MINISTERIO DA EDUCACAO
UNIVERSIDADE ABERTA DO BRASIL

EEQ] GRADUACAO EM
I2=!| TEcNOLOGIA EDUCACIONAL
LICENCIATURA

Introducao a
Algoritmos

Raoni Florentino da Silva Teixeira

2 01 9 Secretaria de Tecnologia Educacional
Universidade Federal de Mato Grosso

MINISTERIO DA EDUCACAO
UNIVERSIDADE ABERTA DO BRASIL

GRADUACAO EM
TECNOLOGIA EDUCACIONAL
LICENCIATURA

Introducao a
Algoritmos

Raoni Florentino da Silva Teixeira

2 01 9 Secretaria de Tecnologia Educacional
Universidade Federal de Mato Grosso

FASCICULO_Introducao_Algoritmos.indd 2 @ 27/03/2019 11:09:05

MINISTERIO DA EDUCACAO
UNIVERSIDADE ABERTA DO BRASIL

Introducao a
Algoritmos

Raoni Florentino da Silva Teixeira

Secretaria de Tecnologia Educacional
2 01 9 Universidade Federal de Mato Grosso

FASCICULO_Introducao_Algoritmos.indd 3 @ 27/03/2019 11:09:05

Ministro da Educacgdo
Ricardo Vélez Rodriguez

Presidente da CAPES
Anderson Ribeiro Correia

Diretor Nacional da UAB
Carlos Cezar Mordenel Lenuzza

Reitora UFMT
Myrian Thereza de Moura Serra

Vice-Reitor
Evandro Aparecido Soares da Silva

Pro-reitor Administrativo
Bruno Cesar Souza Moraes

Pré-reitora de Planejamento
Tereza Mertens Aguiar Veloso

Pro-reitor de Cultura, Extensao e Vivéncia
Fernando Tadeu de Miranda Borges

Pré-reitora de Ensino e Graduagado
Lisiane Pereira de Jesus

Proé-reitora de Pesquisa
Patricia Silva Osorio

Secretdrio de Tecnologia Educacional
Alexandre Martins dos Anjos

Coordenador da UAB/UFMT
Alexandre Martins dos Anjos

Coord. do Curso de Licenciatura em Tecnologia Educacional
Silas Borges Monteiro

FASCICULO_Introducao_Algoritmos.indd 4 @ 27/03/2019 11:09:05

SUMARIO

UNIDADE 1 - Algoritmos e Resolugdo de Problemas................ 9

Referéncias . . . 24

UNIDADE 2 - De algoritmos a programas de computador ..27

UNIDADE 3 - Estruturas de decisco . . 41

Referéncias 52
UNIDADE 4 - Estruturas de repeti¢do S5
Referéncias 70

FASCICULO_Introducao_Algoritmos.indd 5 @ 27/03/2019 11:09:05

FASCICULO_Introducao_Algoritmos.indd 6 @ 27/03/2019 11:09:05

UNIDADE 1

FASCICULO_Introducao_Algoritmos.indd 7 @ 27/03/2019 11:09:05

BIBLIOTECA DE iCONES

Reflexao - Sinaliza que uma atividade reflexiva sera desenvolvida. Para isso,
@ sugerimos que leia a questao feita e anote o que vocé pensa a respeito da abor-

dagem, antes de qualquer assimilacao de novos conhecimentos. Vocé pode
convidar seus colegas para debates, questionar a equipe de tutoria e docentes
(usando a ferramenta mensagem ou férum). No final do processo, faca uma sin-
tese dasideias resultantes das novas abordagens que vocé assimilou e/ou construiu, de forma
a se preparar para responder perguntas ou questionamentos sobre o assunto refletido.

Pesquisa e Exercicios - Indica uma atividade de pesquisa ou exercicio pro-
priamente dito, elaborada com a finalidade de conferir a sua compreensao so-
bre um determinado contexto informativo.

Saiba mais - Sugere o desenvolvimento de estudo complementar. No am-
biente virtual do curso, na area de “Saiba Mais”, é possivel localizar materiais
auxiliares, como textos e videos, que tém por premissa apoiar 0 seu processo de
compreensao dos conteudos estudados, auxiliando-o na construcao da apren-
dizagem.

Atividades - Aponta que provavelmente vocé tera uma chamada no
seu Ambiente Virtual de Aprendizagem para desenvolver e postar resul-
tados de seu processo de estudo, utilizando recursos do ambiente vir-
tual.

Vamos aos estudos?

FASCICULO_Introducao_Algoritmos.indd 8 @ 27/03/2019 11:09:06

UNIDADE 1
Algoritmos e Resolucao de Problemas

Apés a leitura deste capitulo, vocé sera capaz de:
« Entender o que é um algoritmo e quais sao suas caracteristicas.
« Perceber arelagao entre légica, algoritmos e resolucao de problemas.

 Identificar as tarefas que devem ser executadas para projetar seu proprio algoritmo.

O topico central deste curso é a resolucao de problemas usando um computador. Trata-se
de uma tarefa importante, pois os computadores estdo em toda parte, e muitas tarefas de
nossa vida cotidiana sdo ou serao realizadas por eles.

Quais tarefas da sua vida cotidiana sdo realizadas por algum tipo de
computador?

E curioso notar o quanto somos dependentes de uma tecnologia, e normalmente néo per- ®
cebemos a intensidade com que isso acontece. Avangos no processamento e na aquisicao de
dados (cameras e outros sensores) permitiram que os computadores fossem aplicados em
uma grande quantidade de tarefas. Este é o caso, por exemplo, das operagdes realizadas pe-
las lavadoras de roupas mais modernas. Também é o caso do mecanismo empregado no cam-
bio automatico de um carro, que controla a troca de marchas de modo quase imperceptivel
para o motorista. Mais recentemente, apareceram ainda carros que estacionam e, até mes-
mo, dirigem de maneira automatica. Todas essas tarefas sao realizadas por computadores e,
como vocé entendera no fim desta aula, também por um algoritmo. Tal como a eletricidade,
o computador é um exemplo de tecnologia que passou a compor 0 nosso entorno sem que
percebéssemos toda a complexidade envolvida.

Algoritmo é o nome dado a sequéncia de a¢des indicando exatamente o que o computador
deve fazer para realizar uma tarefa ou resolver um problema.

FASCICULO_Introducao_Algoritmos.indd 9 @ 27/03/2019

Muhammad ibn Masa al-Khwarizmi (780-850)

O termo algoritmo tem sua origem com o matematico do século IX Muhammad ibn Misa
al-Khwarizmi, cujo sobrenome foi latinizado para Algoritmi. O conceito por trds do nome
existe ha séculos. Matematicos gregos, por exemplo, ja usavam para descrever como encon-
trar nimeros primos ou o maior divisor comum entre dois niumeros inteiros (KNUTH, 1968).

Pesquise sobre o algoritmo Crivo de Eratostenes, utilizado para encontrar
ndmeros primos na Grécia antiga.

CARACTERISTICAS DE UM ALGORITMO

« Asacdes ou operacoes executadas devem ser simples. Agdes complexas devem ser
subdivididas em acdes menores.

« Cada acao ou operacao deve ser entendida precisamente. Nao ha espaco para ambi-
guidades, duvidas ou mal-entendidos.

« Asequéncia de agdes deve ser finita, ou seja, 0 algoritmo deve, obrigatoriamente,
terminar.

Fonte: (CORMEN, 2014, p. 7)

O objetivo deste capitulo é promover uma primeira aproximacao dos cursistas aos concei-
tos relacionados com a resolucao de problemas, ao projeto e a constru¢ao de algoritmos e
programas de computador.

Ressaltamos, porém, que as no¢des aqui apresentadas constituem apenas os principios ba-
sicos. Logo, convidamos todos a participar das atividades do SAIBA MAIS no Guia de Estudos,
e sugerimos a leitura dos livros indicados na se¢ao Referéncias para aprofundamento e deta-
lhes ndo abordados.

ULO_Introducao_Algoritmos.indd 10 @ 27/03/2019 11:09:06

2 Como projetar um algoritmo

Escrever um algoritmo é um processo muito parecido com montar um quebra-cabeca. Cada
peca do projeto em questao € uma agao a ser executada. Em geral, as possiveis agdoes sao
conhecidas, e o desafio é descobrir uma maneira adequada de combinar as pecas.

— —

~
7

%
\ gl

N

/

EEL R
|
&

7

~

Mas afinal, como encontramos a solu¢ao para um problema? Como se da
esse complexo processo? Somos capazes de descrever o que pensamos e/
ou fazemos quando encontramos a solugdo para um problema?

Em varias de suas obras, o matematico e educador hungaro George
Polya (1887, 1985) tentou responder essas e outras perguntas relacio-
nadas com resolucdo de problemas. Polya (1945) identificou e cata-
logou varios métodos sistematicos de solucao de problemas e desco-
berta de conhecimento em matematica, utilizados tanto por alunos,
quanto por professores e pesquisadores.

A estratégia apresentada a seguir € uma adaptacao do trabalho de
Polya (1945), especificamente para o caso do projeto de algoritmos.
Trata-se de uma estratégia iterativa, em que a solugao vai sendo cons-
truida aos pouquinhos. A ideia é que, a cada ciclo, melhoremos nosso
entendimento sobre o problema e nos aproximemos da solucao desejada.

George Pélya (1887-
1985)

FASCICULO_Introducao_Algoritmos.indd 11 @ 27/03/2019

Construir uma solugao

Y
&

Entender o problema Executar a solugdo construida

N

ESTRATEGIA PARA PROJETO DE ALGORITMO

Avaliar a solugdo e,
dependendo do resultado,
voltar ao inicio.

ENTENDIMENTO DO PROBLEMA

« Leia atentamente o enunciado, esclarecendo possiveis duvidas de vocabulario e iden-
tificando os dados do problema e o resultado esperado.

« lIdentifique quais agdes podem ser executadas pelo algoritmo.

« Tente responder as perguntas: Vocé ja viu este problema antes? Vocé conhece um
problema relacionado?

CONSTRUGAO DO ALGORITMO

+ Responda a questéo: Vocé consegue transformar este problema em algum outro que
ja foiresolvido?

« Avalie se o problema ainda parece complicado e, caso necessario, o transforme-o
em um problema auxiliar, eliminando alguma das variaveis envolvidas. Considere os
casos mais simples primeiro.

« Brinque com a solugdo e tente entender o que acontece quando grupos de agdes sao
combinadas.

+ Procure encontrar padrdes e descreva o algoritmo.

ULO_lIntroducao_Algoritmos.indd 12 @ 27/03/2019 11:09:06

ESTRATEGIA PARA PROJETO DE ALGORITMO

EXECUGAO DO ALGORITMO

« Antecipe o resultado da solu¢do do problema.

« Simule a execucao do algoritmo e guarde a solu¢ao encontrada.

AVALIAGAO DA RESPOSTA

« Avalie asolucao. A cada iteracdo vocé aprende mais sobre o problema.

« Seestiver resolvendo um problema auxiliar, aumente a complexidade do problema e
refaca o processo.

« Inicie o processo novamente, se o resultado esperado nao for alcancado.

Fonte: Adaptado de (POLYA, 1945 p. XIV-XV)

Em linhas gerais, a estratégia consiste em quatro etapas. Antes de qualquer coisa, devemos
entender o problema, pois dificilmente vamos resolver o que nao entendemos. Depois, ten-
tamos encontrar conexoes entre os dados do problema e a solu¢ao esperada. Neste ponto,
podemos considerar problemas auxiliares que sao mais simples que o problema original. O
resultado desta etapa é um algoritmo que sera executado passo a passo na etapa seguinte.
Na quarta e ultima etapa, avaliamos a resposta encontrada. Se o resultado esperado nao for
alcancgado, o processo € reiniciado. ®

E importante fazer anotac¢des em todas as etapas da estratégia. O processo requer curiosi-
dade, imaginacgao e trabalho duro. Como no comeco tudo parece complicado, o ideal € adotar
um procedimento semelhante ao do aprendiz de cozinheiro, que comeca seguindo religiosa-
mente o que esta escrito no livro de receitas, sem entender bem o que esta fazendo; e, depois
de alguma pratica, consulta as receitas apenas por alto e a passa a se virar por conta propria,
inventando e descobrindo coisas, métodos e ingredientes.

21 Torre de Hanoi

Para ilustrar a aplicacao da estratégia de solugao proposta por Polya
(1945), tomemos com exemplo o quebra-cabeca classico chamado
Torre de Hanoi, proposto pelo matematico francés Edouard Lucas
(1842,1891) em 1883.

Edouard Lucas
(1842-1891)

@&

FASCICULO_Introducao_Algoritmos.indd 13 27/03/2019

O quebra-cabeca consiste em uma base contendo trés pinos. No primeiro pino, ha 3 (trés)
discos dispostos uns sobre os outros, em ordem crescente de diametro, de cima para baixo. O
desafio € movimentar todos os discos para o ultimo pino, usando o pino do meio para movi-
mentos auxiliares. Apenas o disco do topo pode ser movimentado. Uma restricao importante
deste problema é que um disco nunca pode ficar em cima de outro com diametro menor ao
dele (KNUTH et al. 1988).

Como esse € 0 nosso primeiro problema, infelizmente, nunca vimos um problema pareci-
do antes. O quadro a seguir apresenta algumas propriedades do problema que podem ser
capturadas a partir de uma leitura atenta do enunciado aplicando a estratégia proposta no
trabalho do Polya (1945).

ITERAGAO 1

ANOTAGOES DA FASE DE ENTENDIMENTO DO PROBLEMA

Apos a leitura atenta do enunciado percebemos que:
« Devemos movimentar os trés discos do primeiro para o ultimo pino.

« S6 podemos movimentar um disco por vez. A Unica agao executada, portanto, é movi-
mentar o disco do topo do pino x para o pinoy.

« Umdisco nunca pode ficar em cima de outro com diametro menor ao dele.

14

- B

ULO_lIntroducao_Algoritmos.indd 14 27/03/2019 11:09:06

ANOTAGOES DA FASE DE CONSTRUGAO DO ALGORITMO

« Mesmo apbs a fase de entendimento, o problema ainda parece complicado e néo fica
evidente como movimentar os 3 (trés) discos seguindo as regras apresentadas.

« Vamos ter de simplificar o problema. Suponha agora que devemos mover apenas um
disco. Neste caso, a solucao é relativamente facil. Apenas uma acdo deve ser executa-

da:

Movimentar o disco do pino 1 para o pino 3.

Esta é a configuragéo original da torre.

RN

Apos a execucdo da agao, temos o seguinte resultado.

O queacontece sevocé movimentarodisco que esta notopodo primeiro pino
@ para o pino intermediario? E se, na sequéncia, vocé também movimentar o

menor disco (que esta no terceiro pino) para o pino intermediario?

27/03/2019

@&

FASCICULO_Introducao_Algoritmos.indd 15

A acao

Movimentar o disco do pino 1 para o pino 2.

/7~ N\

tem o seguinte resultado

A Figura a seguir ilustra o resultado da agao:

Movimentar o disco do pino 3 para o pino 2.

Brincando com os movimentos, descobrimos uma maneira de movimentar 2 (dois) discos
para o pino intermediério. E importante notar que nenhuma regra do problema foi quebra-

da por esta solucéo.

O algoritmo encontrado é composto pelas acoes:
Movimentar o disco do pino 1 para o pino 3.
Movimentar o disco do pino 1 para o pino 2.

Movimentar o disco do pino 3 para o pino 2.

ULO_Introducao_Algoritmos.indd 16 @ 27/03/2019 11:09:08

ANOTAGOES DA FASE DE EXECUGAO DO ALGORITMO

O resultado da execugdo de cada agdo do algoritmo é apresentado novamente a seguir.

RN

FASCICULO_Introducao_Algoritmos.indd 17 @ 27/03/2019

ANOTAGOES DA FASE DE EXECUGAO DO ALGORITMO

Alcancamos a solucdo do problema? O que falta para resolver o problema
original?

0 algoritmo encontrado movimenta os 2 (dois) discos menores. Para resolvermos o proble-
ma, precisamos movimentar também o disco com maior diametro.

Como fazemos movimentar o ultimo disco? Como resolver o problema

original, partindo desta solugao intermediaria?

Resolveremos estas questdes na proxima iteracdo da estratégia.

ITERAGCAO 2

ANOTAGOES DA FASE DE ENTENDIMENTO DO PROBLEMA

Apos a primeira iteracdo percebemos que:
E possivel movimentar 2 (dois) discos utilizando 3 (trés) movimentos.

Apds estes trés movimentos, chegamos a seguinte configuragdo de pinos:

L4l |

ULO_Introducao_Algoritmos.indd 18

18

- B

27/03/2019 11:09:09

ANOTAGOES DA FASE DE CONSTRUGAO DO ALGORITMO

O problema agora é ligeiramente mais facil que o problema original. H&4 apenas um
disco no primeiro pino, e o terceiro pino esta vazio.

Depois de tudo que fizemos, fica até facil perceber que podemos mover o disco do
primeiro para o ultimo pino com uma acéo:

Movimentar o disco do pino 1 para o pino 3.

Ll

Apbs a execucdo da acéo, temos o seguinte resultado:.

O que falta para resolver o problema? Como fazemos para mover os dois
discos do pino do meio para o terceiro pino?

FASCICULO_Introducao_Algoritmos.indd 19 @ 27/03/2019

Novamente, vamos brincar com os movimentos.
A acao
Movimentar o disco do pino 2 para o pino 1.

tem o seguinte resultado:.

Agora estamos quase identificando um padrado. O disco do segundo pino pode ser
movimentado para o terceiro pino sem ferir nenhuma regra. Apos este movimento,
temos a seguinte configuracao:

Agora falta apenas movimentar o disco menor do primeiro para o terceiro pino. O
resultado deste movimento € ilustrado a seguir.

ULO_Introducao_Algoritmos.indd 20 @ 27/03/2019 11:09:10

O algoritmo final com todas as operagdes é dado por:
Movimentar o disco do pino 1 para o pino 3.
Movimentar o disco do pino 1 para o pino 2.
Movimentar o disco do pino 3 para o pino 2.
Movimentar o disco do pino 1 para o pino 3.
Movimentar o disco do pino 2 para o pino 1.

Movimentar o disco do pino 1 para o pino 3.

ANOTAGOES DA FASE DE EXECUGCAO DO ALGORITMO (O]

O resultado da execucao de todos os movimentos € apresentado a seguir.

RN

21

- B

FASCICULO_Introducao_Algoritmos.indd 21 27/03/2019

ANOTAGOES DA AVALIAGAO DA RESPOSTA

Chegamos a solugdo procurada e nao ha nada mais a ser feito.

A estratégia foi efetiva e foram necessarias apenas duas rodadas de aplicacao e refinamento
para encontrar a solucao. Dependendo do problema, porém, mais iteracdes sao necessarias.
Outras técnicas podem ser utilizadas (em combinagao ou ndo com a estratégia apresentada
aqui). No futuro, quando vocé se deparar com um problema que exige uma técnica de projeto
mais elaborada, consulte os trabalhos de Edmonds (2010) e Kleinberg e Tardos (2005). @

Como vocé faria para movimentar 4 (quatros) discos do primeiro para o
terceiro pino? Apos quantas iteragdes vocé encontrou uma solugao para o
problema? Ha algum padrdao que pode ser repetido? Quantos movimentos

foram realizados no algoritmo?

Vimos nesta unidade o que é um algoritmo e como ele pode ser construido utilizando uma
estratégia reflexiva composta de varias fases. llustramos a estratégia aplicando-a no proble-
ma chamado de Torre de Hanoi. Como vimos, o principal ponto da estratégia é transformar o
problema original em um problema mais simples, eliminando alguma das variaveis envolvi-
das. Este aspecto sera amplamente explorado nas préoximas unidades.

Alguns exercicios sao indicados no GUIA DE ESTUDOS e sua resolugao é fortemente indica-
da. Na préxima unidade, veremos como ir de algoritmos (estudados aqui) para programas de
computador.

FASCICULO_Introducao_Algoritmos.indd 23 @ 27/03/2019

Referéncias

CORMEN, Thomas H. Desmistificando Algoritmos. Rio de Janeiro: Elsevier, 2014.
EDMONDS, Jeff. Como pensar sobre algoritmos. LTC, 2010.

POLYA, George. How to solve it. Princeton, 1945.

KNUTH, Donald E. The Art of Computer Programming: Volume 1: Fundamental Algorithms. Addison-
-Wesley Professional, 1968.

KNUTH, Donald E, PATASHNIK, Oren e GRAHAM, Ronald. Matematica Concreta: Fundamentos para a Ci-
éncia da Computacgao. Addison-Wesley, 1988.

KLEINBERG, Jon e TARDOS, Eva. Algorithm Design. Pearson, 2005.

@ 27/03/2019 11:09:13

ULO_Introducao_Algoritmos.indd 24

UNIDADE 2

FASCICULO_Introducao_Algoritmos.indd 25 @ 27/03/2019 11:09:13

FASCICULO_Introducao_Algoritmos.indd 26 @ 27/03/2019 11:09:13

UNIDADE 2
De algoritmos a programas de computador

Apos a leitura deste capitulo, vocé sera capaz de:

« Entender o que é computador e quais sao as propriedades de um tipo de algoritmo
chamado programa de computador.

« Conhecer alinguagem de programacao Python e como interagir com o computador.

« Escrever programas de computador simples, com interacao com teclado e monitor e
envolvendo operagdes aritméticas.

1 Introducado

Neste curso, estamos trilhando o caminho da resolu¢ao de problemas via computador.
Vimos na unidade anterior como o conceito de algoritmo pode nos ajudar a estruturar a so-
lugdo de um problema. Agora, daremos um passo adiante para entender como transformar
estes algoritmos em programas de computador. ®

Construir uma Solucdo Algoritmica

FASCICULO_Introducao_Algoritmos.indd 27 @ 27/03/2019

Um programa de computador é um tipo especial de algoritmo que foi projetado usando
apenas um conjunto de agées que podem ser entendidas por um computador.

Afinal, o que é um computador? Como ele pode ser programado?

COMPUTADOR PROGRAMA

DE COMPUTADOR

ENTRADA CONTROLE DE ACOES

ARMAZENAMENTO
DE DADOS

Um computador € uma maquina de resolucao de problemas que manipula dados a partir
da lista de instrugdes indicadas em um programa (ou, se preferir, algoritmo). Este processo
funciona assim: o computador recebe um conjunto de dados de entrada, os processa e pro-
duz um conjunto de dados de saida. Uma parte do computador € responsavel pelo acesso e
armazenamento de dados e outra cuida do controle das a¢des definidas no programa.

Todo programa é escrito em uma linguagem de programacao que especifica as regras (sin-
taxe, gramatica etc) utilizadas para representagao das ideias do algoritmo de uma maneira
que o computador as entenda. Ha dois tipos de linguagens: de alto e de baixo nivel (as vezes,
chamadas de linguagens de mdaquina ou de montagem). Resumindo um pouco as coisas, 0
computador s6 consegue executar programas escritos em linguagens de baixo nivel. Progra-
mas escritos em linguagens de alto nivel precisam ser processados antes que possam ser
executados. Esse processamento extra (uma espécie de traducao) é chamado de compilacédo
ou interpretacao.

ULO_Introducao_Algoritmos.indd 28 @ 27/03/2019 11:09:13

Pesquise sobre as linguagens de programacao de alto nivel e baixo nivel, as
vantagens e desvantagens de cada uma delas e como funciona a compilagao
e a interpretacao.

2 Programas de computador e a linguagem Python

Alinguagem de programacgao que vocé vai aprender é o Python. Tra-
ta-se de uma linguagem de alto nivel, criada por Guido van Rossum
(1956, -) em 1991, cujo nome é uma homenagem ao grupo humoris-
tico britanico Monty Python.

De um ponto de visto operacional, uma linguagem de programa-
_ : ¢ao pode ser entendida como um conjunto de regras que definem
Guido van Rossum ,
(1956 -) como armazenar, acessar e processar dados. Programar é encontrar
uma maneira de combinar essas instrugdes para resolver um proble-
ma. E é exatamente isso que faremos no restante desta unidade

Em Python, vocé pode escrever um programa inteiro em um arquivo de texto e utilizar o
interpretador para traduzir o contetdo do arquivo para que seja executado pelo computador.
Esse arquivo € normalmente chamado de codigo fonte. Por exemplo, n6s podemos usar um
editor de texto para criar o codigo fonte chamado “meuprograma.py”. O .py no final do nome
do arquivo indica que se trata de um programa escrito em Python.

No ambiente virtual de aprendizagem, ha um video explicando exatamente
S como isso deve ser realizado.

©

21 Comando de saida

A primeira instru¢ao em linguagem Python que estudaremos é o comando print. Como o
seu nome sugere, este comando imprime (ou melhor, escreve) alguma coisa na tela do com-
putador. Um exemplo de impressao de uma frase é apresentado a seguir.

print(‘Sou aluno da Universidade Aberta do Brasil.’)

FASCICULO_Introducao_Algoritmos.indd 29 @ 27/03/2019

Observe que a frase é indicada entre um bloco de aspas simples. A saida deste comando é:

2.2 Varidveis e operacgoes aritméticas

@ Mas como os dados sao manipulados e processados?

Antes de entender como os dados sao representados em Python, vamos entender como
isso acontece no computador.

Como o computador armazena os dados? Como eles podem ser acessados
pelo programa?

Todo computador possui uma mema@ria para armazenar dados. O programa de computa-
dor tem acesso a pedacos dessa memoria que sao chamados de variaveis. Cada variavel pos-
sui um nome (por exemplo, x) que é associado ao pedaco especifico da meméria reservado
para ela.

ULO_Introducao_Algoritmos.indd 30 @ 27/03/2019 11:09:14

Para facilitar o entendimento, podemos enxergar a meméria do computador como uma es-
pécie de gaveteiro gigante. Cada gaveta € uma variavel. Como em qualquer gaveteiro, é pos-
sivel manipular cada uma das gavetas da memdria individualmente. Dessa forma, podemos
guardar um numero na quinta gaveta, por exemplo.

Assim, toda vez que uma variavel é criada em um programa de computador, uma das gave-
tas da memoria é associada a ela. Suponha que a variavel x foi criada. Uma gaveta da memoé-
ria (a quinta gaveta, por exemplo) foi associada a x. Toda vez que esta variavel for manipula- @
da, o conteudo dessa gaveta sera acessado.

REGRAS PARA NOMES DE VARIAVEIS

« Deve comecar com uma letra ou subscrito.

« Nunca pode comegar com um nimero.

« Pode conter letras maiusculas, minusculas, niUmeros e subscrito.

« Nao se pode utilizar como parte do nome de uma variavel os simbolos: { (+-*/\,3.!?
« N&o se pode utilizar acentos.

+ Exemplos de nomes invalidos: 5Snum, ?hoje e +h.

« Exemplos de nomes validos: var, numero, media e soma.

« As palavras and, as, assert, break, class, continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, in, is, lambda, nonlocal, not, or, pass, raise, re-
turn, try, while, with, yield, True, False e None nao devem ser escolhidas como no-
mes de variaveis

Uma dica importante é sempre escolher um nome intuitivo para a variavel. Um bom nome
descreve o dado armazenado e facilita o entendimento do cédigo.

FASCICULO_Introducao_Algoritmos.indd 31 @ 27/03/2019

A linguagem possui instru¢ées que criam e manipulam o conteudo individual de cada va-
riavel. O quadro a seguir mostra as instrucdes em Python para manipular variaveis, realizar
operacgdes aritméticas (soma, multiplicacao, divisado, resto da divisao e subtracao) e compa-
rar valores.

OPERAGOES ARITMETICAS E MANIPULAGAO DE VARIAVEIS EM PYTHON

Tipo de operacao Operador Exemplo
Atribuicao de valor a variavel = X =5
Soma de dois numeros + +

Subtracdo de dois numeros -

Multiplicagao de dois nimeros

Divisdo de dois niumeros /

(9} (9} (9] (9} (9]
bl
N[(N|[R|[R|R

Resto da divisdo inteira %

Para ilustrar como estes comandos podem ser utilizados na pratica, vamos escrever um
programa que calcula e imprime na tela a média de 5 (cinco) nimeros.

Como vocé faria para encontrar a média de 5 (cinco) niumeros usando lapis
e papel?

ULO_Introducao_Algoritmos.indd 32 @

27/03/2019 11:09:14

Com lapis e papel, somariamos os numeros e dividiriamos o resultado por cinco.

Pensando em um programa de computador, os cinco numeros sao os dados de entrada do
problema e precisam ser armazenados em variaveis.

@ Vamos precisar de quantas variaveis? Cinco?

Na verdade, seria interessante utilizar 7 (sete) variaveis: 5 (cinco) para os dados de entrada,
uma para armazenar o resultado da soma e outra para a média. A solucao desse problema
utiliza as instrugdes de atribuicao de valores, soma e divisdo. No fim, também utilizamos o
comando print para mostrar o resultado na tela do computador. O c6digo a seguir mostra o
programa de computador criado.

a=1
b =10
c =5 ®
d =26
e =4

soma=a+b+c+d+e

media = soma/5

print(“Media dos numeros digitados: “, media)

Media dos humeros: 5.2

FASCICULO_ Introducao_Algoritmos.indd 33 @ 27/03/2019

2.3 Comando de entrada

Uma limitagao da solugdo anterior é que para alterar os nimeros temos que mudar os va-
lores no préprio codigo. Agora, vamos estudar o comando input e entender como realizar a
leitura de valores a partir do teclado.

No exemplo a seguir, lemos um nome digitado do teclado e o armazenamos na variavel
nome.

nome = input(‘Qual o seu nome? *°)

print(‘ola ‘ + nome)

Note que a frase informada ao comando input foi impressa na tela. Agora, o interpretador
Python entrou em um modo que permite que o usuario digite um texto no teclado. Apos o
usuario digitar o que deseja e pressionar a tecla Enter, os dados digitados serdo armazenados
na variavel nome.

Ao fim do processamento do programa, a seguinte saida sera apresentada na tela.

ULO_Introducao_Algoritmos.indd 34 @ 27/03/2019 11:09:15

Qual o0 seu nome? Guido

Ola Guido

O programa a seguir mostra como o coédigo do problema da média dos 5 (cinco) niUmeros
pode ser adaptado para ler os valores do teclado.

a = intGinput(“Informe
b = int(input(“Informe
c = int(input(“Informe

d = intGinput(“Informe

e = int(input(“Informe

media = soma/5

um

um

um

um

um

soma=a+b+c+d+e

numero:
numero:
numero:
numero:

numero:

print(“Média dos numeros digitados:

“))
"))
“))
“))
"))

, media)

Neste cédigo, o comando int foi utilizado para transformar o texto digitado pelo usuario em

um numero inteiro.

Informe um nimero:

Informe um nimero:

Informe um nimero:

Informe um nimero:

Informe um nimero:

Média dos numeros digitados: 1.2

FASCICULO_Introducao_Algoritmos.indd 35 @

27/03/2019

Nosso ultimo exemplo desta unidade é um programa que calcula a area de uma circunfe-
réncia.

@ Como vocé faria para calcular a area de um circulo usando lapis e papel?

A area A de uma circunferéncia de raio r é dada por:
A=1*r?

Para transformar essa equagao em um programa de computador, vamos precisar de 2 (duas)
variaveis: uma para o raio e outra para area. O valor da varidvel raio deve ser lido do teclado
e o valor da area deve ser calculado utilizando a formula. O c6digo a seguir implementa esta
ideia.

raio = float(input(“Informe o raio do circulo: *))

area 3.14 * raio * raio

print(Area: ‘, area)

ULO_Introducao_Algoritmos.indd 36 @ 27/03/2019 11:09:16

O comando float foi utilizado para transformar o texto digitado pelo usuario no teclado em
um numero real (de ponto flutuante).

Informe o raio do circulo: 2

Area: 12.5

FASCICULO_ Introducao_Algoritmos.indd 37 @ 27/03/2019

FASCICULO_Introducao_Algoritmos.indd 38 @ 27/03/2019 11:09:16

UNIDADE 3

FASCICULO_Introducao_Algoritmos.indd 39 @ 27/03/2019 11:09:16

FASCICULO_Introducao_Algoritmos.indd 40 @ 27/03/2019 11:09:16

UNIDADE 3
Estruturas de decisao

Apés a leitura deste capitulo, vocé sera capaz de:

« Entender como um programa de computador pode tomar decisdes e escolher entre
executar ou nao um conjunto de comandos.

« Aprender a escrever expressoes légicas utilizando os operadores e, ou e nao.
« Visualizar os valores de uma expressao légica utilizando uma Tabela Verdade.

« Conhecer o comandos if e else e escrever programas em Python que realizam decisoes.

1 Introducado

Na Unidade Il, vimos como escrever programas em Python que podem executar uma sequ-
éncia de comandos de forma linear (executando sempre um comando apés o outro). Embora
esse conhecimento seja suficiente para resolver muitos problemas, ha uma limitagao impor- ®
tante: ndo podemos escrever programas que tomam decisdes e escolhem executar ou ndoum

--

conjunto de comandos.

41

27/03/2019

(&
®

FASCICULO_Introducao_Algoritmos.indd 41

O mecanismo da linguagem de programacao que permite decidir se um determinado bloco
de comandos deve ou nao ser executado € chamado de comando condicional. A decisdo é
realizada a partir do resultado de uma expressdao em algebra booleana.

2 Légica booleana e Expressoes relacionais

Adlgebra booleana é o ramo da algebra que considera variaveis que assumem os valores 6-
gicos verdadeiro e falso. Ao contrario da algebra elementar, em que os valores das variaveis
sao numeros, e as operacdes primarias sao adicao e multiplicacao, as operagdes principais
da algebra booleana sdo a conjuncgao e, a disjuncao ou e a negag¢ao nao. A origem do nome
é¢ uma homenagem ao matematico inglés George Boole (1815, 1864).

Em Python, os valores légicos verdadeiro e falso sdo denotados pelas palavras True e False.
Os operadores logicos de conjuncao, disjungao e negagao sao denotados pelas palavras and,
or e not, respectivamente.

AND OR NOT

Esta Esta Esta
@ chovendo chovendo chovendo
Usando AND, a expresséo serd Usando OR, a expressdo serd Usando NOT, a expressdo serd
verdadeira apenas se as duas verdadeira se uma das verdadeira apenas quando a
expressées sdo verdadeiras expressoes for verdadeira expressdo negada ndo for

verdadeira

Uma maneira de visualizar e entender uma expressao logica € construir sua Tabela Verdade.
A Tabela Verdade é uma de tabela que contém uma coluna para cada variavel envolvida e
uma linha para cada combinagao possivel de valores (GERSTING, 2016). A seguir, apresenta-
mos as Tabelas Verdade dos operadores and, or e not.

ULO_Introducao_Algoritmos.indd 42 @ 27/03/2019 11:09:16

®
TABELA VERDADE DO OPERADOR AND

A B AandB
True True True
True False False
False True False
False False False

A B AorB
True True True
True False True
False True True
False False False

A notA
True False
False True

Observe que a expressao A and B é verdadeira apenas se A e B forem verdadeiras. A expres-
sdao A or B é verdadeira sempre que uma delas é verdadeira, e a expressao not A é verdadeira
apenas se A é falsa.

Existe alguma relagdo entre estes operadores e a linguagem que falamos
@ no cotidiano? O que queremos dizer quando falamos, por exemplo, que

vamos ficar em casa se estiver frio e estiver chovendo? E quando dizemos
que vamos ficar em casa se estiver frio ou estiver chovendo?

Em Python, podemos escrever o cédigo a seguir para verificar o resultado destas operagdes.

A True

</>
__o J B
i . .

False

print(A and B)

FASCICULO_Introducao_Algoritmos.indd 43 @ 27/03/2019

Como esperado, a saida deste cédigo é False.

Em programacao, também podemos chegar a um valor booleano (True ou False) fazendo
uma comparacgao. As expressdes que realizam uma comparagao e devolvem um valor boole-
ano sao chamadas de expressoes relacionais.

.

4 \O/ 2\
()

Uma expressao relacional pode ser enxergada como uma pesagem em uma balanga de pra-
@ tos em que verificamos se duas coisas sdo iguais, diferentes ou se uma coisa € menor, maior,
menor ou igual ou maior ou igual a outra.

OPERADORES RELACIONAIS

Operador Exemplo |Descricao
== A== O resultado da expressao é verdade apenas se A éigual a B.
- Al=B CB) resultado da expressao é verdade apenas se A ¢ diferente de
< A<B O resultado da expressao é verdade apenas se A é menor que B.
> A>B O resultado da expresséo é verdade apenas se A é maior que B.
- A<=B 0 resgltado da expressdo é verdade apenas se A € menor ou
igual a B.
o A>=B %Ur;sgltéado da expressdo ¢ verdade apenas se A € maior ou

O resultado das expressdes relacionais também pode ser verificado no computador. O se-
guinte c6digo mostra um exemplo para o operador < (menor).

ULO_Introducao_Algoritmos.indd 44 @ 27/03/2019 11:09:17

A=1

B =25

print(A < B)

Como esperado, a saida deste cédigo é True.

3 Comandos if e if-else

O if é o principal comando condicional da linguagem Python. Sua sintaxe é apresentada a
seguir

print(‘A é verdadeira’)

Neste exemplo, o comando
print(‘A é verdadeira’)

sera executado apenas se o valor de A for True. Dessa maneira, podemos escolher quais
comandos serdo utilizados.

Podemos utilizar este comando, por exemplo, para verificar se um numero digitado pelo
usuario é par.

n = int(input(‘Digite um numero: ‘))

ifn%2==0:

print(‘vocé digitou um numero par’)

FASCICULO_ Introducao_Algoritmos.indd 45 @ 27/03/2019

A tabulacgao antes da instrucao
print(‘vocé digitou um numero par’)

serve para indicar que o comando faz parte do bloco de cédigo interno do if.

1,2,3,45,6 ..
1,0,1,0,1,0...

?p

Tal como fizemos na unidade anterior, usamos o comando input para fazer a leitura de um
numero inteiro do teclado. Para verificar se um nimero é par, olhamos para o resto da divisao
inteira de n por 2. Apenas os nimeros pares tem resto igual a zero. Por fim, usamos o opera-
dor relacional == para verificar se o resto vale zero.

Quando este programa € executado, a mensagem ‘Vocé digitou um numero par’ sera im-
pressa apenas se o numero digitado pelo usuario for par. Se o numero digitado for impar,
nada sera impresso.

Quando temos que executar um comando, e também quando a condicao é falsa, podemos
utilizar o comando if-else. Os comandos que fazem parte do bloco de cédigo else serdo exe-
cutados se a expressao for falsa. O codigo abaixo mostra um exemplo.

ULO_Introducao_Algoritmos.indd 46 @ 27/03/2019 11:09:17

n = int(input(‘Digite um numero: *))
ifn%2 ==0:

print(‘vocé digitou um numero par’)

else:

print(‘vocé digitou um numero impar’)

Note agora que, se o numero digitado for impar, a frase ‘Vocé digitou um numero impar’
sera impressa na tela. Tal como antes, a mensagem ‘Vocé digitou um ndmero par’ sera im-
pressa apenas se o numero digitado pelo usuario for par.

Para ilustrar como esses comandos podem ser utilizados na pratica, vamos apresentar um
exemplo de programa que |é e ordena (de maneira crescente) 3 (trés) niumeros inteiros.

@ Vamos precisar de quantas variaveis? Trés? Seis? @

Vamos precisar de, pelo menos, 3 (trés) variaveis: uma para nimero lido do teclado. Usando
o que aprendemos na Unidade Il, vamos ler os trés nimeros inteiros com o comando input.

a = intGinput(‘Informe um numero: ‘))
b = int(input(‘Informe um ndmero: ‘))
c = int(input(‘Informe um numero: “))

Pronto! Resolvemos uma pequena parte do problema. A ideia € ir resolvendo o problema
aos poucos. Se vocé prestar um pouco de atencao, percebera que esta € a mesma estratégia
apresentada na Unidade I.

FASCICULO_Introducao_Algoritmos.indd 47 @ 27/03/2019

@ Mas como ordenar os trés numeros?

Suponha que estamos trabalhando com um problema um pouco diferente. Imagine que
temos trés caixas com pesos desconhecidos e queremos ordena-los do menor para o maior
usando uma balancga de pratos. Com um pouco de atencao, é possivel perceber que, na essén-
cia, este € o mesmo problema que estamos resolvendo.

Seguindo a estratégia da Unidade | precisamos:
1. Entender o problema;

2. Construir uma solugao;

3. Executar a solugao construida;

4. Avaliar a solucao e, dependendo do resultado, voltar ao inicio.

ANOTAGOES DA FASE DE ENTENDIMENTO DO PROBLEMA

Apb6s um tempo pensando, percebemos que:
« Devemos ordenar as trés caixas em ordem crescente.

. Epossivel comparar duas caixas com uma pesagem na balanca.

« Asolucao deve funcionar para todos os possiveis pesos de caixas.

ULO_Introducao_Algoritmos.indd 48 @ 27/03/2019 11:09:18

ANOTAGOES DA FASE DE CONSTRUGAO DO ALGORITMO

Infelizmente, nédo fica evidente, logo no comego, como ordenar as 3 (trés) caixas.
Simplificando o problema, suponha que devemos ordenar apenas 2 (duas) caixas.

Quando comparamos duas caixas a e b, ganhamos uma informacao sobre sua ordem
relativa. Esta ordem nao muda. Podemos guardar o resultado da comparagéo colo-
cando uma etiqueta na caixa mais leve e outra na mais pesada. O resultado parcial é:

|“~ | "=

caixa mais leve caixa mais pesada
@
L _Z/ A
C)

Brincando com as pesagens, podemos notar que se a caixa € € mais leve que a caixa,
sabemos que a caixa ¢ é a mais leve de todas. A ordem total é:

I g

caixa C caixa mais leve caixa mais pesada

FASCICULO_Introducao_Algoritmos.indd 49 @ 27/03/2019

Caso contrario (a caixa € € mais pesada que a caixa mais leve), sabemos certamente
que a caixa com o rétulo ‘mais leve’ é a menos pesada de todas. Nao sabemos nada
sobre a relagdo de ordem que existe entre a caixa € e a caixa mais pesada, e vamos
precisar realizar mais uma pesagem.

(L N\~ A)
® Se a caixa € é mais leve que a caixa que contém o rétulo mais pesada, entéo a caixa ¢

€ a segunda mais leve. A ordem total é:

caixa mais leve < caixa C < caixa mais pesada

Se a caixa ¢ é mais pesada que a caixa que tem o rotulo mais pesada, entdo ela € a
mais pesada de todas. A ordem total é:

N

caixa mais leve < caixa mais pesada < caixa C

ULO_Introducao_Algoritmos.indd 50 @ 27/03/2019 11:09:19

ANOTAGOES DA FASE DE EXECUGAO DO ALGORITMO

O algoritmo faz trés pesagens e consegue ordenar as trés caixas independentemente
do seu peso. O uso das etiquetas reduziu o nUmero de pesagens.

ANOTAGOES DA AVALIAGAO DA RESPOSTA
Alcangamos a solucao do problema?
Sim, conseguimos!
O que falta para resolver o problema original?

Para resolver o problema original, podemos notar que:

+ E possivel comparar dois nimeros usando o operador < e a instrucao if.
« E possivel utilizar variaveis no lugar dos rétulos das caixas. ®

A solucao completa é apresentada a seguir.

o1

- B

FASCICULO_Introducao_Algoritmos.indd 51 27/03/2019

a = intGinput(‘Informe um numero: ‘))
b = int(Cinput(‘Informe um numero: *))
c = int(input(‘Informe um numero: *))
if a < b:

mais_leve = a

mais_pesada = b
else:

mais_leve = b

mais_pesada = a

if ¢ < mais_leve:
print(c, mais_leve, mais_pesada)

® else:

if(c < mais_pesada):

print(mais_leve, c, mais_pesada)
else:

print(mais_leve, mais_pesada, c)

Referéncias

Judith L. GERSTING. Fundamentos Matematicos para a Ciéncia da Computacao. LTC, 2016.

ULO_Introducao_Algoritmos.indd 52 @ 27/03/2019 11:09:19

UNIDADE 4

FASCICULO_Introducao_Algoritmos.indd 53 @ 27/03/2019 11:09:19

FASCICULO_Introducao_Algoritmos.indd 54 @ 27/03/2019 11:09:19

UNIDADE 4
Estruturas de repeticdo
Apés a leitura deste capitulo, vocé sera capaz de:
 Identificar a estrutura repetitiva de um problema.
« Conhecer o comando while e escrever programas em Python que realizam repeticoes.

« Aprender a testar e simular programas com comandos de repeticao.

1 Introducado

Sem duvida alguma, a capacidade de repetir operagdes foi decisiva para consolidar os com-
putadores como ferramentas de resolugao de problemas. Uma vantagem clara é que na repe-
ticao realizada por um computador todas as operagdes sao executadas do mesmo jeito.

Nesta unidade, estudaremos um comando que pode ser usado para executar uma ou mais
instrucdes repetidamente, até um numero desejado de vezes. As repeti¢cdes sao organizadas
em ciclos. No inicio de cada ciclo, uma expressao logica é testada para determinar se a repe-
ticao deve prosseguir ou nao. ®

Para entender como isso acontece, vamos considerar um exemplo. Suponha que temos que
escrever um programa que mostra os numeros 1, 2, 3 e 4 na tela do computador.

Usando o que aprendemos na Unidades Il e lll, chegamos a solugao a seguir.

print(l)

print(2)

print(3)

print(4)

Imagine agora que temos que imprimir todos os numeros entre 1 e 100.

Agora, usando apenas o que sabemos, vamos precisar escrever 100 linhas de cédigo! Nao
sera dificil cometer erros de digitacdo, esquecendo de imprimir um ndmero, por exemplo.

FASCICULO_Introducao_Algoritmos.indd 55 @ 27/03/2019

print(1)
print(2)
print(3)

print(4)

print(97)
print(98)
print(99)

print(100)

Afinal, como podemos superar a limitacao dessa solugao?

Para isso, vamos precisar usar um novo comando.

2 Comando while

O comando while é utilizado para executar um bloco de comandos enquanto uma condigao
é satisfeita. Importante: a repeticao deixa de ser executada quando a condicao é falsa. A es-
trutura do comando é apresentada a seguir.

while condicao:

comandos

ULO_Introducao_Algoritmos.indd 56 @ 27/03/2019 11:09:19

Trés perguntas principais nos ajudam a utilizar este comando:
« 0O quedeve ser repetido?
e Quantas vezes devem se repetir?
e Qual condicao pode ser utilizada para representar essa repeticao?

Agora que ja conhecemos o comando while, podemos voltar ao problema da impressao de
todos os numeros entre 1 e 100.

Com um pouco de atencao, € possivel perceber que a instrugao
print()
é repetida 100 vezes.

O que muda de uma linha para outra é apenas o valor entre parénteses. Este valor varia de
1a100.

IMPORTANTE
Identificar o que se repete e o que muda € a tarefa chave nesse processo. @

Uma estratégia muito util € escrever um coédigo com todos os ciclos de repeticao. Isso deixa
claro quais serdo as operagdes serao repetidas.

O cédigo a seguir mostra os 100 ciclos de repeticao usados para imprimir os 100 nimeros.
Em geral, podemos usar uma variavel para representar o conteido que nao é fixo. Uma ideia
€ iniciar uma variavel i valendo 1 e incrementar i a cada ciclo da repeticao.

FASCICULO_Introducao_Algoritmos.indd 57 @ 27/03/2019

1 i=1
2 print(i)
3 i=1+1
4 print(i)
5 i=1+1
print(i)
1i=1+1
8. print(i)
0. i=1 +1
10.
11. print(i)
@ 12. i=1+1

Com esse cédigo, podemos responder as questdes colocadas acima.
O que deve ser repetido?

Resposta: Impressao dos nimeros 1, 2, 3, ... 100. Neste caso, isso é feito repetindo os
comandos:

print(i)

i=1+1

Quantas vezes devem se repetir?

Resposta: 100 vezes.

ULO_Introducao_Algoritmos.indd 58 @ 27/03/2019 11:09:20

Qual condicao pode ser utilizada para representar essa repeticao?

Resposta: Podemos utilizar uma variavel para contar quantas repeticoes ja foram exe-
cutadas. No codigo, a propria variavel i ja faz isso. Dessa forma, a condicao pode ser
definida usando: i = 100. Lembre-se: a impressao sera interrompida quando i valer 101.

Com essas informacgoes, podemos escrever o cédigo com while a seguir:

i=1

while i <= 100:

3. print(i)

4. i=1+1

Tal como queriamos, as linhas 3 e 4 do cédigo serao executadas 100 vezes. Na 1012 vez, a
condicdo deixa de serverdadeira, pois a variavelivale 101 (ndo é mais “menor ouiguala 100”)
e a repeticao é interrompida.

2.1 Encontrando o maior numero digitado ®

Vamos resolver outro problema para ilustrar a aplicagao desse comando na pratica. O ob-
jetivo agora é escrever um programa que [é um numero inteiro n e, em seguida, |é n valores
inteiros e mostra o maior deles na tela.

Apos a leitura de niigual a 4, por exemplo, seu programa deve ler 4 (quatro) nUmeros intei-
ros. Estes quatro nimeros poderiam ser, digamos, 6,4, 1 e 7. Seu programa deveria imprimir,
neste caso, o numero 7 (o maior numero digitado pelo usuario).

Para resolver este problema, vamos utilizar uma estratégia muito interessante. A ideia €
dividir o problema em partes bem pequenas, resolver cada uma delas separadamente e, de-
pois, juntar tudo. Cada parte bem pequena do problema precisa ser cuidadosamente estuda-
da. Este estudo cuidadoso vai te ajudar a traduzir as regras subjacentes envolvidas na ques-
tdo em uma forma que possa ser absorvida pelo seu subconsciente e, quando vocé menos
esperar, o problema estara resolvido. Vamos la!

O primeiro subproblema desta atividade diz respeito a leitura dos nimeros. E sempre bom
comegar pela leitura. Afinal, como vamos resolver o problema se nem conseguimos fazer a
leitura dos valores?

FASCICULO_Introducao_Algoritmos.indd 59 @ 27/03/2019

Para fazer a leitura, precisamos de variaveis e de algumas chamadas do comando input.

</>

n = int(input(‘Quantos nimeros serao lidos? ‘))
]

Agora que ja conseguimos ler os nUmeros, vamos pensar no que podemos fazer para iden-
tificar o maior deles. Pode parecer dificil, mas temos uma técnica. O principio dessa técnica é
simples: sempre que encontrar um problema dificil, vocé deve tentar diminui-lo ou simplifica-
-lo um pouco. Faga isso até que o problema fique simples demais para simplificar novamente
e, depois, volte resolvendo os problemas maiores (mais complicados).

Por exemplo, o que acontece quando temos apenas um niimero? E bem mais facil resolver
este problema! O maior nUmero em uma sequéncia de um niumero, € sempre o Unico numero!
Em Python, isto pode ser escrito da seguinte forma:

num = int(input(‘Informe um numero: ‘))

maior = num;

print(“o maior numero é: “, maior);

E se tivéssemos dois numeros? Qual deles poderia ser o maior? Ha, obviamente, duas pos-
sibilidades e, para ter certeza, vamos precisar usar o comando de comparacao if, estudado na
Unidade Ill. O codigo a seguir implementa essa ideia.

num = intCinput(‘Informe um numero: ‘))

maior = num;

4, num = int(input(‘Informe um nldmero: ‘))
5. if maior < num:

6. maior = num

7. print(“0 maior numero é: “, maior);

ULO_Introducao_Algoritmos.indd 60 @ 27/03/2019 11:09:20

E se tivéssemos trés numeros? Teriamos trés possibilidades e precisariamos de mais uma
comparagao. O codigo a seguir mostra uma implementagao possivel.

1. num = int(input(‘Informe um ndmero: ‘))
2. maior = num;

3.

4, num = int(input(‘Informe um numero: ‘))
5. if maior < num:

maior = num

8. num = int(input(‘Informe um numero: “))
9. if maior < num:

10. maior = num

11.

12. print(“0 maior numero é: “, maior);

Este exemplo é revelador. E possivel perceber agora que para analisar quatro niumeros, va-
mos precisar de mais uma comparacao. Generalizando, podemos perceber que com n nu-
meros vamos precisar analisar n possibilidades e podemos fazer isto com n - 1 comparacdes
(comandos if)!

Agora que descobrimos a estrutura do problema, podemos traduzir este conhecimento em
um cédigo com repeticédo utilizando o comando while. E sé identificar a condicio de parada
e as acdes que precisam ser repetidas.

Com um pouco de atencao, € possivel perceber que o bloco de comandos

num = int(input(‘Informe um numero: *))
if maior < num:

maior = num

deve ser repetido n-1 vezes.

FASCICULO_Introducao_Algoritmos.indd 61 @ 27/03/2019

O codigo resultante é apresentado a seguir.

1. n = int(input(‘Quantos numeros serao lidos? ‘))
2. num = int(input(‘Informe um numero: ‘))

3. maior = num;

4. i=1

while i <= n-1:

num = int(input(‘Informe um numero: ‘))

if maior < num:

8. maior = num
9. i=1 +1
10. print(“o maior numero é: “, maior);

2.2 Testando e simulando um cédigo com lapis e papel

Ha basicamente duas maneiras de testar informalmente se um programa esta fazendo o
que se espera: executa-lo no computador ou inspeciona-lo manualmente. Nesta secao, va-
mos aprender como realizar a inspe¢dao manual, também chamada de teste de mesa (LEITE,
2006).

A inspecao manual € uma maneira de entender o que acontece em cada instru¢ao de um
programa e consiste em 4 (quatro) passos:

1. Identificar todas as variaveis.
2. Criar uma tabela com uma coluna para cada variavel.

3. Percorrer o codigo linha a linha, preenchendo a tabela. Cada coluna de uma variavel
deve conter o respectivo valor dessa variavel apos a linha de codigo ser executada. Dica: Ano-
te no canto da tabela a linha do c6digo que esta sendo analisada.

4. Verificar se o resultado produzido é o esperado.

ULO_Introducao_Algoritmos.indd 62 @ 27/03/2019 11:09:20

No programa que acabamos de escrever para encontrar o maior numero digitado pelo usu-
ario, ha 4 (quatro) variaveis: n, num, maior e i.

Para simular este programa, vamos criar uma tabela com 4 (quatro) colunas e percorrer
cada linha do codigo e atualizar o valor das variaveis.

O quadro a seguir mostra a tabela criada neste caso. Adicionamos uma coluna para guardar
a linha do cédigo que foi executada. Os tracos indicam que nenhum valor foi armazenados
nas variaveis.

Variaveis

Linha n num maior |

Agora que a Tabela ja foi criada, precisamos percorrer cada linha do cédigo. Lembre-se de
que as operagoes dentro do bloco de repeticao deixam de ser executadas apenas quando a
condi¢cao do comando while é falsa.

Apos executar a instrugao
n = int(input(‘Quantos numeros serao lidos? ‘))

o usuario informara a quantidade de numeros que serdo digitados na sequéncia. Vamos ®
assumir neste exemplo que o numero digitado foi 3 (trés). Este valor é armazenado na coluna
da variavel n.

Variaveis

Linha n num maior 1
1 3 . . .

Observe que a coluna da variavel n foi atualizada na Tabela.
Continuando a simulagao, atualizamos a tabela apos a instrugao:

num = int(input(‘Informe um ndmero: *))

Variaveis
Linha n num maior i
1 3 - - -
2 3 6 = =

FASCICULO_Introducao_Algoritmos.indd 63 @ 27/03/2019

Assumimos que o usuario digitou o nimero 6.
Apés a instrugao:
maior = num

temos os seguintes valores na tabela:

Variaveis
Linha N num maior i
1 3 = =
2 3 6 - =
3 3 6 6 -
E apds ainstrugao
i=1
a tabela tera os seguintes valores:
Variaveis
@& Linha N num maior i
1 3 - -
2 3 6 = =
3 3 6 6
4 3 6 6 1

Como chegamos ao comando de repeti¢ao, sabemos que a instrugao
while i <= n-1:

podera ser executada varias vezes.

Toda vez que esta linha for executada, testamos a condicao
i <= n-1

Se esta condigao for verdadeira, o bloco de codigos da repeticao sera executado, e executa-
mos a linha 6. Se for condicéao for falsa, por outro lado, pulamos para a linha 10.

ULO_Introducao_Algoritmos.indd 64 @ 27/03/2019 11:09:21

Para testar a condi¢cdao, vamos olhar os valores de i e n na tabela. A variavelivale 1 e a vari-
avel nvale 3. Logo, 1 <=2 é verdade.

Como a condicao é verdadeira, vamos executar a instrugao:
num = int(Cinput(‘Informe um numero: ‘))

Assumindo que o valor digitado pelo usuario é 4, a tabela contém os seguintes valores.

Variaveis

Linha num maior i

1

Wl wl wlw|lw| 2

2
3
4
6

Agora, a instrucao
if maior < num:
sera executada. @

Como vimos na Unidade lll, o bloco da condicional (linha 8) sera executado apenas se a
condicao do comando if for verdadeira. Caso contrario, a instrucdo da linha 9 sera executada.

Vamos verificar, entao, se o valor da varidvel maior armazenado na tabela é menor que o
valor da variavel num. Como maior vale 6 e num vale 4, esta condicao é falsa.

Como a condicao é falsa, vamos executar a instrucao:
i=1+1

Apos esta instrucao, a tabela tera a seguinte configuragao.

FASCICULO_Introducao_Algoritmos.indd 65 @ 27/03/2019

Variaveis

Linha N Num maior i
1 3 - -
2 3 6 = =
3 3 6 6
4 3 6 6 1
6 3 4 6 1
8 3 4 6 2

Como estamos executando o bloco de repeticdao, devemos voltar e executar novamente a
instrucao da linha 5:

while 1 <= n-1:
Mais uma vez, vamos testar a condigao:
i <= n-1

Como fizemos la atras, vamos olhar os valores de i e n na tabela. A variavel i agora vale 2, e
avariavel nvale 3. Logo, 2 <=2 é verdade.

Como esta condicao € verdadeira, vamos executar o bloco da repeticao mais uma vez. Assu-
mindo que o valor digitado pelo usuario foi 7, apos a instrugao

num = int(input(‘Informe um numero: *))

a tabela agora contém os seguintes valores.

Variaveis

Linha n Num maior i
1 3 = =
2 3 6 = =
3 3 6 6
4 3 6 6 1
6 3 4 6 1
8 3 4 6 2
6 3 7 6 2

ULO_Introducao_Algoritmos.indd 66 @ 27/03/2019 11:09:21

Novamente, sera executada a instrucao:
if maior < num:

Como vimos, o comando da linha 8 sera executado apenas se a condi¢ao
maior < num

for verdadeira.

Como a condicao é verdadeira (note que a variavel maior vale 6 e num vale 7), vamos exe-
cutar ainstrugao:

maior = num

ApOs a execucgao desta instrucao, a tabela contém os seguintes valores.

Variaveis
Linha n num maior i
1 3 - -
2 3 6 = =
3 3 6 6
4 3 6 6 1 ®
6 3 4 6 1
8 3 4 6 2
6 3 7 6 2
8 3 7 7 2

Ap0s a instrugao
i=1+1

a tabela contém os seguintes valores.

FASCICULO_Introducao_Algoritmos.indd 67 @ 27/03/2019

Variaveis

Linha n num maior i
1 3 - -
2 3 6 = =
3 3 6 6
4 3 6 6 1
6 3 4 6 1
8 3 4 6 2
6 3 7 6 2
8 3 7 7 2
9 3 7 7 3

Novamente, como estamos em um bloco de repeticao, devemos voltar e executar a instru-
¢aodalinha5

while i <= n-1:
Vamos testar a condicao:
® i <= n-1

Conferindo a tabela, percebemos que a variavelivale 3, e a varidvel n também vale 3. Logo,
3<=2nao éverdade.

Como esta condicao é falsa, vamos executar a instrucao da linha 10.
Apés instrugao da linha 10
print(“0 maior numero é: “, maior);

teremos a seguinte saida.

O maior numero é: 7

Como nao ha mais instrucdes, o programa acaba. Observe que o programa produziu exa-
tamente o resultado esperado. Foram digitados os nuUmeros 6,4 e 7, e 0 programa encontrou
que o 7 € o maior deles.

ULO_Introducao_Algoritmos.indd 68 @ 27/03/2019 11:09:21

Pensando um pouco na mecanica desse algoritmo, percebemos que ele funciona de modo
semelhante a uma pessoa que seleciona a maior caixa em uma esteira. O programa pega a
primeira caixa e, a cada momento, compara a caixa que esta em sua mao com a que esta pas-
sando na esteira. Se a caixa que esta passando é maior, ele troca. No fim, nao é dificil perceber
que a maior caixa estara na mao do algoritmo.

Palavras Finais @

Na sociedade contemporanea, as Tecnologias de Informacao e Comunicagdo (TICs) desem-
penham um papel preponderante em diversas esferas de nossas vidas. Como dissemos no
comeco, o computador esta em toda parte e, tal como a eletricidade, o passou a compor o
nosso entorno sem que percebéssemos toda a complexidade envolvida.

Pensando nisso, entendemos que a educagao nao deve somente capacitar o individuo a
trabalhar com alguma ferramenta especifica, mas também capacita-lo para perceber o com-
putador como um instrumento de resolu¢ao de problemas que aumenta o seu poder cogni-
tivo e operacional. Todo aluno deve ser capaz de criar e propor as suas préprias ferramentas.

Por isso, e considerando o papel que a informatica tem representado no desenvolvimento
dos paises, entendemos que os estudantes deste curso devem compreender como os proble-
mas sao resolvidos por computador e, até mesmo, criar as suas proprias solucgoes.

Ao profissional licenciado para atuar com Tecnologias Educacionais cabe pensar em como
vencer as barreiras impostas pelos alunos nos diferentes niveis de ensino e contribuir para o
desenvolvimento de esquemas mentais que o capacitem a chegar a solugdo de problemas.

FASCICULO_Introducao_Algoritmos.indd 69 @ 27/03/2019

Sé assim, 0 acesso ao computador, ainternet e as TICs em geral serd um indicador de inclu-
sao, de exercicio da cidadania e de transformacao na sociedade em que vivemos.

Referéncias

LEITE, Mario. Técnicas de Programacao - Uma Abordagem Moderna. Brasport, 2006.

70

- B

ULO_lIntroducao_Algoritmos.indd 70 27/03/2019 11:09:21

SETEC ®

SECRETARIA DE UNIVERSIDADE
TECNOLOGIA EDUCACIONAL ABERTA DO BRASIL
UNIVERSIDADE FEDERAL
DE MATO GROSSO

