
2019 Secretaria de Tecnologia Educacional
Universidade Federal de Mato Grosso

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE ABERTA DO BRASIL

GRADUAÇÃO EM
TECNOLOGIA EDUCACIONAL
LICENCIATURA

Raoni Florentino da Silva Teixeira

Introdução a
Algoritmos

FASCICULO_Introducao_Algoritmos.indd 1 27/03/2019 11:09:05

2019 Secretaria de Tecnologia Educacional
Universidade Federal de Mato Grosso

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE ABERTA DO BRASIL

GRADUAÇÃO EM
TECNOLOGIA EDUCACIONAL
LICENCIATURA

Raoni Florentino da Silva Teixeira

Introdução a
Algoritmos

FASCICULO_Introducao_Algoritmos.indd 1 27/03/2019 11:09:05

Esta obra está licenciada nos termos da Licença Creative Commons
Atribuição-NãoComercial-CompartilhaIgual.

Dados Internacionais de Catalogação na Publicação (CIP)

Ficha catalográfica elaborada pelo bibliotecário Carlos Henrique Tavares de Freitas - CRB-1 nº 2.234.

G915f

Guarienti, Gracyeli Santos Souza.
Fundamentos em sistemas de computação / Gracyeli Santos

Souza Guarienti. − Cuiabá: Universidade Federal de Mato Grosso,
Secretaria de Tecnologia Educacional, 2019.

52 p.: il. color. ; 30 cm.

Esta obra faz parte do curso de graduação em Tecnologia

Educacional, na modalidade EaD, desenvolvido pelo Programa
Universidade Aberta do Brasil e pela Universidade Federal de Mato
Grosso.

1. Sistemas de computação. 2. Arquitetura de computadores. 3.

Redes de computadores. 4. Sistemas operacionais - Informática. I.
Título.

CDU 004.414.2

FASCICULO_Introducao_Algoritmos.indd 2 27/03/2019 11:09:05

2019 Secretaria de Tecnologia Educacional
Universidade Federal de Mato Grosso

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE ABERTA DO BRASIL

Raoni Florentino da Silva Teixeira

Introdução a
Algoritmos

FASCICULO_Introducao_Algoritmos.indd 3 27/03/2019 11:09:05

Ministro da Educação
Ricardo Vélez Rodríguez

Presidente da CAPES
Anderson Ribeiro Correia

Diretor Nacional da UAB
Carlos Cezar Mordenel Lenuzza

Reitora UFMT
Myrian Thereza de Moura Serra

Vice-Reitor
Evandro Aparecido Soares da Silva

Pró-reitor Administrativo
Bruno Cesar Souza Moraes

Pró-reitora de Planejamento
Tereza Mertens Aguiar Veloso

Pró-reitor de Cultura, Extensão e Vivência
Fernando Tadeu de Miranda Borges

Pró-reitora de Ensino e Graduação
Lisiane Pereira de Jesus

Pró-reitora de Pesquisa
Patrícia Silva Osório

Secretário de Tecnologia Educacional
Alexandre Martins dos Anjos

Coordenador da UAB/UFMT
Alexandre Martins dos Anjos

Coord. do Curso de Licenciatura em Tecnologia Educacional
Silas Borges Monteiro

FASCICULO_Introducao_Algoritmos.indd 4 27/03/2019 11:09:05

SUMÁRIO

UNIDADE 1 - Algoritmos e Resolução de Problemas................9

Referências... 24

UNIDADE 2 - De algoritmos à programas de computador ...27

UNIDADE 3 - Estruturas de decisão ...41

Referências... 52

UNIDADE 4 - Estruturas de repetição...55

Referências... 70

FASCICULO_Introducao_Algoritmos.indd 5 27/03/2019 11:09:05

FASCICULO_Introducao_Algoritmos.indd 6 27/03/2019 11:09:05

7

UNIDADE 1

FASCICULO_Introducao_Algoritmos.indd 7 27/03/2019 11:09:05

BIBLIOTECA DE ÍCONES

Reflexão – Sinaliza que uma atividade reflexiva será desenvolvida. Para isso,
sugerimos que leia a questão feita e anote o que você pensa a respeito da abor-
dagem, antes de qualquer assimilação de novos conhecimentos. Você pode
convidar seus colegas para debates, questionar a equipe de tutoria e docentes
(usando a ferramenta mensagem ou fórum). No final do processo, faça uma sín-

tese das ideias resultantes das novas abordagens que você assimilou e/ou construiu, de forma
a se preparar para responder perguntas ou questionamentos sobre o assunto refletido.

Pesquisa e Exercícios – Indica uma atividade de pesquisa ou exercício pro-
priamente dito, elaborada com a finalidade de conferir a sua compreensão so-
bre um determinado contexto informativo.

Saiba mais – Sugere o desenvolvimento de estudo complementar. No am-
biente virtual do curso, na área de “Saiba Mais”, é possível localizar materiais
auxiliares, como textos e vídeos, que têm por premissa apoiar o seu processo de
compreensão dos conteúdos estudados, auxiliando-o na construção da apren-
dizagem.

Atividades – Aponta que provavelmente você terá uma chamada no
seu Ambiente Virtual de Aprendizagem para desenvolver e postar resul-
tados de seu processo de estudo, utilizando recursos do ambiente vir-
tual.

Vamos aos estudos?

FASCICULO_Introducao_Algoritmos.indd 8 27/03/2019 11:09:06

9

UNIDADE 1
Algoritmos e Resolução de Problemas

Após a leitura deste capítulo, você será capaz de:

•	 Entender o que é um algoritmo e quais são suas características.

•	 Perceber a relação entre lógica, algoritmos e resolução de problemas.

•	 Identificar as tarefas que devem ser executadas para projetar seu próprio algoritmo.

O tópico central deste curso é a resolução de problemas usando um computador. Trata-se
de uma tarefa importante, pois os computadores estão em toda parte, e muitas tarefas de
nossa vida cotidiana são ou serão realizadas por eles.

Quais tarefas da sua vida cotidiana são realizadas por algum tipo de
computador?

 É curioso notar o quanto somos dependentes de uma tecnologia, e normalmente não per-
cebemos a intensidade com que isso acontece. Avanços no processamento e na aquisição de
dados (câmeras e outros sensores) permitiram que os computadores fossem aplicados em
uma grande quantidade de tarefas. Este é o caso, por exemplo, das operações realizadas pe-
las lavadoras de roupas mais modernas. Também é o caso do mecanismo empregado no câm-
bio automático de um carro, que controla a troca de marchas de modo quase imperceptível
para o motorista. Mais recentemente, apareceram ainda carros que estacionam e, até mes-
mo, dirigem de maneira automática. Todas essas tarefas são realizadas por computadores e,
como você entenderá no fim desta aula, também por um algoritmo. Tal como a eletricidade,
o computador é um exemplo de tecnologia que passou a compor o nosso entorno sem que
percebêssemos toda a complexidade envolvida.

Algoritmo é o nome dado à sequência de ações indicando exatamente o que o computador
deve fazer para realizar uma tarefa ou resolver um problema.

FASCICULO_Introducao_Algoritmos.indd 9 27/03/2019 11:09:06

10

Muḥammad ibn Mūsā al-Khwārizmī (780-850)

O termo algoritmo tem sua origem com o matemático do século IX Muḥammad ibn Mūsā
al-Khwārizmī, cujo sobrenome foi latinizado para Algoritmi. O conceito por trás do nome
existe há séculos. Matemáticos gregos, por exemplo, já usavam para descrever como encon-
trar números primos ou o maior divisor comum entre dois números inteiros (KNUTH, 1968).

Pesquise sobre o algoritmo Crivo de Eratóstenes, utilizado para encontrar
números primos na Grécia antiga.

CARACTERÍSTICAS DE UM ALGORITMO

•	 As ações ou operações executadas devem ser simples. Ações complexas devem ser
subdivididas em ações menores.

•	 Cada ação ou operação deve ser entendida precisamente. Não há espaço para ambi-
guidades, dúvidas ou mal-entendidos.

•	 A sequência de ações deve ser finita, ou seja, o algoritmo deve, obrigatoriamente,
terminar.

Fonte: (CORMEN, 2014, p. 7)

O objetivo deste capítulo é promover uma primeira aproximação dos cursistas aos concei-
tos relacionados com a resolução de problemas, ao projeto e à construção de algoritmos e
programas de computador.

Ressaltamos, porém, que as noções aqui apresentadas constituem apenas os princípios bá-
sicos. Logo, convidamos todos a participar das atividades do SAIBA MAIS no Guia de Estudos,
e sugerimos a leitura dos livros indicados na seção Referências para aprofundamento e deta-
lhes não abordados.

FASCICULO_Introducao_Algoritmos.indd 10 27/03/2019 11:09:06

11

2 Como projetar um algoritmo

Escrever um algoritmo é um processo muito parecido com montar um quebra-cabeça. Cada
peça do projeto em questão é uma ação a ser executada. Em geral, as possíveis ações são
conhecidas, e o desafio é descobrir uma maneira adequada de combinar as peças.

Mas afinal, como encontramos a solução para um problema? Como se dá
esse complexo processo? Somos capazes de descrever o que pensamos e/
ou fazemos quando encontramos a solução para um problema?

Em várias de suas obras, o matemático e educador húngaro George
Pólya (1887, 1985) tentou responder essas e outras perguntas relacio-
nadas com resolução de problemas. Polya (1945) identificou e cata-
logou vários métodos sistemáticos de solução de problemas e desco-
berta de conhecimento em matemática, utilizados tanto por alunos,
quanto por professores e pesquisadores.

 A estratégia apresentada a seguir é uma adaptação do trabalho de
Polya (1945), especificamente para o caso do projeto de algoritmos.
Trata-se de uma estratégia iterativa, em que a solução vai sendo cons-
truída aos pouquinhos. A ideia é que, a cada ciclo, melhoremos nosso

entendimento sobre o problema e nos aproximemos da solução desejada.

George Pólya (1887-
1985)

FASCICULO_Introducao_Algoritmos.indd 11 27/03/2019 11:09:06

12

Entender o problema

Construir uma solução

Executar a solução construída

Avaliar a solução e,
dependendo do resultado,

voltar ao início.






ESTRATÉGIA PARA PROJETO DE ALGORITMO

ENTENDIMENTO DO PROBLEMA

•	 Leia atentamente o enunciado, esclarecendo possíveis dúvidas de vocabulário e iden-
tificando os dados do problema e o resultado esperado.

•	 Identifique quais ações podem ser executadas pelo algoritmo.

•	 Tente responder as perguntas: Você já viu este problema antes? Você conhece um
problema relacionado?

CONSTRUÇÃO DO ALGORITMO

•	 Responda a questão: Você consegue transformar este problema em algum outro que
já foi resolvido?

•	 Avalie se o problema ainda parece complicado e, caso necessário, o transforme-o
em um problema auxiliar, eliminando alguma das variáveis envolvidas. Considere os
casos mais simples primeiro.

•	 Brinque com a solução e tente entender o que acontece quando grupos de ações são
combinadas.

•	 Procure encontrar padrões e descreva o algoritmo.

FASCICULO_Introducao_Algoritmos.indd 12 27/03/2019 11:09:06

13

ESTRATÉGIA PARA PROJETO DE ALGORITMO

EXECUÇÃO DO ALGORITMO

•	 Antecipe o resultado da solução do problema.

•	 Simule a execução do algoritmo e guarde a solução encontrada.

AVALIAÇÃO DA RESPOSTA

•	 Avalie a solução. A cada iteração você aprende mais sobre o problema.

•	 Se estiver resolvendo um problema auxiliar, aumente a complexidade do problema e
refaça o processo.

•	 Inicie o processo novamente, se o resultado esperado não for alcançado.

Fonte: Adaptado de (POLYA, 1945 p. XIV-XV)

Em linhas gerais, a estratégia consiste em quatro etapas. Antes de qualquer coisa, devemos
entender o problema, pois dificilmente vamos resolver o que não entendemos. Depois, ten-
tamos encontrar conexões entre os dados do problema e a solução esperada. Neste ponto,
podemos considerar problemas auxiliares que são mais simples que o problema original. O
resultado desta etapa é um algoritmo que será executado passo a passo na etapa seguinte.
Na quarta e última etapa, avaliamos a resposta encontrada. Se o resultado esperado não for
alcançado, o processo é reiniciado.

É importante fazer anotações em todas as etapas da estratégia. O processo requer curiosi-
dade, imaginação e trabalho duro. Como no começo tudo parece complicado, o ideal é adotar
um procedimento semelhante ao do aprendiz de cozinheiro, que começa seguindo religiosa-
mente o que está escrito no livro de receitas, sem entender bem o que está fazendo; e, depois
de alguma prática, consulta as receitas apenas por alto e a passa a se virar por conta própria,
inventando e descobrindo coisas, métodos e ingredientes.

2.1 Torre de Hanoi

Para ilustrar a aplicação da estratégia de solução proposta por Polya
(1945), tomemos com exemplo o quebra-cabeça clássico chamado
Torre de Hanoi, proposto pelo matemático francês Édouard Lucas
(1842,1891) em 1883.

Édouard Lucas
(1842-1891)

FASCICULO_Introducao_Algoritmos.indd 13 27/03/2019 11:09:06

14

O quebra-cabeça consiste em uma base contendo três pinos. No primeiro pino, há 3 (três)
discos dispostos uns sobre os outros, em ordem crescente de diâmetro, de cima para baixo. O
desafio é movimentar todos os discos para o último pino, usando o pino do meio para movi-
mentos auxiliares. Apenas o disco do topo pode ser movimentado. Uma restrição importante
deste problema é que um disco nunca pode ficar em cima de outro com diâmetro menor ao
dele (KNUTH et al. 1988).

Como esse é o nosso primeiro problema, infelizmente, nunca vimos um problema pareci-
do antes. O quadro a seguir apresenta algumas propriedades do problema que podem ser
capturadas a partir de uma leitura atenta do enunciado aplicando a estratégia proposta no
trabalho do Polya (1945).

ITERAÇÃO 1

ANOTAÇÕES DA FASE DE ENTENDIMENTO DO PROBLEMA

Após a leitura atenta do enunciado percebemos que:

•	 Devemos movimentar os três discos do primeiro para o último pino.

•	 Só podemos movimentar um disco por vez. A única ação executada, portanto, é movi-
mentar o disco do topo do pino x para o pino y.

•	 Um disco nunca pode ficar em cima de outro com diâmetro menor ao dele.

FASCICULO_Introducao_Algoritmos.indd 14 27/03/2019 11:09:06

15

ANOTAÇÕES DA FASE DE CONSTRUÇÃO DO ALGORITMO

•	 Mesmo após a fase de entendimento, o problema ainda parece complicado e não fica
evidente como movimentar os 3 (três) discos seguindo as regras apresentadas.

•	 Vamos ter de simplificar o problema. Suponha agora que devemos mover apenas um
disco. Neste caso, a solução é relativamente fácil. Apenas uma ação deve ser executa-
da:

Movimentar o disco do pino 1 para o pino 3.

Esta é a configuração original da torre.

Após a execução da ação, temos o seguinte resultado.

O que acontece se você movimentar o disco que está no topo do primeiro pino
para o pino intermediário? E se, na sequência, você também movimentar o
menor disco (que está no terceiro pino) para o pino intermediário?

FASCICULO_Introducao_Algoritmos.indd 15 27/03/2019 11:09:07

16

A ação

Movimentar o disco do pino 1 para o pino 2.

tem o seguinte resultado

A Figura a seguir ilustra o resultado da ação:

Movimentar o disco do pino 3 para o pino 2.

Brincando com os movimentos, descobrimos uma maneira de movimentar 2 (dois) discos
para o pino intermediário. É importante notar que nenhuma regra do problema foi quebra-
da por esta solução.

O algoritmo encontrado é composto pelas ações:

Movimentar o disco do pino 1 para o pino 3.

Movimentar o disco do pino 1 para o pino 2.

Movimentar o disco do pino 3 para o pino 2.

FASCICULO_Introducao_Algoritmos.indd 16 27/03/2019 11:09:08

17

ANOTAÇÕES DA FASE DE EXECUÇÃO DO ALGORITMO

O resultado da execução de cada ação do algoritmo é apresentado novamente a seguir.

FASCICULO_Introducao_Algoritmos.indd 17 27/03/2019 11:09:09

18

ANOTAÇÕES DA FASE DE EXECUÇÃO DO ALGORITMO

Alcançamos a solução do problema? O que falta para resolver o problema
original?

O algoritmo encontrado movimenta os 2 (dois) discos menores. Para resolvermos o proble-
ma, precisamos movimentar também o disco com maior diâmetro.

Como fazemos movimentar o último disco? Como resolver o problema
original, partindo desta solução intermediária?

Resolveremos estas questões na próxima iteração da estratégia.

ITERAÇÃO 2

ANOTAÇÕES DA FASE DE ENTENDIMENTO DO PROBLEMA

Após a primeira iteração percebemos que:

É possível movimentar 2 (dois) discos utilizando 3 (três) movimentos.

Após estes três movimentos, chegamos à seguinte configuração de pinos:

FASCICULO_Introducao_Algoritmos.indd 18 27/03/2019 11:09:09

19

ANOTAÇÕES DA FASE DE CONSTRUÇÃO DO ALGORITMO

O problema agora é ligeiramente mais fácil que o problema original. Há apenas um
disco no primeiro pino, e o terceiro pino está vazio.

Depois de tudo que fizemos, fica até fácil perceber que podemos mover o disco do
primeiro para o último pino com uma ação:

Movimentar o disco do pino 1 para o pino 3.

Após a execução da ação, temos o seguinte resultado:.

O que falta para resolver o problema? Como fazemos para mover os dois
discos do pino do meio para o terceiro pino?

FASCICULO_Introducao_Algoritmos.indd 19 27/03/2019 11:09:10

20

Novamente, vamos brincar com os movimentos.

A ação

Movimentar o disco do pino 2 para o pino 1.

tem o seguinte resultado:.

Agora estamos quase identificando um padrão. O disco do segundo pino pode ser
movimentado para o terceiro pino sem ferir nenhuma regra. Após este movimento,
temos a seguinte configuração:

Agora falta apenas movimentar o disco menor do primeiro para o terceiro pino. O
resultado deste movimento é ilustrado a seguir.

FASCICULO_Introducao_Algoritmos.indd 20 27/03/2019 11:09:10

21

O algoritmo final com todas as operações é dado por:

Movimentar o disco do pino 1 para o pino 3.

Movimentar o disco do pino 1 para o pino 2.

Movimentar o disco do pino 3 para o pino 2.

Movimentar o disco do pino 1 para o pino 3.

Movimentar o disco do pino 2 para o pino 1.

Movimentar o disco do pino 1 para o pino 3.

ANOTAÇÕES DA FASE DE EXECUÇÃO DO ALGORITMO

O resultado da execução de todos os movimentos é apresentado a seguir.

FASCICULO_Introducao_Algoritmos.indd 21 27/03/2019 11:09:11

22

FASCICULO_Introducao_Algoritmos.indd 22 27/03/2019 11:09:12

23

ANOTAÇÕES DA AVALIAÇÃO DA RESPOSTA

 Chegamos à solução procurada e não há nada mais a ser feito.

A estratégia foi efetiva e foram necessárias apenas duas rodadas de aplicação e refinamento
para encontrar a solução. Dependendo do problema, porém, mais iterações são necessárias.
Outras técnicas podem ser utilizadas (em combinação ou não com a estratégia apresentada
aqui). No futuro, quando você se deparar com um problema que exige uma técnica de projeto
mais elaborada, consulte os trabalhos de Edmonds (2010) e Kleinberg e Tardos (2005).

Como você faria para movimentar 4 (quatros) discos do primeiro para o
terceiro pino? Após quantas iterações você encontrou uma solução para o
problema? Há algum padrão que pode ser repetido? Quantos movimentos
foram realizados no algoritmo?

Vimos nesta unidade o que é um algoritmo e como ele pode ser construído utilizando uma
estratégia reflexiva composta de várias fases. Ilustramos a estratégia aplicando-a no proble-
ma chamado de Torre de Hanoi. Como vimos, o principal ponto da estratégia é transformar o
problema original em um problema mais simples, eliminando alguma das variáveis envolvi-
das. Este aspecto será amplamente explorado nas próximas unidades.

Alguns exercícios são indicados no GUIA DE ESTUDOS e sua resolução é fortemente indica-
da. Na próxima unidade, veremos como ir de algoritmos (estudados aqui) para programas de
computador.

FASCICULO_Introducao_Algoritmos.indd 23 27/03/2019 11:09:13

24

Referências
CORMEN, Thomas H. Desmistificando Algoritmos. Rio de Janeiro: Elsevier, 2014.

EDMONDS, Jeff. Como pensar sobre algoritmos. LTC, 2010.

POLYA, George. How to solve it. Princeton, 1945.

KNUTH, Donald E. The Art of Computer Programming: Volume 1: Fundamental Algorithms. Addison-
-Wesley Professional, 1968.

KNUTH, Donald E, PATASHNIK, Oren e GRAHAM, Ronald. Matemática Concreta: Fundamentos para a Ci-
ência da Computação. Addison-Wesley, 1988.

KLEINBERG, Jon e TARDOS, Éva. Algorithm Design. Pearson, 2005.

FASCICULO_Introducao_Algoritmos.indd 24 27/03/2019 11:09:13

UNIDADE 2

FASCICULO_Introducao_Algoritmos.indd 25 27/03/2019 11:09:13

FASCICULO_Introducao_Algoritmos.indd 26 27/03/2019 11:09:13

27

UNIDADE 2
De algoritmos à programas de computador

Após a leitura deste capítulo, você será capaz de:

•	 Entender o que é computador e quais são as propriedades de um tipo de algoritmo
chamado programa de computador.

•	 Conhecer a linguagem de programação Python e como interagir com o computador.

•	 Escrever programas de computador simples, com interação com teclado e monitor e
envolvendo operações aritméticas.

1 Introdução

Neste curso, estamos trilhando o caminho da resolução de problemas via computador.
Vimos na unidade anterior como o conceito de algoritmo pode nos ajudar a estruturar a so-
lução de um problema. Agora, daremos um passo adiante para entender como transformar
estes algoritmos em programas de computador.

Entendimento do Problema

Construir uma Solução Algorítmica

Transformar o Algoritmo em
Programa de Computador

FASCICULO_Introducao_Algoritmos.indd 27 27/03/2019 11:09:13

28

Um programa de computador é um tipo especial de algoritmo que foi projetado usando
apenas um conjunto de ações que podem ser entendidas por um computador.

Afinal, o que é um computador? Como ele pode ser programado?

PROGRAMA
DE COMPUTADOR

ENTRADA SAÍDA

COMPUTADOR

CONTROLE DE AÇÕES

ARMAZENAMENTO
DE DADOS

Um computador é uma máquina de resolução de problemas que manipula dados a partir
da lista de instruções indicadas em um programa (ou, se preferir, algoritmo). Este processo
funciona assim: o computador recebe um conjunto de dados de entrada, os processa e pro-
duz um conjunto de dados de saída. Uma parte do computador é responsável pelo acesso e
armazenamento de dados e outra cuida do controle das ações definidas no programa.

Todo programa é escrito em uma linguagem de programação que especifica as regras (sin-
taxe, gramática etc) utilizadas para representação das ideias do algoritmo de uma maneira
que o computador as entenda. Há dois tipos de linguagens: de alto e de baixo nível (às vezes,
chamadas de linguagens de máquina ou de montagem). Resumindo um pouco as coisas, o
computador só consegue executar programas escritos em linguagens de baixo nível. Progra-
mas escritos em linguagens de alto nível precisam ser processados antes que possam ser
executados. Esse processamento extra (uma espécie de tradução) é chamado de compilação
ou interpretação.

FASCICULO_Introducao_Algoritmos.indd 28 27/03/2019 11:09:13

29

Pesquise sobre as linguagens de programação de alto nível e baixo nível, as
vantagens e desvantagens de cada uma delas e como funciona a compilação
e a interpretação.

2 Programas de computador e a linguagem Python

 A linguagem de programação que você vai aprender é o Python. Tra-
ta-se de uma linguagem de alto nível, criada por Guido van Rossum
(1956, -) em 1991, cujo nome é uma homenagem ao grupo humorís-
tico britânico Monty Python.

De um ponto de visto operacional, uma linguagem de programa-
ção pode ser entendida como um conjunto de regras que definem
como armazenar, acessar e processar dados. Programar é encontrar
uma maneira de combinar essas instruções para resolver um proble-

ma. E é exatamente isso que faremos no restante desta unidade

Em Python, você pode escrever um programa inteiro em um arquivo de texto e utilizar o
interpretador para traduzir o conteúdo do arquivo para que seja executado pelo computador.
Esse arquivo é normalmente chamado de código fonte. Por exemplo, nós podemos usar um
editor de texto para criar o código fonte chamado “meuprograma.py”. O .py no final do nome
do arquivo indica que se trata de um programa escrito em Python.

No ambiente virtual de aprendizagem, há um vídeo explicando exatamente
como isso deve ser realizado.

2.1 Comando de saída

A primeira instrução em linguagem Python que estudaremos é o comando print. Como o
seu nome sugere, este comando imprime (ou melhor, escreve) alguma coisa na tela do com-
putador. Um exemplo de impressão de uma frase é apresentado a seguir.

print(‘Sou aluno da Universidade Aberta do Brasil.’)
</>

Guido van Rossum
(1956 -)

FASCICULO_Introducao_Algoritmos.indd 29 27/03/2019 11:09:14

30

Observe que a frase é indicada entre um bloco de aspas simples. A saída deste comando é:

Sou aluno da Universidade Aberta do Brasil.

Também é possível escrever números usando o comando print.

print(1234)
</>

Agora não é preciso usar aspas. A saída é:

1234

2.2 Variáveis e operações aritméticas

Mas como os dados são manipulados e processados?

Antes de entender como os dados são representados em Python, vamos entender como
isso acontece no computador.

Como o computador armazena os dados? Como eles podem ser acessados
pelo programa?

Todo computador possui uma memória para armazenar dados. O programa de computa-
dor tem acesso a pedaços dessa memória que são chamados de variáveis. Cada variável pos-
sui um nome (por exemplo, x) que é associado ao pedaço específico da memória reservado
para ela.

FASCICULO_Introducao_Algoritmos.indd 30 27/03/2019 11:09:14

31

X
5

Para facilitar o entendimento, podemos enxergar a memória do computador como uma es-
pécie de gaveteiro gigante. Cada gaveta é uma variável. Como em qualquer gaveteiro, é pos-
sível manipular cada uma das gavetas da memória individualmente. Dessa forma, podemos
guardar um número na quinta gaveta, por exemplo.

Assim, toda vez que uma variável é criada em um programa de computador, uma das gave-
tas da memória é associada a ela. Suponha que a variável x foi criada. Uma gaveta da memó-
ria (a quinta gaveta, por exemplo) foi associada a x. Toda vez que esta variável for manipula-
da, o conteúdo dessa gaveta será acessado.

REGRAS PARA NOMES DE VARIÁVEIS

•	 Deve começar com uma letra ou subscrito.

•	 Nunca pode começar com um número.

•	 Pode conter letras maiúsculas, minúsculas, números e subscrito.

•	 Não se pode utilizar como parte do nome de uma variável os símbolos: { (+ - * / \ , ; . ! ?

•	 Não se pode utilizar acentos.

•	 Exemplos de nomes inválidos: 5num, ?hoje e +h.

•	 Exemplos de nomes válidos: var, numero, media e soma.

•	 As palavras and, as, assert, break, class, continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, in, is, lambda, nonlocal, not, or, pass, raise, re-
turn, try, while, with, yield, True, False e None não devem ser escolhidas como no-
mes de variáveis

Uma dica importante é sempre escolher um nome intuitivo para a variável. Um bom nome
descreve o dado armazenado e facilita o entendimento do código.

FASCICULO_Introducao_Algoritmos.indd 31 27/03/2019 11:09:14

32

A linguagem possui instruções que criam e manipulam o conteúdo individual de cada va-
riável. O quadro a seguir mostra as instruções em Python para manipular variáveis, realizar
operações aritméticas (soma, multiplicação, divisão, resto da divisão e subtração) e compa-
rar valores.

OPERAÇÕES ARITMÉTICAS E MANIPULAÇÃO DE VARIÁVEIS EM PYTHON

Tipo de operação Operador Exemplo

Atribuição de valor a variável = x = 5

Soma de dois números + 5 + 1

Subtração de dois números - 5 - 1

Multiplicação de dois números * 5 * 1

Divisão de dois números / 5 / 2

Resto da divisão inteira % 5 % 2

Para ilustrar como estes comandos podem ser utilizados na prática, vamos escrever um
programa que calcula e imprime na tela a média de 5 (cinco) números.

Como você faria para encontrar a média de 5 (cinco) números usando lápis
e papel?

5+10+15+20+25
5

FASCICULO_Introducao_Algoritmos.indd 32 27/03/2019 11:09:14

33

Com lápis e papel, somaríamos os números e dividiríamos o resultado por cinco.

Pensando em um programa de computador, os cinco números são os dados de entrada do
problema e precisam ser armazenados em variáveis.

Vamos precisar de quantas variáveis? Cinco?

Na verdade, seria interessante utilizar 7 (sete) variáveis: 5 (cinco) para os dados de entrada,
uma para armazenar o resultado da soma e outra para a média. A solução desse problema
utiliza as instruções de atribuição de valores, soma e divisão. No fim, também utilizamos o
comando print para mostrar o resultado na tela do computador. O código a seguir mostra o
programa de computador criado.

a = 1

b = 10

c = 5

d = 6

e = 4

soma = a + b + c + d + e

media = soma/5

print(“Media dos numeros digitados: “, media)

</>

Media dos numeros: 5.2

FASCICULO_Introducao_Algoritmos.indd 33 27/03/2019 11:09:15

34

a

b
c
d

e
soma

média
5.2

2.3 Comando de entrada

 Uma limitação da solução anterior é que para alterar os números temos que mudar os va-
lores no próprio código. Agora, vamos estudar o comando input e entender como realizar a
leitura de valores a partir do teclado.

No exemplo a seguir, lemos um nome digitado do teclado e o armazenamos na variável
nome.

nome = input(‘Qual o seu nome? ‘)

print(‘Olá ‘ + nome)

</>

A saída do programa é apresentada a seguir.

Qual o seu nome?

Note que a frase informada ao comando input foi impressa na tela. Agora, o interpretador
Python entrou em um modo que permite que o usuário digite um texto no teclado. Após o
usuário digitar o que deseja e pressionar a tecla Enter, os dados digitados serão armazenados
na variável nome.

Ao fim do processamento do programa, a seguinte saída será apresentada na tela.

FASCICULO_Introducao_Algoritmos.indd 34 27/03/2019 11:09:15

35

Qual o seu nome? Guido

Olá Guido

O programa a seguir mostra como o código do problema da média dos 5 (cinco) números
pode ser adaptado para ler os valores do teclado.

a = int(input(“Informe um número: “))

b = int(input(“Informe um número: “))

c = int(input(“Informe um número: “))

d = int(input(“Informe um número: “))

e = int(input(“Informe um número: “))

soma = a + b + c + d + e

media = soma/5

print(“Média dos números digitados: “, media)

</>

Neste código, o comando int foi utilizado para transformar o texto digitado pelo usuário em
um número inteiro.

Informe um número: 1

Informe um número: 1

Informe um número: 1

Informe um número: 2

Informe um número: 1

Média dos números digitados: 1.2

FASCICULO_Introducao_Algoritmos.indd 35 27/03/2019 11:09:15

36

Nosso último exemplo desta unidade é um programa que calcula a área de uma circunfe-
rência.

Como você faria para calcular a área de um círculo usando lápis e papel?

A = π×r2

A área A de uma circunferência de raio r é dada por:

A = π*r2

Para transformar essa equação em um programa de computador, vamos precisar de 2 (duas)
variáveis: uma para o raio e outra para área. O valor da variável raio deve ser lido do teclado
e o valor da área deve ser calculado utilizando a fórmula. O código a seguir implementa esta
ideia.

raio = float(input(“Informe o raio do círculo: “))

area = 3.14 * raio * raio

print(Área: ‘, area)

</>

FASCICULO_Introducao_Algoritmos.indd 36 27/03/2019 11:09:16

37

O comando float foi utilizado para transformar o texto digitado pelo usuário no teclado em
um número real (de ponto flutuante).

Informe o raio do círculo: 2

Área: 12.5

FASCICULO_Introducao_Algoritmos.indd 37 27/03/2019 11:09:16

FASCICULO_Introducao_Algoritmos.indd 38 27/03/2019 11:09:16

UNIDADE 3

FASCICULO_Introducao_Algoritmos.indd 39 27/03/2019 11:09:16

FASCICULO_Introducao_Algoritmos.indd 40 27/03/2019 11:09:16

41

UNIDADE 3
Estruturas de decisão

Após a leitura deste capítulo, você será capaz de:

•	 	Entender como um programa de computador pode tomar decisões e escolher entre
executar ou não um conjunto de comandos.

•	 Aprender a escrever expressões lógicas utilizando os operadores e, ou e não.

•	 Visualizar os valores de uma expressão lógica utilizando uma Tabela Verdade.

•	 	Conhecer o comandos if e else e escrever programas em Python que realizam decisões.

1 Introdução

Na Unidade II, vimos como escrever programas em Python que podem executar uma sequ-
ência de comandos de forma linear (executando sempre um comando após o outro). Embora
esse conhecimento seja suficiente para resolver muitos problemas, há uma limitação impor-
tante: não podemos escrever programas que tomam decisões e escolhem executar ou não um
conjunto de comandos.

i < 5 i ≥ 5
   

FASCICULO_Introducao_Algoritmos.indd 41 27/03/2019 11:09:16

42

O mecanismo da linguagem de programação que permite decidir se um determinado bloco
de comandos deve ou não ser executado é chamado de comando condicional. A decisão é
realizada a partir do resultado de uma expressão em álgebra booleana.

2 Lógica booleana e Expressões relacionais

A álgebra booleana é o ramo da álgebra que considera variáveis que assumem os valores ló-
gicos verdadeiro e falso. Ao contrário da álgebra elementar, em que os valores das variáveis
são números, e as operações primárias são adição e multiplicação, as operações principais
da álgebra booleana são a conjunção e, a disjunção ou e a negação não. A origem do nome
é uma homenagem ao matemático inglês George Boole (1815, 1864).

Em Python, os valores lógicos verdadeiro e falso são denotados pelas palavras True e False.
Os operadores lógicos de conjunção, disjunção e negação são denotados pelas palavras and,
or e not, respectivamente.

AND OR NOT

Está
chovendo

Está frio

Usando AND, a expressão será
verdadeira apenas se as duas
expressões são verdadeiras

Está
chovendo

Está frio

Usando OR, a expressão será
verdadeira se uma das

expressões for verdadeira

Está
chovendo

Está frio

Usando NOT, a expressão será
verdadeira apenas quando a

expressão negada não for
verdadeira

Uma maneira de visualizar e entender uma expressão lógica é construir sua Tabela Verdade.
A Tabela Verdade é uma de tabela que contém uma coluna para cada variável envolvida e
uma linha para cada combinação possível de valores (GERSTING, 2016). A seguir, apresenta-
mos as Tabelas Verdade dos operadores and, or e not.

FASCICULO_Introducao_Algoritmos.indd 42 27/03/2019 11:09:16

43

TABELA VERDADE DO OPERADOR AND

A B A and B

True True True

True False False

False True False

False False False

TABELA VERDADE DO OPERADOR OR

A B A or B

True True True

True False True

False True True

False False False

TABELA VERDADE DO OPERADOR NOT

A not A

True False

False True

Observe que a expressão A and B é verdadeira apenas se A e B forem verdadeiras. A expres-
são A or B é verdadeira sempre que uma delas é verdadeira, e a expressão not A é verdadeira
apenas se A é falsa.

Existe alguma relação entre estes operadores e a linguagem que falamos
no cotidiano? O que queremos dizer quando falamos, por exemplo, que
vamos ficar em casa se estiver frio e estiver chovendo? E quando dizemos
que vamos ficar em casa se estiver frio ou estiver chovendo?

Em Python, podemos escrever o código a seguir para verificar o resultado destas operações.

A = True

B = False

print(A and B)

</>

FASCICULO_Introducao_Algoritmos.indd 43 27/03/2019 11:09:16

44

Como esperado, a saída deste código é False.

False

Em programação, também podemos chegar a um valor booleano (True ou False) fazendo
uma comparação. As expressões que realizam uma comparação e devolvem um valor boole-
ano são chamadas de expressões relacionais.

Uma expressão relacional pode ser enxergada como uma pesagem em uma balança de pra-
tos em que verificamos se duas coisas são iguais, diferentes ou se uma coisa é menor, maior,
menor ou igual ou maior ou igual à outra.

OPERADORES RELACIONAIS

Operador Exemplo Descrição

== A == B O resultado da expressão é verdade apenas se A é igual à B.

!= A != B O resultado da expressão é verdade apenas se A é diferente de
B.

< A < B O resultado da expressão é verdade apenas se A é menor que B.

> A > B O resultado da expressão é verdade apenas se A é maior que B.

<= A <= B O resultado da expressão é verdade apenas se A é menor ou
igual à B.

>= A >= B O resultado da expressão é verdade apenas se A é maior ou
igual à B.

O resultado das expressões relacionais também pode ser verificado no computador. O se-
guinte código mostra um exemplo para o operador < (menor).

FASCICULO_Introducao_Algoritmos.indd 44 27/03/2019 11:09:17

45

A = 1

B = 5

print(A < B)

</>

Como esperado, a saída deste código é True.

True

3 Comandos if e if-else

O if é o principal comando condicional da linguagem Python. Sua sintaxe é apresentada a
seguir

...

if A:

		 print(‘A é verdadeira’)

</>

Neste exemplo, o comando

print(‘A é verdadeira’)

será executado apenas se o valor de A for True. Dessa maneira, podemos escolher quais
comandos serão utilizados.

Podemos utilizar este comando, por exemplo, para verificar se um número digitado pelo
usuário é par.

n = int(input(‘Digite um número: ‘))

if n % 2 == 0:

		 print(‘Você digitou um número par’)

</>

FASCICULO_Introducao_Algoritmos.indd 45 27/03/2019 11:09:17

46

A tabulação antes da instrução

print(‘Você digitou um número par’)

serve para indicar que o comando faz parte do bloco de código interno do if.

1, 2, 3, 4, 5, 6 ...
1, 0, 1, 0, 1, 0 ...

Tal como fizemos na unidade anterior, usamos o comando input para fazer a leitura de um
número inteiro do teclado. Para verificar se um número é par, olhamos para o resto da divisão
inteira de n por 2. Apenas os números pares tem resto igual a zero. Por fim, usamos o opera-
dor relacional == para verificar se o resto vale zero.

Quando este programa é executado, a mensagem ‘Você digitou um número par’ será im-
pressa apenas se o número digitado pelo usuário for par. Se o número digitado for ímpar,
nada será impresso.

Quando temos que executar um comando, e também quando a condição é falsa, podemos
utilizar o comando if-else. Os comandos que fazem parte do bloco de código else serão exe-
cutados se a expressão for falsa. O código abaixo mostra um exemplo.

FASCICULO_Introducao_Algoritmos.indd 46 27/03/2019 11:09:17

47

n = int(input(‘Digite um número: ‘))

if n % 2 == 0:

		 print(‘Você digitou um número par’)

else:

		 print(‘Você digitou um número ímpar’)

</>

Note agora que, se o número digitado for ímpar, a frase ‘Você digitou um número ímpar’
será impressa na tela. Tal como antes, a mensagem ‘Você digitou um número par’ será im-
pressa apenas se o número digitado pelo usuário for par.

Para ilustrar como esses comandos podem ser utilizados na prática, vamos apresentar um
exemplo de programa que lê e ordena (de maneira crescente) 3 (três) números inteiros.

Vamos precisar de quantas variáveis? Três? Seis?

Vamos precisar de, pelo menos, 3 (três) variáveis: uma para número lido do teclado. Usando
o que aprendemos na Unidade II, vamos ler os três números inteiros com o comando input.

a = int(input(‘Informe um número: ‘))

b = int(input(‘Informe um número: ‘))

c = int(input(‘Informe um número: ‘))

</>

Pronto! Resolvemos uma pequena parte do problema. A ideia é ir resolvendo o problema
aos poucos. Se você prestar um pouco de atenção, perceberá que esta é a mesma estratégia
apresentada na Unidade I.

FASCICULO_Introducao_Algoritmos.indd 47 27/03/2019 11:09:17

48

Mas como ordenar os três números?

a b c

Suponha que estamos trabalhando com um problema um pouco diferente. Imagine que
temos três caixas com pesos desconhecidos e queremos ordená-los do menor para o maior
usando uma balança de pratos. Com um pouco de atenção, é possível perceber que, na essên-
cia, este é o mesmo problema que estamos resolvendo.

Seguindo a estratégia da Unidade I precisamos:

1. Entender o problema ;

2. Construir uma solução ;

3. Executar a solução construída;

4. Avaliar a solução e, dependendo do resultado, voltar ao início.

ANOTAÇÕES DA FASE DE ENTENDIMENTO DO PROBLEMA

Após um tempo pensando, percebemos que:

•	 Devemos ordenar as três caixas em ordem crescente.

•	 É possível comparar duas caixas com uma pesagem na balança.

•	 A solução deve funcionar para todos os possíveis pesos de caixas.

FASCICULO_Introducao_Algoritmos.indd 48 27/03/2019 11:09:18

49

ANOTAÇÕES DA FASE DE CONSTRUÇÃO DO ALGORITMO

Infelizmente, não fica evidente, logo no começo, como ordenar as 3 (três) caixas.
Simplificando o problema, suponha que devemos ordenar apenas 2 (duas) caixas.

a
b

Quando comparamos duas caixas a e b, ganhamos uma informação sobre sua ordem
relativa. Esta ordem não muda. Podemos guardar o resultado da comparação colo-
cando uma etiqueta na caixa mais leve e outra na mais pesada. O resultado parcial é:

caixa mais leve caixa mais pesada<
c

Brincando com as pesagens, podemos notar que se a caixa c é mais leve que a caixa,
sabemos que a caixa c é a mais leve de todas. A ordem total é:

c
caixa mais leve caixa C caixa mais pesada< <

FASCICULO_Introducao_Algoritmos.indd 49 27/03/2019 11:09:18

50

c

Caso contrário (a caixa c é mais pesada que a caixa mais leve), sabemos certamente
que a caixa com o rótulo ‘mais leve’ é a menos pesada de todas. Não sabemos nada
sobre a relação de ordem que existe entre a caixa c e a caixa mais pesada, e vamos
precisar realizar mais uma pesagem.

c

Se a caixa c é mais leve que a caixa que contém o rótulo mais pesada, então a caixa c
é a segunda mais leve. A ordem total é:

c
caixa Ccaixa mais leve caixa mais pesada< <

Se a caixa c é mais pesada que a caixa que tem o rótulo mais pesada, então ela é a
mais pesada de todas. A ordem total é:

c
caixa Ccaixa mais leve < < caixa mais pesada

FASCICULO_Introducao_Algoritmos.indd 50 27/03/2019 11:09:19

51

ANOTAÇÕES DA FASE DE EXECUÇÃO DO ALGORITMO

O algoritmo faz três pesagens e consegue ordenar as três caixas independentemente
do seu peso. O uso das etiquetas reduziu o número de pesagens.

ANOTAÇÕES DA AVALIAÇÃO DA RESPOSTA

Alcançamos a solução do problema?

Sim, conseguimos!

O que falta para resolver o problema original?

Para resolver o problema original, podemos notar que:

•	 É possível comparar dois números usando o operador < e a instrução if.

•	 É possível utilizar variáveis no lugar dos rótulos das caixas.

A solução completa é apresentada a seguir.

FASCICULO_Introducao_Algoritmos.indd 51 27/03/2019 11:09:19

52

a = int(input(‘Informe um número: ‘))

b = int(input(‘Informe um número: ‘))

c = int(input(‘Informe um número: ‘))

if a < b:

 mais_leve = a

 mais_pesada = b

else:

 mais_leve = b

 mais_pesada = a

if c < mais_leve:

 print(c, mais_leve, mais_pesada)

else:

 if(c < mais_pesada):

 print(mais_leve, c, mais_pesada)

 else:

 print(mais_leve, mais_pesada, c)

</>

Referências
Judith L. GERSTING. Fundamentos Matemáticos para a Ciência da Computação. LTC, 2016.

FASCICULO_Introducao_Algoritmos.indd 52 27/03/2019 11:09:19

UNIDADE 4

FASCICULO_Introducao_Algoritmos.indd 53 27/03/2019 11:09:19

FASCICULO_Introducao_Algoritmos.indd 54 27/03/2019 11:09:19

55

UNIDADE 4
Estruturas de repetição

Após a leitura deste capítulo, você será capaz de:

•	 	Identificar a estrutura repetitiva de um problema.

•	 Conhecer o comando while e escrever programas em Python que realizam repetições.

•	 Aprender a testar e simular programas com comandos de repetição.

1 Introdução

Sem dúvida alguma, a capacidade de repetir operações foi decisiva para consolidar os com-
putadores como ferramentas de resolução de problemas. Uma vantagem clara é que na repe-
tição realizada por um computador todas as operações são executadas do mesmo jeito.

Nesta unidade, estudaremos um comando que pode ser usado para executar uma ou mais
instruções repetidamente, até um número desejado de vezes. As repetições são organizadas
em ciclos. No início de cada ciclo, uma expressão lógica é testada para determinar se a repe-
tição deve prosseguir ou não.

Para entender como isso acontece, vamos considerar um exemplo. Suponha que temos que
escrever um programa que mostra os números 1, 2, 3 e 4 na tela do computador.

Usando o que aprendemos na Unidades II e III, chegamos à solução a seguir.

print(1)

print(2)

print(3)

print(4)

</>

Imagine agora que temos que imprimir todos os números entre 1 e 100.

Agora, usando apenas o que sabemos, vamos precisar escrever 100 linhas de código! Não
será difícil cometer erros de digitação, esquecendo de imprimir um número, por exemplo.

FASCICULO_Introducao_Algoritmos.indd 55 27/03/2019 11:09:19

56

print(1)

print(2)

print(3)

print(4)

…

print(97)

print(98)

print(99)

print(100)

</>

Afinal, como podemos superar a limitação dessa solução?

Para isso, vamos precisar usar um novo comando.

2 Comando while

O comando while é utilizado para executar um bloco de comandos enquanto uma condição
é satisfeita. Importante: a repetição deixa de ser executada quando a condição é falsa. A es-
trutura do comando é apresentada a seguir.

while condicao:

 comandos

</>

FASCICULO_Introducao_Algoritmos.indd 56 27/03/2019 11:09:19

57

Três perguntas principais nos ajudam a utilizar este comando:

•	 O que deve ser repetido?

•	 Quantas vezes devem se repetir?

•	 Qual condição pode ser utilizada para representar essa repetição?

Agora que já conhecemos o comando while, podemos voltar ao problema da impressão de
todos os números entre 1 e 100.

Com um pouco de atenção, é possível perceber que a instrução

print()

é repetida 100 vezes.

O que muda de uma linha para outra é apenas o valor entre parênteses. Este valor varia de
1 a 100.

IMPORTANTE
Identificar o que se repete e o que muda é a tarefa chave nesse processo.

Uma estratégia muito útil é escrever um código com todos os ciclos de repetição. Isso deixa
claro quais serão as operações serão repetidas.

O código a seguir mostra os 100 ciclos de repetição usados para imprimir os 100 números.
Em geral, podemos usar uma variável para representar o conteúdo que não é fixo. Uma ideia
é iniciar uma variável i valendo 1 e incrementar i a cada ciclo da repetição.

FASCICULO_Introducao_Algoritmos.indd 57 27/03/2019 11:09:19

58

1.		 i = 1

2.		 print(i)

3.		 i = i + 1

4.		 print(i)

5.		 i = i + 1

6.		 print(i)

7.		 i = i + 1

8.		 print(i)

9.		 i = i + 1

10.	 …

11.	 print(i)

12.	 i = i + 1

</>

Com esse código, podemos responder às questões colocadas acima.

O que deve ser repetido?

Resposta: Impressão dos números 1, 2, 3, ... 100. Neste caso, isso é feito repetindo os
comandos:

print(i)

i = i + 1

Quantas vezes devem se repetir?

Resposta: 100 vezes.

FASCICULO_Introducao_Algoritmos.indd 58 27/03/2019 11:09:20

59

Qual condição pode ser utilizada para representar essa repetição?

Resposta: Podemos utilizar uma variável para contar quantas repetições já foram exe-
cutadas. No código, a própria variável i já faz isso. Dessa forma, a condição pode ser
definida usando: i ≤ 100. Lembre-se: a impressão será interrompida quando i valer 101.

Com essas informações, podemos escrever o código com while a seguir:

1.		 i = 1

2.		 while i <= 100:

3.	 		 print(i)

4.	 		 i = i + 1

</>

Tal como queríamos, as linhas 3 e 4 do código serão executadas 100 vezes. Na 101ª vez, a
condição deixa de ser verdadeira, pois a variável i vale 101 (não é mais “menor ou igual a 100”)
e a repetição é interrompida.

2.1 Encontrando o maior número digitado

Vamos resolver outro problema para ilustrar a aplicação desse comando na prática. O ob-
jetivo agora é escrever um programa que lê um número inteiro n e, em seguida, lê n valores
inteiros e mostra o maior deles na tela.

Após a leitura de n igual a 4, por exemplo, seu programa deve ler 4 (quatro) números intei-
ros. Estes quatro números poderiam ser, digamos, 6, 4, 1 e 7. Seu programa deveria imprimir,
neste caso, o número 7 (o maior número digitado pelo usuário).

Para resolver este problema, vamos utilizar uma estratégia muito interessante. A ideia é
dividir o problema em partes bem pequenas, resolver cada uma delas separadamente e, de-
pois, juntar tudo. Cada parte bem pequena do problema precisa ser cuidadosamente estuda-
da. Este estudo cuidadoso vai te ajudar a traduzir as regras subjacentes envolvidas na ques-
tão em uma forma que possa ser absorvida pelo seu subconsciente e, quando você menos
esperar, o problema estará resolvido. Vamos lá!

O primeiro subproblema desta atividade diz respeito à leitura dos números. É sempre bom
começar pela leitura. Afinal, como vamos resolver o problema se nem conseguimos fazer a
leitura dos valores?

FASCICULO_Introducao_Algoritmos.indd 59 27/03/2019 11:09:20

60

Para fazer a leitura, precisamos de variáveis e de algumas chamadas do comando input.

n = int(input(‘Quantos números serão lidos? ‘))
</>

Agora que já conseguimos ler os números, vamos pensar no que podemos fazer para iden-
tificar o maior deles. Pode parecer difícil, mas temos uma técnica. O princípio dessa técnica é
simples: sempre que encontrar um problema difícil, você deve tentar diminuí-lo ou simplificá-
-lo um pouco. Faça isso até que o problema fique simples demais para simplificar novamente
e, depois, volte resolvendo os problemas maiores (mais complicados).

Por exemplo, o que acontece quando temos apenas um número? É bem mais fácil resolver
este problema! O maior número em uma sequência de um número, é sempre o único número!
Em Python, isto pode ser escrito da seguinte forma:

1.		 num = int(input(‘Informe um número: ‘))

2.		 maior = num;

3.		 print(“O maior número é: “, maior);

</>

E se tivéssemos dois números? Qual deles poderia ser o maior? Há, obviamente, duas pos-
sibilidades e, para ter certeza, vamos precisar usar o comando de comparação if, estudado na
Unidade III. O código a seguir implementa essa ideia.

1.		 num = int(input(‘Informe um número: ‘))

2.		 maior = num;

3.	

4.		 num = int(input(‘Informe um número: ‘))

5.		 if maior < num:

6.	 		 maior = num

7.		 print(“O maior número é: “, maior);

</>

FASCICULO_Introducao_Algoritmos.indd 60 27/03/2019 11:09:20

61

E se tivéssemos três números? Teríamos três possibilidades e precisaríamos de mais uma
comparação. O código a seguir mostra uma implementação possível.

1.		 num = int(input(‘Informe um número: ‘))

2.		 maior = num;

3.	

4.		 num = int(input(‘Informe um número: ‘))

5.		 if maior < num:

6.	 		 maior = num

7.	

8.		 num = int(input(‘Informe um número: ‘))

9.		 if maior < num:

10.	 	maior = num

11.	

12.	 print(“O maior número é: “, maior);

</>

Este exemplo é revelador. É possível perceber agora que para analisar quatro números, va-
mos precisar de mais uma comparação. Generalizando, podemos perceber que com n nú-
meros vamos precisar analisar n possibilidades e podemos fazer isto com n - 1 comparações
(comandos if)!

Agora que descobrimos a estrutura do problema, podemos traduzir este conhecimento em
um código com repetição utilizando o comando while. É só identificar a condição de parada
e as ações que precisam ser repetidas.

Com um pouco de atenção, é possível perceber que o bloco de comandos

num = int(input(‘Informe um número: ‘))

if maior < num:

 maior = num

deve ser repetido n-1 vezes.

FASCICULO_Introducao_Algoritmos.indd 61 27/03/2019 11:09:20

62

O código resultante é apresentado a seguir.

1.		 n = int(input(‘Quantos números serão lidos? ‘))

2.		 num = int(input(‘Informe um número: ‘))

3.		 maior = num;

4.		 i = 1

5.		 while i <= n-1:

6.	 		 num = int(input(‘Informe um número: ‘))

7.	 		 if maior < num:

8.	 		 maior = num

9.	 		 i = i + 1

10.	 print(“O maior número é: “, maior);

</>

2.2 Testando e simulando um código com lápis e papel

Há basicamente duas maneiras de testar informalmente se um programa está fazendo o
que se espera: executá-lo no computador ou inspecioná-lo manualmente. Nesta seção, va-
mos aprender como realizar a inspeção manual, também chamada de teste de mesa (LEITE,
2006).

A inspeção manual é uma maneira de entender o que acontece em cada instrução de um
programa e consiste em 4 (quatro) passos:	

1. Identificar todas as variáveis.

2. Criar uma tabela com uma coluna para cada variável.

3. Percorrer o código linha a linha, preenchendo a tabela. Cada coluna de uma variável
deve conter o respectivo valor dessa variável após a linha de código ser executada. Dica: Ano-
te no canto da tabela a linha do código que está sendo analisada.

4. Verificar se o resultado produzido é o esperado.

FASCICULO_Introducao_Algoritmos.indd 62 27/03/2019 11:09:20

63

No programa que acabamos de escrever para encontrar o maior número digitado pelo usu-
ário, há 4 (quatro) variáveis: n, num, maior e i.

Para simular este programa, vamos criar uma tabela com 4 (quatro) colunas e percorrer
cada linha do código e atualizar o valor das variáveis.

O quadro a seguir mostra a tabela criada neste caso. Adicionamos uma coluna para guardar
a linha do código que foi executada. Os traços indicam que nenhum valor foi armazenados
nas variáveis.

Variáveis

Linha n num maior I

- - - -

Agora que a Tabela já foi criada, precisamos percorrer cada linha do código. Lembre-se de
que as operações dentro do bloco de repetição deixam de ser executadas apenas quando a
condição do comando while é falsa.

Após executar a instrução

n = int(input(‘Quantos números serão lidos? ‘))

o usuário informará a quantidade de números que serão digitados na sequência. Vamos
assumir neste exemplo que o número digitado foi 3 (três). Este valor é armazenado na coluna
da variável n.

Variáveis

Linha n num maior I

1 3 - - -

Observe que a coluna da variável n foi atualizada na Tabela.

Continuando a simulação, atualizamos a tabela após a instrução:

num = int(input(‘Informe um número: ‘))

Variáveis

Linha n num maior i

1 3 - - -

2 3 6 - -

FASCICULO_Introducao_Algoritmos.indd 63 27/03/2019 11:09:20

64

Assumimos que o usuário digitou o número 6.

Após a instrução:

	 maior = num

temos os seguintes valores na tabela:

Variáveis

Linha N num maior i

1 3 - - -

2 3 6 - -

3 3 6 6 -

E após a instrução

	 i = 1

a tabela terá os seguintes valores:

Variáveis

Linha N num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

Como chegamos ao comando de repetição, sabemos que a instrução

	 while i <= n-1:

poderá ser executada várias vezes.

Toda vez que esta linha for executada, testamos a condição

	 i <= n-1	

Se esta condição for verdadeira, o bloco de códigos da repetição será executado, e executa-
mos a linha 6. Se for condição for falsa, por outro lado, pulamos para a linha 10.

FASCICULO_Introducao_Algoritmos.indd 64 27/03/2019 11:09:21

65

Para testar a condição, vamos olhar os valores de i e n na tabela. A variável i vale 1 e a vari-
ável n vale 3. Logo, 1 <= 2 é verdade.

Como a condição é verdadeira, vamos executar a instrução:

	 num = int(input(‘Informe um número: ‘))

Assumindo que o valor digitado pelo usuário é 4, a tabela contém os seguintes valores.

Variáveis

Linha N num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

6 3 4 6 1

Agora, a instrução

	 if maior < num:

será executada.

Como vimos na Unidade III, o bloco da condicional (linha 8) será executado apenas se a
condição do comando if for verdadeira. Caso contrário, a instrução da linha 9 será executada.

Vamos verificar, então, se o valor da variável maior armazenado na tabela é menor que o
valor da variável num. Como maior vale 6 e num vale 4, esta condição é falsa.

Como a condição é falsa, vamos executar a instrução:

	 i = i + 1

Após esta instrução, a tabela terá a seguinte configuração.

FASCICULO_Introducao_Algoritmos.indd 65 27/03/2019 11:09:21

66

Variáveis

Linha N Num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

6 3 4 6 1

8 3 4 6 2

Como estamos executando o bloco de repetição, devemos voltar e executar novamente a
instrução da linha 5:

	 while i <= n-1:

Mais uma vez, vamos testar a condição:

	 i <= n-1	

Como fizemos lá atrás, vamos olhar os valores de i e n na tabela. A variável i agora vale 2, e
a variável n vale 3. Logo, 2 <= 2 é verdade.

Como esta condição é verdadeira, vamos executar o bloco da repetição mais uma vez. Assu-
mindo que o valor digitado pelo usuário foi 7, após a instrução

	 num = int(input(‘Informe um número: ‘))

a tabela agora contém os seguintes valores.

Variáveis

Linha n Num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

6 3 4 6 1

8 3 4 6 2

6 3 7 6 2

FASCICULO_Introducao_Algoritmos.indd 66 27/03/2019 11:09:21

67

Novamente, será executada a instrução:

	 if maior < num:

Como vimos, o comando da linha 8 será executado apenas se a condição

	 maior < num

for verdadeira.

Como a condição é verdadeira (note que a variável maior vale 6 e num vale 7), vamos exe-
cutar a instrução:

	 maior = num

Após a execução desta instrução, a tabela contém os seguintes valores.

Variáveis

Linha n num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

6 3 4 6 1

8 3 4 6 2

6 3 7 6 2

8 3 7 7 2

Após a instrução

	 i = i + 1

a tabela contém os seguintes valores.

FASCICULO_Introducao_Algoritmos.indd 67 27/03/2019 11:09:21

68

Variáveis

Linha n num maior i

1 3 - - -

2 3 6 - -

3 3 6 6

4 3 6 6 1

6 3 4 6 1

8 3 4 6 2

6 3 7 6 2

8 3 7 7 2

9 3 7 7 3

Novamente, como estamos em um bloco de repetição, devemos voltar e executar a instru-
ção da linha 5

	 while i <= n-1:

Vamos testar a condição:

	 i <= n-1	

Conferindo a tabela, percebemos que a variável i vale 3, e a variável n também vale 3. Logo,
3 <= 2 não é verdade.

Como esta condição é falsa, vamos executar a instrução da linha 10.

Após instrução da linha 10

	 print(“O maior número é: “, maior);

teremos a seguinte saída.

O maior número é: 7

Como não há mais instruções, o programa acaba. Observe que o programa produziu exa-
tamente o resultado esperado. Foram digitados os números 6, 4 e 7, e o programa encontrou
que o 7 é o maior deles.

FASCICULO_Introducao_Algoritmos.indd 68 27/03/2019 11:09:21

69

Pensando um pouco na mecânica desse algoritmo, percebemos que ele funciona de modo
semelhante a uma pessoa que seleciona a maior caixa em uma esteira. O programa pega a
primeira caixa e, a cada momento, compara a caixa que está em sua mão com a que está pas-
sando na esteira. Se a caixa que está passando é maior, ele troca. No fim, não é difícil perceber
que a maior caixa estará na mão do algoritmo.

Palavras Finais

Na sociedade contemporânea, as Tecnologias de Informação e Comunicação (TICs) desem-
penham um papel preponderante em diversas esferas de nossas vidas. Como dissemos no
começo, o computador está em toda parte e, tal como a eletricidade, o passou a compor o
nosso entorno sem que percebêssemos toda a complexidade envolvida.

Pensando nisso, entendemos que a educação não deve somente capacitar o indivíduo a
trabalhar com alguma ferramenta específica, mas também capacitá-lo para perceber o com-
putador como um instrumento de resolução de problemas que aumenta o seu poder cogni-
tivo e operacional. Todo aluno deve ser capaz de criar e propor as suas próprias ferramentas.

Por isso, e considerando o papel que a informática tem representado no desenvolvimento
dos países, entendemos que os estudantes deste curso devem compreender como os proble-
mas são resolvidos por computador e, até mesmo, criar as suas próprias soluções.

Ao profissional licenciado para atuar com Tecnologias Educacionais cabe pensar em como
vencer as barreiras impostas pelos alunos nos diferentes níveis de ensino e contribuir para o
desenvolvimento de esquemas mentais que o capacitem a chegar à solução de problemas.

FASCICULO_Introducao_Algoritmos.indd 69 27/03/2019 11:09:21

70

Só assim, o acesso ao computador, à internet e às TICs em geral será um indicador de inclu-
são, de exercício da cidadania e de transformação na sociedade em que vivemos.

Referências
LEITE, Mario. Técnicas de Programação - Uma Abordagem Moderna. Brasport, 2006.

FASCICULO_Introducao_Algoritmos.indd 70 27/03/2019 11:09:21

FASCICULO_Introducao_Algoritmos.indd 71 27/03/2019 11:09:21

