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Apresentação

Este material foi produzido para a Disciplina de Matemática Discreta, do Curso 
de Licenciatura em Computação, ofertado a distância pela Universidade 
Aberta do Brasil/UECE e tem como objetivo oferecer subsídios para orientar 
os estudos dos alunos e facilitar sua aprendizagem.

A Matemática discreta provê uma série de técnicas para a modela-
gem de problemas da Ciência da Computação, estudando, principalmente, 
conjuntos contáveis, finitos ou infinitos, como Naturais, Inteiros e Racionais. 
Compreendemos que as demonstrações de teoremas são de grande impor-
tância na Matemática, oferecendo melhor compreensão e comprovação do 
que foi afirmado. Apresentaremos neste material os principais conceitos e re-
sultados da Matemática Discreta, utilizando uma linguagem simples e aces-
sível, objetivando que o estudante possa desenvolver o raciocínio abstrato e 
aplicar os conceitos básicos de Matemática Discreta na solução de problemas.

Os conceitos aqui apresentados são úteis para estudantes do Curso 
de Licenciatura em Computação e indicamos uma bibliografia complementar 
para aqueles que desejarem aprofundar seus estudos.

Este material foi elaborado com muito cuidado, para que possa ajudar 
ao estudante a construir conhecimentos e utilizá-los sempre que necessitar.

A autora





Capítulo 1
Teoria dos Conjuntos
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Objetivos 

l Conhecer a noção e a representação de conjuntos;

l Reconhecer os símbolos que permitem relacionar elementos a conjuntos e 
conjuntos a conjuntos;

l Operar com conjuntos e conhecer as principais propriedades das operações.

É de fundamental importância conhecer a linguagem dos conjuntos e suas 
operações, pois praticamente todos os conceitos desenvolvidos em computa-
ção e informática são baseados em conjuntos e suas construções.

1. Noções de conjuntos

Definição: Um conjunto é uma coleção de objetos distintos. Os objetos que 
fazem parte do conjunto são chamados de elementos, não importando a or-
dem em que se apresentam.

Podemos representar um conjunto utilizando chaves ou diagrama de Venn.

Exemplo 1: Representamos os elementos do conjunto  entre chaves e no 
diagrama de Venn:

A = {1,3,5,7}                                                                                                                           	
                                                           A

O conjunto que não possui elementos é chamado de conjunto vazio e repre-
sentado por {  } ou ∅. O conjunto que possui apenas um elemento é chama-
do de conjunto unitário. Denominamos de conjunto universo ao conjunto que 
possui todos os elementos com uma determinada propriedade.

Exemplo 2: Seja M = {x | x é mês do ano que começa com a letra z}, o con-
junto M é vazio, ou seja, M = {  } ou ∅.

Quando não deixar dúvidas, podemos escrever os conjuntos utilizando reti-
cências ou uma condição.

1          3 

5          7
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Exemplo 3: P = {x | x é um número primo} e lemos: conjunto de elementos x 
tal que x é um número primo, ou seja, P = {2, 3, 5, 7, 11, ...}.

A quantidade de elementos de um conjunto A é chamada de cardinalidade e 
representaremos por n (A).

Exemplo 4: O conjunto A = {1, 3, 5, 7} tem cardinalidade 4 e o conjunto 
P = {2, 3, 5, 7, 11, ...} tem cardinalidade infinita.

Para refletir

1. Descreva os elementos dos conjuntos e indique sua cardinalidade:
a) A = {x | x é mês do ano}
b) B = {x | x é dia da semana}
c) C = {x | x é múltiplo positivo de 6}
d) D = {x | x é divisor positivo de 12}

2. Relações de pertinência e inclusão

Podemos relacionar elementos com conjuntos utilizando a condição de esta-
rem presentes no conjunto ou não, essa relação é chamada de pertinência e 
utilizamos os símbolos ∈ e lemos que o elemento pertence ao conjunto ou ∉ 
e lemos não pertence.

Exemplo 5: Seja A = {x | x é par}, então podemos dizer que 2 ∈ A e 5 ∉ A.

Dados dois conjuntos A e B, dizemos que A é um subconjunto de B se todo 
elemento que pertence ao conjunto A também pertence ao conjunto B, utiliza-
mos a notação A ⊂ B, lemos A está contido em B, ou B ⊃ A, lemos B contém A.

Exemplo 6: Sejam A = {0,2,4,6} e B = {0,1,2,3,4,5,6,7,8,9,10}, podemos dizer 
que A ⊂ B ou B ⊃ A.

Se existir um elemento do conjunto A que não pertença ao conjunto B dize-
mos que A não é subconjunto de B e denotamos por A ⊄ B , lemos que A não 
está contido em B, ou B ⊅ A, lemos que B não contém A.

Exemplo 7: Sejam A = {0,2,4,6} e B = {0,1,2,3,4,5}, podemos dizer que A ⊄ B 
ou que B ⊅ A.

Note que para qualquer conjunto A, podemos dizer que ∅ ⊂ A ou A ⊃ ∅, ou 
seja ∅ é subconjunto de qualquer conjunto.
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O conjunto P(A) formado por todos os subconjuntos de um conjunto A é cha-
mado de conjunto das partes de A ou conjunto potência e tem cardinalidade 2n, 
onde n é o número de elementos do conjunto A, cuja demonstração apresen-
taremos no capítulo 4, usando-se o princípio de indução.

Exemplo 8: Considere o conjunto A ={ 2, 3, 5, 7} o conjunto das partes de 
A possui n(P(A)) = 24 = 16 elementos, que são: 

P(A) = {∅, {2}, {3}, {5}, {7}, {2, 3}, {2, 5}, {2, 7},{3, 5}, {3, 7}, {5, 7}, {2, 3, 5}, {2, 3, 7}, 
{2, 5, 7}, {3, 5, 7}, A}.

Dados dois conjuntos A e B dizemos que eles são iguais se A ⊂ B e B ⊂ A.

Exemplo 9: Os conjuntos A = {1, 2, 3} e B = {2, 1, 3} possuem os mesmos 
elementos, ou seja, A = B.

Exemplo 10: Seja A = {a, e, i, o, u} e B = {x | x é vogal} podemos dizer que A = B.

Para refletir

1. Analisando cada item a seguir, classifique as sentenças em verdadeiro (V) ou falso (F):
(   ) 2 ∈ {0, 1, 2, 3, 4}
(   ) {4} ∈ {0, 2, 4, 6}
(   ) {2, 8} ⊄ {0, 2, 4, 6}
(   ) ∅ ∈ {1, 2, 3}
(   ) {1, 3, 5} ⊃ ∅
(   ) {0} ⊂ {0, 1, 2}

2. Dado o conjunto A, que possui 7 elmentos, determine o número de elementos do 
conjunto das partes de A, que contém pelo menos dois elementos.

3. Considerando os conjuntos A = {5, 7, 9, 11, 13} e B = {1, 3, 5, 7, 9, 11, 13, 15}, assinale 
a alternativa correta:

a) ∅ ⊄ A
b) A ⊂ B
c) A ⊃ B
d) B ⊅ A
e) 15 ∉ B

3. Operações entre conjuntos

Apresentamos nesta unidade as operações entre conjuntos: união, interse-
ção, diferença, produto cartesiano e a diferença simétrica.

Definição: Dados dois conjuntos A e B, chamamos de união de A e B e deno-
tamos por A ∪ B, ao conjunto C que possui todos os elementos que pertencem 
a A e todos os elementos que pertencem a B e nenhum outro elemento que 
não esteja em um dos conjuntos.

A ∪ B = C = {x | x ∈ A ou x ∈ B}.
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A união de dois conjuntos A e B pode ser representada no digrama de Venn:

Exemplo 11: Dados os conjuntos A = {0, 2 ,4, 6, 8} e B = {1, 2, 3, 4}, temos que: 

A ∪ B={0, 1, 2, 3, 4, 6, 8}.

Propriedades: se A, B e C são conjuntos quaisquer, então valem as seguintes 
propriedades da união:

•• A ∪ A = A (idempotente)

•• A ∪ ∅ = A (elemento neutro)

•• A ∪ B = B ∪ A (comutativa)

•• (A ∪ B) ∪ C = A ∪ (B ∪ C) (associativa).

Definição: Dados dois conjuntos A e B, chamamos de interseção de A e B ao 
conjunto C que possui todos os elementos que pertencem a A e pertencem a B 
e nenhum outro elemento que não esteja nos dois conjuntos. Representamos 
a interseção dos conjuntos A ∩ B por:

A ∩ B = C = {x | x ∈ A e x ∈ B}.

A interseção de dois conjuntos A e B pode ser representada no digrama de Venn:

Exemplo 12: Dados os conjuntos A = {0, 2, 4, 6, 8} e B = {1, 2, 3, 4}, temos que:

A ∩ B={2, 4}.

Apresentamos agora algumas propriedades da interseção de conjuntos.

Propriedades: se A, B e C são conjuntos quaisquer, então valem as seguintes 
propriedades da interseção:

•• A ∩ A = A (idempotente)

•• A ∩ ∅ = ∅ (elemento neutro)
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•• A ∩ B = B ∩ A (comutativa) 

•• (A ∩ B) ∩ C = A ∩ (B ∩ C) (associativa).

Além dessas propriedades podemos, verificar que o número de elementos da 
união de dois conjuntos A e B é dada por: 

n(A ∪ B) = n(A) + n(B) − n(A ∩ B).

Para três conjuntos A,B e C, temos que: 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B) − n(A ∩ C) − n(B ∩ C) + n(A ∩ B ∩ C).

Utilizando o princípio de indução, que será apresentado no capítulo 4, podere-
mos estender essa conclusão para um número de elementos n ∈ N.

Exemplo 13: Dos onze jogadores do time de futebol ABC, oito tem pelo me-
nos vinte cinco anos e sete tem no máximo 30 anos. Se A = {x | x é jogador 
do ABC que tem pelo menos 25 anos} e B = {x | x é jogador do ABC e tem 
no máximo 30 anos}, podemos determinar o número de jogadores que pos-
suem idade entre 25 e 30 anos. Como A ∪ B= {x | x é jogador do time de 
futebol ABC}, assim:

n(A ∪ B) = n(A) + n(B) − n(A ∩ B)

11 = 8 + 7 − n(A ∩ B)

n(A ∩ B) = 4.

Definição: Considere dois conjuntos A e B, chamamos de diferença entre A e 
B ao conjunto C dos elementos de A que não pertencem a B. Denotamos por 
A − B a diferença entre os conjuntos A e B e representamos:

A − B= C ={x | x ∈ A e x ∉ B}.

A diferença entre dois conjuntos A – B pode ser representada no digrama de Venn:

Observamos que a diferença não é comutativa e nem associativa.
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Exemplo 14: Sejam dados os conjuntos A = {−3, −2, −1, 0, 1, 2} e B = {0, 1, 
2, 3, 4, 5}. Determinamos os conjuntos A − B e B - A e verificamos que não 
possuem elementos comuns.

A − B = {−3, −2, −1} e B − A = {3, 4, 5}, concluindo que (A − B) ∩ (B − A)=∅.

Definição: A diferença simétrica entre dois conjuntos A e B, denotada por A ∆ B, é 
o conjunto C que possui todos os elementos de A que não pertencem a B e todos 
os elementos de B que não pertencem a A, e nenhum outro elemento, assim,

A ∆ B = C= {x | (x ∈ A e x ∉ B) ou (x ∉ A e x ∈ B)} = (A − B) ∪ (B − A).

Podemos verificar facilmente que (A − B) ∪ (B − A)=(A ∪ B) − (A ∩ B). Faça o 
diagrama de Venn para comprovar esta afirmação.

Exemplo 15: Considerando os conjuntos A = {1, 2, 3, 4, 5, 6} e B = {2, 3, 5, 7, 
11, 13}, determinamos a diferença simétrica entre A e B.

A ∆ B = {1, 2, 3, 4, 5, 6, 7, 11, 13} − {2, 3, 5} = {1, 4, 6, 7, 11, 13}.

Propriedades: Sejam A e B conjuntos quaisquer, valem as seguintes proprie-
dades para a diferença simétrica: 

•• A ∆ ∅ = A 

•• A ∆ A = ∅

•• A ∆ B = B ∆ A .

Quando A e B são conjuntos com A ⊂ B, chamamos de complementar de A 
em relação a B ao conjunto formado pelos elementos de B que não perten-
cem a A, isto é, a diferença B - A, denotado por CB

A e representado por

CB
A  = {x | x ∉ A e x ∈ B} = B − A.

Exemplo 16: Dados A = {1, 2, 3, 4} e B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} podemos 
determinar o complementar de A em relação a B.

CB
A = B − A = {5, 6, 7, 8, 9, 10}.

Definição: Dados os conjuntos A e B, chamamos de produto cartesiano, e 
representamos por A x B, ao conjunto C formado por pares ordenados en-
contrados combinando cada um dos elementos do conjunto A com todos os 
elementos do conjunto B, nesta ordem, e nenhum outro elemento.

A x B = C = {(x,y) | x ∈ A e y ∈ B}.
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Exemplo 17: Sejam A = {0, 1, 3, 5} e B = {2, 3}, determinamos A x B, B x A e B x B.

A x B = {(0, 2), (0, 3), (1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3)}

B x A = {(2, 0), (2, 1), (2, 3), (2, 5), (3, 0), (3, 1), (3, 3), (3, 5)}

B x B = {(2, 2), (2, 3), (3, 2), (3, 3)}.

Observamos que o produto cartesiano não é comutativo, ou seja A x B ≠ B ⨯ A. 
Podemos ainda determinar o número de elementos do produto que é:

n(A⨯B) = n(A) ∙ n(B).

Exemplo 18: Dados dois conjuntos A com 5 elementos e B com 4 elementos, 
o número de elementos de A⨯B é

n(A x B) = n(A) ∙ n(B) = 5 ∙ 4 = 20.

Para refletir

1. Dados A = {1, 2, 3, 4}, B = {2, 3, 6, 7, 8} e C = {3, 4, 5, 6}, determine o que se pede:
a) A ∪ B
b) A ∩ C
c) A ∪ (B ∪ C)
d) A - (B ∪ C)
e) A ∆ B
f) A x B

2. Considere A = {2, 3, 5} e B = {1, 2, 3, 4, 5, 6}. Determine o número de elementos de:
a) A ∪ B
b) A x B

3. Sejam A e B dois conjuntos distintos. Assinale a sentença verdadeira.
a) A − B = B − A
b) (A − B) ⊂ (A ∩ B)
c) (A − B) ⊂ (A ∪ B)
d) (A − B) ∪ (B − A) = A ∪ B.

4. Dados os conjuntos A = {0, 1, 2, 3, 4, 5, 6, 7}, B = {4, 5}, C = {1, 2} e D = {2, 3, 4}. Determine:
(A − C)∩(B ∪ D).

5. Sejam A = {−2, −1, 0, 1, 2} e B = {0, 1, 2}. Sobre o produto cartesiano, é correto afirmar que:
a) A x B possui 8 elementos
b) A x B = B x A
c) A x A possui 25 elementos
d) B x B possui 15 elementos.

6. Dados A, B e C conjuntos quaisquer, verifique se as seguintes propriedades envol-
vendo união e interseção são verdadeiras ou falsas:

a) A ∪ (A ∩ B) = A 
b) A ∩ (A ∪ B) = A
c) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
d) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

7. Considere que A x B = {(0, −2), (0, −1), (1, −2), (1, −1), (2, −2), (2, −1), (5, −2), (5, −1)}. 
Determine os conjuntos A e B.
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4. Conjuntos Numéricos

Apresentamos resumidamente alguns conjuntos numéricos que serão utiliza-
dos ao longo do nosso estudo. O primeiro deles é o conjunto dos números 
naturais, formado pelos números 0, 1, 2, 3, 4, … e representado pela letra N.

N = {0, 1, 2, 3, 4, …}

N* = {1, 2, 3, 4, …}.

No capítulo 4 estudaremos mais detalhadamente o conjunto dos naturais e os 
axiomas que o caracterizam.

O conjunto dos números inteiros, representado por Z, é formado por todos os 
números naturais, acrescidos dos números negativos, portanto:

Z = {…,−3, −2, −1, 0, 1, 2, 3, …}.

Notamos que N é um subconjunto de Z, ou seja, N ⊂ Z.

O conjunto dos números racionais, representado por Q, é formado por todos 
os números que podem ser escritos na forma de fração, desta forma:

Q = {x | x= 
a

b
 ,com a, b ∈ Z e b ≠ 0}.

São exemplos de racionais todos os números naturais, inteiros, decimais exa-
tos, decimais infinitos periódicos.

Exemplos: 1\4 = 0,25 e -5\9 = −0,555 …

Chamaremos de conjunto dos números reais e representaremos por R, ao con-
junto que possui os números racionais e os decimais infinitos não periódicos.

O conjunto formado por todos os números que não podem ser escritos na 
forma de fração, ou seja, decimais infinitos e não periódicos, será chamado 
de conjunto dos números irracionais e representado por I.

São exemplos de números irracionais: √2, √3, π = 3,14159265....

Notamos que a união do conjunto dos números racionais com o conjuntos dos 
irracionais resulta no conjuntos dos números reais, ou seja,

R = Q ∪ I.

Ainda existem outros conjuntos numéricos fundamentais, como por exemplo, 
o conjunto dos números complexos, representado por C, formado por núme-
ros da forma:

c = a + bi, com a, b ∈ R e i é um número complexo que corresponde a √−1.
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Este conjunto possui as seguintes operações de soma e produto:

( i ) (a + bi) + (c + di) = (a + c) + (b + d)i

( ii ) (a + bi) ∙ (c + di) = (a ∙ c - b ∙ d) + (b ∙ c + a ∙ d)i.

Os conjuntos numéricos serão analisados no capítulo 5, considerando os con-
ceitos de grupos, anéis e corpos.

Atividades de avaliação
1. Assinale V para as sentenças verdadeiras e F para as sentenças falsas:

(   ) Z ⊂ R

(   ) √2 ∈ R
(   ) I ⊃ Q

(   ) - 
3

5
 ∉ Q

2. Verifique se as equação do segundo grau a seguir possuem raízes reais 
ou complexas:  

a) x2 − 5 ∙ x + 6 = 0

b) 2x2 + 8 = 0

c) x2 − 4 ∙ x + 5 = 0

Síntese do capítulo
Definimos conjunto como uma coleção de objetos distintos e os objetos que 
fazem parte do conjunto são chamados de elementos. Chamamos a quantida-
de de elementos de um conjunto A de cardinalidade, representando por n(A).

Estudamos as relações de pertinência, quando relacionamos elemen-
tos com conjuntos e utilizamos os símbolos ∈, que lemos que o elemento 
pertence ou ∉, que lemos não pertence.

Definimos que A é um subconjunto de B se todo elemento que pertence 
ao conjunto A também pertence ao conjunto B, utilizamos a notação A ⊂ B, 
lemos A está contido em B, ou B ⊍ A, lemos B contém A. Se existir um ele-
mento do conjunto A que não pertença ao conjunto B dizemos que A não é 
subconjunto de B e denotamos por A ⊄ B, lemos que A não está contido em 
B, ou B ⊅ A, lemos que B não contém A.
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Definimos o conjunto das partes de A, usando a notação P(A), como o 
conjunto formado por todos os subconjuntos do conjunto A e verificamos que 
P(A) tem cardinalidade 2n, onde n é o número de elementos do conjunto A.

Dados dois conjuntos A e B, apresentamos as operações entre conjuntos: 

União: A ∪ B = {x | x ∈ A ou x ∈ B}

Interseção: A ∩ B = {x | x ∈ A e x ∈ B}

Diferença: A - B = {x | x ∈ A e x ∉ B}

Diferença simétrica: A ∆ B = (A ∪ B) - (A ∩ B)

Complementar: CB
A = B - A = {x | x ∉ A e x ∈ B}, com A ⊂ B.

Definimos o produto cartesiano dos conjuntos A e B como o conjunto 
dos pares ordenados encontrados combinando cada um dos elementos do 
conjunto A com todos os elementos do conjunto B.

A ⨯ B = {(x,y) | x ∈ A e y ∈ B}

Verificamos que o número de elementos da união de dois A e B conjun-
tos é dada por: 

n(A ∪ B) = n(A) + n(B) - n(A ∩ B)

Para três conjuntos A, B e C, temos que: 

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) − n(A ∩ B)- n(A ∩ C)- n(B ∩ C) + n(A ∩ B ∩ 
C)

Observamos que o produto cartesiano não é comutativo, ou seja A ⨯ B ≠ B ⨯ A 
e ainda  determinamos o número de elementos do produto que é:

n(A ⨯ B) = n(A) ∙ n(B)

Apresentamos os conjuntos numéricos que serão utilizados ao longo do 
nosso estudo.

Naturais: N = {0, 1, 2, 3, 4, …}

Inteiros: Z = {…, −3, −2 ,−1, 0, 1, 2, 3, …}.

Racionais: Q = {x | x = 
a

b
, com a, b ∈ Z e b ≠ 0}.

Irracionais: formado por todos os números que não podem ser escritos 
na forma de fração.

Reais: R = Q ∪ I.

Complexos: C = {a + bi, com a,b ∈ R} 

Esse conjunto satisfaz as seguintes regras de soma e produto:

( iii )	 (a + bi ) + (c + di ) = (a + c) + (b + d ) i

( iv )	 (a + bi ) ∙ (c + di ) = (a ∙ c − b ∙ d ) + (b ∙ c + a ∙ d )i
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Capítulo 2
Relação e Função
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Objetivos 

l Conhecer relações binárias e identificar suas propriedades;
l Calcular a inversa de uma relação
l Identificar relações de equivalência;
l Conhecer o conceito de função e identificar quando uma relação é função;
l Calcular a inversa de uma função;
l Identificar relações injetoras, sobrejetoras e bijetoras.

Em computação e informática, muitas construções são baseadas em relações 
e funções. Além disso, são conteúdos importantes da educação básica que po-
derão ser melhor apresentados e compreendidos com o auxílio da informática, 
utilizando softares educativos, jogos e programas de construção de gráficos.

1. Relação

Definição: Dados dois conjuntos A e B, uma relação binária, ou apenas rela-
ção, é um subconjunto R do produto cartesiano A⨯B. Os pares ordenados de 
R associam elementos x ∈ A com elementos y ∈ B e podem ser denotados por 
xRy ou simplesmente R, ou seja,

R ⊂ A⨯B.

Exemplo 1: Considere os conjuntos A = {1, 3, 5, 7} e B = {3, 5, 7, 9, 11} e a 
relação R definida por R = {(x,y) ∈ A⨯B | y = 2 ∙ x - 3}. Os pares ordenados que 
fazem parte da relação R são:

R = {(3, 3), (5, 7), (7, 11)}.

Definição: Dada a relação R, definimos a relação inversa de R, como sendo o 
conjunto R -1 de todos os pares de R com a ordem invertida e representamos por

R -1 = {( y,x) | (x,y ) ∈ R}.

Exemplo 2: Considere a relação R = {(1, 9), (2, 8), (3, 7), (4, 6),(5, 5)}. Os pares 
ordenados que fazem parte da relação inversa são:

R -1 = {(9, 1), (8, 2), (7, 3), (6, 4), (5, 5)}.
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Propriedades: Dados um conjunto A e uma relação R ⊂ A ⨯ A, definimos as 
seguintes condições.

•• R é reflexiva se (x, x) ∈ R, para todo x ∈ A.

•• R é simétrica se (x, y) ∈ R, então ( y,x) ∈ R.

•• R é transitiva se (x, y), ( y, z) ∈ R, então (x,z) ∈ R.

Dizemos que uma relação R é antirreflexiva se (x,x) ∉ R, para todo x ∈ A e que 
R é antissimétrica se (x, y) ∈ R e ( y, x) ∈ R ⇒ x = y.

Definição: Dizemos que R é uma relação de equivalência se ela é reflexiva, 
simétrica e transitiva.

Exemplo 3: Verifiquemos quais das propriedades apresentadas são satisfei-
tas pela relação R = {(2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2)}.

•• R não é reflexiva, pois (2, 2), (3, 3), (4, 4), (6, 6), (7, 7), (8, 8) ∉ R.

•• R não é antirreflexiva, pois (5, 5) ∈ R.

•• R é simétrica, pois cada (x, y) ∈ R, temos ( y, x) ∈ R.

•• R não é antissimétrica, pois: (2, 8), (8, 2) ∈ R e 2 ≠ 8; (3, 7), (7, 3) ∈ R 
e 3 ≠ 7 e (4, 6), (6, 4) ∈ R e 4 ≠ 6.

•• R não é transitiva, pois: (2, 8), (8, 2) ∈ R, mas (2, 2), (8, 8) ∉ R; (3, 7), 
(7, 3) ∈ R, mas (3, 3),(7, 7) ∉ R e (4, 6), (6, 4) ∈ R, mas (4, 4), (6, 6) ∉ R. 

A relação R não é uma relação de equivalência, pois, apesar de ser simétrica, 
não possui as condições de ser reflexiva e transitiva.

Exemplo 4: A relação R = {(x, y) | x = y} é uma relação de equivalência.

R é reflexiva, pois para todo x, temos que x = x, logo (x, x) ∈ R;

R é simétrica, pois para todo par (x, y), temos que x = y, assim ( y, x) ∈ R; 

R é transitiva, pois (x, y), ( y, z) ∈ R, temos que x = y e y = z, logo x = z, então 
(x, z) ∈ R.

Para refletir

1. Dados os conjuntos A = {1, 3, 5} e B = {3, 5, 7, 9}, indique os pares ordenados das 
seguintes relações:
R1 = {(x, y)∈ A ⨯ B | y = x −2}
R2 = {(x, y)∈ A ⨯ B | y > x}.

2. Considere os conjuntos A = {−2, −1, 0, 1, 2, 3, 4} e B = {0, 1, 4, 8, 9} e a relação R = {(x, y) ∈ A 
× B | y = 2x + 1}. Determine os pares ordenados que fazem parte da relação R-1.

Verifique se a relação R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} é uma relação de 
equivalência sobre A = {1, 2, 3, 4}.
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2. Função

Definição: Uma função de A em B é uma relação que a cada elemento do 
conjunto A associa um único elemento do conjunto B. Representamos a fun-
ção f de A em B por f: A →B. Utilizamos ainda a notação y = f (x) para indicar 
que o par (x, y) pertence a função f.

Exemplo 5: Sejam A = {1, 2, 3, 4}, B = {2, 4, 6, 8, 10} e a relação R = {(x, y) ∈ 
A⨯B | y = 2 ∙ x}. Afirmamos que a relação R é uma função.

Para x = 1, temos que y =2 ∙ 1 = 2 ∈ B, logo (1, 2) ∈ R;

Para x = 2, temos que y = 2 ∙ 2 = 4 ∈ B, logo (2, 4) ∈ R;

Para x = 3, temos que y = 2 ∙ 3 = 6 ∈ B, logo (3, 6) ∈ R;

Para x = 4, temos que y = 2 ∙ 4 = 8 ∈ B, logo (4, 8) ∈ R;

R = {(1, 2), (2, 4), (3, 6), (4, 8)}.

Como cada elemento do conjunto A está associado a um único elemento de 
B, então R é função.

Exemplo 6: Identificamos através do diagrama as relações que são funções.

I é função, pois cada elemento do conjunto A está associado a um único 
elemento do conjunto B.

II não é função, pois existem elementos de A que estão associados a mais de 
um elemento de B.

III não é função, pois existe elemento de A que não está associado a nenhum 
elemento de B.
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Chamamos de domínio da função ao conjunto que possui todos os primeiros 
elementos dos pares ordenados. O conjunto formado pelos elementos que 
estão associados a algum elemento do domínio é chamado de conjunto ima-
gem. Quando consideramos todos os elementos do conjunto de chegada, 
mesmo aqueles que não estão associados a elementos do domínio, denomi-
namos o conjunto de contradomínio.

Exemplo 7: Dados os conjuntos A = {0, 1, 2} e B = {0, 1, 2, 3, 4, 5}. Seja f : A → B 
a função definida por f (x) = 2 ∙ x + 1. Determinamos o domínio D( f ), o contrado-
mínio CD( f ) e a imagem Im( f ) de f.

Para

x = 0, f (0) = 2 ∙ 0 + 1 = 1 ∈ B, logo (0, 1) ∈ f;
x = 1, f (1) = 2 ∙ 1 + 1 = 3 ∈ B, logo (1, 3) ∈ f;
x = 2, f (0) = 2 ∙ 2 + 1 = 5 ∈ B, logo (2, 5) ∈ f;
Desta forma, D( f ) = {0, 1, 2}, CD( f ) = {0, 1, 2, 3, 4, 5} e Im( f ) = {1, 3, 5}.

Assim como nas relações, também definimos a inversa de uma função f como 
sendo a relação inversa de f. Denotamos a relação inversa por f -1. Observamos 
que f -1 nem sempre será função.

Note que uma das condições para que uma relação seja função é que cada 
elemento do domínio esteja associado um único elemento do contradomínio.

Dessa forma, para que a inversa de uma função continue sendo uma função, 
é necessário que todos os elementos do contradomínio estejam associados 
a algum elemento do domínio, ou seja, o contradomínio deverá ser igual a 
imagem. Isto motiva a seguinte definição.

Definição: Dizemos que uma função é sobrejetora se a sua imagem é igual 
ao seu contradomínio.

Por outro lado, nem sempre a inversa de uma função sobrejetora é função, pois 
poderá possuir elementos do domínio associados a mais de um elemento da 
imagem, o que impediria a inversa de ser uma função. Temos mais uma condi-
ção para que a inversa de uma função também seja função, ou seja, cada ele-
mento do domínio deverá estar associado a um elemento diferente da imagem.

Definição: Dizemos que uma função é injetora se elementos distintos do do-
mínio possuem imagens distintas. Em outras palavras, f é injetora se, e so-
mente se, f (x) = f ( y) implicar x = y.
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Definição: Quando uma função for injetora e sobrejetora será chamada de 
função bijetora, e sua inversa será sempre uma função.

Exemplo 8: Sejam A = {1, 2, 3}, B = {4, 5, 6} e a f : A → B definida por f (x) = x + 3.

f é função bijetora e sua inversa f -1 é função.

Podemos fazer a composição de funções, ou seja, dadas duas funções 
f : A → B e g: Im(f ) → C, definimos a função ( g ∘ f ) (x) = g(f (x)), que é a 
composta de g com f, aplicada em x.

Exemplo 9: Dadas f (x) = 5 ∙ x + 1 e g(x) = x2, determine f ∘ g.

f ∘ g = f ( g(x)) = 5 ∙ g(x) + 1 = 5 ∙x2 + 1

Atividades de avaliação

1. Analise as relações a seguir, identificando as que são funções:

a) A = {-1, 1, 2, 3}, B = {-2, 0, 1, 2} e R = {(x,y) ∈ A⨯B | y = x −1}.

b) {(4, 1), (1, 2), (3, 4), (3, 2), (4, 3)} sobre o conjunto A = {1, 2, 3, 4}.

c) A = {1, 2}, B = {3, 4, 5} e R = A ⨯ B.

2. Dados A = {1, 2}, B ={3, 4, 5}, considere f : A → B a função definida por f (x) 
= 2 ∙ x +1. Determine o domínio, o contradomínio e a imagem da função.

3. Identifique se as funções a seguir são injetoras, sobrejetoras ou bijetoras. 
No caso das funções bijetoras identifique a inversa da função.

a) A = {1 , 2, 3, 4} e f :A → A definida por f (x) = x.

b) A = {−2, −1, 0, 1, 2}, B = {−1, 0, 3, 8} e f : A → B a função definida por 
f (x) = x2 −2 ∙ x.

c) A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5} e f : A → B a função definida por f (x) = 2.

4. Dadas as funções f (x) = 3 ∙ x −1 e g (x) = x +2, encontre f ∘ g e g ∘ f.
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Síntese do capítulo

Definimos uma relação binária ou apenas relação de A em B ao conjunto 
de pares ordenados que associa elementos do conjunto A a elementos do 
conjunto B. Podemos dizer que uma relação R associa elementos x ∈ A com 
elementos y ∈ B e denotamos por xRy ou simplesmente R, ou seja,

R = {(x, y) ∈ A⨯B} ⊂ A⨯B.

Dada uma relação R, definimos a relação inversa de R, como sendo o con-
junto R -1 de todos os pares de R com a ordem invertida e representamos por 

R -1 = {( y, x) | (x, y) ∈ R}.

Propriedades: Dados um conjunto A e uma relação R, definimos as seguin-
tes condições.

•• R é reflexiva se (x, x) ∈ R, para todo x ∈ A.

•• R é simétrica se (x, y) ∈ R, então ( y, x) ∈ R.

•• R é transitiva se (x, y), ( y, z) ∈ R, então (x, z) ∈ R.

Dizemos que R é antirreflexiva se (x, x) ∉ R, para todo x ∈ A e que R é antissi-
métrica se (x, y) ∈ R ⇒( y, x) ∈ R ⇒ x = y.

Dizemos que R é uma relação de equivalência se ela é reflexiva, simétrica 
e transitiva.

Definimos uma função de A em B como uma relação que a cada elemento do 
conjunto A associa um único elemento do conjunto B. Representamos a fun-
ção f de A em B por f : A → B. Utilizamos ainda a notação y = f (x) para indicar 
que x se relaciona com y através da função f.

Chamamos de domínio da função ao conjunto que possui todos os primeiros 
elementos dos pares ordenados. O conjunto formado pelos elementos que 
estão associados a algum elemento do domínio é chamado de conjunto ima-
gem. Quando consideramos todos os elementos do conjunto de chegada, 
mesmo aqueles que não estão associados a elementos do domínio, denomi-
namos o conjunto de contradomínio.

Definimos a função inversa f -1, observando que a inversa de uma função nem 
sempre será função.

Chamamos de função sobrejetora uma função que tem todos os elementos 
do contradomínio associados a algum elemento do domínio, ou seja, o contra-
domínio deverá ser igual a imagem. 
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Chamamos de função injetora quando cada elemento do domínio estiver as-
sociado a um elemento diferente da imagem, ou seja, elementos distintos do 
domínio possuem imagens distintas.

Quando uma função for injetora e sobrejetora será chamada de função bijeto-
ra e sua inversa será sempre uma função.
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Capítulo 3
Análise Combinatória
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Objetivos

l Conhecer e aplicar os princípios aditivo e multiplicativo na solução de 
problemas;

l Identificar nos problemas de contagem a importância da ordem dos 
elementos;

l Utilizar fórmulas da arranjos simples, combinações, permutações simples e 
com repetições, para facilitar a resolução de problemas de contagem;

l Conhecer e utilizar o Triângulo de Pascal.

A análise combinatória está relacionada a problemas de contagem de conjun-
tos finitos e surge com frequência em problemas teóricos e práticos ligados 
aos computadores.

1. Princípio de contagem

Apresentamos duas ferramentas importantes para a solução de problemas de 
contagem: o princípio aditivo e o princípio multiplicativo.

Sejam A e B conjuntos que não possuem elementos em comum. O princípio 
aditivo garante que o número de elementos da união é igual ao número de ele-
mentos do conjunto A somado ao número de elementos do conjunto B, ou seja,

n(A ∪ B ) = n(A) + n(B ), quando A ∩ B = ∅.

Podemos estender o princípio aditivo para um número finito de conjuntos. 
Dados n conjuntos A1, A2,…,An, tais que Ai ∩ A j = ∅ para todo i ≠ j, temos:

n(A1 ∪ A2 ∪ … ∪ An )= n(A1) + n(A2 ) + ⋯ + n(An).

Exemplo 1: Ana deseja participar da Semana Universitária. Foram oferecidos 
3 palestras e 2 seminários que interessavam a Ana, todos no mesmo horário. 
Note que ela tem três maneiras distintas para a escolha da palestra n(P ) = 3 e 
duas maneiras distintas para a escolha do seminário n(S) = 2, como os even-
tos são mutuamente excludentes, visto que Ana não poderá assistir a uma 
palestra e participar de um seminário que são eventos distintos no mesmo 
horário, o número de possibilidades de escolhas será:

n(P ) + n(S) = 3 + 2 = 5.
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Dados dois conjuntos A e B, o princípio multiplicativo nos garante que 
o número de maneiras de escolher um primeiro elemento do conjunto A e um 
segundo elemento do conjunto B é igual ao número de elementos de A mul-
tiplicado pelo número de elementos de B. Em outras palavras, o número de 
elementos do produto cartesiano de A por B satisfaz:

n(A ⨯ B ) = n(A) ∙ n(B ).

Estendendo para um número finito de conjuntos, temos que:

n(A1 ⨯ A2 ⨯ …⨯ An ) = n(A1) ∙ n(A2 )∙ …∙ n(An ).

Exemplo 2: Os organizadores da Semana Universitária, observando o inte-
resse dos alunos em participar de palestras e seminários resolveram oferecer 
as palestras em um horário e os seminários em outro. Ana poderá participar 
de dois eventos escolher uma palestra e um seminário. Aplicando o princípio 
multiplicativo temos que ela poderá fazer essa escolha de 6 maneiras distintas:

n(P ) ∙ n(S ) = 3 ∙ 2 = 6.

Exemplo 3: Desejamos escrever números de dois algarismos, que podem ser 
iguais ou não, utilizando elementos do conjunto A = {1, 2, 3, 4, 5, 6}.

Observamos que para a escolha do algarismo das dezenas temos 6 possi-
bilidades. Como o algarismo das unidades pode ser repetido, temos ainda 6 
possibilidades. Pelo princípio multiplicativo teremos:

6 ∙ 6 = 36 possibilidades de números com a condição dada.

Exemplo 4: Desejamos escrever números de dois algarismos distintos, utili-
zando elementos do conjunto A = {1, 2, 3, 4, 5, 6}.

Nesta situação para a escolha do primeiro número continuamos com 6 possi-
bilidades, no entanto, como o segundo número deverá ser diferente do primei-
ro, ficamos com apenas 5 possibilidades, ou seja, o conjunto B terá 5 elemen-
tos. Pelo princípio multiplicativo teremos:

6 ∙ 5 = 30 possibilidades de números com a condição dada.

Existem situações mais complexas em que podemos utilizar simultaneamente 
os princípios aditivo e multiplicativo. Vejamos alguns exemplos.

Exemplo 5: Os alunos que apresentarem trabalhos na Semana Universitária 
serão classificados e premiados com 2 livros de disciplinas diferentes. 
Sabemos que existem 7 livros diferentes de informática (I), 4 livros diferen-
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tes de matemática (M) e 5 livros diferentes de didática (D). Ana foi a primeira 
colocada. Podemos determinar o número de escolhas que Ana poderá fazer:
Ana poderá escolher as disciplinas de três maneiras diferentes:

•• Informática e Matemática, pelo princípio multiplicativo:

n(I ⨯ M ) = n(I ) ∙ n(M ) = 7 ∙ 4 = 28.

•• Informática e Didática, pelo princípio multiplicativo:

n(I ⨯ D ) = n(I ) ∙ n(D ) = 7 ∙ 5 = 35.

•• Matemática e Didática, pelo princípio multiplicativo:

n(M ⨯ D ) = n(M ) ∙ n(D ) = 4 ∙ 5 = 20.

Utilizando o princípio ativo determinamos o total de escolhas:

28+35+20=83 possibilidades de escolha.

Para refletir

1. Rafael deseja ir ao cinema de um shopping que possui 6 salas e estão sendo exibidos 
2 filmes diferentes de comédia e 4 filmes diferentes de ação. De quantas maneiras 
diferentes ele poderá fazer a escolha dos filmes considerando que:
a) deseja assistir apenas a um filme?
b) deseja assistir a dois filmes quaisquer?
c) deseja assistir a um filme de ação e uma comédia?

2. Um estacionamento possui 10 vagas. De quantas modos diferentes três carros po-
dem ser estacionados nesse estacionamento?

3. Uma chapa composta por um homem e uma mulher, que não podem ser irmãos, 
deverá ser formada para concorrer às eleições do grêmio de uma escola. Estão ins-
critos para comporem a chapa 14 mulheres e 8 homens, dos quais 5 são irmãos (3 
homens e 2 mulheres). De quantas maneiras distintas podemos formar uma chapa 
com pessoas deste grupo?

4. Seis atletas participam de uma maratona. Quantas possibilidades diferentes de clas-
sificação final dos participantes podemos ter, supondo que não ocorram empates?

2. Arranjos

Para facilitar nossos cálculos definimos o fatorial de um número n e represen-
tamos por n!, como sendo:

n! = n ∙ (n −1) ∙ (n −2) ∙…∙ 3 ∙ 2 ∙ 1.
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Exemplo 6: Para n = 5, temos que 5! = 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 120. 

Por convenção escrevemos que 0! = 1.

Definição: Chamamos de arranjo simples cada uma das lista ordenadas, sem 
repetição, formadas a partir da escolha de p elementos de um conjunto com 
n elementos distintos.

Exemplo 7: Considere o conjunto A = {1, 2, 3, 4}. Os arranjos de 3 elementos 
formados por elementos de A são: (1 , 2, 3), (1, 2, 4), (1, 3, 2), (1, 3, 4), (1, 4, 
2), (1, 4, 3), (2, 1, 3), (2, 1, 4), (2, 3, 1), (2, 3, 4), (2, 4, 1), (2, 4, 3), (3, 1, 2), (3, 
1, 4), (3, 2, 1), (3, 2, 4), (3, 4, 1), (3, 4, 2), (4, 1, 2), (4, 1, 3), (4, 2, 1), (4, 2, 3), 
(4, 3, 1), (4, 3, 2).

Exemplo 8: Considere o conjunto A = {1, 2, 3, 4}. Desejamos formar números 
com dois algarismos distintos com os elementos do conjunto A, ou seja, es-
tamos em uma situação em que possuímos 4 elementos e escolhemos dois 
distintos. Além disso, a ordem é importante, visto que por exemplo o número 
12 é diferente do número 21. 

Para escolher o algarismo das dezenas temos 4 possibilidades. Depois de es-
colhido o primeiro número, como o segundo deve ser diferente, ficamos com 
apenas 3 escolhas. Para resolver problemas de arranjos podemos utilizar o 
princípio multiplicativo. Dessa forma, 4 ∙ 3 = 12.

Proposição 1: Para formar um arranjo simples com p escolhas teremos n pos-
sibilidades para a escolha do primeiro. Como não podem haver repetições, 
teremos n − 1 maneiras de escolher o segundo e assim sucessivamente até 
a escolha do elemento da p-ésima posição que terá n − p + 1 possibilidades 
de escolha. Dessa forma, aplicando o princípio multiplicativo, temos que o 
número de arranjos simples que podemos formar escolhendo p elementos de 
um conjunto com n elementos, representado por An,p, é:

An,p = n ∙ (n - 1) ∙ (n - 2) ∙ … ∙ (n − p + 1)
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An,p = n ∙ (n ∙ (n − 1) ∙ (n - 2) ∙…∙ (n − p + 1) . (n − p) ∙ (n − p − 1) ∙ … ∙ 3 ∙ 2 ∙1
                               (n − p) ∙ (n − p − 1) ∙ … ∙ 3 ∙ 2 ∙ 1

An,p =    n!

         (n - p)!

Exemplo 9: De quantos modos diferentes 3 pessoas podem ocupar lugares 
em uma fila com 8 cadeiras?

                              A8,3 =    8!   = 8! = 8 ∙ 7 ∙ 6 ∙ 5! = 336 possibilidades.

                                      (8 − 3)!  5!           5!

Para refletir

1. Dado o conjunto A = {2, 3, 5, 7, 9}. Quantos números de três algarismos distintos 
podem ser formados com os elementos do conjunto A? Quantos desses números 
são pares?

2. Num teatro existem fileiras com 6 cadeiras. De quantos modos diferentes três pes-
soas podem se sentar em uma fileira?

3. Permutações

A permutação simples é um caso particular de arranjo simples, nesse caso 
utilizamos todos os  elementos distintos, ou seja, consideramos todas as listas 
ordenadas contendo todos os elementos de um conjunto.

Definição: Dados n objetos distinos, chamamos de permutação simples qual-
quer agrupamento ordenado desses n objetos. Representamos o número de 
tais permutações por Pn.

Chamamos de anagramas de uma certa palavra as palavras que resultam de 
uma permutação das letras da primeira. Um anagrama pode ter significado 
ou não.

Exemplo 10: Determine todos os anagramas que podemos formar permutan-
do as letras da palavra FILA.

FILA – FIAL – FALI – FAIL – FLIA – FLAI

IFLA – IFAL – ILFA – ILAF – IAFL – IALF

LFIA – LFAI – LAFI – LAIF – LIFA – LIAF

AFIL – AFLI – ALFI – ALIF – AILF – AIFL.
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Encontramos 24 anagramas da palavra FILA.

Proposição 2: Observamos que, para a escolha do primeiro objeto, temos 
n possibilicades. Escolhido o primeiro elemento teremos n - 1 possibilidades 
para escolher o segundo elemento e que esta escolha é independente da pri-
meira escolha. Utilizando o princípio multiplicativo e continuando as escolhas 
até o último elemento poderemos escrever que o número de possibilidades de 
permutações simples será:

Pn = n ∙ (n − 1) ∙ (n - 2) ∙ … ∙ 3 ∙ 2 ∙ 1 = n!.

A Proposição 2 pode ser demonstrada utilizando o princípio de indução, que 
será apresentado no Capítulo 4.

Exemplo 11: Quantos anagramas podemos formar permutando as letras da 
palavra FILA?

P4 = 4! = 4 ∙ 3 ∙ 2 ∙ 1 = 24 anagramas.

Observamos que a permutação simples dos  elementos apresentou como 
condição que esses elementos fossem distintos. Logo, a Proposição 2 não 
poderá ser utilizada quando formos perguntados sobre o número de permu-
tações de uma coleção de objetos em que alguns deles apareçam repetidos.

Exemplo 12: Determine todos os anagramas que podemos formar permutan-
do as letras da palavra ARARA. Temos as seguintes possibilidades:

ARARA – ARAAR – ARRAA – AARRA – AARAR – AAARR – RRAAA – 

RARAA – RAARA – RAAAR.

Portanto, temos 10 possíveis anagramas, enquanto P5 = 120.

Definição: Dada uma coleção de elementos em que alguns deles aparecem 
com repetição, denominamos as permutações nesta coleção de permutação 
com repetição.

Proposição 3: Dados n objetos em uma lista ordenada, que podem ter repe-
tições ou não. Se os objetos fossem todos distintos teríamos n! possibilidades 
de permutar esses objetos. Considerando que tenhamos n1 cópias do objeto 
1, n2 cópias do objeto 2, e assim sucessivamente, até que o objeto k possui 
nk cópias. Quando permutamos elementos iguais não alteramos a lista e pelo 
princípio multiplicativo temos n1! ∙ n2! ∙ n3! ∙ … ∙ nk! permutações envolvendo 
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apenas elementos iguais. Assim, para retirarmos as repetições, a quantidade 
de permutações com repetições será:

                                          Pn
n1, n2,…, nk =               n! 

                           n1! ∙ n2! ∙ n3! ∙ … ∙nk!

lembrando que n= n1 + n2 + ⋯ + nk.

Exemplo 13: Quantos anagramas podemos formar permutando as letras da 
palavra ARARA?

            P5
2, 3 =     5!    = 5 ∙ 4 ∙ 3! = 5 ∙ 4 = 20 = 10 anagramas.

                       3! ∙ 2!     3! ∙ 2 ∙ 1        2       2

Para refletir

1. De quantas maneiras podemos formar uma fila com 6 pessoas?
2. Quais são os anagramas que podemos formar com o nome RAUL?
3. Quantos anagramas podemos formar com as letras da palavra MATEMATICA?
4. De quantos modos possíveis seis pessoas podem ocupar uma fila do cinema que 

possui exatamente seis lugares, sabendo que dois deles desejam sentar juntos?

4. Combinações 

Definição: Chamamos de combinação simples a cada um dos conjuntos forma-
dos a partir da escolha de p elementos de um conjunto com n elementos distintos. 

Exemplo 14: Dos 5 professores de matemática de uma escola serão esco-
lhidos 2 para participar de uma palestra. Sejam p1, p2, p3, p4  e p5 os cinco 
professores da escola, podemos formar as seguintes comissões:

Note que se os professores escolhidos forem p1 e p2, essa escolha é a mes-
ma de p2 e p1, dessa forma, temos as seguintes possibilidades

p1 e p2 − p1 e p3 − p1 e p4 − p1 e p5 − p2 e p3 − p2 e p4 − p2 e p5 − p3 e p4 − p3 e p5 − p4 e p5:

Proposição 4: Para determinar a quantidade de combinações simples que 
temos a partir da escolha de p elementos de um total de n possibilidades po-
demos calcular o número de arranjos simples com p elementos dentre n ele-
mentos dados e dividir pela quantidade de permutações dos p elementos es-
colhidos, dado que os arranjos de p elementos permutados correspondem a 
uma única combinação. Dessa forma, o número de combinações simples que 
podemos formar escolhendo p elementos de um conjunto com n elementos, 
e representamos por Cn,p, é:
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                                                                       n!

                                              Cn,p = An, p = (n − p)! =        n!

                                                          Pp               p!           (n - p)! ∙ p!

Exemplo 15: Dos 5 professores de Matemática de uma escola serão escolhi-
dos 2 para participar de uma palestra. Quantas comissões com dois destes 
professores podemos formar?

Existem 5 professores e devemos escolher 2:

                                C5,2=       5!     =    5!   =  5∙4∙3! = 20 = 10.

                                         (5-2)!∙2!     3!∙2!      3!∙2∙1     2

Outra notação que também é muito utilizada para as combinações simples e 
as relaciona ao Triângulo de Pascal é a seguinte: . O triângulo de 
Pascal consiste em escrever a lista desses números associados a combina-
ções em formato de triângulo, como abaixo:

ou seja, a n-ésima linha é composta pelos valores das combinações de p ele-
mentos de um conjunto de n elementos, com p variando de 0 a n. Calculando 
os valores das combinações do Triângulo de Pascal obtemos os coeficientes 
do conhecido Binômio de Newton 

,

com n ∈ N, que são:

1

1    1

1    2    1

1    3    3    1

1    4    6    4    1

1    5  10  10   5    1

 ⋮      ⋮      ⋮       ⋮       ⋮       ⋮    ⋱
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Exemplo 16: Desejamos calcular o termo independente de x no desenvolvi-
mento do binômio

(x3 − x -2)10

No desenvolvimento do binômio o termo independente de x terá expoente 
zero, temos que o termo de ordem n + 1 é da forma: 
No desenvolvimento do binômio o termo independente de x terá expoente 

.

No binômio apresentado temos:

Note que o expoente de x será igual a zero quando: 30 − 5p = 0 ⇒  p = 6

Desta forma o termo independente de x é:

Atividades de avaliação

1. De quantos maneiras distintas podemos dividir 10 pessoas em dois gru-
pos de 5?

2. De quantos modos possíveis 8 pessoas podem se organizar em grupos de 2? 

3. Quantos jogos serão realizados em um campeonato com 5 times partici-
pantes, sabendo que dois times jogam uma única partida entre si e que 
cada time enfrenta todos outros?

4. O ENEM dividiu as disciplinas em 4 áreas de conhecimentos: Linguagens 
e Códigos (com Redação), Ciências da Natureza, Ciências Humanas e 
Matemática. Sabendo que as provas serão realizadas em dois dias, de 
quantas formas poderá ser feita a escolha das provas, sabendo que devem 
ser aplicadas duas provas por dia? 

5. Sarah possui 5 tipos diferentes de frutas, quantos tipos de sucos ela poderá 
fazer utilizando 2 ou mais frutas?

6. Desenvolva o binômio(x − y)5.
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Síntese do capítulo

Apresentamos duas ferramentas importantes para a solução de problemas de 
contagem: o princípio aditivo e o princípio multiplicativo.

Dados dois conjuntos A e B, que não possui elementos em comum, o princípio 
aditivo garante que: n(A ∪ B) = n(A) + n(B), quando A ∩ B = ∅.

Estendemos o princípio aditivo para um número finito de conjuntos. Para n 
conjuntos A1, A2, …, An, tais que Ai ∩ Aj = ∅ para todo i ≠ j.

n(A1 ∪ A2 ∪ … ∪ An )= n(A1 ) + n(A2 ) + …+ n(An ).

Dados dois conjuntos A e B, o princípio multiplicativo nos garante que:

n(A ⨯ B) = n(A) ∙ n(B)

Estendendo para um número finito de conjuntos, temos:

n(A1 ⨯ A2 ⨯ … ⨯ An ) = n(A1 ) ∙ n(A2 ) ∙ … ∙ n(An ).

Definimos o fatorial de um número  como sendo:

n! = n ∙ (n − 1) ∙ (n − 2) ∙ … ∙ 3 ∙ 2 ∙ 1.

Definimos os arranjo simples como cada uma das lista ordenadas, sem re-
petição, formadas a partir da escolha de p elementos de um conjunto com 
n elementos distintos. Concluímos que número de arranjos simples que po-
demos formar escolhendo p elementos de um conjunto com n elementos, e 
representamos por An,p, é:

                                                             An,p =   n!.

                  (n − p)!

Dados n objetos distintos, chamamos de permutação simples e representa-
mos por Pn qualquer agrupamento ordenado desses n objetos. A permutação 
simples é um caso particular do Arranjo simples, quando utilizamos todos os 
n elementos distintos. Concluímos que o número de possibilidades de permu-
tações simples será:

Pn= n ∙ (n - 1) ∙ (n − 2) ∙…∙ 3 ∙ 2 ∙ 1 = n!.

Definimos permutações de conjuntos com elementos iguais e denominamos 
por permutação com repetição. Concluímos que a quantidade de permuta-
ções com repetições será:

                                         Pn
n1,n2,…,nk =                n!

                                                            n1! ∙ n2! ∙ n3! ∙ … ∙ nk!.

Chamamos de combinação simples a cada um dos conjuntos formados a 
partir da escolha de p elementos de um conjunto com n elementos distintos. 
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Constatamos que o número de combinações simples de um conjunto com n 
elementos e p escolhas é:
                                                      Cn,p =            n!            

                                                               (n − p)! . p!). p!

Utilizamos a notação  e apresentamos o triângulo de Pascal, formado 
por todas as possibilidades de combinações de p = 0,1, ..., n. Observamos que 
os valores das combinações do Triângulo de Pascal são os coeficientes do 
Binômio de Newton 

, com n ∈ N.

@
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Capítulo 4
Teoria dos Números
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Objetivos

l Conhecer e aplicar o Princípio de Indução Finita para números naturais e 
inteiros; 

l Compreender o conceito de divisibilidade e suas principais propriedades; 

l Reconhecer a divisão com restos;

l Identificar números primos e compostos;

l Compreender os conceitos de fatoração, máximo divisor comum;

l Aplicar conhecimentos de m.d.c. para resolver Equações Diofantinas Lineares;

l Conhecer e aplicar as noções de congruências e suas principais propriedades.

Neste capítulo construiremos axiomaticamente o conjuntos dos números na-
turais, o que pode ser feito também para o conjunto dos números inteiros, 
como conjuntos bem ordenados que são. Para simplificar a exposição, opta-
mos por abordar o conjunto nos números naturais. Além da construção, apre-
sentamos algumas propriedades e formas de representações dos naturais.

1. Princípio de Indução Finita

Neste capítulo pretendemos apresentar uma fundamentação teórica do con-
junto dos números naturais, bem como suas operações básicas de adição 
e multiplicação.

N = {0, 1, 2, 3, 4, ...}, com as operações de adição a + b e multiplicação a ∙ b.

Apresentamos algumas propriedades básicas dos números naturais, ou seja, 
nossa abordagem partirá de uma lista de axiomas.

( i )     A adição e a multiplicação são bem definidas, isto é, para todo a, b, c, d ∈ N,

         a = b e c = d ⇒ a + c = b + d e a ∙ c = b ∙ d.

( ii )    A adição e a multiplicação são comutativas, ou seja, para quaisquer a, b ∈ N, 

        a + b = b + a e a ∙ b = b ∙ a.

( iii )  A adição e a multiplicação são associativas, para todo a, b, c N,

        a + (b + c) = (a + b) + c e a∙ (b ∙ c) = (a ∙ b) ∙ c.

(iv)   A adição e a multiplicação possuem elementos neutros, ou seja, para 
todo a ∈ N
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         a + 0 = a e a ∙ 1 = a.

(v)    A multiplicação possui a propriedade distributiva em relação à adição, 
quaisquer que sejam a, b, c ∈ N, temos que

         a(b + c) = a ∙ b + a ∙ c.

Além dos números naturais, outros conjuntos numéricos também satisfazem 
os axiomas acima, como os números reais não negativos. Para melhor ca-
racterizar o conjunto dos números naturais precisamos introduzir o Axioma de 
Indução Matemática.

Axioma de indução: Seja A um subconjunto dos números naturais que pos-
sui as propriedades

1.	0 ∈ A;

2.	 ∀ a ∈ A ⇒ a + 1 ∈ A.

Então, A contém todos os números naturais, ou seja, A = N.

Uma importante propriedade dos números naturais é o princípio da boa ordenação.

Princípio da boa ordenação: todo subconjunto A ≠ ∅ do conjunto dos núme-
ros naturais possui um menor elemento, isto é, existe a ∈ A com a seguinte 
propriedade: a ≤ n, para todo n ∈ A.

O conjunto dos números inteiros é formado pelos números positivos, negati-
vos e o zero, com as operações de adição e multiplicação: 

ℤ = {..., −3, −2, −1, 0, 1, 2, 3, ...}

Para  facilitar os estudos, abordaremos na maioria das vezes o conjunto dos 
números naturais, podendo os conceitos aqui estudados serem estendidos ao 
conjunto dos números inteiros. 

Apresentaremos a seguir o Princípio de Indução Finita que será uma ferra-
menta muito importante na demonstração de teoremas, igualdades, desigual-
dades e problemas de divisibilidade.

Adotaremos a seguinte notação: se A ⊂ N e a ∈ N então a + A = {a + x; x ∈ A}. 

Teorema 1 (Princípio de Indução Finita) – Seja a ∈ N e p(n) uma proprie-
dade de n, a qual pode ser pensada como uma afirmação que envolve um 
número n dado. Suponha que

( i )   p(a) é verdadeira e
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( ii )  se p(n) é verdadeira ⇒ p(n + 1) é verdadeira, ∀ n ≥ a.

Então, p(n) é verdadeira para todo n ≥ a.

Demonstração:

Esta demonstração será feita usando o axioma de indução. Considere os subcon-
juntos de N definidos por A = {n ∈ N; p(n) é verdadeira} e B = { n ∈ N; a + m ∈ A}.

De ( i ) temos que a = a + 0 ∈ A ⇒ 0 ∈ B

Se m ∈ B, então a + m ∈ A e por ( ii ) a + m + 1 ∈ A, donde conclui-se que m + 
1 ∈ B. Pelo Axioma de indução, B = N.
Corolário 1 – Não existe nenhum n ∈ N tal que 0 < n < 1, ou seja, a afirmação 
p(n): se n > 0 ⇒ n ≥ 1, é verdadeira para todo n ≥ 1.

Demonstração: 

p(1) é verdadeira, pois 1 ≥ 1.

Considerando p(n) verdadeira para algum n ∈ N, mostraremos que p(n+1) 
tembém é verdadeira.

Temos que p(n + 1): n + 1 > 0 ⇒ n + 1 ≥ 1 é verdade para n ∈ N, pois n + 1 ≥ 1 é 
equivalente a n ≥ 0, o que já sabemos ser verdadeiro. Pelo Princípio de Indução 
Finita, a propriedade é verdadeira para todo n ∈ N.

Observe que neste caso não foi necessário utilizar a hipótese de indução, p(n) 
é verdade, para verificar o passo indutivo, p(n + 1) é verdade.

Exemplo 1: Utilizando o Princípio de Indução Finita, podemos provar que o 
conjunto das partes de um conjunto A possui exatamente 2n elementos, onde 
n = n(A) é o número de elementos de A.

Consideremos inicialmente que n = 0, ou seja, o conjunto A é vazio, tem cardi-
nalidade zero e possui apenas um subconjunto que é ele mesmo, desta forma 
temos que a afirmação é válida para n = 0.

20 = 1.

Tomemos como hipótese de indução que o conjunto A, contendo n elemen-
tos, possui 2n subconjuntos.

Verificando o que acontece quando acrescentamos um elemento ao conjunto 
A, ou seja, consideramos o conjunto A' que possui n + 1 elementos. Os 2n sub-
conjuntos de A também são subconjuntos de A' e quando acrescentamos a 
cada subconjunto o novo elemento formamos outros 2n subconjuntos que são 
diferentes dos primeiros 2n. Estes são todos os subconjuntos de A', totalizando

2n + 2n = 2 ∙ 2n = 2n+1 subconjuntos.

Portanto a afirmação é válida para todo n ∈ N.
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Exemplo 2: Utilizando o Princípio de Indução Finita, provaremos a fórmula da 
soma dos n primeiros números naturais não nulos.

Sn = 1 + 2 + ...+ n, então  

Verifi cando para n = 1, temos que

, verdade.

Supondo que a fórmula seja verdadeira para n ∈ N*, ou seja, a hipótese de 

indução é que .

Para analisar o que ocorre para n + 1, adicionamos este número em ambos 
os lados da equação:

 = , verdadeira para n + 1.

Portanto, pelo Princípio de Indução, a fórmula é válida para todo n ∈ N .

Exemplo 3: Na construção de quadrados conjugados com palitos, necessi-
tamos de quatro palitos para construir o primeiro quadrado, sete palitos para 
construir dois quadrados, como mostra a fi gura, ou seja, acrescentamos três 
palitos para cada novo quadrado.

       1           2           3     

Mostraremos que a fórmula an = 3 ∙ n + 1 defi ne o número de palitos uti lizados na 
construção de n quadrados.

Verifi cando a validade da fórmula para n = 1.

a1 = 3 ∙ 1 + 1 ⇒ a1 = 4,  fórmula válida para n = 1.

Supondo a fórmula verdadeira para n ∈ N, ou seja, an = 3 ∙ n + 1.

Para construir cada quadrado acrescentamos três palitos, assim,

an + 1 = 3 ∙ n + 1 + 3

an + 1 = 3∙(n + 1) + 1

Donde se conclui que a fórmula é válida para todo n ∈ N.

…
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Para refletir

1. Considere Sn= 12 + 22 + ⋯ + n2. Prove por indução que a soma de n termos, n ∈ N, é 
dada pela fórmula:

                                                     Sn= n∙(n+1)∙(2n+1)
                                                                      6
2. Mostre por indução que 1 + 3 + 5 + ⋯ + (2n − 1) = n2.
3. Uma sequência de números reais an, n ∈ N*, da qual conhecemos o primeiro ele-

mento e an = an - 1 + r, onde r é fixo, é chamada progressão aritmética.
     a) Mostre que an = a1 + (n - 1) ∙ r;
     b) Mostre que Sn = (a1 + an) ∙ n, onde Sn = a1 + a2 + ...+ an.
                                               2
4. Uma sequência de números reais an, n ∈ N*, da qual conhecemos o primeiro ele-

mento e an = an-1 ∙ q, onde q ≠ 0, q ≠ 1 é fixo, é chamada progressão geométrica.
a) Mostre que an= a1∙q

n - 1;
b) Mostre que que Sn = a1∙(q

n - 1), onde Sn = a1 + a2 + ... + an.
                                               q - 1

5. Encontre as fórmulas para as seguintes somas:
a) 1 + 2 + 4 + ... + 2n;

2. Divisibilidade

Sejam a e b naturais, com a ≠ 0, dizemos que a divide b, e denotamos por a|b, 
se existe um natural c tal que b = a ∙ c. Podemos dizer que a é um divisor de b 
ou que b é um múltiplo de a. Caso a não divida b escrevemos a ∤ b.

De modo análogo, se a e b inteiros, com a ≠ 0, escrevemos a|b, se b = a ∙ c, 
para algum inteiro c.

Exemplo 4: 2|0; 1|3; 3 ∤ 5; 4|4.

Exemplo 5: Demonstraremos que o número 5250 – 3 não é divisível por 5.

Suponha, por contradição, que 5|5250 – 3. Então existe um número  tal que 

5250 – 3 = 5 ∙ b ⇒ 3 = 5250 – 5 ∙ b ⇒ 3 = 5 (5249 – b) ⇒ 5|3, o que é absurdo!

Concluímos que nossa suposição inicial é falsa, então 5∤5250 – 3.

Propriedades da divisibilidade

Proposição 1: Se a,b ∈ N* e c ∈ N, temos que:

a) a|0,1|c e a|a;

Demonstração: 

a|0, pois a ∙ 0 = 0

1|c, pois 1 ∙ c = c

a|a, pois a ∙ 1 = a
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b) Se a|b e b|c, então a|c.

Demonstração: 

Se a|b e b|c, então existem r,s ∈ N, tais que b = a ∙ r e c = b ∙ s, substituin-
do b na segunda igualdade temos que

c = b ∙ s ⇒ c = (a ∙ r) ∙ s ⇒ c = a ∙ (r ∙ s) ⇒ a|c.

Proposição 2: Se a,b,c ∈ N, com a ≠ 0 e a|(b + c), então a|b ⇔ a|c.

Demonstração: Se a|(b + c), então existe r ∈ N tal que b + c = a ∙ r.
Supondo que a|b, então existe s ∈ N tal que b = a ∙ s.

Substituindo na primeira igualdade, temos que

b + c = a ∙ r ⇒ a ∙ s + c = a ∙ r ⇒ c = a ∙ r – a ∙ s ⇒ c = a ∙ (r − s).

Como b ≤ b + c ⇒ a ∙ s ≤ a ∙ r ⇒ s ≤ r ⇒ r – s ≥ 0, ou seja, r – s ∈ N.

Concluindo que a|c. De maneira totalmente análoga podemos provar 
que se a|c então a|b. 

Proposição 3: Se a, b, c, d ∈ N, com a ≠ 0 e c ≠ 0, temos que, se a|b e c|d ⇒ 
a ∙ c|b ∙ d.

Demonstração: Se a|b e c|d, então existem r, s ∈ N tal que b = a ∙ r e d = c ∙ s, 
então b ∙ d = (a ∙ r) ∙ (c ∙ s) ⇒ b ∙ d = a ∙ c ∙ (r ∙ s), portanto a ∙ c|b ∙ d. 

Proposição 4: Se a, b, c ∈ N, com b ≥ c e a ≠ 0, tais que a|(b – c), então 
a|b ⇔ a|c.

Demonstração: Se a|(b - c), então existe r ∈ N tal que b - c = a ∙ r.
Supondo que a|b, então existe s ∈ N tal que b = a ∙ s.

Substituindo na primeira igualdade temos que

b - c = a ∙ r ⇒ a ∙ s - c = a ∙ r ⇒ c = a ∙ s – a ∙ r ⇒ c = a ∙ (s − r)

Como, b – c ≤ b ⇒ a ∙ r ≤ a ∙ s ⇒ r ≤ s ⇒ s – r ≥ 0, ou seja, s – r ∈ N.

Concluindo que a|c. De maneira totalmente análoga podemos provar 
que se a|c então a|b. 

Proposição 5: Sejam a, b, c, m, n ∈ N, com a ≠ 0, tais que a|b e a|c, então 
a|m ∙ b + n ∙ c.

Demonstração: Se a|b, então existe r ∈ N tal que b = a ∙ r.
Sabemos que a|b, então existe s ∈ N tal que b = a ∙ s.

Assim, para m, n ∈ N, temos que

m ∙ b + n ∙ c = m ∙ (a ∙ r) + n ∙ (a ∙ s) = a ∙ (m ∙ r + n ∙ s) ⇒ a|m ∙ b + n ∙c.

Note que se considerarmos a condição m ∙ b ≥ n ∙ c podemos ainda de-
monstrar que a|m ∙ b − n ∙ c.
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Proposição 6: Sejam a, b ∈ N*, se a|b ⇒ a ≤ b.

Demonstração: Se a|b, então existe r ∈ N* tal que b = a ∙ r.
Como r ∈ N* ⇒ r ≥ 1 ⇒ a ≤ a ∙ r ⇒ a ≤ b.

Proposição 7: Sejam a, b, n ∈ N, com a > b > 0. Afirmamos que a – b|an  – bn. 

Demonstração: Verificamos a veracidade para n = 0.

Supondo, como hipótese de indução, que a proposição seja válida para 
n, ou seja, a – b|an – bn.

Devemos verificar, como tese de indução, a validade da proposição 
para n + 1.

an + 1 – bn + 1  = a ∙ an  – b ∙ bn, reescrevendo temos

an + 1 – bn + 1 = a ∙ an - b ∙ an + b ∙ an – b ∙ bn = (a – b)∙ an + (an – bn) ∙ b.

Como a – b|a – b e, por hipótese de indução, a – b|an – bn, pela Proposição 
5 temos que a – b |(a-b) ∙ an + (an – bn) ∙ b.

Logo, o Princípio de Indução implica que o enunciado é válido para todo 
n ∈ N.

Proposição 8: Sejam a, b, n ∈ N, com a + b ≠ 0. Afirmamos que a + b|a2 ∙ n + 1 
+ b2 ∙ n + 1.

Demonstração: De maneira totalmente análoga à demonstração da 
Proposição 7, utilizando o Princípio de Indução Finita.

Proposição 9: Sejam a, b, n ∈ N, com a ≥ b > 0. Afirmamos que a + b|a2 ∙ n – b2 ∙ n. 

Demonstração: De maneira totalmente análoga à demonstração da 
Proposição 7, utilizando o Princípio de Indução Finita.

Exemplo 6: Utilizamos o Princípio de Indução para mostrar: 8|32∙n + 7, para 
todo n ∈ N. Considerando n = 0

32∙0 + 7 = 30 + 7 = 1 + 7 = 8, verdadeiro para n = 0, pois 8|8.

Hipótese de indução 8|32∙n + 7.

Devemos verificar a validade para n + 1, ou seja, 8|32∙(n+1) + 7.

32∙(n+1) + 7= 32∙n+2 + 7 = 32 ∙ 32∙n + 7 = 32 ∙ (32∙n +7) − 32∙7 + 7 = 32 ∙ (32∙n +7) – 56

Pela Proposição 5, como 8|56 e 8|32∙n + 7, temos que 8|32∙(n+1) + 7.

Pelo Princípio de Indução, verificamos a validade para todo n ∈ N.
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Exemplo 7: Vamos determinar para quais valores de a∈ N, temos a + 1|a2 + 2. 
Observe que, qualquer  número natural satisfaz a + 1|(a – 1) ∙ (a + 1)= a2 − 1. 
Logo, pela Proposição 5, temos que: 

se a satisfaz à propriedade desejada, então a+1|(a2 + 2) – (a2 – 1), e assim, 
a + 1|3.

Os divisores positivos de 3 são apenas 1 e 3, logo as únicas possibilidades 
são a = 0 ou a = 2. Observe que estes dois valores realmente satisfazem 
ao enunciado.

Para refletir

1. Sejam a, c ∈ N* e b ∈ N. Mostre que a ∙ c|b ∙ c ⇔ a|b.
2. Utilize o método de indução finita para mostrar que, para todo n ∈ N, temos que 

9|10n – 1.
3. Mostre por indução que, para a > b ≥ 0 e n ∈ N, n ≥ 2, temos que

(an – bn) = an-1 + an-2 ∙ b + ⋯+ a ∙ bn-2 + bn-1

                                           a – b 
4. Determine os valores de a ∈ N que satisfazem a + 2|a3 – 4.
5. Mostre que a5 – a é divisível por 5, para todo a ∈ N. (Use indução)

3. Divisão com resto 

Euclides, por volta de 300 a.C., enuncia que é sempre possível efetuar a di-
visão entre dois números naturais, com divisor diferente de zero, e que se o 
número não divide exatamente, obtemos um resto. Mais precisamente, temos 
o seguinte enunciado.

Teorema 2: Sejam a, b ∈ N*. Então existem, e são únicos, q, r ∈ N tais que

b = a ∙ q + r, com r < a.

Demonstração: Seja R = {b − a ∙ q ∈ N*, q ∈ N}. Como b = b − a ∙ 0 ∈ N*, temos 
que b ∈ R, logo, R não é vazio.

Pelo Princípio da Boa Ordem, R possui um menor elemento r = b − a ∙ q. 
Desejamos provar que r ≤ a.

Suponha, por contradição, que r > a. Então, existiria c ∈ N* tal que r = a + c ⇒ 
a + c = b − a ∙ q ⇒ c = b − a ∙ (q + 1) ∈ R. Por outro lado, c < r o que contradiz o 
fato de que r é o menor elemento de R. Sendo assim, r ≤ a.

Desta forma garantimos a existência de números q e r tal que b = a ∙ q + r, com 
r ≤ a. Temos duas possibilidades: r = a e a|b, ou r < a. O que encerra a parte 
da existência do enunciado do teorema. Para verificar a unicidade, conside-
remos r1 e r2 elementos distintos de R, com r1< r2< a, então existem q1, q2 ∈ N, 
tais que
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r1 = b − a ∙ q1 e r2= b − a ∙ q2 

r2 − r1 = b − a ∙ q2 − b + a ∙ q1

= a ∙ (q1 − q2), então r2 − r1 ≥ a ⇒ r2 ≥ r1 + a ≥ a, o que é absurdo, pois r2< a.

Logo, r1= r2. O que mostra a unicidade dos restos. Diante disto, é imediato 
verificar a unicidade dos quocientes.

Vale ressaltar que todo número n ∈ N será da forma 2 ∙ n quando for par e 
2 ∙ n + 1 quando for ímpar.

De modo geral, para todo n ∈ N e m ≥ 2, podemos escrever, de maneira única, 
n = m ∙ k + r, com k, r ∈ N e r < m.

Em particular, todo número pode ser escrito em função de um múltiplo de um 
outro número dado mais um resto. Podemos escrever, por exemplo: todo nú-
mero pode ser escrito em uma das formas

4 ∙ n, 4 ∙ n + 1 , 4 ∙ n + 2 ou 4 ∙ n + 3.

Exemplo 8: Podemos determinar o quociente e o resto da divisão de 35 por 6.

35 = 6 ∙ 5 + 5 ⇒ q = 5 e r = 5.

Corolário 2: Sejam a, b ∈ N com 1 < a ≤ b, existe n ∈ N tal que

n ∙ a ≤ b < (n+1) ∙ a
Demonstração: Pelo Teorema de Euclides, Teorema 2 acima, sabemos que 
existem, e são únicos, n, r ∈ N, com 0 ≤ r < a tais que

b = a ∙ n + r

Desta forma,

n ∙ a ≤ b = n ∙ a + r < n ∙ a + a = (n + 1) ∙ a

Exemplo 9: Consideremos a = 5 e b = 18, podemos escrever

5 ∙ 3 < 18 < 5 ∙ 4

Exemplo 10: Seja b = 7 ∙ q + 5, com q < b. Desejamos encontrar o resto da 
divisão de 10 ∙ b + 1 por 7. 

10 ∙ b = 70 ∙ q + 50

10 ∙ b + 1 = 70 ∙ q + 50 + 1

                 = 70 ∙ q + 7 ∙ 7 + 2

                 =7 ∙ (10 ∙ q + 7)+2
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Logo, o resto da divisão de 10 ∙ b +1 por 7 é r = 2.

Proposição 10: Sejam a, b, c ∈ N, com a ∈ N*. Sejam r e s os restos das divi-
sões de b e c por a, respectivamente. Então, o resto da divisão de b ∙ c por a é 
igual ao resto da divisão de r ∙ s por a.

Demonstração:

Temos que b = a ∙ q + r e c = a ∙ t + s, onde q e t são os respectivos quocientes. Então

b ∙ c = (a ∙ q + r)(a ∙ t + s) = a ∙ Q + r ∙ s
onde Q = a ∙ q ∙ t + q ∙ s + r ∙ t. Logo, a demonstração segue pela unicidade 
do Teorema 2.

Exemplo 11: O produto de dois números naturais consecutivos é sempre di-
visível por 2.

Considere n ∈ N, n+1 é o seu consecutivo e a = n ∙ (n + 1). Desejamos mostrar 
que 2|n ∙ (n + 1). Podemos escrever todos os números naturais na forma 2 ∙ n 
e 2 ∙ n + 1, isto é, o resto da divisão de n por 2 é 0 ou 1.

Quando r = 0, o resto da divisão de a por 2 é o mesmo resto da divisão de 
0 ∙ (0 + 1) = 0 por 2, ou seja, 2|a. A igualdade dos restos é consequência da 
Proposição 10.

Quando r = 1, o resto da divisão de a por 2 é igual ao resto da divisão de 
1 ∙ (1 + 1) = 1 ∙ 2 = 2 por 2, ou seja, 2|a. Concluímos que, em qualquer dos 
casos, 2|a para todo n ∈ N.

Para refletir

1. Para a = 55 e b = 6, determine o quociente e o resto da divisão, satisfazendo o Teo-
rema de divisões de Euclides.

2. Mostre que, para a ∈ N e n ∈ N*, a é par, se e somente se, an é par.
3. (ENC-2001) Seja n um número natural; prove que a divisão de n2 por 6 nunca deixa 

resto 2.
4. (ENC-2002) O resto da divisão do inteiro n por 20 é 8. Qual é o resto da divisão de 

n por 5?

4. Números Primos

Definição: Um número natural a > 1 é chamado de número primo se possui 
somente dois divisores naturais. Se a > 1 não é primo, dizemos que ele é um 
número composto.
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Exemplo 12: Mostraremos que 2 é o único número primo que pode ser escrito 
da forma a3 + 1.

Temos que 2 é um número primo, visto que só é divisível por 1 e por 2. 
Podemos escrever o número 2 = 13 + 1.

Consideremos a > 1, temos, pela Proposição 8, que os números da forma  po-
dem ser divididos por a + 1. Se a3 + 1 fosse um número primo então teríamos que

a + 1 = 1 ou a+1= a3 + 1 ⇒ a = 0 ou a = 1, mas a > 1, logo a3 + 1 não é primo.

Para refletir

1. Considerando que p é primo e p, p + 2 e p + 4 são números primos, mostre que p = 3. 
2. Mostre que todo n ∈ N, com n > 11 é a soma de dois números compostos.
3. Verifique se o número 220 − 58 é primo ou composto.

5. Equações Diofantinas Lineares

Sejam a, b ∈ Z* e c ∈ Z. Chamamos de Equação Diofantina Linear a equação 
do tipo

a ∙ x + b ∙ y = c.

Os pares (x, y), com x, y ∈ Z, que satisfazem a equação são chamados de 
soluções da equação, ou seja, as soluções são os pontos de coordenadas 
inteiras na reta que representa a equação.

Dos problemas de divisibilidade surgem conceitos importantes como o Máximo 
Divisor Comum (m.d.c.) e o Mínimo Múltiplo Comum (m.m.c). Neste caso, 
estamos interessados na definição do m.d.c. que nos ajudará a encontrar as 
soluções das Equações Diofantinas Lineares.

Definição: O Máximo Divisor Comum (m.d.c.) entre os números a, b ∈ Z* é um 
número d ∈ Z tal que

  i)   d|a e d|b;

ii)   d é o maior com a propriedade ( i ), o que implica que d  é divisível 
por todos os divisores comuns de a e b.

Denotamos por d = (a, b) o m.d.c. entre a e b.

Proposição 11: Seja d = (a, b) o m.d.c. de a e b. Então os números inteiros 
a e b são primos entre si, ou seja, (a, b) = 1.
d    d                                                  d  d
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Demosntração: O fato de que as frações acima são números inteiros é uma 

consequência imediata de que d divide a e b. Suponha, por contradição, que 

 é maior que 1. Temos ainda que  implica que c ∙ d|a. De 

modo análogo, c ∙ d|b. Portanto, c ∙ d é um divisor comum de a e b que é 

estritamente maior que d, pois c > 1. O que contradiz a escolha de d como o 

m.d.c. entre os números a e b. Donde concluímos que c = 1, e a demonstra-

ção está completa.

Enunciamos o Teorema de Bachet-Bêzout, este resultado é uma consequência 
do Algorítmo de Euclides que será discutido nesta seção. Este resultado será uti-
lizado para garantir a existência de soluções de Equações Diofantinas Lineares.

Teorema 3: Seja d = (a, b) o m.d.c. de a e b, então existem xo, yo∈ Z tais que 
d = a ∙ xo+ b ∙ yo.

Em seguida, aplicaremos o Teorema 3 na resolução de equações diofanti-
nas lineares.

Proposição 12: Sejam a, b, c ∈ Z,  com a≠0 e b ≠ 0. A equação diofantina 
linear a ∙ x + b ∙ y = c possui solução se, e somente se, d = (a, b)|c. Se (x1, y1) 
é uma solução da equação, então o conjunto dos pares que são soluções da 
equação são do tipo

 com t ∈ Z.

Demonstração: Vamos mostrar que se a equação diofantina possui solução 
então d = (a, b)|c. Considere (x1, y1) uma solução inteira da equação diofantina 
linear e seja d = (a, b) o m.d.c. de a e b. Desta forma:

a ∙ x1 + b ∙ y1 = c

Como d|a e d|b existem k1, k2 ∈ Z tais que a = d ∙ k1 e b = d ∙ k2.

Substituindo na equação, temos:

d ∙ k1 ∙ x1 + d ∙ k2 ∙ y1 = c

d ∙ (k1 ∙ x1 + k2 ∙ y1) = c ⇒ d|c

Devemos mostrar também que se d|c, então existe solução. O Teorema de 
Bêzout afi rma que existem xo, yo ∈ Z tais que 

d = a ∙ xo + b ∙ yo
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Se d|c então existe k ∈ Z tal que c = k ∙ d. Multiplicando a equação acima por 
k, obtemos

k ∙ d = a ∙ k ∙ xo + b ∙ k ∙ yo

a ∙ (k ∙ xo ) + b ∙ (k ∙ yo ) = c

Donde conclui-se que a equação diofantina tem solução.

Estamos interessados ainda em mostrar que, quando existem, as soluções 
são infinitas e podemos apresentar uma forma para o conjunto solução.

Consideremos (x, y) uma solução, possivelmente diferente de (x1, y1 ). 
Podemos escrever que

a ∙ x + b ∙ y = c e  a ∙ x1 + b ∙ y1 = c

a ∙ x + b ∙ y = a ∙ x1 + b ∙ y1

a ∙ (x − x1 ) = b ∙ ( y1 − y)

Dividindo por d, temos

Pela Proposição 11, sabemos que  = 1, logo estas frações são primas 
entre si e podemos concluir 

|( y1 − y) ⇒ existe t tal que y1 − y =  t, e

|( x − x1) ⇒ existe s tal que x − x1 =  ∙ s.

Pela relações que temos é imediato verificar que s = t é igual ao quociente das 

divisões de ( y1 − y) por , ou de ( x − x1) por .

Podemos verificar facilmente que x = x1+ t ∙  e y = y1 − t ∙  são soluções 

da equação diofantina linear a ∙ x + b ∙ y = c, para todo t ∈ Z. O que encerra 

a demonstração.

Exemplo 13: Verifiquemos se as Equações Diofantinas Lineares possuem so-
luções inteiras:

a) 2 ∙ x + 18 ∙ y = 234

mdc (2,18)=2  e 2|234, logo a equação possui soluções inteiras.

b) 5 ∙ x + 3 ∙ y = 50

mdc (5,3)=1 e 1|50, logo a equação possui soluções inteiras.
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c) 5 ∙ x + 15 ∙ y = 23

mdc (5, 15) = 5 e 5∤23, logo a equação não possui soluções inteiras.

Exemplo 14: Podemos determinar todas as soluções inteiras da equação 
3 ∙ x + 5 ∙ y = 50 e apresentar soluções em que x, y ∈ N.

Sabemos que a equação possui soluções inteiras pois, mdc (3, 5) = 1 e 1|50.

Podemos determinar facilmente, por tentativa, uma solução. O par (0, 10) é 
solução da equação.

Utilizando a Proposição 12, temos que

 com t ∈ Z , são as soluções 

inteiras da equação.

Podemos identificar que para t=0, 1, 2, 3 as soluções são pares de números 
naturais, que são (0, 10), (5, 7), (10, 4) e (15, 1). Portanto, existem quatro pares 
de inteiros positivos que resolvem a equação diofantina acima apresentada.

Lema 1: (Lema de Euclides) Se a, b, n ∈ N, com a < n ∙ a < b. Então (a, b − n ∙ a) = (a, b).

Demonstração: Seja d = (a, b − n ∙ a). Então d|a e d|b − n ∙ a. Pela Proposição 5, 

d|(b − n ∙ a) + n ∙ a = b.

Logo, d é divisor comum de a e b, o que implica que d|(a, b). 

Seja d1=(a,b). Temos que d1|a e d1|b, e, pela Proposição 5, concluímos que 
d1|b − n ∙ a. Logo, d1 é divisor comum de a e b − n ∙ a, o que implica que d1|d.

Portanto, d|d1 e d1|d implicam que d1 = d, ou seja, (a, b − n ∙ a) = (a, b).

Algoritmo de Euclides

Sejam a, b ∈ N, supondo a ≤ b, sem perda de generalidade. Sabemos que nos 
casos a = 1, a = b e a|b, temos (a, b) = a. Se a∤b, temos que

b = a ∙ q1 + r1 , com r1 < a.

Se r1|a, pelo Lema 1, 

r1 = (a, r1) = (a, b − a ∙ q1) = (a, b).

Se r1∤a, então

a = r1 ∙ q2+ r2, com r2 < r1.

Se r2|r1, pelo Lema 1

r2 = (r1, r2) = (r1, a − r1 ∙ q2) = (r1, a) = (a, b).
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Poderemos repetir este procedimento uma quantidade finita de vezes, pois 
pelo Princípio da boa ordem a sequência a > r1> r2… possui um menor ele-
mento, o que implica que para algum n ∈ N, rn|rn−1. Quando isto acontecer, 
teremos que rn = (a, b).

Exemplo 15: Determinamos o m.d.c. dos números 270 e 345, utilizando o 
Algoritmo de Euclides.

q
1
 = 1 q

2
 = 3 q

3
 = 1 q

4
 = 1 q

5
 = 2

345 270 75 45 30 15 ← mdc

r
1
 = 75 r

2
 = 45 r

3
 = 30 r

4
 = 15 r

5
 = 0

O algoritmo de Euclides também pode ser utilizado para expressar o m.d.c. 
como combinação linear dos números dados, como enunciado no Toerema 
3. De fato, a demonstração deste resultado é uma aplicação do algoritmo de 
Euclides. Vejamos um exemplo.

Exemplo 16: Escrevemos, utilizando o Algoritmo de Euclides, o número  como 
combinação linear dos números 345 e 270. 

Utilizamos os resultados do Algoritmo de trás para frente, temos:

15 = 45 − 1 ∙ 30

15 = 45 − 1∙( 75 − 1 ∙ 45 )

15=−1∙75+2∙45

15 = −1 ∙ 75 + 2 ∙ ( 270 − 3 ∙ 75 )

15 = 2 ∙ 270 − 7 ∙ 75

15 = 2 ∙ 270 − 7 ∙ ( 345 − 1 ∙ 270 )

15 = −7 ∙ 345 + 9 ∙ 270

Em particular, a utilização do Algoritmo de Euclides possibilita a determinação 
de uma solução inteira para as equações diofantinas lineares.

Para refletir

1. Resolva as equações:
a) 5∙x+7∙y=100
b) 7∙x+11∙y=116

2. Calcule o m.d.c. dos números:
a) 246 e 384
b) 234 e 542
c) 648 e 1218

3. De quantas maneiras podemos comprar selos de R$ 10,00 e R$ 14,00 se desejamos 
gastar exatamente R$ 100,00?
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6. Fatoração

Nesta seção apresentaremos o Teorema Fundamental da Aritmética. Segundo 
o qual, todo número admite fatoração única como produto de primos. A fim de 
apresentar este resultado usaremos o seguinte lema.

Lema 2: Sejam p, m e n números inteiros. Se p é primo e p|m ∙ n, então p|m 
ou p|n.

Demonstração: Suponha que p∤m. Como p é primo, temos que (p, m) = 1. 
Pelo Teorema 3, sabemos que existem inteiros xo, yo∈ Z tais que

1 = p ∙ xo+ m ∙ yo.

Multiplicando ambos os lados desta equação por n, temos n = p ∙ n ∙ xo+ m ∙ n ∙ yo. 
E pela Proposição 5, concluímos que p|n. Isto encerra a demonstração.

Com isto, podemos demonstrar o Teorema Fundamental da Aritmética.

Teorema 4: ( Teorema Fundamental da Aritmética) Todo número n ∈ N, com 
n > 1, pode ser representado de maneira única, a menos da ordem, como 
um produto de fatores primos.

Demonstração: Considerando n um número primo, não precisamos demons-
trar nada.

Consideremos agora o caso em que n não seja primo, garantimos que existe 
um número primo p1 > 1 que é o menor divisor de n. Se o menor divisor de n, 
que existe pelo Princípio da boa ordenação, não fosse primo existiria um nú-
mero p, com 1 < p < p1 tal que p|p1. Neste caso, teríamos p|p1 e p1|n, logo, p|n 
contradizendo o fato de que p1 é o menor divisor de n. Desta forma, podemos 
escrever que

n = p1 ∙ n1.

Se n1 for primo p será um produto de fatores primos, concluindo a demonstra-
ção. Se n1 não for primo, de maneira análoga ao raciocínio acima, garantimos 
que existe um número primo p2 > 1 que é o menor divisor de n1. Desta forma 
escrevemos que

n = p1 ∙ p2 ∙ n2.

Podemos repetir este processo uma quantidade finita de vezes, considerando 
que n1> n2 > n3 > ⋯> nm. Como esta sequencia é estritamente decrescente, o pro-
cesso deve acabar depois de uma quantidade finita de iterações. Observe que 
os primos p1, p2,… pr não são necessariamente distintos, podemos escrever que

n = p1
a1 ∙ p2

a2 ∙ p3
a3∙ … ∙pr

a r .
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Necessitamos demonstrar ainda, que este produto é único, a menos da or-
dem. Usaremos o princípio de indução.

Como n ∈ N, com n > 1, verificamos a veracidade para n = 2.

Consideremos, como hipótese de indução, que a afirmação é verdadeira para 
todo os números menores que n. Devemos mostrar a veracidade para n.

Se n for primo, a afirmação é verdadeira pois n só tem a fatoração óbvia. 
Considerando que n seja composto e possua duas fatorações distintas, pode-
mos escrever que

n = p1 ∙ p2 ∙ … ∙ pr= q1 ∙ q2 ∙ …∙ qs.

Como p1|q1 ∙ q2 ∙ … ∙ qs, pelo Lema 2, ele divide algum dos fatores. Sem perda 
de generalidade, podemos supor que p1|q1, mas p1 e q1 são primos, logo p1 = q1.

 = p2∙ …∙ pr = q2∙ …∙ qs.

Como 1 <  < n, por hipótese de indução possui uma única fatoração, o que 

significa que r=s e, a menos de uma reordenação, p1 = q1, p2 = q2, …, pr = qr.

Exemplo 17: Se 2 aparece na fatoração de um número n, podemos concluir 
que n é da forma 2 ∙ k, o que garante que n é par. Demonstraremos que se n é 
par, então o número 2 aparece na fatoração de n.

De fato, se n é par, então também podemos escrever que n = 2 ∙ k, para algum 
número natural k. Consideremos as fatorações

n = p1
a1 ∙ p2

a2 ∙ p3
a3 ∙… ∙ pr

a r  e k = q1
b1 ∙ q2

b2 ∙ q3
b3 ∙ … ∙qs

bs.

Desta forma,

p1
a1 ∙ p2

a2 ∙ p3
a3 ∙… ∙ pr

a r  = 2 ∙ q1
b1 ∙ q2

b2 ∙ q3
b3 ∙ … ∙qs

bs.

O número 2 aparece na fatoração, pois como a fatoração é única, algum dos 
números pi é igual a 2.

Para refletir

1. Verifique se o número 25 ∙ 5 é um múltiplo de 10.
2. Sabendo que o número 3 ∙ x é divisível por 5, podemos afirmar que x é divisível por 5?
3. Encontre dois números naturais x e y, de tal forma que x2 − y2 = 17.
4. (ENC-2002) Qual é o menor valor do número natural n que torna n! divisível por 1000?
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7. Congruências

Finalizamos o capítulo com a aritmética dos restos, introduzida por Gauss.

Definição: Sejam a, b, m ∈ N, com m ≠ 0. Dizemos que a e b são congruentes 
módulo m se os restos de suas divisões por m são iguais. Escrevemos

a ≡ b mod m

Exemplo 18: Os números 43 e 28 são congruentes módulo 5.

Observamos que na divisão euclidiana de 43 por 5 e de 28 por 5 encontramos 
o mesmo resto igual a 3, portanto  

43 ≡ 28 mod 5

Proposição 13: Sejam a, b, c, m ∈ N, com m > 1, temos que

  ( i ) a ≡ a mod m

 ( ii ) a ≡ b mod m, então b ≡ a mod m

( iii ) a ≡ b mod m e b ≡ c mod m, então a ≡ c mod m

Demonstração: Decorre diretamente da definição.

Com a propriedade a seguir torna-se desnecessária a divisão dos números 
para a comparação dos restos. 

Proposição 14: Sejam a, b, m ∈ N, com m ≠ 0 e a ≥ b, então a ≡ b mod m se, 
e somente se, m|a − b.

Demonstração: Considere a = m ∙ q + r e b = m ∙ q1+ r1, com r, r 1 < m.

Temos que

a − b = m ∙ (q − q1) + (r − r1),

com − m < r − r1 < m. É imediato verificar que m|a − b se, e somente se, m|r − r1. 
Como r − r1 é um inteiro maior que − m e menor que m, vemos que m|r − r1 se, 
e só se, r = r1.

Donde concluímos que m|a − b se, e somente se, r = r1, ou seja, a ≡ b mod m.

Exemplo 19: Utilizando a Proposição 14, mostramos que 43 ≡ 29 mod 7.

43 − 29 = 14 e 7|14, logo 43 ≡ 29 mod 7.
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Todo número natural, quando dividido por m, é congruente a um dos números 
0, 1, 2, …, m − 1. As operações de adição e multiplicação nas congruências 
são equivalentes às operações com inteiros.

Proposição 15: Se a, b, c, d, m ∈ N e m > 1, temos que:

  ( i ) a ≡ b mod m e c ≡ d mod m, então a + c ≡ b + d mod m

 ( ii ) a ≡ b mod m e c ≡ d mod m, então a ∙ c ≡ b ∙ d mod m

Demonstração: Podemos supor, sem perda de generalidade, que a ≥ b e 
c ≥ d, logo

m|a − b e m|c − d e temos que

  ( i ) m|(a − b) + (c − d)⇒ m|(a + c) − (b + d ) ⇒ a + c ≡ b + d mod m

 ( ii ) m|c ∙ (a − b) + b ∙ (c − d ) = a ∙ c − b ∙ d ⇒ a ∙ c ≡ b ∙ d mod m.

Exemplo 20: Desejamos encontrar o resto da divisão de 1 + 2+ 22+⋯+ 2020 
por 4.

Temos que

1 ≡ 1 mod 4, 2 ≡ 2 mod 4, 22= 4 ≡0 mod 4, 23 = 8 ≡ 0 mod 4, ... , 220 = 8 ≡ 0 
mod 4

Note que a partir de 22 os demais termos são todos múltiplos de 4 e deixam 
resto 0 na divisão por 4.

Assim, utilizando a Proposição 15 ( i ), temos que

1 + 2 + 22 + ⋯+ 2020 ≡ 1 + 2 + 0 + ⋯ +0 mod 4 ≡ 3 mod 4

Concluímos que o resto da divisão é 3.

Atividades de avaliação

1. (ENC 2000) Se x2 ≡ 1 mod 5, então,

a) x ≡ 1 mod 5

b) x ≡ 2 mod 5

c) x ≡ 4 mod 5

d) x ≡ 1 mod 5 ou x ≡ 4 mod 5

e) x ≡ 2 mod 5 ou x ≡ 4 mod 5

2. Encontre o resto da divisão de 1!+2!+ ⋯ +100! por 40.
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Síntese do capítulo

Neste capítulo apresentamos o conjunto dos números naturais, bem como 
suas operações básicas de adição e multiplicação. N = {0, 1, 2, 3, 4, ...}, com 
as operações de adição a + b e multiplicação a ∙ b, bem como o princípio da 
boa ordenação.

Enunciamos e aplicamos o axima de indução: seja A um subconjunto dos 
números naturais que possui as propriedades

  ( i ) 0 ∈ A;

 ( ii ) ∀ a ∈ A ⇒ a + 1 ∈ A.

Então, A contém todos os números naturais, ou seja, A = N.

Apresentamos o conjunto dos números inteiros Z = {..., −3, −2, −1, 0, 1, 2, 3, ...}

Enunciamos e demonstramos o Princípio de Indução Finita que é uma forte 
ferramenta na demonstração de teoremas, igualdades, desigualdades e pro-
blemas de divisibilidade.

Teorema 1 (Princípio de Indução Finita) – Seja a ∈ N e p(n) uma propriedade 
de n, a qual pode ser pensada como uma afirmação que envolve um número 
n dado. Suponha que

  ( i ) p(a) é verdadeira e

 ( ii ) se p(n) é verdadeira ⇒ p(n + 1) é verdadeira, ∀ n ≥ a

Teorema 2: Sejam a, b ∈ N*. Então existem, e são únicos, q, r ∈ N tais que

b = a ∙ q + r, com r < a.

Definimos que um número natural a > 1 é chamado de número primo se pos-
sui somente dois divisores naturais. Se a não é primo, dizemos que ele é um 
número composto.

Sejam a, b ∈ Z* e c ∈ Z. Chamamos de Equação Diofantina Linear a equação 
do tipo

a ∙ x + b ∙ y = c.

Os pares (x, y), com x, y ∈ Z, que satisfazem a equação são chamados de 
soluções da equação, ou seja, as soluções são os pontos de coordenadas 
inteiras na reta que representa a equação.

Definimos o Máximo Divisor Comum (m.d.c.) entre os números a, b ∈ Z* é um 
número d ∈ Z tal que

  ( i ) d|a e d|b;

 ( ii ) d é o maior com a propriedade ( i ), o que implica que d  é divisível por 
todos os divisores comuns de a e b
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Teorema 3: Seja d = (a, b) o m.d.c. de a e b, então existem xo, yo ∈ Z tais que 
d = a ∙ xo + b ∙ yo.

Ressaltamos um resultado importante dado na proposição 12. Sejam a, b, c ∈ Z, 
com a ≠ 0 e b ≠ 0. A equação diofantina linear a ∙ x + b ∙ y = c possui solução se, e 
somente se, d = (a, b)|c. Se (x1, y1) é uma solução da equação, então o conjunto 
dos pares que são soluções da equação são do tipo

Teorema 4: (Teorema Fundamental da Aritmética) Todo número n ∈ N, com 
n > 1, pode ser representado de maneira única, a menos da ordem, como 
um produto de fatores primos.

Definimos, considerndo a, b, m ∈ ℕ, com m ≠ 0, que a e b são congruentes 
módulo m se os restos de suas divisões por m são iguais. Escrevemos

a ≡ b mod m.

@
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Objetivos

l Definir, apresentar propriedades e exemplos de grupos;

l Definir e apresentar exemplos de subgrupos, homomorfismos e isomorfismos;

l Definir,  apresentar propriedades e exemplos de anéis;

l Definir, subanéis, ideais e anéis quocientes;

l Definir, apresentar propriedades e exemplos de corpos.

No capítulo 4 definimos, através de axiomas, o conjunto dos números naturais 
suas propriedades e formas de representações, que podem ser estendidas 
ao conjunto dos números inteiros. Observamos, ainda, divisões que não são 
exatas e sentimos a necessidade de formalizar a estrutura destes conjuntos. 
Neste capítulo, apresentamos definições básicas e conceitos que possibilita-
rão uma introdução ao estudo dessas estruturas algébricas.

1. Definição e propriedades dos grupos

Definição: Seja G um conjunto, munido de uma operação (G, ∙). Neste ponto, 
a operação pode ser pensada como um produto ou uma soma entre dois nú-
meros, por exemplo. Em geral, ∙ é uma operação abstrata definida para pares 
de elementos de G. Dizemos que G é um grupo de satisfaz as propriedades:

   ( i ) O conjunto é fechado, ou seja, para todo a, b ∈ G

        a ∙ b ∈ G.

   ( ii ) A operação é associativa, ou seja, para todo a, b, c ∈ G

        a ∙ (b ∙ c) = (a ∙ b) ∙ c.

( iii ) Existe elemento neutro em relação a operação, isto é, existe e ∈ G, 
tal que

  a ∙ e = e ∙ a = a, para todo a ∈ G.

( iv ) Para cada a ∈ G, existe b ∈ G, chamado de inverso em relação à 
operação, tal que

        a ∙ b = b ∙ a = e.

O grupo será chamado de comutativo ou abeliano se, além das propriedades 
já citadas, possuir a propriedade a seguir.
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   ( v ) A operação é comutativa, isto é, para todo a, b ∈ G temos que

        a ∙ b = b ∙ a.

Exemplo 1: O conjunto dos números inteiros com a operação de adição é 
um grupo abeliano, isto é, (Z, +) é um grupo abeliano. O elemento neutro é 
o número zero e para cada n ∈ Z, o inverso de n neste grupo é dado por − n.

Exemplo 2: O conjunto dos números inteiros com a operação de multiplicação 
não é grupo pois não possui elemento inverso.

Exemplo 3: O conjunto dos inteiros ímpares com relação a operação da adi-
ção não é grupo, pois não é fechado, ou seja, dados dois números ímpares 
2 ∙ m + 1 e 2 ∙ n + 1 , temos que

2 ∙ m + 1 + 2 ∙ n + 1 = 2 ∙ (m + n + 1) que é par.

Exemplo 4: O conjunto dos números inteiros congruentes módulo 6 com 
a operação de adição é um grupo. Uma maneira formal de descrever este 
grupo é utilizando as relações de equivalências introduzidas no início do 
material. Definimos em Z a relação de equivalência que m é equivalente a n 
se m ≡ n mod 6. O conjunto que estamos tratando neste exemplo é o con-
junto das classes de equivalência dessa relação, o qual pode ser descrito 
por Z6 = {0, 1, 2, 3, 4, 5}. Aqui, 2 representa a classe dos inteiros que deixam 
resto 2 quando divididos por 6. A operação de adição usual dos inteiros in-
duz a seguinte operação em Z6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 6 ≡ 0 mod 6

2 2 3 4 5 6 ≡ 0 mod 6 7 ≡ 1 mod 6

3 3 4 5 6 ≡ 0 mod 6 7 ≡ 1 mod 6 8 ≡ 2 mod 6

4 4 5 6 ≡ 0 mod 6 7 ≡ 1 mod 6 8 ≡ 2 mod 6 9 ≡ 3 mod 6

5 5 6 ≡ 0 mod 6 7 ≡ 1 mod 6 8 ≡ 2 mod 6 9 ≡ 3 mod 6 10 ≡ 4 mod 6

Essa operação é comutativa, associativa, 0 é o elemento neutro e todo ele-
mento possui um inverso, logo (Z6,+) é um grupo abeliano.

Exemplo 5: O conjunto S∆ das simetrias espaciais de um triângulo equilátero 
é um grupo.

Considere o triângulo equilátero A1, A2, A3, com centro de gravidade na origem e 
as retas r1, r2, r3 passando pelas medianas do triângulo, como na figura abaixo. 
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Podemos descrever as transformações espaciais que preservam o triângulo:

•• id, R120, R240 (rotações centradas no 0 e no sentido anti-horário); id é a iden-
tidade, e R120 e R240 são as rotações de120o e 240o, respectivamente;

•• R1, R2, R3 (reflexões relativas às retas r1, r2, r3, as quais podem ser vistas 
como rotações espaciais de180o relativas aos respectivos eixos).

O conjunto S∆ = {id, R120, R240, R1, R2, R3} com a operação de composição de 
funções é um grupo. Na tabela abaixo, a composição da simetria indicada na 
primeira linha com a simetria da primeira coluna esta representada na respec-
tiva lacuna. Por exemplo, R120 ∘ R1 = R2, corresponde à informação contida na 
lacuna associada a coluna da rotação R120 e linha do reflexão R1.

∘ id R
120

R
240

R
1

R
2

R
3

id id R
120

R
240

R
1

R
2

R
3

R
120

R
120

R
240
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3

R
1

R
2

R
240

R
240
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1

R
1

R
1

R
2

R
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id R
120

R
240

R
2

R
2

R
3

R
1

R
240

id R
120

R
3

R
3

R
1

R
2

R
120

R
240

id

Propriedades dos grupos:

1. O elemento neutro é único

Consideremos e e e' elementos neutros do grupo G. Como e' é elemento 
neutro então e' ∙ e = e. Por outro lado, e também é elemento neutro, logo 
e ∙ e' = e'. Concluímos que

e = e' ∙ e = e ∙ e' = e' ⇒ e = e'

2. O elemento inverso é único

Consideremos a ∈ G e sejam b, b' ∈ G dois elementos inversos do elemento 
a. Como b e b' são inversos de a, a ∙ b = e e a ∙ b' = e, dessa forma

b = b ∙ e = b ∙ (a ∙ b' ) = (b ∙ a) ∙ b' = e ∙ b' = b'.
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Para refletir

1. Mostre que o conjunto dos números naturais com a operação de adição (N, +), não 
é um grupo.

2. Verifique se o conjunto A = {− 1, 1} com a operação de multiplicação de inteiros é 
um grupo abeliano.

3. Verifique se o conjunto das simetrias espaciais S∆ de um triângulo equilátero é um 
grupo abeliano.

4. Seja Zn o conjunto das classes de restos modulo n, com a operação de adição sobre 
Zn definida por a + b = a + b (Veja a Proposição 14 (i) do Capítulo 4). Analise se (Zn, +) 
é um grupo abeliano.

5. Descreva o grupo das simetrias espaciais de um quadrado, bem como a tabela con-
tendo as composições de todos os possíveis pares de simetrias.

2. Subgrupos

Definição: Seja (G, ⋅) um grupo e H um subconjunto não vazio de G. Dizemos 
que H é um subgrupo de G se, com a operação de G, o conjunto H é um grupo.

A associatividade será sempre satisfeita, pois os elementos pertencem a um 
grupo. Observamos também que o elemento neutro e o inverso serão iguais 
aos do grupo. Na prática, para verificar se um subconjunto de um grupo é um 
subgrupo, necessitamos apenas mostrar o fechamento e que o inverso de 
cada elemento também faz parte do subconjunto. Além da inclusão da identi-
dade, é claro.

Exemplo 6: Dado o grupo G, podemos imediatamente apresentar dois subgru-
pos de G, a saber, {e} e G.

Exemplo 7: O subconjunto 2Z = {2 ∙ z | z ∈ Z} é um subgrupo de (Z, +).

Exemplo 8: São subgrupos do grupo S∆ das simetrias espaciais triângulo equi-
látero {id, R1} e {id, R120, R240}.

Para refletir

1. Verifique se o conjunto H = {x ∈ Z | x é par} , com a operação usual da adição de 
inteiros é um subgrupo de (Z, +).

2. Descreva os subgrupos do grupo de simetrias espaciais de um quadrado.
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3. Homomorfismos e Isomorfismo

Definição: Dados os grupos (G, ⋅ ) e (G', *). Entendemos por homomorfismo 
uma função f: G → G' que preserva a estrutura de grupo, isto é, para todo a, b 
∈ G temos que

f (a ⋅ b) = f (a) * f (b).

Exemplo 9: Seja G = (Z, +), então f : G → G, definida por f (x) = 2 ∙ x é um 
homomorfismo de grupos. De fato, f (x + y) = 2 ∙ (x + y) = 2 ∙ x + 2 ∙ y = f (x) + 
f ( y ),∀x, y ∈ G 

Exemplo 10: Fixe n ∈ Z. A aplicação que associa a cada inteiro k o resto da 
divisão de k por n, visto como elemento de Zn, é um homomorfismo de (Z, +) 
em (Zn,+). Isto é uma consequência imediata da definição da operação de 
adição de classes de equivalência em Zn, a + b = a + b, como feito na atividade 
4. da seção 5.1.

Em particular, se n = 2, este homomorfismo f :(Z,+) → (Zn, +) é dado por f (k)= 0, 
se k é par, e f (k)= 1, se k é ímpar.

Definição: Seja f :(G,⋅) → (G', *) um homomorfismo. Dizemos que f é um iso-
morfismo quando existir um homomorfismo g :(G', *) → (G, ⋅) tal que f ∘ g = IG' ) 
e g ∘ f = IG.

Exemplo 11: Dados G = (R*+, ∙ ) e G' = (R, +) e a função f : R*+ → R definida 
por f (x) = log(x). Afirmamos que a função f é um isomorfismo. Primeiramente, 
observe que f é homomorfismo:

∀x, y ∈ R*+, temos que f (x · y) = log(x · y) = log(x) + log( y ) = f (x) + f ( y). 

Além disso, f é bijetora e tem como inversa a função exponencial g(x) = ex. A 
exponencial também é homomorfismo, pois ex+y = ex · ey, para todos x, y ∈ R.

Para refletir

1. Sejam G = (Z, +) e G' = (Z, +) e a função f :G → G' definida por f(x) = 5 ∙ x. Verifique 
se f é um homomorfismo.

2. Considere G =(Z, +) e G' = (Z, +) e a função f :G → G' definida por f(x) = 3 ∙ x2. Verifi-
que se f é um homomorfismo.
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4. Definição de anel e domínio de integridade

Definição: Dado A um conjunto não vazio, com duas operações (A, +, *). 
Dizemos que A é um anel se satisfaz as propriedades:

    ( i ) (A,+) é um grupo abeliano;

   ( ii ) A operação (A, *) satisfaz:

1. ∀a, b, c ∈ A, temos que (a * b) * c = a * (b * c).

2. Existe um elemento 1 ∈ A tal que a * 1 = 1 * a = a, ∀a ∈ A.

   ( iii ) A operação * é distributiva em relação a operação +: ∀a, b, c ∈ A, temos:

a * (b + c) = a * b + z * c, e

(b + c) * a = b * a + c * a.

Em geral, a operação + é pensada como uma adição e * como uma multipli-
cação em A.

Exemplo 12: conjunto dos inteiros com as operações de adição e multiplica-
ção, (Z, +, ∙), é um anel com as operações de adição e multiplicação usuais.

Exemplo 13: São exemplos de anéis: (Q, +, ∙), (R, +, ∙) e (C, +, ∙).

Definição: Seja (D, +, *). um anel. Dizemos que D é um domínio de integridade se:

1. o elemento neutro 1 da operação * é diferente do elemento neutro 
0 ∈ A da +,

2. a opereção * é comutativa, e

3. ∀a, b ∈ A, com a ≠ 0 e b ≠ 0, temos que a * b ≠ 0. Em outras palavras, 
se a * b = 0, então a = 0 ou b = 0.

Exemplo 14: (Z, +, ∙) é um domínio de integridade.

Exemplo 15: Consideremos Z( i ) = {a + bi ∈ C | a, b ∈ Z}. Temos que (Z ( i ), +, ∙) 
é um domínio de integridade.

Para refletir

1. Mostre que o conjunto dos inteiros com as operações usuais de adição e multiplica-
ção é um domínio de integridade.

2. Mostre que o conjuntos M2x2 (Z) das matrizes 2 x 2 com entradas inteiras, e munido 
das operações usuais de soma e multiplicação de matrizes, é um anel, mas não é 
um domínio de integridade.
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5. Subanéis, ideais, anéis quocientes e corpos

Definição: Seja B um subconjunto não vazio de A, onde (A, +, *) é um anel. 
Dizemos que B é subanel se:

    ( i ) B é fechado para as duas operações;

   ( ii ) (B,+ , *) é um anel

Exemplo 16: Z é subanel de Q, Q é subanel de R e R é subanel de C.

Definição: Seja I um subconjunto não vazio de um anel (A, +, *). Dizemos que 
I é um ideal de A se: 

    ( i ) ∀a, b ∈ I, então a+ b ∈ I; em outras palavras, (I, +) é subgrupo de (A, +), e 

   ( ii ) ∀a ∈ A e b ∈ I, então a * b, b * a ∈ I.

Exemplo 17: Considere n ∈ Z, com n ≥ 1, temos que o subconjunto dos intei-
ros nZ = {n ∙ z | z ∈ Z} é um ideal do anel (Z, +, ∙).

A relação de congruência em Z pode ser analisada em termos de um ideal I 
de uma anel qualquer.

a ≡ b mod I ⇔ b − a ∈ I.

Definição: Sejam (A, +, *) um anel e I um ideal de A. A classe residual de a 
módulo I é definida por a = a + I = {a + b | b ∈ I }. O anel (A /I, +, *) das classes 
residuais módulo I, ou seja, das classes de equivalência módulo I, é chamado 
de anel quociente de A módulo I.
Exemplo 18: Considere n ∈ Z. O quociente do anel dos inteiros pelo ideal nZ, 
introduzido no Exemplo 17 acima, será denotado por Zn=Z/nZ = {0 + nZ, 1 + 
nZ, ..., (n − 1) + nZ}. Isto induz uma estrutura de anel nos conjuntos das clas-
ses de restos módulo n.

Definição: Seja (K, +, *) um anel. Dizemos que K é um corpo se satisfaz as 
seguintes condições:

1. ∀ a ∈ K com a ≠ 0, existe b ∈ K tal que a * b = b * a = 1, e

2. ({a ∈ K | a ≠ 0},*) é grupo abeliano.

Exemplo 19: São exemplos de corpos (Q, +, ∙), (R, +, ∙) e (C, +, ∙).
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Atividades de avaliação

1. Mostre que o conjunto 2Z é um ideal de Z com as operações usuais de 
adição e multiplicação dos inteiros.

2. Verifique que 6Z é um ideal de 2Z e apresente a forma dos elementos 
de 2Z/6Z.

3. Explique porque  (Z, +, ∙) não é um corpo.

4. Verifique se o anel Z9 é um corpo. Justifique.

5. Mostre que se p é primo então Zp é corpo.

Síntese do capítulo

Neste capítulo apresentamos definições que possibilitam uma introdução ao 
estudo de estruturas algébricas.

Definição: Seja G um conjunto, munido de uma operação (G, ∙). Neste ponto, 
a operação pode ser pensada como um produto ou uma soma entre dois nú-
meros. Em geral, ∙ é uma operação abstrata definida para pares de elementos 
de G. Dizemos que G é um grupo de satisfaz as propriedades:

   ( i ) O conjunto é fechado, ou seja, para todo a, b ∈ G 

a ∙ b ∈ G.

   ( ii ) A operação é associativa, ou seja, para todo a, b, c ∈ G 

a ∙ (b ∙ c) = (a ∙ b) ∙ c.

  ( iii ) Existe elemento neutro em relação a operação, isto é, existe e ∈ G, tal que

a ∙ e = e ∙ a = a, para todo a ∈ G.

 ( i v ) Para cada a ∈ G, existe b ∈ G, chamado de inverso em relação à ope-
ração, tal que

a ∙ b = b ∙ a = e.

O grupo será chamado de comutativo ou abeliano se, além das propriedades 
já citadas, possuir a propriedade a seguir.

  ( v ) A operação é comutativa, isto é, para todo a, b ∈ G temos que

a ∙ b = b ∙ a.

Definição: Seja (G, ⋅) um grupo e H um subconjunto não vazio de G. Dizemos 
que H é um subgrupo de G se, com a operação de G, o conjunto H é um grupo.



Matemática Discreta 79

Definição: Dados os grupos (G, ⋅) e (G', *). Entendemos por homomorfismo 
uma função f :G → G' que preserva a estrutura de grupo, isto é, para todo 
a, b ∈ G temos que

f (a ⋅ b) = f (a) * f (b).

Definição: Seja f :(G, ⋅) → (G', *) um homomorfismo. Dizemos que f é um iso-
morfismo quando existir um homomorfismo g :(G', *) → (G, ⋅) tal que f ∘ g = IG'  
e g ∘ f = IG.

Definição: Dado A um conjunto não vazio, com duas operações (A, +, *). 
Dizemos que A é um anel se satisfaz as propriedades:

   ( i ) (A,+) é um grupo abeliano;

   ( ii ) A operação (A,*) satisfaz:

1. ∀a, b, c ∈ A, temos que (a * b) * c = a * (b * c).

2. Existe um elemento 1 ∈ A tal que a * 1 = 1 * a = a, ∀a ∈ A

   ( iii ) A operação * é distributiva em relação a operação +: ∀a, b, c ∈ A, temos:

a * (b + c) = a * b + z * c, e

(b + c) *a = b * a + c * a.

Em geral, a operação + é pensada como uma adição e * como uma multipli-
cação em A.

Definição: Seja (D, + , *). um anel. Dizemos que D é um domínio de integri-
dade se:

1. o elemento neutro 1 da operação * é diferente do elemento neutro 
0 ∈ A da +,

2. a opereção * é comutativa, e

3. ∀a, b ∈ A, com a ≠ 0 e b ≠ 0, temos que a * b ≠ 0. Em outras palavras, 
se a * b = 0, então a = 0 ou b = 0.

Definição: Seja B um subconjunto não vazio de A, onde (A, +, *) é um anel. 
Dizemos que B é subanel se:

   ( i ) B é fechado para as duas operações;

  ( ii ) (B, +, *) é um anel. 

Definição: Seja I um subconjunto não vazio de um anel (A, +, *). Dizemos que 
I é um ideal de A se: 

   ( i ) ∀a, b ∈ I, então a + b ∈ I; em outras palavras, (I, +) é subgrupo de (A, +), e 

  ( ii ) ∀a ∈ A e b ∈ I, então a * b, b * a ∈ I.
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Definição: Sejam (A, +, *) um anel e I um ideal de A. A classe residual de a 
módulo I é definida por a = a + I = {a + b | b ∈ I }. O anel (A/I, +,*) das classes 
residuais módulo I, ou seja, das classes de equivalência módulo I, é chamado 
de anel quociente de A módulo I.

Definição: Seja (K, +, *) um anel. Dizemos que K é um corpo se satisfaz as 
seguintes condições:

1. ∀a ∈ K com a ≠ 0, existe b ∈ K tal que a * b = b * a = 1, e

2. ({a ∈ K | a ≠ 0},*) é grupo abeliano.

@
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http://denebola.if.usp.br/~jbarata/Notas_de_aula/arquivos/nc-cap02.pdf

http://www.mat.ufmg.br/~marques/Apostila-Aneis.pdf

http://www.mat.ufpb.br/lenimar/textos/intalgebra_lna.pdf
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Gabarito: Matemática discreta
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