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Apresentacgao

Este material foi produzido para a Disciplina de Matematica Discreta, do Curso
de Licenciatura em Computacéo, ofertado a distancia pela Universidade
Aberta do Brasil/lUECE e tem como objetivo oferecer subsidios para orientar
os estudos dos alunos e facilitar sua aprendizagem.

A Matemética discreta prové uma série de técnicas para a modela-
gem de problemas da Ciéncia da Computagdo, estudando, principalmente,
conjuntos contaveis, finitos ou infinitos, como Naturais, Inteiros e Racionais.
Compreendemos que as demonstragdes de teoremas s&o de grande impor-
tancia na Matematica, oferecendo melhor compreensdo e comprovagéo do
que foi afirmado. Apresentaremos neste material os principais conceitos e re-
sultados da Matematica Discreta, utilizando uma linguagem simples e aces-
sivel, objetivando que o estudante possa desenvolver o raciocinio abstrato e
aplicar os conceitos basicos de Mateméatica Discreta na solugéo de problemas.

Os conceitos aqui apresentados s&o Uteis para estudantes do Curso
de Licenciatura em Computacgao e indicamos uma bibliografia complementar
para aqueles que desejarem aprofundar seus estudos.

Este material foi elaborado com muito cuidado, para que possa ajudar
ao estudante a construir conhecimentos e utiliza-los sempre que necessitar.

A autora






Gapitulo
Teoria dos Gonjuntos






Objetivos

® Conhecer a nog&o e a representagéo de conjuntos;

® Reconhecer os simbolos que permitem relacionar elementos a conjuntos e
conjuntos a conjuntos;

e Operar com conjuntos e conhecer as principais propriedades das operagoes.

E de fundamental importancia conhecer a linguagem dos conjuntos e suas
operacoes, pois praticamente todos os conceitos desenvolvidos em computa-
¢ao e informatica sdo baseados em conjuntos e suas construcoes.

1. Nogodes de conjuntos

Definigao: Um conjunto € uma colecédo de objetos distintos. Os objetos que
fazem parte do conjunto sdo chamados de elementos, ndo importando a or-
dem em que se apresentam.

Podemos representar um conjunto utilizando chaves ou diagrama de Venn.
Exemplo 1: Representamos os elementos do conjunto entre chaves e no
diagrama de Venn:

A={1357}

O conjunto que ndo possui elementos € chamado de conjunto vazio e repre-
sentado por { } ou @. O conjunto que possui apenas um elemento & chama-
do de conjunto unitario. Denominamos de conjunto universo ao conjunto que
possui todos os elementos com uma determinada propriedade.

Exemplo 2: Seja M = {x | x € més do ano que comega com a letra z}, o con-
junto M é vazio, ou seja, M={ } ou @.

Quando nao deixar davidas, podemos escrever os conjuntos utilizando reti-
céncias ou uma condi¢ao.

Matemética Discreta
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Exemplo 3: P = {x | x € um namero primo} e lemos: conjunto de elementos x
tal que x € um nimero primo, ou seja, P={2, 3,5,7, 11, ..}.

A quantidade de elementos de um conjunto A € chamada de cardinalidade e
representaremos por n (A).

Exemplo 4: O conjunto A= {1, 3, 5, 7} tem cardinalidade 4 e o conjunto
P={2,3,5,7, 11, ...} tem cardinalidade infinita.

Para refletir

1. Descreva os elementos dos conjuntos e indique sua cardinalidade:
a)A={x| x é més do ano}
b) B ={x | x é dia da semana}
c) C={x | x é multiplo positivo de 6}
d) D = {x | x é divisor positivo de 12}

2. Relagdes de pertinéncia e inclusao

Podemos relacionar elementos com conjuntos utilizando a condicéo de esta-
rem presentes no conjunto ou ndo, essa relagéo é chamada de pertinéncia e
utilizamos os simbolos € e lemos que o elemento pertence ao conjunto ou ¢
e lemos n&o pertence.

Exemplo 5: Seja A = {x | x &€ par}, entdo podemos dizerque 2€ Ae 5 ¢ A.

Dados dois conjuntos A e B, dizemos que A € um subconjunto de B se todo
elemento que pertence ao conjunto A também pertence ao conjunto B, utiliza-
mos a notacdo A c B, lemos A esta contido em B, ou B> A, lemos B contém A.

Exemplo 6: Sejam A ={0,2,4,6}e B={0,1,2,3,4,5,6,7,8,9,10}, podemos dizer
que AcBouBoA.

Se existir um elemento do conjunto A que nado pertenca ao conjunto B dize-
mos que A ndo é subconjunto de B e denotamos por A ¢ B, lemos que A ndo
esta contido em B, ou B » A, lemos que B n&do contém A.

Exemplo 7: Sejam A={0,2,4,6} e B={0,1,2,3,4,5}, podemos dizerque A ¢ B
ouque BpA.

Note que para qualquer conjunto A, podemos dizer que  c Aou A D @, ou
seja @ é subconjunto de qualquer conjunto.



O conjunto P(A) formado por todos os subconjuntos de um conjunto A é cha-
mado de conjunto das partes de A ou conjunto poténcia e tem cardinalidade 27,
onde n é o nimero de elementos do conjunto A, cuja demonstracéo apresen-
taremos no capitulo 4, usando-se o principio de indugao.

Exemplo 8: Considere o conjunto A={ 2, 3, 5, 7} o conjunto das partes de
A possui n(P(A)) = 2*= 16 elementos, que sao:

PA) ={0.{2}. {3}, {3}, {7}, 42, 3142, 5} {2, 7343, 51, {3, 71 {5, 71,42, 3, 51,42, 3, 7},
{2.5.7}.{3.5, 7} AL

Dados dois conjuntos A e B dizemos que eles s&o iguais se Ac Be B c A.

Exemplo 9: Os conjuntos A ={1, 2, 3} e B = {2, 1, 3} possuem 0s mesmos
elementos, ou seja, A=B.

Exemplo 10: SejaA={a, e, i, 0, u} e B={x| x € vogal} podemos dizer que A= B.

Para refletir

1. Analisando cada item a seguir, classifique as sentencas em verdadeiro (V) ou falso (F):
()2€{0,1,2,3,4}
(){4}e{0,2, 4,6}
(){2,8 {0,246}
()10€ef1,2,3}
(){1,3,5100
(){o}cf{o, 1,2}
2. Dado o conjunto A, que possui 7 elmentos, determine o numero de elementos do
conjunto das partes de A, que contém pelo menos dois elementos.
3. Considerando os conjuntos A=1{5,7,9,11,13}eB={1, 3,5, 7,9, 11, 13, 15}, assinale
a alternativa correta:
A LA
b)AcB
c)ADB
d)BDA
e)15¢ B

3. Operag¢odes entre conjuntos

Apresentamos nesta unidade as operagdes entre conjuntos: unido, interse-
¢ao, diferenca, produto cartesiano e a diferenca simétrica.

Defini¢ao: Dados dois conjuntos A e B, chamamos de unido de A e B e deno-
tamos por A U B, ao conjunto C que possui todos os elementos que pertencem
a A e todos os elementos que pertencem a B e nenhum outro elemento que
nao esteja em um dos conjuntos.

AuB=C={x|x€eAouxeB}

Matemética Discreta
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A unido de dois conjuntos A e B pode ser representada no digrama de Venn:

@ A: : : :B A.

Exemplo 11: Dados os conjuntos A={0, 2 4,6, 8} e B={1, 2, 3, 4}, temos que:
AuB={0,1 2 3,4,6,8}.

Propriedades: se A, B e C sdo conjuntos quaisquer, entdo valem as seguintes
propriedades da uni&o:

e AUA = A (idempotente)

e AU Q= A (elemento neutro)

e AUB=BUA (comutativa)

e (AUB)UC=AU(BUQCQC) (associativa).

Defini¢ao: Dados dois conjuntos A e B, chamamos de intersecdo de A e B ao
conjunto C que possui todos os elementos que pertencem a A e pertencem a B
e nenhum outro elemento que n&o esteja nos dois conjuntos. Representamos
a intersec¢ao dos conjuntos AN B por.

AnB=C={x|xeAex€eB}

Aintersecao de dois conjuntos A e B pode ser representada no digrama de Venn:

@ OO @

Exemplo 12: Dados os conjuntos A={0,2,4,6,8}e B={1, 2, 3, 4}, temos que:
AnB={2, 4}.

Apresentamos agora algumas propriedades da interse¢do de conjuntos.

Propriedades: se A, B e Csé&o conjuntos quaisquer, entdo valem as seguintes
propriedades da intersec¢éo:

e An A=A (idempotente)

e AN Q=0 (elemento neutro)



e ANB=BnA (comutativa)
e ANB)nC=An((BnC)(associativa).

Além dessas propriedades podemos, verificar que o nimero de elementos da
unido de dois conjuntos A e B é dada por.

nAuB)=nA) +nB)—-n(AnB).

Para trés conjuntos A,B e C, temos que:

nAUBUC)=nA)+nB)+n(C)-nAnB)-nANnC)-nBnC)+n(AnBNC).

Utilizando o principio de indugao, que sera apresentado no capitulo 4, podere-
mos estender essa conclus&o para um nimero de elementos n € N.

Exemplo 13: Dos onze jogadores do time de futebol ABC, oito tem pelo me-
nos vinte cinco anos e sete tem no maximo 30 anos. Se A = {x | x é jogador
do ABC que tem pelo menos 25 anos} e B = {x | x é jogador do ABC e tem
no maximo 30 anos}, podemos determinar o nimero de jogadores que pos-
suem idade entre 25 e 30 anos. Como A U B= {x | x é jogador do time de
futebol ABC}, assim:
n(AuB)=n(A)+nB)—-n(AnB)
11=8+7-n(ANnB)
nAnB)=4.

Definigao: Considere dois conjuntos A e B, chamamos de diferenca entre A e
B ao conjunto C dos elementos de A que n&o pertencem a B. Denotamos por
A — B a diferen¢a entre os conjuntos A e B e representamos:

A-B=C={x|x€eAex¢B}.

Adiferenca entre dois conjuntos A — B pode ser representada no digrama de Venn:
@ A: : : :B A.

Observamos que a diferenca ndo € comutativa e nem associativa.

Matematica Discreta
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Exemplo 14: Sejam dados os conjuntos A={-3,-2,-1,0,1,2}e B={0, 1,
2, 3, 4, 5}. Determinamos os conjuntos A — B e B - A e verificamos que nao
possuem elementos comuns.

A-B={-3,-2,-1}e B-A={3, 4,5}, concluindo que (A - B)n (B - A)=0.

Definigao: A diferenca simétrica entre dois conjuntos A e B, denotadapor AAB, é
o conjunto C que possui todos os elementos de A que nao pertencem a B e todos
os elementos de B que nao pertencem a A, e nenhum outro elemento, assim,

AAB=C={x|(xeAexgB)ou(x¢AexeB)}=(A-B)U(B-A.

Podemos verificar faciimente que (A—-B)u (B-A)=(AuB)-(AnB). Fagao
diagrama de Venn para comprovar esta afirmagéao.

Exemplo 15: Considerando os conjuntos A={1, 2, 3,4,5,6}e B={2,3,5,7,
11, 13}, determinamos a diferenga simétrica entre A e B.
AAB={1,2,3456,711,13}-{2,3,5}={1,4,6,7, 11, 13}.

Propriedades: Sejam A e B conjuntos quaisquer, valem as seguintes proprie-
dades para a diferenca simétrica:

e AAP=A
e AANA=0Q
e AAB=BAA.

Quando A e B sdo conjuntos com A c B, chamamos de complementar de A
em relacdo a B ao conjunto formado pelos elementos de B que nao perten-
cema A, isto é, a diferenga B - A, denotado por C* e representado por

C/lr={x|x¢AexeB}=B-A

Exemplo 16:Dados A={1,2,3,4}eB={1,2,3,4,5,6,7, 8,9, 10} podemos
determinar o complementar de A em relacao a B.

C/=B-A={567.89 10}

Definigao: Dados os conjuntos A e B, chamamos de produto cartesiano, e
representamos por A x B, ao conjunto C formado por pares ordenados en-
contrados combinando cada um dos elementos do conjunto A com todos os
elementos do conjunto B, nesta ordem, e nenhum outro elemento.

AxB=C={xy)|xeAeyeB}.
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Exemplo 17:Sejam A={0, 1, 3, 5} e B={2, 3}, determinamos Ax B, Bx Ae Bx B.
AxB={0,2),0.3.(1.2.(1.3.3.2.3.3.5.2. 5.3}
BxA={2,0).21)..3)..5.3.0).3 1) 3 3). @3 5}

BxB={2,2), 2 3).3 2 3 3}

Observamos que o produto cartesiano nao é comutativo, ousejaAx B#B x A.
Podemos ainda determinar o nimero de elementos do produto que é:

n(AxB) = n(A) - n(B).
Exemplo 18: Dados dois conjuntos A com 5 elementos e B com 4 elementos,
0 numero de elementos de AxB &

n(AxB)=n(A)- n(B)=5 - 4 = 20.

Para refletir

1.DadosA={1,2,3,4},B={2,3,6,7,8}e C={3, 4, 5, 6}, determine o que se pede:
a)AUB
b)AnC
c)AU (BUC)
d)A-(BUC()
e)AAB
f)AxB
2. Considere A={2,3,5}eB={1,2,3,4,5, 6}. Determine o nimero de elementos de:
a)AUB
b)AxB
3. Sejam A e B dois conjuntos distintos. Assinale a sentenca verdadeira.
aJA-B=B—-A
b) (A—B) c (AN B)
c)(A—-B)c (AUB)
d)(A-B)U(B—A)=AUB.
4. Dados os conjuntosA={0,1, 2,3,4,5,6,7}, B={4,5},C={1,2}e D={2, 3, 4}. Determine:
(A—=C)n(B U D).
5.SejamA={-2,—-1,0,1,2}e B={0, 1, 2}. Sobre o produto cartesiano, é correto afirmar que:
a) A x B possui 8 elementos
b)AxB=BxA
c) A x A possui 25 elementos
d) B x B possui 15 elementos.
6. Dados A, B e C conjuntos quaisquer, verifique se as seguintes propriedades envol-
vendo unido e intersec¢do sdo verdadeiras ou falsas:
aJAU(ANB)=A
b)AN(AUB)=A
cJAUBNC)=(AUB)N(AUC)
dAN(BUC)=(ANB)U(ANC().
7. Considere que Ax B={(0, —2), (0, —1), (1, —=2), (1, —1), (2, —2), (2, 1), (5, =2), (5, —1)}.
Determine os conjuntos A e B.

15
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4. Conjuntos Numéricos

Apresentamos resumidamente alguns conjuntos numéricos que serao utiliza-
dos ao longo do nosso estudo. O primeiro deles é o conjunto dos nimeros
naturais, formado pelos numeros 0, 1, 2, 3, 4, ... e representado pela letra N.

N={0,1,2.3,4, ..}
N*={1,23.4, ..}

No capitulo 4 estudaremos mais detalhadamente o conjunto dos naturais e os
axiomas que o caracterizam.

O conjunto dos nimeros inteiros, representado por Z, é formado por todos os
numeros naturais, acrescidos dos nimeros negativos, portanto:

z={..-3,-2,-1,0,1,2,3,...}.
Notamos que N é um subconjunto de Z, ou seja, Nc Z.

O conjunto dos nimeros racionais, representado por Q, é formado por todos
0s numeros que podem ser escritos na forma de fracao, desta forma:

a
Q={x|x=7,coma,b€Zeb¢O}.

Sao exemplos de racionais todos os nimeros naturais, inteiros, decimais exa-

tos, decimais infinitos periédicos.

Exemplos: 14 = 0,25 e -5\9 = -0,555 ...

Chamaremos de conjunto dos nimeros reais e representaremos por R, ao con-
junto que possui 0s nimeros racionais e os decimais infinitos n&o periédicos.

O conjunto formado por todos os nimeros que n&o podem ser escritos na
forma de frag&o, ou seja, decimais infinitos e n&o periédicos, sera chamado
de conjunto dos nimeros irracionais e representado por I.

Sao exemplos de nimeros irracionais: V2, V3, w= 3,14159265....

Notamos que a unido do conjunto dos nimeros racionais com o conjuntos dos
irracionais resulta no conjuntos dos nimeros reais, ou seja,

R=QuUl
Ainda existem outros conjuntos numeéricos fundamentais, como por exemplo,

o conjunto dos nimeros complexos, representado por C, formado por nime-
ros da forma:

c=a+ bi,coma, b €Reiéum nimero complexo que corresponde a v-1.



Este conjunto possui as seguintes operagcdes de soma e produto:
(D@+b)+t(c+tdy=(@+o)+(b+a)
(i@+b)-(ctrdy=(@-c-b-d)y+(b-c+a-d.

Os conjuntos numéricos serao analisados no capitulo 5, considerando os con-
ceitos de grupos, anéis e corpos.

1. Assinale V para as sentengas verdadeiras e F para as sentencas falsas:
()ZcR
( )V2€eR
()1=2Q
()-=¢0
5
2. Verifique se as equagao do segundo grau a seguir possuem raizes reais
ou complexas:
a)x*-5-x+6=0
b)2x*+8=0
c)x*—4-x+5=0

Sintese do capitulo

Definimos conjunto como uma cole¢do de objetos distintos e os objetos que
fazem parte do conjunto sdo chamados de elementos. Chamamos a quantida-
de de elementos de um conjunto A de cardinalidade, representando por n(A).

Estudamos as relacdes de pertinéncia, quando relacionamos elemen-
tos com conjuntos e utilizamos os simbolos €, que lemos que o elemento
pertence ou €, que lemos ndo pertence.

Definimos que A € um subconjunto de B se todo elemento que pertence
ao conjunto A também pertence ao conjunto B, utilizamos a notagéo A c B,
lemos A esta contido em B, ou B U A, lemos B contém A. Se existir um ele-
mento do conjunto A que ndo pertenga ao conjunto B dizemos que A néo é
subconjunto de B e denotamos por A ¢ B, lemos que A néo esté contido em
B,ou B » A, lemos que B nao contém A.

Matemética Discreta
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Definimos o conjunto das partes de A, usando a notagao P(A), como o
conjunto formado por todos os subconjuntos do conjunto A e verificamos que
P(A) tem cardinalidade 2", onde n é o nimero de elementos do conjunto A.

Dados dois conjuntos A e B, apresentamos as operagdes entre conjuntos:
UnidocAUuB={x|x€eAouxeB}
Intersecdo: AN B={x|xeAexeB}
Diferenca:A-B={x|x€Ae x & B}
Diferenca simétricaa AAB=(AUB)-(ANnB)
Complementar. C*=B-A={x|x¢ Aex€B},comAcB.

Definimos o produto cartesiano dos conjuntos A € B como o conjunto
dos pares ordenados encontrados combinando cada um dos elementos do
conjunto A com todos os elementos do conjunto B.

AxB={xy)|xe€AeyeB}

Verificamos que o nimero de elementos da unido de dois A e B conjun-
tos é dada por.

n(Au B)=n(A)+nB)-n(ANnB)
Para trés conjuntos A, B e C, temos que:
nAUBUC)=nA)+nB)+n(C)—n(AnB)-nANC)}-nBNnC)+n(AnBnN
&)

Observamos que o produto cartesiano ndo é comutativo, ou sejaA x BB x A
e ainda determinamos o nimero de elementos do produto que é:

n(A x B) = n(A) - n(B)

Apresentamos os conjuntos numeéricos que serdo utilizados ao longo do
nosso estudo.
Naturais:N={0,1, 2, 3,4, ...}
Inteiros:2z={...,-3,-2,-1,0,1,2,3, .. .}
Racionais:Q = {x | x = %, coma,beZeb=0}.

Irracionais: formado por todos os nimeros que n&o podem ser escritos
na forma de fragao.
ReaissR=QU .
Complexos: C = {a + bi, com a,b € R}

Esse conjunto satisfaz as seguintes regras de soma e produto:

i) @+bi)+(c+d)=(@+c)+(b+ad)i

(iv) @+bi)-(c+td)=(@-c—-b-d)+b-c+ta-d)
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Gapitulo
Relacdo e Fungio






Objetivos

e Conhecer relagdes binarias e identificar suas propriedades;

e Calcular a inversa de uma relacao

e |dentificar relagdes de equivaléncia;

e Conhecer o conceito de fungéo e identificar quando uma relagao é fungao;
e Calcular a inversa de uma funcéo;

e |dentificar relagdes injetoras, sobrejetoras e bijetoras.

Em computacéo e informatica, muitas construcées sao baseadas em relagoes
e fungdes. Além disso, sao contelidos importantes da educagao basica que po-
derao ser melhor apresentados e compreendidos com o auxilio da informatica,
utilizando softares educativos, jogos e programas de construgao de graficos.

1. Relagao

Defini¢gao: Dados dois conjuntos A e B, uma relagao binéaria, ou apenas rela-
¢a0, € um subconjunto R do produto cartesiano AxB. Os pares ordenados de
R associam elementos x € A com elementos y € B e podem ser denotados por
XRy ou simplesmente R, ou seja,

R c AxB.

Exemplo 1. Considere os conjuntos A={1, 3,5, 7}e B={3,5,7,9, 11} e a
relagéo R definida por R ={(x,y) e AxB |y =2 -x - 3}. Os pares ordenados que
fazem parte da relagdo R sao:

R={33)(6.7) (7. 11}

Definicao: Dada a relacdo R, definimos a relacdo inversa de R, como sendo o
conjunto R de todos os pares de R com a ordem invertida e representamos por

R*={(y) | xy) R}

Exemplo 2: Considere arelagdo R={(1,9), (2. 8). (3. 7). (4. 6).(5. 5)}. Os pares
ordenados que fazem parte da relagao inversa sao:

R*={9.1).8.2).(7.3).(6.4). 6. 5}

Matematica Discreta =2
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Propriedades: Dados um conjunto A e uma relacdo R c A x A, definimos as
seguintes condicoes.

e R éreflexiva se (x, x) € R, para todo x € A.
e R é simétrica se (x, y) € R, entéo (y.x) eR.
e R étransitivase (x, ), (V. 2) ER, entdo (x,.2) € R.

Dizemos que uma relagéo R é antirreflexiva se (x,x) € R, paratodo x € A e que
R é antissimétricase (x, Yy ERe (V. X)) ER=>x =Y.

Defini¢ao: Dizemos que R € uma relagéo de equivaléncia se ela é reflexiva,
simétrica e transitiva.

Exemplo 3: Verifiquemos quais das propriedades apresentadas séo satisfei-
tas pelarelacdo R={(2, 8), (3. 7). (4, 6), (5. 5). (6. 4), (7. 3). (8. 2)}.
e Rnao é reflexiva, pois (2, 2), (3, 3), (4, 4), (6,6), (7.7), (8. 8) ¢ R.

e R ndo é antirreflexiva, pois (5, 5) e R.
e R é simétrica, pois cada (x, y) € R, temos (v, X) ER.

e R nao é antissimétrica, pois: (2, 8),(8,2)eRe 2+8;(3,7). (7. 3)ER
e3+#7e(4,6),(6,4)eRed+6.

e R n&o é transitiva, pois: (2, 8), (8, 2) R, mas (2,2). 8. 8) ¢ R; (3, 7).
(7.3)eR, mas (3,3).(7.7)¢Re (4,6), (6,4) eR, mas (4, 4), (6,6) ¢ R.

Arelacdo R nao € uma relacdo de equivaléncia, pois, apesar de ser simétrica,
nao possui as condi¢des de ser reflexiva e transitiva.

Exemplo 4 Arelacéo R = {(x, y) | x = y} € uma relagao de equivaléncia.
R é reflexiva, pois para todo x, temos que x = x, logo (x, X) ER;
R é simétrica, pois para todo par (x, ¥), temos que x = y, assim (y, X) € R;

R é transitiva, pois (x, ¥), (v, 2) € R, temos que x = y e y = Z, logo x = z, entdo
x.2eR

Para refletir

1. Dados os conjuntos A = {1, 3,5} e B={3, 5, 7, 9}, indique os pares ordenados das
seguintes relagdes:
R,={(x, YJEAxB|y=x-2}
R,={(x, Y)EA x B | y>x).
2. Considere os conjuntos A={-2,-1,0,1,2,3,4}eB={0,1,4,8,9}earelacgioR={(x,y) EA
x B | y =2x + 1}. Determine os pares ordenados que fazem parte da relagdo R™.
Verifique se a relagdo R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} é uma relagdo de
equivaléncia sobre A={1, 2, 3, 4}.
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2. Funcao

Definigao: Uma funcéo de A em B é uma relagéo que a cada elemento do
conjunto A associa um Unico elemento do conjunto B. Representamos a fun-
¢ao f de Aem B por f. A »B. Utilizamos ainda a notag&o y = f(x) para indicar
que o par (x, y) pertence a fungéo f.

Exemplo 5:Sejam A={1,2, 3,4}, B={2,4,6,8, 10} e arelacdo R={(x, y) €
AxB |y =2 -x}. Afirmamos que a relagdo R é uma fungdo.

Parax=1temosquey=2-1=2€B,logo (1, 2) eER;
Parax=2,temosquey=2-2=4€B,logo (2,4) ER;
Parax=3,temosquey=2-3=6€B,logo (3, 6) ER;
Parax=4,temosque y=2-4=8€B,logo (4, 8) ER;
R={1.2).(2.4).3.6). @4 8)}

Como cada elemento do conjunto A esta associado a um Unico elemento de
B, entdo R é fungéo.

»

>4

»

»” 8
10

A W NP
N
(o)}

Exemplo 6: Identificamos através do diagrama as relagdes que sao fungoes.

NA B A B A B

| é fungdo, pois cada elemento do conjunto A esta associado a um Unico
elemento do conjunto B.

[l ndo é fungéo, pois existem elementos de A que estdo associados a mais de
um elemento de B.

[l ndo é fungao, pois existe elemento de A que ndo esta associado a nenhum
elemento de B.
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Chamamos de dominio da fungao ao conjunto que possui todos os primeiros
elementos dos pares ordenados. O conjunto formado pelos elementos que
estdo associados a algum elemento do dominio € chamado de conjunto ima-
gem. Quando consideramos todos os elementos do conjunto de chegada,
mesmo aqueles que nao estao associados a elementos do dominio, denomi-
namos o conjunto de contradominio.

Exemplo 7: Dados os conjuntos A={0,1,2}e B={0,1, 2, 3,4,5}. Sejaf:A—B
a funcao definida por f(x) = 2 -x + 1. Determinamos o dominio D(f), o contrado-
minio CD(f) e aimagem Im(f)de f.

Para

x=0,f0)=2-0+1=1€B,logo (0, 1) €f;
x=1f1)=2-1+1=3€B,logo (1, 3) f;
x=2,f0)=2-2+1=5€B,logo (2, 5) €f;

Desta forma, D(f)={0, 1, 2}, CD(f)={0, 1, 2, 3,4, 5} e Im(f) = {1, 3, 5}.

Assim como nas relagdes, também definimos a inversa de uma fungéo fcomo
sendo arelag&o inversa de f. Denotamos a relacao inversa por f1. Observamos
que f* nem sempre sera fungéo.

Note que uma das condi¢des para que uma relagdo seja fungéo é que cada
elemento do dominio esteja associado um Unico elemento do contradominio.

Dessa forma, para que a inversa de uma fungdo continue sendo uma fungéo,
€ necessario que todos os elementos do contradominio estejam associados
a algum elemento do dominio, ou seja, o contradominio devera ser igual a
imagem. Isto motiva a seguinte defini¢do.

Definigao: Dizemos que uma fungéo é sobrejetora se a sua imagem € igual
ao seu contradominio.

Por outro lado, nem sempre a inversa de uma fungao sobrejetora é fungéo, pois
podera possuir elementos do dominio associados a mais de um elemento da
imagem, o que impediria a inversa de ser uma fun¢do. Temos mais uma condi-
¢ao para que a inversa de uma fungdo também seja fungéo, ou seja, cada ele-
mento do dominio devera estar associado a um elemento diferente da imagem.

Defini¢ao: Dizemos que uma fungao € injetora se elementos distintos do do-
minio possuem imagens distintas. Em outras palavras, f é injetora se, e so-
mente se, f(x) = f(y) implicar x = y.



Definigao: Quando uma fungéo for injetora e sobrejetora serd chamada de
funcao bijetora, e sua inversa sera sempre uma fungéo.

Exemplo 8: Selam A={1, 2,3}, B={4,5,6}e af: A— Bdefinida por f(x) = x + 3.

A f B B s A
\{ | |
A A

f é funcdo bijetora e sua inversa f é fungéo.

Podemos fazer a composicao de funcoes, ou seja, dadas duas funcdes
f:A—-Beg Im(f)— C, definimos a funcdo (geof) (x) = g(f (X)), que é a
composta de g com f, aplicada em x.

Exemplo 9: Dadas f(x) =5 -x + 1 e g(x) = x>, determine fog.
fog=f(gl)=5-g0)+1=5x+1

1. Analise as relagdes a seqguir, identificando as que s&o fungodes:
a)A={1,123,B={2012teR={xy)€EAxB|y=x-1}.
b) {4, 1), (1, 2). 3. 4), (3. 2), (4, 3)} sobre o conjunto A ={1, 2, 3, 4}.
c)A={1,2},B={3,4,5leR=AxB.

2.Dados A ={1, 2}, B={3, 4, 5}, considere f: A - B a fun¢ao definida por f (x)
= 2 -x +1. Determine o dominio, o contradominio e a imagem da fungéo.

3. Identifique se as fungdes a seguir s&o injetoras, sobrejetoras ou bijetoras.
No caso das fungdes bijetoras identifique a inversa da fungéo.

a)A={1.2, 3 4} e fA— Adefinida por f(x) = x.
b)A={-2,-1,0,1,2}, B={-1,0, 3, 8} e f: A —» B a fung&o definida por
fX)=x2-2-x.
c)A={1,2,3,4,5},B={1,2 3,4, 5}ef.A— Bafungéo definida por f(x) = 2.
4. Dadas as fungbes f(x)=3-x—-1e g(x) = x +2, encontre fege gof.
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28

GABRAL, B, M P.

Definimos uma relagédo binaria ou apenas relagdo de A em B ao conjunto
de pares ordenados que associa elementos do conjunto A a elementos do
conjunto B. Podemos dizer que uma relagéo R associa elementos x € A com
elementos y € B e denotamos por xRy ou simplesmente R, ou seja,

R={(x y) e AxB} c AxB.

Dada uma relacéo R, definimos a relagédo inversa de R, como sendo o con-
junto R* de todos os pares de R com a ordem invertida e representamos por

R*={y. 0| x ER}.

Propriedades: Dados um conjunto A e uma relagdo R, definimos as seguin-
tes condigoes.

e R éreflexiva se (x, x) € R, para todo x € A.
e R ésimétricase (x, y) ER, entdo (v, X) ER.

e Ré transitiva se (x, ), (v. 2) ER, entdo (x, 2) ER.

Dizemos que R é antirreflexiva se (x, X) € R, para todo x € A e que R é antissi-
métricase (x, YY) ER=>(V, X)) ER=x=.

Dizemos que R é uma relacdo de equivaléncia se ela é reflexiva, simétrica
e transitiva.

Definimos uma funcéo de A em B como uma relagao que a cada elemento do
conjunto A associa um Unico elemento do conjunto B. Representamos a fun-
¢cao fde Aem B por f: A - B. Utilizamos ainda a notagao y = f(x) para indicar
que x se relaciona com y através da fungao .

Chamamos de dominio da fungéo ao conjunto que possui todos os primeiros
elementos dos pares ordenados. O conjunto formado pelos elementos que
estado associados a algum elemento do dominio € chamado de conjunto ima-
gem. Quando consideramos todos os elementos do conjunto de chegada,
mesmo aqueles que nao estdo associados a elementos do dominio, denomi-
namos o conjunto de contradominio.

Definimos a fungéo inversa f1, observando que a inversa de uma fungdo nem
sempre sera funcao.

Chamamos de fungao sobrejetora uma fungéo que tem todos os elementos
do contradominio associados a algum elemento do dominio, ou seja, o contra-
dominio devera ser igual a imagem.
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Chamamos de funcao injetora quando cada elemento do dominio estiver as-
sociado a um elemento diferente da imagem, ou seja, elementos distintos do
dominio possuem imagens distintas.

Quando uma fungéo for injetora e sobrejetora sera chamada de fungéo bijeto-
ra e sua inversa sera sempre uma fungao.
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Gapitulo
Analise Gombinatoria






Objetivos

e Conhecer e aplicar os principios aditivo e multiplicativo na solugéo de
problemas;

¢ |dentificar nos problemas de contagem a importancia da ordem dos
elementos;

e Utilizar formulas da arranjos simples, combinagdes, permutagdes simples e
com repeticoes, para facilitar a resolugao de problemas de contagem;

e Conhecer e utilizar o Tridngulo de Pascal.

A anélise combinatoria esta relacionada a problemas de contagem de conjun-
tos finitos e surge com frequéncia em problemas tedricos e praticos ligados
aos computadores.

1. Principio de contagem

Apresentamos duas ferramentas importantes para a solugao de problemas de
contagem: o principio aditivo e o principio multiplicativo.

Sejam A e B conjuntos que ndo possuem elementos em comum. O principio
aditivo garante que o nimero de elementos da unido é igual ao nimero de ele-
mentos do conjunto A somado ao nimero de elementos do conjunto B, ou sgja,

n(AuUB)=n(A)+n(B) quando AN B = Q.

Podemos estender o principio aditivo para um numero finito de conjuntos.
Dados n conjuntos A, A,.... A, tais que ANA = @ para todo / #j, temos:

n(A,UA,U...UA )=n(A)+n(A,)+-+nA).

Exemplo 1: Ana deseja participar da Semana Universitaria. Foram oferecidos
3 palestras e 2 seminarios que interessavam a Ana, todos no mesmo horario.
Note que ela tem trés maneiras distintas para a escolha da palestran(P) =3 e
duas maneiras distintas para a escolha do seminario n(S) = 2, como os even-
tos sdo mutuamente excludentes, visto que Ana n&o podera assistir a uma
palestra e participar de um seminario que s&o eventos distintos no mesmo
horério, o nimero de possibilidades de escolhas sera:

n(P)+n(S)=3+2=5,

Matematica Discreta =2
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Dados dois conjuntos A e B, o principio multiplicativo nos garante que
0 nimero de maneiras de escolher um primeiro elemento do conjunto A e um
segundo elemento do conjunto B é igual ao nimero de elementos de A mul-
tiplicado pelo nimero de elementos de B. Em outras palavras, o nimero de
elementos do produto cartesiano de A por B satisfaz:

n(A x B)=n(A)-n(B).

Estendendo para um nimero finito de conjuntos, temos que:
nA;x A,x .. x A )=nA)-nA,)...nA).

Exemplo 2: Os organizadores da Semana Universitaria, observando o inte-
resse dos alunos em participar de palestras e seminarios resolveram oferecer
as palestras em um horario e os seminarios em outro. Ana podera participar
de dois eventos escolher uma palestra e um seminario. Aplicando o principio
multiplicativo temos que ela podera fazer essa escolha de 6 maneiras distintas:

n(P)-n(S)=3-2=6.

Exemplo 3: Desejamos escrever niUmeros de dois algarismos, que podem ser
iguais ou n&o, utilizando elementos do conjunto A={1, 2, 3,4, 5, 6}.

Observamos que para a escolha do algarismo das dezenas temos 6 possi-
bilidades. Como o algarismo das unidades pode ser repetido, temos ainda 6
possibilidades. Pelo principio multiplicativo teremos:

6 - 6 = 36 possibilidades de nimeros com a condicao dada.

Exemplo 4: Desejamos escrever nimeros de dois algarismos distintos, utili-
zando elementos do conjunto A={1, 2, 3,4, 5, 6}.

Nesta situacao para a escolha do primeiro nimero continuamos com 6 possi-
bilidades, no entanto, como o segundo nimero devera ser diferente do primei-
ro, ficamos com apenas 5 possibilidades, ou seja, o conjunto B tera 5 elemen-
tos. Pelo principio multiplicativo teremos:

6 -5 = 30 possibilidades de nimeros com a condi¢c&o dada.

Existem situacdes mais complexas em que podemos utilizar simultaneamente
os principios aditivo e multiplicativo. \Vejamos alguns exemplos.

Exemplo 5: Os alunos que apresentarem trabalhos na Semana Universitaria
serdo classificados e premiados com 2 livros de disciplinas diferentes.
Sabemos que existem 7 livros diferentes de informatica (1), 4 livros diferen-



tes de mateméatica (M) e 5 livros diferentes de didatica (D). Ana foi a primeira
colocada. Podemos determinar o nimero de escolhas que Ana podera fazer.
Ana podera escolher as disciplinas de trés maneiras diferentes:

¢ Informética e Matematica, pelo principio multiplicativo:
n(l xM)=n()-n(M)=7-4=28.

¢ Informéatica e Didatica, pelo principio multiplicativo:
n(l xD)=n()-n(D)=7-5=35.

o Matematica e Didatica, pelo principio multiplicativo:

n(M x D) =n(M)-n(D)=4-5 = 20.

Utilizando o principio ativo determinamos o total de escolhas:
28+35+20=83 possibilidades de escolha.

Para refletir

1. Rafael deseja ir ao cinema de um shopping que possui 6 salas e estdo sendo exibidos
2 filmes diferentes de comédia e 4 filmes diferentes de a¢do. De quantas maneiras
diferentes ele podera fazer a escolha dos filmes considerando que:

a) deseja assistir apenas a um filme?
b) deseja assistir a dois filmes quaisquer?
c) deseja assistir a um filme de a¢do e uma comédia?

2. Um estacionamento possui 10 vagas. De quantas modos diferentes trés carros po-
dem ser estacionados nesse estacionamento?

3. Uma chapa composta por um homem e uma mulher, que ndo podem ser irmaos,
devera ser formada para concorrer as eleigdes do grémio de uma escola. Estado ins-
critos para comporem a chapa 14 mulheres e 8 homens, dos quais 5 sdo irmaos (3
homens e 2 mulheres). De quantas maneiras distintas podemos formar uma chapa
com pessoas deste grupo?

4. Seis atletas participam de uma maratona. Quantas possibilidades diferentes de clas-
sificacdo final dos participantes podemos ter, supondo que ndo ocorram empates?

2. Arranjos

Para facilitar nossos calculos definimos o fatorial de um ndmero n e represen-
tamos por n!, como sendo:

n=n-n-1)-n-2)-..-3-2-1.

Matemética Discreta
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Exemplo 6: Paran=5,temosque 5!'=5-4-3-2-1=120.
Por convengéo escrevemos que 0! = 1.

Definigao: Chamamos de arranjo simples cada uma das lista ordenadas, sem
repeticao, formadas a partir da escolha de p elementos de um conjunto com
n elementos distintos.

Exemplo 7: Considere o conjunto A ={1, 2, 3, 4}. Os arranjos de 3 elementos
formados por elementos de Aséo: (1,2, 3), (1,2, 4), (1, 3, 2). (1, 3. 4), (1, 4,
2,(1.43,213),214).231,0234.241,243).3612@3
1,4),321).324.0641).0342.412.413),4 21,4 2 3)
4,3,1),4 3 2.

Exemplo 8: Considere o conjunto A= {1, 2, 3, 4}. Desejamos formar nameros
com dois algarismos distintos com os elementos do conjunto A, ou seja, es-
tamos em uma situagdo em que possuimos 4 elementos e escolhemos dois
distintos. Além disso, a ordem é importante, visto que por exemplo o nimero
12 é diferente do nimero 21.

Para escolher o algarismo das dezenas temos 4 possibilidades. Depois de es-
colhido o primeiro nimero, como o segundo deve ser diferente, ficamos com
apenas 3 escolhas. Para resolver problemas de arranjos podemos utilizar o
principio multiplicativo. Dessa forma, 4 -3 = 12.

Proposigao 1. Para formar um arranjo simples com p escolhas teremos n pos-
sibilidades para a escolha do primeiro. Como n&o podem haver repeti¢des,
teremos n — 1 maneiras de escolher o segundo e assim sucessivamente até
a escolha do elemento da p-ésima posicao que tera n — p + 1 possibilidades
de escolha. Dessa forma, aplicando o principio multiplicativo, temos que o
numero de arranjos simples que podemos formar escolhendo p elementos de
um conjunto com n elementos, representado por An,p‘ é

Anvp=n-(n-1)-(n-2)-...-(n—p+1)



A

n,

p=n-(n-(n—1)-(n-2)-...-(n—p+1).(n—p)-(n—p—1)-...-3-2-1
h-p)-nh-p-1)-...-3:2-1

A = nl

np

(n-p)!

Exemplo 9: De quantos modos diferentes 3 pessoas podem ocupar lugares

e

m uma fila com 8 cadeiras?
A, =_8! =8!=8-7-6-5!=336 possibilidades.
8-3) 5! 51

Para refletir

1. Dado o conjunto A = {2, 3, 5, 7, 9}. Quantos numeros de trés algarismos distintos
podem ser formados com os elementos do conjunto A? Quantos desses nimeros
sdo pares?

2. Num teatro existem fileiras com 6 cadeiras. De quantos modos diferentes trés pes-
soas podem se sentar em uma fileira?

3. Permutagoes

A permutagdo simples € um caso particular de arranjo simples, nesse caso

u

tilizamos todos os elementos distintos, ou seja, consideramos todas as listas

ordenadas contendo todos os elementos de um conjunto.

Definigao: Dados n objetos distinos, chamamos de permutacéo simples qual-

q

uer agrupamento ordenado desses n objetos. Representamos o nimero de

tais permutagdes por P .

Chamamos de anagramas de uma certa palavra as palavras que resultam de
uma permutacéo das letras da primeira. Um anagrama pode ter significado
ou néo.

Exemplo 10: Determine todos os anagramas que podemos formar permutan-
do as letras da palavra FILA.

FILA-FIAL — FALI - FAIL - FLIA - FLAI
IFLA—IFAL - ILFA—-ILAF — IAFL — IALF
LFIA—-LFAI - LAFI - LAIF — LIFA - LIAF
AFIL —AFLI - ALFI - ALIF - AILF - AIFL.
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Encontramos 24 anagramas da palavra FILA.

Proposigao 2: Observamos que, para a escolha do primeiro objeto, temos
n possibilicades. Escolhido o primeiro elemento teremos n - 1 possibilidades
para escolher o segundo elemento e que esta escolha é independente da pri-
meira escolha. Utilizando o principio multiplicativo e continuando as escolhas
até o Ultimo elemento poderemos escrever que o nimero de possibilidades de
permutacdes simples sera:

P=n-n-1)-(n-2)-...-3:2-1=n
A Proposigcao 2 pode ser demonstrada utilizando o principio de indugdo, que
sera apresentado no Capitulo 4.

Exemplo 11 Quantos anagramas podemos formar permutando as letras da
palavra FILA?

P,=4'=4-3-2-1= 24 anagramas.

Observamos que a permutagéo simples dos elementos apresentou como
condicdo que esses elementos fossem distintos. Logo, a Proposicéo 2 n&o
podera ser utilizada quando formos perguntados sobre o nimero de permu-
tacdes de uma colegéo de objetos em que alguns deles apare¢am repetidos.

Exemplo 12: Determine todos os anagramas que podemos formar permutan-
do as letras da palavra ARARA. Temos as seguintes possibilidades:

ARARA - ARAAR — ARRAA - AARRA — AARAR - AAARR — RRAAA —
RARAA — RAARA — RAAAR.
Portanto, temos 10 possiveis anagramas, enquanto P, = 120.

Defini¢ao: Dada uma colegdo de elementos em que alguns deles aparecem
com repeticdo, denominamos as permutacoes nesta colecao de permutagcao
com repeticéo.

Proposi¢ao 3: Dados n objetos em uma lista ordenada, que podem ter repe-
ticdes ou ndo. Se os objetos fossem todos distintos teriamos n! possibilidades
de permutar esses objetos. Considerando que tenhamos n, copias do objeto
1, n, copias do objeto 2, e assim sucessivamente, até que o objeto k possui
n, copias. Quando permutamos elementos iguais n&o alteramos a lista e pelo
principio multiplicativo temos n.! - n,! - n,!l - ... - n! permutagées envolvendo



apenas elementos iguais. Assim, para retirarmos as repeticées, a quantidade
de permutagdes com repeticoes sera:
’Dnl,nZ,‘..,nkZ n!

n

lendonte . nl
n!-n!-nl- . n]
lembrando que n=n, + n,+ -+ n,.

Exemplo 13: Quantos anagramas podemos formar permutando as letras da
palavra ARARA?

p#3= 5! =5-4-31=5-4=20=10 anagramas.
3r-2t 321 2 2

Para refletir

1. De quantas maneiras podemos formar uma fila com 6 pessoas?

2. Quais sdo os anagramas que podemos formar com o nome RAUL?

3. Quantos anagramas podemos formar com as letras da palavra MATEMATICA?

4. De quantos modos possiveis seis pessoas podem ocupar uma fila do cinema que
possui exatamente seis lugares, sabendo que dois deles desejam sentar juntos?

4. Combinag¢odes

Definigao: Chamamos de combinagéo simples a cada um dos conjuntos forma-
dos a partir da escolha de p elementos de um conjunto com n elementos distintos.

Exemplo 14: Dos 5 professores de matematica de uma escola serdo esco-
Ihidos 2 para participar de uma palestra. Sejam p,, p,, p,, p, € p, 0s cinco
professores da escola, podemos formar as seguintes comissoes:

Note que se os professores escolhidos forem p, e p2, essa escolha € a mes-
ma de p, e p,, dessa forma, temos as seguintes possibilidades

p,ep,~p,ep,~p,ep,~p,ep;—p,ep,~p,ep,~p,ep;~pP,ep,~P,ep,~p,ep;

Proposicao 4. Para determinar a quantidade de combinagdes simples que
temos a partir da escolha de p elementos de um total de n possibilidades po-
demos calcular o nimero de arranjos simples com p elementos dentre n ele-
mentos dados e dividir pela quantidade de permutagdes dos p elementos es-
colhidos, dado que os arranjos de p elementos permutados correspondem a
uma Unica combinag&o. Dessa forma, o nimero de combinagdes simples que
podemos formar escolhendo p elementos de um conjunto com n elementos,
e representamos por Cn,p’ é

Matematica Discreta
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n!
Cn,p =An,p=(n—-p)= n!
P p! (n-p)-p!

Exemplo 15: Dos 5 professores de Matematica de uma escola serdo escolhi-
dos 2 para participar de uma palestra. Quantas comissdes com dois destes
professores podemos formar?

Existem 5 professores e devemos escolher 2:
C,,=__ 5 = 5 =543=20=10.
(G-2)y-2! 320 3121 2

Outra notag&o que também é muito utilizada para as combinagées simples e
as relaciona ao Tridngulo de Pascal € a seguinte: C,p = (:) O triangulo de
Pascal consiste em escrever a lista desses nimeros associados a combina-
¢des em formato de tridngulo, como abaixo:

ou seja, a n-ésima linha é composta pelos valores das combinacdes de p ele-
mentos de um conjunto de n elementos, com p variando de 0 a n. Calculando
os valores das combinagées do Tridngulo de Pascal obtemos os coeficientes
do conhecido Bindbmio de Newton
n n n n
(X+y)n — (O)X".y°+(1)x”'1.y1+---+ (n— 1)X1.y"_1 + (n)xo_yn,

com n €N, que séo:

1

11

1 21

1 3 31
1 46 41
1 51010 5 1
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Exemplo 16: Desejamos calcular o termo independente de x no desenvolvi-
mento do bindmio

(X3 — X-2)1O
No desenvolvimento do binbmio o termo independente de x tera expoente
. n -
zero, temos que o termo de ordem n + 1 & da forma: Ty, = (p ) x"P-yP,

No bindmio apresentado temos:

Tpen = (1) 3102 - (—x72pP

p
10

Tp+1 = ( » ) (=1)P - x3073P - x72P
10

Ths1 = ( p ) (—1)P - x3073p2p

10
Tper = ( ) —1)F = xS,
p+1 p (-1)

Note que o expoente de x sera igual a zero quando: 30 -5p=0= p=6

Desta forma o termo independente de x é:

= () oo

10! 10! 10-9-8-7-6!

- - =210
(10—6)!6! 4!-6! 4-3-2-1-6!

1. De quantos maneiras distintas podemos dividir 10 pessoas em dois gru-
pos de 57

2. De quantos modos possiveis 8 pessoas podem se organizar em grupos de 27

3. Quantos jogos serao realizados em um campeonato com 5 times partici-
pantes, sabendo que dois times jogam uma Unica partida entre si e que
cada time enfrenta todos outros?

4. O ENEM dividiu as disciplinas em 4 areas de conhecimentos: Linguagens
e Cadigos (com Redagao), Ciéncias da Natureza, Ciéncias Humanas e
Mateméatica. Sabendo que as provas serdo realizadas em dois dias, de
quantas formas podera ser feita a escolha das provas, sabendo que devem
ser aplicadas duas provas por dia?

5. Sarah possui 5 tipos diferentes de frutas, quantos tipos de sucos ela podera
fazer utilizando 2 ou mais frutas?

6. Desenvolva o bindmio(x — y)°.
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Apresentamos duas ferramentas importantes para a solugéo de problemas de
contagem: o principio aditivo e o principio multiplicativo.
Dados dois conjuntos A e B, que n&o possui elementos em comum, o principio
aditivo garante que: n(A U B) = n(A) + n(B), quando AN B = @.
Estendemos o principio aditivo para um numero finito de conjuntos. Para n
conjuntos A, A,, ..., A  tais que A, nAj: @ para todo / #).

n(A,UA,U...UA )=nA)+nA)+...+n@A).
Dados dois conjuntos A e B, o principio multiplicativo nos garante que:

n(A x B) = n(A) - n(B)

Estendendo para um ndmero finito de conjuntos, temos:

nA, x A, x ...xA)=n(A) nA,)...-nA).
Definimos o fatorial de um nimero como sendo:

n=n-n-1)-h—-2)-...-3-2-1.
Definimos os arranjo simples como cada uma das lista ordenadas, sem re-
peticdo, formadas a partir da escolha de p elementos de um conjunto com
n elementos distintos. Concluimos que ndmero de arranjos simples que po-
demos formar escolhendo p elementos de um conjunto com n elementos, e
representamos por A . é:
A = nl.

np
(h—p)

Dados n objetos distintos, chamamos de permutacdo simples e representa-
mos por P qualquer agrupamento ordenado desses n objetos. A permutagéo
simples é um caso particular do Arranjo simples, quando utilizamos todos os
n elementos distintos. Concluimos que o nimero de possibilidades de permu-
tacdes simples sera:

P=n-(n-1):-(n-2)-..-3-2-1=n.
Definimos permutagdes de conjuntos com elementos iguais € denominamos
por permutagcdo com repeticdo. Concluimos que a quantidade de permuta-
¢oes com repeticdes sera:

P nln2,...nk = n!

n

n'-nt-nt-..-nl
Chamamos de combinacao simples a cada um dos conjuntos formados a
partir da escolha de p elementos de um conjunto com n elementos distintos.



Constatamos que o niumero de combinagdes simples de um conjunto com n
elementos e p escolhas é:
Cn‘p = n!
(h=p).pH.p!
Utilizamos a notag&o ¢, , = ( ;’ ) e apresentamos o triangulo de Pascal, formado
por todas as possibilidades de combinacées de p=0,1, ..., n. Observamos que
os valores das combinacdes do Tridngulo de Pascal sdo os coeficientes do
Bindémio de Newton (x +y)* = (n)x".yo + (n )x"‘l.y1 + ot ( " )xl.y"‘1 +
n ] 1 n—1

(n )x".y"-, comn€N.

)

) (1)
hd

o) (1) (3)-()

OSSOSO 3

(
(
(
(
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Matemética Discreta

Objetivos

® Conhecer e aplicar o Principio de Indugéo Finita para nimeros naturais e
inteiros;

e Compreender o conceito de divisibilidade e suas principais propriedades;

® Reconhecer a divisdo com restos;

e |dentificar nimeros primos e compostos;

e Compreender os conceitos de fatoragdo, maximo divisor comum;

e Aplicar conhecimentos de m.d.c. para resolver Equagdes Diofantinas Lineares;

e Conhecer e aplicar as nogdes de congruéncias e suas principais propriedades.

Neste capitulo construiremos axiomaticamente o conjuntos dos nimeros na-
turais, o que pode ser feito também para o conjunto dos ndmeros inteiros,
como conjuntos bem ordenados que sdo. Para simplificar a exposicao, opta-
mos por abordar o conjunto nos nimeros naturais. Além da construgao, apre-
sentamos algumas propriedades e formas de representa¢des dos naturais.

1. Principio de Indu¢ao Finita

Neste capitulo pretendemos apresentar uma fundamentacao teérica do con-
junto dos numeros naturais, bem como suas operagdes basicas de adigao
e multiplicac&o.

N={0, 1, 2, 3, 4, ..} comas operagdes de adicio a + b e multiplicacdo a - b.

Apresentamos algumas propriedades basicas dos nimeros naturais, ou seja,
nossa abordagem partira de uma lista de axiomas.

(i) Aadicao e a multiplicagao sdo bem definidas, isto é, paratodo a, b, ¢, d €N,
a=bec=d=a+c=b+dea-c=b-d

(i) Aadigao e a multiplicagéo sédo comutativas, ou seja, para quaisquer a, b € N,
at+b=b+aea-b=b-a.

(ii) A adicdo e a multiplicacio séo associativas, para todo a, b, cN,
atb+o=(@+b)+tcea(b-c)=(@'b)-c

(iv) A adicdo e a multiplicagdo possuem elementos neutros, ou seja, para

todoaeN
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a+t0=aea-1=a
(V) A multiplicag&o possui a propriedade distributiva em relagéo a adigéo,
quaisquer que sejam a, b, ¢ € N, temos que
ab+c)=a-b+a-c
Além dos nimeros naturais, outros conjuntos numéricos também satisfazem
0s axiomas acima, como 0s humeros reais n&o negativos. Para melhor ca-

racterizar o conjunto dos nimeros naturais precisamos introduzir o Axioma de
Inducao Matematica.

Axioma de indugao: Seja A um subconjunto dos nimeros naturais que pos-
sui as propriedades

1. 0eA;
2.VaeA=>a+1€eA
Entdo, A contém todos os nimeros naturais, ou seja, A = N.

Uma importante propriedade dos nimeros naturais é o principio da boa ordenagao.

Principio da boa ordenacao: todo subconjunto A # @ do conjunto dos nime-
ros naturais possui um menor elemento, isto €, existe a € A com a seguinte
propriedade: a < n, paratodo n € A.

O conjunto dos nimeros inteiros é formado pelos nimeros positivos, negati-
VOS € 0 zero, com as operagdes de adicéo e multiplicagao:

Z={.,-3,-2,-1,0,1,2 3, ..}
Para facilitar os estudos, abordaremos na maioria das vezes o conjunto dos

ndmeros naturais, podendo os conceitos aqui estudados serem estendidos ao
conjunto dos ndmeros inteiros.

Apresentaremos a seguir o Principio de Indug&o Finita que serd uma ferra-
menta muito importante na demonstra¢éo de teoremas, igualdades, desigual-
dades e problemas de divisibilidade.

Adotaremos a seguinte notacdo.se AcNea€eNentdoa+A={a+x; x €A}

Teorema 1 (Principio de Indugao Finita) — Seja a € N e p(n) uma proprie-
dade de n, a qual pode ser pensada como uma afirmag¢ao que envolve um
ndmero n dado. Suponha que

(i) p(a) é verdadeira e



(i) se p(n) é verdadeira= p(n + 1) &€ verdadeira, V n2 a.

Entéo, p(n) é verdadeira para todo n = a.

Demonstragao:

Esta demonstracao sera feita usando o axioma de inducdo. Considere os subcon-
juntos de N definidos por A = {n €N; p(n) é verdadeira}e B={n€N;a+ meA}.
De (i)temosquea=a+0€A=>0€B

SemeB,enttoa+ meAepor(ii)a+ m+1eA, donde conclui-se que m +
1 € B. Pelo Axioma de inducéo, B = N.

Corolario 1 — N&o existe nenhum n € N tal que 0 < n < 1, ou seja, a afirmacéo
p(n):sen>0=n=1, éverdadeira paratodon = 1.

Demonstragao:

p(1) € verdadeira, pois 1 = 1.

Considerando p(n) verdadeira para algum n € N, mostraremos que p(n+1)
tembém é verdadeira.
Temosquep(n+1)n+1>0=n+1=1éverdadeparaneN,poisn+1=>1é
equivalente an = 0, o que ja sabemos ser verdadeiro. Pelo Principio de Indugéo
Finita, a propriedade é verdadeira para todo n € N.

Observe que neste caso ndo foi necessario utilizar a hipétese de indugao, p(n)
€ verdade, para verificar o passo indutivo, p(n + 1) é verdade.

Exemplo 1: Utilizando o Principio de Inducao Finita, podemos provar que o
conjunto das partes de um conjunto A possui exatamente 2" elementos, onde
n = n(A) é o nimero de elementos de A.

Consideremos inicialmente que n = 0, ou seja, o conjunto A é vazio, tem cardi-
nalidade zero e possui apenas um subconjunto que é ele mesmo, desta forma
temos que a afirmagéao é valida para n = 0.
20=1.

Tomemos como hipoétese de indugéo que o conjunto A, contendo n elemen-
tos, possui 2" subconjuntos.

Verificando o que acontece quando acrescentamos um elemento ao conjunto
A, ou seja, consideramos o conjunto A' que possui n + 1 elementos. Os 2" sub-
conjuntos de A também sao subconjuntos de A' e quando acrescentamos a
cada subconjunto o novo elemento formamos outros 2" subconjuntos que sao
diferentes dos primeiros 2". Estes sao todos os subconjuntos de A', totalizando

2"+ 2n= 2 - 2"= 21 subconjuntos.

Portanto a afirmagéo é valida para todo n € N.

Matematica Discreta -
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Exemplo 2: Utilizando o Principio de Indugao Finita, provaremos a férmula da

soma dos n primeiros nimeros naturais n&o nulos.

Sn=1+2+_.+n,entdo S, = il

Verificando para n = 1, temos que

S;= @ = % =1, verdade.

Supondo que a formula seja verdadeira para n € N*, ou seja, a hipétese de
n(n+1)

P
Para analisar o que ocorre para n + 1, adicionamos este nimero em ambos
0s lados da equacgéo:

St (n+1) =" 4 (4 1)
_ n(n+1)+2:(n+1)
gy, =t
(n+1)(n+2
Sn+1 = 2( )

inducdo é que S, =

Speq = w =, verdadeira paran + 1.

Portanto, pelo Principio de Inducéo, a féormula é valida paratodon €N .

Exemplo 3: Na construgdo de quadrados conjugados com palitos, necessi-
tamos de quatro palitos para construir o primeiro quadrado, sete palitos para
construir dois quadrados, como mostra a figura, ou seja, acrescentamos trés
palitos para cada novo quadrado.

1 2 3

[L1]

Mostraremos que a férmula a =3 - n + 1 define o nimero de palitos utilizados na
construcdo de n quadrados.

Verificando a validade da férmula paran = 1.

a,=3-1+1>a, =4, férmulavalidaparan=1.

Supondo a férmula verdadeira paran € N, ou seja,a_ =3-n+ 1.
Para construir cada quadrado acrescentamos trés palitos, assim,
a,,=3-n+1+3

a,,=3(Mn+1+1

Donde se conclui que a férmula é vélida para todo n € N.
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Para refletir

1. Considere S = 17+ 2%+ --- + n’. Prove por indugdo que a soma de n termos, n €N, é
dada pela formula:
S,= n-(n+1)-(2n+1)
6
2. Mostre por indugdoque 1+3+5+ -+ (2n—1) =n?
3. Uma sequéncia de nimeros reais a , n € N*, da qual conhecemos o primeiro ele-
mentoea =a,  +r, onde r é fixo, é chamada progressao aritmética.
a) Mostre quea, =a, +(n-1)-r;
b) Mostre que S =(a, +a ) -n,ondeS =a +a,+..+a.
2
4. Uma sequéncia de numeros reais a , n € N*, da qual conhecemos o primeiro ele-
mentoea =a_,-q,ondeq=0,q=1éfixo, € chamada progressdo geométrica.
a) Mostre que a = a,-q""%;
b) Mostre que que Sn=a,-(g"- 1), onde S =a,+a,+...+a .
qg-1
5. Encontre as formulas para as seguintes somas:
a)l+2+4+...+27

2. Divisibilidade

Sejam a e b naturais, com a # 0, dizemos que a divide b, e denotamos por a|b,
se existe um natural c tal que b = a - ¢. Podemos dizer que a € um divisor de b
ou que b € um multiplo de a. Caso a nao divida b escrevemos a t b.

De modo analogo, se a e b inteiros, com a # 0, escrevemos alb, se b=a-c,
para algum inteiro c.

Exemplo 4: 2|0; 1|3; 3+ 5; 4/4.

Exemplo 5: Demonstraremos que o nimero 5%°° — 3 nao é divisivel por 5.
Suponha, por contradicdo, que 5|5%° — 3. Entéo existe um nimero tal que
5%0-3=5:p=3=5%0-5-p=3=5 (5% -b)= 5|3, 0 que é absurdo!
Concluimos que nossa suposi¢ao inicial é falsa, entdo 5¢5%° — 3.

Propriedades da divisibilidade
Proposicao 1. Se a,b € N* e c € N, temos que:
a)al0,ljce ala;
Demonstragao:
al0, poisa-0=0
llc, poisl-c=c
ala,poisa-l=a
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b) Se a|b e b|c, entéo alc.
Demonstragao:

Se alb e b|c, entao existemr,s €N, taisque b=a-re c=b-s, substituin-
do b na segunda igualdade temos que

c=b-s=>c=(@-nN-s=>c=a-(r-s)=alc.

Proposigao 2: Sea,b,ceN,coma=0e a|(b + c), entdo alb © alc.
Demonstragao: Se a|(b + ¢), entdo existe reNtalqueb+c=a-r.
Supondo que alb, entdo existe seNtalque b=a-s.

Substituindo na primeira igualdade, temos que

b+c=a-r>a-st+tc=a-r=>c=a-r-a-s=c=a-(r—s).
Comobsb+c=a-s<a-r=>s<r=r—-s=0,ouseja,r—seN.
Concluindo que alc. De maneira totalmente analoga podemos provar
que se a|c entdo a|b.

Proposi¢cao 3: Sea, b,c,deN,coma=0ec=0, temos que, se albe c|d=

a-clb-d.

Demonstragéo: Se alb e c|d, entdo existemr,se Ntalqueb=a-red=c"s,
enttob-d=(@-nN-(c-s)=b-d=a-c-(r-s), portantoa-c|b-d.

Proposicao 4: Se a, b,ceN,comb=ce a =0, tais que a|(b - ¢), entdo
alb e alc.
Demonstragao: Se a|(b - ¢), entdo existe re Ntalque b-c=a-r.
Supondo que alb, entdo existe seNtalque b=a-s.
Substituindo na primeira igualdade temos que
b-c=ar>a-s-c=a-r=>c=a-s—a-r=c=a-(s—1/)
Como,b-c<b=a-r<a-s=>r<s=>s-r=0,0useja, s—reN.
Concluindo que a|c. De maneira totalmente analoga podemos provar
que se alc entdo alb.
Proposigao 5: Sejam a, b, c, m, n € N, com a # 0, tais que alb e a|c, entao
am-b+n-c.
Demonstragao: Se alb, entdo existe reNtalque b=a-r.
Sabemos que alb, entdo existe se Ntalque b=a-s.
Assim, param, n € N, temos que
m-b+n-c=m-(@-N+n-@-s)=a-(m-r+n-s)=>am-b+n-c.
Note que se considerarmos a condicao m - b = n - ¢ podemos ainda de-
monstrar que alm-b—n-c.
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Proposi¢cao 6: Sejama, beN*, sealb=a<b.
Demonstragao: Se a|b, entdo existe re N*talque b=a-r.
ComoreN*=rz1=>a<a-r=asbh.

Proposigao 7: Sejam a, b, n €N, com a > b > 0. Afirmamos que a - bja" - b".
Demonstragao: \erificamos a veracidade para n = 0.

Supondo, como hipétese de indugéo, que a proposicao seja valida para
n,ouseja, a-bla"-b".

Devemos verificar, como tese de inducdo, a validade da proposicao
paran+ 1.

atlt-p*t =a-a" —b-b", reescrevendo temos
atl-ptl=ag-a-b-a"+b-a"-b-b'=(@a-b)ya"+(@-b")-b.
Comoa-bla-be, por hipétese de indugao, a—b|a"—b", pela Proposicao
5temosquea-b|(a-b)-a"+ (@ -b")-b.

Logo, o Principio de Indugéo implica que o enunciado € vélido para todo
neN.

Proposigao 8: Sejam a, b, n € N, com a + b # 0. Afirmamos que a + bja*> "*!
+ b2t

Demonstra¢ao: De maneira totalmente analoga a demonstracdo da
Proposicao 7, utilizando o Principio de Inducéo Finita.

Proposigao 9: Sejam a, b,n € N, com a = b > 0. Afirmamos que a + b|a*"— b?>".

Demonstragao: De maneira totalmente analoga a demonstragédo da
Proposi¢ao 7, utilizando o Principio de Inducéo Finita.

Exemplo 6: Utilizamos o Principio de Indug&o para mostrar. 8|3%” + 7, para
todo n € N. Considerandon=0

320+7=3+7=1+7=8, verdadeiro para n = 0, pois 8|8.

Hipétese de indugéo 8|3%" + 7.

Devemos verificar a validade para n + 1, ou seja, 8|320*D + 7.

320*D + 7= 32m2 4+ 7 = 32. 320 + 7 = 32. (320 +7) — 327+ 7 = 32- (327 +7) - 56
Pela Proposigcédo 5, como 8|56 e 8|3?" + 7, temos que 8|32 + 7.

Pelo Principio de Indugéo, verificamos a validade para todo n € N.
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Exemplo 7: Vamos determinar para quais valores de a€ N, temos a + 1|a’+ 2.
Observe que, qualquer nimero natural satisfaza + 1ja-1)-(@+ 1)=& - 1.
Logo, pela Proposigéo 5, temos que:

se a satisfaz a propriedade desejada, entdo a+1|(@’+ 2) — (a°— 1), e assim,
a+1|3.

Os divisores positivos de 3 sdo apenas 1 e 3, logo as Unicas possibilidades
sdo a =0 ou a = 2. Observe que estes dois valores realmente satisfazem
ao enunciado.

Para refletir

1.Sejama,c e N*e b € N. Mostrequea - c|b-c < a|b.
2. Utilize o método de inducgdo finita para mostrar que, para todo n € N, temos que
9|10"-1.

3. Mostre porinducdo que, paraa>b>0en €N, n =2, temos que
(a"=b")=a"t+a™2-b+-+a-b"?+bh"?
“a-b

4. Determine os valores de a € N que satisfazem a + 2| a® — 4.

5. Mostre que a® — a é divisivel por 5, para todo a € N. (Use inducdo)

3. Divisao com resto

Euclides, por volta de 300 a.C., enuncia que é sempre possivel efetuar a di-
visdo entre dois nimeros naturais, com divisor diferente de zero, e que se o
numero nao divide exatamente, obtemos um resto. Mais precisamente, temos
0 seguinte enunciado.

Teorema 2. Sejam a, b € N*. Entao existem, e s&o Unicos, g, r € N tais que
b=a-g+r,comr<a.

Demonstragao: SejaR={b—a-qeN*, geN}. Comob=b—-a-0€eN* temos
que b € R, logo, R nao é vazio.

Pelo Principio da Boa Ordem, R possui um menor elemento r= b —a - q.
Desejamos provar que r < a.

Suponha, por contradi¢éo, que r > a. Entdo, existiaceN*talquer=a+c=
atc=b—-a-g=>c=b-a-(g+1)eR. Poroutrolado, c < ro que contradiz o
fato de que r é o menor elemento de R. Sendo assim, r<a.

Desta forma garantimos a existéncia de nimeros ge rtalque b=a-qg+r,com
r < a. Temos duas possibilidades: r = a e alb, ou r < a. O que encerra a parte
da existéncia do enunciado do teorema. Para verificar a unicidade, conside-
remos r, e r, elementos distintos de R, com r,< r,< a, entéo existem q,, g, € N,
tais que
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rr=b-a-qer=b-a-q,
r,-r,=b-a-qg,-b+a-q,

=a-(g,—q,). entdor,—r,za=r,2r,+az2a, oque é absurdo, pois r,< a.

Logo, r,=r,. O que mostra a unicidade dos restos. Diante disto, € imediato
verificar a unicidade dos quocientes.

Vale ressaltar que todo nimero n € N sera da forma 2 - n quando for par e
2 -n+ 1 quando for impar.

De modo geral, paratodo n € Ne m = 2, podemos escrever, de maneira unica,
n=m-k+r,comk,reNer<m.

Em particular, todo nimero pode ser escrito em fungdo de um mdltiplo de um
outro nimero dado mais um resto. Podemos escrever, por exemplo: todo ni-
mero pode ser escrito em uma das formas

4:-n4-n+1,4-n+20ud-n+3.

Exemplo 8: Podemos determinar o quociente e o resto da divisdo de 35 por 6.
35=6:-5+5=>g=5er=5.

Coroléario 2: Sejam a, be Ncom 1 < a <b, existe n € N tal que
n-asb<(+l)-a
Demonstragao: Pelo Teorema de Euclides, Teorema 2 acima, sabemos que
existem, e sdo Unicos, n, r € N, com 0 <r < a tais que
b=a-n+r
Desta forma,

n-asb=n-a+r<n-ata=(n+1-a

Exemplo 9: Consideremos a = 5 e b = 18, podemos escrever
5:-3<18<5-4

Exemplo 10: Sejab=7-qg + 5, com g < b. Desejamos encontrar o resto da
divisdode 10-b + 1 por7.
10:-b=70-g+50
10-b+1=70-g+50+1
=70-q+7-7+2
=7-(10-g+7)+2
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Logo, o resto da divisdode 10-b+1por7 ér= 2.

Proposigao 10: Sejam a, b, c € N, com a € N*. Sejam r e s os restos das divi-
sbes de b e ¢ por a, respectivamente. Entao, o resto da divisdo de b-cpora é
igual ao resto da divisdo de r - s por a.

Demonstragao:

Temosqueb=a-g+rec=a-t+s,onde qge tsdo os respectivos quocientes. Entao
b-c=(@-g+n@-t+s)=a-Q+r-s

onde Q=a-g-t+qg-s+r-t Logo, a demonstracdo segue pela unicidade

do Teorema 2.

Exemplo 11. O produto de dois nimeros naturais consecutivos é sempre di-
visivel por 2.

Considere n € N, n+1 é o seu consecutivo e a = n - (n + 1). Desejamos mostrar
que 2|n - (n + 1). Podemos escrever todos os nimeros naturais na forma 2 - n
e2-n+1 istoé orestodadivisdiodenpor2é0ou 1l

Quando r = 0, o resto da divisdo de a por 2 € o mesmo resto da divisdo de
0-( +1)=0por 2, ou seja, 2|a. A igualdade dos restos é consequéncia da
Proposigcao 10.

Quando r = 1, o resto da divisédo de a por 2 é igual ao resto da divisdo de
1-(1+1)=1-2=2por 2, ouseja, 2|a. Concluimos que, em qualquer dos
casos, 2|a paratodo n € N.

Para refletir

1. Para a =55 e b = 6, determine o quociente e o resto da divisao, satisfazendo o Teo-
rema de divisdes de Euclides.

2. Mostre que, paraa € N e n € N*, a é par, se e somente se, a" é par.

3. (ENC-2001) Seja n um numero natural; prove que a divisdo de n? por 6 nunca deixa
resto 2.

4. (ENC-2002) O resto da divisdo do inteiro n por 20 é 8. Qual é o resto da divisdo de
n por5?

4. NUmeros Primos

Definigao: Um nimero natural a > 1 € chamado de nimero primo se possuli
somente dois divisores naturais. Se a > 1 n&o € primo, dizemos que ele é um
namero composto.
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Exemplo 12: Mostraremos que 2 é o Unico nimero primo que pode ser escrito
daforma a®+ 1.

Temos que 2 € um ndmero primo, visto que s6 € divisivel por 1 e por 2.
Podemos escrever o nimero 2 = 13+ 1.

Consideremos a > 1, temos, pela Proposi¢cao 8, que os nimeros da forma po-
dem ser divididos por a + 1. Se &° + 1 fosse um nimero primo entéo teriamos que

a+tl=1louatl=a’+1=a=0oua=1 masa>1 logoa®+ 1nao é primo.

Para refletir

1. Considerando que p é primoep, p+2 e p + 4 sdo nimeros primos, mostre que p = 3.
2. Mostre que todon €N, com n > 11 é a soma de dois nUmeros compostos.
3. Verifique se o nimero 22°- 58 é primo ou composto.

5. Equag¢des Diofantinas Lineares

Sejam a, b € Z* e c € Z. Chamamos de Equacéao Diofantina Linear a equagao
do tipo

a-x+tb-y=c.
Os pares (X, ¥), com x, y € Z, que satisfazem a equacéo sdo chamados de

solugdes da equagéo, ou seja, as solugdes séo os pontos de coordenadas
inteiras na reta que representa a equacgao.

Dos problemas de divisibilidade surgem conceitos importantes como o Maximo
Divisor Comum (m.d.c.) e o Minimo Mdltiplo Comum (m.m.c). Neste caso,
estamos interessados na definicdo do m.d.c. que nos ajudara a encontrar as
solugdes das Equagdes Diofantinas Lineares.

Definicao: O Maximo Divisor Comum (m.d.c.) entre os nimeros a, b € Z* é um
ndmero d € Z tal que
) dlaedb;
i) dé o maior com a propriedade (i), o que implica que d é divisivel
por todos os divisores comuns de a e b.
Denotamos pord = (a, b)om.d.c.entreae b.

Proposigao 11: Seja d = (a, b) o m.d.c. de a e b. Ent&do os nimeros inteiros
a e b sao primos entre si, ou seja, (f, Q) =1
d d dd
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Demosntragao: O fato de que as fragdes acima sdo nimeros inteiros € uma
consequéncia imediata de que d divide a e b. Suponha, por contradicdo, que
C = (FG,Z—) € maior que 1. Temos ainda que C|% implica que ¢ - dla. De
modo analogo, ¢ - d|b. Portanto, ¢ - d € um divisor comum de a e b que é
estritamente maior que d, pois ¢ > 1. O que contradiz a escolha de d como o
m.d.c. entre os nimeros a e b. Donde concluimos que ¢ = 1, e a demonstra-

cao esta completa.

Enunciamos o Teorema de Bachet-Bézout, este resultado é uma consequéncia
do Algoritmo de Euclides que sera discutido nesta secéo. Este resultado sera uti-
lizado para garantir a existéncia de solu¢des de Equagdes Diofantinas Lineares.

Teorema 3: Seja d = (a, b) o m.d.c. de a e b, entdo existem x_, y € Z tais que
d=a-x+b-y.

Em seguida, aplicaremos o Teorema 3 na resolugcao de equagodes diofanti-
nas lineares.

Proposigao 12: Sejam a, b, c € Z, com a 0 e b # 0. A equagéo diofantina
linear a - x + b - y = ¢ possui solugdo se, e somente se, d = (a, b)|c. Se (x,, V,)
€ uma solugao da equagao, entao o conjunto dos pares que sao solugcdes da
equacao sao do tipo

b a
2 v —t-%)comtez
(X1+t V1t d)

Demonstragao: Vamos mostrar que se a equagéao diofantina possui solugao
entéo d = (a, b)|c. Considere (x,, y,) uma solugéo inteira da equagéo diofantina
linear e seja d = (a, b)o m.d.c. de a e b. Desta forma:

a-x +b-y=c
Comod|aed|bexistemk,, k, € Ztaisquea=d- -k, eb=d"k,.
Substituindo na equacéo, temos:
d-k-x +d-k,-y,=c
d-(k;-x, +k,-y)=c=>dc

Devemos mostrar também que se dc, entdo existe solugdo. O Teorema de
Bézout afirma que existem x , y_ € Z tais que

d=a-x +b-y,
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Se d|c entao existe k € Z tal que ¢ = k - d. Multiplicando a equagao acima por
k, obtemos

k-d=a-k-x +b-k-y,
a-(k-x)+b-(k-y)=c

Donde conclui-se que a equacéo diofantina tem solucéo.

Estamos interessados ainda em mostrar que, quando existem, as solugdes
sao infinitas e podemos apresentar uma forma para o conjunto soluco.

Consideremos (x, y) uma solugdo, possivelmente diferente de (x,, v, ).
Podemos escrever que

a-x+b-y=cea-x +b-y=c
a-x+b-y=a-x +b-y,
a-x=x)=b-(y,=y

Dividindo por d, temos

a b
E'(X—XO = E'()ﬁ_)’)-

Pela Proposicéo 11, sabemos que ( = ) b_) =1, logo estas fragdes sao primas
entre si e podemos concluir a-d

a
E“|(y1—y) = existe ttal que y,— y = = t e

b , b
FI(X— x,) = existe stal que x— x, = —-s.

Pela relagbes que temos é imediato verificar que s = t é igual ao quociente das
divisdes de (y,~ y) por -, ou de (x— x,) por 2.
d d

Podemos verificar facilmente que x = x + t - z— ey=y,—t Fa sao solugdes
da equacao diofantina lineara-x + b+ y = ¢, para todo t € Z. O que encerra
a demonstracéo.

Exemplo 13: VVerifiquemos se as Equagdes Diofantinas Lineares possuem so-
lucdes inteiras:
a)2-x+18-y=234
mdc (2,18)=2 e 2|234, logo a equag&o possui solugdes inteiras.
b)5-x+3-y=50
mdc (5,3)=1 e 1|50, logo a equagao possui solugdes inteiras.
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c)5-x+15-y=23
mdc (5, 15) = 5 e 5423, logo a equagao n&o possui solugdes inteiras.

Exemplo 14. Podemos determinar todas as solugdes inteiras da equacao
3-x+5-y=50 e apresentar solugdes em que x, y € N.

Sabemos que a equacao possui solugdes inteiras pois, mdc (3, 5) = 1 e 1|50.

Podemos determinar faciimente, por tentativa, uma solugéo. O par (0, 10) é
solugéo da equagéo.

Utilizando a Proposicao 12, temos que
X; = 0+%-t =5t e y; = 10—%-t = 10— 3t,comt € Z, sdo as solugdes
inteiras da equacéo.

Podemos identificar que para t=0, 1, 2, 3 as solugdes sdo pares de nimeros
naturais, que séo (0, 10), (5, 7), (10, 4) e (15, 1). Portanto, existem quatro pares
de inteiros positivos que resolvem a equacgéo diofantina acima apresentada.

Lema 1. (Lemade Euclides)Sea,b,neN,coma<n-a<b.Entdo (@, b—n-a)=(a, b).
Demonstragao: Sejad=(a, b—n-a). Entdo dlae d|b— n-a. Pela Proposi¢éo 5,
db-n-a)+n-a=b.

Logo, d é divisor comum de a e b, o que implica que di(a, b).

Seja d,=(a,b). Temos que d,|a e d,|b, e, pela Proposicdo 5, concluimos que
d,|b—n-a.lLogo, d, édivisor comumde ae b—n-a, o que implica que d,|d.
Portanto, dl|d, e d,|d implicam que d, = d, ou seja, (a, b—n-a) = (a, b).

Algoritmo de Euclides

Sejam a, b € N, supondo a < b, sem perda de generalidade. Sabemos que nos
casosa=1,a=bealb temos (a, b) = a. Se atb, temos que

b=a-qg, +r ,comr <a.
Ser,|a, peloLema 1,
rr=@r)=(@b-a-q)=(a b)
Se r,ta, entéo
a=r-q,¥r,comr,<fr,.
Ser,)r,, pelo Lema 1

rn=.r)=r.a-r-q)=(0,a=(a b)
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Poderemos repetir este procedimento uma quantidade finita de vezes, pois
pelo Principio da boa ordem a sequéncia a > r,> r,... possui um menor ele-
mento, o que implica que para algum n € N, r |r . Quando isto acontecer,
teremos que r = (a, b).

Exemplo 15: Determinamos o m.d.c. dos nameros 270 e 345, utilizando o
Algoritmo de Euclides.
q,=1 q,=3 q,=1 q,=1 g, =2
345 270 75 45 30 15 «— mdc

O algoritmo de Euclides também pode ser utilizado para expressar o m.d.c.
como combinacgéo linear dos nimeros dados, como enunciado no Toerema
3. De fato, a demonstragdo deste resultado é uma aplicagéo do algoritmo de
Euclides. \Vejamos um exemplo.

Exemplo 16: Escrevemos, utilizando o Algoritmo de Euclides, o nUmero como
combinacéo linear dos nimeros 345 e 270.

Utilizamos os resultados do Algoritmo de tras para frente, temos:

15=45-1-30
15=45-1(75-1-45)
15=-1-75+2-45

15=-1-75+2-(270-3-75)
15=2.270-7-75

15=2-270 -7 -(345-1-270)
15 =-7-345+9-270

Em particular, a utilizagéo do Algoritmo de Euclides possibilita a determinacé&o
de uma solucéao inteira para as equagdes diofantinas lineares.

Para refletir

1. Resolva as equagdes:
a) 5-x+7-y=100
b) 7-x+11-y=116
2. Calcule o m.d.c. dos niumeros:
a) 246 e 384
b) 234 e 542
c) 648 e 1218
3. De quantas maneiras podemos comprar selos de RS 10,00 e RS 14,00 se desejamos
gastar exatamente RS 100,007
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6. Fatoracao

Nesta se¢éo apresentaremos o Teorema Fundamental da Aritmética. Segundo
o qual, todo nimero admite fatorag&o Unica como produto de primos. A fim de
apresentar este resultado usaremos o seguinte lema.

Lema 2: Sejam p, m e n nUmeros inteiros. Se p € primo e p|m - n, entéo p|m
ou p|n.

Demonstragao: Suponha que ptm. Como p é primo, temos que (p, m) = 1.

Pelo Teorema 3, sabemos que existem inteiros x , y_ € Z tais que
l=p:x+m-y.

Multiplicando ambos os lados desta equagdo porn, temosn=p-n-x+m-n-y

E pela Proposigcao 5, concluimos que p|n. Isto encerra a demonstracgéo.

Com isto, podemos demonstrar o Teorema Fundamental da Aritmética.

Teorema 4. ( Teorema Fundamental da Aritmética) Todo nimero n € N, com
n > 1, pode ser representado de maneira Unica, a menos da ordem, como
um produto de fatores primos.

Demonstragao: Considerando n um nimero primo, ndo precisamos demons-
trar nada.

Consideremos agora 0 caso em que n ndo seja primo, garantimos que existe
um namero primo p, > 1 que € o menor divisor de n. Se o menor divisor de n,
que existe pelo Principio da boa ordenagao, nao fosse primo existiria um nd-
mero p, com 1 < p < p, tal que p|p,. Neste caso, teriamos p|p, e p,|n, logo, p|n
contradizendo o fato de que p, € o menor divisor de n. Desta forma, podemos
escrever que
n=p,-n,.
Se n, for primo p sera um produto de fatores primos, concluindo a demonstra-
¢&o. Se n, n&o for primo, de maneira analoga ao raciocinio acima, garantimos
que existe um numero primo p, > 1 que & o menor divisor de n,. Desta forma
escrevemos que
n=p -p,-n,

Podemos repetir este processo uma quantidade finita de vezes, considerando
que n,>n,>n,>--->n_ Como esta sequencia € estritamente decrescente, o pro-
cesso deve acabar depois de uma quantidade finita de iteragdes. Observe que
0s primos p,, p,.... p, N&o sao necessariamente distintos, podemos escrever que

n= plal .pzaz .p3a3. .prar.



Necessitamos demonstrar ainda, que este produto € Unico, a menos da or-
dem. Usaremos o principio de indugao.

Como n €N, com n > 1, verificamos a veracidade para n = 2.

Consideremos, como hipétese de inducédo, que a afirmacao é verdadeira para
todo os nimeros menores que n. Devemos mostrar a veracidade para n.

Se n for primo, a afirmacao € verdadeira pois n s6 tem a fatoragdo 6bvia.
Considerando que n seja composto e possua duas fatoragdes distintas, pode-
MOoS escrever que

n=p-p, ...'p=q,°q," ... q..
Comop,|g,-q,- ... - g pelo Lema 2, ele divide algum dos fatores. Sem perda

de generalidade, podemos supor que p.|q,, mas p, € g, s&o primos, logo p, =q.

n
— =p,;.."P,=q,.."q
P1

n

Como 1< — < n, por hipétese de indugéo possui uma Unica fatoragcéo, o que
p1

significa que r=s e, a menos de uma reordenacéo, p,=q,. p,=q,. ....p,=q,.

Exemplo 17: Se 2 aparece na fatoragdo de um nimero n, podemos concluir
que n é da forma 2 - k, 0 que garante que n é par. Demonstraremos que se n é
par, entdo o nimero 2 aparece na fatoragao de n.

De fato, se n é par, entdo também podemos escrever que n = 2 - k, para algum
ndmero natural k. Consideremos as fatoragdes

n= plal .pzaz .p3a3 .prar e k: qlbl .qzbz .q3b3 L .qsbs_
Desta forma,
p]_al .pzaz .p3a3 . .prar = 2 . qlbl . q2b2 . q3b3 - .qsbs.
O ndmero 2 aparece na fatoragao, pois como a fatoragéo € Unica, algum dos
ndmeros p, € igual a 2.

Para refletir

1. Verifique se o nimero 2°- 5 é um multiplo de 10.

2. Sabendo que o numero 3 - x é divisivel por 5, podemos afirmar que x é divisivel por 5?
3. Encontre dois niUmeros naturais x e y, de tal forma que x>—y? = 17.

4. (ENC-2002) Qual é o menor valor do numero natural n que torna n! divisivel por 1000?

Matematica Discreta
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7. Congruéncias

Finalizamos o capitulo com a aritmética dos restos, introduzida por Gauss.

Defini¢ao: Sejam a, b, m € N, com m = 0. Dizemos que a e b sdo congruentes
moédulo m se os restos de suas divisbes por m sdo iguais. Escrevemos

a=bmodm

Exemplo 18: Os nimeros 43 e 28 s&do congruentes médulo 5.

Observamos que na diviséo euclidiana de 43 por 5 e de 28 por 5 encontramos
o0 mesmo resto igual a 3, portanto

43 =28 mod 5

Proposigao 13: Sejam a, b, c, m € N, com m > 1, temos que
(Da=amod m
(ila=bmod m, entdo b=amod m
(iila=bmod me b=cmod m, entdo a =cmod m
Demonstragao: Decorre diretamente da definicao.

Com a propriedade a seguir torna-se desnecessaria a divisdo dos nimeros
para a comparag¢&o dos restos.

Proposigao 14: Sejama, b, meN,comm #0 e a=b, entdo a = b mod m se,
e somente se, m|a — b.

Demonstragdo: Considerea=m-qg+reb=m-q+r,comr,r <m.
Temos que

a-b=m-(@-q)+({-r)
com—m < r-r, < m. E imediato verificar que mla - b se, e somente se, m|r—r,.
Como r—r, € um inteiro maior que — m e menor que m, vemos que m|r—r, se,
esése, r=r,.

Donde concluimos que m|a — b se, e somente se, r=r,, ou seja, a =bmod m.

Exemplo 19: Utilizando a Proposi¢éo 14, mostramos que 43 =29 mod 7.
43-29=14e7|14,l0go 43 =29 mod 7.



Todo nimero natural, quando dividido por m, é congruente a um dos nimeros
0,1, 2 ....,m- 1 As operagdes de adicdo e multiplicagdo nas congruéncias
s&o equivalentes as operagdes com inteiros.

Proposigcao 15:Se a, b,c,d meNe m > 1, temos que:
(Da=bmodmec=dmodm,entdoa+c=b+dmodm
(iNDa=bmodmec=dmodm, entdoa-c=b-dmodm

Demonstragao: Podemos supor, sem perda de generalidade, que a=b e
c=d, logo

mla—be m|c—detemos que
(iYml@—-b)+(c—-d=m|@+c)-(b+d)=>a+c=b+dmodm
(iDm|c-(@-b)+b-(c—d)=a-c—-b-d=>a-c=b-dmod m.

Exemplo 20: Desejamos encontrar o resto da divisdo de 1 + 2+ 22+---+ 20%
por 4.

Temos que

1=1mod4,2=2mod4,22=4=0mod4,22=8=0mod 4, ..,2°=8=0
mod 4

Note que a partir de 22 os demais termos sdo todos multiplos de 4 e deixam
resto 0 na divis&o por 4.

Assim, utilizando a Proposigao 15 (i), temos que
1+2+22+.+209=1+2+0+--+0mod 4 =3 mod 4
Concluimos que o resto da diviséo é 3.

1. (ENC 2000) Se x = 1 mod 5, entéo,

a)x=1mod5
b)x=2mod 5
c)x=4mod>5

d)x=1mod5oux=4mod>5
e)x=2mod5oux=4mod>5
2. Encontre o resto da diviséo de 11+2!+ --- +100! por 40.

Matemética Discreta o
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Neste capitulo apresentamos o conjunto dos nimeros naturais, bem como
suas operagoes basicas de adicao e multiplicagdo. N={0, 1, 2, 3,4, ...}, com
as operacoes de adicdo a + b e multiplicacéo a - b, bem como o principio da
boa ordenacéo.
Enunciamos e aplicamos o axima de indugcédo: seja A um subconjunto dos
ndmeros naturais que possui as propriedades

(H0eA;

(DvaeA=a+1€A
Entdo, A contém todos os nimeros naturais, ou seja, A= N.
Apresentamos o conjunto dos nimeros inteiros Z={...,—3,-2,-1,0,1,2, 3, ..}
Enunciamos e demonstramos o Principio de Inducdo Finita que é uma forte
ferramenta na demonstragéo de teoremas, igualdades, desigualdades e pro-
blemas de divisibilidade.
Teorema 1 (Principio de Indugéo Finita) — Seja a € N e p(n) uma propriedade
de n, a qual pode ser pensada como uma afirmag¢ao que envolve um nimero
n dado. Suponha que

() p(a) é verdadeira e

(i) se p(n) é verdadeira = p(n + 1) é verdadeira, V n = a
Teorema 2: Sejam a, b € N*. Entao existem, e s&o Unicos, g, r € N tais que
b=a-g+rcomr<a.
Definimos que um nimero natural a > 1 € chamado de namero primo se pos-
sui somente dois divisores naturais. Se a néo é primo, dizemos que ele é um
ndmero composto.
Sejam a, b € Z* e c € Z. Chamamos de Equacgéao Diofantina Linear a equagéo
do tipo

a'Xx+b-y=c.

Os pares (x, y), com x, y € Z, que satisfazem a equagdo sdo chamados de
solugcdes da equacgao, ou seja, as solugdes s&o os pontos de coordenadas
inteiras na reta que representa a equagéo.
Definimos o Méaximo Divisor Comum (m.d.c.) entre os nimeros a, b € Z* € um
ndmero d € Z tal que

(i) daedb;
(i) d € o maior com a propriedade (i), o que implica que d é divisivel por
todos os divisores comuns de ae b
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Teorema 3: Seja d = (a, b)om.d.c. de a e b, entdo existem x_, y_ € Z tais que
d=a-x +b-y,.

Ressaltamos um resultado importante dado na proposicao 12. Sejam a, b, c€ Z,
coma=#0eb=0.Aequacdo diofantina linear a- x + b+ y = ¢ possui solugao se, e
somente se, d = (a, b)|c. Se (x,, y,) € uma solugdo da equagao, entdo o conjunto
dos pares que s&o solugdes da equagéo séo do tipo

b a
(x1+t-5,y1—t-5)comt € Z.

Teorema 4: (Teorema Fundamental da Aritmética) Todo nimero n € N, com
n > 1, pode ser representado de maneira Unica, a menos da ordem, como
um produto de fatores primos.

Definimos, considerndo a, b, m € N, com m #0, que a e b sdo congruentes
mdédulo m se os restos de suas divisdes por m séo iguais. Escrevemos

a=bmodm.
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Matemética Discreta 7

Objetivos

e Definir, apresentar propriedades e exemplos de grupos;

e Definir e apresentar exemplos de subgrupos, homomorfismos e isomorfismos;
e Definir, apresentar propriedades e exemplos de anéis;

e Definir, subanéis, ideais e anéis quocientes:;

e Definir, apresentar propriedades e exemplos de corpos.

No capitulo 4 definimos, através de axiomas, o conjunto dos nimeros naturais
suas propriedades e formas de representacdes, que podem ser estendidas
ao conjunto dos ndmeros inteiros. Observamos, ainda, divisbes que nao sao
exatas e sentimos a necessidade de formalizar a estrutura destes conjuntos.
Neste capitulo, apresentamos definicdes basicas e conceitos que possibilita-
rédo uma introdugéo ao estudo dessas estruturas algébricas.

1. Definicao e propriedades dos grupos

Definig¢ao: Seja G um conjunto, munido de uma operagéo (G, -). Neste ponto,
a operacgao pode ser pensada como um produto ou uma soma entre dois nu-
meros, por exemplo. Em geral, - € uma operacao abstrata definida para pares
de elementos de G. Dizemos que G é um grupo de satisfaz as propriedades:

() O conjunto é fechado, ou seja, paratodoa, be G
a-beG.
(i) A operagao é associativa, ou seja, paratodo a, b,ce G
a-(b-o)=(@-b)-c
(iiii ) Existe elemento neutro em relagdo a operacao, isto é, existe e € G,
tal que
are=e-a=a,paratodoaeG.
(iv) Para cada a € G, existe b € G, chamado de inverso em relacdo a
operacao, tal que
a-b=b-a=e

O grupo sera chamado de comutativo ou abeliano se, além das propriedades
ja citadas, possuir a propriedade a seguir.
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(v) A operagao é comutativa, isto é, para todo a, b € G temos que
a-b=b-a.
Exemplo 1. O conjunto dos nameros inteiros com a operagao de adicdo é

um grupo abeliano, isto &, (Z, +) é um grupo abeliano. O elemento neutro é
o nimero zero e para cada n € Z, o inverso de n neste grupo é dado por — n.

Exemplo 2: O conjunto dos nimeros inteiros com a operagao de multiplicagao
n&o é grupo pois n&o possui elemento inverso.

Exemplo 3: O conjunto dos inteiros impares com relagao a operacao da adi-
¢ao n&o é grupo, pois nao é fechado, ou seja, dados dois nimeros impares
2-m+le2-n+1,temosque

2-m+1+2-n+1=2-(m+n+1)queé par.

Exemplo 4. O conjunto dos nimeros inteiros congruentes médulo 6 com
a operagao de adicdo é um grupo. Uma maneira formal de descrever este
grupo é utilizando as relagées de equivaléncias introduzidas no inicio do
material. Definimos em Z a relag&o de equivaléncia que m é equivalente a n
se m =n mod 6. O conjunto que estamos tratando neste exemplo é o con-
junto das classes de equivaléncia dessa relac&o, o qual pode ser descrito
porZ,={0,1, 2, 3,4, 5}. Aqui, 2 representa a classe dos inteiros que deixam
resto 2 quando divididos por 6. A operacao de adicio usual dos inteiros in-
duz a seguinte operagéo em Z,.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 6=0mod 6
2 2 3 4 5 6=0mod6 7=1mod6
3 3 4 9 6=0mod6 7=1mod6 8=2mod6
4 4 b 6=0mod6 7=1mod6 8=2mod6 9=3mod6
5 5 6=0mod6 7=1mod6 8=2mod6 9=3mod6 10=4mod6

Essa operagéo é comutativa, associativa, 0 € o elemento neutro e todo ele-
mento possui um inverso, logo (Z,+) € um grupo abeliano.

Exemplo 5: O conjunto S, das simetrias espaciais de um tridngulo equilatero
€ um grupo.

Considere o triangulo equilatero A, A,, A,, com centro de gravidade na origem e
as retas r,, r,, r, passando pelas medianas do triangulo, como na figura abaixo.
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Podemos descrever as transformagdes espaciais que preservam o tridngulo:
e id R, R, (rotagcdes centradas no 0 e no sentido anti-horario); id € a iden-
tidade, e R ,, € R,,, s&0 as rotagbes de120° e 240°, respectivamente;

* R, R, R, (reflexdes relativas as retas r,, r,, r,, as quais podem ser vistas
como rotagOes espaciais de180° relativas aos respectivos eixos).

4,
r3 rZ
0
4, 4,
rl
O conjunto S, ={id, R,, R,,,- R,, R,. R;} com a opera¢éo de composicdo de

fungdes € um grupo. Na tabela abaixo, a composicéo da simetria indicada na
primeira linha com a simetria da primeira coluna esta representada na respec-
tiva lacuna. Por exemplo, R, e R, = R,, corresponde a informagé&o contida na
lacuna associada a coluna da rotagéo R, € linha do reflexéo R,.

o id - R R R, R
i id - R R R, R
R R Ry i R, R R,
Ry Ryo id R R, R, R
R R R, R, i R Roo
R, R, R, R 240 id R
R, R R R, R R id

Propriedades dos grupos:

1. O elemento neutro € Unico

Consideremos e e e'elementos neutros do grupo G. Como e’ é elemento
neutro entdo e’- e = e. Por outro lado, e também é elemento neutro, logo
e-e'=e'. Concluimos que

e=e'-re=e-e'=e'>e=¢€'

2. O elemento inverso é Unico

Consideremos a € G e sejam b, b' € G dois elementos inversos do elemento
a.Comobeb'sdoinversosde a,a-b=eea-b'=e, dessaforma

b=b-e=b-(a-b')=(b-a)-b'=e-b'=b'

73
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Para refletir

1. Mostre que o conjunto dos nimeros naturais com a operagao de adicao (N, +), ndo
é um grupo.

2. Verifique se o conjunto A = {— 1, 1} com a operac¢do de multiplicacdo de inteiros é
um grupo abeliano.

3. Verifique se o conjunto das simetrias espaciais S, de um triangulo equilatero € um
grupo abeliano.

4. Seja Z_ o conjunto das classes de restos modulo n, com a operacdo de adigdo sobre
Z_definida por a+b=a+b (Veja a Proposicdo 14 (i) do Capitulo 4). Analise se (Z,+)
é um grupo abeliano.

5. Descreva o grupo das simetrias espaciais de um quadrado, bem como a tabela con-
tendo as composi¢Ges de todos os possiveis pares de simetrias.

2. Subgrupos

Definigao: Seja (G, -) um grupo e H um subconjunto n&o vazio de G. Dizemos
que H é um subgrupo de G se, com a operagao de G, o conjunto H é um grupo.

A associatividade sera sempre satisfeita, pois os elementos pertencem a um
grupo. Observamos também que o elemento neutro e o inverso serao iguais
aos do grupo. Na pratica, para verificar se um subconjunto de um grupo é um
subgrupo, necessitamos apenas mostrar o fechamento e que o inverso de
cada elemento também faz parte do subconjunto. Além da inclusdo da identi-
dade, é claro.

Exemplo 6: Dado o grupo G, podemos imediatamente apresentar dois subgru-
pos de G, a saber, {e} e G.

Exemplo 7: O subconjunto 2Z = {2 -z | z € Z} € um subgrupo de (Z, +).

Exemplo 8: S50 subgrupos do grupo S, das simetrias espaciais tridngulo equi-
latero {id, R} e {id, R ,,, R,,}-

Para refletir

1. Verifique se o conjunto H = {x € Z | x é par}, com a opera¢do usual da adi¢do de
inteiros é um subgrupo de (Z, +).
2. Descreva os subgrupos do grupo de simetrias espaciais de um quadrado.



3. Homomorfismos e Isomorfismo

Defini¢gao: Dados os grupos (G, - ) e (G', *). Entendemos por homomorfismo
uma fungédo £ G —» G' que preserva a estrutura de grupo, isto é, para todo a, b
€ G temos que

f@-b)=f(a)*f(b).

Exemplo 9: Seja G = (Z, +), entdo f: G — G, definida por f(x) = 2 - x € um
homomorfismo de grupos. De fato, f(x+ ) =2-(x+ ) =2 -x+2-y=f(0) +
f(y)vx,yeG

Exemplo 10: Fixe n € Z. A aplicagdo que associa a cada inteiro k o resto da
diviso de k por n, visto como elemento de Z , € um homomorfismo de (Z, +)
em (Z..+). Isto € uma consequéncia imediata da definicdo da operagéo de
adicao de classes de equivalénciaem Z ,a + b = a + b, como feito na atividade
4.dasecdo5.1.

Em particular, se n = 2, este homomorfismo f:(Z,+) = (Z , +) € dado por f (k)= 0,
se képar, e f(K)=1 seké impar.

Defini¢ao: Seja f:(G,:) — (G, *) um homomorfismo. Dizemos que fé um iso-
morfismo quando existir um homomorfismo g:(G', *) = (G, -) talque fog =1.,)
egef=I,

Exemplo 11: Dados G = (R*,, -) e G'= (R, +) e a fungdo f: R*, — R definida
por f (x) = log(x). Afirmamos que a fung&o f & um isomorfismo. Primeiramente,
observe que fé homomorfismo:

VX, y €R*,, temos que f(x - y) = log(x - y) = log(x) + log(y ) = F(x) + F (V).

Além disso, f é bijetora e tem como inversa a fungdo exponencial g(x) = e*. A
exponencial também é homomorfismo, pois e*¥ = e ¥, para todos x, y €R.

Para refletir

1.Sejam G =(Z,+) e G'=(Z, +) e a funcdo f:G - G' definida por f(x) = 5 - x. Verifique
se fé um homomorfismo.

2. Considere G =(Z, +) e G'=(Z, +) e a fungdo f :G - G' definida por f(x) = 3 - x2. Verifi-
que se f é um homomorfismo.

Matemética Discreta =
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4. Definicao de anel e dominio de integridade

Definigao: Dado A um conjunto n&o vazio, com duas operagdes (A, +, *).
Dizemos que A é um anel se satisfaz as propriedades:

(i) (A,+) é um grupo abeliano;
(i) A operacao (A, *) satisfaz
1.va,b,ce A temosque (@*b)*c=a*(b*c).
2. Existeumelemento le Atalquea*1=1*a=a,vVaeA.
(i) Aoperagao * € distributiva em relagao a operagao +:va, b, c € A, temos:
a*lb+tc)=a*b+z*ce
bt+to*a=b*a+tc*a.
Em geral, a operagéo + é pensada como uma adigdo e * como uma multipli-
cagédoemA.

Exemplo 12: conjunto dos inteiros com as operagdes de adicdo e multiplica-
¢ao, (Z, +, ), € um anel com as operagodes de adigao e multiplicagéo usuais.

Exemplo 13: Sdo exemplos de anéis: (Q, +, ), R, +, ) e (C, +, ).

Definigao: Seja (D, +, *). um anel. Dizemos que D € um dominio de integridade se:

1. o elemento neutro 1 da operacao * é diferente do elemento neutro
0€eAda+,
2. a operegao * é comutativa, e

3.va,beA coma=0eb=0,temos que a * b 0. Em outras palavras,
sea*b=0,entdoa=00ub=0.

Exemplo 14: (Z, +, -) € um dominio de integridade.

Exemplo 15: Consideremos Z(i) ={a + bie C| a, b € Z}. Temos que (Z (i), +, )
€ um dominio de integridade.

Para refletir

1. Mostre que o conjunto dos inteiros com as operagdes usuais de adi¢cdo e multiplica-
¢do é um dominio de integridade.

2. Mostre que o conjuntos M, , (Z) das matrizes 2 x 2 com entradas inteiras, e munido
das operagdes usuais de soma e multiplicagdo de matrizes, € um anel, mas ndo é
um dominio de integridade.
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5. Subanéis, ideais, anéis quocientes e corpos

Definigao: Seja B um subconjunto ndo vazio de A, onde (4, +, *) € um anel.
Dizemos que B é subanel se:

(i) B é fechado para as duas operagoes;
(i) B+, ™) éum anel

Exemplo 16: Z é subanel de Q, Q é subanel de R € R é subanel de C.

Definig¢ao: Seja / um subconjunto n&o vazio de um anel (4, +, *). Dizemos que
/€ um ideal de A se:

(i) Va, bel entdo at+ b € | em outras palavras, (I, +) é subgrupo de (A, +), e
(ilvaeAebel enthoa*b,b*acl.

Exemplo 17: Considere n € Z, com n = 1, temos que o subconjunto dos intei-
rosnZ={n-z|z€Z}éumideal do anel (Z, +, ).

A relacdo de congruéncia em Z pode ser analisada em termos de um ideal I
de uma anel qualquer.

a=bmodIsb-a€l

Defini¢gao: Sejam (A, +, *) um anel e I um ideal de A. A classe residual de a
médulo | é definidapora=a+I={a+b|bel}. Oanel (A/l +, *)das classes
residuais moédulo I, ou seja, das classes de equivaléncia médulo |, € chamado
de anel quociente de A médulo I

Exemplo 18: Considere n € Z. O quociente do anel dos inteiros pelo ideal nzZ,
introduzido no Exemplo 17 acima, sera denotado por Z =Z/nZ = {0 + nZ, 1 +
nZ, ..., (n — 1) + nzZ}. Isto induz uma estrutura de anel nos conjuntos das clas-
ses de restos médulo n.

Definigao: Seja (K, +, *) um anel. Dizemos que K & um corpo se satisfaz as
seguintes condigdes:

l.VvaeKcomaz#0,existebe Ktalquea*b=b*a=1¢e
2. (fa € K| a #0},*) é grupo abeliano.

Exemplo 19: Sdo exemplos de corpos (Q, +,-), R, +,) e (C, +, ).
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Rtividades de avaliagdo

1. Mostre que o conjunto 2Z € um ideal de Z com as operagdes usuais de
adicdo e multiplicagdo dos inteiros.

2. \erifique que 6Z é um ideal de 2Z e apresente a forma dos elementos
de 27/6Z.

3. Explique porque (Z, +, -) ndo é um corpo.
4. \lerifique se o anel Z, € um corpo. Justifique.
5. Mostre que se p é primo entéo Z, € corpo.

Neste capitulo apresentamos definicdes que possibilitam uma introdugéo ao
estudo de estruturas algébricas.

Defini¢ao: Seja G um conjunto, munido de uma operagéo (G, -). Neste ponto,
a operagao pode ser pensada como um produto ou uma soma entre dois nu-
meros. Em geral, - € uma operacéo abstrata definida para pares de elementos
de G. Dizemos que G é um grupo de satisfaz as propriedades:

(i) O conjunto é fechado, ou seja, paratodo a, be G
a-beG.

(i) A operagéao € associativa, ou seja, paratodo a, b, ce G
a-(b-c)=(@-b)-c

(iii) Existe elemento neutro em relagéo a operagao, isto é, existe e € G, tal que
are=e-a=a,paratodoaeG.

(iv) Para cada a € G, existe b € G, chamado de inverso em relag&o a ope-

racao, tal que
ab=b-a=e.

O grupo sera chamado de comutativo ou abeliano se, além das propriedades

ja citadas, possuir a propriedade a seguir.

(v) Aoperagéo é comutativa, isto é, para todo a, b € G temos que

a-b=b-a.

Definigao: Seja (G, -) um grupo e H um subconjunto ndo vazio de G. Dizemos

que H é um subgrupo de G se, com a operagao de G, o conjunto H é um grupo.



Definigao: Dados os grupos (G, -) e (G', ). Entendemos por homomorfismo
uma fungédo f:G — G’ que preserva a estrutura de grupo, isto é, para todo
a, b e Gtemos que

f@-b)="f(a)*fDb).
Definigao: Seja £:(G, ) — (G, *) um homomorfismo. Dizemos que fé um iso-

morfismo quando existir um homomorfismo g:(G' *) - (G, -) tal que fo g = I,

egof=1,
Definigao: Dado A um conjunto n&o vazio, com duas operagdes (A, +, *).
Dizemos que A é um anel se satisfaz as propriedades:

(i) (A,+) é um grupo abeliano;

(i) A operagao (A,*) satisfaz:
1l.va,bceAtemosque(@*b)*c=a*[*c).
2.Existeumelemento 1€ Atalquea*1=1*a=a,vacA

(iii) A operagao * € distributiva em relagdo a operagéo +:Va, b, c € A, temos:
a*b+o=a*b+z*ce
b+c)*a=b*a+c*a.

Em geral, a operagao + é pensada como uma adigéo e * como uma multipli-
cacdoemA.

Definigao: Seja (D, + , *). um anel. Dizemos que D € um dominio de integri-
dade se:

1. o elemento neutro 1 da operacao * é diferente do elemento neutro
0Oe€eAda+,

2. a operegao * é comutativa, e

3.Vva,beA,coma#0eb=0, temos que a * b #0. Em outras palavras,
sea*b=0,entioa=00ub=0.

Defini¢ao: Seja B um subconjunto n&o vazio de A, onde (A, +, *) € um anel.
Dizemos que B é subanel se:

(i) B é fechado para as duas operagoes;
(i) (B, +. ) éum anel.

Definigao: Seja I um subconjunto n&o vazio de um anel (4, +, *). Dizemos que
[ é um ideal de A se:

(D Va, bel entdoa+ b eI emoutras palavras, (I, +) € subgrupo de (4, +), e
(iDVvaeAebelentdoa*b b*ael

Matematica Discreta =
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Definigao: Sejam (A, +, *) um anel e Tum ideal de A. A classe residual de a
maodulo Ié definidapora=a+I={a+b|b eI} Oanel (Al +*) das classes
residuais moédulo I, ou seja, das classes de equivaléncia modulo I, € chamado
de anel quociente de A médulo I

Definigao: Seja (K, +, *) um anel. Dizemos que K &€ um corpo se satisfaz as
seguintes condicoes:

l.vaeKcoma=z0,existebe Ktalquea*b=b*a=1¢€
2. ({a € K| a=0}*) é grupo abeliano.

leituras, filmes e sites

http://www.dca.fee.unicamp.br/~marco/cursos/ia012_14 1/slides/grupos-
aneis-corpos.pdf

http//www.dm.ufscar.br/profs/sampaio/capitulol.PDF
http//denebola.if.usp.br/~jbarata/Notas_de_aula/arquivos/nc-cap02.pdf
http/Aww.mat.ufmg.br/~marques/Apostila-Aneis. pdf
http//www.mat.ufpb.br/lenimar/textos/intalgebra_Ina.pdf
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Gabarito: Matematica discreta

Capitulo 1
Secao 1.1
1.
a) A={janeiro, fevereiro, margo, abril, maio, junho, julho, agosto, setembro, outubro,
novembro, dezembro} e n(4) = 12
b) B={segunda, terca, quarta, quinta, sexta, sabado, domingo} e n(4) =7
¢ C={0,6,12,18 . Jen(d) =0
d) D={1,2,3,4,612}en(d) =6
Secdo 1.2
1. V-F-V—-F-V-V
2. 27 —8 =120, retirmmos @ e os 7 conjunto que possuem 1 elemento 1+7=8
3 b
Segao 1.3
1.
a) {L2.34.67.8}
b) {34}
J {L234.6}
d) {1.2.34.5.6,7.8}

e) {1}
i {(12),(1.3).(1.6).(1.7). (1.8).(2.2).(23). (2.6). (2.7).(28). (3.2). (3.3).(3.6). (3.7).
(3.8), (4.2). (43). (4.6). (4.7). (4.8)}

a) 6
b) 18
C
{345}
C

V-V-Vv-V
A={0125}eB ={-2-1}
4

M@ oew

1

&

a)
b)
a
d)

mTme <

a) 2e3, duas raizes reais

b) 2i e —2i, duas raizes complexas

) 2+ie2- i, duas raizes complexas
Capitulo 2

Secdo 2.1
1.

a) {(53))

B) {(13).(L5).(L7).(19). (35).(37).(39). (57). (59)}
2. {(10).(94))
3. A={1234}

Reflexiva
(L1)eR
(2.2)eR
(3.3)eR
(44)eR
Simétrica
(L1
22)
(3:3)
(44)
(L2)e(21)
Transitiva
(1L.2).(21)eRe(lL1)€ER
(21)(L2)eERe(22)ER
(1L1)(L2)eRe(L2)ER
(L1).(21)eRe(11)eR
(21).(L1)eRe(21)€R
(L2).(L1)eRe(lL1)EeR
(1.2).(22)eRe(L2)eR
(22).(L2)eRe(22)ER
(21).(22)eRe(22) R
(22).(21)eRe(21)eR
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Segdo 2.2
1
a) Efuncio
b) MNEo é fungdo
c) MNio é fungdo
2. Dm=1{12},CD ={345}eIm = {3.5}

a) Bijetora £ = {(1,1),(2.2), (3.3), (44)}
b} Sobrejetora, ndo injetora, ndo admite inversa
c) Mao e sobrejetora, ndo € injetora, ndo admite inversa
4 gof =3x+lefog=3x+5
Capitulo 3
Secdo 3.1
1
a) 6
b) 15
o 8
2. 720
3. 106
4 720
Segdo 3.2
1. 60 ndmeros e 12 deles sdo pares
2. 120
Secdo 3.3
1. 720
2. 24
3. 151200
4. 240
Secdo 34
1 12
210
10
6
26
6. x% —5Sx*y + 10x%y® — 10x%y? 4 Sxy* —y°
Capitulo 4
Secdo 4.1
1. Paran=1,5 =1
Supondo verdadeiro para n, isto é

Sn

L

_n(n4+1)-(2n+1)
- 6
Verificando paran + 1

Sper = 124+ -+ n? +(n+ 1]2
_nn+1)-(2n41)

Spa1 = +(n+1)?
m+1)m+2)-2(n+1)+1]
5R+1= 3
Logo valido para todon € H.
2
14345+ +@n—1)=n°
Para n=1temos que 1 = 17
Paran=2temosque 1+ 3= 2%
Supondo verdade paran
1+3+5+~+@n—1)=n*
Devemos verificar a veracidade paran + 1
143454+ =4+@n—-D+RR+1)-1=n*+2n+2-1=(n+1)*
Vilido paratodon e N
3.

a) Paran = 1temos a;

Paran=2a, =a, +r

Supondo verdade paran

Verificando a validade paran + 1

Gne1 =dn + T

Apey = +(m—1)-r+r
fnyy = @y +[(n-1)+1]-r
Oy =@ +[(n+1)-1]-r

Logo valido para todon € H.

b) S$1=a

5, =a, +a, ok!
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Supondo verdade para n e verificando paran + 1

Sper = @ + @z .t ag Hapay
Sp+1 = Sp + @Gnea
(a; + an)'n

Sper = -z + ansy
s 2 (@, + apyy)-(n+1)
n+l — 2
Vilido paratodon € N.
4.
a) Paran = ltemosa,
Paran=2a, =a;-q
Supondo verdade paran
Verificando a validade paran + 1
Qnyy =0An-q
Qny1 =01 q“_i 3 q
@pyy = @ q"
Logo valido paratodon € M.
b) 5,=a,
52 =@y + az ok!

Supondo verdade para n e verificando paran + 1
Spe1 = @ + @z +...+an +@nsa
Sne1 =(51:‘ +]3n+l
e B C
Spe1 = T + ey

o (@™ -1)

5, = P

n+l

Vilido paratodon € N.
5. PGderazio2a, = 2"
Si=1
5,=1+2=3
S55=1+2+4=7

Sp=2"-1
Verificando a validade por indugdo

Supondo verdade para n e analisandon 4+ 1
Sper = Sp + @pay
Spey = 28 — 14 2n+1-1
Sper = 2" —142"
Sper = 2-2"-1
Spey = 2711
Valido para todon € H.
Secdo 4.2
1 a-clb-c=alb
&Sealb, entioexisten € Ntalqueb =n-aeparaalgumce N" t
b-e=n-a-c=>a-clb-c
=a-clb-c=existek ENtalque b-c=k-a-ccomceN'= b:

2. 9]10" -1
Paran=1
9|10 —1=9

Supondo verdade paran € M, ou seja, que 9|10 —1

Verificando paran + 1

10™* —1=10-10" —1 = 10.10" — 10 + 9 = 10(10™ — 1) + 9 pela propriedade 5 (a|b e
alc, entdoa]l m-b + n-c), como 9|9 e pela hipétese de inducio temos que 9]10" — 1, entdo
9]10(10™ — 1) + 9. vélido para todon € M.

3. n=2
a*—b* _ (a-byria+b) _ _ 21 2-1
v = as —etb=aT b

Supondo verdade paran

A T ) BESE N s
Verificando o que ocorre paran + 1

a™l—p™*l=g"-a—b-a" +b-a" —b-b"

a™l "l =g"-(a—b)+b-(a" —b")

Como a — b|a — b e pela hipétese de inducio a — b|a" — b", pela proposicio 5 temos que
a—bla"-(a—b)+b-(a™ —b")

Logo € valido paratodon € N

4 a+2e*-4
a®-4=a®+8-12=(a+ 2912
Pelas proposigdes 2 e 8 temos que @ + 2|a? + 27 entdo para que a + 2|12 devemos ter
a={0,12410}
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5. Paraa =1, temosque5|1°—1=0
Supondo verdade paraa € N
S5la®- a
Verificando paraa + 1
(@a+ 1Y -(a+1)=a" +5a* + 10a® + 10a" + 5a+1—a—1

= a° —a+5(a* + 2a° + 2a* + a)
Sla® - ae 5|5, logo3|(a+1)°-(a +1)
Valido paratodoa e N
Secdo 4.3

1. 55=6-9+1

2. aeNenelN
aépar & a" é par
=Seaépar=2a=2-k.comk €N
Parane N’
a"= (2-k)" =2-(2"' k"), logo a" & par.

& Sea” é par entdo ele & da forma 2 - k e nSo pode ser poténcia de um nimero impar pois
toda poténcia de impar & impar
2 x+1)P=2-x)"+2-x)" L 4++2-x4+1=2-k+1

3. Sen € N, podemos escrever n como
n=6-k=>n*=36-k7 resto0
n=6-k+1=>n>=6-(k®+2-k)+1lrestol
n=6-k+2>n*=6-(6-k+4-k)+4resto 4
n=6-k+3=>n*=6-(6-k*+6-k+1)+3resto3
n=6-k+4=>n*=12-(3-k*+4-k4+1) +4dresto4d
n=6-k+5=>n*=12-(3-k*+5-k4+2)+1restol
Os possiveis restos da divisSo por 6530 0, 1,3 e 4, ndo pode ter resto 2.

4 n=20-k+8comkelN
n=20-k+5+3
n=>5(4-k+1)+3, resto3.

Segdo 4.4

1. péprimoep,p+2ep+4

Todo nimero natural pode ser escrito comao:

3.k, 3-k+loud-k+2

Sep = 3ek = 1, entdo os nimeros sdo 3,5 e 7 todos primos.

Ssepédaforma3-k+1

Para3-k+1,3-k+1+2=3-k+3 e3-k+1+4=3-k+50useja,3-k+1+2ndo
& primo.

Sepédaforma3-k+2
Para3-k+2,3-k4+2+4+2=3-k+4e3-k+2+4=3-k+6,0useja,3-k+2+4ndo
& primo.

2. n>11,n € N é soma de dois compostos
Senépar,n=2-k parak =3
n=2-k—4+4=2-(k—2)+ 4 somade compostos comn = 11
Ssenéimpar,m=2-k+1l,parak =5
n=2-k—8+8+1=2-(k—4)+9somade compostos comn > 11

3. Pela proposicio 7, a — b|a" - b"

Assim, 210 — 58](210)2 — (54)2 = 399|(29)? — (5%)%. Comeo 399 % 220 — 58, temos que

220 _ 58 3o & primo.

Segdo 4.5
1.

a) 5-x+7-y=100
mdc(5,7) = 1 e 1]100, tem solucio
Observamos que (13.5) € solugdo, entdo as solucdes s3o:
(13+7-t.5-5t),comt€L

b) 7-x+11-y=116
mde(7,11) = 1 e 1|116, tem solugio
Observamos que (15,1) € solugdo, entdo as solugdes s3o:
(154+11-£1—7-),comt e L
2.
a)
1 1 1 3 1 1 2
384 246 138 108 30 18 12 6
138 108 30 18 12 6 0
mdc=6
b)
2 3 6 6
542 234 74 12 2
74 12 2 0
mdc=2
q
1 1 7 3 4
1218 648 570 78 24 6
570 78 24 6 0
mdc=6

3 10-x+14-y=100
mdc (10,14) =2
(10.0) € uma solucio
14 10
(10+7-t,c—7-t):(1u+7-:.—5-:)
(10.0) e (3,5), duas maneiras
Se¢ao 4.6
1. 25.5=2.24.5=2-5-24 =10- 2% que é miltiplo de 10.
2. 3-x=35-k.Como5 {3, entio 5|x.
3. xt—y'=17
(x +y)- (x —y) = 17, como 17 & primo entdo
x+y=17 x+y=1
Er—y:l ou {x—y:l?
x=%9ey=8Boux=%ey=—-8&N
Logo a Unicasolugdoéx =Bey =19



4. 5e1000|n! =227 -5¥|n! 2n! =275 +kcomk €N

1-2-3-22-5-..-10-.. -15
Qu
15: 2 tem quociente 7 e resto 1
7- 2 tem quociente 3 e resto 1
3: 2 tem quociente 1 e resto 1
1: 2 tem quociente 0 e resto 1
743+140 = 11, ou seja temos 2** até 15!
E
15: 5 tem quociente 3 e resto 0
3: 5 tem quociente 0 e resto 3
3+0 =3, ou seja temos 5%até 15!

Secdo 4.7
1 D

Spx® —125](x—1)+ (x+1) > 5jx— Lou5x+1 >x—1=5-koux+1=5-k com
ke 2x=55k+loux=5k-1=59-k—1-4+4+4=5(k—1)+4 ouseja,
x=1modSoux=

2.
24 24=24mod 40
120 120 = 0 mod 40
6!=720 720=
A partir de 5! os nimeros s3o todos maltiplos de 120, ou seja, todos tem resto 0.
Logo o resto € a soma dos restos
1+2+6+24+0+0+--+0=33
Capitulo 5
Se¢do 5.1
1 (M+)
Fechamentoa,b € N, temosquea+b N
Associativa @, b.c € N, temosque (a+b)+c=a+(b+c)
Elemento neutroé o 0, temosquea+ 0=0+a=a
N&o possui inverso aditivo poisa + b = 0,temosque b = —a ¢ N
Logo ndo & grupo
2. A={-11}e(A)
- -1 1
-1 1 -1
1 -1 1
Fechamento
(-D)-1=-1€4
-1-(-1)=1€4
1-1=1€4
Assodiatividade segue da assodiatividade da multiplicagdo de inteiros
abc e, (a-b)-c=a-(b-c)
Elemento neutro € o elemento neutro dos inteiros
a-l1=asea=1temosquel-1=1lesea=—1ltemosquel-(—1)=-1
Elemento inverso — cada elemento possui um inverso dnico
1-1=1le(-1)-(-1)=1
A comutatividade vem da comutatividade dos inteiros
Trata-se de um grupo abeliano.
3. Nao é grupo abeliano, pois R(120)oR(1) = R(3) e R(1)oR(120) = R(2).
4. Associatividade, comutatividade, elemento neutro e inverso seguem das propriedades dos
inteios, ou seja
atb=atb=bta=b+a
(@+b)+é=a+b+é=(a+tb)+tc=at(btc=a+(b+c)=a+(b+7)
@+ 0=a+0 0+a=0
Logo, € grupo abeliano
5. Sio B rotagdes Id, trés rotages R(90), R(180) e R(270), duas reflexSes com respeito as
diagonais D, e D, e duas reflexdes com respeito as medianas M, e M.
™S dy m
<P M
oz
o] Id R(90) | R(180) | R(270) | D(1) D(2) M(1) M(2)
id id R(90) | R(180) | R(270) | D(1) | D(2) | M) | M(2)
R(90) | R(90) | R(180) | R(270) Id M(2) M(1) D(1) D(2)
R(180) | R(180) | R(270) Id R(90) D(2) D(1) M(2) M(1)
R(270) | R(270) id R(90) | R(180) | M(1) M(2) D(2) D1
D o M(1) D(2) M(2) Id R(180) | R(90) | R(270)
D(2) n(2) M(2) D(1) M(1) | R(180) Id R(270) | R(90)
M(1) M(1) D(2) M(2) D(1) | R(270) | R(90) Id R(180)
M(2) | M(2) | D(1) | M(1) | D(2) | R(90) | R(270) | R(180) | d
Se¢dn 5.2
1 Como 0 é par, H é subconjunto de Z que contém o elemento neutro. Seguem dai as
propriedades associativa e elemento neutro de H. O subconjunto H é fechado pois a soma de
dois pares & par. Finalmente, se x & par, ent3o —x também é par, o que garante a existéncia de
elementos inversos em H. Concluindo que H é subgrupo.
2 {id}
Se tiver R(90) ou R(270) temos {Id, R(90). R(180). R(270)} ou tudo.
Se tiver R(180) e ndo tiver R(90) temos{ld. R(180)}, {Id. R(180).D(1),D(2)}, {Id.
R(180), M(1),M(2)}
Se nao tiver nenhum R temos {Id, D(1)}, {Id. D(2)}, {Id. M(1)}, {Id. M(2)}
Se¢dn 5.3
1. Ehomomorfismo
Flx+y)=5(x+y) =5x+5y=F(x) + F(y)
2. Ngo é homomorfismo
Fx+¥)=3(x+¥)® =32 + 6xy + 3y> = F(x) + 6xy + F(y) * F(x) + F(y).sex # 0 e
y=0
Secdo 5.4
1. Propriedades elementares dos nimeros inteiros
2. E anel por propriedades bésicas das operacies de matrizes. O elemento neutron da soma & a

matriz nula, e da multiplicacio € a identidade. N80 & dominio pois as propriedades 2 e 3 da
definigio ndo sdo satisfeitas sempre.

Matemética Discreta
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) ( )=(g g falha propriedade 3

(6o)-G1
(g 2) (g g) (2 0. falha propriedade 2, sdo diferentes
00y 00
10/°40 1

(o626

Secao 5.5
1. Na seg¢do 52, atividade 2, vimos que 2 Z é subgrupo de Z. Para conduir que é ideal usamos
apenas gue o produto de um inteiro par por um inteiro gualquer tem como resultado um inteiro
par.

2. Aprova éanaloga a de que 2 Z é ideal de Z. Os elementos do guociente s3o as classes de restos
modulo 6 de inteiros pares. Existern apenas trés dasses:

—6+ 62 =0+6Z
—4+6E=2+6L

—2+6E=4+6Z
0+6Z
2+6Z
4+ 62
6+6E=0+6Z
8+6E=24+6L

10 + 6% = 4 + 6
12+ 62=0+6Z

3 elementos: 0 + 6Z, 2 + 6Ze 4+ 6
3. Para nem Z diferente de 1, ndo existe inverso multiplicative em Z. Logo, este dominio ndo é um

corpo.
4. Tgndo é nem dominio

Segundo a definigio

(@+9Z)- (b +9Z)=a-b+9Z
temos
(3+9Z)-(3+9Z) =0+9Z
=0

Logo, I ndo & dominio.
Todo corpo € dominio
3 + 9Z ndo possui inverso multiplicative. Se houvesse, teriamos a € Z tal que
(3+9L)-(a+9Z) =1+9Z
3-a+9Z=1+9Z
3-a=1mod9
0 que ndo € possivel!
5. Pelo exemplo 18 sabemos que ZP £ anel. A comutatividae segue da multiplicacdo de 7. Resta
mostrar a existéncia de elemento inverso multiplicative.
Elementos
0+ pZ
1+pZ
2+ pE

(p-1)+pZ

a€{012,..p—1}

Os elementos

a+pZ 2-a+pk...(p—1)-a+ pLsio distintos. A prova € por contradicgo:
Sen<m<pen-at+pL=m-a+pl

=n-a=m-amodp

=n=mmodp, poisp éprimoea < p.

Além disso, os (p — 1) elementos @ + pZ 2+ a + pZ, ... (p — 1) - @ + pZ sdo ndo nulos, pois
O<an<p=>plan

Portanto, algum dos a - n + pZ éigual a 1 4 pZ, o que mostra a existéncia de elemento inverso.
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