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Apresentacao

Os numeros fascinam e estao presentes na vida do homem a varios séculos,
sendo talvez uma das ideias mais marcantes da humanidade, pois estavam
presentes no florear de todas as civilizagdes. “O conceito de nimero inteiro
€ 0 mais antigo na matematica e sua origem nao se pode precisar na histéria
da Matemética.

Mas afinal o que € um nimero ? Numero € uma ideia abstrata de quan-
tidade. Exemplifico: Existem mais cabelos na cabeg¢a de uma pessoa do que
os dedos de suas maos. Sem contarmos a quantidade de cabelos, afirmamos
que esta é maior que o nimero de dedos, isto é, as quantidades de cabelos e
de dedos séo exemplos de nimeros.

O homem para chegar ao nimero criou inicialmente a contagem, que
auxilia na percepgao das quantidades. Portanto, contagem € uma sequencia
que associa cada elemento de uma cole¢cdo a um Unico elemento de outra.
A oito mil anos a.C ocorreu a histéria do pastor e suas ovelhas: pela manha,
ao sairem as ovelhas do cercado, o pastor colocava uma pedra de lado para
cada animal que passava na porteira, formando um monte de pedras. No fim
do dia, o pastor retirava do monte uma pedra para cada ovelha que retornava
para o cercado. Se faltassem pedras, o pastor sabia que o nimero de ovelhas
havia aumentado e se sobrassem, o pastor sabia que algumas ovelhas ha-
viam ficado para trés e sairia para procura-las.

No leste europeu foi achado um osso de lobo com profundas incisées
em numero de cinquenta e cinco. Estavam dispostos em duas séries, com
vinte e cinco numa e trinta na outra, com riscos em cada série dispostos em
grupos de cinco. Note que o homem primitivo criou agrupamentos dentro do
préprio processo de contagem, isto é, formou grupos menores e passou a
contar os grupos. Nasce a base de contagem. Foram encontradas nas civili-
zagdes antigas as seguintes bases:

e Grupo de 2 (base binaria)

e Grupo de 3 (base ternaria)

e Grupo de 5 (base quinaria)

e Grupo de 10 (base decimal)

e Grupo de 20 (base vigesimal)

e Grupo de 60 (base sexagesimal)
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Mais adiante o homem civilizado criou os simbolos para representar
os nimeros e assim aperfeicoou cada vez mais a forma de contagem. Mo-
dernamente chamamos de algarismos os simbolos que combinamos para a
formagao dos numeros. Exemplifico: 344 € o nimero trezentos e quarenta e
quatro e possui trés algarismos. A forma de se escrever por extenso os nu-
meros nasceu no século Il com os astrénomos e matematicos indianos. Hoje,
a palavra digito, originaria do latim e que significa dedo, é usada para indicar
qualquer dos algarismos de 0 a 9.

Andia & um pais que ocupa uma extensa regido da Asia, entre o ocea-
no indico e a cordilheira do Himalaia, banhada pelos rios Indo e Ganges. Essa
civilizagdo indiana criou o nosso sistema de numeracao, que é sem dlvida,
uma das criagdes mais importantes no desenvolvimento das ciéncias.

Os matematicos indianos sabiam que 3 dezenas e 1 unidade é diferente
de 3 centenas e 1 unidade. Mas como registrar esses simbolos? Foi quando
um desconhecido hindu, no século V, teve a ideia de criar um simbolo para
representar o NADA. Esse simbolo era o ponto e a palavra era sunya (vazio).
Entédo aqueles dois nimeros anteriores eram representados assim:

13 13
(10+3) (100 + 3)
pois o0s hindus escreviam os nimeros comegando pela esquerda. Es-
tava criado o zero, significando auséncia da unidade, ou dezena, etc, isto é, o
zero tornou-se um algarismo, instrumento de grande importancia como base
da contagem.

O Autor.
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Introduio & Teoria dos Nimeros

Objetivos

e Conhecer um pouco da Histéria dos nimeros.
e Apresentar os nimeros na Grécia Antiga.

Introdugao

Apesar de termos falado na apresentagao deste livro sobre a histéria dos na-
meros, dedicamos este primeiro capitulo ao conhecimento de mais um pou-
co dessa histéria, visto que os nimeros séo o objetivo maior desse texto. As
grandes civilizagées que povoaram a histéria da humanidade tiveram seus
pensadores ou filésofos que nos deixaram alguma contribuicdo no que diz
respeito aos numeros.

1. Surgimento e evolugao da Teoria dos NiUmeros

No quarto milénio a.C existiram duas civilizagées brilhantes. A Mesopotamia
(Territério pertencente hoje ao Ird) banhada pelos rios Tigre e Eufrates foi sem-
pre uma regido muito conturbada por guerras entre seus habitantes. Os Su-
meérios, que inventaram a escrita por volta de 3.500 a. C, construiram casas
decoradas com ceramicas e mosaicos com desenhos geométricos. Acredita-
-se que depois da invencao da escrita, foram criadas as primeiras escolas,
para treinar escribas para trabalhos comerciais e governamentais. O sistema
de numeragao dos Sumérios usava como base o nimero 60, que originou a
convencgao até hoje de dividir o circulo em 360°, a hora em 60 minutos e o
minuto em 60 segundos.

Os Sumérios foram conquistados pelos Acadios, que se estabeleceram
na cidade de Ur, que poucos séculos depois foram conquistados pelos Elami-
tas que destruiram Ur e a Suméria. Por volta de 1.800 a.C, os Elamitas foram
conquistados pelos Amoritas, que fizeram da Babilénia sua capital. O rei Ha-
murabi (1.700 a. C?) cria o primeiro cddigo de leis (Dente por dente, olho por
olho) e eleva a Babildnia a uma posi¢ao importante na regido.
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A Mesopotémia, que desenvolveu um sistema de escrita na forma de
cunha feita com estilete em placas de argila, cosidas em fornos ou sol (cunei-
formes), também nos deixou muitas informagdes sobre a matematica daque-
le periodo. Em 1870 descobriu-se a pedra behistein que trazia uma narragao
trilingue (Persa, Elamitico, Babilénica) que continha entre outras informagoes:

e anocao do zero como vazio

« um valor aproximado de raiz quadrada de dois, V2 = 1,414222
e a area do quadrado,

e 0 volume do tronco de cone

o formas de fatoracéo e a figura

Do Egito, pais que fica na Africa banhado pelo rio Nilo, sede de uma
das civilizagbes mais antigas, herdamos a divisdo do dia em 24 horas. Em
1799 uma expedicao de Napoledo descobriu a pedra de rosetta com narracéo
trilingue (Grego, Demética, Hieroglifica) que continha

e numeracgao de base 10

e calculo preciso das piramides

e astronomia relacionada com as enchentes do rio Nilo
e calendéario

e darea do tridngulo isbsceles e do circulo.

Outras importantes descobertas na antiguidade foram o papiro de Mos-
cou (1.850 a. C) que continha 25 problemas resolvidos de aritmética e geo-
metria e o papiro Ahmes (1.600 a. C) , descoberto no século XX pelo escocés
Henry Rhind que contém 85 problemas de aritmética e geometria.

Os Babilbnios e Egipcios construiram, ao longo de suas histérias um
acumulo matematico significativo, mas totalmente desprovido de conceitos
tedricos, dedugdes ldégicas e muito menos de abstracao
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Introduio & Teoria dos Nimeros n

1.2 O Milagre Grego

A partir do século VI a. C. s civilizagdes Mesopotémica e Egipcia comeg¢aram
a entrar em dclinio, e foi quando os gregos chamados helenos (antigos ante-
passados) comegaram a dominar a regido mediterranea. A Grécia esta situa-
da entre os mares Egeu e J6énio e muitos viajantes de origem Mesopotamica e
Egipcia chegaram as colbnias gregas devido as atividades comerciais, como
também os gregos viajaram bastante para a Mesopotamia e o Egito. Nesse
periodo os gregos usando a razédo, mas sem desprezar a experimentacao e
a observacéo, tiveram uma atitude ousada, desenvolvendo a abstracéo e o
raciocinio légico.

Na cidade de Mileto (Territério pertencente a atual Turquia) viveu um
homem admiravel chamado Tales de Mileto (624 a. C — 548 a. C ?) que foi
discipulo dos egipcios. E considerado o primeiro matemaético e o primeiro fil6-
sofo da humanidade. Para Tales “A &gua era o principio fundamental de todas
as coisas” e a frase “Conhece a ti mesmo” é também de Tales. Em 585 a. C.
Tales assombrou seus contemporéaneos ao predizer um eclipse.

Pouco se sabe sobre a vida e a obra de Tales. Sua atividade rotineira
era o comércio. O fildésofo grego Aristételes (384 a. C — 322 a. C) relata a for-
tuna de Tales no monopdlio de prensas de azeite e mercado de sal. Por ser
discipulo dos egipcios, fez varias viagens para aquele pais visitando as pirami-
des. Medindo a sombra da piramide de Quéops e de um bastao que plantara
verticalmente na areia, calculou a altura da piramide, com o uso de propor¢éo.

Dai, seu interesse pela geometria (medida da Terra). Tales foi o primei-
ro individuo da histéria a formular algumas propriedades gerais sobre figuras
geométricas. Por exemplo : “dois &ngulos opostos pelo vértice s&o iguais”.
“Qualquer diametro divide o circulo em duas partes iguais”. “Qualquer angulo
inscrito em um semi-circulo € reto”. “No tridngulo isésceles, os angulos da
base s&o iguais”. Mas nao foi com Tales que a matematica atingiu a abstracao

e as dedugdes logicas.

A cerca de 50 km de Mileto, na ilha de Samos, nasceu o homem que
empresta seu nome ao mais conhecido de todos os teoremas da matemati-
ca — Pitagoras (580 a. C — 500 a. C?) contemporaneo de Buda e Confucio,
fez varias viagens & Mesopotamia, ao Egito e & india, E dificil separar histéria
e lenda no que se refere ao homem, pois Pitagoras representa tantas coisas
para o povo — filésofo, profeta, astrbnomo, matematico, santo, abominador de
feijées, mistico, milagreiro, charlatdo, magico. O certo é que Pitagoras desen-
volveu a ideia da légica numérica e a abstragao e foi responsavel pela primeira
idade de ouro da matematica.

Em 520 a. C. Pitdgoras deixa sua terra por detestar o tirano Policrates que
governava Samos indo para o sul da Itdlia e se estabelece em Crotona, onde
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conheceu o patrono Milo. Milo era 0 homem mais rico de Crotona e um dos ho-
mens mais fortes de toda a histéria. Era um homem de proporgdes herculeas,
que fora doze vezes campeé&o nos jogos olimpicos. Um recorde. Em seu novo
lar, funda por volta de 540 a. C, a Irmandade pitagérica, um grupo de apro-
ximadamente seiscentos seguidores ou discipulos, capazes ndo apenas de
entender seus ensinamentos, mas também de contribuir criando idéias novas
e demostragdes. Cada membro da Irmandade era for¢ado a jurar que nunca
revelaria ao mundo exterior qualquer uma de suas descobertas matematicas.

A estudante favorita de Pitagoras era a filha de Milo, a bela Teano, que
apesar da diferenga de idade, os dois se casaram. Logo depois de fundar a
irmandade, Pitagoras criou a palavra Filésofo (Amante da sabedoria e da re-
flexdo). Era norma da Irmandade atribuir todas as descobertas realizadas por
seus membros ao chefe, dai ndo se pode discernir entre as contribuicdes de
Pitagoras e as de seus seguidores ou discipulos.

A irmandade pitagérica tornou-se muito poderosa, mistica, influente em
Crotona e acabou se envolvendo na politica local. Cilon, um dos rejeitados
da Irmandade, surgiu como porta- voz do povo e liderou uma rebelido de sua
populagdo que temia que as terras fossem doadas para a elite pitagérica, ali-
mentando a parandia e a inveja na multiddo contra a escola.O mesmo Cilon
liderou um ataque para destruir a mais brilhante escola de matematica que
0 mundo ja vira. Cercada, todas as portas trancadas e blogueadas, a esco-
la foi incendiada. Pitagoras, sua bela esposa Teano morreram como muitos
dos seus discipulos. A humanidade havia perdido o pai da Matematica, mas o
espirito pitagérico permaneceu. Os nimeros e suas verdades eram imortais.

“Tudo € nimero” era o lema da Irmandade Pitagérica. Consideravam
deus o grande gedmetra do universo e que o mundo era feito de nimeros.
O simbolo da irmandade era o pentdgono e também conheciam o cubo, oc-
taedro, dodecaedro. A descoberta do dodecaedro foi revelado publicamente
por um membro da Irmandade, que quebrou o juramento e foi afogado. A ir-
mandade era realmente uma comunidade religiosa e um de seus ideais era
0 numero. Em especial, a irmandade voltou sua aten¢&o para os nimeros
naturais (1, 2, 3,...) e entre a infinidade dos nimeros, buscava alguns com
significado especial.
¢ NUmeros impares (masculinos)

o NUmeros pares (feminino)

e NUmero um (gera os nimeros, nimero da razéo)

e NuUmeros dois (primeiro nUmero par, nimero da opini&o)

e NUmero trés (primeiro nimero impar, nimero da harmonia)

¢ NUmero quatro (nimero de justica)
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Introduio & Teoria dos Nimeros 13

e NuUmero cinco (hnimero do casamento, unido do primeiro par com o primei-
ro impar)

e Numero seis (nimero da criagao)

e NUmero dez (nUmero sagrado, universo)

e Numeros excessivos (quando a soma de seus divisores é mais do que ele)

¢ NuUmeros fracionarios (propor¢cdes entre nimeros inteiros)

e Numeros perfeitos (divisores somados produzem eles mesmos, com exce-
¢&o do prdéprio nimero)

e NuUmeros amigos (dois nimeros, se cada um deles é a soma dos divisores
préprios do outro)

Como vemos, os Pitagéricos tratavam os nimeros de uma maneira filo-
séfica e abstrata. Também as proposicao seguintes eram conhecidas por eles:

e A soma de dois nimeros pares é par.
¢ O produto de dois nimeros impares é impar.
e Quando um numero impar divide um namero par, também divide sua metade.

1.3. Infinidade de Trios

Depois da morte de Pitagoras e do ataque de Cilon, a irmandade partiu para
outras cidades da Magna Grécia, estabeleceram novas escolas e ensinaram
aos seus alunos os métodos da provas légica, em particular, a prova do mais
conhecido de todas os teoremas da matemética o Teorema de Pitagoras:

“Em todo tridngulo retangulo de lados @ = b = ¢ vale a igualdade

peil]

a® =b* + ¢?

E uma lei universal. Também, entre outras coisas, os pitagéricos expli-
caram o segredo de encontrar trios pitagoricos, ou seja, trés nimeros inteiros
a, b e c que se ajustam & equacéo de Pitagoras a* = b* + c°.

Por exemplo, sdo trios pitagéricos,

a=5 b=4eec=3

a=13 b=12e =5

a=17, b=15 e ¢=238

a=4901, b= 4900 € ¢ =99

Para descobrir tantos trios quanto possivel, os pitagéricos inventaram
um método de encontra-los e provaram que existe um nimero infinito deles.

Ao se trocar o expoente 2 da equacao de Pitagoras por qualquer na-
mero natural n = 3, a busca de trios pitagéricos deixa de ser um problema
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simples e se tornar um desafio. De fato, o grande matematico Francés Pierre
de Fermat (1601 — 1665) afirmou que ndo existem trios para esta equacao.
Tal afirmacéo ficou conhecida como o Ultimo Teorema de Fermat e estabele-
ce que : “ndo existem valores inteiros positivos para a, bec que satisfacam a
equagao a™ = b™ 4+ ¢" paran = 3"

O Ultimo Teorema de Fermat tornou-se um enigma que confundiu as
maiores mentes do mundo durante 358 anos. Vidas inteiras foram devotadas
a busca de uma prova para um problema que € aparentemente simples.
Newton (1643 — 1727), Jacques Bernoulli (1654 - 1705), (Nenhuma familia na
histéria da matematica produziu tantos matematicos célebres quanto a familia
Bernoulli, cerca de 13 membros), Euler (1707 - 1783), Lagrange(1736 — 1813),
Gauss (1777 — 1855), que afirmou “a Teoria dos Numeros é a Rainha da Ma-
tematica”, Sophie Germain (1776 — 1831), Galois (1811 - 1832), Einstein (1879
- 1956) e muitos outros.

Mas em 1995, o matemético inglés Andrew Wiles ganhou as paginas de
jornais do mundo inteiro e 50 mil libras da Fundac&o Wolfskenl ao demonstrar o
maior problema de matematica de todos os tempos: O Gltimo Teorema de Fermat.

Sintese do Capitulo

Nesse primeiro capitulo fizemos um relato sucinto da histéria dos nimeros,
onde mencionamos a contribuicdo de povos como os babilénios, sumérios e
egipcios, como também nomes como Tales e Pitdgoras e outros expoentes
da histéria da matemética.

Rtividades de avaliagdo

1. Quais s&o, na sua opinido, as duas mais importantes deficiéncias na mate-
matica Mesopotémia? E Egipcia?
2. Dé exemplos de niUmeros excessivos, perfeitos e amigos.
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Objetivos

e Apresentar nogdes de ldgica proposicional.

e Conhecer a definicéo de proposi¢cao e os principais tipos.

Introducao

Neste capitulo estudaremos um pouco de I6gica. O objetivo desse estudo
de nogdes de logica antes de entrarmos no estudo da teoria dos nimeros é
para se familiarizar com os conceitos de proposigdo, composicao de propo-
sicoes, e outros conceitos que nos permitam entender o que € e diferenciar
um teorema de um axioma ou de um corolario, muito presentes nos capitulos
subsequentes.

1. Generalidades

Em matematica o conceito de prova ou demonstracdo € muito mais rigoroso
e poderoso do que o conceito de prova entendido pelos fisicos e quimicos,
por exemplo. Ela é crucial para entendermos o trabalho de cada matematico,
desde Pitagoras. Para Pitagoras a ideia da prova matematica era sagrada. A
prova é uma verdade mais profunda do que qualquer outra, por ser resultado
de uma légica impecavel, desenvolvida passo a passo. Portanto a prova ou
demonstragdo matematica é absoluta.

Entendemos por: Raciocinio, a forma mais complexa do pensamento.
Légica é a coeréncia de raciocinio ou de ideias. Modo
de raciocinio peculiar a alguém ou a um grupo.

Légico é conforme a légica

Posto isto, podemos ainda afirmar que a I6gica é a ordem no pensamento.
Exemplo:

a) Se todos os amigos de Gregdrio sdo meus amigos e se todos os meus
amigos sao agradaveis entdo todos os amigos de Greg6rio sdo agradaveis.
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b) Se nenhum amigo de Gregbrio € meu amigo e se nenhum amigo de Gregé-
rio € agradavel entdo nenhum de meus amigos € agradavel.

Quando a concluséo (entdo) de um argumento segue de duas premis-
sas (proposicdes que servem de base a conclusdes) entdo dizemos que o
raciocinio é valido ou logicamente valido. E o caso do argumento do exemplo
(@), enquanto que no exemplo (b) a conclusdo pode até ser verdadeira mas
n&o segue de sua relagdo com as premissas e neste caso dizemos que o ra-
ciocinio € invalido ou logicamente invélido. O raciocinio I6gico é de fundamen-
tal importancia para que se identifique, dentre os argumentos que se pretende
utilizar, aqueles que s&o validos e os que nao o sao.

2. Proposic¢oes

Proposigao € uma proposta, ato de propor, assercao, expressao verbal de um
juizo. Uma proposi¢c&o deve ser como uma oragao, que tem sentido completo
com sujeito e predicado. Deve ser verdadeira ou falsa. Nao pode ser ao mes-
mo tempo verdadeira e falsa. Deve ser declarativa, afirmativa.

O valor légico de uma proposicéo é verdade (V') se a proposicéo é ver-
dadeira e a falsidade (F") se a proposigé&o é falsa.

Exemplos:

a) O nimero % € inteiro.

b) Fortaleza é_ a capital do estado do Ceara e fica na regiao nordeste.
c)l+1

O valor légico proposicao (@) é a falsidade (F) e o valor légico da pro-
posicéo (b) é a verdade (V). Em (€) ndo temos uma proposi¢&o, pois est4
faltando o predicado, isto €, ndo tem sentido completo.

2.1. Proposigao simples

Uma proposicéo simples é uma assercado que nao contém nenhuma outra
proposigao como parte integrante de si mesma. Denotaremos as proposicdes
simples pelas letras mindsculas p., g, 7 etc.

Exemplos:
P: Gustavo é pianista

q: Tiago é feliz
2.2. Proposigao composta

As proposigdes compostas sdo assergdes obtidas através de duas ou mais
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proposi¢gées simples com o emprego das expressdes’e’, “ou’, “nao“, “se...
entdo”, “...se e somentese..”.

Denotaremos proposicdes compostas pelas letras maitsculas P, @, R, etc.
Exemplos:
P: Gustavo é pianista e Tiago é feliz.

J: Fortaleza é a capital do estado Ceara ou % € um numero inteiro

R:Naoéverdadequem = 5 e cns(?j =1
5 Se AeB sdo conjuntos ndo vazios entdon(A U B) = n(A) + n(B)
—n(ANE)

T': O triangulo ABC é equilatero se somente se é equiangulo.

2.3. Negagao de uma proposi¢ao

A negacéo de uma proposicao “P” é denotada por ““P“ e se entende como
a afirmacgéo contraria a p, podendo ser lida : “é falso que P* ou colocando a
palavra “ndo“ antes do verbo da proposi¢éo.

Exemplos:
(a)p:2+5=2.
~p: E falso que 2+5=2
(b) g: Sao Paulo é a capital do Brasil.

~gq: S&o Paulo ndo é a capital do Brasil.

2.4. Proposigao condicional

A condicional € uma assercdo ou proposicdo composta obtida através de
duas proposi¢cdes P e i representada por “se p entao g“.

Denotamos por “p — g* pela qual se declara: “p é suficiente para ¢“ ou
“g é necessario para p“.

Observe que “p —+ g“. s6 é uma proposi¢ao falsa quando P é verdadei-
ra e g é falsidade. Nos demais casos, "p —+ q“ é sempre verdadeira. Neste
caso, dizemos que “p implica q“ou“p acarretaq”.

Exemplos: Dadas as proposicoes:
p: Uma fungéo f é diferengavel em x

q. f é continua em x,

Traduzir para a linguagem corrente as proposigdes seguintes.
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(a) p — q: Se uma fungéo f é diferenciavel em x, entéo f e continua
em x;.

(b) » = ~q. Se uma fungéo f é diferenciavel em x, entéo f ndo é
continua em x;.

2.5. Proposi¢ao contrapositiva

A contrapositiva de uma proposi¢ao condicional “p — g“ é a proposi¢ao “
~q = P

Exemplos: A contrapositiva da proposic&o condicional “ Se uma fungéo f é

diferenciavel em x, ent&o f é continua em x “ € “Se f n3o é continua em x,,
entéo a funcédo f nao é diferenciavel em x,".

2.6. Proposigao reciproca

A reciproca de uma proposicdo condicional “p —g“ € a proposicao
‘g —=p".
Exemplos: A reciproca da proposi¢éo condicional “Se uma funcéo f & dife-
renciavel em X entdo f é continua em x, “ é “Se f é continua em x, entdo a
fungéo f é diferenciavel em x;".

Observe que a reciproca de uma proposi¢céo verdadeira, em geral, ndo
é verdadeira.

2.7. Proposigao inversa

Ainversa de uma proposicao reciproca“ g — p“, obtida da proposi¢ao condi-
cional “p — gq“, € a proposicéo” ~p — ~g"

Exemplos: Pelo exemplo anterior, a inversa da proposigcao reciproca é “ Se
uma fungéo f n&o é diferenciavel em x, entdo f ndo é continua em x ;"

2.8. Proposic¢ao bicondicional

A bicondicional € uma asserc&o obtida através de duas proposicoes e q re-
presentadas por “ p se, e somente se g“.

Denotamos por “p <+ g" pela qual se declara: “p é condigdo necessaria
e suficiente para @ ou “gq é condicdo necesséria e suficiente para p”.

Observe que “ p < g“ é verdadeira quando as proposi¢des p € g sao
ambas verdadeiras ou ambas falsas. Neste caso, dizemos que “ p equivale a
g “ e denota-se por “p = g".
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Exemplos: p: Gregorio é gordo e 9: Martha é magra.

Traduzir para linguagem corrente as proposigoes:
(a) p < q: Gregorio ser gordo, &€ necessario e suficiente para que
Martha seja magra.

(b) p < ~q: Gregbrio ser gordo, & necessario e suficiente para que
Martha n&o seja magra.

As relagbes entre proposigdes encontram—se resumidas no quadro

abaixo
PROPOSICAD p=9q LOGICAMENTE
CONTRAPOSITIVA g = ~p EQUIVALENTES
RECTPROCA q=p LOGICAMENTE
INVERSA ~p = ~g EQUIVALENTES

3. Proposi¢des especiais
As proposi¢oes estudadas até agora, recebem na matematica algumas

terminologias bem especificas a saber.

Axioma - é uma proposi¢cao que relaciona propriedades de evidéncia
imediata, proveniente da experiéncia e da observagao.

Exemplo: Por um ponto passam infinitas retas.

Teorema - € uma proposicao que exige prova para assegurar a veracidade de
seu enunciado. Compdem-se de trés partes.

12 parte: Sujeito que é a figura estudada.

22 parte: Hipétese conjunto de condigdes atribuidas ao sujeito

consideradas verdadeiras.

32 parte: Tese conclusdo da hipétese.

Corolario - é uma proposicéo que é consequéncia imediata de outra
ou de um Teorema ja demonstrado.
Lema - é uma proposi¢cao que sera utilizada na prova de uma outra
ou de um teorema.

Sabe-se que em matemética 98% das proposi¢coes (Teoremas) estao
na forma se “p entdo g“(Proposi¢cao condicional) e neste contexto a proposi-
¢cao “p“ é a hipbtese e a proposicao “q” a tese. E como provar ou demonstrar ?
Como “p" é a hipotese, p € verdadeira logo "p = " é verdadeiro se e somente
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se “q" o é. Portanto provar “p = g" é supor p verdadeiro e concluir dai que “
g"“ também o é. Este tipo de prova ou demonstragdo é chamada prova direta
(Utiliza a hipétese para em seguida concluir a tese). VVeja como se prova o
teorema seguinte;

Teorema: Se 4, B sdo conjuntos ndo vaziosentdon(A U B) = n(4) + n(E)
—n(ANE)

Hipoétese: 4 e E conjuntos n&o vazios.

Tese:n(AUE) =n(A4A) +n(B) —n(ANE)

Prova: (Prova Direta)

Ora, observa-se nafiguraque A U B = (4 — B)U(B — A)U(An B)onde
esta unido é disjunta, isto €, (A—B)n(B—A) =@, (A—B)n(AnB)=ge
(B—A)N(ANB)=¢

Entdion({AUB)=n{A—B)+n(B—A)+n(AnE).

Mas n(A—B)=n(d)—n(AnNFE) e n(B —4)=n(B)—n(AdNE), e
consequentemente n(4A U B) = [n(4) —n{4An B)] + [n(B) —n(An B)]
+n(AnB)=n(d)+n(8) —n(AnE)

Lema:
Se A, B sdo conjuntos ndo vazios e disjuntos entdo n(4 U B) =
n(A4) + n(E)

Hipétese: A, E conjuntos ndo vazios e A n B = ¢ (disjuntos )

Tese: n(A U B) = n(4) + n(B).

Prova:

Pelo Teorema anterior, n(4 u B) = n(4) + n(B) — n(A N B) € COMO
por hipétese 4 N B = ¢, segue- se que n(4 N B) = 0 € consequentemente
n(A UE) = n(4) + n(E).

O matematico grego Euclides de Alexandria (Século Il a.C) dedicou
boa parte de sua vida ao trabalho de escrever os elementos, o livro texto mais
bem sucedido de toda a histdria. Até este século tratava-se do segundo maior
best-seler mundial depois da biblia. Subdivididos em 13 livros, sendo que o 7°,
8% e 9% livros séo dedicados ao estudo da Teoria dos NUmeros, ao exame dos
ndmeros primos, maximo divisor comum e a fatoragao.
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Euclides também explorou uma arma légica conhecida como “redugao
ao absurdo” ou “prova por absurdo” (Por contradicao) que chamamos de pro-
va indireta. Sua abordagem envolve a ideia inversa de negar a tese a admitir a
hipétese. Portanto o teorema fica provado se isto acarretar um absurdo (con-
tradic&o ), pois a matematica abomina o absurdo, e assim a negagao da tese
é falsidade logo a tese € verdadeira. Euclides, no seu 10° livro dos elementos
utiliza reducéo ao absurdo de modo a provar que V2 nao pode ser escrito
como uma frag&o. VVeja a prova do teorema seguinte:

Teorema: Se X é um conjunto qualquer e g é o conjunto vazio entdo ¢ = X.
Hipétese: ¢ e X conjuntos
Tese: p C X

Prova (Prova Indireta): Vamos negar a tese, ou seja, suponha que ¢ & X
logo existe pelo menos um elemento x € ¢ tal que x € X. Mas o conjunto
vazio ndo possui elemento algum, portanto x £ ¢ é um absurdo, logo, a ne-
gacao da tese é falsidade e consequentemente a tese é verdadeira, isto é,

p CX.

4. Quantificadores

Uma sentenga aberta com uma variavel x em um conjunto X # ¢ é toda afir-
mag&o p(x) aplicavel aos elementos x € X.

Exemplo:
X & uma bela mulher. O conjunto X', que contem x, esta implicito.
Quando todos os elementos de X satisfazerem p(x) escrevemos
(£) Para todo x € X, p(x)
(if) Qualquer que seja x € X, p(x)
(£11) Para cada x € X, p(x)

No simbolismo da légica matematica escrevemos (1), (if), (iii), abre-
viadamente como segue: v x € X, p(x)* O simbolo ¥ € chamado quantifica-
dor universal.

Por outro lado, quando pelo menos um elemento x € X satisfaz p(x)
escrevemos:

(£) Existe um x € X tal que p(x)
(i) Existe pelo menos um x £ X tal que p(x)
(£%) Pra algum x € X tal que P(¥)

Escrevemos (i),(ii),(iif), abreviadamente como segue: "Ix € X;
p(x)". O simbolo 3 € chamado quantificador existencial.
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A negagéo da proposicdo "vx € X,p(x) é 3x € X; ~p(x)* e anega-
¢&o da proposicéo ‘Jx € X:p(x) € vx € X, ~p(x)".
Exemplo: A negacdo de “Toda mulher & bela “ & "Existe pelo menos uma
mulher que n&o € bela”

5. Contra-exemplo

Para se provar que uma proposicao € falsa, é suficiente que se apre-
sente uma situacao particular em que essa afirmagao nao é verdadeira. Isso
€ 0 que chamamos de contra-exemplo.

Suponhamos que queremos provar que a proposicéo “Vx € X p(x)‘ é
falsidade. Entao basta provar que a negagéo “3x € X;~p(x)" é verdadeira,
isto &, existe algum x, € X tal que p(x,) é falsidade. O elemento x, E X é
chamado contra-exemplo.

Exemplo: A proposicéo “vx € R, x? = x* é falsidade, sendo por exemplo

_1 - 12 1
Xy = Jum contra - exemplo, visto que = = -.

Definigées na matematica

A palavra pato, sabemos que possui mais de um significado na lingua
portuguesa. Vejamos o que diz o dicionario novo Aurélio século XXI.

PATO!. S.m. 1. Zool. Ave anseriforme. 2. Iguaria feitacom pato 3. Bras.
Mau jogador.

PATC? . Paga o pato. Fam. 1 sofrer as consequéncias de alguém. 2.
Pagar as despesas

PATO? .1. Etndn. Individuo dos patos, povo indigena caiapé que habi-
tava as margens da lagoa dos Patos.2. Pertencente ou relativo a esse
povo.

Esses diferentes significados para uma mesma palavras causam confu-
s&0, e o seu significado depende do contesto onde ela é inserida. No caso da
matematica, as definicdes tém um papel de extrema importancia, pois quando
definimos uma palavra na matemética, a palavra e sua definicdo tém o mes-
mo significado.

Se definimos a palavra pato como “Uma ave aquatica que possui bico
plano e pés achatados” podemos também dizer que “Se um animal é um pato
entdo é um ave aquatica que possui bico plano e pés achatados” ou ainda “Se
uma ave é aquatica e possui bico plano e pés achatados, entdo esse animal
€ um pato”.
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Fazendo p: “Um animal é um pato” e g: “E uma ave aquética que pos-
sui bico plano e pés achatados”, a proposicao” se g entdo p “ € a reciproca
da proposi¢do condicional “se p entdo g“. Ja estudamos que, em geral, a
reciproca de uma proposigao condicional verdadeira ndo é necessariamente
verdadeira. No caso das defini¢des na matematica tanto é verdade a proposi-
¢ao condicional quanto sua reciproca, isto €, 0 nome a ser definido "p“ e sua
definicdo "g" ttm o mesmo significado, logo “p < g".

Posto isto, a definicdo de pato é assim escrita: “Um animal é um pato
se somente se é uma ave aquatica que possui bico plano e pés achatados”.

Sintese do Capitulo

Neste segundo capitulo estudamos nogdes de légica, onde apresentamos al-
guns conceitos de grande importancia no desenvolvimento e organizag&o do
raciocinio.

Inicialmente definimos a proposi¢éo simples e através da composicao
de proposi¢gées chegamos a definir um teorema, um corolario ou um axioma.
Com esses conceitos, aprendemos a diferenciar uma prova de uma demons-
tracao, e estudamos também quantificadores e definigao.

Rtividades de avaliagdo

1. Determine o valor légico de cada uma das seguintes proposi¢coes:
a) Nao é verdade que 12 é um numero impar.
b)Efalsoque2 4+ 3=5e1+1=3
c)Efalsoque 3+ 3 = 60ouy/(—1) = 0.
d~(l1+1=5<=3+3=1)
e)~(2+2#4e3+5=28).
2. Sejam as proposigdes p: Esta frio e g: Estéd chovendo. Traduzir para a lin-
guagem corrente as seguintes proposi¢coes:
a)~p
b)g = p
cp —~q
dg—p
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e)~p = q
f) (p)

3. Os exercicios seguintes se referem a estas proporgdes: "Se vocé mora em
Fortaleza entdo vocé mora no Ceara. “

a) Qual é hipétese deste proposicao ?
b) Qual é a sua concluséo ?
c) Reescreva essa proposi¢ao na forma’psean”
4. Reescreva cada uma das oragdes seguintes na forma “se. .. entdo.”
a) Nenhum fantasma tem sombra.
b) Todos os anos bissextos tém 366 dias.
¢) Quando o gato esta na gaiola n&o € para cantar.
d) Use a escada em vez do elevador em caso de incéndio.
e) Nenhum numero de telefone genuino comeg¢a com 555.
5. Como é formada cada uma das proposi¢des seguintes ?
a) A reciproca de uma proposi¢ao condicional.
b) Aiinversa de uma proposigcéao condicional.
¢) A contrapositiva de uma proposicao condicional.

6. Considere a proposi¢cao “ Se sua temperatura € maior que 38° entdo vocé
tem febre.”

a) Esta proposicéao é verdadeira.
b) Se a proposicéo for representada pelo simbolo “p — g“, que palavras

“_ “ o«

representam as proposigoes “p" e “g""
c) Escreva com palavras a proposicéo que é representada por “~p — ~g
d) Esta proposicéo é verdadeira ?
e) Como é chamada essa proposi¢céo com relag&o a proposigao original ?
f) Esta proposi¢ao tem o mesmo significado da proposi¢cao original ?
g) Escreva com palavras a proposicéo que € representada por ‘g — p*
h) Esta proposicao é verdadeira ?:
i) Como é chamada esta proposi¢cao com relagdo a proposig¢ao original ?
j) Esta proposigcao possui 0 mesmo significado da proposigcao original ?

7. Cada uma das proposi¢Oes escritas abaixo e seguida de alguns outras
proposi¢ées. Identifique a relagdo de cada uma delas com a proposicéo

inicial. Escreva reciproca, inversa contra-positiva ou proposi¢éo original
como apropriado

Proposicao Inicial: “ Se vocé mora no Rio entdo vocé precisa de um equi-
pamento de mergulho.”
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a) Se vocé nao mora no Rio entdo vocé n&o precisa de um equipamento de
mergulho.

b) Se vocé n&o precisa de um equipamento de mergulho entdo vocé nao
mora no Rio.

c¢) Vocé precisa de um equipamento de mergulho se vocé mora no Rio.
8. Sendo X = {3, 5, 7, 9} dar um conta-exemplo para cada uma das seguintes
proposicoes:
a)(VxeX)(x+3=7)
b) (Vx € X)(xéprimo)
c)(vx e X)(] x |=x)
9. Sendo X = {1, 2, 3, 4} ache o valor l6gico de cada uma das seguintes pro-
posicoes:
a)(Vxe X)(x+3 <6)
b) (¥x € X)(x* —10 < 8)
O(Ix e X)(x+ 3 < 6)
d) (3x € X)(x* + x = 15)
10. Dar a negagéao das proposi¢oes do exercicio 9.

11. Decida quais os das oragcdes s&o boas definicdes, determinado quando
sua reciprocas sdo verdadeiras e quando n&o o sao.

a) Se é dia de ano entao é 1° de Janeiro.

b) Se é dia de ano entéo é feriado.

¢) Uma camera é um equipamento para tirar retrato.

d) Um gamba é um animal que tem couro preto e branco.
e) Gelo seco é didxido de carbono congelado.

12. A seguinte afirmagao “Uma criatura extraterrestre € um ser de outro lugar
que nao a terra” é uma definicdo de criatura extraterrestre. Quais das se-
guintes proposi¢cdes séo verdadeira ?
a)Se uma criatura é extraterrestre entdo ela é de outro lugar que néo a
Terra.

b) Se uma criatura € um ser de outro lugar que n&o a Terra entdo ela e ex-
traterrestre.

€) Se uma criatura ndo é extraterrestre entdo ela nao € um ser de outro
lugar que n&o a Terra.

d) Se uma criatura no é ser de outro lugar que nao a Terra entéo ela ndo é
extraterrestre.
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Introduio & Teoria dos Nimeros 31

Objetivos

e Conhecer o conjunto dos nimeros naturais e dos inteiros.
¢ Estudarinducéo nos naturais, divisores, divisibilidade e m.d.c., mdltiplos e m.m.c.

e Conhecer nimeros primos e compostos.

Introdugao

Neste terceiro capitulo iremos conhecer e estudar o conjunto dos nimeros
naturais e dos nameros inteiros relativos. No conjunto dos naturais estudare-
mos métodos de inducdo, divisibilidade, onde teremos os conceitos de divisor,
multiplo, m.d.c. e m.m.c. Como também conheceremos ndmeros primos e
compostos.

1. Generalidades

Faremos inicialmente um estudo do conjuntoN={0, 1, 2, 3, ..} ouN={0, 1,
2, 3, ...} dos nimeros naturais. Colocar ou ndo o algarismo zero no conjunto
R € uma mera questao de conveniéncia. Nao iremos fazer uma construcao
I6gica impecéavel do conjunto ki, mas apresentar alguns principios basicos de
extrema importancia. Essa construgao l6gica a qual me refiro, teve sua primei-
ra tentativa no século XI com Campano, quando este enunciou a existéncia
de um elemento minimo em um sub-conjunto 4 = ¢ de M. Posteriormente,
Leibiniz (1646 — 1716) assinala que as propriedades das operagdes adigéo e
multiplicagéo deveriam ser provadas.

Em 1862, Grassmann (1809 — 1877) define adicdo e multiplicagéo e
prova as propriedades dessas operacodes e utiliza o principio de indugdo. Em
1891 Giuseppe Peano (1858 — 1932) utiliza conceitos primitivos (Termos sem
uma explicagdo formal) e alguns axiomas para explicar a existéncia de
. Mas foi Richard Dedekind (1883 — 1916) o primeiro a formular, através de
axiomas, a existéncia de M.

Outra propriedade fundamental em H é a relagéo de ordem < (menor ou
igual). Dados a, b £ M, diz-se que a <b (a menor ouigual a b) se existe d € M
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talque b = a + d. O nimero “d" é chamado diferenga entre z € b e indica-se
por d = b — a. De maneira analoga define-se a>b (a menor ou igual a b), a
< b (@ menor que b) e a> b (a maior que b).

Os numeros negativos foram introduzidos na matematica pelos india-
nos. O primeiro a utilizar os nimeros negativos foi 0 matematico indiano Brah-
magupta (Século VI) quando afirmou que todo nimero positivo tem duas rai-
zes quadraticas, uma positiva e outra negativa.

Da relagéo de ordem a = b a diferenca d = a — b é sempre posi-
tiva enquanto b — a é sempre negativa. Manipulando valores convenien-
tes para a e b encontramos uma infinidade de nimeros negativos a saber.
—-1,—-2,—3,...= —HeassmNu-N)={.,-3,-2,-1,0,1,2 3, .}=Z
chamado conjunto dos nimeros inteiros.

2. Indugao Matematica em O
2.1. Elemento minimo

Seja A # ¢ sub-conjunto de M. Chama-se elemento minimo de 4 um ele-
mento a € A tal que a = x para todo x € A. Denota-se a = min(4) <
(Vx € A,a < x).
Teorema: Se a = min(A) entdo a e Unico.
Hipétese: a = min(A)
Tese: o é Unico
Prova: Suponhamos que exista um outro a' £ A tal que a' = min(4) para
provemos que a = a’.

Por hipétese, a =min(4d) < (Va'€ed,a=<a") e como
a'=min(4d) © (Va € 4,a' < a).

Das relagdes de ordem a < a'e a' < a conclui-se que a = a’.

Se o elemento minimo de A existe, ele € chamado também de menor
ndmero natural de A.
Exemplo: O conjunto M possui elemento minimo 1 = min(M), pois1 € Me
paratodox € M,1 = x,
Exemplo: O subconjunto 4 = {x € M; 7 < x = 15} possui elemento mini-
mo 8 = min(A) pois 8 € Aeparacadax € A4, 8 = x.
Exemplo: O conjunto 4 = {—1,—2,—3,...} de Z ndo tem elemento minimo,
pois ndo existe o £ 4 talque o = x paratodo x € 4.
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2.2. Principio da boa ordenagao

Axioma: “Todo subconjunto 4 # ¢ de M possui elemento minimo”.
Ve #A c N = Imin(4).
2.3. Principio de indugao

Teorema:Sejad c Mtalquel € Aeparatodok € M,sek € Aentdok + 1 € A.
Sob estas condigdes 4 = H.

Hipétese: 4 —c F;1 € Aeparatodok € M,sek £ Aentbok +1 € 4
Tese: A = M.
Prova: (Prova Indireta). Vamos negar a tese, isto é, suponhamos que 4 #= M
esejaw#X=H—-A={xxcMNex&A}, Como ¢ # X © M pelo Prin-
cipio da Boa Ordenacéo existe ¥, = min(X). Por hipétese, 1 € 4 logo
x,>1 (x,— 1) €Xe assim (x,— 1) € A Pela hipdtese temos que
(x,—1)+1=x_,€ 4 que & um absurdo, pois x, € X. Portanto X = ¢ e
consequentemente 4 = Fi.
Corolario (Indugao Matematica)

Seja p( 1) uma proposicdo associada a cada n € M e que satisfaga as
propriedades:

P.1 p(1)é verdadeiro

P.2 Paratodo k € N, se p(k) é verdadeiro entdo p(k + 1) também
€ verdadeiro.

Nestas condigdes p() é verdadeira para todo 1.
Hipétese: p(m)é uma proposicéo e as propriedades P. 1 e P. 2.
Tese: p(n) é verdadeira para todo 7.
Prova: Seja A = {n € M;p(n)éverdadeira}. Pela hipétese P.1, p(1) é
verdadeiro logo 1 € A. Pela hipotese P. 2, para todo k € M se k € A entdo
(k + 1) € A Pelo Teorema anterior 4 = M, isto &, p(7) é verdadeiro para todo .

A prova por indugdo matematica consiste em verificar a propriedade
P.1 em seguida a propriedade P. 2 que tem como hip6tese: p(k) é verdadeira
e tese: p(k + 1) é também verdadeira.
Exemplo: Prove por indugdo matematica as seguintes proposicoes :
Lpm): 12+ 2%+...4n® = nint)Ent1)

Prova: Sen = 1entéow =1 =12 isto é p(1) é verdadeira .

, para todo

VVamos admitir, por hipétese de induc&o, que para n = k, ou seja,
p(k): 17+ 2%+, +k* = K+ 1)i2x*1) seia verdadeira para provar que para
n=k+ 1 istoé p(k +1)tambémoé.

_ k(k+1)(2k+1)

Mas 17 +2°+...+k* + (k+ 1)* = ———— + (k+ 1)°
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k(1) (Zk+1)+6(k+1)7 _ (k1) [k(ZRe1)+6(k+1)] _ (kH1)[(k+2)(2k+3)]
& & &

vando que p(k + 1)€ verdadeiro.
2.p(n):1+ z+...+ < 2—-paratodo ™
Prova: Sen = lentdo 1 = 1, ou seja, p(1) é verdadeira.

, pro-

Supor por hipétese de indugdo que para i = k, ou seja,
p(k):1+ %++% =2 —i seja verdadeira e vamos provar que
paran =k + 1,isto é p(k + 1] também o é. Mas

1+ o+t +- 2--+ e sy BEL LI B

k+1}~ k+1}" k(k+1)7 k(k+1)7 k+1

provando que p(k) é verdadeira.
3.p(n)n! = n® paratodon = 4
Prova: Sen = 4 entdo 4! = 4.3.2 = 24 = 4% ou seja, p(4) é verdadeira.
A hipdtese de inducdo p(k):k!=k* & verdadeira logo
(k+ 1)k! = (k + 1)k* = k® + k%, ou ainda, (k+ 1)! = k* + k*. Para
k=4k>2k+1 e assim (k+ 1) = (2k+ 1)+ k* = (k + 1)* pro-
vando que p(k + 1): (k + 1)! = (k + 1)*.é verdadeiro.
4.p(n):2" = 2n+ 1paratodon = 5
Prova: Paran = 5,25 =32 > 11 = 2.5 + 1 logo P(5) é verdadeira.
Admitimos que a hipétese de indugdo p(k): 2¥ > 2k + 1 é verda-
deira, vamos provar que para n = k + 1, ou seja , p(k + 1) é verdadeira
também. Mas para k = 5, 2* = 2 e somando a 2¥ = 2k + 1 encontramos
28 + 2% = 2k + 1+ 2 ou ainda, 2¥** = 2(k + 1) + 1 o que prova que
p(k + 1)é verdadeira.
5.p(n): 2" > n’ paratodon = 5.
Prova: Se n = 5 entdo 2% = 32 = 25 = 57 isto é, p(5), é verdadeira.
A hipdtese indutiva p(k):2¥ = k%é verdadeira. Somando a
2% = 2k + 1(Exercicios anterior) obtemos 2¥ + 2¥ = k2 + 2k + 1, isto &,
281 = (k + 1)*provando que p(k + 1) é verdadeira.

IPara refletir

1. Prove por indugdo matematica as proposigoes seguintes:
a)1+3 + 5+4...4+(2n— 1) = n?, para todo n.

b) I + _1 _ _n» paratodo n.

mn+1) n= 1 3 (n )
c)] 13 + 23+ +nd = =(, £2tys. i)t = +1)%, para todo
d) o+ agt... +agr =292 o 4 paratodon

e)Se a = 2 entdo 2a™ < 7 L para todo n.
f)Se @ = 2 entdo 1 + g+... +a® < a**?, para todo n.
g) n® < n!, paratodon = 6.
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h) ¢ = 2 para todo , = 10.

2. Ache , £ iy tal que 3n+2 gn+3 — 3593,

3. Verificar se o quadrado de um numero natural pode terminar em 2,3,7,0u 8.

4. Prove que o produto de quatro numeros naturais, acrescido de 1, é um quadrado
perfeito.

5. Seja g € Z e suponha que para cada para todo n = a esteja associado a proposi¢ao
p(n) que satisfaz as propriedades:
P.1 p(a). é verdadeira.
P.2 Paratodo r = g, se p(r) é verdadeira entdo p(r + 1) também é verdadeira. Nes-
tas condicdes p(n) € verdadeira para todo n = a. Prove.
Sugestao:

6.Tome 4 = {x € N; x = aep(x)éfalsa}€ prove que 4 = ¢ (Prova Indireta)

7. Prove que 27*1 = 5 + 2 qualquer n = —1.

3. Divisibilidade

O namero natural “a # 0 divide o nimero natural b se, e somente se, existe
pelo menos um ndmero natural 4 tal que b = a. g.Neste caso diz-se ainda
que “a é divisor de b*, “b é muiltiplo de a“ e que “b é divisivel por a“.

Denota-se a/b < (g € M;b = a.q).

O elemento g € Mtal que b = a. g € chamado de quociente de b por a.
Quando “a ndo divide b", escreve-sea { b < (Vg € M, b # a.q)
Exemplo:EmZ sea/bentdoexisteq € Ztalqueb = a.q = b = (—a).(—q)
,ouseja, —a/b

E verdadeira a relacdo zero divide zero, pois 0 = 0. q paratodog € M,
enquanto que % € uma indeterminacéo.

Para a relacéo a/b s&o vélidas as propriedades seguintes:

P.la/01/aeafa

P.2Sea EZea/lentdoa =+1
P.3Sea,beZesea/bebjaentdoa = +h
P.4Sea/bebfcentdoa/c
p.5Sea/bea/fcentdoa/(xb £ yc), quaisquer x,y € M.

Deixamos como exercicios as demostracdes das propriedades P, 1 a

P. 4 e provaremos a proposicéo F. 5.

Hipétese: n/be a/c

Tese:a/(xbtvc) Vx, v EN

Prova: Por Hipétese a/b < (3q, € M;b = ag, = xb = a(xqg,),Vx € N)

afc = (3q, € M;c = aq, = yc = a(vq,).Vy € M)

logo xb + yc = a(xq, £ yq,) = a/(xb * yc).

Indicaremos por D (a) = {x € M;x/a}, oconjunto dos divisores de “a“.
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Eimediatoquese 0 = a £ Zentdoa/a, —a/a, 1/ae—1/alogo+1 + asio
chamados divisores triviais de “a”, e mais, se x/aea = 0entdo—a <= x < a
ousejaD(a) c [—a,a]

Divisor comum de a, b € W é todo natural d tal que d/a e d/b. In-
dica-se por D(a,b) = {d € N;d/aed/b}={d € N;d € D(a)ed € D(b)}
= {d € N;d € D(a) nD(b)}), portanto, podemos afirmar que D(a, b) =
D(a) nD(b).

Exemplo: Em E, temos D(3) = {x1,x3},
D(12)={+1,4+2,4+3,+4,1+6,+12}logo D(3)n D(12) = {£1,+3}

Indicaremos por M(a) ={x€M;a/x} = {x EN;x =a.q} =
fa,2a,3a,...} conjunto dos mdltiplos de “a“ . Se em particular & = 1 entdo
M(1)=HNesea = 2entdo M(2) = {2,4,6,...} conjunto dos nimeros pa-
res, e mais M — M(2) = {1,3,5,...} conjunto dos nimeros impares.
Exemplo: Em E, temos:

(@)M(1)=M(-1)=1L
(b)M(3)={3q,q €Z}={0,43,16,...}

Multiplo comum de a,b € Zcom a = 0e b # 0 é todo inteiro x €
talque afx e b/x.

Indica-se por

M(a,b)={x€Z;a/xeb/x}={x€Z;x € M(a)ex E M(b)}=

M(a) n M(b).

Exemplo: Sejam a = 7e b = 14 entdo

M(7)={7q;q€ Z}=1{0,£7,+14,...}

M(14) = {14q';q' € Z} = {0,+14,%28,...} logo

M(7)NM(14) ={0,4+14,...}.

4. Algoritmo de Euclides em [

Teorema: Se a,b €EZ e b= 0 entdo existem Unicos g,r € Z tal que
a=hbg+rcOMO=<r=1b

Hipétese: a, b EZeb = 0

Tese: Existem Unicos g, € Ztalquea = bg+ rcom0 < r < b

Prova: Seja S=a—bx;x EZea—bx=0. Como O +5c M pelo
Principio da Boa Ordenag&o existe um Unico » = min(5), isto é, r = 0 e
r=a—bgoua = bg+r, g € E.Ademais 0 = r < b, pois se fosse r = b
teriamos 0 <+ —b=(a—b.q) —b =a — b(g+ 1) < roque é um ab-
surdo visto que r = min(S5).
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Para provar a unicidade de g, suponha que exista g' € Z tal que
a=b.q'+r, 0<r<b para conclur que g =gq'. Das identidades
a=b.q+rea=b.q"+ rencontramos b.q = b.q" logo b(g — q") =0
e sendo b = Oconclui-se que ¢ = g
Corolario: Se aq,b €T e b # 0 entdo existem Unicos g, € Z tal que
a=bg+rcom0=r<|b|
Hipétese: a,b e Ze b = 0.

Tese: Existem e sdo Unicos g, + € Ztalque a = b.g + ¥ com O=r<lb]|
Prova: Se b = 0 entdo | b |= b = 0 e pelo teorema anterior, existem e sdo
Unicosq.r € Ztalquea =|b | g+ r=b.q+rcom0=<r < b=|b|. Se
b < 0entdo| b |= —b = 0 e pelo teorema, existem e s&o Unicos g',r €
talquea =|b|lq' +r=b(—qg")+rcom0 = r <| b |. Portanto g = —¢'
eassima = b.g +rcomQ <+ <| b |

Os inteiros a, b, ger sdo chamados, respectivamente, dividendo, di-
visor, quociente e resto da divisdo de “a” por “b“. Ademais se b/a de modo
que ¥ = (0, entdo neste caso a divisao € exata.
Exemplo: Na divisdo de @ € Z por b = 2 o algoritmo de Euclides nos da
a=2.q+rcom 0 = r = 2 e possiveis restos r = 0our =1. Ser =0
entdo a = 2q, g € £ e o inteiro “a = 2q" € chamado par e o conjunto
P =1{0,42,+4,...}dos multiplos de dois € chamado de conjunto dos nu-
meros pares. Ser = lentdo a = 2q,+1,g EZ e o inteiro “a = 2q+ 1" é
chamado impar e o conjunto [ = {+1,+3,...} é chamado de conjunto dos
ndmeros impares.
Exemplo: Na divisio do quadrado a* de um inteiro a por 4 o resto é zero ou um.

Defato, seaéparentdoa = 2q,q € Zlogoa® = 4q* + Qistoé,r = 0
eseaé imparentdioa =2q+ 1,4 € Zeassima® =4q° +4g+1=
4g*+q)+1istoér=1
Exemplo: O quadrado de todo inteiro impar é da forma 8k + 1.
Prova: Pelo algoritmo de Euclides @ = -4+ 7 com @ = 7 = 4¢ os possiveis
restossdor = 0,7 = 1,7 = Zer = 3.Portanto, qualquerinteiroé de umadas
formas 4q,4q + 1,4q + 2,4q + 3. Mas somente os inteiros 4q + 1le4q + 3 sdo
impares e assim (4q + 1) = 16q° + 8q+1 =8(2q° +g)+1 =8k +1e
(4q+3)* = 16q° + 24q+q =8(2q* + 3q)+ 1 =8k + 1.

Exemplo: Se a € Z entdo 2/a(a + 1).
Prova: Se o = 2q(par),q € Eentéo
a(a+1) = 2q(2q+ 1) =2[g(2q+ 1)] = 2/a(a + 1).

Sea = 2q + 1(impar),q € Zentdo
a(a+1) = (2q+1)(2q+ 1+ 1) =2[(g + 1)(2q + 1)] = 2/a(a + 1).
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Portanto, em ambos os casos, 2 /a(a + 1).
Exemplo: Se a € Z entdo um dos inteiros a, a + 2,a + 4 é divisivel por 3.
Hipotese: a € £
Tese: aoua + 2 ou a + 4 é divisivel por por 3.

Prova: Pelo algoritmo de Euclides a = 3.q + r com 0 = r < 3 e 0s possi-
veisrestossédor =0, r=ler=2.Ser =0entdoa =3.q = 3/a.

Se r = 1 entdo

a=3q+1=a+2=3q+1+2=3(g+1)=3/(a+2).

Por fim, se r = 2 entéo

a=3.q+2=a+4=3q+2+4=3(g+2)logo3/(a+4)
Exemplo: Determine os inteiros positivos que divididos por 17 deixam um res-
to igual ao quadrado do quociente.

Prova: Seja “a” o inteiro positivo. Pelo algoritmo de Euclides,
a=17.q+r=17.q+ g°com0 < r = g2 < 17 e os possiveis valores
para g s&o: 1,2,3o0u4.

Portantoa = 18oua = 38oua = 60oua = 84

Exemplo: Mostre que os nimeros inteiros “%“ e “& + 2b- tam sempre a mes-
ma paridade

De fato, se @ = 2q(par),q € E, entdo
a+2b=2q+2b=2(q+b)=2q'éparondeq' = g+ b.
Se a = 2q + 1(impar), g € Zentao
a+2b=2q+1+2b=2(g+b)+1=2q"+1

Portanto “a“ e “a + 2" tém a mesma paridade.

Exemplo: Numa diviséo de dois inteiros o quociente é 16 e o resto 167. Ache
o nUmero inteiro que se pode somar ao dividendo e ao divisor sem alterar o
quociente.

Prova: Sejam a (dividendo) e &k (divisor), tais que pelo algoritmo de Euclides
a=b.16 + 1670u 16.b = a — 167. Se x é o inteiro a ser somado ao divi-
dendo e ao divisor e que n&o altera o quociente entao esta divisao é exata, isto
gat+x=(b+x)l6=a+x=16b+ 16x

Como 16b = a — 167 substituindo na expressédo anterior encontra-
mos a +x = (a — 167) + 16xoulSx = 167.

Portanto, valor de x inteiro & 11.
Exemplo: Ache g e r nadivisdiode @ = —35 por b = 3.

Em valores absolutos 35 = 3.11 + 2 logo

—35=3.(—11)—2er = —2ndosatisfaz0 = r < b = 3.
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Mas —35 = 3.(—11) -2 =3(—-11)— 2+ (3-3) =
[3.(-11) =3]+ (=2+3) =3.(-12) + Londe ¢ = —12e
0=r=1<bh =3

Exemplo: Ache 9 e "na divisdo de @ = =29 por & = —7.

Em valores absolutos 59 = 7.8+ 3= —-59 = (-7)8—-3er = —3
ndosatisfaz 0 < r <<| b |= 7.

Mas —59 = (—=7).8—3=(-7)8—-34+(7—7) =
[(-7)8—7]+(—3+7)=(-7)9+4logog =9e
0=r=4<|b|=7.

Exemplo:
Ache g er nadivisdiodea =59e b = —14

Em valores absolutos 54 = 144 +3 = (—14).(—4)+3 logo
g=—4e D0=Zr=3<-14|=14.

Para refletir
1. Prove que:
a)Sepo+aczeb=0entiob } a.
b) Se 1 é par entdo »2 também é.
c) Se n é impar entdo n? também é.
d) Produto de dois inteiros par é par .
e) Produto de dois inteiros impares é impar.
2. Ache o numero de multiplos de 6, compreendidos entre 92 e 196.
3. Mostre que os inteiros “q + b“ e “a — b“ tém a mesma paridade.
4. Mostre que g + b + o2 + b2 € par, quaisquer o £ N-
5.5e g, b, ¢ € T, Mostre que:
(i) Se a/b entdo a/bc.
(ii) Se a/b € se a/c entdo a? /be.
(iii) a/b S€ somente se ac/bc,c + 0.
6. Mostre que o quadrado de um inteiro qualquer é da forma 4k ou 4k + 1.
7.Se g/(2x — 3y) € Se a a/(4x — 5y) entdo a/y.
8. Se g é um inteiro impar entdo 24/a(a® — 1).
9. Na divisao do inteiro @ = 427 por um inteiro ; o quociente é 12 e o resto é r. Ache o
divisor b e o quociente .
10. Na divisdo do inteiro 525 por um inteiro positivo e resto é 27. Achar os inteiros que
podem ser o divisor e o quociente.
11. Na divisdo de dois inteiros positivos o quociente é 16 e o resto é o maior possivel.
Ache os dois inteiros sabendo que a soma é 341.
12. Prove por indugdo matemadtica as proposi¢des seguintes:
a) p(m): 7/(3*% + 27*2), qualquer » = 0.
b) p(n): 9/(10" + 3.4"*2 + 5), qualquer » = 0.
€) p(n): 17/(3*°*2 + 2.437%1), qualquer = 0.

Livro_Matematica_Introducao aTeoria dos Numeros.indd 39 03/05/2019 13:09:49



407 im0

5. Alguns critérios de divisibilidade
5.1. Generalidades

Sejaa,a,_,...a,a,0ondea, € {0,1,2,...,9},i = 0,1,2,...,r, o numero na-
tural que representa “a”. Em nosso sistema de numeragéo de base decimal,
podemos escrevé-lonaformaa = a, + a,.10 + a,.10%+...+a,. 107, uni-
camente determinado.

Por exemplo, tomemos a = 2347, onde temos

ay, =7,a, =4, +a, =3,a, =2

e assim

a =aza,a.ay =ay +a,.10 + a,.10* + a,;.10% =

74410+ 3.10° + 2.10%

5.2. Divisibilidade por 2

“Um ndmero natural @ = ay + a4. 10+... +a,. 10" é divisivel por dois se, e
somente se ele é par.”

Adivisdoden = 107 (r = 1) por b = 2 é exata. Com efeito, ser = 1
entdo 10 = 2.q; + 0, g, € M. Suponha verdadeira para r = k, isto &,
10% = 2q, + 0,q, € Nentidoparar =k + 1 temos 10%*1 = 10%.10 =
(2q,.).10 = 2q,., + 0, onde gq,., = 10q, € M o que também é verdadei-
ra. Portanto dado um nimero a = ay + a4. 10+... +a,.10" podemos rees-
crevé-lo a = a, + a4(2q,)+...+a,.(2q,) =a, + 2(a,q,+...+a.q,.) =
=a, + 2q',,ondeq', = a;q,+...+a,q,. Como  2/2q'  entéo
2/a< 2/a,.
Exemplo: O nimero a = 1938 é divisivel por 2, pois 2/a, = 8.

5.3. Divisibilidade por 3

“Um ndmero natural @ = @ T+ @y. 10+... +a,.10"¢ diyisivel por 3 se, e so-
mente se, a soma de seus algarismos for divisivel por 3.”

A divisdo de n = 10"(r = 0) por 3 deixa resto 1. Pois bem, se ¥ =0
entato 10°= 3.0+ 1  Suponha verdadeio para n =k, ou seja,
10* =3.q,+ 1,q, € M entdoparar = k + 1obtemos 107=10%.10=(3q +
1).(9+1)=3(9q+q,+3)+1=3q' +1.9' =99 +q +3quetambéméverdadeira.Portan-
to a =ay, +a,(3q, +1)+...4+a,(3q,+ 1) =a, +a,+...+a,.+ 39,
onde q',. = a,q,+...+a,q,.Mas 3/3q’' logo,3/a < 3/(a,+... +a,).
Exemplo: O nimero a = 7161 é divisivel por b = 3, pois a soma de seus
algarismos, 7 + 1 + 6 + 1 = 15 é divisivel por 3.
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5.4. Divisibilidade por 4

“Um ndmero natural @ = a, + a,.10+...+a,.10" é divisivel por 4 se, e so-
mente se, 0 nimero formado pelos seus algarismos da dezena e da unidade
for divisivel por 4.”

Considere o nimero “a” da forma “100k + a,a," ou “1000k + a, a,”
ou ainda “10000k + a,a,", etc, onde “a,a," é o nGmero formado pelos dois
Ultimos algarismos (das dezenas e das unidades) de “a“. Como 4/100k en-
tho4/a = 4/a,a, = a,a, é miltiplo de 4.

Exemplo: O nimero a = 57284 é divisivel por b = 4, pois a = 57284 = 100.572
+84 e como 4/84 entdo 4,/57284. No entanto, a = 57231 n&o é divisivel por
4, pois 31 ndo é mdltiplo de 4.

5.5. Divisibilidade por 5

“Um nGmero natural @ = a; + ay. 10+...+a,.10" ¢ divisivel por 5 se, e so-
mente se,seu algarismo das unidades for 5 ou 0.

Se a = ay +a,.10+... +a,.10" entdo
a =a, +10(a,+... +a,. 107"1) o0 que implica dizer que para esse nimero
ser divisivel por 5 deveremos ter a, = 50U a, = 0.

5.6. Divisibilidade por 7

“Um ndmero natural a = 10k + a, é divisivel por 7 se, e somente se, k — 2a,
é divisivel por 7.”

Considere o nimero “a" da forma “10k + a," onde “a," é seu algaris-
mo das unidades.

Posto isto, encontre o nimero “k — 2a;" e vamos provar que “10k + a,"
é multiplo de de 7 se, e somente se, “k — 2a," € mdltiplo de 7.

E suficiente : Se “10k + a;* é multiplo de 7 ent&o existe m € Z tal que
10k +a, =7m = a; = 7m — 10k Mas k- 2a, = k- 2(7/m - 10k) = 7m’, m'
=7m'm'=(3k-2m)00,isto é "k — 2a,” é maltiplo de 7.

E necessario: Se “k — 2a," é multiplo de 7 entdo existe t € Z tal que
k—2a; =7n=k=7n+ 2a, Mas 10k —a, = 10(7n+ 2a;) —a, = 7n’
.onden’ = (10n + 3a,) € E, ou seja, “10k + a," é mdltiplo de 7.

Exemplo: Seja @ = 59325 = 10.5932 + 5, onde k = 5932 e a; = 5 logo
k —2a, = 5932 — 2.5 = 5922 VVamos repetir este artificio até conseguir-
mos um ndmero que possamos reconhecer, se é ou nao divisivel por 7. Se

divisivel entdo 7/a, caso contrério 7 1 @. Continuando 592 — 2.2 = 588,
E8—28=42ecomo7/42 < 7/59325
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5.7. Divisibilidade por 9

“Um namero natural @ = a, + a,.10+...+a,.10" € divisivel por 9 se,
e somente se, a soma de seus algarismos der um nimero divisivel por 9.”

A prova desse resultado deixamos como exercicio, pois o procedimento
€ idéntico ao procedimento usado na divisibilidade por 3.

6. Maximo Divisor Comum de dois Inteiros

Sejam a, b € I inteiros ndo nulos.Chama-se méximo divisor comum de aeb,
onumero d € M que satisfaz as seguintes condi¢ées:

(i) d/agd/b

(if) Se c/a e c/b entdo d = c. Pela condicéo (1}, d é divisor comum
de a e b, e pela condigéo (i), d € o maior divisor dentre os divisores comuns
de a e b. Usaremos a notagéo d = mdc(a, b) para indicar o méximo divisor
comumde ae b.

E imediato que:
a) mdc (0,07 ndo existe
b)ymdec(a,1) =1
c)Sea # 0entdomde = (a,0) =l a |
d) Se a/b entdo mdc = (a,b) =| a |
e)mdc(a,b) = mdc(—a,b) = mdc(a,—b) = mdc(—a, —b).
Exemplo: Sejama =12e b = 18 Entdo D(12) = {1,2,3,4,6,12} e D(18)
={1,2,3,6,9 18} logo D(12)n D(18) = {1,2,3,6} € como o maior € &
segue que mdc(12,18) = 6.
Exemplo: Se a £ T, ache os possiveis valores do mdc (a,a + 10).
Facad = mdc(a,a +10)logod/a < (3g € L;a =d.q) e
df(fa+10)= (39" EZ;a+ 10=d.q").
Portanto
dgq+10=d.q'=10=d(q'—q) = d/10 = d € {1,25,10}

Exemplo: O mdc(a,b) quando existe é Unico. De fato, suponha que exista
um outro d' = mdc (a, b) para provar que d = d'. Como ded' satisfazem a
condigao (i) segue se que d/d'ed'/d, isto &, d = d'.

Teorema: Se d = mdc(a, b) entdo existem x, ¥ € E tais que d = ax + by,
Hipétese: d = mdc(a, b).

Tese: Existem x, v € Ttaisque d = ax + by.

Prova: Seja A4 = {az + bw; z,w € Zeaz + bw = 0}.

Livro_Matematica_Introducao aTeoria dos Numeros.indd 42 03/05/2019 13:09:50



Introdugdo & Teoria dos Nimeros 43

Como ¢ += A — M pelo Principio da Boa Ordenag&o existe um Unico
¢ = min(4) e pela construgdo de Aexistem x, y € Z tais que ¢ = ax + by.

Sec t apeloalgarismode Euclidesexistemvalores inicosde4: € Ltais
a=cqg+r,0<r<clogor=a—c.q=a—(ax+bylg=a(l—x)+
b(—gv)=ax'+by' comx'=1—xey =—yg, ouseja rE 4o que
é um absurdo visto que * < ¢ = min(4). Portanto ¢/a e de modo analo-
go c/b, isto é, ¢ é um outro divisor comum de a e b e como por hipétese
d = mdc(a, b)segue-se que d = c.

Tambémd/a = (3g, € Z;a =d.q.) e

d/b < (3q, €Z; b= d.q,) logo

c=x(dq,)+y(d.gq,)=d(x.q, +y.q,) 2dfced=<c

Dasrelagbesdeordemd = ced = cconclui-sequed = ¢ = ax + by.
Exemplo: Existem x, y € Z tais que ¢ = ax + by se somente se mdc(a,b)/c.

E suficiente:Existemx, y € Ztaisquec = ax + by.Facad = mdc(a, b)

entio d/a <= (g EZ;a=d.q) ed/b= (3¢’ €L;b=d.q") e
assimec=ax+ by=(d.q)x+ (d.q)y=d(gx+q'v) =d/c

E necessario: Fagad = mdc(a, b) e d/c. Como d = mde(a, b) exis-
tem x4, vy EZ taisque d = ax, + by,ecomod/c = (g € ZL;c =d.q)

ou seja, ¢ = (ax,+ byy)g = a(x,q) + b(v,q) = ax + by, onde

x=g.xsELey=gq.y, EL
Exemplo: Ache o menorinteiro ¢ = 0daformac = 22x + 55y.ondex, v € .

Ora, ¢ deve ser multiplo de 11 = mdc(22,55), € 0 menor inteiro posi-
tivo nesta condicdo é ¢ = 11.
Exemplo: Ache a, b £ Z sabendo que a. b = 756 e mdc(a,b) = 6.

Ora, 6/a < (3g, €L;a=6.q,) e 6/b= (g, € L;b=6.q,)
logo ab = (6q,)(6q,) = 756 0 que implicaem g,.q, = 21.

Portanto (g, = 7eq, = 3) ou (g, = 3eq, = 7) e os nlmeros procu-
rados séo 18 e 42.

6.1. Inteiros relativamente primos

Sejam a, b € Z n&o nulos simultaneamente. Dizemos que @ e bs3o relativa-
mente primos ou primos entre si, se e somente se mdc(a,b) = 1. Inteiros
primos entre si admitem como Unicos divisores comuns £1.

Exemplo: S&o primos entre si os inteiros 2e3,3e24,4e5,
Exemplo: Dois nimeros consecutivos a e a + 1 s&o primos entre si.

Com efeito, é imediato 1/ae 1/(a+ 1). Sec/ae c/(a + 1) entdo
c/la+1)—a,istoé c/l=c=1
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Teorema:

Os inteiros @ e b, ndo simultaneamente nulos, sdo primos entre si, se e
somente se, existem x, v € E tais que ax + by = 1.

Hipotese: a,b € Z(a # Ooub # 0)emdc(a,b) = 1.
Tese: Existem x, y € Z tais que ax + by = 1.
Prova: Para essa prova usa-se o teorema em (1.6 ) fazendo d = 1.
Hipétese: a, b € Z(a # Ooub #+ 0)eexistemx, v € Ztaisqueax + by = 1.
Tese: mdc(a.b) = 1.
Prova: Faga d = mdc(a, b) para provar que d = 1.
Como d/a e d/b entdo d/(ax + by) e como por hipbtese existem
x,v EZtaisqueax + by = 1segue-sequed/1 = d =1
Corolario 1
Se mdc (a,b) = d entio os inteiros %e E s&0 primos entre si.
Hipétese: d = mdc(a, b).
Tese: mdc (E, S] =1.
Prova: Como d = madc(a, b) entdo existem x, y € Etaisque ax + by = d
ou Ex + E}r = 1 e pelo Teorema anterior mdc %E =1
Corolario 2
Se a/bemde(b,c) = 1entdomdc(a,c) =1
Hipétese: a/b e mdc(b,c) = 1.
Tese: mdc(a,c) =1

Prova: Por hipétese a/b < (3g € ;b =ag) e como mdc(b,c) =1
pelo Teorema anterior existem x,¥ € Z tais que bx+cy =1= (a.q)x +

cy=1lealgx)+cy=1= mdc(ac)=1.

6.2. Maximo Divisor Comum de varios Inteiros

Adefinicdo de maximo divisor comum pode ser estendida para trés inteiros a, b
e ¢, ndo todos nulos, e assim definimos mdc (a, b, ¢) = mdec(mde(a, b), c).
Exemplo: O mdc(4,6,8) = mdc(mdc(4,6),8) = mdc(2,8) = 2.
Teorema: Se a = b.q + r entdo mdc (a,b) = mdc(b, 7).

Hipétese: a = b.q + red = mdc(a, b).

Tese: d = mdc(b, r).

Prova: Como d = mdc(a, b) entdo (d/aed/b)logod/(a— b.q) =r,isto
é, d/b e d/r. Poroutro lado, suponha ¢ um divisor comum qualquer de b e
r de modo que (c/bec/r) o que implica que c/(b.q +7) = a, isto é, ¢/b
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e c/a(cédivisorcomumdeaeb) e sendo d = mde(a, b) acarreta d = «,
provando que d = mdc(b, ).

Admitamos agora que queremos calcular o mde (a,b)coma = b =0
ebta

Ent&o.
a=bg,+n0=n <b

b=n.g,+m 0= <n

n=r.q3tr 0= <n

Tya =Ty 1.4, T7,0=1, <1,_4

n—

Tye1 = T Qpeq T Typqcomn,, =0

Assim, pelo teorema anterior temos que

mdc(a,b) =mde(b,ry) =mdc(r,n) =..=mdc(r,_,;.1,,) =1,
Exemplo: Ache x, v € Z tais que mdc(a,b) = ax + by, para a =306 e
b = 657.

Temos 657 = 306.2 + 45,306 = 45.6 + 36,45 = 36.1+9,
36 =94+ 0,isto €, 9 = mdc(306,657).

Poroutrolado 9 = 45 — 36 = 45 — (306 — 45.6),

9 =457 — 306 = (657 — 306.2).7 — 306,

9 = 567.7 + 306.(—15)

9 =567.x+306y,ondex = 7ey = —15.
Exemplo: Determine x, v € Z tais que 78x + 32y = 2.

Temos 78 =322+14 32=142+2 14=434+24=224+10,
isto &, mdc(78,32) = 2.

Poroutrolado2 = 14 — 4.3 =14 — (32— 14.2).3 2 = 147 — 323

. 2=(78—322)7—323 2=178.7+32.(—17) = 78x + 32y, onde
x=7ey=-17.
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[Para refletir

1. Calcule:

(a)mdec(a, a + 1), a inteiro,

(b)ymde(a,a + 2), a inteiro par

(c)mdc(a,a + 2), a inteiro impar,

(d)mdec(a, a + 10), a inteiro,

(e)mdc(a —1,a* + a+ 1), a inteiro.

2. Se existem x, y € Z tais que mdc (a,b) = ax + by entdo mde (x,y) = 1.
. O mdc de dois naturais é 10 e o maior deles é 120. Ache o outro.
.Ache g, b e N tais que g + b = 63 € mdc(a,b) = 9.

. Os restos das divisOes de 4933 e 4435 por a € N sdo, respectivamente, 37 e 19. Ache a.
. Prove que, se a,/c, b/c € mdc (a,bj =1 entao ab/c.

. O mde (a,bj =1il= mdc(a, cj se somente se mdc(anC) = o

. Prove o Teorema de Euclides de Alexandria: Se a/bc € mdc (a,b) = 1€ntdo a/c.
. Se a/bc € mdc(a,b) =d entdo afed-.

10. Se mdc(a,4) = 2 = mdc (b, 4) €ntdo mde (a + b,4) = 4.

11.Se A = {x € T;mdc(x,2) =1} e B = {x € Z;mdc(x,3) = 1},ache A n B
12.S5eqez entaomdc(a at+2)= E_‘ T i

13.Se a/c, c/b e mdc(a,b) = 1, ehtho ar2L

14. Se @ e b sdo primos entre si entd0 mdc(2a+ b, a + 2b) = 1ou3.

15. Determinar:

(a)mde(—816,7209)

(b)mdc(—5376,—3402)

(c)mdc(209,299,102)

16. Ache «, y £ Z tais que:

(a)mde(56,72) = 56x+ 72y

(b)mdc(1769,2378) = 1769x + 2378y

17. Ache x, y € T tais que

(a)288x+ 51y = 3

(b)104x+ 91y = 13

OCOoONOULI AW

7. Minimo Multiplo Comum de dois nUmeros

Sejam a, b € Zcoma # 0 ou b # 0. Chama-se Minimo Multiplo Comum de
aeb o nimero natural m £ M que satisfaz as condicdes:

(la/meb/m.
(ii)Sea/neb/nentdom < n.

Pela condig&o (i), m é um mdltiplo comum de a e b, e pela condi¢éo
(if), m é o menor dentre todos os multiplos comuns de a e b.

Usaremos a notagdo m = mimnc(a, b) para indicar o minimo mdltiplo
comumde ae b.

E imediato que:
a) mmc (0, 0) n&o existe.

b) Pelo principio da Boa Ordenagéo o conjunto dos multiplos comunsde a e b
possui elemento minimo, isto &, mmc (a, b)) existe sempre, e € Unico.
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c)mmc(a,b) <| ab |.

d) Se a/b entdo mdc(a,b) =| b |.

e) mmc(a, b) = mme(—a, b) = mme(a, —b) = mmc(—a, —b).
Exemplo: Se a=12 e b=30 entdo M(12)={12,24736,...} e
M(30) = {30,60,90,...} logo M(12) n M(30) = {60,120,180,...} € cOmo O
menor & 60, segue-se que mmc (12,30) = 60.

7.1. Minimo Multiplo Comum de varios inteiros

O minimo mdltiplo comum pode ser estendido para trés inteiros a. & e ¢, ndo
nulos, e assim definimos mmc (a, b, ¢) = mmc (mmc(a, b),c).

Exemplo:
O mme(2,4,6) = mmc(mmec(2,4),6), logo
mmc (2,4,6) = mmc(4,6) = 12

7.2. Relagao entre o Maximo Divisor Comum e o Minimo Muiltiplo
Comum

Teorema: Se a, b € N entdo mdc (a,b). mmc(a, b) = ab.

Hipotese: a,.b € N, d = mdc(a, b) e m = mmc(a, b).

Tese: d.m = ab.

Prova: E imediato que a/2Z e b/“?b logo Ed—b é multiplo comum de a e b, isto
d

4 exi EN as _ a_moel_m ja gls e gl
é, existe g tanueIEE m_qdald € - Eq,ousejaq/deq/d

b b . . .
Mas d = mdc(a, b) = 1 = mdc E’E = S e ~ 580 primos entre sie como g

divide ambos, g = 1. De“d—b =gm= “d—b =m < d.m=ab.

Corolario: O mdc(a,b) = ab se e somente se mdc(a,b) =1, com
a,b E M.

A prova é deixada como exercicio, pois decorre imediatamente do te-
orema anterior.

Exemplo: Ache o mme (306,657).

Sabemos que mdc (306, 657) =9 logo

9. mme (306,657) = 201042 = mmc(306,657) = 22338.
Exemplo: Se a, b € W e mdc(a,b) = mmc(a,b) entdoa = b.
Hipétese: a,b € N, d = mdc(a, b) = mmc(a, b).

Tese: a = b.
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De fato, como d = mdc(a,b) entéo d/a <= (3g EN;a =d.q) e
d/b < (3g' € N;a =d.q").

Também d = mmec(a,b) entdo a/d = (g, EMN;d=ag,) €
b/d & (3q', € Nid = bq',).

Masa =d.q = (ag,)g = 1= q,q9 = q = g, = 1. De modo analo-
gog'=¢q'; = leassimdea = deb = d conclui-se que & = b.

IPara refletir

1. Calcular:

(a)ymmc(—120,68)

(b)ymmc(—42,—54)

(e)mme(—20,77,—1200)

2. Ache g, b € m sabendo:

(a)ab = 4033emmec(a, b) = 336.

(b)mdc(a, b) = 8emmc(a, b) = 560

(c)a+ b = 589emmc (a,b) = 84mdc(a, b).

3. Encontre os valores possiveis de q tal que mmc(a,a + 15) = 180.
4, Se a, beEN entao mdc \(a’ b) divide TG (:q,, b)

5. Se g e p sdo primos entre si entdo mme(a, b) =| ab |

8. Numeros Primos
8.1. Numeros Primos e Compostos

Um natural p = 1 € um ndmero primo se, e somente se 1ep sdo seus Unicos
divisores. Se p = 1 nao é primo € chamado composto. Um inteirop € Z é pri-
mo se, e somentese p # 0, # 11 e os Unicos divisores de p sdo +1e +p.

Teorema 1: Se um primo p n&o divide a. € Z entdo p e a so primos entre si.
Hipotese: p é primo, p t a e d = mdc(p, a),
Tese:d = 1.

Prova: Comod = mdc(p,a)entdod/plogod = loud = p, pois ¥ é primo.
Também d /a e se d = p entdo p/a, absurdo visto que por hiptese p | a.

Portanto d = 1.
Corolario: Se p é primo tal que p/ab entdo p/a ou p/b.
Hipétese: p é primo, a, b E Ze p/ab.
Tese: p/aoup/b.

Com efeito, Se p/a entdo com efeito. Se p t a entdo pelo Teorema
1mdc(p,a) = 1. Mas por hipétese p/abe como mdc(p,a) = 1 pelo Teo-
rema de Euclides de Alexandria p/b.

Teorema 2: Todo inteiro composto possui um divisor primo.
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Hipétese: o = 1 inteiro composto.
Tese: o possui divisor primo .
Prova:

Seja A = {x € N; x/acomx # lex # a}, conjunto de todos os divi-
sores de a, exceto os divisores triviais 1 e @. Como ¢ # A © M pelo principio
da Boa Ordenacéo existe um Unico p = min(A) e vamos provar que pé pri-
mo. Suponha que n&o, ou seja, suponha Pcomposto , logo Padmite um divisor
dtalqued/pdaid < p. Comop € A4, pfalogo d/a, isto é, d é divisor de a
e menor que p, absurdo visto que p = min (A)e assim p é primo.

Exemplo: Se a e b s&o primos entre si entdo ab e a + b também s&o primos

entre si.
Hipétese: mdc(a,b) = lemdc(ab,a +b) =d
Tese: d = 1.

Suponha d = 1 logo pelo Teorema 2, d possui um divisor primo ¥ que
também é divisorde ab e a + b. Se p/ab entdo p/a ou p/b, pois p & primo.
Suponha que ?/a e como p/(a+ b) entdo p/[(a+ b) —a] = b, isto é,
p/aep/blogo p/mdec(a,b) = 1, 0 que é um absurdo. Portanto d = 1.

8.2. Teorema Fundamental da Aritmética

Teorema: Para todo natural @ = 1 existem primos gy, 5, -.., p,.(r = 1) tais que
a = py,Ps.-.., P Adecomposicio de a é (inica, a menos da ordemdos  pi's.

Prova: Se © é primo, entdo nada se prova. Se a n&o é primo entao a é compos-
to e pelo Teorema 2 de 3.7.1a possui um divisor primo 24, isto é, a = py. a4
, 1< a; < a. Sea, éprimo entdo nada se prova. Se @; ndo é primo entéo
a,& composto e pelo Teorema 2 de 3.7.1a4 possui um divisor primo p,, isto
é a, = p,.a, 1< a, < a, <aeassima = p,.p,.a,. Continuando com
este processo obtemos 1 <... < a, < a; < @, OU Seja, existird um ndmero
finito de naturais entre 1 e a e consequentemente existira um a,. que é um
primo p,.(a, = p,) de modoque a = p;.p;...p,.

Para provar a unicidade, suponha a = g4.4,...q.(5 = 1), onde os
g,580 primos 10go p4-P7--- P = q1-93---4.. Como py/q4.9,-..qgentéo p,
divide pelo menos um dos fatores g;. Sem perda de tempo, suponha que
P41/ 44 e como ambos sdo primos entre si p; = gq4. Cancelando p; com g4 na
igualdade inicial obtemos p,.p5...P,. = g5.45..-q.. Continuando com este
processo até quando for necessario, chegamos a conclusdo que + = s e as-
sim provamos a unicidade.

Exemplo: Ache as decomposicdoes de a = 588 e b = 936. Ache ainda
mdc (a,b)e mme(a, b).
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Temos a = 588 = 22.3.72.b = 936 = 22.32.13 logo
mdc(a,b) = 2%.3 = 12¢
mme(a, b) = 2%.3%.7%.13 = 45864.

8.3. Infinidade de Primos

Teorema(Euclides de Alexandria): ha uma infinidade de primos.

Prova: (Prova indireta). Suponha que exista um ndmero finito de primos. Sejam
Py Pas .- - Pn@ €numeracéo de todos os nimeros primos e considere o nimero
n=pPyn...p. + 1. Comon = 1 pelo Teorema de 3.7.2, ou n € primo ou
npossui um fator primo p, que n&o pertence a nossa enumeragéo. Portanto o
ndmero de primos nao pode ser finita, isto &, ha uma infinidade de primos.

8.4. Como reconhecer um Numero Primo

Teorema: Se 0 natural @ = 1 é composto entdo @ possui um divisor primo
P = \."E.

Prova:Sea > 1écompostoentdoaadmiteumdivisord,istoé,d/a < a = dg,

l<d=g<aDed<g=>d*<dg=a<d<+a Comod=1 0

Teorema de 3.7.2 assegura que d possui pelo menos um divisor primo p, ou

seja. d/p = p = d =< +/a. Mas p/d e como d /a segue-se que p/a e con-

sequentemente a possui um divisor primo p < +/a.

O Teorema anterior € logicamente equivalente ao Teorema: “Se a = 1
nao é divisivel por nenhum primo » = +/a entdo a é primo”.

Exemplo: Verifique se = = 271 é primo ou composto.

Ora, 16 < /271 € 0s primos que n&o superam 16 sdo: 2,3,5,7,11 e 13
e nenhum deles é divisor de 271 logo a = 271 é primo.

Exemplo: Ache todos os pares de primos a e b taisque a — b = 3.

Como 3 é impar entdo @ e b tém paridade diferentes. Mas o Gnico primo
paré2easolucdoés— 2= 3 istoéa=5eb=2
Exemplo: Mostre que todo nimero primo é da forma 4k + 1 ou 4k + 3.

De fato, dividindo & € M por b = 4 obtemos & = 4.k ++,0 <r < 4
com restos possiveis ¥ = 0,1,2,3. Portanto o natural a é de uma das formas
a = 4k(composto), a =4.k+ 1(primo),a = 4k+ 2(composto) e
a=4.k+ 3(primo).

Exemplo: Ache todos os primos que sao divisores de 20!

Ora, 20! = 1.2.3...18.19.20 logo os primos divisores de 20! s&o todos

menores do que 20, sendo portanto 2,3,5,7,11,13,17,19.

Exemplo: Mostre que a soma de inteiros positivos impares e consecutivos &
sempre um inteiro composto.
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Com efeito, dois inteiros impares e consecutivos tém as formas 2k + 1
e 2k + 3logo (2k+ 1) + (2k + 3) = 4(k + 1) € mdltiplo de 4, mostrando
0 gque gueriamos.

Exemplo: Mostrar que, se a® + 2 é primo entdo 3/a.

Pois bem, dividindo @ por b = 3 encontramos a = 3k + 7,0 <r < 3
e os possiveis restos sdo r = 0,1,2.

Sea=3k+1lentdoa’+2=0Ck+ 1)+ 2=3(k+ 2k + 1) (composto) €
multiplo de 3 Sea =Gk +2)entdo a® + 2 =3k + 2 + 2 =3(k2 + 4k + 2) (com-
posto), e multiplo de 3.

Portanto a* + 2é primose a = 3k < 3/a.

Sintese do Capitulo

O objetivo a ser atingido nesse terceiro capitulo era conhecer o conjunto dos
numeros naturais, onde definimos a indugdo matematica, estabelecemos a
propriedade de ordem desse conjunto, propriedade esta, estendida ao conjun-
to dos inteiros. Nos naturais definimos nimeros divisores e mdltiplos, o mini-
mo mltiplo comum e 0 maximo divisor comum, culminando com os conceitos
de nameros primos e compostos.

Rtividades de avaliagdo

1. Ache os cinco menores primos da forma a® — a.
2. Mostre que todo namero primo é da forma 6k + 1 ou 6k + 5.
3. Sejam a, b £ M e p primo. Determine o valor légico das proposigoes:
a)Sep/(a* +b*)ep/aentiop/b.
b)Se p/abentéop/aep/b.
c)Sep/(a+ b)entdop/aep/b.
d) Se a/p entdo a é primo.
e)Sea/bep/bentaop/a.
4. Se a soma de dois naturais € primo entao esses nimeros sao primos entre si.
5. Todo primo da forma 3k + 1 é também da forma 6m + 1.
6.Sep éprimoep/a’ entdop®/a’.

7.Se a € M é composto entdo 2971 também o é.
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8. \Verifique se s&o primos ou composto 0s nimeros:
a)169 b)239 €)197 d)473

9.Acharomdc (a,b)e ommc(a,b)se a=2%0.5%.19.23° e b=26.3.74112.19°.23".
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Objetivos

¢ Definir as equagdes Diofantinas.
e Estabelecer condicbes de existéncia de solucoes.

Introdugao

Este quarto capitulo é totalmente dedicada a um tipo especial de equagdes
conhecidas como equagdes diofantinas, nome esse que homenageia o mate-
matico grego Diofante de Alexandria seu idealizador.

1. Generalidades

Acredita-se que Diofante viveu aproximadamente oitenta e quatro anos. A
principal obra de Diofante que conhecemos é a Aritmética, tratado que era
originalmente de treze livros, dos quais sé 0s seis primeiros se preservaram.
Na Grécia antiga a palavra aritmética significava teoria dos nimeros.

Era um tratado caracterizado por um alto grau de habilidade e de en-
genho, um marco na Histéria da Matemética, o que influenciou outros mate-
maticos da sua época e de épocas posteriores. Foi escrevendo na margem
desse livro a um amigo, que Pierre de Fermat ficou conhecido mundialmente
com Ultimo Teorema de Fermat.

Nessa obra, Diafonte introduz notagdes algébricas e estuda equagdes
indeterminadas, modernamente chamadas equagdes diofantinas em sua ho-
menagem. Diofante teve uma influéncia maior sobre as teorias modernas dos
numeros do que qualquer outro algebrista grego ndo geométrico.

2. Definicao

Uma equacéo da forma ax + by = ¢, a, b, ¢ € Z com a e b ndo simultanea-
mente nulos e x, y € Z variaveis inteiras € chamada equagéo diofantina. Um
par (x5 ¥,) € ZxZ tal que ax, + by, = c é verdadeira é dito uma solugdo
de equacgéo diofantina ax + by = ¢

Livro_Matematica_Introducao aTeoria dos Numeros.indd 55 03/05/2019 13:09:53



56 imis i

Existéncia de Solugao
Teorema: Uma equacgao diofantina ax + by = ¢, com a - b = 0 tem solu-
céo inteira se somente se mdc (a, b) divide c.

E suficiente: Suponhamos que a equagdo ax + by = ¢, com
ab # 0 tenha solugdo, isto &, existe o par (x,¥,) € ZxZ tal que
ax, + by, = ¢ é verdadeira e d = mdc(a, b), devemos provar qued | ¢

Mas dla<= (3gEZ;a=dg) e d| b= (3g'€Z;b=4dg") logo
axy + by, = (dg)xy +(dg')y, = d(gx, +q'v) = d | c.

E necessario: Suponha d | ¢, com d = mdc(a, b) para provar que a
equacéo ax + by = ¢,coma. b # 0temsolucdo. Mas d = mdc(a, b) logo
existemx,y € Ztaisque d = ax + byetambémd/c = (35 € Z;c = ds)
logo ¢ = ds = (ax + by)s = a(xs) + b(ys) = ax, + by, onde o par
(2 = x5y, = ys) € L X I é solugdo da equagdo ax + by = c.

O Teorema anterior é logicamente equivalente ao teorema: “O
mde (a,b) t ¢ se somente se a equacdo ax+ by =c¢, com ab = 0 e
d = mdc(a, b) ndo possui solu¢éo inteira”.

3. Solugao da equagao ax + by =c¢

Teorema: Se o par (x,Vv,) € ZxZ é solugdo particular da equagdo

ax + by = c,d = mdc(a,b)ed | centiotodasassolugdesdeax + by = ¢

com a. b # 0s&o dadas pelo par (x, + E t,yy — %tj EEZXZondet €L

Hipétese: O par (x,¥,) € ZxZ é solugdo de ax+ by =c, isto &,
ax, + by, = c é verdadeira, d = mdc(a,b) ed | c.

Tese: O par (x, —I-%t,}ru — Etj €I X Eéasolugdode ax + by = c.

Prova: Se o par (x5, ¥'3) € uma outra qualquer solucdo de ax + by = ¢

entéo ax', + by', = ¢ € verdadeira e assim

ax'y + by'y = axg + by, = a(x'y —xp) = by, — ')

Masd|a < (3g €EZ;a=dg)ed | b = (3¢ € Z; b = dg") logo
substituindo @ e b na identidade imediatamente acima encontramos
dq(x'y —xp) = dq' (7 — ¥'p) oug(x'y —x5) = q'(vy — ') dai

gla'(vo—vaeq | q(x'y —xp).

Como ¢ e g' sdo primos entre si pelo Teorema de Euclides de Ale-
Xandria,q | (}:l"} —}:r'll}j = (at = E:}rﬁ _ }r'lcl = tq = }r'lcl =}’D —%t:]e

gl (xy—x) = (FELx,—x,=tqg' =x',= xD-l-Etj'

b
Portanto o par x4 + = t, ¥ —Et ELXET
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é solucdo de ax + by = c.

De fato, temos

ax + by = a(xu,—l-gtj + b(v, —%tj = axD—I-Z—bt—I- by, —Z—bt =ax,+by,=c
Exemplo: Verifique se 56x + 72y = 40 tem solugdo. Em caso afirmativo
ache todas as solugdes, inclusive a solugao particular.

Vamos calcular o mdc (56, 72)

72=56.1+16

56 =163+8

16 =82+0

logo mdc(56,72) =8 e mdc (56, 72) | 40 = c segue-se que a equa-
¢c&o 56x + 72y = 40 tem solugéo.

Mas

8=56—163 =56—(72—56).3

8=72.(—3)+ 564

8.5 = 72.(—3.5) + 56.(4.5)

40 = 72(—15) + 56.20 e a soluc&o particular é

(x5 =—15,y, =20) €Z X Zeasdemais s&o

(xﬁ+gt =—15+9ty, —-t=20-7t) EZXLtEL
Exemplo: Ache todas as solugdes inteiras e positivas de 5x — 11y = 29

Em valor absoluto

11=52+1

—11=5.(-2)—-1=5(-2)—1+5-5

—11=5.(—3) +4

5=41+1 4=14+0 logo mdec(5—11)=1] 29 e assim
S5x — 11y = 29 tem solucao.

Mas

1=5—4=5—(—11+5.3)

1=5.(-2)+111

29 = 5.(—2.29) + 11(1.29)

29=5.(-58)—-11.(—-29) e

a solugdo particular é (x, =—58,y, =—29) e as demais
(xg+2t=—58—11t,y, —>t=—29—5t) EEX Lt € L.

Como queremos solugcdes inteiras e positivas deve-se fazer

—58—11t=0e —29—5t= 0, isto é, para t = —6 todas as solugbes
serao inteiras e positivas.
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Exemplo: Ache o menor inteiro positivo que dividindo por 8 e por 15 deixa os
restos 6 e 13, respectivamente.

Seja az € M o numero procurado. Pelo enunciado
a = 8x+ 6ea = 15y + 13comzx, v € Zlogo
8x+ 6 =15+ 3 = 8x — 15y = 7(Equaciodio fantina)
VVamos encontrar mdc (—15,8). Em valor absoluto
15=81+7
—15=8.(—-1)-7=8.(-1)—-7+8—8
—15 = 8.(—2) +1-
8 = 1.8 + 0 logo mde (—15,8) = 1divide7e 8x — 15y = 7 tem solucao.
Mas
1=-15+8.2
7 =8.(2.7)— 15.7
7 = 8.(14) — 15.7 e a solugo particular é (x, = 14,y, = 7)
e as demais (14 — 15t,7 —8t) € Z X Z,t € Z. Como queremos solugdes
positivas e inteiras, 14 — 15t = 0e7 — &t = 0,ouseja, t = 0.
Portantox = 14, v = 7ea=8x+6 =814+ 6 = 188 ou
a=15y+ 13 = 15.7 + 13 = 18

Exemplo: Se a,b € W sdo primos entre si entdo a equacéo diofantina
ax — by = ¢ tem um numero infinito de solugdes inteira e positivas.

Hipétese: a,b € M emdc(a,b) =d =1
Tese: ax — by = ¢ possui infinitas solugc&o inteiras e positivas.
Prova: Ora, a equagédo ax — by = ax + (—b)y = c tem solugéo pois
mdc (a,—b) = mdc(a, b) = lquedividec e as demais
(xg—bt,y, —at) EEXILtEL
Como queremos que elas sejam  positivas, fazemos
xﬂ—bt}nﬁtczx—;e}ru_at;:ngt::%.

Mas té menor que os dois valores, logo existem infinitos valores parate
consequentemente a equacdo ax — by = ¢ possui infinitas solugdes inteiras
e positivas.

Sintese do Capitulo

Neste quarto capitulo estudamos as equagdes diofantinas, determinamos con-
dicbes de existéncia e critérios de solugao no universo dos inteiros relativos.
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1. Verifique se as equagdes diofantinas seguintes tem solugdes . Em caso
afirmativo, ache todas as solugdes, inclusive as solugdes particulares

o)84x-438y = 156 b)44x + 66y = 11
£)21x—12y =72 d)32x+ 55y = 771

2. Ache todas as solugdes inteiras e positivas das seguintes equagées diofan-
tivas.
a)123x + 360y = 99 b)58x — 87y = 290
£)54x — 21y = 906 d)30x+ 17y = 300

3. Exprimir 100 como a soma de dois naturais de modo que o primeiro seja
divisivel por 7 e o segundo seja divisivel por 11.

4. Ache as duas menores fragdes positivas que tenham 13 e 17 para denomi-
nadores e cuja a soma seja igual a 308

a3

5. Dividir 100 em duas parcelas posiﬁ(las tais que uma é multiplode 7 e a
outra de 11.

6. Ache todos naturais com a seguinte propriedade: “Fornecem resto 6 quando
divididos por 11 e o resto 3 quando divididos por 7.

7. Um parque de divisdes cobra R$ 1,00 a entrada de criangas e R$ 3,00 a de
adultos. Para que a arrecadacdo de um dia seja R$ 200,00, qual o menor
numero de pessoas, entre adultos e criangas, que poderiam frequentar o
parque nesse dia ? Quantas criangas ? Quantos adultos ?

8. Um fazendeiro que dispde de R$ 1.770,00 pretende gastar esta importan-
cia na compra de cavalos e bois. Se cada cavalo custa R$ 31,00 e cada
boi R$ 21,00, qual o maior numero de animais que pode adquiri? Quantos
cavalos? Quantos bois?

9. Uma certa quantidade de magéas é dividida em 37 montes de igual nimero.
Apbds serem retiradas 17 frutas, as restantes sédo acondicionadas em 79
caixas, cada uma com a mesma quantidade. Quantas magas foram colo-
cadas em cada caixa? Quantas tinham cada monte?
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Objetivos

¢ Definir congruéncia de dois inteiros.
e Conhecer propriedades da congruéncias.

Introdugao

Neste quinto capitulo estudaremos a congruéncia de dois nimeros inteiros. O
conceito de congruéncia se baseia nos conhecimentos adquiridos nos capitu-
los anteriores, principalmente nos conceitos de divisibilidade e restos de uma
diviséo de dois inteiros.

1. Generalidades

Genial, talentoso e virtuoso foi 0 matematico, astrondmico e fisico aleméo,
Carl Friendrich Gauss (1777 — 1855) ou simplesmente Gauss. Conhecido
como principe dos matematicos é considerado o maior génio da Historia da
Mateméatica. E de entendimento de todos que apenas dois outros génios da
matematica podem se igualar a Gauss.: Arquimedes de Siracusa(287 a.C -
212 a.C ?) e Isaac Newton (1643 — 1727). Ademais, Gauss foi 0 mais precoce
dentre todos os génios da Matematica, considerada por ele a rainha das cién-
cias, e Teoria dos NUmeros a rainha da Matemética.

Aobra de Gauss é bastante extensa e diversa. Entre suas inimeras pu-
blicagbes, aos vinte e um anos, ele escreveu Disquisitiones Arithmeticae que
s6 foi publicado em 1801. Grande parte desse trabalho serviu de base para
o crescimento da Teoria dos NUmeros, e varios resultados que trataremos
neste capitulo, também encontram-se neste trabalho, até mesmo a notagéao la
utilizada, é a que utilizamos ainda hoje. Gauss, sem sombra de divida, foi um
extraordinario matematico. Sua Unica ambic&o era o progresso matematico,
pelo que lutou até a sua morte.
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2. Inteiros Congruentes

Sejam a, b € Z e o natural m. Dizemos que a é congruente a b médulo m se
e somente se m divide a diferenca a — b.

Usaremos a notagéo a = bmedm para indicar que & é congruente a
bmédulo m.
Em simbolos
a=bmodmem|(a—b)=S (3gE€EL;a—b=m"q).
Se m nao divide a diferenga a — b ent&o dizemos que # é incongruente
a b médulo m e indica-se por a £ bmodm.

Exemplo: Triviaimente, 11 = 3mod4, pois 4|8 = (11— 3). Mas 41} 6
comé = 19 — 13 logo 19 £ 13mod4.

Teorema: Dois inteiros a e b sdo congruentes médulo 1 se e somente
se a e b deixam o mesmo resto quando divididos por m.

Hipétese: a = bmodm e v o resto da divisdo de b por m, isto &,
b=mg+r,0=r<m.

Tese: + é resto da divisdo de a por 1.

Prova: Por hipétese a = bmodm < (3k € E;a — b = km) logo
a=b+km=(mg+r)+km=m(q+k)+r, istoé r é resto da divi-
s&o de apor m.

Hipétese:a =mg, +r.b=mg,+r0<=r <megqg,q, €L

Tese:m | (a — b) & a = bmodm.

Prova: Ora,a — b = (g, —gq,)mlogom | (a —b) = a = bmodm
Exemplo: Sabendo que 1066 = 1776modm, ache todos os possiveis va-
lores do mddulo m.

Como 1066 = 1776modm, sejam g,eq, 0s quocientes das divisdes
de 1066 e 1776 pormeroresto. Entdo 1066 = g, m +rel776 = g,m + r
logo 1776 — 1066 = m(qg, — q,) = m | 710 e assim m = 2, 5, 10, 142,
355,710

Exemplo:
Se k = 1mod4 entdo 6k + 5 = 3mod4.
Comefeito, se k = Imod4 entiok — 1 =4q,g € Z=k =4q+ 1.
Mas6k +5 =6(4q+ 1)+ 5=4(6q+ 2)+ 3 istoé, 3éorestoda
divisdo de 6kt + 5 por 4 se, e somente se, 6k + 5 = 3mod4.
Exemplo: Mostre que todo primo p(p # 2) é congruente mod4alou3.
De fato, pelo algoritmo de Euclides a = 4q + r, 0 < r < 4e
os possiveis restos sdor=0, 1, 2, 3,
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Portanto

a = 4q(par)oua = 4q + loua = 4q + 2(par)oua = 4q + 3.

Sep(p # 2)épimoentiop = 4q+ 1< p —1 = 4q < p = 1mod4
oup=4q+3=p—3=4q<=p=3Imodd
Exemplo: Se a = bmodm entdo mdc (a,m) = mdc(b, m).

Pois bem, como a = bmodmsejam q,,q, € Z 0s quocientes das divi-
sbesdeaebpormeroresto. Entioa = mg, + reb=mg, + r.Ser =0
r=0entdoa = mg,,logom | adaimde(a,m) = m. Também b = mg, logo
m /b daimde (b,m) = m. Das duas identidades mdec (a,m) = mdc(b, m).

Ser # 0entédo
mde (a,m) = mde(m,r)emde (b,m) = mdc (m, v)daimde (a, m) = mde(b,m)
Exemplo: Ache os naturais x, 0 < x = 15tais que 3x = 6modl5

Por definicéo, existe ¥ € L tal que 3x — 6 = 15y < 3x — 15y = 6.
Mas mdc(3,—15) = 3 | 6 logo a equagéo diofantina 3x- 15y = & possui
solucao.

Uma solugdo particular imediata é x3 =7, ¥, =1 e as demais
(x=xo+=t=7—5ty =y, —St=1—-t) ELXLtEL

Como queremos solugbes inteiras e positivas deve-se fazer
0<x=7-5t< 1580867 —5t>0& < e7-5t<15 ¢
Os valores inteiros de t sdot = 0,+1logo x = 2,7,12

3. Propriedades dos Inteiros Congruentes

Sejama, b, ¢, d € Ze o natural m. Sdo verdadeiras as seguintes propriedades:
P.1 a = bmodm.
Prova:Ora,m | 0 = (a — a) = a = amodm
P2 Se a = bmodm entdo b = amodm.
Prova: Se a = bmodm entéo existe g € Z tal que
a—b=m-g<=b—a=m(—g) = b= amodm
P.3 Sea = bmodm ese b = cmodm entdo a = cmodm.
Prova: Se a = bmodm entdo existe g, E L tal que a — b =mg, e se
b = cmodm entéo existe q, € Ztalque b — ¢ = mgq,.
Portanto,
a—c=(a—b)+(b—c)=mg, + mg, =m(q,+ q,) = a = cmodm
P.4 Sea=bmodmesec=dmodmentdoa +¢c = (bt d)modme
ac = bdmodm.

Prova: Se a = bmodm entdo existe g; € Z tal que a — b =mg, e se
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¢ = dmodm existe q, € Ztalque c — d = mgq.,.

Portanto,

(a+c)-(b+d)=(a—b)+ (c-d) =mg, + mg, = m(gq, +q5)
= a+c = (b+ d)modm.

Como

a—b=mg, = c(a—>b)=rca—cbhb=m(cqg,) = ca = cbmodm.
P.5Sea = bmodmentéoa + ¢ = (b + c)modme ac = bemodm.
Prova: Se a = bmodm e como ¢ = cmodm por P4 a + ¢ = (b + c)modm.
P.6 Se a = bmodm entdo a” = b"modm,n € .
Prova: (Indu¢&o sobre n )

E insofismavel que para n = 1 a afirmacéo é verdadeira. Suponha
verdadeira para n = k., isto é, a¥ = b*modm é verdadeira, para provar que
paran = k + 1tambémo é.

Ora a = bmodm. por hipétese indutiva a* = b*modm e por P4
a¥ - a =b"* - bmodm = a*"! =b* lmodm. Portanto P6 é verdadeira
para todo 1.

Exemplo: Mostre que 11 divide 10%%% — 1.
Com efeito, 10 = —1mod11 logo
102 = (—1)*®modil = 10°" = 1modi1l = 11| (10%%° — 1)
Exemplo: Prove que 100 | (11'% — 1)
De fato, 11% = 121 = 21mod100logo
(11%)% = (21*)mod100 < 11* = 441mod100e como
441 = 41mod100 segue-se que 11* = 41mod100.
Ademais,(11%*)? = (41*)mod100 < 11° = 1681mod100,
1681 = 81mod100e assim 11% = 81mod100. Portanto
11%- 11% = 21 - 81mod100 < 11'% = 1701mod100 e sendo
1701 = 1mod100 ocorre que
111% = 1mod100 < 100 | (11" — 1)
Exemplo: Verifique que 2°° = 1mod41
Ora, 27 =128 = 5mod41 e 2° = 64 = 23mod41 logo

27.27.2% =5.5.23mod41 < 2% = 575mod41 e sendo
575 = 1mod41segue-se que 2°° = 1mod41.

Exemplo: Verifique se —2 = 2mod8
Ora,—2=2mod8< 8| (—2—-2). Como 81%(—4) entéo
—2 £ 2mod3s, isto é, ndo é verdade que —2 = 2ZmodS.
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Exemplo: Se @ é um inteiro impar entio a* = 1mod8

Poisbem, nadivisdodeaporbk = 4encontramosa = 4q + +,0 < r < 4
e os possiveis restos sdor = 0,1,2,3,

Portanto a = 4q (par) oua =4q + 1 (impar) oua = 4q + 2(par) ou a = 4q + 3(impar)

Se a =4q+ 1 entdo a = 8(2q* +q) + 1, isto &, “a" deixa res-
to 1 quando dividido por 8 logo a’ = 1mod8. Se a = 4+ 3 entdo
a’ = 8(2q* +3q) + 1, ou seja,“a" deixa resto 1 quando dividido por 8 logo
a® = 1mod8&.

B2

B

4. Critério de divisibilidade por 11

Temos 10 = —1mod11logo 10" = —1mod11seréimpare
10" = 1mod11 se ré par. Portanto
ty = agmodll
10a, = —a,;modl11

10%°a, = a,mod11

107a

r

(—1")a,mod11e assim
a=a,+a,10+a,10*+...+a,10" = [a, — a, + a;—...(—1")a,]mod11

Pelo Teorema de 5.2 “a" e [a; — a, + a,—...+(—1")a,] deixam o
mesmo resto quando  divididos por 11.

Portanto “a”“ é divisivel por 11 se, s6 se, 11 divide
[ty —ay, + a,—...+(—17)a,]

Neste quinto e ultimo capitulo estudamos a congruéncia entre dois nimeros
inteiros. Primeiramente definimos dois inteiros congruentes e estabelecemos
propriedades para essa relagéo entre inteiros. Concluimos esta unidade de-
monstrando um critério de divisibilidade por 11, que ainda nido conheciamos.
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Rtividades de avaliagdo

1. Determine o valor l6gico de cada uma das proposi¢coes seguintes:
a)17 = 9mod2 b)1 = Omod7

€)3+5+47 =5mod10 d)11* = 1mod3
gla=3mod5=>ac{...,-7,-23813,...}

2. Ache todos os naturais x tais que:
a)0 < x < 200ex = —1mod7.
b)0 < x < 100e x = 5mod8
£)0 << x < 15e 3x = 6mod15
d)1 <x <100ex = 7mod17

3. Mostre que todo primo p(p # 2,3) é congruente médulo 6 a 1 ou 5.

4. Provar.
a)89|(2* —1) b)97|(2*¥ —1)
5.Sea € Zentdoa® = 0,10uBmod9
6. Mostrar que :
a) Se a = bmodm entao —@ = —bmodm
b)Se a + b = cmodm entdo a = (¢ — b)modm
c)Se ac = bemodm e semdc(c,m) =dentdoa = bmod%
d) Se ac = bemodmemdc (c,m) = 1 entdo a = bmodm
e) Se ac = bemodmp, p primo, ese p | ¢ entdo a = bmodp
7.0 ntmero 3145.253.9%¢ divisivel por 11 ?
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