ox
a( ) ?)_u g_v ((?)_W
XY,z y oy oy
](T)(u:v:w)—a(u,v’w)— 3u v %
0z 0z 0z
du v ow

Teorema 4.5.(a)

Seja Dy, © R3 limitado e com volume, e & € R3 um conjunto aberto que contém D,,,,,. Seja
T:Q - R3,T(u,v,w) = (x(u,v,w),y(u, v,w), z(u, v, w)) uma transformagdo com derivadas
parciais de primeira ordem continuas em (, injetora no interior de D,,, € com
J(T)(w,v,w)| # 0 para todo (u,v,w) no interior de D,,,. Nessas condigBes, se
f =f(x,y,2) é continuaem Dy, = T(Dy,y) € temos:

[[[ reyaa=

Dyyz

= f f fx(u,v,w),y(u,v,w), z(u, v, w))|J(T) (u, v, w) |dudvdw

D‘LHJW

Exemplo

4.5.(a) Calcule [ [ [, (z — ¥)?xydV, onde D,,, é a regido delimitada pelos planos x = 1,
xyz
x=3,z=y,Zz=1y+ 1eos hiperboloides y = % ey= %‘ Rta. 2In3
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> Integrais Triplas em coordenadas Cilindricas e Esféricas

As substituicGes em coordenadas cilindricas e esféricas sdo casos especiais do método de

mudancas de varidveis em integrais triplas como transformacdes de regides tridimensionais.

Coordenadas Cilindricas

A representacdo em coordenadas cilindricas de um ponto P é a terna ordenada (I’, 0, Z), onde

r e 0 s3o as coordenadas polares da projec3do de P no plano polar e z é a distancia orientada

deste plano até P.

A lei da transformacgdo T de coordenadas cilindricas (r, 6, z) para coordenadas cartesianas
(x,y,z) é dada por:

T(r,0,z) = (x(r,B,z),y(r, 0,z),z(r,0, Z)) = (rcos0O,rsenb, z)
E o Jacobiano J(T)(r, 6, z) é definido por

Ox Ox O0Ox

g; gz g; cos@ —rsenf 0
J(T)(r,0,z) = 3 39 34" senf rcos® O|=r

T z

0z 0z 0z 0 0 1

or 00 0z

Assim, uma integral tripla retangular pode ser escrita em coordenadas cilindricas como:

I

flx,y,z)dV = f f f(rcosO,rsenb, z)rdzdrd6

nyz Dygz

Exemplo

4.5.(b) Calcule a massa do sélido de densidade p(x,y,z) =3 —z, limitado pelo cone

z=,/x?>+y?eoplanoz = 3. Rta.%um
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Exemplo
4.5.(c) Determine o volume do sélido D delimitado pelos paraboloides z = x2? +y? e
z =36 —3x% — 3y?. Rta. 162w uv

Coordenadas esféricas

Jl..z

ZA

P(p,0,¢)

V<

o 3

Num sistema de coordenadas esféricas hda um plano polar e um eixo perpendicular ao plano
polar, com a origem do eixo z na origem do eixo polar. Um ponto P em coordenadas esféricas é

, @ € o angulo que OP forma com o eixo

dado pela terna ordenada (p, 6, @), onde p = ‘CT:’

0Z positivo (0 < ¢ < 1) e 6 é o angulo das coordenadas cilindricas.

Note que, considerando o tridngulo OPP’, retangulo em P’, temos r = psengp. Como

x =rcosf ey = rsend, podemos escrever x = pseng@cosf e y = psengsenf. Assim, a lei da

transformagdo T de coordenadas esféricas (p, 6, @) para coordenadas cartesianas é dada por:
T(p, 0, p) = (psenpcosh, psenpsend, pcose)

E, o Jacobiano J(T)(p, 8, @) é definido por:
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Jx 0x Ox
dp 00 OJ¢
y dy dy sengcosO
J(M)(p,9,0) === == =—|=|senpsend
dp 06 O¢ cos@
dz 0z 0z
dp 00 OJ¢

—psenpsen pcospcosH
psenpcosf  pcospsenf| =
0 —pseny

—pZseng

Logo, uma integral tripla retangular pode ser escrita em coordenadas esféricas como:

feyw = |

I

Exemplos

nyz Droz

f (psengcos, psengsend, pcosp)p?senpdpdpdf

4.5.(d) Ache a equagdo cartesiana da superficie pseng = 4 e identifique-a.

4.5.(e) Escreva a equagdo do paraboloide x2 + y? = z, em coordenadas esféricas.

4.5.(f) Calcule o volume do sélido D limitado acima pela esfera x? + y? + z2 = 16 e abaixo

pelo cone 3z = /3x2 + 3y2. Rta.MTnuv

4.5.(g) Calcule o volume do sélido delimitado abaixo pela esfera x2 +y2+(z—1)2=1e

. Y
acima pelo cone z = \/x? + y2. Rta. FUv
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5 Campos vetoriais (funcdes vetoriais de varias variaveis)

5.1 Conceito de campo vetorial

Def.5.1.(a) (campo vetorial)
Um campo vetorial definido em uma regidao T do espaco, é uma fungdo F com valores vetoriais
que associa a cada ponto (x,y,2) de T, um vetor
F(x,y,2)=P(X, ¥,2)i+Q(X,y,2) j+ R(X, y, 2)k .
Pode-se descrever mais sucintamente o campo vetorial F em termos de suas componentes P,
Q e R, escrevendo-se F =< P,Q,R >. P,(Q e R sdo fungdes escalares (com valores reais).

e Um campo vetorial no plano, é uma fungdo F, com valores vetoriais, que associa a

cada ponto (x,y) de R?, um vetor.

e Cada vetor é representado por uma seta de tamanho |F (x, y)|, tendo (x,y) como seu
ponto inicial.

Exemplo

5.1.(a) Campo vetorial F(X,y) = Xi + y]

* Para cada ponto (x,y) no plano coordenado, F(x,y) é

simplesmente seu vetor posicdo. Aponta diretamente a

partir da origem e tem comprimento |F(x,y)| =

=,/X?+ Y2 =T, igual a distancia da origem a

xi+y]

v

x,y).

* Um campo de velocidade é um campo vetorial em que
cada ponto esta associado um vetor velocidade e um campo de forgas é aquele que atribui a
cada ponto, um vetor forga.

Def. 5.1.(b) (campos vetoriais estacionarios)
Chamamos campos vetoriais estacionarios os campos em que os vetores sdo independentes
do tempo.

Exemplo
5.1.(b) Mostre numa figura as representag¢des, tendo como ponto inicial em (x, y), dos vetores

do campo vetorial F(X,y)=-Yyi+X] (campo de vetores velocidade associado a um

rodamoinho de 4gua em torno da origem, com velocidade angular constante, no sentido anti-
horario).
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5.2 Limite e continuidade de campos vetoriais

As fungdes vetoriais de varias varidveis sdo uma generalizacdo das fungdes vetoriais de uma
variavel e suas propriedades e defini¢Ges sdo analogas.

I_f(x, y,2)=P(X,Y, z)i +Q(X,Y, z)i +R(X,Y, z)f:

limite: (x,y,z)ﬂ(%,yo,zo)':(x’ y,z)=a=3a (i=123)

Seja continuidade: Se3 lim E(x, Y,2) =E(x0, Yo:Zo) €Ntdo f é continua

(%,¥,2)=>(X0,Y0,20)

derivadas parciais:

OF oP: 0Q- OR- OF oP: Q- OR- OF oP: 8Q- oR-
= +—= ki —=—i+—j+—k; —=—i+—]J+—Kk
oy oy oy oy @ a o oz

x o T ax T

5.3 Derivada direcional de um campo vetorial

A Consideremos um campo vetorial

F(x,y,2)=P(x,y, z)i +Q(Xx, Y, z)] + R(X, Y, z)E .
Escolhemos um ponto P no espaco e uma direcdo em P

dada por um vetor unitéario D . Seja C uma semi-reta cuja

origem é P e possui a direcio de D e seja Q um ponto
sobre C cuja distanciade P a Q é S. A derivada direcional
de um campo em um ponto P é dada por:

v

[P oP P, Ib] fop 7
- &(P) E(P) E(P) 8_S(P)
OF oyl QRpy Rpy R py[|P2]|_| R
5 P)=| - P ay(P) 5 P = gg (P)

Ripy Ripy Replib| [Rep

w® @™ 07 s P

matriz jacobiana

» Interpretacdo fisica da derivada direcional de um campo vetorial

Consideremos um fluido movendo-se em uma regido D, em regime estacionario, isto é, a
velocidade em qualquer ponto P(x,y, z) é independente do tempo. Entdo, a cada ponto P de
D estd associado um vetor ¥ = (x,y,z) que é a velocidade do fluido em P. A derivada

direcional de F em P, numa diregao B, expressa a variacao da velocidade do fluido, em P, na
direcdo de b.

Exemplo

5.3.(a) Determine a derivada direcional em P(2,1) do campo vetorial radial F(x,y)=xi+ Y],
na dire¢do de um vetord =7 —J.
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5.4 Rotacional

Def.5.4.(a) Seja F(x,y,z) = P(X,Y,2)i + Q(X,Y,2)j + R(X, y,2)k, onde P, Q e R tem derivadas
parciais em alguma regido. O rotacional de F é dado por:

Existe uma relacdo entre o rotacional e a velocidade
angular num escoamento. A ocorréncia de um movimento
de rotacao de um fluido é descrita por um vetor rotacional

rotF =VxF =

m&,)|o)z—

i
9
OX

P
> Interpretacio fisica do rotacional

O rotacional de um campo vetorial aparece em diversas situacdes na fisica, como por exemplo:
Na andlise de campos de velocidade na mecanica dos fluidos;

Na andlise de campos de forcas eletromagnéticas;

Pode ser interpretado como uma medida de movimento angular de um fluido, e a

7 7 7
0.0 0.0 0.0

condicdo rotF = 6, para um campo de velocidade ¥, caracteriza os chamados fluxos
irrotacionais;

« A equacdo rotE = 6, onde E é a forga elétrica, caracteriza que somente forgas
eletrostaticas estdo presentes no campo elétrico.

+* Quando aplicado a dindmica de fluidos, o rotacional de um campo mede, localmente,
0 quanto que o campo de velocidade de um fluido esta girando.

> Propriedades

Sejam FeG campos vetoriais e h uma forca escalar, todas definidas em um dominio D (ﬁ' eG
com derivadas parciais de 12 ordem continuas em D e h diferencidvel em D). Entdo:

i rot(ﬁ + 5) = rotF + rotG
ii. rot(h. ﬁ) = h.rotF + Vh X rotF

Exemplos
5.4.(a) Se F(x,Y,2) =xy2z*i + (2x2y + z) j + y3z2k, determine rotF.

5.4.(b) Um escoamento é representado pelo campo velocidade \7:10xi—10y]+30E.
Verifique se o campo é irrotacional.
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5.5 Divergéncia

Def.5.5.(a)
Seja F(x,y,2) =P(x,Y,2)i +Q(X,v,2)j + R(X,y,z)k, com P, Q e R tendo derivadas parciais
em alguma regido. A divergéncia de F é dada por:

divF=V.F=E+@+@
OX

uantidade de fluido
Fluxo =2 !

ay oz tempo

» Interpretacio fisica

O divergente de um vetor mede a variacao do fluxo desse vetor.

Se F é um campo de velocidade de um fluido ou gds, entdo divF informa sobre o fluxo de
massa: se em um ponto k, divF < 0, significa que ha maior quantidade de massa fluindo para
o ponto do que saindo dele, isto &, existe um pogo em k; agora de divF > 0, significa que flui

maior quantidade de massa de k do que para k, isto é, ha uma fonte em k; e sedivF =0, o
que é possivel para fluidos incompressiveis®, entdo ndo ha poco nem fonte em k.

Da mesma forma, se F representa o fluxo de calor e se divF em k é maior que zero, entdo ha
uma fonte de calor em k, isto é, o calor esta deixando k e, assim, a temperatura em k estd

N
decrescendo. Do contrério, se divF < 0, o calor estd sendo absorvido em k, ou seja, a
temperatura estd aumentando.

Exemplo

5.5.(a) Um fluido escoa com velocidade uniforme ¥ = xj. Mostre que todas as particulas se
movem em linha reta e que o campo de velocidade representa um escoamento
incompressivel.

> Propriedades

Sejam FeG funcdes vetoriais definidas em um dominio D e h uma funcdo escalar
diferenciavel em D. Se existe divF e divﬁ, entdo:

)div(F £ G) =difF = divG

i)div(h.F) = hdivF + Vh.F

! Ver item 13.5 “Leituras Complementares: fluidos incompressiveis.”
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» CONCLUSOES

1) k=1, f:R" >R'=R
y="Ff(X) = (X, X5,y X,)

f transforma em um Udnico numero real, cada n-upla ordenada
(Xy) Xy X, ) € X

2) n>1,k>1, f :R" > R"
y:(yl’y21""yk)
y=T(X)=(F (X X0 0y X )y T (X0s Xy ey X )yees Fr (Xg, X000 X))
f transforma em k-uplas ordenadas (V;,Y,:--Y,) € R, cada n-upla ordenada
(Xy) Xy 00 X, )€ X
3) n=1,k>1, f:R >R

Yy =01 Yz Yi)
y= () =(f.(x), £,00..... f, (x))

f transforma cada ndmero real em k-ulpas ordenadas (yl, yz,...,yk) e R,
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5.6 Integral curvilinea de primeira espécie

Temos uma curva I': 7(t) = x(t)T + y(t)f+z(t)E onde t é um parametro real, te|[a;b],
7(t): R - R3, é fungdo vetorial.

Seja T uma curva suave por partes e seja a fungdo f(x,y,z) definida na curval. Agora
comegamos a construir a integral.

v z(T)= {5, },_, (particio gerada sobre a curva) r[a;b] = {t, i, (partigdo no [a;b])

Chamaremos de [ o comprimento da curva e de Al a variagdo desse comprimento. Sendo
assim, Alj, indicara a variagdo, do comprimento da curva, no k-ésimo subintervalo da particdo.
Agora calculamos o comprimento de todas as partes da curva apds a partigao.

Escolhemos o maior deles:

s=max{Al, }, vk =1n

Pegamos qualquer ponto sobre a curva, no k-ésimo subintervalo, Mk(ik,yk,ik), e

X =Xt ) Y = Yt )iz = 2(ty)

calculamos o valor da fungdo f(x,y,z) nesse ponto. Depois multiplicamos esse valor pelo
comprimento do respectivo arco.
Finalmente, somamos os resultados VM, k = 1,n

n [— — [
or=) f(Xx,y,,zk).Al
k=1

Def.5.6.(a)
Seja §; o maior comprimento de intervalo da particdo,

n — p— f—
Se Elblimoz f (X, Y,,Zk).Al, e esse limite ndo depende nem do jeito da partigéo da curva
T —> K=1

gama nem da escolha dos pontos em cada parte da curva, entdo esse limite é chamado de
INTEGRAL CURVILINEA DE 12 ESPECIE da func¢do ao longo da curva gama e denotamos do
seguinte modo:

n — — [
;:Tokzzl“f(xk,yk,zk).mk =jf(x, y,z)dl ~ massa realmde T

r

e Qualquer interpretacdo fisica da integral curvilinea jf(x, y,z)dl, depende da
r
interpretagdo fisica da funcdo f. Se f = p(x,y, z) representa a densidade linear num

ponto (x,y,z) de um arame fino com o formato de T, entdo If(x,y,z)dl
r
representara a massa m do arame.
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> Calculo da Integral Curvilinea de 12 espécie

r@) =x@)i+yt)j+ztk,  telab]
h(t)=f(x(t)v(t),2(t)
Al =l = (O + (Y 0+ (2 (1)

comprimeno do arco

b
[ o0y 2y = [ £, y0,20)/ (¢ O+ (v O+ @ )zt

No plano z(t)=0:
b
[ 00y = [ £0xt), y@) /e )+ (y Ot

Exemplos

5.6.(a) Calcular a integral curvilinea nydl onde I éo guarto de circunferéncia do primeiro
r

Vs
quadrante parametrizado por x=cost, y=sent 0<t < 7 Rta. 1/2

5.6.(b) Calcule J.Zxdl onde I é formada pelo arco C; da parabola y = x2 de (0,0)a (1,1),
r

seguido pelo segmento de reta vertical C, de (1,1)a (1,2). Rta%(S\/g— 1)+2

5.6.(c) Calcule Iysenzdl onde I é a hélice circular dada pelas equagbes x = cost,y = sent,
r
z=t 0<t<2m. Rta. V27
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5.7 Integral Curvilinea de 22 espécie

Seja I" umacurva simples suave ou suave por partes no R3(0u R?).

T:r(t) = x(b)i+ y(t) j + z(t)k, fungdes x(t),y(t) e z(t) tém derivadas continuas Vte[a,b].
X' (t)2+y’(t)2+2’(t)2 # 0

Seja a fungdo P(x, y, z) definida na curva I;

Seja Al Vk zﬁ o comprimento do intervalo da parti¢ao da curva;

Seja &, = MaxAl, o maior comprimento de intervalo da partigéo;

VM« e Al My = (ik,yk,ik) calculamos o valor da fung¢do no ponto M« , P(Xk, YyrZk) 5
Seja o =ZH:P()_(k,;/k,Ek).Axk .

Def.5.7.(a; 1

Se Flim o, e esse limite ndo depende nem do jeito da partigdo da curva I, nem da escolha

or—0
dos pontos de cada parte da curva I , ent3o esse limite é chamado INTEGRAL CURVILINEA DE
22 ESPECIE da func3o P ao longo da curva I .

lim = lim 3P (e, ¥y 26) 8%, = [P(x,y, 1)
fima, =1im > Q(xe, ¥, 24).A, = JQexy.2)dy

limo, = lim > Rx. y,. 20)Az, =[RGxy. 2z

No caso geral temos:
F =P(x,Y,2)i +Q(X,V¥,2) ] + R(X, Yy, 2)k F: R >R

J.P(x, Yy, 2)dx+Q(x,y,2)dy + R(x,y,z)dz = .[ P(x,y,2)dx+ JQ(x, y,2)dy + j R(x,y,2)dz

r r r r

Se as fungdes P, Q e R sdo continuas na curva I' suave ou suave por partes, entdo a integral
curvilinea de segunda espécie, existe.

j P(x,y,2)dx+Q(x,y,2)dy + R(x,y,2)dz =

= [[POx(t), y(t), 20X ©) +QUx(t), ¥(t), 2(0)-y' () + ROX(®), y(0), 2(2)) 2' 1) et

=[(P,Q,RXX'(t), y'(t),z'(t) dlt
Podemos ainda, escrever a integral na forma vetorial:

[Fer@yr@dt=[Far

[P, y(®), 2(1), Qx(1), (1), (1)), R(x(1), (1), (1))-(x' (1), y' () 2' (t) t

> Significado fisico

Podemos definir o trabalho realizado por um campo de forgas sobre uma particula em

. 3 . .
movimento ao longo de uma curva em SR~ como uma integral de linha.
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Exemplo

5.7.(a) Uma particula se move ao longo de uma parabola y = x?, do ponto (—1,1) ao ponto
(2,4). Ache o trabalho total realizado, se o movimento for causado pelo campo de forgas
F(x,y) = (x* + y*)i + (3x*y)j. Suponha que os arcos sejam medidos em metros e a forca
em Newtons.

363
Rta. T]

Def.5.7.(b)
Seja I uma curva suave por partes tal que estas partes sejam I'},I5,,..., I, . Entdo a integral de

linha F =P(x,y,2)i + Q(X,Y,2) ] + R(X, ¥, 2)K sobre I', é definida como:

_r[Fdr =Zn:[_|.f(r(t))dr}.

i=1 T

Exemplo

5.7.(b) Calcule a integral de linha I4xydx+(2x2—3xy)dy, seacurva I consiste no segmento
r

de reta de (—3,—2) a (1,0) e no arco do primeiro quadrante da circunferéncia x> + y* =1 e

se for percorrida no sentido anti-horario. Rta. 25)
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5.8 Integrais de linha independentes do caminho

Se A e B forem dois pontos de uma regido aberta D no espaco, o trabalho '[F.dr realizado
r

para mover uma particula de A para B por um campo F definido em D, geralmente depende

do caminho percorrido. Para alguns campos especiais, entretanto, o valor da integral é o

mesmo para todos os caminhos de A a B. Se isso for verdade para todos os pontos A e B em

D, dizemos que IF.dr é independente do caminho em D, e que F é conservativo em D.
r

Def.5.8.(a) (Campos conservativos e fungao potencial)

O campo vetorial F, definido na regido D é CONSERVATIVO, se existe uma funcdo escalar f
definida em D, tal que F =Vf em todos os pontos de D. Nesse caso, f é chamada FUNCAO
POTENCIAL do campo vetorial F.

* em algumas aplicacGes fisicas, a funcdo escalar f é chamada de funcdo potencial do campo
vetorial Fse F =-Vf

Teorema 5.8.(a)

Seja I" uma curva suave (ou suave por partes) contida na regido D com extremidades nos

pontos A(X;,¥;,Z;) e B(X,,Y,,Z,).Se F for um campo vetorial conservativo em D e se ¢

for uma fungdo potencial para F, entdo a integral curvilinea jF.dr serd independente do
r

caminho I e J.F-df=¢ (X2,Y2.2,) -0 (%, Y1, 24) -
r

* Para a aplicacdo deste teorema, é necessario saber se o vetor dado representa o gradiente
de uma fung¢do, para encontrarmos a fun¢do potencial ¢1, e para isso, temos os seguintes

teoremas:

Teorema 5.8.(b)

Sejam P e Q fungdes de duas varidveis x e y, definidas em D cR?, tais que P, e Qy sejam
continuas em D. Entdo o vetor P(x,y)i+Q(x,y)j serd um gradiente em D, se e somente se
P,(x,y)=Qu«(x,y) para todos os pontos de D.

Teorema 5.8.(c)

Sejam P, Q e R fung¢les de trés varidveis x, y e z definidas em DZCSR3, tais que
P, P, Qx, Q5 Ry, Ry, sejam continuas em D,. Entdo o} vetor
P(x,y,2)T+ Q(x,y,2)] + R(x,y,z)E sera um gradiente em D, se, e somente se

Py(x, V,Z) = Qy(x,v,2); P,(x,y,2) =Ry(x,y,2) eQ,(x,y,2) = Ry(x, y,Z) para todos os
pontos de D, .
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Exemplo
5.8.(a) Determine uma fun¢do potencial do campo conservativo F(x,y) = (6xy — y?)i +
(4y + 3x* — 3xy®)j, sendo a trajetéria retilinea do ponto A(0,0) ao ponto B(xy,yi),

parametrizada por x=x(t), y=y(t) para 0 <t <1

5.8.(b) Seja F(x,y) = (y* + 2x + 4)i + (2xy + 4y — 5)j, mostre que a integral jF.dr é
r

independente do caminho e calcule seu valor de (0,0) a (1,1). Rta.3

5.8.(c) Seja F(x,y,2) = (4x + 2y — 2)T+ (2x — 2y + 2)] + (—x + ¥ + 22)k, mostre que a

integral IF.dr é independente do caminho e calcule seu valor de (4,-2,1) a (-1,2,0).  Rta.-13
r
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Teorema 5.8.(e)
Seja I' uma curva fechada suave (ou suave por partes), contida em um disco aberto B — R2.

Se F for um campo vetorial conservativo em B, entado IF.dr =0
r

12 caso) Se tivermos dois caminhos de A para B, um deles pode ser invertido para formar uma
curva fechada.

Iy g I B

I —I;

Dem.:

22 caso) Se A e B estiverem sobre uma curva fechada, podemos inverter parte da curva para
fazer dois caminhos de A a B.

I
B r,
B
A r
1
A B

Dem.:

Exemplo
5.8.(d) Uma particula movimenta-se sobre a circunferéncia r(t) = 2costi + 2sentj, 0<t<2z

Calcule o trabalho total realizado pelo campo de forgas F(X,y) = (4 In3y + ljl + (ﬁj]
X y
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5.9 Teorema de Green e Teoremas correlacionados

Teorema 5.9.(a) (Teorema de Green no plano)

Sejam P e Q fungdes de duas varidveis x e y, de tal modo que tenham derivadas parciais de

primeira ordem, continuas em um disco aberto B R2.se I' for uma curva suave (ou suave
por partes), contida inteiramente em B, e se D for a regido limitada por I', entdo:

;fP(x, y)dx+Q(x, y)dy = J;).[(aa_g —%JdA

Por convencao, no Teorema de Green, tomamos o sentido anti-horario
da curva.

O Teorema de Green estabelece uma relagdo entre uma integral

curvilinea ao longo de uma curva fechada, plana, simples (I') e uma
integral dupla usual sobre a regio plana D, delimitada por I".

Exemplos

5.9.(a) Apligue o Teorema de Green para calcular a integral curvilinea
§(2y ++/9+ x3)dx + (5x +e*)dy, sendo I a circunferéncia x*+y*=4. Rta. 121

5.9.(b) Calcule a integral curvilinea §3xydx+2x2dy onde I' é a fronteira da regido D,

delimitada acima pela rela y = x e abaixo pela pardbola y = x* — 2x. Rta. 27/4
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* No exemplo anterior, viu-se que a integral dupla é mais facil de calcular do que a integral
curvilinea. As vezes, entretanto, a situacdo se inverte. A consequéncia seguinte, do Teorema

de Green, ilustra a técnica de calcular uma integral dupla I f (X, y)dA transformando-a em
D

uma integral curvilinea §de+Qdy :
r

> Corolario do teorema de Green

A drea A da regido D, delimitada pela curva fechada simples, parcialmente suave, I', é dada

1
por: A=—§— ydx + xdy
2
r
Para verificar que a integral de linha acima calcula a area da regido D, basta aplicar o teorema
de Green para o campo F(x,y) = (—=y; x):

Teremos: P, = —1 Q, =1

jﬁFdr:ﬂ(1+1)dA:2ﬂdA - %der:ﬂdA:A(D)

. 1 ~ .o , o .
A integral Egﬁr —ydx + xdy ndo é a Unica que calcula a area da regido D, delimitada por T,
mas é a mais simples.

Exemplo

5.9.(c) Use o teorema e o coroldrio de Green, para calcular a integral de linha

2 2
x* —3y)dx + (2y3 + 4x)d ,ondeFéaeIipseX—+y—=1. Rta. 42m, 67
§ Ot =3y)dx+ (2y2+ 4x)dy Tt
r
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> A divergéncia e o fluxo de um campo vetorial

Considere o fluxo estacionario de uma camada delgada de fluido no plano (como uma camada
de dgua espalhando-se pelo assoalho). Seja V (x,y) seu campo de velocidade vetorial, o(X,Y)
a densidade do fluido no ponto (x,y). A expressdo FLUXO ESTACIONARIO significa que Ve O
dependem apenas de x e y e ndo do tempo t. Deseja-se calcular a taxa a qual o fluido sai da

regido D, delimitada por uma curva fechada simples I'. A integral curvilinea ¢=§F.nds é
r

chamada FLUXO DO CAMPO VETORIAL F ATRAVES DA CURVA I', ou seja, o fluxo ¢ de F

através de I', é dado por @ = fﬁr F -7 ds, onde 7 é o vetor normal unitario, exteriora I.

No caso presente, do fluxo de um fluido com velocidade vetorial ¥, o fluxo ¢ deF=p .V, éa

taxa a qual o fluido estd saindo de D através da curva de fronteira I , em unidades de massa
por unidades de tempo. Mas a mesma terminologia é usada no caso de um campo vetorial
arbitrario F = PT + Qj. Assim é que se pode falar do fluxo de um campo elétrico ou
gravitacional através de uma curva I'.

A forma vetorial da integral fF.nds é HVF.dA
r D

¢=iF.nds=J.DIVF.dAz.LJ'(Z—zJF%jdA onde VdeifF=%+%

| S —
formavetorialdo
teoremade Green

Vejamos:

Se I' é dada pela equacdo vetorial 7(t) = x(t)T+ y(t)] para a <t <b entdo o versor

x' (O)+y' ()] y' ®)i-x' ()]

tangente de 7 é T(t) = e o versor normal de 7 é dado por n(t) =

17! (0l 0]
(verifique que o produto escalar entre os vetores tangente e normal é nulo).
Entdo,
P(x(t) y(t))y (1) Q(x(t),y(t))X'(t)]
Fnds—ngntF’t dt = ,(H = r'(t)|dt
QE F O 7O e e | O

b

ap 9
jép(x(t) y®)y' ®©)dt — Q(x(®), y(®)x' (H)dt = f Pdy = Qdx = ﬂ Q) dA
r

a

Teorema de Green

S
Como o integrando na integral dupla é a divergéncia de F, temos uma segunda forma vetorial
do Teorema de Green:

(Z)=§F-nds=ﬂdivF(x,y)dA
D

r
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Exemplo

5.9.(d) Calcule o fluxo exterior do campo ﬁ(x, y) = xI + y?J através do quadrado delimitado
pelasretasx = +1 ey = 1. Rta. 4

> Laplaciano

Def.5.9.(a): Laplaciano

Seja F um campo vetorial definido numa regido do espago, tal que

F(x,y,2) = P(x,y,2)i + Q(x,y,2)] + R(x,y, 2)k. Se as derivadas parciais de segunda ordem
de P, Q e R sdo continuas, chamamos LAPLACIANO a expressdo:

0°F 0*F 0°F
+ +

div(grad F) =V.VF = V?F =
X2 oy o2

V2=V -V E chamado operador de Laplace ou laplaciano, por sua relacio com a equagdo de
Laplace.

Def.5.9.(b) (equagdo de Laplace)
Se V2F =0, ent3o esta expressdo é chamada de EQUAGAO DE LAPLACE.

* uma fungdo escalar que satisfaz a equagdo de Laplace é chamada FUNGCAO HARMONICA,
esta funcdo esta intimamente ligada ao estudo da transferéncia de calor, radiacdo
eletromagnética e outros ramos da fisica.

Exemplo de interpretacao fisica do Laplaciano em transferéncia de calor

Equacédo de difusdo do calor:

10T I ~ o
= V2T  (Exemplo em que n3o hd geracdo de energia interna)
[we)

Difusidade térmica
(relembrar o significado geométrico da segunda derivada para funcGes de uma variavel real)

Se calcularmos o laplaciano num determinado ponto do sistema e seu resultado for positivo,
V2T > 0, temos concavidade voltada para cima, entdo no ponto
em que estamos calculando, a temperatura é menor do que a
temperatura média na vizinhanga do ponto. E se a temperatura
no ponto é menor do que a temperatura média da vizinhanga,
ocorre transferéncia de energia na forma de fluxo de calor, da
vizinhanga para o ponto. A vizinhang¢a transmite energia para o
ponto e a temperatura no ponto tende a aumentar.
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Se calcularmos o laplaciano num determinado ponto do sistema e seu resultado for negativo
V2T < 0, temos concavidade voltada para baixo, entdo no ponto em que estamos calculando,
a temperatura é maior do que a temperatura média da
vizinhang¢a do ponto. E se a temperatura no ponto é maior
do que a temperatura média da vizinhanga, ocorre
transferéncia de energia na forma de fluxo de calor, do
ponto para a vizinhanga. O ponto transmite energia para a
vizinhanga e a temperatura no ponto tende a diminuir.

Se o laplaciano no ponto for nulo, ndo ha transferéncia de
energia.

Exemplo
5.9.(d) Verifique se as fungdes f (X, y,z)=x2y+e’ -z e f,(X,y,2)=2xy+yz sdo
harmonicas.

91



6 Sequéncias e Séries

6.1 Sequéncia numérica

Sequéncia numérica é uma sucessao de numeros dispostos numa ordem definida. Exemplo
1, 2, 3, 4, ..., n, ..
l l l l l l l

a;, a az Q4 .. Gy

1 é levado em a4, 2 é levado em a,, e assim por diante. Os nimeros a4, ay, ..., ay,, ... S30 0S
termos da sequéncia. O numero a, é o enésimo termo da sequéncia e a sequéncia toda é
denotada por {a,}.

As sequéncias podem ser finitas ou infinitas.

Exemplos
6.1a) 1,3,5,7,9 — Sequéncia dos numeros impares naturais menores que 10.

6.1b) 1,4,9, 16, 25, ... » Sequéncia dos quadrados den € N*.

O termo geral pode especificar uma sequéncia através de uma regra ou formula.
a,=n —1,2,3,4,..
a, =2n - 2,4,6,8, ...

e =111 11
"o '2'13'4'". 1 11
a,=-D""— > —-1,-,—>,5, ..

n=(1 2n—1 '3’ 5’7’

Em uma sequéncia podem aparecer termos repetidos.
a,=0-0,0,0,..

a, = (D™ 51,-1,1,—1, ...

Definicdo: Uma sequéncia é uma fung¢do cujo dominio é o conjunto dos numeros inteiros
positivos. Deste modo, f(1) é o primeiro termo, f(2) é o segundo termos, etc, e em geral f(n) é
chamado enésimo termo da sequéncia f.

Exemplos

n
6.1c) {3n+1} o 10”13
6.1d) {n®>+1}=2,510,..,n*>+1,...
6.1e) {3"—n}=2,7,24,..,3"—n,..

3 4 n
R R

)

| P

> Limite de uma sequéncia

Seja L um ndmero real. O limite da sequéncia {a,} é L, denotado por lim,,_,.. a, = L, se para
cada € > 0, existe M > 0 tal que |a,, — L| < & sempre que n > M. Se o limite L da sequéncia
existir, dizemos que a sequéncia converge para L. Se o limite da sequéncia ndo existir, entdo a
sequéncia diverge.

Exemplos

_ 1 1 1 1
6.1f) {a,}={101"} = 1’?0’%’%' o TomL
li 1 = 1li =10- 1i =0 t
Jim s = Jim g = 107 Jim 57 =0 ~ convergente

6.1g) {a,}={(—-D"}=1,-1,1,-1,..,(-D",..> divergente
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n 12 3 4 n
M fad=fi)=i22 s
6.1h) {an} 4’7’10’13" """’ 3n+1’

3n+1
n
I lim = =1 t
= = = -  convergente
It le3n+ 1 3 9
n

> Propriedades dos limites de uma sequéncia.

Sejam dadas as sequéncias {a,} e {b,,} que convergem, respectivamente, para os nimeros A e
B. Entdo:

a) lim, ,,.c=c

b) lim,,;ec-a, =c-lim,,a, =c.A

c) lim,,, .. (a, tb,)=lim,,,.a,+lim,,,..b,=A1B

d) lim,, .. (a, by) =lim,,,.a, lim, ,.b,=A"B

&) limype (52) = Toit=tt =2 (B )

bp/) T limgyyeby
. Cc are
f) lim, 4. (F) = 0, sempre que k for uma constante positiva.

g) Selal <1 - limy,,. a®=0; se |a]| >1 - {a,}édivergente

Exemplos
3n?+7n+11
oa) [Emn
) 8n2-5n+3

61) {2o]

6.1K) {”3+5”}

7n2+1

6.11) {@}

6.1m) {n-sen (=)}
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» Sequéncias monédtonas e limitadas

Mesmo que vocé nao possa encontrar o limite de uma sequéncia particular, ainda assim pode
ser util saber se essa sequéncia converge. Para isso, inicialmente, vamos definir sequéncia
mondtona.

Definicao de sequéncia mondtona: Uma sequéncia é mondtona se seus termos sdo nao
decrescentes a; < a; < az <+ < a, < - ou se seus termos sdo ndo crescentes a; = a, =
az = =a, = -

Exemplos
2n+1
6'1n) {3n—2}

6.10) {n—”}

n2+eé6n+4

6.1p) {sen (”2—”)}

Definicao de sequéncia limitada: Dizemos que uma sequéncia é limitada superiormente se
existe um numero M para o qual a, < M,¥n (M é chamado cota superior ou limitante
superior da sequéncia). Uma sequéncia é limitada inferiormente se existe um nimero N para o
qual a, = N,¥n (N é chamado cota inferior ou limitante inferior da sequéncia). Se uma
sequéncia for limitada superior e inferiormente, dizemos que ela é limitada.

Exemplos

6.1q) {i}

n+1

o (2
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Observagao: Se uma sequéncia é convergente, entdo ela é limitada. Se uma sequéncia é
limitada, ndo necessariamente ela é convergente.

Exemplo

6.1s) {(—1D™2}

Teorema 1
Toda sequéncia crescente limitada superiormente é convergente; analogamente, toda
sequéncia decrescente limitada inferiormente é convergente.

Teorema 2
O limite de uma sequéncia monotonamente crescente convergente é uma cota superior;
analogamente, o limite de uma sequéncia monotonamente decrescente convergente é uma

cota inferior.

Exemplo
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6.2 Séries

> Séries infinitas

Defini¢do: Uma soma indicada de todos os termos de uma sequéncia infinita {a,,} ¢ chamada
série infinita ou simplesmente série.
E representada por Y32 a = a; + a; +ag + -+ a, + -

A soma S,, dos n termos de uma série Y5 a, € chamada de n-ésima soma parcial, isto é:
n

Sn=a1+a2+a3+---+an=2ak
k=1
A sequéncia {S,,} é chamada sequéncia das somas parciais da série. Observemos que, para
cada inteiro positivo n, temos:
Sne1 =Sn t Ay
Exemplo

6.2a) {znl_l}

Definigdo: Se a sequéncia {S,,} das somas parciais da série infinita Y= a;, converge para um
limite S =1lim,_ .Sy, dizemos que Y72 a, converge e sua soma é S. (escrevemos
§=Y+= ay); caso contrério, dizemos que ela diverge.

Exemplo

oo 1
6.2b) il x

> Série Geométrica

Uma série geométrica é uma série na forma
+ oo

Zark‘l =at+ar+ari+ardi+-+artl4+..

k=1
Onde cada termo apds o primeiro é obtido pela multiplicagdo de seu antecessor imediato por

uma constante r, chamada razao da série.

Observe que uma séria geométrica fica completamente especificada através de seu primeiro
termo a e suarazaor.

Exemplos

6.2c) a,=1,r =%

6.2d) a, =§, r=2
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k—

A n-ésima soma parcial S,, de uma série geométrica 7= ar®~1 é dada por

1-rn
Sn=aﬁ, (r+1)

Pela propriedade (g) dos limites de uma sequéncia, temos:

Selr| <1 — S,converge e lim,,,..S, =lim,,,.a (1_r ) ==
Selr| >1 - S, diverge.

Exemplos

Determine se as séries abaixo convergem ou divergem. Se convergirem, calcule sua soma.

oo 2
6.2¢) Xi=1r

4,8 16,

2
6.2f) “1+o-cot -5

6.28) YiT, (%)k

» Propriedades das séries infinitas

Teorema (propriedades lineares das séries): Se Yi= a;, e Y52 by sdo séries convergentes,
entdo YiZ (ax £ by) = XS ar £ 252 b é convergente e, sendo ¢ uma constante
qualquer, X1 ¢ - ai = ¢ * Y42 a; também é convergente.

Exemplo:

. , L. w [ 5 1
6.2h) Determinar se é convergente a série Z*k;l( + —) e, se for, calcular o valor da

2k-1 3k-1
soma.

Teorema (condicdo necessdria de convergéncia): Se uma série infinita Y5 a; converge,
entdo lim,_ ;.. a, = 0.Se Alim,,_,, .. a, ouselim,,_,..a, # 0, entdo a série é divergente.
Exemplos: Mostre que as séries abaixo divergem.

. 0o k+1
6.2I) Z;le

6.2) XiZ(—1)*
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Observagao: Atencdo a lateralidade do teorema anterior: se a série é convergente, entdo
lim,_ .. a, = 0 mas, se lim,,_,,.. a, = 0, a série podera ou ndo ser convergente.

+oo
Zak converge = lim a, =0
n—o+4oo
k=1
+oo
lim a, =0 » a, converge
n—-+eo
k=1

Exemplo

too 1 K
6.2k) Y2 In e,

Teorema: divergéncia de uma série de somas.

Se a série YfZ ap converge e a série YiZ b, diverge, entdo
+ oo _ + oo + oo .

k=1 (ax £ by) = X2y ap £ X2y by diverge.

Exemplo:
oo k 1
62') -Ik_=1 (lnm - 3_k)

Observagao: A soma de duas séries divergentes pode originar uma série convergente.

Exemplo:
6.2m) Y2 ke Xy —k
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> Séries de termos ndo negativos

Analisaremos, agora, por varios testes distintos, a convergéncia ou divergéncia das séries de
termos nao negativos.

Teste da integral
Suponhamos que a fungdo f é continua, decrescente e ndo negativa em [1; +oo[.

i. Se f1+°°f(x)dx converge, entdo a série infinita Y4 f(x) converge.

ii. Se f1+°°f(x)dx diverge, entdo a série infinita Y57 f (x) diverge.

Observacdo: No teste da integral, ndo ha necessidade de iniciar a série infinita em k=1,
podendo aparecer, por exemplo:

6.2n) 3% (o)

6.20) Yi% (;)

k(ink) /4

» Série p:
1 , L. w (1Y ,
k—p), onde p é uma constante. Se p = 1, a série Z,’gzl (E) é chamada

harmonica e é sempre divergente.

E uma série do tipo Y72, (

Convergéncia e divergéncia da série p
(. oo (1 .
A série )7 %) (k—p) convergesep > 1 edivergesep < 1.

Exemplo
62p) 3t (=)

6.20) i (57)

99



Teste da comparagio

Sejam dadas Y52 ai e X2 by duas séries cujos termos s3o ndo negativos e a < by, Vk.
Entdo:

i. SeXjrZ by converge, entdo Y12 a; converge.
ii. SeYiZ ay diverge, entdo Y12 by diverge.

Exemplos:

6.2r) Yi%, (miﬁ)

625) i (=)

621) %1% (o-)
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Teste da comparac¢ao na forma do limite

Seja Y#2) a;, uma série de termos n3o negativos e suponha que Y32 by é uma série de

e . a ~ o
termos positivos tal que hmn_,+o<,b—” = ¢ > 0, entdo, ou ambas as séries convergem ou ambas
n

divergem.
Exemplos:

6.2u) YiZ (‘{/%)

6.2v) ;:1( 7k+3 )

(5k+1).3k

Teste adaptado da comparagao no limite

Seja Y42 a; uma série de termos n3o negativos e suponha que Y32 by, é uma série de
termos positivos.

. a
i. Selim, .—=

o 0e Yi2) by converge, entdo Y5 a; converge.

.o . a oo . ~ oo .
ii. Se hmn_>+c,ob—" = 4ooe Y12 by diverge, entdo Y5 a; diverge.
n

Exemplos:
o [Ink
62w) %t ()

2 315 (i)
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> Séries cujos termos mudam de sinal

Consideremos agora testes para o estudo da convergéncia de séries cujos termos trocam de
sinal, também chamadas de séries alternadas.
Exemplo:

6.2y) TiZ (DKL=

Série harmonica alternada.

k-1

622) Yin(-1.(-3) =

- i n 1
Série geométrica de razdo -7
> Séries alternadas cujos termos decrescem em valor absoluto

Seja {a,,} uma sequéncia de termos positivos. Entdo a soma parcial S,, da série alternada
a, —a, + az — a, + -+ (—1)"*1a, + - satisfaz as condigdes:
i 085, <85, 85,85
ii. $2525=252=282=>--
iii. ~Sen éum inteiro positivo par, entdo S;,;1 — S, = Apyq-
iv.  Sen éum inteiro positivo par, entdo 0 < S, < S;41 < S1-

Exemplo

6:22) 31— (2) =

Teorema 2 (teste de Leibniz para séries alternadas):

Se {a, } € uma sequéncia decrescente de termos positivos com lim,,_, , .. a,, = 0, entdo a série
alternada a; —a, + ag — a, + -+ (—1)"*1a,, + --- é convergente. Além disso, se S é sua
soma e se S,, é sua n-ésima soma parcial entdo:

0< (_1)11(5 - Sn) < Gnt1
Observe que S-S, ¢é o erro envolvido quando se estima a soma

P2 (=D**1 a, pela n-ésima soma parcial S, = Yi=(—1)%1.a;. Se n é par, entdo
0<(—D*(S—-S,) <S—S5, eS, esta se aproximando de S por baixo. Se n é impar, entdo
0<(—D*S—-S,) =—(5—S5,) e S, estd se aproximando de S por cima. Em qualquer caso

|S — S| < a,41, isto é, o valor absoluto do erro de aproximagdo ndo excede o valor absoluto
do primeiro termo abandonado.
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Exemplos
. o k+3) .
6.2bb) Mostre que a série Z;ﬂ(—l)k“k((k—ﬂ)) é convergente, encontre a soma parcial S, e
encontre um limite para o valor absoluto de erro envolvido na aproximagao da soma por

S,.

oo _l)k
6.2CC) Z;:l( k!
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Defini¢do: (convergéncia absoluta e condicional).

i. Se a série Y{Zlax| converge, dizemos que a série YiZ a;, é absolutamente
convergente.

ii. Seasérie Y52 a; é convergente, mas a série Y5> |a,| é divergente, dizemos que a
série Y £ a; é condicionalmente convergente.

Exemplos:

oo (_1)k
6.2dd) ¥iZ S

k+1

6.2ee) Yo (-1 —

+ oo (_1)k
6.2f) TiT,

Teorema 3 (convergéncia absoluta implica convergéncia)

Se uma série Y #Z, a; é absolutamente convergente, entdo ela é convergente.

Exemplo:
+oo SNk

6.2g8) Xili,3,,
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Teorema 4 (teste da razdo)
Se Y#Z) aj é uma série de termos n3o nulos, ent3o:

o . a o ,
i. Selim, .|| <1 - asérie é absolutamente convergente.
n
. . a . a RPN AT
ii. Selim, . |[—2>1 ou hmn_,+o<,( Z“) = +oco — asérie é divergente
n n
ees . a ~ .
iii. Selim,_,.|—2*| =1 - n3opodemos afirmar nada.
n
Exemplos:
6.2hh) Y} 2
2hh) XS 7k(k+1)
" o (—1)kH15K
6.2ii) ;=1L

k!

. oo (_1)k(4k)'
6.2jj) LOW
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Teorema 5 (teste da raiz)
Seja dada a série Y12 ay.
i. Selim,_ . +/lay] <1 — absolutamente convergente.

i. Selim, i y/|a,| > 1 ouselim, .. /|a,| =+ — divergente.
ii. Selim,_ 4. /|la,] =1 — n3o podemos afirmar nada.

Exemplos

+oo (_1)k
6.2kk) XxZ) YOS

> Séries de poténcia (defini¢do)

Uma série definida na forma
+4>o
Z ceix—a)f =co+ci(x—a) +c;(x —a)? + c3(x —a)® + -
. k=0
E chamada série de poténcia em x ou simplesmente, série de poténcia. As constantes
Co, €1, Co, C3, ... SA0 chamadas de coeficientes da série de poténcia e a constante a é chamada
de centro. Uma série de poténcia com centro em a = 0 toma a forma
+¢>o
Z ce(x —a)* = co+ ¢ (x) + (%)% + c3(x)3 + -
k=0
Caracterizando um polindbmio em x.
Na série de poténcias Y# 25 ¢ (x — a)¥, x pode ser visto como uma quantidade que pode ser
variada a vontade, podendo a série convergir para alguns valores e para outros nao.
Naturalmente, quando x = a, vemos que a série converge e sua soma é c.
Exemplo

oo k
6.2l) XiSH(—1)f - xk =
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> Séries de Taylor e de Maclaurin

Seja a fungdo f infinitamente diferencidvel em um intervalo aberto J e seja @ um ndmero em J.

Entdo, a série de Taylor para f em a é a série de poténcias Y725 ¢, (x — a)¥ onde ¢, = fk(fl),
Vk € N. A série de Taylor para a = 0 é chamada série de Maclaurin.

Exemplos

6.2mm) Encontre a série de Taylor para f(x) = senxema = %.

6.2nn) Encontre a série de Maclaurin para f(x) = e*.

6.200) Encontre a série de Taylor para f(x) = cosxema = %.

> Algumas séries de poténcias importantes
X — Jtee x
a) e* == o VX

2k+1
b) senx = R{Z(~1 )k(§k+1),,

c) cosx =YFZ(— 1)k(2k),,

d) In(x+1)=Y}=,(-1 )k(k+1) x| <1
e) tan"l(x) = ¥i(— 1)k(2k+1) x| <1
fl —=Xioxk, lxl <1

g) — =NiS(-Dkxk, |x| <1
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6.3 Resumo dos Testes de Convergéncias

Teste da Integral ( f continua, decrescente e positiva)

e Se f1+oof(x)dx converge — 1% f(k) converge
o Se f1+°°f(x)dx diverge — i f(k) diverge

Teste da Comparagao
Sejam Y1 a; e YiZ by séries positivas e ay < by, Vk:

e Se Y} by converge - Y} a; converge.
e Se YrZ aj diverge — Y12 by diverge.

Teste da Comparagao na forma do limite

Sejam Y1 a; e YiZ by séries positivas:
. a ~ ;s . .
Selim,_ . b—" = ¢ > 0, entdo ou ambas séries convergem ou ambas divergem.
n

Teste adaptado da Comparagao na forma do limite

. a
o Selimy .= =0e XiZ) by converge > XiZ) ay converge.
n

. a . .
o Selim,_,q b—" = 4we YIZ by diverge » Y% a; diverge.
n

Teste da razao

Se Z;fl a; € uma série de termos ndo nulos, entdo:

. a y
o Selim,_ 4 Z“ <1 - Y% ay éabsolutamente convergente.
n
. a . a T
e Selim, o |[=>1 ou llmn_>+oo( 2;1) =400 - Y% ag édivergente.
an+1

o Selim,, .4 = 1, entdo nada podemos afirmar.

Teste da raiz
Dada a série Y52y a:

e Selim,_ ;o v/lay| <1, entdo asérie Y12 a, é absolutamente convergente.

e Selim,_ o v/|an| > 1, 0ulim,_ o |a,| = +, entdo a série Y5> a; divergente.

e Selim,_ o +/|a,| = 1, entdo nada podemos afirmar.

Teste de Leibniz para séries alternadas

Se {a, } é uma sequéncia decrescente de termos positivos com lim,,_,,, a, = 0, entdo a

série alternada Y72 (—1)**1a, converge.

108



7 Exercicios

7.1 Listal

1. Represente graficamente as seguintes bolas:
a) B(Py;r) Po=(1,2,-1)er=1/3
Po=(1,%,2)er=1

b) B (Po:r)Pe=(-1,-1,-1)er=1
Po=(%,2)er=%

2. ldentifique se as inequagbes abaixo representam bolas abertas, fechadas ou nado
representam bolas; caso representem, determine Py e r:
a) x*+y’—2y+1<3
b) X’ +y*+2°<2x+2y+2z
c) xX*+y’<z
d x¥*+y*-1>0
e) X’ +4x+y’<5
f) xX+y+z<2
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7.2 Lista?2

1.

Esboce o hoddgrafo das seguintes funcdes vetoriais:

N
a) r(t) = (4,4cost,9sent)
b) r()=(t,3,sent)

c) f(t)=(4,tt*+2)
d) f(t) = (t, tant, 3) _7" <t< %

e) f(t)=(t, [t|, 3).

A posicdo de uma particula é dada por r(t) = (t — 1, 2t — 4t + 1). Esboce a trajetéria,
bem como os vetores velocidade e aceleracao, em t = 1. Verifique se estes vetores sao
perpendiculares entre si.

O movimento de um besouro que desliza sobre a superficie de uma lagoa é expresso

1-cost t—sent

pelas fungdes x(t) = e y(t) = 2t + , onde m é a massa do besouro.

Determine: a equagdo vetorial que expressa o movimento do besouro e sua posi¢do

emt=3%

A equagdo I (t) = (2t, 8 - 2t%) descreve a trajetéria de uma particula no plano xoy.
a) esboce a trajetdria da particula e os vetores velocidade e aceleragdoem t =1;
b) verifique se os vetores do item a) sdo perpendiculares entre si

-

_)
Sejam f(t) = [St,et,%) e g(t):(tz, t+2,0), calcule:

- -
a) lim(2f(t).9(1)
t—>1

- -
b) lim (f(t)x g(t))
t—2

Sejam as funcBes f (t) = (€%, In(t+1), 3t) e g (t) = (sen2t, 2t + 1, (t + 1)9), calcule
lim [(f'x f) 9]

t—0

2 . . sen2t .

i+ =% e gt) = 2cost i + 2t j + k. Calcule

Sejam as fungbes f(t) = e o

Jim, 3t (®) +£1>172[( f(t)>g(t)

sent > t-97
— i+— j,t#0,t=-3
t t+3
- -
Verifique se a fungdo r(t) = -3 j,t=0 é continuaemt=0.
H
7k,t=-3
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10.

11.

12.

13.

14.

15.

16.

( ! 1Ji+e_2tj;t¢0
Verifique se a fungdo f(t) =

i+t é continua parat=0.
-1. .
—i-Jt=0
> J
—~ (t2+pt+2)i+2];t¢3
Calcule p de modo que a fungdo f(t)=<", . seja continua
i+Ine’jt=3

j;t=0

_ [M-\/&J
2t + f

Verifique se a fungdo f(t) = é continua parat=0.

- j, =0
3
I 21, -
A posi¢cdo de uma particula é dada por r(t) = —(t-1) i +— (" -2t +1) j.Determine:
2 4

a) os vetores velocidade e aceleracdoemt=5s;
b) esboce a trajetdria da particula e os vetores do item a) ;

c) verifique se os vetores do item a) sdo perpendiculares entre si

Escreva a equacao vetorial da curva 12x° = - (y+ 1)2 +24;z=12 e descreva a curva

Escreva a equacado cartesiana e a equacao vetorial da elipse que tem centro no ponto

(-2,3) e cujos valores dos semi-eixos focais sdo a = \/g eb=2.

Sejam f(t)=ti+2t2j+3t3k, g(t)=2ti+ j—3t%k, t=0
lim(f (t) +g(t)) =
a) t—1

b) lim(f (t) - g(t))=

J lim(3f (t) - 1/ 2)g(t)) =
d) lim(f (0).9()) =
(f®>g®)=
((t+2).7 (1))
(

g) lim(f ()= g(t))=

e)

lim
t—1
f) lim
t—1

Calcule o limite e analise a continuidade das funcbes vetoriais abaixo, nos pontos

indicados:
\/t+2—\/§ .
— ], t20

SR “*[ t
J2j, t=0



17.

18.

19.

20.

21.

22.

2 . 4 .
—i+—— -5k, t#lt=2
b f()=1t-1 t-2)

(0,00), t=1t=2

Indique o intervalo de continuidade das fungdes vetoriais abaixo:

a) g(t):%i+(t2—l)j+e‘k

b) w(t) =(sent,tant,e')
21

r(t)_(e ¥ 1,In(2+t))

c)

Determine a derivada das func¢des vetoriais:
a) f(t) =(cos%,tant,sen?t)

b) g(t) = (sentcost,e™)
o fM)=e'ite?j+k
g() = Inti +4j + tk

d)
5t—-2
e) h(t)=|——,In(1-t?,5
(t) [m_l ( )j
Determine os vetores velocidade e aceleragdo para qualquer instante t, bem como o

maodulo destes vetores instante dado.

a) ri)=e'i+e™j t=In2

b) r(t)=ti+@t—2k t=2

c) r(t)=2costi+5sentj+3k t=x/4

Determine um vetor tangente as funcées dadas, no ponto indicado:
a) f(t)=(t,t°t);P(-1,1,-1)

b) g(t)=(t,e");P(1,e)

c) h(t)=(sent, cost,t); P(1,0,"/,)

1
d) plt)=[1-t, = |;P(L-
) ) (1 t,l_tj P(-L,-1)

e) r(t)=(2t,Int, 2);P(2,0,2)

No instante t, a posicdo de uma particula no espaco é dada por x(t) = t?, y(t) =2/t e

z(t) = 4+/t7 .

a) Escreva a equacdo vetorial que descreve a trajetdria da particula;

b) Determine um vetor tangente a trajetdria no ponto P(1, 2, 4);

c) Determine a posicdo, velocidade e aceleracdo da particula quando t = 4:

As equacgOes abaixo descrevem a trajetdria de uma particula no espago. Determine os
vetores velocidade e aceleragdo no tempo dado e esboce a trajetdria da particula, bem
como estes vetores:

a) r(t)=(t,4,4-1t);t=0

1
b = —_— ,' =
) r(t) (1+t ,tj t=1

c) r(t)=(0,t5t%;t=0
d) r{t)=(1-t, 1+1);t=1
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23.

24,

25.

26.

27.

28.

Se r(t) é o vetor posicio de uma particula em movimento, mostre que o vetor
velocidade é perpendicular a ele e que o vetor aceleracdo é perpendicular ao vetor
velocidade:

a) r(t) = (cost, sent)

b) r(t) = (cos3t, sen3t)

1
Se g(t) = t_l e f(t) =ti+1t”j, determine (g(t)f(t))":

Esboce o grafico da curva quando P(x, y) se move pela varia¢do de t no intervalo dado.
Determine a equacao cartesiana da curva em cada item:

X =2cost

) {y=25ent;OS =2m
X =4cost

b) Jy=4sent ;0<t<2m
z2=2
X=2-+4cost

2 {y=3—25ent JO=t=am
Xx=t+1

d) {y=t*+4;teR
z2=2

Obtenha a equacdo cartesiana das curvas abaixo:

a) r(t)=(*/,t, 3t+5)
b) r(t)=(t—1,t* =2t +2)
c) r(s)=(s°—1,s*+1,2)

Determine a representacdo paramétrica da reta que passa por A e tem direcdo do
vetor b:

a) A(1,%,2);b=(2,-1,0)
b) A(0,2);b=(5,-1)
c) A(-1,2,0);b=(5,-2,5)

d) A(~2,2,4/3); b= (5,0,-3)
Encontre a equagao vetorial das curvas abaixo:

a) xX’+y’=4;z=4

b) y=2x*;z=%>

c) 2(x+1)P2+y*=10;z=2

d) y=x"*;z=2

e) x=¢';z=¢"

f) y=x;z=x"+Vy°

g) segmento deretade A(2,1,2)aB(-1,1,3)

h) circunferénciade C(2,2)e r=2, nosentido horario
i) segmento de reta de C(0, 0, 1) a D(1, 0, 0)
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29.

30.

31.

32.

Verifique quais das curvas abaixo sdo suaves:
a) rit)=ti+t’j;tel1,1]

b) r(t)=ti+t’j;t e[ 1]

c) r(t) =2(t-sent) i+ 2(1—cost)j; t € [w, 3n]
d) r(t) = (3cos’t, 3sen’t) ; t e [/e /4]
e) r(t) =(2cost, 3sent) ; t € [0,2m]

Determine o comprimento do arco das curvas abaixo:
a) r(t) = (e'cost, e'sent, e'); 0<t<1

b) r(t)= (2t} 2t, V6 1);0<t<3

c) r(t) =(2cost, 4t, 2sent) ; de P(2, 0, 0) a P4(0, 27, 2)
d) r(t)=y=x¥32=0;deP(0,0,0)aPy8,4,0)

Escreva a funcao comprimento de arco de:

a) r(t) = (sen'/,, cos'/,, 2t)

b) r(t) = (cos2t, sen2t, 4)

o r(t)=(tt’)

d) r(t) =(cos2t, sen2t) ; t € [0, ]

e) hipocicldide r(t) = (acos’t, asen®t) ; t € [0,%/,]

Encontre o vetor tangente unitdrio as curvas abaixo, nos pontos indicados:

a) r(t) = (tcos2t, tsen2t) ;t € [0, + oo ; t ="/,
b) r(t) =(2cost, 3sent) ;t € [0, 2n] ; t="/,4

) r(t)=(t,t°+1);te[0,4];P(2,5)

d) r(t) = (2cost, 2sent, 2 — 2sent) ; P(0, 2, 0)
V2 2 j

=('/ ' s Pl — i —
e) r(t) =(7/,cost, */,sent) [4 2

f) r(t) = (e'cost, e'sent, 2) ; P(1, 0, 2)
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7.3 Lista3

1. Determinar o dominio da cada funcdo de duas variaveis e esbocar seu grafico.
a) f(x,y)=x+y+1
b) f(x,y)=2x-3y+6
g fey)=ya—e—y?
d) f(xy)=x2+y?
e) f(X,y)=3+9—-x2—y2
f f(x,y)=10
g f(y)=x

y TN = ey

2. Calcule cada expressao, usando as funcgdes f, g e h definidas por:

2Xy + 2
fooy) =517, gloy) =y, hley.2) =
a) gk k)

b) f(v/a,b)

c) h(sent,cost,0)

3. Especifique o dominio da funcdo e calcule f(x,y) para os valores dados:

a) f(xy)=x+y—-4, x=—4 y=16
b) fmw=xﬁ?ﬁfﬁ,x:y=%

c) Sef(x,...,X,)=X%+..+Xx, calculeesimplifique f(1,2,3,...,n)

4. Desenhe o mapa de contorno do grafico de z=f(x,y) mostrando as linhas de contorno
correspondentes aos valores de z dados:

a) f(xy)=3x+2y-1 z=-1 z=0, z=1 z=2

b) f(x,y)=\/ﬁ2—y2 z=0, z=1, z=2, z=3
X2 y? 1

o f(xy)= 1{?){3) =0, z=1, 2=2

d f(xy)=x+y2 z=-1 z=0, z=2

e) f(x,y)=xy z=0, z=1 z=2, z=3

f) f(xy)= 2x z=0, z=1 =2, z=3
X2+ y2

5. Esboce algumas curvas de nivel tipicas da fungdo f.

a) f(xy)=x-y

b) f(xy)=x-y?

c) f(x,y)=x2+4y?

6. Encontrar o dominio, imagem, curvas de nivel e construir o grafico das superficies
dadas:

a)  f(x,y)=+100—25x2—4y2
b) f(x,y)=4x2+9y?

c) f(xy)=+%x2+4y2-16
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7. Determine o dominio de cada funcdo vetorial:

a) f(x,y)=—xi+2yj+,5-x2-y2k
o) 900 y) =i+ |

) h(x,y.z)=(§,ﬁ1)

z

d) pOQYJ)Z(EnEnE]
Xy z
1

e) q(le):(X_yl\/ij

7.4 Lista4d

1. Calcular os limites duplos e iterados

X'~ (y-1*
xy)-01) X2+ (y —1)2
X2

a)

b) lim
(x¥)(00) X2 4 y2

X* +3x2y2 + 2xy3
(x,¥)—(0,0,) (X2 + y?2)?

d) lim  y3/x3+2y

(x,y)>(-2.4)

c)

2. Encontrar o dominio, imagem, curvas de nivel e superficie.

a) f(x,y)=4x2+25y?
b) f(x,y)=1-Ix|-]y|

c) f(xy)=.4x2+25y2

3. Estudar os limites e a continuidade da funcdo. Se for o caso, remover a

descontinuidade.

sen2x + sen?
) fxy) =Y (00)
e +e€

x’y

b) fxy)=—2Y _
SN =y

(0,0)

Xy
c) unwzxﬁﬁ4(xwimm

0 (x,y)=(0,0)
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75 Listab

1.

Seja w= f(Xx,y)=

y)

X+Y
X=y

, determine f(-3, 4), f(*/,, 1/3), fix+1,y—1)e f(x, y)—f(x, -

Sejagx Y, 2) = A— X2 —y2 — 2%, determine g(1, -1, -1), g(-1, /o, */s) e 80/, "/ */2)

Determine o dominio da funcdo f e esboce a regido de R que a representa:

a) f(x, y) = (X +y*-1)*

b) f(x, y) = y1-X* — y?
c) f(x, y) = /X* + y2 -1

4 4
-y
d) f(x, y) = NERE

e) f(x,y) =In(xy-1)

Determine o dominio de f e descreva a regido que o representa:

a)f(x,y, z) = \/16— x> —4y® —7°
b) f(x, v, 2) = In(4 - X’ —y) + ||

Dadas f(x, y) = x -, g(t) = vt e h(s) = 2, ache (g,)(5, 1), f(h(3), g(9)), flg(x), h(y)) e
(8oh)(f(x, y))

Calcule o limite das fungdes:

a)

g)

3X -2y
i
(xy)>(2-1) X+4Y
R (N
lim 2 2
(x,y)=>(01) x*= +(y-1)
lim 3x2 +xy—2y2
(x,y)—>(2.3)
arctan(y/ x)
(xy)—=>(2,2)
1
i -
(xy)o(4,2) V3= 4y
SECXy + Secyz

lim
(x,y,2)—>(7/317) Y —Secz
(eX +ey +eZ)2

lim
(%y,2)—>(00,0) 2 +¢2Y + %
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7. Dadas as fungdes abaixo, prove que  |jm (X, y) ndo existe:

(x,y)—(0,0)
X% — 2
a) f(x,y)=
x? +y?
4 .4
b) fixy)= —Y
(x*+y*)?
9
Q) fixy)=_—>Y
(x® +y?)?

8. Determine todos os pontos em que a fungao é continua:
2

a) fxn) =

b) h(x,y)=sen("/,)
c) glxy)=In(25-x"-y?)

X+Y
——,(x,y)# (0,0
0 Fy)=1xEey? (x,y) = (0,0)
0, (X, y) = (O’O)
%Mx+yxx+y¢0
e) f(xy)=¢ Xx+y
Lx+y=0
X2 +4y? x? +4y? <5
9. Mostre que a funcdo g(X,y) = ) ) é continua em todos os pontos
3,X°+4y° >5

de (x, y) € R*com excecdo dos que estdo sobre a elipse x> + 4y’ =5
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Lista 6

8. Obtenha, por meio de diferenciais, uma aproximacdo de Af = f(Q)— f(P)

ow . - ~
9. Calcule 6_ aplicando a regra de cadeia e explicitando w como funcgdo e t antes
t

Calcule as derivadas parciais e o diferencial
a) f(x,y)=3xy-6x-y?
X+2y
b) f(xy)=—;
Xe—y
c) u=x%y-3xy*+2yz
d) u=4xyz+in(2xyz)

Considerando a funcdo f(x,y)=3x%+2xy-y?, calcule:
a) incremento no ponto (1,4)

b) Af(1,4) Ax=0,03 Ay=-0,02
) df(1,4)
d) df(1,4) Ax=0,03 Ay=-0,02

Considerando a fungdo f(x,y)=2x2+5xy+4y?, calcule:
a) Af(2,-1)
b) Af(2,-1) se Ax=-0,01e Ay=0,02
7 7
Seja z=In(x2+xy+y?) prove que xa— + ya— =2
OX oy
y

Seja z=xy+Xe*, prove que xg+yg—xy+z
7 ax @

. x)
Seja u=|xy+— caIcuIea—u,a—u,a—uedu
y oX oy oz

Encontre a diferencial dw:
W =3x2+4xy —-2y3
b) w=e(Xv)
o W= y?
w = xye "’
w = sen(xyz)
w=In(1+rs)

S+t
g w=—01

S—t

h w=uzxe

a) f(x,y)=x2+y2 P(3,4), Q(2.97, 4.04)

b) f(x,y)= _ 1t P(3,6), Q(3.02, .6,05)
1+x+y

o f(xyz)=e"

de diferenciar.

P(1,0,-2), Q(1.02, 0.03, -2.02)
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1

a) w= u=cos2t, v=sen2t
uz +vz
b) w = senxyz x=t, y=t?, z=t3
) w=In(u+v+2z) u=cosZt, v=sen?t, z=t2
10. Calcule % e %
0s ot

g W= pgsen(r) p=2s+t g=s-t r=st
) W=VuZ+vi+z2 U =3e'sen(s) v=23e'cos(s) z=4e
) W=YZ—-2ZX+2Xy X=S2-2t2 y=852+2t?> 7=2s5%2

11. Escreva uma equacdo do plano tangente, no ponto P, a superficie de equagao
dada:

a) X2+y2+722=9 P(1,2,2)
b) X2+2y?+222=14 P(2,1,-2)
c) X3+ Yy3+273=5xyz P(2,1,1)
d) Z3+(X+Yy)z2+x2+y?=13 P(2,2,1)

12. Determine o vetor gradiente Vf no ponto P indicado.
a) f(x,y)=3x-7y; P(17;39)
b) f(xy)=3x*-5y% P(2-3)

c) f(x,y)=sen(%7zxyj; P(3,-1)
d f(x,y,2)=x2-3yz+1z% P(210)

e) f(x,y,2)= 2\/x_yz; P(3,-4,-3)
f) f(xv,z)=(2x-3y+52)°; P(-513)

-

13. Determine a derivada direcional de f em P na direcdo do vetor V, isto é:

-

determine Duf (P) onde G=¥
Vv

a) f(x,y)=x2+2xy+3y2, P(21) v=(L))

b) f(x,y)=e'sen(y), PO,z/4) v=(1-1)

o) f(xy.z)=4xyz, P@2-1-2) v=i+2j—2k

d f(x,y,2)=In(1+x2+y2-22); P(@-11) \7=2§—2]+3E

14. Determine a derivada direcional maxima de f em P e a dire¢do em que isso
ocorre.

a) f(xy)=2x2+3xy+4y? P(L))
by f(X,y,2)=3x2+y2+4z2 P(15-2)

o f(xy,z)=4xy2z3 P(2,2,2)
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15. Escreva uma equacgado da reta (ou plano) tangente a curva (ou superficie) dada,
no ponto indicado.

a) 2x2+3y2=35 P(2,3)

b) x*+xy+y2=19 P(2,-3)
3x2+4y2+522=73 P(2,2,3)

d x+y"*+7"°% =1 P(@-1))

e) Xyz+x2-2y2+23=14 P(5-23)

. o2f o2f o2f o2f .
16. Dadas as funcdes, calcule e verifigue que

ox2 ' oy? ' oxdy ' dyox

orf ot
OX3y  Oyox
a) f(X,y) =6x2+7xy +5y?
b) f(X,y)=xcosy-y?
3

o f(xy)=(2+y?)?

g fxy)= ycosx — xe?’
e) f(x,y)=sen(2y+x)
f) f(x,y)=5xcosh2y

17. Determine as derivadas direcionais nos pontos dados, na direcio do vetor
unitario:
a) z=2x2+3y2-1 P(0,0), u=(J2/2,/2/2)
b) z=x2y+2xy2 P(12) u=(1/2,/3/2)
c) z=xcos?y P(2,z/4), a=(5))
d z=7x-3y P@Q), u:(géJ

—

18. Determine o valor maximo da derivada direcional e um vetor U na diregao da
derivada direcional maxima no ponto dado.

a) f(x,y)=x2-Txy+4y?2 P(L-1)
by f(x,y)=x2—y2-seny P(l,7z/2)

19. Encontre os pontos criticos das funcGes abaixo e classifique-os como maximo
local, minimo local ou ponto de sela.

f(x,y)=x2+(y -1
b) f(xy)=x"+y*+4x+4y
o f(Xy)=xy-x-y

d
20. Calcule d—y das fungdes implicitas
X

_sen(x+y) _

a) F(X’ y) COS(X _ y) -

121



b) F(X,y)=1+xy—In(e” +e™)
o) F(x,y)=e"+sen(2x-3y)=0

u
21. Calcule Z— das fungdes implicitas
X

a) F(X,y,u,v)=ue" —xy+v; G(X,y,u,v) =ve’ —xv+u
b) F(X,Y,U,V) =X+ y3+u2+v2, G(X,y,u,v)=x3+y+u* +v*

22. Utilize os multiplicadores de Lagrange para encontrar os pontos criticos

a) T(X,y)=x2+y? G(x,y)=5x2+6xy+5y2-8=0
by f(X,y)=x2—y2-y; G(X,y)=x2+y2-1=0
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7.7 Lista?7

1. Calcule as derivadas parciais das fung¢des abaixo:

of
a) — ,f(xy)=7+5xy +2
OX

b) h,h(x,y)=senxcos 7y
oW 2, 2
) —, w= 2
ax y2 _ X2
d) f(r,8),f(r,0)=r’cos70
e) f.(xv,2),f(xy,2)=6xyz+3x’y + 7z

f) —,w=xy*+yz2+xy

OX

2. Encontre a deriva parcial indicada, utilizando a regra de cadeia:

ow _ .2 2
a) W= u, u=3x“+y
oW
b) —,w=Inu,u=7x+4y’
OoX

c) hi(x,v), h(x,y)=arctan (xy)

d) a_W RE (XZ + y2 + ZZ)-3/2

OX

3. Verifique as igualdades abaixo com relagdo as fun¢des dadas:

ow ow
a) x 6_ +y — = 5w, paraafuncdow = X3y2— 2 xy4+ 3 x2y3
X
ow ow N n x
b) x — +y — +z — =nw, dada a fungdo w = (ax + by + cz)", onde a, b e c sdo
OX oy 0z
constantes.

4. Encontre as derivadas parciais, utilizando a regra de cadeia:

oz 0oz 5 5

a) E,E,Z=3x —4y%, x = u.v, y=u
0z 01

b) E,E,z:4x3—3x2y2,x:ucosvey:vsenu
ow

Z &'%'Wzln(uzJ'Vz):U:X2+Vzev:2x2+3xy
ou ou

d) E,g,U=COSh(3x+7y),x=rze'seyzre35

5. Encontre o coeficiente angular da reta tangente a curva de intersec¢do entre a
superficie e o plano no ponto dado:
a) superficie:z=3x-5y+ 7, planoy =2, no ponto A (1, 2, 0).

b) superficie: z =4/31—2x* —3y? , planoy = 2, no ponto B(3, 2, 1)

c) superficie:z=e ~ sen 3y, plano x =1, no ponto C(1, 0, 0)

6. Verifique se as fungdes abaixo sao diferenciaveis nos pontos indicados:
a) f(x,y)=xe”,em(xvy)
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7.

10. Se w = (Ax* + By?)?, onde A e B sdo constantes, verifique que

3xy
b) f(x,y)=———7,em(1,2)
X*+y

2
Xy X2 +y?
X+

,em (1,1)

c) flxy)=

A . A E?
A poténcia P consumida por uma resisténcia elétrica é dada por P= F watts, onde E

é a forca eletromotriz em volts e R é a resisténcia em ohms. Se, em um dado instante,
E = 100 volts e R = 5 ohms, aproximadamente de quanto ird variar a poténcia se E
decrescer de 2 volts e R decrescer de 0,3 ohms ?

As dimensdes de uma caixa retangular sdo 5, 6 e 8 cm. Se cada dimensdo aumenta em
0,01 cm, qual é aproximadamente o volume resultante?

) . o2f  o%f %t 0%t -
Dadas as fun¢Ges abaixo, calcule 5 5 , e verifique que
X oy OXoy  Oyox
0%t 0%t
oxoy  oyox

a) f(x,vy)=6x+7xy+ 5y’
b) f(x,y)=xcosy—y>
) f(xy)=0+y)"

f (x, y) = ycos x — xe®
e) f(x,y)=sen(x+2y)
f) f(x,y)=>5xcosh 2y

o*w ~ 0w
ox20y  dyox>
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7.8 Lista8

1.

Encontre as coordenadas cartesianas dos pontos dados em coordenadas polares:

27 S5z 137
a) (— 2?j b) (4?j c) (3, Tj d) (1, 0)

Encontre um par de coordenadas polares dos pontos dados em coordenadas
cartesianas:
a) (1,1) b) (-1, 1) c)(-1,-1) d) (1,-1)

Transforme as equacgdes abaixo para coordenadas polares:
a)x’+y’=4

b)x=4

cJy=2

dy+x=0

e)x*+y*—2x=0

f)x’+y*—6y=0

Transforme as equagdes abaixo para coordenadas cartesianas:
a)r=cosH

b) r = 2send

c) r = (cosO + send)™

dr=a(a>0)

Ache as coordenadas cartesianas dos pontos cujas coordenadas cilindricas sdo dadas
abaixo:

a) (4,51) b) (3,54} c)(s,ﬁ,—zj
3 2 6

Ache as coordenadas cilindricas com r > 0 e 0 £ 0 < 27 dos pontos cujas coordenadas
cartesianas sao dadas:

2) (4,0,1) b) (-243-60) o) (-34330)

Ache as coordenadas cartesianas dos pontos cujas coordenadas esféricas sao dadas
abaixo:

a) [2,1,§j b) (7,1,7zj <) (12,5—”,2—”j
6'3 2 6 3

Ache as coordenadas esféricas com p>20e 0<0 <2me 0<¢ < r dos pontos cujas
coordenadas cartesianas sdo dadas:
a) (OI '11 O) b) (OI OI 5) C) (ol OI 0)

Converta as equacbes cartesianas em equacgles cilindricas e esféricas
correspondentes. Classifique a curva ou superficie encontrada:
a)z=20+y?)

b)x=2
c)xX*+y*=52
d) x*+y*=25

e)x’+y*-z"=1
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10.

11.

12.

13.

14.

15.

16.

Converta as equagbes cilindricas em equagles cartesianas e esféricas
correspondentes. Classifique a curva ou superficie encontrada:
a)z=r

r2 ZZ

b) —+—=1
9 4

c) r=4cos0

Converta as equagdes esféricas em equacgdes cartesianas e cilindricas
correspondentes. Classifique a curva ou superficie encontrada:

a)p=2
b) psend =3
c)o="/

Identifique as superficies abaixo e esboce o grafico:
a)2x* +4y* + 7 -16=0

b) x* —4y*+27° =8

C)?—4x’ -4y’ =4

d)x*—4y+2*=0

e)dx’ -y’ =z

fi)x+y? =27

Calcule a drea da regido limitada pela cardioide r = 1 — cosé.

Calcule a area de intersecdo das regides limitadas pelas curvas r = 3cosf e
r =1+ cosé.

Calcule a drea da regido limitada pela curva dada.
a)r =2 —cosb

b) 72 = cosf (r = 0)

c)r = cos26

Calcule a area de intersecdo das regioes limitadas pelas curvas dadas em coordenadas
polares.

a)r=2—cosber =1+ cosb

b)r =senfer =1—cosf

c)r? = cosfer? = send (r = 0)
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79 Lista9

1.

Calcule, utilizando integrais duplas:
2 (2x 3

a) L .[0 Xy ~“dydx
1 py? %/

b) jojo e’ Ydxdy

AR

d) ”R cos(x+ y)dA, onde R ¢ a regido limitada pelas retasy = x e x = 7 € 0 €ix0 X

e) J.J.R (%)ZdA, onde R é a regido limitada pelas retasy = x, y = 2 e a hipérbole

xy=1
f) a drea da regido no plano x0y; limitado pelas curvas x* e y = 4x — x*
g) a area da regido no plano x0y limitado pelas curvas x* + y* = 16 e y* = 6x

Calcule as integrais duplas, utilizando coordenadas polares:

a)”Rw/4—X2—y2dXdy; R:ix?+y2<4, x>0, y>0
b)J.J.R\/X2+y2dXdy;R:1Sx2+y252,0SyS V3x
c)j.[R(X—y)dXdy;R:x2+y2$9,x20,y20

e)J.O'[ " (¢ + y?)* 2dxdy

0

Ache o volume do sélido:

a) Que esta no primeiro octante, limitado pelo paraboldide z = 1 —r* e pelo cilindro r
-1

b) Que é formado pela parte inferior da esfera x> +y* + z> = 25 e pela parte externa do
cilindro x> +y* =9

c) Formado pelo cone z> = x> +y?, pelo cilindro de r = 2, acima do plano xOy.

Ache a drea da superficie:

a) Delimitado ao plano 2x + y+ z=4 pelos planosx=0,x=1,y=0ey=1

b) No plano 36x + 16y +9z = 144, delimitada pelos planos coordenados

c) Da parte do grafico de z — 5x — y* = 2 que estd sobre a regido triangular do plano
x0y que tem vértices (0, 0, 0), (0, 4,0) e (2, 4, 0)

Calcule, utilizando integrais triplas:
2 yzln X

a) _H Iyezdzdxdy

1y o0

% % Xz V
b) J'O L L cos Y/, dydxdz
c) o volume do sélido delimitado pela curva z + x* = 4 e pelos planosy +z =4,y =0 e
z=0
d) o volume do sélido cuja base é o tridangulo de vértices (1, 1, 0), (0, 1,0) e (0, 0, 0) e
é delimitado pelos planosz=0ey+z=1
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6. Calcule as integrais triplas, utilizando coordenadas cilindricas:
a) “L/XZ + y?dxdydz, onde S é o sélido de primeiro octante limitado pelos planos
coordenados, pelo plano z = 4 e pelo cilindro x> + y> = 25
b) ”L (vX* + y?) " dxdydz, onde S é o sélido limitado pelos planos z=4ez=1e
pelo cilindro x* + y* = 16

7. Calcule, em coordenadas esféricas:
a) a massa da parte superior de uma esfera com centro na origem e raio a, se a

densidade em qualquer ponto é proporcional a distdncia do ponto ao centro da

esfera.
b) o volume do sélido delimitado acima pela esfera p = 2 e abaixo pelo cone ¢ =,

O<c<§é
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7.10 Lista 10

10.

11.

12.

13.

14.

Calcule a drea entre a parabola y=x* e a reta y=x+2.

Ache o volume da regido B 9%3, limitada pelos planos coordenados x=0, y=0, z=0 e
x+y+z=1.

Determine o volume do sélido cuja base é a regido do plano xy delimitada pela
parabola y=2-x e pala reta y=x e cuja parte superior estd contida no plano z=x+2.

2 4-x?

Desenhe a regido de integracdo referente a integral '[ dedx
1_Ja-x?

Encontre o volume do sélido limitado pelos graficos x*+y’=9 e y*+2°=9.

Calcule ”JXZ + y2dxdy, onde D é o dominio do plano xy limitado por x’+y’=4 e
D
x2+y2=9.

Determine o volume compreendido entre as superficies z=8-x>y’ e z=x>+3y".

Utilize coordenadas cilindricas para calcular I”4Xde onde R é a regido cilindrica
R

x%fSLOSZsL

- L. . . <
Utilize coordenadas esféricas para calcular J-”ZZdS onde B é a regido x*+y*+z°~ 1.
B

Calcule o volume do sélido V limitado pelo paraboloide z=4-x>-y* e pelo plano xy.
Sugestdo: utilize coordenada polar.

Calcule o volume do sélido limitado pelo cilindro x*+y’=4 e os planos y+z=4 e z=0.

-1<x<2
Calcule a integral tripla ”J.12xyzz3dv, na caixa retangular ¢ 0 <y <3
¢ 0<z<2
Seja G a cunha do primeiro octante secionada do sélido cilindrico y2 +22<1 pelos
planos y=x e x=0. Calcule H zdv .
G

Calcule o volume do tetraedro limitado pelos planos coordenados e pelo plano
2x+3y+62=12
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7.11 Listall

Calcule as integrais abaixo nas regides indicadas, utilizando uma mudan¢a adequada de
variaveis (método do Jacobiano):

xX-y+z
L), ;y_z dV; G é a regido compreendida entre os planos 0 < x -y +z < 1,
1<x+y-z<2e0=<:z<1

2. Jlx Z;ii dA; R é a regido retangular envolvida pelas retas x — 2y = 1, x — 2y = 4,
2x+y=1e2x+y=3.
3. ffR (x— y)exz_ysz; R é a regido retangular envolvida pelas retas x+y =0, x +y =1,

x—y=lex-y=4.

4. ffR ;::idA; R é a regido envolvida pelas retas y = 4x, y = 4x + 2, y = 2 — 4x,
y =5-4x

5. fffG (z—y)%xy dV; G é a regido compreendida pelas superficies x =1, x =3,z =y,
z=y+1, xy=2,xy=4.

6. ffR sen(xy) dA; R é a regido compreendida pelas curvas xy = 7, xy = 2T, xy* =1,
xy4 =2.

7. ffR xydA; R é a regido do primeiro quadrante compreendida pelas hipérboles
X' —y*=1, X*~y* =4 eoscirculos x* +y* = 9, x* +y’ = 16.
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7.12 Lista 12

1. Represente graficamente os campos vetoriais abaixo:
—

a) Flx,y)=—XIi-Y]

b) F(x,v, z)=X?+ yT+ ZE
c) F(x,y)=— yT+ XT

—

d) Flxy)=

e) F(x,y)=2_i)+_j)

2. Seja D um sdlido esférico de raio r. A temperatura em cada um dos pontos é
proporcional a distancia do ponto até a superficie da esfera.
a) Usando coordenadas cartesianas, determine a fun¢do que define o campo de
temperatura;
b) Determine as superficies isotermas do campo de temperatura em D, isto é, onde a
temperatura é constante.

3. Um tanque tem a forma de um paralelepipedo retangulo cuja base tem dimensdes
1ImX2m e cuja altura é 1,5m. O tanque estd cheio de uma substancia com densidade
varidvel. Em cada ponto, a densidade proporcional a distancia do ponto até a
superficie superior do tanque:

a) Determine a funcdo que define o campo de densidade;
b) Determine as superficies onde a densidade é constante.

N
4. Calcule lim ., f (x v, 2), sendo:

a) F(xy,2)= (x +y?, XV 4}?0 (2,1,1)
r =

b) F(x,y,Z)=(eX,Seny X+Y+2);
y

c) Flxvy,z)=

Y %2 Jz);r=(2,1,4)
—y

5. Determine os pontos em que as fung¢des sao continuas:

a) F(x,v,z)= Xy|+Inx21+2k

X YA
b) F(lelz):(ry’;az]

3a ST
c) F(x,y,z2)=—,onde a=Xi+Yy j+zk

N
6. Encontre a derivada direcional de P nos campos vetoriais dados, na diregao do vetor a

a) F(xv,2) =2XT+ 5yT+ 42; P(1,1,2)

131



10.

b) F(xy,z)=(X+ y)?+(x—y)f+ ZE; P(0, 0, 0)

- - -
) Fixy z)=e"i+e*” j+2k;P(1,1,0)

5
Seja v (x, y, z) o campo de velocidade de um fluido em movimento. Determine a

variacdo de U no ponto e na direcdo indicados:
> > o o >
a) V(xy, z)=(2x, 2y, _% 2);Po(1,1,2); a=1i+ j+k

b) v (Xr Y, Z) = (_XZI _y2’ ZZ); Po (0; 0; 1)1 a= I -2 k

Encontre a divergéncia e o rotacional dos campos vetoriais abaixo:
a) F(x,y)=(e*cosy, e*seny)
b) F(xv,2)=(xyz, 2xy’, -X'yz)

-y X
X2+y2 \/X2+y2

c) Flxyz)= » (%, y)# (0, 0)

Verifique se o campo dado é irrotacional:

a) F(xvy,z)=(yze™", xze™ xye™)

b) F(x,y,z)=(2X+ COSYyz,—Xy Sen yz,—Xy sen yz)
o) Fxy,2)=(xy, 2"

- -
Um fluido escoa em movimento uniforme com velocidade V dada. Verifique se Vv

representa um possivel fluxo incompressivel:
- -

a) v=12° i+xj+y2§
b) ;=2T+XT—E

c) V=2xy7+ x?
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7.13 Lista 13

1. Calcule as integrais de linha:
- -

a) F(xy,z)=—YyZi+Xxz ]+ xyE e C éaelipse xX*+9y* =36 no planoz=2

b) L x2dx + y2dy +2°dze C é o arco da hélice circular dada por R(t) =
(4cost,4sent, 8t), t € [0, 2m]

c) Ic zdx+ydy—xdze C é a interseccio das superficies y+2=8 e
X% + y2 + 2% —8z =0 (considere os dois possiveis sentidos da curva)

d) F(x,y) =|X| T+ y _j) e C é o quadrado de vértices (-1, -1), (-1, 1), (1,1) e (1, -1)

e) JC (3x* —6Y)dx + (3x + 2y)dy e C é a pardbola y = %% do ponto (0,0) ao ponto
(1,2).

2. Calcule o trabalho (em Joules):

- -
a) Realizado por F(X,y)=(Xx+2)" i+ (y+3)" jpara deslocar uma particula em
linha reta do ponto A(3, 4) até o ponto B(-1, 0)

- -

b) Realizado por F(X,Y,z)=X1i+2zK para deslocar uma particula ao longo da

linha poligonal que une os pontos A(0, 0, 0), B(O, 1, 0), C(0,1,1) e D(1,1, 1), no
sentido de A para D

3. Mostre que o valor da integral de linha é independente do caminho e calcule-o
utilizando o teorema da fungao potencial:

a) L ydx + Xdy entre os pontos (1, 4) e (3, 2)

b) J.Cexsenydx+ e* cosydy, de A(0, 0) até B(2, 1/2)

) L (2xy? — y3)dx + (2x%y —3xy? + 2)dy, de (-3, -1) até (1, 2)

d) IC (x? — y)dx — (x —3z)dy + (z + 3y)dz, de (-3, 1, 2) até (3, 0, 4)

4. Calcule aintegral de linha, utilizando o teorema de Green:

a) {(X + y)dx + xydy; C é a curva fechada delimitada pelo eixo x, pela reta x = 2 e
c
pela curva 4y = x>

a) §C (—X2 + x)dy; C é a curva fechada delimitada pela reta x — 2y = 0 e pela
parabola x= 2y’
b) §C COSYdx + cosxdy, C é o retangulo com vértices (0, 0), (n/3, 0), (n/3, n/4),

(0, m/4)
c) §c (sen“ X+ ezx)dx + (COS3 y— ey)dy; C é a circunferéncia x* + y2 =4

5. Calcule o valor da drea da regido dada, utilizando o teorema da area:

a) A regido limitada pelos graficosy =x’ ey = Jx
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10.

11.

12.

13.

14.

b) Regido limitada pelo hipocicléide que tem X=acos’t e y=asen3t

(2a>0,0<t < 27) como equagdes paramétricas

Utilize o teorema de Green para encontrar o trabalho total realizado pelo campo de

5
forgas F (x, y) = (83X + Y) i+ (4x - 5y) j para mover um objeto no sentido anti-hordrio,
uma volta em torno da elipse x>+ y* = 16 (suponha que o arco seja medido em metros

e a forca em Newtons)

Calcule a integral curvilinea L 2xyds, onde C é o quarto de circulo do primeiro

quadrante parametrizado por x=cost e y=sent com 0<t <7z /4.

Calcule a integral curvilinea L ydx + 2xdy sendo C:

a) O segmento de reta no plano, de A(1,1) a B(2,4);

b) Atrajetdria plana de A(1,1) a B(2,4) ao longo do gréfico da parabola y=x2.

Determine uma fungao potencial para os campos vetoriais dados:
a) F(x,y)=(2x+3y)i+(3x+2y)j

b) F(x,y)=(3x%+2y?)i+(4xy+6y3)j;

c)F(x,y,2)=(2x-y-2)i+(2y-x)j+(2z-x)k

Aplique o teorema de Green para calcular a integral §de+ Qdy ao longo da curva
C

fechada C especificada: P=x+y?, Q=y+x’, C é o quadrado de vértices (1,1) e (-1,-1)

Calcule a area da regido indicada, aplicando o coroldrio do teorema de Green: A regido

delimitada por y=x? e por y=x3
Esboce o grafico de cada curva abaixo, indicando a orientagdo positiva.

a) 7)) =(1-1t), 0<t<1
b) 7(t) = (2t,t?), —1<t<0
c) 7(t) = (1/t,t), 1<t<o
d) 7#(t) = (cost,sent,t), 0 <t <2m

Calcule as integrais de linha ao longo do caminho indicado:
a) [, 2ydx—3xdy; C:x=1-t, y=5-t; 0<t<1

b) f((_llli) xydx — y%dy; ao longo da parabolay = x?.

4-2)y X g =92 _
c) f(g;_l);dx—;dy,ao longodaretay =2 — x.
d) §, ydx +2xdy; D:x*+y*<1,-y<x<y, y=0
e) J, xydl; C:x=t, y=t 0<t<1

f) fc x2dl; C:x = cos2t, y=sen2t; 0<t<2m

g) fc ydx + 2xdy; C éo triangulo de vértices (0,0),(1,0)e (1,1)

Calcule, fc F. d7, nos seguintes casos:

a) F = (x%+y%3xy?); Céocirculox®+y?=09.

b) F = (3x? — 8y?% 4y — 6xy); Céa fronteira da regio
Dix+y<2,x=20,y=0.
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15.

16.

17.

) F = (xy;—y;1);
C é o segmento de reta ligando a origem ao ponto A(1,1,1)
d) F = (y%x2); Céoarcodepardbolax=t,y=t%z=0, 1<t<2.

Com o auxilio do Teorema de Green, calcule as seguintes integrais de linha:
a) gﬁc (senx + 4xy)dx + (2x? — cosy)dy;
C é um contorno simples, fechado e regular.
b) §. 2dx + (x* —ytgy)dy; C:(x—1)*+y*=1.
c) 956 x2dx + xydy; C é a cardioider =1+ cosf, 0 < 0 < 2m.

Verifique se o campo é conservativo e no caso afirmativo, encontre a fungao potencial.

a) F(x,y) = (%)

b) F(x,y) = (3x2%y; x3)

) F(x,y) = 2xe? + y;x%e¥ + x — 2y)

d) If(x.y.Z) = (xy;2)

e) F(x,y) = (y? — 3x; 2xy + cosy)

f) F(x,v,2) = (2xy3;x2y3; 3x2yz?)

g) F(x,y,2) = 3y*z% 4x3y% —3x2y?)

h) F(x,v,2) = (2x2 + 8xy?;3x3y — 3xy; —4y?z2 — 2x32)

Em cada caso abaixo calcule a integral de linha indicada, observando que a mesma

independe do caminho.
12
a) f((ol_i)(Zy —x)dx + (2x + y?*)dy
b) f((_‘L'ZHO/;) tgydx + xsec?ydy
(1,0) 2ydx+2xdy
<) f(O'Z) (xy+1)2

d) f((ol’g’bl))(y + z)dx + (x + z)dy + (x + y)dz

T

e) f((zoé) f))(e"seny + yz)dx + (e*cosy + zseny + xz)dy + (xy — cosy)dz
f) J. (e*seny)dx + (e*cosy)dy,

7 . Vs
C é uma curva suave da origem ao ponto (1; 5)

135



7.14 Listal4

1. Determine se cada sequéncia converge ou diverge. Se convergir, calcule seu valor.

a) 100 b) n3—5n C) 5n2

{T} 7n*+2n 3n+1

d) {an +n Sen[”j} e) {ln(n +1)} ) In(l/n)
n+1 2n n+1 In(n + 4)

n
g 1 h) (1+1j
Jn?+1-n n
2. Diga se cada sequéncia é crescente, decrescente ou ndo-mondtona e também se é
limitada superior ou inferiormente. Indique se é convergente ou divergente.

a) {2“ *1} b) & —n) o {-n" |

3n+2

IS IS

3. Calcule os cinco primeiros termos de cada série e os cinco primeiros termos da
sequéncia {S,}. Determine uma férmula simples para a enésima soma parcial S, em
funcdo de n e, se a série for convergente, calcule o valor limite da série.

< 1 2k +1
)L k1
Y 2 anEKeD 2y

4. Encontre o termo inicial e a razdo de cada série geométrica. Determine se a série
converge ou diverge e, se convergir, calcule seu valor.

a)142, 4.8 b)izk 1-1+1-1+1-1+..
7 49 343 =\ 6
40 3kfl +00
d) ZW e) 0,9 + 0,09 + 0,009 + ... f)y 5
a4 o
5. Mostre que as séries abaixo divergem
S S [ SK & 3k +5k
a) b) In( j )y TR
;5“7 é 12k +5 §7k2+13k+2

+00 +20 1
d) Zsen(ﬂkj e) sten(—)
4 = K
6. Utilize as propriedades lineares das séries para calcular as somas abaixo
+oc_ 1 k 1 k +oo 1 k-1 1 k+1
S HEOTIORE
516+ ] i[OINE
B k-1 k k
< 1 3 |28 +3 1
c) - = d) 2 -
kzzll k(k+1) (4) } ;{ 6" 7“1}

7. Determine se as séries convergem ou divergem, utilizando o teste da integral.

&1 b) & 3K (1000’
a)zkw )Zk3+16 ° ;( n

k=1 k=1
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+00 In k +00 L +00 1
d Dy — e) ) je f)
kZ:; k ;J ; k~/In k

8. Use o teste da comparagdo direta com uma série p ou com uma série geométrica
para determinar se a série dada converge ou diverge.

+00 k2
a)y — -~ b)
kg‘k“+3k+1 Zk5k
s i+l d) s
;(HZ)?’ ;3

9. Use o teste da comparacdo no limite com uma série p ou com uma série geométrica
para determinar se a série dada converge ou diverge.

)y 2 b) 3 ok’ Py
d C _—
és k?+5 kz:;‘(k+1)(k+2)(k+3)(k+4) éu k3

10. Determine se a série converge ou diverge. Use o teste de Leibniz para séries
alternadas sempre que ele se aplicar.

( 1)k+l b +0 ke k
Z )kzzl“( D k¥+2
S (e kAL d) S (Ck 1

‘ kZ:;‘( D k+7 )kz:(;( b In(k +2)

11. Obtenha a soma dos n primeiros termos, dé um limite em valor absoluto para o erro
envolvido nesta aproximacdo e determine se a aproximagéo é por cima ou por baixo.
( D ( 1) ( D

< 3k-1"

12. Determine se as séries sdo absolutamente convergente ou divergente, utilizando o
teste da razdo ou o teste da raiz.

+0 7k +o0 k4
kil 9 b) (_1)k+1 C) (_1)k+1
) 3 2" G 2 (102)k
& 1+¢€* K
d) _1k ) 1 k+1( j ) k+1
é( ) 2 Z( ) 3k +1 kz;( D (2k + ]/k)
13. Determine a série de Taylor (ou Maclaurin) para a fungdo dada, no ponto indicado.
a) f(x)=senx :a="> b) f(x)=1:a=2
6 X
c) f(x)=e* ;a=4 d) f(x)=e™ ;a=0
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8 Respostas

8.1 Respostas da Lista 1

2.a)Bola aberta Py(0,1),7r = /3
2.c) Ndo representa bola
2.e) Bola aberta Py(—2,0),r =3

8.2 Respostas da Lista 2

2.b) Bola fechada Py(1,1,1),7r =3
2.d) Ndo representa bola
2.f) Nao representa bola

1.a)

2.9(1) = (1,0),d(1) = (0,4)

Sdo perpendiculares

1.b) 1.c)

l.e)

5.a) 6 + 2eV3
5.b) (

8 16
_51?:

12 — 4e2)

3. 7(0) = (207 (20 + 2205

7(3m) = (%, 61 + 3;”)

4.a)v(1) = (2,—4),a(1) = (0,—4)

4.b) ndo sdo perpendiculares.
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6.6

7. (33 5)

8. Ndo é continua em t=0

9. Ndo é continua em t=0
8

11. N3o é continua em t=0
- 1 - 1 ~ ~ .
12.a) v(5) = (E,Z),a(S) = (0, 5) 12.c) N3o sdo perpendiculares.

13.7(t) = (VZcost)i + +(V24sent — 1)] + 12 k

14.7(t) = (\/gcost — 2)? + (2sent + 3)J

15.3) (3,3,0) 15.b) (—=1,1,6) 15.0) (25,2 15.d) -5
15.¢) (=9,9, —3) 15.f) (2,4,6) 15.8) (0,0,0)

16.a) lim; f(t) # f(0) - fndo pe continuanot =0
16.b) A %irrllf(t) e A %irrzlf(t) — f ndo é continuanot =1,nemnot =2

17.a) g é continua Vt ER|t # 0
17.b) w é continua Vt € R| t + % +knkeZ
17.c)r écontimuaVt ER|t > —-2et #1

18.a) f (t) = (—3cos?tsent, sec?t, 2sentcost) 18.b) g'(t) = (cos?t — sen?t, —2e~2")
18.0) f'(t) = (—et, —2e7%,0) 18.d)g'(t) = (% 1,1)

1 -2t
18.e) h'(1) = ((Zt 12’ 1- tz’o)

19.a) B(t) = (ef, —2e72),|v(t)| = 2,06, d(t) = (ef, 4e‘2t) ld(t)| =5
19.6) 5(t) = (5 f,o18t—1z) 15(0)] ~ 24, a(t) = ( = ,0,18),1a(t)| ~ 18
19.c) ¥(t) = (—2sent, 5cost, 0), |¥(t)| = 3,8, a(t) = (—2cost, —5sent,0),|d(t)| ~ 3,8

20.3) (1; -2; 3) 20.b) (1; €) 20.c) (0; -1; 1) 20.d) (-1; 1) 20.e) (2; 1; 0)

21.a) (2, 2VE, 4VE3) 21.b)(2,1,6) 21.c) (16, 4,32); (8, %, 12); (21_22)

22.3) (1,0, 0); (0, 0, -2) 22.b) (_Tl 1), G 0) 22.¢)(0,0); (2, 0) 22.d) (-1,1); (0, 0)

23. Demonstracao
o ( -1 t2—2t)
- 1)2’ (t-1)?
25.)—+—=1 25.b)x° +y*=16;2=2

(x 2) L O3y

" 25.d)y=(x—1)>+4

25.c) ——

26.a)y=6x+526.b)y=x"+1 26.c)y=x+2; z=2 (x=>-1)
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27.a) (1+2t, % -t,2) 27.b) (5t,2—t)
27.c) (-1 + 5t, 2 — 2t, 5t)27.d) (V2 + 5t, 2, /3 - 3t)

28.a) (2cost, 2sent, 4), t € [0; 2m] 28.b) (t, 2t%, t°)
28.c) (-1 + V5cost, V10 sent, 2),t€ [0;2m] 28.d) (t,Vt,2),t=>0

28.e) (t, Int, "), t>0 28.f) (t, t, 2t°) 28.g) (2-3t,1,2+t),t € [0;1]
28.h) (2 + 2 cost, 2 — 2sent) , t € [0; 27] 28.i) (t,0,1—t),t € [0; 1]
29.a) ndo 29.b) sim 29.c) ndo 29.d) sim 29.e) sim
30.a) V3 (e — 1) 30.b) 60 300VEm  30.d)55[10v10 — 1]
31.a) gx 31.b) 2x 31.c)i[2x\/4x2 +1+ ln| Vax2+1+ 2x|]
31.d) 2x 31.e) S‘Z—a(senx)2

-1 -1 -24/13 3v13 V17 417
22 (7= 7==) 326) (<5°.55) 3.9 (%57

—V2 V2 VZ V2

8.3 Respostas da Lista 3

1.a) D(f) = R?
1.b) D(f) = R?
1) D(f) = {(x,y) € R?*|x* + y* < 4}

1.d) D(f) = R?
1e)D(f) ={(x,y) ER*|x* +y* <9}

1.f) D(f) = R?
18) D(f) =R?
1.h) D(f) = R?
2.a) |k| 2.b) 5a + 7bva 2.c) 2sentcost

3.3)D(f) = {(x,y) ER®|x + y — 4 = 0} f(—4,16) = 2+/2

36) D(f) = {(6,y) € R? +y2 < 1} £ (,) =22
3.0) D(f) = R™ f(1,2,...,n) = ”2;”
4.a) 4.b) 4.c)
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4.d)

\
\ '
R T i g T

72 N\

6.a) D(f) = {(x,y) € R?|25x% + 4y? < 100}, Im(f) = [0; 10]

Gréfico da regido de dominio: Mapa de contorno: Gréfico da fungao:

6.b) D(f) = R?, Im(f) = [0; +oo[

Gréfico da regido de dominio: Mapa de contorno: Grafico da fungdo:

Todo o plano

141



6.c) D(f) = {(x,y) € R?|x? + 4y? > 16}, Im(f) = [0; +oo[

Grafico da regido de dominio: Mapa de contorno: Gréfico da funcao:

o= W

7.2) D(f) = {(x,y) € R?*|5 —x* —y* = 0} 7.0) D(g) = {(x,y) € R?*|x > 0}
7.c)D(h) = {(x,y,z) ER3|x # 0,y = 0 e z # 0}
7.d)D(p) = {(x,y,2z) ER3|x # 0,y # 0 e z # 0} 7.e) D(q) = {(x,y) € R?|xy > 0}

8.4 Respostas da Lista 4

1.a) limgy,yy501) F (X, ¥) = 0 1.b) Alimy ) 0,0) f (X, ¥)
1.C) ﬂ lim(x,y)_,(o,o)f(x, y) 1d) lim(x'y)_)(_zlzl,) f(x, y) =0

2.2) D(f) = R%,Im(f) = [0, +oo[

Grafico da regido de Mapa de contorno Grafico da fungao
dominio
Todo o plano 2
7NN
E =2
-z
2.b) D(f) = R%, Im(f) =] — ==; 1]
Grafico da regido de Mapa de contorno Grafico da funcao

dominio
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Todo o plano

s ?\n 2 4

2.c) D(f) = R%,Im(f) = [0; +oo[

Gréfico da regido de Mapa de contorno
dominio

Todo o plano

-4

y

p—
N

3.a) Alim(y 3y (0,0) f (x,¥) = 0 = £(0,0) - f é continua no (0,0)
3.b) Alimy, ) (0,0 f (%, ¥) = f néo é continua no (0,0)

3.c) Alim(y ) (0,0) f (%, ¥) = f ndo é continua no (0,0)

8.5 Respostas da Lista 5

3, -0 y=2.4284
=05 an04n v 280343V 0

Gréfico da funcao

\

1) -1 x+y

0
777 x—y+2’

V2 1 — 2 _ 2 _ 2
2)1,2,2\/16 X y z

3.a) D(f) = {(x, y) € R?/x? + y? #1}
3.b) D(f) = {(x, y) € R? [/ x? + y? <1}
3.c) D(f) = {(x, y) € R?/x? + y? >1}
3.d)D(f) ={(x,y) € R?/y # +x}
3.e)D(f) ={(x, y) € R%/xy> 1}

4.2)D(f) ={(x,y,2) € R3/x?+ 4y? + z? <16}, elipsoide
4.b) D(f) ={(x,y,z) € R3/x? + y% < 4}, cilindro C(0,0) er=2

5.a)2 5.b)6 5.c)vx— y? 5.d)|x—y|

6.a)— 4 6.b) 0 6.c) 0 6.d) 7
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6.¢) % 6.f) % 6.¢) 3

7. Mostrar que, em direcOes diferentes temos limites diferentes; logo, o limite multiplo ndo

existe.

8.a) continua V (x, y) que ndo esteja sobre aretay=1

8.b) continua V (x, y) que ndo esteja sobre o eixo y

8.c) continua V (x, y) que esta dentro da circunferéncia de raio 5
8.d) continua V (x, y) # (0, 0)

8.e) continua V (x, y) € R?

8.6 Respostas da Lista 6

l.a)df = 3y — 6)dx + (3x — 2y)dy
_ (—x%-y—4xy 2x%+x
1.b) df = (—(xz_y)z )dx + (—(xz_y)z) dy
1.c)du = (2xy — 3y?)dx + (x? — 6xy + 22)dy + (2y)dz

1.d) du = (4yz +1) dx + (4xz + %) dy + (4xy +2)dz

2.a) Af(1,4) = 3(Ax)? — (Ay)? + 14Ax — 6Ay + 2AxAy

2.b) Af(1,4) = 0,5411 2.c) df (1,4) = 14dx — 6dy 2.d)df(1,4) = 0,5

3.a) Af(2,—1) = 2(Ax)? + 4(Ay)? + 3Ax + 2Ay + 5AxAy
3.b) Af(2,—1) = 0,0108

6. = [z (ay + 27 (22)] e + [o (o + )" (22 + [y +2) 1 (e +2)]

7.a)dw = (6x + 4y)dx + (4x — 6y>)dy

7.b) dw = (=2xe ™" " )dx +(—2ye~*""¥*)dy
_ x y

7w = (i) + (k) v

7.d) dw = (ye**¥ + xye**V)dx + (xe**Y + xye*™¥)dy
7.e) dw = (yzcosxyz)dx + (xzcosxyz)dy + (xycosxyz)dz

7.f) dw = (ﬁ) dr + (ﬁ) ds

7.8)dw = (=55) ds + (o) dt
7.h) dw = (Zue_"z)du + (—Zuzve_”z)dv

8.a) df(3,4) = 0,014 8.b) df (3,6) = —0,0007 8.c) df(1,0,—2) = 0,06

ow _ W _ s 6 ow _ 2t

9.a) Py 0 9.b) Py 6t>cost 9.c) 5t = 1re?

10.a) %—V: = gsen(r) — psen(r) + pqscos(r),g—‘: = 2gsen(r) + psen(r) + pqtcos(r)

10.b) ow _ 3ue’sen(s) | 3vefcos(s) 4zet w _ 3uefcos(s)  3ve'sen(s) 10
ot T VuZ+vi+zZ | VuZ+vi+zZ | VuZ4vi4z2’ ds | VuZ+vi+zZ  Vul+vl+zZ

10.€) 22 = (=2 + 2y)(—4t) + (z + 2)(48) + (y — ) (4526), 2% = (=2 + 2y)(25) + (z + 22)(25) + (¥ — ) (4st?)
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1l1la)m:x+2y+2z—9=0 11lb)mx+y—2z—7=0

llc)mx—y—2z=0 11.d)m:5x+ 5y +11z—-31 =0
12.a) Vf(17,39) = (3,-7) 12.b) V£ (2,-3) = (12,30)

12.0) Vf(3,-1) = (@,'3?’)

: 12.d) V£(2,1,0) = (4,0,—-3)
12 -9 -—-12 =2

12.e) V£ (3, -4, 3) = (— ?'T) 12.f) Vf(=5,1,3) = (160, —240,400)

13.3) D, f(2,1) = ﬁ 13.b) D f( )

13.0) Duf(21,-2) = =3 13.d) Duf(1,-11) = =

14.3) D, . f(1,1) = V170 14.0) D, . £(6,10,—16) = V392 14.c) D, . f(2,2,2) =56

Umdx
A derivada direcional maxima ocorre na direcdao do vetor gradiente.
4 35 29 35
15.a)r:y:—5x+; 15b)ry——x—?

15.c)m:6x +8y +152—73 =0
15d)mx+y+z—-1=0 15.e)m:4x + 23y +17z—-25=0

16.a) £y (x,y) = 12x + 7y, fex(x,y) =12, fxy(x:y) =7= fyx(x')’)v fy(xvY) =7x + 10y,
fyy(x: y) =10

16.b) f(x, ) = cosy, fux(x,¥) =0, fiy(x,y) = —seny = f,,(x,¥), f,(x,¥) = —xseny —
2y, fyy(x,y) = —xcosy — 2

16.c) fi (x, }7)_3XVX2+}7 frex (X, y) = 3y x% + y? +m' fxy(x y) = = =

x +y
fyx(x 3’) fy(x Y)_By\/xz-l'y fyy(x Y)—3 x2+y +m
16.d) i (x, y) = —ysenx — e??, f,.(x,y) = —ycosx, fyy,(x,y) = —senx — 2e*? =
fx @y, £, (0 y) = cosx — 2xe?, f,,(x,y) = —4xe?
16.e) f(x,¥) = cos(Zy + x), fux(x,y) = —sen(2y + x), fiy(x,y) = —2sen(2y +x) =
fyx (6, ¥), fy(x,y) = 2cos(2y +x), fyy(x,y) = —4sen(2y + x)

16.f) fx(x,¥) = 5cosh(2y), fix(x,y) =0, fxy(xJY) = 10senh(2y) = fyx(x'y)' fy(xry) =
10xsenh(2y), f,y(x,y) = 20xcosh(2y)

17.a) D, £(0,0) = 0 17.b) D,f(1,2) ~ 13,79 17.0) Dy f (2%) = 0,098
17.d) D, f(1,1) ~ 4,56

18.3) D, f(1,—1) =~ 17,49 18.b) Dy f (1,5) ~ 3,72

19.a) P(0,1)ponto de minimo relativo 19.b) P(—1, —1)ponto de minimo relativo

19.c) P(1,1)ponto de sela

20.a) - 22

cos(2x)

1
Dica: usar transformagio cos(a) cos(b) = > (cos(a + b) + cos(a — b))

e sen(a)sen(b) = %(cos(a — b) —cos(a + b))

-(ye*Y+2cos(2x—3y)
xe*Y—-3cos(2x—3y)

20.b) ‘x—y 20.c)
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yeY—xy—-vue’—v —4v3 +6vx?

21.a) 21.b)

evty—xeV—ue?-1 suv3—-8vu3

g, g) eP, (— ﬁ, — g) — Pontos de minimo absoluto

22.0) Py ( :

P3(—\/§, \/E) eP, (\/7, —\/E) — Pontos de maximo absoluto

22.b) P, (E,_—l) eP, (— E,_—l) — Pontos de maximo absoluto,
4’ 4 4’ 4

P;(0,1) — Ponto de minimo absoluto

8.7 Respostas da Lista 7

2
1.a) 14x + 10xy 1.b) cosxcos7y 1.c) % 1.d) 2rcos76
1.e) 6xy + 7 1.f) y* + 2xy
3x 14x y
2.2) (3x2+y2)% ) 7x2+4y3 ) 1+x2y2
2.d) ——=X
JxZ+y2+22)5

4 .a) 6xv-+ 8y, 6XU 4.b) (12x* — 6xy>)cosv — 6x°yvcosu , (12x* — 6xy’)(-usenv) — 6x°ysenu

4C) 4ux+8xv+6yv 4uy+6xv
’ u2+vp2 T uZ4p2

4.d) 6re"senh(3x+7y) + 7e*senh(3x + 7y) , -3r’e” senh(3x+7y) + 21re**senh(3x + 7y)

5.a) 3 5.b)-6 5.c)§
6.a) diferenciavel 6.b) diferenciavel 6.c) diferenciavel
7) 40 watts
8) 1,18 cm’
; _9 2 2 3x2 2 2
9.a)12,10,0 9.b) 0, - xcosy — 2, - seny 9.¢c)3\/x*+y%? + Nezrek 3Jxe+ys+
3y? 3xy
9.d) —ycosx, —4xe”, —senx — 2e”/ 9.e) —sen(x + 2y), —4sen(x + 2y), —2sen(x + 2y)
9.f) 0, 20xcosh2y, 10senh2y
8.8 Respostas da Lista 8
1.2)(1;-V3) 1.b)(-1,5307;3,6955) 1.c) (%5 %ﬁ) 1.d) (1; 0)

20)(v23) 20)(VZ Z) 29(VZ T) 20(vZ )
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3.a)r= 2 3.b) 4 =rcosf 3.c) 2=rsenf
3.e)r=2cosf 3.f)r=6send

3.d)9:%n+ K

4a)x°—x+y*=0 4.b) X +y —2y 0

4c)x+y=1 4.d)x* +y>=a’

5.0) (2, 2V3; 1) b)(0;3;4) 5.0 (3 f, 3 -2)

47:

6.2) (4;; 1) b) (4( 0) 6a(6;0)
3.3, o N

7. )( ) 2 ; 1) 7b) (0101_7) 7C) (_91 3’ 6)

37'[ T

8.a) ( Z 2) 8.0) (5:0; 0) 8.c) (0; 6; o)

9.a)z=2r% cosg =2psen?q, paraboloide

9.b) rcos 8 =2, p = 2cossecpsecd, Reta

9.c)r’=57%,  tang =5, cone

9.d)r=5, pseng =5, circunferéncia

9.e)r*=1+72°, p?(2sen?p —1) =1, Hiperboloide

10.a) z=x>+V5, p = cosgcsc’p, paraboloide

10.b)x ;y +— =1, p°(9cos’p+ 4sen’p)= elipsoide

10.c) y* + (x — 2) =4, psenp=4cos@,

11.a) x> +y’ +2°=4, r'+z7°=4,
11.b) x> +y* =9, r=3,
10.c) x>+ y2 -32°=0, 37°=r} Cone

12.a) elipsoide

12.b) hiperboloide de uma folha —eixo y
12.c) hiperboloide de duas folhas — eixo z
12.d) paraboloide —eixo y

12.e) paraboloide hiperbdlico — eixo z
12.f) cone —eixo z

13)37”ua 14) %nua
15.a) 92—nua 15.b) 1u.a 15.c) %ua
16.a) %ﬂ —3v3ua 16.b) 7TT_Zua

8.9 Respostas da Lista 9

circunferéncia

elipsoide (esfera)
circunferéncia

16.c)1 — gua

1.2) 42 1.b) % 1.¢) 1/5
1.e)9/4 1.f)8/3 1. )16—” %g
22) 7 26)2(2V2-1) 2.¢) 0

1.d)-2

T
2.(3')7'['—6—9

2.e) %a
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3.a) z 3.b) %n 3.c) ?n

4.2)V6 4.b) 2v/1633 4.c) i(270\/1_ — 26/26)

47 T 128
5.a)— 5b)=-—-1 5.¢c)— 5.d) 1/6
i ) )2 )1/
T
6.a)T 6.b) 24w
ka*m 16m
7.a) 7.b)— (1 —cosc)
2 3
8.10 Respostas da Lista 10
9 1 27 38
1)51“] 2) cuv 3) S uv 5) 144 6)?11 7) 8m/2
4 1
8)0 9) =7 10) 87 11) 167 12) 648 13)-  14)8
8.11 Respostas da Lista 11
1 3 1, a4
1) E(l—e)lnz 2)5ln3 3)5(e -e-3)
1,5 2 105
4)=In= 5)21In3 6) —=In2 7) —
4 2 3 8
8.12 Respostas da Lista 12
1.a) 1.b)
NONNNNANNV VML LSS
SNNNNANNN VML A S SS
SNNNNAAN VALt
N T T O Y I Y A AV G g
B e S Y B A A P A e
\\\\\\\\y\li-\ﬂ{/.///f//
e
A NN
A A S A I T T T
L A A I T T T T
I ] F T S NN N
F T R N
DT VN NN NN
1.c)
P L L L N NN
P ] o
W e e LN L
VA A A A P A R N L L N
A e L LN Y
VYAV AP b P T L U 21
[ A R e N Y
I A S S N T
F S R T B I - LT T T |
Ll e . Vo1 ]
R 0 CEREE ) N 7
L T SN B T T T A |
I (RN A
L T LA A A A |
LR R I P N A A ~T=
R P Y I A A A
NANNN NS S | 2 s
R T e e A
NN e N N et | e 2 s
T e P R P

l.e)
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P N
D
T T T T T T N T T T T T
P
D
P I S N L P S e
T A
D
T T T T T T T T N T T T T T T T T T
e i
e, R e
T T T T T T T T T T T T T T T T
D
e
P i R e
D
D
T T T T T T T T T T T T T T T T T
D
T T T T T T AT T T T T T T T

2a)T(x,y,2) = (r —Jx2+y%+ Zz)k

2.b)r =k, +/x?+y%2+ 22 > esferas

3.3)D(x,y,2z) = (1,5 - 2)k

3b)z=1,5- % — planos paralelos a base.

4.3) (5; 2;&) 4.b) (e; 1;%) 4.c) (3;4;2)

5.a) {(x,y,2) € R3|xz > 0}
5.0) {(x,y,2) ER3|x # y e x # 0}
5.c) {(x,y,2) € R3|(x,y,2) # (0,0,0)}

6a) (2%=200)  6b) (L 25) 6.c) (L2250

6 6’2’6

N[

7. )(“—F 2\—F,i) 7.6) (0;0; “M)

3 6

8.a) div(F) = 2e*cosy, rot(F) = (0,0,2e*seny)
8.b) div(F) = yz3 + 6xy? — x2%y, rot(F) = (—x?z,xy(3z% + 2z),2y3 — xz3)

8.c)div(F) =0, rot(F) = (0 0, W)
9.a) irrotacional 9.b) rotacional 9.c) irrotacional

10.a) incompressivel  10.b) incompressivel 10.c) compressivel (y>0 -> fonte, y<0 -> poco)

8.13 Respostas da Lista 13

3
1.a) 487 1.b) @ 1.c) +8V2n 1.d)0 l.e)2
3 3
2.3) In (g) 2b)3
3.a)2 3.b) e? 3.c)-4 3.d) 15

4.2) —24.b) —24.0) - (5 — 4V2) 4.d)0
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3a?

1
S.a) y Sb) TT[
6. 487 7.0,5 8.a) > 8.0) 2
9.a)x2+3xy+y*+k 9.b) x3 + 2xy? +2y3 +k
9c)x?—xy—xz+y*+z2+k 10.0 11.%
12.a) 12.b) 12.¢)
12.d) 12.e) 12.f) uma espiral
y A v
4= el 1 >
X
15 4 T
13.a)-2  13.)0 13.0) In (5) —2 13.d) %
13.¢) 2 13.f) 21 13.6) 1
14.2) 2837 pp2 14.0)2 14.d) 22
4 3 6 10
15.3) 0 15.b) 2 15.c) 0

16.a) B(x,y) = %(x2 +y)+C

16.c) @(x,y) = x%e¥ +xy —y? + C
16.e) O(x,y) = xy? — ;xz + seny + C
16.g) ndo conservativo

16.b) 0(x,y) = x3y + C

16.d) 8(x,y,z) = %(x2 +y2+2z3)+C
16.f) ndo conservativo

16.h) ndo conservativo

150




17.a) 12—3 17.b) 4 17.c) 0 17.d) 3 17.e) 4 17.f) e

8.14 Respostas da Lista 14

1.a) converge para0  1.b) converge para 1/7 1.c) diverge 1.d) converge para 7
1.e) converge para0 1.f) converge para -1 1.g) diverge 1.h) converge para “e”

2.a) converge para 2/3; monotonamente crescente, limitada entre 3/5 e 2/3
2.b) divergente, monotonamente crescente, limite inferior = 2

2.c) ndo mondtona, divergente, limitada entre-1e 1

2.d) ndo mondtona, divergente, limitada entre-1e 1

2.e) monotonamente decrescente, limite superior = - 1, divergente

2.f) ndo mondtona, limitada entre (—\/7— £) convergente para 0

11 11 1 12345,

3'15'35'63'99° 3'5'7'9'11° ™" 2n+1

3.b) § 3 L i E- § § E ﬁ ﬁ' S :1—1)2 converge para 1l

4'36'144°400'900° 4'9'16'25'36" " (n+1

converge para ;

4.a) converge para 7/5 4.b) diverge 4.c) diverge
4.d) converge para % 4.e) converge paral 4.f) converge para %

5. todos os valores dos limites sdo diferentes de zero
5.a)1/5 5.b) In(5/12) 5.c) 3/7 5.d) oscila 5.e)1

6.a) 5/6 6.b) 23/12 6.c) -3 6.d) 31/21

7. (quando convergem, estdo indicados os valores da integral imprépria)
7.a) 3; convergente 7.b) divergente 7.c) 1000000; convergente
7.d) divergente 7.e) 2/e; convergente 7.f) divergente

8. (as séries utilizadas para a comparacdo estdo indicadas)
8.a) converge; ii 8.b) converge; ii 8.c) converge; ii 8.d) diverge;

=l = 5¢ =t 7] Z \/7

9. (as séries utilizadas para a comparacdo estdo indicadas)
9.a)diverge; v_ 1 9.b)converge; N1 9.c) diverge; 5.1

=k
10. (em todas é possivel usar o teste de Leibniz) Convergem g, b e d; c diverge

1105, -2

11.b) S & , estimado por baixo, com erro menor que 1/25
t 1447

estimado por cima com erro menor que 1/17
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137
11.c) S, = —i, estimado por baixo, com erro menor que 1/2500
750

12. (os resultados dos limites estdo indicados)

12.a) 5/4; divergente

12.c)1/1,02;absolutamente convergente

12.e) 1/3; absolutamente convergente

+00 k
133) zck X_z :1_’_@ X_z _i X —
v 6) 2 2 6) 2.2

13.¢) ig‘:(x_‘l)k

k+1
k=0 2 o K

12.b) 0; absolutamente convergente
12.d) e/2; divergente
12f)1/2;absolutamente convergente

Y\ \/5 z\° 1 '
S e xS A= x== |+
6 2-3 6 2-4 6

13.d) i(_l)k x*
k=0 k!
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9 Teste seus conhecimentos

9.1 Testel

1. Conceitue funcdo vetorial de uma variavel e dé dois exemplos (um com imagem no R3 e
outro com imagem no R*).

2. Esboce o hoddgrafo da fungdo vetorial 7(t) = cos(2t) 7+ sen(2t)j + (g)E para
0 <t < 4m e represente os vetores velocidade e aceleragdo para t = 3771 (Tome pontos

a cada E).
2

3. Verifique a continuidade de ]?(t) parat = 0eparat = 1.

[ senBY,, td—eD 7+ =9 kK, t#0t+1t+3
5 ! t W_ﬂ t2—4t+3" ' '
f@) = IR
31— 3k t=20
tsen3?+(1—e)(\/§+ 1) -k, t=1et=3

4. Verifique se a curva 7(t) = (V2t — sect, sent + cost) é suave parat € [0; 7).

. N . S t t
5. Determine a fung¢do comprimento de arco para a curva 7(t) = (e3t senz; e3tcos§) e

calcule o comprimento para t € [0; 1].
2

sent. t°-4-
—I Jt#0t = -2
t t+2
- 24 t+1-
6. Verifique se a fungdo abaixo é continua parat=0. f(t)= eli - > j;it=0
t=+1
|Int|i;t:—2

7. Atrajetéria de uma particula é dada por F(t)=2ti +(t*—4) j,-2<t<3.Determineo

vetor velocidade para t = 1 e esboce a trajetéria da particula e o vetor velocidade.
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9.2 Teste?2

2
. . n . . e . X I 7.
1. Analise a existéncia do limite lim(y (0,0 ﬁ Se existir calcule-o, caso contrario

mostre que ndo existe.

2. Determine o dominio e a imagem da fungdo f(x,y) = L R Esboce o gréfico do

/4_x2_

dominio.

3. Esboce todas as familias de curvas de nivel tipicas da fungdo f(x,y) = xy

4. Analise a existéncia do limite. Se existir calcule-o, caso contrario mostre que nao existe.
. x4y4
i o) Td - o208
(x,y)—>(0,0) (x™ + y©)

5. Na funcdo abaixo, encontre o dominio e faca seu grafico, a imagem, faca o mapa de
contorno e o grafico da superficie indicando a parte que representa a funcdo:

f(x,y)= \/1—2x2 - y2

6. Analise a existéncia do limite. Se existir calcule-o, caso contrario mostre que nao existe.
. 5x%y
(xy)-(0,0) x° +y

7. Represente graficamente o dominio da fungdo f dada por f(x,y) = \/y —-x+ \/1 -y

8. Esboce todas as familias de curvas de nivel tipicas da fun¢do f(x,y) = 2y? — x?
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9.3 Teste 3

10.

Determine a derivada direcional da fungdo f(x,y,z) =%+ 2xy? — 3yz no ponto P(-

1,03), na direcio do vetor U= (1~12)
derivada direcional e derivadas parciais?

. Qual seu valor maximo? Qual a relacdo entre
Encontre uma equagdo para o plano tangente e encontre as equagdes paramétricas da
reta normal ao cone eliptico x? + 4y? = z2 no ponto P(3,2,5) pertencente ao cone.

Determine a equacdo do plano tangente e da reta normal a superficie z— e* sen3x =0,
no ponto P("/s,0,1).

Explique a relagdo existente entre derivadas parciais e derivadas direcionais.

Determine a derivada direcional da fungdo f(x,y,z) = In(x? + 2y? + 3z2) no ponto

P(-1,2,4), na direcio do vetor Y= (2,1—2).
interpretacdo geométrica para essa derivada.

Qual seu valor maximo? Dé uma

Seja 8 o angulo entre os lados iguais de um triangulo isésceles e seja x o comprimento
. (1 .
destes lados. A taxa de crescimento de x é > metro por hora e a taxa de crescimento de

, T . . , i
0 é 5 radianos por hora. Calcule a taxa de crescimento da drea quando x=6e 8 = "

(@) O que significa dizer que f é continua no ponto (xg,yo)?

(b) Escreva as expressdes para as derivadas parciais fy(xo,¥o) € fy (xo,¥0) como
limites.

(c) Qualainterpretagdo geométrica para fy e f;,?

(d) Defina o vetor gradiente de uma funcdo de duas varidveis e explique o
significado geométrico do gradiente.

Determine a equagdo da reta tangente a curva de interseccdo da superficie e¥*Y*Z 4+
xyz = 3 com o planoy = —1, no ponto P(—1,—1,2).

A agua esta fluindo para dentro de um tanque em formato de cilindro circular reto, a
4 , .
uma taxa de Eﬂm:‘/mm. O tanque estd aumentando de tal forma que se mantenha

cilindrico, com o raio crescendo a uma taxa de 0,2cm/min. Quéo rapido esta se elevando
a superficie da 4gua quando o raio for 2m e o volume da dgua no tanque for de 20mm3?

(@) O que significa dizer que f é diferenciavel no ponto (x4,y,)? Qual a relagdo
entre diferenciabilidade e continuidade?

(b) Escreva as expressdes para as derivadas parciais fix(Xo, o) € fyy (X0, ¥o) como
limites.

(c) Qual a relagdo existente entre o vetor gradiente de uma fungdo de duas
variaveis em um ponto e seu mapa de contorno? Exemplifique.
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11.

12.

13.

14.

Discuta a diferenciabilidade da fungdo f na origem, sendo f definida por f(x,y) =

3 3
ﬁ, se (x,y) # (0,0)

0, se(x,y)=1(0,0)

A altura de um cone circular reto estd decrescendo a uma taxa de 15cm/min e o raio
crescendo a uma taxa de 6cm/min. Determine a taxa de variagdo do volume no instante
em que a altura é 50cm e o raio é 15cm.

A temperatura em um ponto (x,y) de uma placa de metal plana é T graus Celsius e
T(x,y) = 4x% + 2y°2.
(a) Trace um esbogo do mapa de contorno da funcdo f mostrando as curvas de
nivel defem 12, 8, 4, 1 e 0. Explique o que este mapa representa.
(b) Determine a direcdo na qual a temperatura decresce mais rapidamente em
Q(0,2) e a taxa de variacao de f nesta direcao.

Um circuito elétrico simples consiste em um resistor R e uma forga eletromotriz V. Em
certo instante, V é 80 volts e aumente 3a taxa de 5 volts/min, enquanto R é 40 ohms e

. ~ . . v .
decresce a razdo de 2 ohms/min. Use a lei de Ohm, I = = € uma regra da cadeia, para
achar a taxa a qual a corrente I (em ampéres) varia.
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9.4 Teste4

1. Uma caixa retangular sem tampa deve ter um volume de 12 metros cubicos. Encontre as
dimensGes da caixa que terd area de superficie minima. (utilize o método de
multiplicadores de Lagrange)

2. Utilize o método dos multiplicadores de Lagrange para calcular a area maxima do
retangulo que pode ser inscrito em um quarto da circunferéncia de raio 4 (utilize as
medidas no primeiro quadrante).

3. Um contéiner (na forma de um sélido retangular) deve ter um volume de 480 metros
cubicos. A base custard RS 5,00 por metro quadrado para ser construida, e os lados e o
topo custardo RS 3,00 por metro quadrados para serem construidos. Use os
multiplicadores de Lagrange para encontrar as dimensdes de um contéiner deste
volume que tenha custo minimo.

4. Determine o paralelepipedo retangulo de volume maximo, com arestas paralelas aos

. . . . ., x? 2z
eixos coordenados, inscritos no elipsoide s + % + i 1.
5. Encontre o volume da maior caixa retangular fechada no primeiro octante que tenha
A ;.. X VA
trés faces nos planos coordenados e um vértice no plano - + % + o= 1, onde
a>0b>0ec>0.

6. Considere a fungdo f: R? - Rdadapor f(x,y) = x3+y3 +3y?2 —3x -9y + 2:
(a) Encontre os pontos criticos desta fungdo, se existirem, classifique-os.
(b) Encontre a equagdo do plano tangente a superficie z = f(x,y) no ponto
P(2,1,-1).

7. Determine os extremos absolutos da fun¢do f dada por f(x,y) = —xe¥ +x% +e”
sobre o conjunto fechado e limitado R: regido retangular com vértices (0,0), (0,2), (3,2) e
(3,0).

8. Determine o volume maximo da caixa retangular com trés faces nos planos
coordenados e um vértice no primeiro octante sobre o plano 2x + y + 6z = 6.

. ~ i p ~ . a
9. Sejaafungdo z = (x? + y?)sinxz, sabendo que z é uma func¢do de x e y determine a—i e
2z
ay’
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95 Testeb5

10.

11.

12.
13.

Encontre o volume do sdlido no primeiro octante, limitado superiormente por
z = x2 + 3y?, inferiormente pelo plano xy e lateralmente pelo cilindro y = x2 e pelo
planoy = x.

Use uma integral dupla para calcular a drea da regido no interior do circulo p = 3cos@ e
no exterior da cardioide p = 1 + cosf.

Ache a drea interna ao circulo p = senf e externa ao cardidide p = 1 — cos®f.

Use integragdo tripla para calcular o volume do sélido limitado superiormente pelo
cilindro parabdlico z =4 —y? e limitado inferiormente pelo paraboldide eliptico
z = x% + 3y2.

Encontre o volume do sélido limitado pelo hiperboléide z? = a? + x? + y? e a parte
superior do cone z2 = 2(x? + y?).

Utilize uma mudanga de varidveis apropriada para calcular a drea da elipse b%x? +
a’y? = a’b?.

Calcule a area da parte do plano x+y +z =a que fica no interior do cilindro
x% +y? = b2,

Calcule [f, xydxdy, utilizando mudanga de variaveis, onde R ¢ a regido no primeiro

2=1+4+y2 ¢ y2=x2—

octante limitada pelas curvas x? + y2 =4, y2 =9 = —x?, x
4.

Encontre a drea de superficie da parte do cilindro parabélico z = y? que fica acima do
triangulo com vértices em (0,0), (0,1)e (1,1) no plano xy.

Vi-x?- (x +y2+z2) 3/2

Escreva a integral [ = [ f\h xzf e x2 dzdydx em coordenadas

esféricas e calcule-a.
Ao se estabelecer a integral dupla que dara o Volume V sob o paraboloide z = x2 + y2 e

acima de uma certa regido R do plano xy, chegou-se a seguinte expressao:

1y 22—y
”‘(XZ + yz)dxdy+J. .[(XZ + y2)dxdy. Desenhe a regido R.
00 10

Encontre o volume do sélido T limitado pela superficie (x? + y? + z2)? = 2z(x? + y?).

Calcule a integral a seguir, utilizando as mudancas de varidveis adequadas:
x=y

1,1-y =2

Jo Jo T extvdxdy
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14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

Determine o volume da regido delimitada acima pela superficie de equacdo x2 + y? +
z? = 2 e abaixo pela superficie de equa¢do z = x? + y2.

Determine a area do paraboloide z = 9 — x% — y2 que esta acima do plano z=5.
Determine o volume V do sélido D limitado pelos planos z=6ez =2y e pelos
cilindros  y=x%ey=2—x2.

Calcule ffD (x? — y?) cos(x — y) dxdy, onde D é o dominio dado pelo paralelogramo
de vértices A(0,0), B(1,1), C(2,0) e D(3,1).
Determine o volume do sélido situado no 12 octante limitado por x2+z=1 e

yi+z=1
Converta as seguintes integrais para coordenadas polares
1 V1-x2 ,2..2 2 (0
a) Jy J, e* Y dydx b) 7, f_\/4_—y2w/x2 + y2dxdy

Determine o volume do sélido que estd abaixo do paraboléide z = 2 + x? + y? , acima
do plano xy e dentro do cilindro x2 + y? = 4. Além disso, o sélido esta no 12 octante.

Utilize uma mudanca de varidvel adequada para calcular a integral ffR %ﬁ:ﬁcm onde

R é a regido trinagular envolvida pelas retas y=0, y=x e x + y = /4.

Use uma transformacao apropriada para calcular a integral
2/3 (2-2 _ . .
) / ) y(x + 2y)eY *dxdy escrevendo-a como uma integral sobre uma regido G no
0 y

plano uv.

. N . x2  y%  Z? -
Determine o volume do elipséide de equa¢do — + 5 + — = 1 utilizando mudanca de
a b? = ¢?

variavel.
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9.6 Testeb

1. Determine a d4rea da parte da superficie z=xy que estd dentro do cilindro
x2+y?2=1.

2. Utilize integral tripla para calcular o volume do tetraedro limitado pelos planos
x+2y+z=2,x=2y,x=0ez=0.

3. Utilize integrais triplas para calcular o volume do sélido, no primeiro octante, que é
formado pelo cilindro y> + 2= 1 e pelos planosx=0evy = x.

4. Utilize coordenadas cilindricas para calcular [ff. (¥ +xy*)dV, onde E é o sélido do

primeiro octante que estd abaixo do paraboloide z = 1 — x? — y?2.

5. Utilize coordenadas esféricas para calcular o volume do sélido que esta dentro da esfera
x% + y? 4+ z% = 4, acima do plano xy e abaixo do cone z? = x? + y2.
6. Utilize mudanca de variavel adequada para calcular a integral ffR cos (%) dA, onde R

é a regido trapezoidal com vértices (1,0), (2,0), (0,2) e (0,1).

7. Encontre a drea de superficie gerada pela rotagdo do arco y = §x3, dex=0ax=3

em torno do eixo x.
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9.7 Teste7

1. Atribua V para uma sentenca verdadeira e F para uma falsa. Justifique tanto as
sentencas verdadeiras quanto as falsas.

Um fluido escoa com velocidade uniforme ¥ = —yt.
a) ( ) Todas as particulas se movem em linha reta.
b) ( ) O campo velocidade representa um escoamento incompressivel.
c) ( ) O fluxo de ¥ é irrotacional.

2. Integre o campo vetorial F(x,y,z) = xyl + yzf+xz§ ao longo da cubica enrolada
7(t) = tT+ %] + t3k, de (—1,1,—1) até (1,1,1).

3. A forga F(x,y) = %(y?—xj') é aplicada continuamente em um objeto que percorre

uma elipse em posi¢cdo normal. Calcule o trabalho realizado durante a érbita e a 4rea da
elipse. Encontre uma relagao entre o trabalho e a area.

4. Mostre que a integral de linha fr (4x + 2y)dx + (2x — 2y)dy é independente do

caminho e calcule a integral, se I for qualquer curva seccionalmente suave, de (4,—2) a
(—1,2).

5. Um fio em forma de um quarto de circunferéncia C: r(t) = a(costi + sentj), t € [OE]

tem densidade de massa varidvel p(x,y) = k(x + y), onde k é uma constante positiva.
Encontre a massa total do fio.

6. Utilizando o teorema de Green, calcule a integral gﬁr 3ydx + 5xdy, onde
-2+ @F+1%2=1

7. Esboce a regido R limitada pelas curvas xy =4 e x+y =05 e use o corolario do
teorema de Green para encontrar a area de R.
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10 Respostas dos testes

10.1 Respostas do teste 1

1. Uma fun¢do vetorial de uma varidvel é uma fun¢do do tipo f:I € R - RK. Essas
fungdes associam a cada valor real do intervalo I, um vetor f(t) no espago RX.

Exemplo: f(t) = (t;1 — t;t2), £() = (In(); 1; ¢; 2t3)

2.

3. fé continua para t=0 e ndo é continua para t=1.

4. Parat = % € [0,m], 7'(t) = 0 logo, a curva ndo é suave nesse intervalo.
5. S =2 (e~ 1), 1= (e - 1)

6. Continua

7. v(1) = (2,2)
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10.2 Respostas do

teste 2

1. 2 lim(x,y)e(o,o)f(x' y)
2. D(f) ={(x,y) € R?*|4x* > y?}, Im(f) =]0, +oo[

Regiao de dominio

i 7 B i,
v C 777
Bnoo6o.&o6o6ooB9 @'= p2Q20[p)fnninonooni
n.. f  %55565o9ooo90B9. T =
o.o99%9B6o<§o99$3 ' - | o J N B696noGoJBJZoZoZBNJJ "<«
o0  959%9gGBGG. .6
o i
> 9 9»2B .. .G
- B > - E o »~>Z»~99>9»_:_

4. Alimgyyyoe0,0) f(Y)

3.

5. D(f) = {(x,y) € R?|]1 — 2x?> —y?2 > 0}, Im(f) = [0,1]
Regido de dominio

6. Usar definicdo

7. Alinterseccdo (parte mais forte

Gréfico da funcdo

N

Mapa de contorno

@)

-
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10.3 Respostas do teste 3

1. D, f(P)= %, D, . f(P) = Vv82. As derivadas parciais sdo as derivadas direcionais

calculadas nas dire¢des dos vetores na base candnica ortonormal.

x =343t
2. m:3x+8y—5z2=0,r:1y=2+8t
z=5—-5¢t
T
X = g
3. m:3y—z+1=0,r: y =3t
z=1-t
4. Verresposta da questdo 2.
—44 644
5. Duf(P) =77, Du,e f(P) = |55
a4 - 2
6. e 2,57m*/h
a) que possui limite nesse ponto, que é definida nesse ponto e que o valor do limite é
igual ao valor da funcdo nesse ponto. b)
f (o +Ax,y0)—f (x0.50) Ay)—f(X0,Y0)

limp, o ,limAyﬁOf(xO’yO_ c) f(P) representa o

Ax Ay
coeficiente angular da reta que tangencia a curva x (curva de intersec¢do da superficie
z=f(x,y) com o plano y = y,) no ponto P, em relagdo ao eixo ox. fy(P) Representa o
coeficiente angular da reta que tangencia a curva y (curva de intersec¢do da superficie
z=f(x,y) com o plano x = x,) no ponto P, em relagdo ao eixo oy. d) Vetor que possui suas
componentes sendo as derivadas parciais da funcdo f. E um vetor normal a superficie
z=f(x,y) num ponto P.

x=-1+t
8. r y=- ,
z=2+-
2
9. 0,19 m/min

10. a) que podemos escrever seu incremento da seguinte forma: Af(xq,y,) =
fx(X0,Y0)-Ax + f,(x0,¥0). Ay + £1Ax + £,Ay, sempre que & — 0ee&, —» 0 quando
(Ax, Ay) — (0,0). Se f é diferenciavel no ponto P entdo f é continua ho mesmo ponto.

Fx(xo+A%,y0) = fx(X0,Y0) fy(x0,¥0—AY)—fy (x0,¥0)
Ax Ay

ortogonal as curvas de nivel de f, no ponto dado. Ex: f(x,y) = x? + y?

. ¢) O vetor grad(f) é

b) limpy—o ,limpy 0

\ N\ y/l _/"
NS

11. A fungdo ndo é continua no ponto dado logo, ndo é diferenciavel.
12. 18751 cm3/min

|

N

o
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13.

Este mapa representa as faixas de variacdo da temperatura.

o= Exemplo: entre as curvas obtidas para z=0 e z=1 temos a

/{// \\\\1 primeira faixa de temperatura que varia de 0°Ca 1°C. b)

\\l\'?\ ' //I/J Dy,..f(@) = —8°C/u.m. e ocorre na diregdo do vetor
L gradiente, porém em sentido contrario.

14. 0,225 A/s

10.4 Respostas do teste 4

7.

8.

2 ?{/§m, 2 ?{/§m, e ¥3m
8u.a.
23/45m, 23/45m, e 3 V45m
23 4+/3
— u.c,V3u.c,—u.c
3 3
abc
—u.v.
27
a) P, (1, —3)ponto de sela, P,(1,1)ponto de mimimo relativo,

P;(—1,—-3)ponto de madximo relativo, P,(—1,1)ponto de sela

P(1,In(2))ponto de sela, P(0,2)ponto de maximo absoluto,

2
P <7, 2) ponto de minimo absoluto

2

- Uu.v.

3

0z _ 2xsen(xz)+x%zcos(xz)+y?zcos(xz) 0z _ 2ysen(xz)

ax 1-x3 cos(xz)—xy2cos(xz) ’ 8y~ 1-x3cos(xz)—-xy2cos(xz)
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10.5 Respostas do teste 5

6
2. mua 15. Z(17V17 - 1)ua
3 4-m
o4 16. 33—2uv
4, 4
ruv 17. 4sen2 + 5cos2 — 1
2 3
5. Z-(V2-1)uy 18. Suv
6. abmua 19.
z 1 2
7. b?m\3ua a) f02 fo e pdpd6
3
15 > (2
8. b) [z* J, ppdpd6
2
9. %(5\/5 —1)ua 20. 4 uv
. 21. U
10. En(e -1 22, §+ o2
12. Zn uv 23. 2 abc uv
15 3

13. %(e —e ™

10.6 Respostas do teste 6

2m 1 1 2 8v2m 3sen1 T
1L (2v2-1) 2.0 3.5 4 5-— 6— 7..(82V82-1)

10.7 Respostas do teste 7

oP _ 9Q _ 9R

1-a.(V)
1-b.(V) x Ty 0. Logo, o escoamento é incompressivel.

1-c.(F) rotv = (0,0,1). Logo, o fluxo ndo é irrotacional.
2.10/7

3. w = —abm, Area=abm. Relagdo: Area=| w|

4.-18

5.2ka? um

6.2m

7.

15
A= (7—4ln4)ua
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11 Provas passadas

11.1 Proval 2017/1

[Fr)xsn )|

FoR Considere a curva

Questdo 1. A curvatura de uma curva é calculada por k(t) =

3 —
C:7(t) = 2tT + %thif— t2k.

a) (1,0) Calcule a curvatura da curva no ponto (2;%5; -1)
b) (1,0) Escreva a fungdo comprimento de arco para a curva C.

Questao 2. A curva abaixo recebe o nome de “Lagrima” e possui equacdo C:7(t) =
(2acost — asen2t, bsent), ab # 0.

a) (1,0) A curva C é simples ou ndo simples? Por qué?
b) (1,0) A curva é suave no intervalo de [0, 7]? Mostre.

2 2 2
Questao 3. (1,0) Mostre que a equagdo do plano tangente ao elipsoide x—z + Z—z + i—z =1, no

a
. XXo YYo ZZg __
ponto (x,, Y, Z,) pode ser escrita como Tttt =1

(xz + xiz) y, (xy) # (0,0)

Questado 4. (1,0) Investigue a continuidade da fungdo f(x,y) = {
0, (x,y) = (0,0)

no ponto (0,0).

Questao 5. (0,8) A férmula do tamanho do lote de Wilson, utilizada na economia, afirma que
a quantidade mais econdmica Q de bens (radio, sapatos, vassouras, o que quer que seja)

2KM

para uma loja pedir é dada pela expressdo Q(K,M,h) = — onde K é o custo do

pedido, M é o niumero de itens vendidos por semana e h é o custo de estocagem semanal
para cada item. Determine a expressao para o calculo do diferencial total da funcdo Q.

Questdo 6. Uma placa fina de metal estd situada no plano xy. A temperatura T (em °C) no
ponto (x, y)é inversamente proporcional ao quadrado de sua distancia até a origem.

a) (0,5) Expresse T como funcdo de x e y.

b) (0,6) Indique o dominio e aimagem da funcdo.

c) (0,5) Esboce um conjunto representativo das curvas de nivel.

d) (0,4) Suponha que a temperatura no ponto (1,2) seja 50°. Qual é a temperatura no
ponto (4,3)?

Questdo 7. (0,6 cada) Verifique se as afirmacGes abaixo sdo verdadeiras (V) ou falsas (F). Se
forem verdadeiras, explique-as; se forem falsas, reescreva-as de modo a ficarem
verdadeiras.

a) ( ) Todo espaco linear n-dimensional é euclidiano.

b) ( ) No ponto de tangéncia entre duas superficies ha um plano tangente a ambas
cujo vetor normal pode ser a subtracdo dos gradientes (quando distintos) de cada
superficie.
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11.2 Trabalho 1 2017/1

Questao 1. Uma placa metdlica circular com um metro de raio estd colocada com centro na
origem do plano xy e é aquecida de modo que a temperatura num ponto (x,y) é dada por
T(x,y) = 64(3x2—2xy +3y2+2y+ 5) graus, onde x e y estdo em metros. Encontre a
maior e a menor temperatura na placa.

Questao 2. Um galpdo retangular deve ser construido num terreno com a forma de um
triangulo, conforme a figura a seguir. Determinar a area maxima possivel para o galpao.
(Dica: represente o esquema no plano cartesiano). Utilize Lagrange.

i0m

‘GALPAD

| |
' 20m L

Questao 3. Projete uma caixa retangular de leite com largura x, comprimento y e altura z,
que contenha 512 cm?3 de leite. Os lados da caixa custam 3 centavos/cm? e o topo e o
fundo custam 5 centavos/cm?. Ache as dimensdes da caixa que minimizem o custo total.
Qual é esse custo? (Nao utilize Lagrange).

Questdo 4. A equagdo x + z + (y + 2)? = 6 define z implicitamente como funcio de x e
.. 0z 9z 9%z
de y, numa vizinhanga do ponto (5; —1,1). Calcule o 3y € ayox " ponto (5,—1,1).
Questao 5. Dadas as equagdes F(x,y,u,v) = xy*> + xzu + yv? =3 e
G(x,y,u,v) =udyz+2xv = 2.Sabendoqueu = u(x,y,z)ev = v(x,y,z), determine g—;
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11.3 Prova 2 2017/1

x . . . . . 3
Questdo 1. A drea de uma figura é calculada pela soma das integrais fol fjé;xdydym
3

V3 Va—x2 . - . -
fl [ax ~ dydx . Esboce a regido que delimita essa area e calcule-a, utilizando uma nova
3

integral composta de apenas um fator.

Questao 2. Escreva duas integrais triplas equivalentes para calcular o volume da figura
abaixo. Calcule-as. T
pd

3
Questdo 3.  Calcule fff, e HY*+2°)2 4y sabendo que W ¢ a regido delimitada pela esfera

2442
x%+y?+z%2=16epelosconesz =./3(x2+y%)ez= x2+y

3 .

Questio 4. Calcule ffD (2x — y)tan(y — x)dA, sabendo que D é a regido delimitada por
y=2x-1,y=2x-2, y=x+2 e y=x+3

Questao 5. Encontre a area da superficie gerada pela rotagdo em torno do eixo y da parte
dacurvay = x%entrex = lex = 2.

Questao 6. Calcule a area que fica acima da limagon r = 2 — sin(t) e dentro da cardioide
r =1+ sin(t).
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11.4 Prova 3 2017/1

Questdo 1. (1,0) Dado o campo F(x,y) = (xZ,ny), calcule o trabalho necessario para
deslocar uma particula do ponto A ao ponto C, passando por B.

2 1Y

-1

Questao 2. (1,0) Calcule a integral fr (3y — \/E)dl onde I' é a o arco da pardbola z = y?,
no plano x = 1, entre os pontos A(1,0,0) e B(1, 2,4).

Questdo 3. (1,0) Utilize o teorema de Green para calcular $(y + e*lny)dx + e;dy,

sabendo que a regido de integracdo é limitada pelas curvasy = x2 ey = 8 — x2

Questdo 4. (1,0) Dado o campo F(x,y,z) = (x,y,z), mostre que ele é

2
x24y2+z2

independente do caminho e calcule ff Fdr onde A(—1,—1,—1)e B(2,2,2).

Questao 5. (0,5 cada) Tomando como referéncia o campo do exercicio 4, determine se as
afirmagGes abaixo sdo verdadeiras ou falsas, justificando-as em ambos os casos.
a) F é continuo no R3.
b) divF(1,0,1) = 1.
c) Vetores paralelos terdo mesmo madulo.

Questao 6. (1,0 cada) Aplique algum teste conveniente para verificar a convergéncia ou
divergéncia das séries abaixo:
a) Yo, 2kek

(k)?
b ]
) Zk—l (2k)!
~ T o DL o . o .
Questao 7. (1,5) Teste a série Zkzlm para convergéncia ou divergéncia e, se possivel,

estime sua soma pela quinta soma parcial, indicando se aproximagdo é por cima ou por
baixo.

Questdo 8. (1,0) Encontre a série de Maclaurin para f(x) = (1 + x)*onde k é um nimero
real.
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12 Respostas das Provas passadas

12.1 Respostas da Prova 1 2017/1

1a) g 1b) S(x) = x? + 2x
2a) Simples e fechada 2b) Ndosuavenot = %

3) Demonstragao
4) Nao existe limite no (0,0), logo ndo é continua no (0,0).
)

Ul

k
6a)T(x,y) =55 6D D) ={(xy) € R?/(x,y) # (0,0)}
Im(f) =]0;+o[sek >0 e]—;0[sek <0
6c) Conjunto de circunferéncias concéntricas com centro na origem.
6d) T(4,3) = 10°C

7a) Apenas os que possuem uma métrica definida para ser Euclidiano.

7b) Os gradientes sdo colineares e como a subtracdo gera um vetor colinear a ambos, sim pode
ser.

12.2 Respostas do Trabalho 1 2017/1

1.3

1) Ponto interior P; (_5' 8) ponto de minimo relativo

1 V3

Fronteira: P, (—%; J;) ponto de maximo absoluto, P (_E; —7); P,(1;0)

1 3\, , .
O ponto P (_5; — E) € também minimo absoluto.

2) Area maxima = 50m?

3) x=6,75cm, y=6,75cm e z = 11,24 cm Custo = R$ 13,66

0z 0z 0%z
4 5;P)=-1 5P =0 S-(P)=2
3

v exuly?+3utviy—xulz

a 2x2—-6u?y2y
12.3 Respostas da Prova 2 2017/1
1) gua
1 1,1 ,1- 11— 2
2) Sw fo [zl ydzdydxzfo /5 yfoy dxdzdy
3) (e -D(3-1)
4) 2 (In(cos2) — In(cos3)) = 0,001143
5) =(17V17 - 5V5)ua
6) 3v3 — 7 = 2,05 ua
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12.4 Respostas da Prova 3 2017/1

8
w=—-
. 3
=(17v17 - 1)
_o4
3
In(4)
a) ndo é continuo na origem; b) verdadeiro; c) Falso (verificar (1,0,0) e (2,0,0))
a) convergente b) convergente

convergente (T. Leibniz) |S — S¢| < 0,0069 por cima
st tx s (k= Dx + 2 (k= Dk = 2x3 + (k= Dk —2) - v (k—n + 1)
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13 Apéndice

13.1 Identidades trigonométricas

sen?x + cos’x =1

sec’x =1+tg?x

cosec?x =1+ cotg?x

cos?x = %(1 + cos(2x))

sen?x = %(1 — cos(2x))

sen(2x) = 2senx - cosx

cos(2x) = cos?x — sen’x

cos(a + b) = cosa - cosb ¥ sena - senb
sen(a + b) = sena - cosb + senb - cosa

WONO U A wWwNE

13.2 Tabela de derivadas

c=constant, u=f(x)

1. y=c=y =0 20. y=arccosu =y =-u /\1-u?

2. y=x=y'=1 21. y=arctgu =y =u /(1+u?)

3. y=cu=y=cu 22. y=arccotgu =y =-u /(1+u’)
4. y=u+v:>y’=u+’v , 23. y=arcsecu :>y'=u'/|u|.\/m

5, y=u.v=>y=v.u +u.v ' '

6. y=u/v oy = (v -uv)/V 24. y=arccosecu =y =-u /|u|.\/u2——l
7. y=u' =y zauly’ 25. y=senhu =y =coshu.u’

8. y=a'=y =a'lnau’ 26. y=coshu =y =senhu.u’

9. y=e'=vy'=e'u’ 7. y=tghu =y =sech’u.u’

28. y=cotghu =y =-cosech’u.u’

=
©

y=logau =y'=(u/u)log z¢

11. y=|nu:>y'=(u'/u) 29. y=sechu =y =-sechu.tghu.u

12, y=u' =y =v.o’Lu +u. Inu v’ 30. y=cosechu =y =-cosechu. cotghu. u

13. y=senu =y =cosu.u 31 y=argsenhu =y '=u'/Ju?+1
14, y=cosu :>y'=-senu.u' 32. y=argcoshu :»y'=u'/\/ﬁ
15. y=tgu =y =sec’u.u 33. y=argtghu =y =u /(1-u?)

16. y=cotgu =y =-cosec’u.u 34. y=argcotghu =vy =u /(1-u?)
17. y=secu =y =secu.tgu.u’ 35. y=argsechu =y =-u /us1-u?

18. y=cosecu =y =-cosecu.cotgu.u

19. y=arcsenu =y =u /y1-u?

36. y=argcosechu =y =-u /|ulv1+u?
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13.3 Tabela de integrais

1. [du=u+C du u
16. | —==arcsen—+C
du '[ va’-u?* a
2. - =Inlu/+C . I TR
. | —=="arctg—+
dy — uet c az+u2 a ga
> Ju Can” 18 [——— :—arcseo{ +C
4. [adu= 2 ¢ uvu®
Ina 19. jsenhu du =coshu+C
5. Je'du=e'+C 20. [coshudu =senhu +C
6. [senudu=-cosu+C 21. [sech’udu =tghu +C
7. Jcosudu=senu+C 22. [cosech’u du =-cotghu +C
8. [tgudu=Injsecu/+C 23. [sechu.tghu du = —sechu+C
9. [cotgudu = Injsenu|+C 24. [ cosechu.cotghu du =- cosechu+C
10. [cosecudu = Injcosecu—cotgu| + C . | Tl
11. [secudu = Insecu+tgu|+C ' '[,/u2+a2 - n‘u+ v
12. [sec’udu=tgu+C %. | 2du 222 nural, o
13. [cosec’udu =-cotgu+C a -\ a [u-a
[A2 2
14. jsecu.tgu du =secu+C 27. .[ (ju : =_l| atva tu
uva“t u a u
15. [ cosecu.cogu du =- cosecu+C
13.4 Alfabeto Grego
A B r A E z H (C] | K N M
a B y ) € { n 0 L K A U
alfa | beta | gama | delta | épsilon | zeta | eta | teta | iota | Capa | lambda | mi
N = 0] Mn P 2 T Y 0] X W Q
vV & 0 T p o T v Q X U )
ni csi | Omicron | pi ro sigma | tau | ipsilon | fi qui psi | 6mega
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13.5 Leituras complementares

Links com exemplos de aplicagdes do calculo nas Engenharias Elétrica e Quimica.

» Funcgdes de duas variaveis, derivas e integrais.
http://conferencias.utfpr.edu.br/ocs/index.php/sicite/2012/paper/view/718/616

http://www.usp.br/massa/pessoal/riveros/tutorial/intro.pdf

» Fluidos incompressiveis.
http://www.hottopos.com/regeq2/sao_os liquidos incompressiveis.htm

» Campos escalares e vetoriais...
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDM
QFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA Cl.pdf&ei=
Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2IdHSaKaD210b1JinVhj1TY8Tw&bvm=bv.599
30103,d.eW0

http://www.lemma.ufpr.br/wiki/images/0/0b/MecFlu-v3-8cap.pdf

> Equaces de Laplace e Poisson, integrais de linha...
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQ
QFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengen
hariaeletrica%2Fpos-graduacao%2F218-
dissertacao_elson borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaAp
bpXjwWaibb06EgggEkQ&bvm=bv.59930103,d.eW0
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http://conferencias.utfpr.edu.br/ocs/index.php/sicite/2012/paper/view/718/616
http://www.usp.br/massa/pessoal/riveros/tutorial/intro.pdf
http://www.hottopos.com/regeq2/sao_os_liquidos_incompressiveis.htm
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDMQFjAC&url=http%3A%2F%2Fwww.feng.pucrs.br%2F~decastro%2Fpdf%2FA_C1.pdf&ei=Or7iUpG7EsSrkAfynYHYCw&usg=AFQjCNGd2ldHSaKaD2IOb1JjnVhj1TY8Tw&bvm=bv.59930103,d.eW0
http://www.lemma.ufpr.br/wiki/images/0/0b/MecFlu-v3-8cap.pdf
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
http://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDQQFjAC&url=http%3A%2F%2Fwww.feis.unesp.br%2FHome%2Fdepartamentos%2Fengenhariaeletrica%2Fpos-graduacao%2F218-dissertacao_elson_borges.pdf&ei=xMXiUtCnGcOnkQeDt4CoBA&usg=AFQjCNH3vkzDaApbpXjwWaibb06EgqqEkQ&bvm=bv.59930103,d.eW0
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