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7APRESENTAÇÃO

APRESENTAÇÃO
Caro(a) estudante,

O presente curso de Didática da Matemática foi concebido, estruturado e desenvolvido sob 

influência marcante da vertente francesa na área de pesquisa, internacionalmente conhecida 

como Didática da Matemática. Vale salientar um pressuposto básico explorado em todo 

momento por nós que diz respeito à impossibilidade de se estudar qualquer teoria de natureza 

didático-metodológica distante do seu domínio de ‘aplicação’. Assim, para a compreensão 

e aprofundamento das teorias que serão discutidas neste curso, uma condição sine qua 

non que se apresenta é o domínio aprofundado do próprio conteúdo de matemática. Assim, 

sempre que possível, na ocasião da contextualização e aplicação das teorias que discutiremos, 

sugerimos a compreensão dos ‘entraves’ e obstáculos epistemológicos no campo do ensino/

aprendizagem de matemática. Por fim, tudo que será discutido se insere no campo de uma 

‘teoria pedagógica específica’ da Matemática e, seu estudo perde o sentido e o significado 

quando evolui distante do conhecimento matemático específico. 
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AULA 1 Os fundamentos da 
Didática da Matemática

Olá, aluno(a)!

Nesta aula, discutiremos as bases epistemológicas da Didática da Matemática 

focalizando alguns pressupostos da Didática Geral. A necessidade de pensarmos 

em uma proposta específica para o ensino de Matemática é muito importante 

para a atuação do professor em formação.

Objetivos

•	 Apresentar as bases epistemológicas e os principais pressupostos 
epistêmicos assumidos na Didática da Matemática 

•	 Caracterizar os principais elementos relacionados à transposição didática
•	 Discutir aspectos relevantes do ensino da Matemática e relacioná-los com 

a prática pedagógica
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Libâneo (1995, p. 129), em uma obra clássica da área da pedagogia, a 

respeito das tendências pedagógicas, assim se manifesta:

Os enfoques sobre o papel da didática na atividade escolar variam de acordo com 

as tendências pedagógicas, sendo possível encontrar na prática educacional 

pelo menos três: o tradicional, o renovado-tecnicista e o sociopolítico. O 

tradicional refere-se à didática assentada na transmissão cultural, concebendo 

o aluno como um ser receptivo/passivo, atribuindo um caráter dogmático aos 

conteúdos e métodos da educação; o renovado-tecnicista corresponde à versão 

modernizada da escola nova, acentuando o caráter prático-técnico do ensino 

e, assim, sua neutralidade face às questões sociais; finalmente, o sociopolítico 

assume uma postura crítica em relação aos dois anteriores, por acentuar 

a relevância dos determinantes sociais na educação e, assim, as finalidades 

sociopolíticas da escola.

O posicionamento de Libâneo é interessante na medida em que caracteriza, 

delineia e aponta as consequências das tendências pedagógicas que, podem manter 

uma possível relação com o saber matemático, embora, em certos casos, seja tênue, 

ou mesmo inexistente e superficial.

É importante que saibamos, antes de nos aprofundarmos nas aulas 

seguintes, que a tendência tradicional e a tendência renovado-tecnicista não 

explicam, não caracterizam, não anteveem de modo específico as relações 

estabelecidas no ensino de Matemática. 

TÓPICO 1
Conceitos introdutórios: administração, 
organização, processo admistrativo e 
níveis hierárquicos
Objetivos

•	 Compreender o conceito de administração e organização

•	 Identificar a diferença entre eficiência e eficácia e sua 

importância para o bom desempenho organizacional

•	 Conhecer os níveis hierárquicos de uma organização
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Nesta aula, demarcaremos as bases epistemológicas e os principais 

pressupostos epistêmicos assumidos na Didática da Matemática. Para tanto, vamos 

confrontar as palavras de Libâneo (1995) reproduzidas acima com as do matemático 

Brousseau (1996), que caracteriza a Didática da Matemática como sendo atividades 

didáticas, ou seja, atividades que têm como objeto o ensino.

Já o pesquisador italiano D´Amore (2007) 

descreve a Didática da Matemática como uma 

disciplina científica  cujo objetivo do campo 

de pesquisa é saber identificar, compreender 

e caracterizar fenômenos que condicionam a 

aprendizagem e o ensino da matemática.

Brousseau, ao fazer referência às 

relações estabelecidas entre aluno-professor-

saber matemático, destaca o caráter situado do 

conhecimento em questão o qual, na maioria 

dos casos, se restringe à sala de aula.

Outro fator relevante apontado por Brousseau se relaciona aos comportamentos 

cognitivos dos aprendizes. De fato, quando se estuda Didática Geral, fala-se 

demasiadamente das ações, pensamentos e reflexões necessárias para o professor, 

entretanto para um professor qualquer, uma escola aleatória e alunos reunidos em 

torno da aquisição de um saber hipotético.

Não rejeitamos ou desvalorizamos tal 

perspectiva. Salientamos, porém, que, em uma aula 

de Matemática, no que diz respeito ao professor e 

seus alunos, alguns destes pressupostos generalistas 

podem mostrar-se inócuos, e mesmo improfícuos. 

Mas afinal, qual é o objeto de estudo da 

Didática da Matemática? Recorremos mais uma vez 

a Brousseau (1996, p. 46): 

O saber constituído se apresenta sobre formas diversas, 

por exemplo, sob forma de questão e respostas. A 

apresentação axiomática é uma apresentação clássica da 

matemática. E, além disso, em virtude do cientificismo 

que conhecemos, ela se mostra maravilhosamente 

adaptada ao ensino. Ela permite a cada momento de definirmos os objetos 

s a i b a  m a i s !

Para maior aprofundamento sobre as tendências 

pedagógicas, veja o quadro síntese disponível 

no site http://pedagogia.tripod.com/quadro_

tendencias.htm

s a i b a  m a i s !

Guy Brousseau nasceu em 4 de fevereiro de 

1933, em Taza, no Marrocos, filho de um soldado 

francês. Em 1953, começou a dar aulas no Ensino 

Fundamental numa aldeia da região de Lot et 

Garonne.  Fonte: http://antigo.revistaescola.

abril.com.br/edicoes/0219/aberto/pai-didatica-

matematica-414955.shtml
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que estudamos com auxílio de noções precedentes e introduzidas e, assim, de 

organizar a aquisição de novos saberes com o auxílio de aquisições anteriores. 

Ela proporciona então ao estudante e ao seu professor um meio de ordenar 

suas atividades e de acumular em um mínimo de tempo possível o máximo de 

saber próximo do savoir savante.

A forma de organização do saber transmitido no ensino é, reconhecidamente, 

uma preocupação da Didática; no caso específico desta disciplina, a Didática da 

Matemática, a forma de organização do saber matemático. Brousseau denuncia 

acima alguns dos malefícios da apresentação axiomática dos conteúdos, tão peculiar 

na atividade do professor de Matemática.

A apresentação axiomática é reconhecida com maior imediatez quando 

falamos de Geometria Plana. A axiomatização e sistematização das ideias e 

argumentações construídas há séculos pelos gregos ainda servem de modelo, 

paradigma e verdade para muitos professores de Matemática, ainda que possa 

não assegurar uma aprendizagem satisfatória.

Outro fator discutido por Brousseau diz respeito ao princípio de economia 

e linearidade da reprodução do saber matemático em sala de aula. Neste 

sentido, quando diz que a Matemática permite a cada momento definirmos os 

objetos que estudamos com auxílio de noções precedentes e introduzidas e, 

assim, de organizar a aquisição de novos saberes, Brousseau caracteriza uma 

prática comum e equivocada desenvolvida em sala de aula, uma vez que a 

aprendizagem do estudante não ocorre de modo linear e preciso.

Podemos até afirmar que o raciocínio do professor que reproduz aquele 

conhecimento, muitas vezes secular, é um raciocínio linear, rigoroso e preciso, na medida 

em que é familiar e suficientemente conhecido e repetido dezenas de vezes. Neste sentido, 

Brousseau (1996, p. 46) esclarece que “este tipo de apresentação disfarça completamente 

a história dos saberes, isto é, as sucessões de dificuldades e de questões que provocaram 

a aparição de conceitos fundamentais, seu uso para propor novos problemas”. 

Assim, percebemos que linearidade da reprodução do saber matemático 

em sala de aula não transparece ou caracteriza o modo real e a maneira pela qual 

os matemáticos profissionais enfrentaram os problemas. Dizendo de outro modo, 

na descoberta ou criação de determinado conceito, seja ele da Geometria Plana, 

Trigonometria, Matrizes, Determinantes, etc., não houve uma trajetória linear e 

formal, como muitos preferem ou acreditam. Não se pode dessa forma, esperar que 

o aluno aprenda, num primeiro momento, tudo apresentado pelo professor.
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Brousseau se preocupa de modo especial com as modificações que se fazem 

necessárias ao conhecimento matemático desde o seu nascedouro até a sua forma 

atual, organizada nos livros escolares. A tais modificações/adaptações realizadas 

pelo professor para efetivar o seu ensino Brousseau chama de transposição didática. 

O pesquisador espanhol Juan D. Gondino (2004, p. 42), a esse respeito, esclarece:

Quando queremos ensinar um certo conteúdo, tal como os números 

racionais, devemos adaptá-lo ao estado do conhecimentos dos alunos, 

com qual deve-se simplificá-lo e buscar exemplos específicos acessíveis 

aos alunos, restringir algumas propriedades, usar uma linguagem 

e símbolos mais simples do que os habitualmente empregados pelo 

matemático profissional (tradução nossa.)

Figura 1: Transposição didática formulada por Brousseau

No ambiente escolar, deparamos com um saber matemático que sofreu várias 

adaptações, aperfeiçoamentos e improvisações necessárias ao entendimento do estudante. 

Falar sobre aprendizagem em matemática pressupõe, 

naturalmente, uma teoria de base cognitivista 

compatível com as relações experienciadas dentro 

de uma aula de Matemática.

Anthony Orton (2004) sublinha o caráter 

de especificidade necessária para que vários 

fenômenos relacionados ao binômio ensino-

aprendizagem possam ser compreendidos, 

sobretudo os de natureza cognitiva. Assim, 

quando discutimos a noção de transposição 

s a i b a  m a i s !

A expressão transposição didática faz referência 

às modificações sofridas pelo conhecimento 

matemático com vistas ao ensino. Como 

consequência se produz diferenças de significado 

dos objetos matemáticos entre a instituição 

matemática e as instituições escolares. (GONDINO, 

2004, p. 42).
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didática (Figura 1), necessitamos adotar teorias elaboradas de modo específico 

para o ensino e aprendizagem de Matemática.

Em grande parte, para que possamos compreender os elementos que 

explicam a realidade cristalizada preocupante sobre o ensino de Matemática, 

necessitamos focar nosso olhar na figura do professor. Brousseau (1996, p. 47) 

reforça esta perspectiva ao comparar o trabalha do matemático profissional com o 

trabalho do professor:

Antes de comunicar o que pensa haver achado, um pesquisador deve 

inicialmente determiná-lo: não é fácil distinguir, num labirinto de reflexões, as 

que são suscetíveis de tornar-se um novo saber e interessante para os demais; as 

demonstrações obtidas são raramente as que foram visadas pelas conjecturas; 

todo o rearranjo de conhecimentos semelhantes, anteriores e novos devem ser 

acumulados (tradução nossa.)

Neste movimento característico do 

matemático profissional, as reflexões inúteis 

são suprimidas e descartadas. Os traços dos 

encaminhamentos errôneos são descartados. “É 

necessário encontrar uma teoria mais geral na 

qual os resultados obtidos mostrem-se válidos” 

(BROUSSEAU, 1996, p. 47). Deste modo, temos um 

processo de despersonalização, descontextualização 

do saber matemático. 

No que diz respeito à atividade docentes, 

o professor deveria, em tese, realizar um movimento contrário, em determinados 

aspectos, ao do trabalho do matemático profissional. De fato, ao trabalhar 

com um livro didático, o professor de Matemática deve preparar a sua aula e, 

naturalmente, salientar o que perceber de mais relevante. D´Amore (2007, p. 

227), ao descrever a ação docente, sublinha que:

Uma vez realizada a introdução da noção, no âmbito do funcionamento 

didático, deve ativar-se um mecanismo com base no qual nos apropriamos 

de tal noção para fazer algo. Eis então que ocorre a recontextualização da 

noção, todavia não mais no interior do saber matemático, mas no interior 

de tal imersão no saber ensinado. 

at e n ç ã o !

De acordo com Brousseau “uma boa reprodução 

por parte do aluno da atividade científica exige 

que este aja, formule e que prove e construa 

modelos, de linguagem, de conceitos e de teorias” 

(BROUSSEAU, 1996, p. 49).



Didát ica  da  Matemát ica14

O conhecimento oferecido aos alunos pelo professor será impregnado pelo 

seu ponto de vista e guiado pelas suas crenças e convicções próprias. A fazer isso, 

o professor realiza uma ação de “repersonalização” do conhecimento. De fato, 

Brousseau explica que “o trabalho do professor é numa certa medida inversa a do 

pesquisador, ele deve produzir uma recontextualização e repersonalização” (1996, 

p. 49).

Ao declarar isto, Brousseau está esclarecendo que a contextualização do saber 

matemático, os limites de sua validade, o porquê do seu surgimento e as funções 

sociais é uma ação intrínseca ao trabalho do professor.

Na Figura 2 o estudante, alvo principal de nossas preocupações didáticas, 

adquire uma importância vital quando falamos sobre o ensino escolar, distanciado 

da academia e da pesquisa do matemático profissional. 

Mais adiante, Brousseau adverte, ainda no âmbito da atividade do aluno que 

encontrar boas questões é tão importante quanto encontrar boas soluções. É comum 

o professor de Matemática se deter de modo mais demorado na identificação da 

solução correta e destinar um tempo irrisório ao estudo das estratégias de resolução 

incompatíveis e errôneas, o que, na maioria das vezes, conduz os estudantes ao erro.

Desse modo, “uma boa reprodução por parte do aluno da atividade científica 

exige que este aja, formule e que prove e construa modelos, de linguagem, de 

conceitos e de teorias” (BROUSSEAU, 1996, p. 49).

Entretanto, para não reduzir o seu ensino à mera exposição e reprodução das 

estratégias previamente apontadas como desejáveis, o professor necessita assumir 

uma posição criativa e ativa, isto é, “imaginar e propor aos estudantes situações que 

eles possam vivenciar e nas quais os conhecimentos aparecerão como uma solução 

optimal e descoberta nos problemas propostas” (BROUSSEAU, 1996, p. 49).

Figura 2 : Estratégias Didáticas 

Os conhecimentos devem ser os meios de comunicar boas questões e para 

travar alguns debates em sala de aula. Todavia, na prática, a tarefa de estimular um 

debate científico com os estudantes e não executar a mera reprodução do conteúdo 
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organizado de modo “bonitinho” no livro didático apresenta alguns entraves. 

A respeito desses problemas, Brousseau (1996) levanta alguns pontos:
•	 a ênfase dada às atividades sociais e culturais condiciona a criação e o 

exercício de comunicação do saber e dos conhecimentos;
•	 a abordagem clássica considera como central a atividade cognitiva 

do sujeito deve ser inicialmente descrita e compreendida de modo 
relativamente independente;

•	 os conhecimentos sobre o conhecimento necessário ao ensino devem 
se estabelecer inicialmente de modo independente e segura;

Brousseau também descreve duas hipóteses fundamentais para se trabalhar 

a Didática da Matemática:
•	 A primeira consiste em afirmar que somente o estudo global das 

situações que presidem a manifestação do conhecimento permite escolher 
e articular os conhecimentos de origem diferentes, necessários para 
compreender as atividades cognitivas do sujeito, assim como o 
conhecimento que utiliza e o modo pelo qual ele o modifica;

•	 A segunda hipótese, mais forte, consiste em dizer que o estudo 
inicial das situações (didáticas) deve permitir derivar e modificar as 
concepções necessárias atualmente importadas de outros campos 
científicos.

Trabalhar a atividade cognitiva do sujeito é essencial assim como elaborar 

um saber matemático situacional e localizado para efetivar um ensino e uma 

aprendizagem significativa, e não a mera replicação das técnicas explicadas e 

determinadas pelo professor.

Quanto Brousseau se refere ao estudo global das situações que presidem 

a manifestação do conhecimento, ele passa a considerar o meio um elemento 

explicativo e condicionante para as relações pedagógicas ali desenvolvidas. 

Por fim, a modelização desenvolvida por Brousseau, no que diz respeito à 

sistematização das situações didáticas, que envolvem de modo específico o saber 

matemático, é ímpar, quando analisamos outras produções científicas da área. Sua 

descrição mais detalhada acontecerá nas próximas aulas. Para concluir esta seção, 

destacamos que muitas obras na área de Didática da Matemática esquematizam 

uma situação qualquer de ensino pelo triângulo que representamos na figura a 

seguir. 
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Figura 3: Relações didáticas descritas por Brousseau 

A ação do professor de matemática compreende um forte componente para a  

aquisição de conhecimento para os alunos. As ligações que deverão ser estabelecidas 

entre aluno e saber matemático, inclusive as crenças e/ou concepções construídas, 

são, em grande parte, promovidas pelo professor. 

Figura 4: A importância do professor em sala de aula 

Desse modo, qualquer ação didática do professor cria uma determinada 

transposição didática. Podemos evidenciar nos estudantes o surgimento 

de conhecimentos previstos e desejados, como também o delineamento de 

conhecimentos matemáticos imprevistos, indesejados e/ou mal adaptados.

Para encerrar esta parte inicial, recordamos que discutimos alguns elementos 

característicos iniciais da Didática da Matemática. No próximo tópico, detalharemos 

algumas características da noção de transposição didática comentada por D´Amore. 

Fonte: latinstock.com
.br
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TÓPICO 2 Características gerais da 
transposição didática
Objetivo

•	 Diferenciar a transposição didática da transposição 

científica

Podemos, de modo particular, descrever um trabalho de transposição 

que conduz o saber científico (savoir savante) ao saber a ensinar, 

caracterizado sob a forma de capítulos de manuais escolares por 

exemplo. Mas o trabalho de transposição não se restringe à classe, já que o saber 

científico marca todos os atos do ensino (JOHSUA, S. & DUPIN, 1989, p. 193). 

Assim, a atenção do professor de Matemática não pode se limitar ao interior 

da sala de aula, e sim às consequências do ensino daquele conteúdo matemático, 

os momentos que antecedem uma sessão de ensino e os resultados alcançados, as 

formas de acomodação cognitiva apropriadas para um novo saber. 

De modo esquemático, Joshua & Dupin (1989) fornecem a seguinte 

fluxograma para a caracterização do movimento dos saberes ao longo da transposição 

didática. Na Figura 5, destacaremos a transposição científica, a qual envolve o saber 

matemático acadêmico, e a transposição didática, visando ao saber matemático 

escolar (nos deteremos à análise pormenorizada da transposição didática).

A transposição científica, que caracteriza as modificações que o saber 

matemático sofre desde o momento de sua elaboração e descoberta até o da 

divulgação e sistematização entre a comunidade acadêmica, será discutidas em 

aulas posteriores. 
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Figura 5: Transposição científica e transposição didática. 

O objeto do saber (matemático) é definido no domínio do saber científico, isto 

é, aquele reconhecido pela comunidade científica. Todavia, nem sempre este objeto 

apresenta uma forma que propicie o seu ensino direto no ambiente escolar. Assim, “alguns 

mecanismos precisos devem assegurar sua extração do domínio do saber acadêmico e sua 

inserção em um discurso didático” (JOHSUA, S. & DUPIN, 1989, p. 194). Uma vez que 

isso se realiza – o que na maioria das vezes não se constitui como uma simples tarefa – o 

saber didático passa a ser de modo intrínseco diferente do saber matemático da academia.

Na sequência do fluxograma adaptado por nós, descrito na Figura anterior, os 

didatas franceses explicam ainda que “frequentemente identificamos duas posições 

opostas: a transposição não seria uma transformação, ela é uma degradação. Sua 

artificialidade mesmo lhe deixaria uma suspeita com respeito à riqueza do processo 

real de elaboração dos saberes científicos” (JOHSUA & DUPIN, 1989, p. 196). 

Assim, o professor de matemática deve sempre ficar atento com respeito 

à criação do clima experimental em sala de aula que recria o ambiente de 

investigação do matemático profissional. 

Como todo processo, a transposição pode atuar de modo positivo no que diz 

respeito à aprendizagem dos estudantes, entretanto, como bem destacamos acima, 

podem ocorrer erros e distorções no referido processo de transposição. Nos textos 

escolares, frequentemente encontramos tais distorções. A esse respeito, Joshua & 

Dupin (1996) sublinham que o texto segue a ordem lógica que possui às vezes 

pouca ligação com os reais problemas do pesquisador matemático. 

Deste modo, a apresentação do saber matemático, por meio de uma 

exposição racional, a qual esconde os reais obstáculos superados até o alcance 

relativamente final, não apresenta o caráter de desenvolvimento progressivo, 

cumulativo e irreversível do saber matemático. 

No ensino da Matemática, o teorema de Pitágoras e o teorema de Talles 
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sempre representarão elementos de verdade, aceitos desde os séculos III antes de 

Cristo. Assim, quando os degraus em matemática são estabelecidos, não se descarta 

determinado saber constituído no passado. O saber matemático se acumula desde o 

início dos tempos. Por outro lado, observamos que:

É necessário observar que no processo de aprendizagem, os conhecimentos 

não se empilham uns sobre os outros, os novos se juntam aos antigos. As 

reorganizações regulares vêem ao contrário forçar novas aquisições. A 

aprendizagem se faz em particular a partir destas integrações sucessivas 

(JOHSUA, S. & DUPIN, 1989, p. 197, tradução nossa.)

Joshua & Dupin (1989) citam Yves Chevalard, outro investigador francês 

que diferencia o tempo didático do tempo de aprendizagem em matemática. Com 

referência a tais noções, o sistema didático visa então à fixação da correspondência 

entre estes dois tempos; mas se trata de uma relação necessária se desejamos 

conceber uma didática. Entretanto, como já discutimos anteriormente, o professor 

de Matemática não pode se apoiar em expectativas que os alunos aprendem, porque 

cada aluno precisa enfrentar dificuldades e inseguranças até que ocorra, por parte 

do aluno, a compreensão de um novo conteúdo. 

Em determinadas situações, o professor de Matemática se enfrenta um 

enorme dilema. Por um lado, a pressão para o cumprimento do currículo e do 

programa escolar age coercitivamente no sentido de utilizar aquele determinado 

tempo didático para o desenvolvimento daquele conteúdo. Por outro lado, o 

cumprimento daquele tempo estabelecido nem sempre mantém sintonia com o 

tempo de aprendizagem. Se temos mais conteúdos, o tempo de aprendizagem 

para raciocinar, refletir e sistematizar as ideias será incompatível com a quantidade 

de conteúdo, consequentemente, na maioria dos casos, o professor de Matemática 

não consegue um bom aprofundamento. 

O dilema comentado é explicado na Figura 6 do produto cartesiano entre 

( )  ( )aprofundamento t X conteúdo t . Repare que ambas as funções em cada eixo 

dependem do tempo. 

Figura 6: Produto cartesiano aprofundamento X conteúdo
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O tempo didático depende, por sua vez, do tipo e da natureza do conteúdo 

que temos a intenção de realizar uma determinada transposição didática. De fato, 

quando nossa intenção é ministrar determinado conteúdo matemático, devemos ter 

em mente de forma clara que trabalharemos com a construção progressiva de um 

conjunto de conceitos e noções intrínsecos a tal conteúdo.

Assim, tanto no ensino escolar, apesar de lidarmos com vários tipos de 

demonstração, quanto no ambiente acadêmico, temos um conjunto de modos de 

demonstração ainda maior e a própria noção de demonstração não é objeto de ensino 

nem para os estudantes, nem mesmo para os professores em formação. Aliás, em 

poucas licenciaturas no estado do Ceará, encontramos como componente de estudo 

e de formação do futuro professor de matemática a noção de demonstração e prova 

matemática. 

Outra noção paramatemática apontada por Joshua & Dupin é a noção de distância 

que existe no sistema escolar com uma significação bem particular. Ela é uma noção 

paramatemática porque nós a encontramos no ambiente de trabalho do matemático 

profissional de modo generalizado e possui um papel essencial, “mas no senso comum a 

noção de distância é sem dúvida uma das primeiras noções” (1989, p. 226). Ela entra como 

noção paramatemática de base na elaboração da Geometria Elementar. Todavia, devido 

a um movimento reformista e interior à própria Matemática chamado de Movimento 

da Matemática Moderna, a noção de distância foi transformada em um objeto do ensino 

escolar. Nas próximas aulas, mencionaremos novamente este movimento. 

Ainda com relação à transposição didática, Brousseau oferece uma 

interessante perspectiva e possibilidades de eventos no decorrer de situações 

de ensino. Um elemento sublinhado por este autor, presente nas transposições 

didáticas, diz respeito ao uso abusivo de analogias. 

Analogia é um excelente meio heurístico, mas sua utilização na relação 

didática de modo excessivo por ser danosa. De fato, a analogia é um recurso 

para a compreensão, uma espécie de muletas que oferecemos aos estudantes para 

a obtenção de uma compreensão imediata. Porém elas não podem substituir as 

próprias pernas dos estudantes. 

Deste modo, um ensino heurístico de Matemática com o emprego de analogias 

é necessário, mas não suficiente para garantir a generalização de determinadas ideias 

gerais. Outra situação didática comum diz respeito ao envelhecimento das situações de 

ensino. De fato, o professor encontra dificuldades na reprodução da mesma lição para 

turmas diferentes.
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Além disso, a reprodução exata de uma 

lição ou de uma aula para diferentes alunos é quase 

impossível. Assim, o professor de Matemática se 

vê diante da necessidade de realizar adaptações 

de sua exposição com relação à clientela a 

qual busca atender. Em um sentido oposto, se 

falamos de um professor de Matemática à moda 

antiga, que carrega as mesmas notas de aula por 

anos, diante do espírito de modernidade que 

respiramos (internet e tecnologia), este professor 

pode transformar seu ensino em um objeto 

cristalizado no tempo.

Com respeito à necessidade de atualização do 

ensino de matemática, Lima (2001, p. 160) diz que:

A análise conjuntural com vistas a adequar o ensino da matemática ao momento 

presente nos leva inevitavelmente a considerar os anseios dos grupos a quem 

tal ensino é dirigido, as aspirações da sociedade onde o processo educativo 

tem lugar, bem como as restrições e obstáculos para a execução de projetos 

teoricamente ideais. Entre essas restrições encontram-se naturalmente as de 

ordem econômica, mas há outras, de natureza bem diversa, como a lentidão 

inevitável dos programas de treinamento de professores, além do natural apego 

a certas tradições, mesmo de natureza intelectual.

O matemático Elon Lages Lima identifica o condicionamento dos fatores 

sociais que promovem obstáculos à melhoria da qualidade da formação do professor. 

Assim, professor mal formado e desatualizado não apresenta condições de realizar 

um bom ensino, e provavelmente irá repetir de forma sistemática o roteiro do livro 

didático, o qual possui qualidade duvidosa. Lima (2001, p. 161) declara ainda que:

Os professores do ensino básico, quer por formação quer por hábito, acham-se 

envolvidos numa rotina de trabalho onde os assuntos abordados são aqueles 

em que se sentem seguros de tratar e os exercícios propostos são quase 

sempre aqueles mesmos que já sabem resolver, mesmo porque a necessidade 

de complementar os seus parcos salários com o trabalho adicional não lhes 

permite muito tempo para estudar. 

Lima desenvolve um raciocínio semelhante ao de Brousseau quando fala de 

s a i b a  m a i s !

Na década de 60, o movimento chamado de 

Movimento da Matemática Moderna foi motivado 

e justificado pelo desejo de adaptar o ensino 

de Matemática aos padrões utilizados pelos 

matemáticos do século 20 (ou pelo menos um 

grande número deles). Nesta época, foi proposta 

uma reformulação radical dos currículos, com 

ênfase nos métodos abstratos e gerais (LIMA, 

2001, p. 161).  
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envelhecimento das situações de ensino. Isso ocorre, como vimos acima, por causa de  

inúmeros fatores, inclusive devido ao meio ambiente institucional/escolar.

Diferentemente das Didáticas Gerais que consideram as relações entre um 

ensino de um conteúdo genérico e as relações ali estabelecidas, sejam relacionadas 

a qualquer disciplina, a Didática da Matemática se ocupa destes fenômenos, mas 

sem perder de vista as ligações com o saber matemático.

O professor Bruno D´Amore (2007) pesquisador da Universidade Italiana da 

Bolonha, afirma que devemos adotar uma perspectiva piagetiana para entendermos 

que  conhecimento se constroi através da interação constante entre o sujeito e o 

objeto.

Os pressupostos piagetianos destacados por D’Amore merecem alguns 

comentários, apesar de que, nas próximas aulas, discutiremos as contribuições de 

Jean Piaget (1896-1980). 

É comum os alunos de graduação estudarem teorias cognitivistas generalistas. 

Tais teorias não foram concebidas com uma preocupação referente à aprendizagem 

em Matemática. O diferencial da epistemologia genética de Piaget é que ele 

desenvolveu um pensamento analógico/descritivo para diversos fenômenos de 

natureza cognitiva. 

Figura 7: Jean Piaget

Para concluir, sublinhamos que “o principal 

assunto estudado pela Didática da Matemática 

encontra-se constituído pelos diferentes tipos 

de sistemas didáticos (professor, estudante e 

saber)” (D´AMORE, 2007, p. 84). Seu diferencial, 

em relação a teorias generalistas, assenta na preocupação específica com o saber 

v o c ê  s a b i a?

Piaget foi contemporâneo de muitas figuras 

emblemáticas na Matemática Pura e da própria 

matemática extraiu inúmeros modelos e 

indícios para interpretar a cognição da criança. 

Retornaremos mais adiante a tal discussão.

Fonte: pt.w
ikipedia.org
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matemático, as relações entre professor de matemática e alunos diante de um currículo 

de Matemática.

No próximo tópico, discutiremos alguns aspectos preocupantes relacionados ao 

ensino da Matemática e começaremos a desenhar uma argumentação indicando de que modo 

a Didática da Matemática pode se apresentar como um instrumento poderoso para o futuro 

professor.

Para encerrar este tópico referente à noção de Transposição, vamos apresentar 

dois exemplos que você poderá pensar e trabalhar nas atividades do Fórum. O 

primeiro envolve a noção de proporcionalidade que é descrita por Lima (2001(a), 

p. 93) como uma função :f ®   tal que, para todos reais ,c x Î , temos 

( ) ( )f c x c f x× = ×  (proporcionalidade direta) ou 
( )

( )
f x

f c x
c

× = (proporcionalidade 

inversa). Lima acrescenta que, “na prática, a definição tradicional equivale a dizer 

que a grandeza y é diretamente proporcional à grandeza x existe um número a 

(chamado de constante de proporcionalidade) tal que y=a.x”.

Podemos lembrar o seguinte exemplo sugerido por Lima: se um quilo de 

açúcar custa a reais, então x quilos custam y=a.x, a função que modeliza esta 

situação. Na próxima aula, continuaremos nossa discussão sobre o ensino de 

Matemática. 
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TÓPICO 3 Sobre o ensino da matemática

Objetivo

•	 Relacionar o ensino da Matemática com a 

prática pedagógica

Reconhecidamente a Didática da Matemática e outros campos 

de pesquisa originados, na maioria dos casos, na Europa, se 

consolidaram com um objetivo maior de melhoria do ensino/

aprendizagem desta disciplina. Afinal, antes de serem pesquisadores, todos os 

nomes até o momento citados neste texto são professores de Matemática em seus 

respectivos países.

No caso brasileiro, temos o orgulho de destacar a figura emblemática do professor 

e pesquisador Elon Lages Lima. Matemático profissional do Instituto de Matemática 

Pura e Aplicada do Rio de Janeiro, Lima apresenta, em sua vasta produção acadêmica, 

uma extensa produção voltada à Matemática do ensino superior, assim como alguns 

livros de cunho eminentemente voltados à formação do futuro professor.

Em um de seus livros, Lima (2001, p. 161) discute o Movimento da Matemática 

Moderna da década de 60 e nos mostra que “as consequências deste movimento 

em nosso país foram desastrosas, em que pese o fato de que algumas das práticas 

propostas eram realmente aconselháveis”. 

Acontece que, tradicionalmente, desde os nossos dias de colônia, estamos 

acostumados a seguir a moda que nos ditam os países mais desenvolvidos. 

E, em geral, imitamos o que é fácil, superficial e frívolo. Nossa imitação da 

Matemática Moderna resultou no abandono da Geometria e dos cálculos 

numéricos, substituídos por exageros conjuntivistas e um pseudo-formalismo 

vazio e desligado da realidade (LIMA, 2001, p. 161).
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De fato, estuda-se mais Cálculo Diferencial 

e Integral em um curso de licenciatura do que 

Geometria Plana. Para completar o cenário, ainda 

na perspectiva de Lima, nas escolas, Euclides é 

colocado em segundo plano.

Em países desenvolvidos também podem 

ocorrer quadros graves relacionados ao ensino 

de Matemática como o relatado por Lima, como 

o Japão, que, segundo Lima (2001, p. 162):

É um dos países do mundo onde o 

número de computadores por habitante 

é o mais alto. Entretanto, apesar dos 

esforços das autoridades, a utilização de 

computadores no ensino da Matemática nas escolas japonesas teve de enfrentar 

a resistência e demora pois a maioria dos professores não estava preparada e 

relutava em preparar-se para mudar seus métodos tradicionais.

Lima acredita que “esta demora resultou benéfica, pois hoje os japoneses 

parecem convencidos de que o uso dos computadores no ensino da Matemática e 

de suas aplicações é muito mais eficiente para os alunos a partir de 15 ou 16 anos, 

em cujos currículos tal uso se realmente justifica” (LIMA, 2001, p. 162).

O exemplo asiático apresenta algumas semelhanças, respeitado os condicionantes 

culturais, com o sistema brasileiro de ensino. Aqui, a incorporação tímida por parte dos 

professores da escola, em muitos estados, é devida à sua frágil formação acadêmica com 

respeito à instrumentalização e aplicação da tecnologia para o ensino/aprendizagem.

Certamente que, no caso de nossa região Nordeste, quando a comparamos com a 

região Sul, evidenciamos o quanto ainda precisamos evoluir. De qualquer modo, estando 

o computador à disposição para uma aula de Geometria em um laboratório ou não, o 

exame de qualidade para a formação docente chamado Enade exige dos estudantes uma 

perspectiva diferenciada, no que diz respeito a uma Didática do ensino de Geometria e 

Geometria Dinâmica. Na Figura a seguir, apresentaremos a referida situação-problema. 

s a i b a  m a i s !

Euclides de Alexandria (360 a.C. — 295 

a.C.) fofoi um professor, matemático platónico 

e escritor possivelmente grego, muitas vezes 

referido como o “Pai da Geometria”.Euclides 

também escreveu obras sobre perspectivas, seções 

cônicas, geometria esférica, teoria dos números e 

rigor.

Fonte: http://www.educ.fc.ul.pt/icm/icm99/

icm16/biografia.htm

http://pt.wikipedia.org/wiki/360_a.C.
http://pt.wikipedia.org/wiki/295_a.C.
http://pt.wikipedia.org/wiki/295_a.C.
http://pt.wikipedia.org/wiki/Magist%C3%A9rio
http://pt.wikipedia.org/wiki/Matem%C3%A1tica
http://pt.wikipedia.org/wiki/Plat%C3%A3o
http://pt.wikipedia.org/wiki/Literatura
http://pt.wikipedia.org/wiki/Gr%C3%A9cia_Antiga
http://pt.wikipedia.org/wiki/Perspectiva_%28gr%C3%A1fica%29
http://pt.wikipedia.org/wiki/C%C3%B3nica
http://pt.wikipedia.org/wiki/C%C3%B3nica
http://pt.wikipedia.org/wiki/Geometria_esf%C3%A9rica
http://pt.wikipedia.org/wiki/Teoria_dos_n%C3%BAmeros
http://pt.wikipedia.org/wiki/Rigor
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Figura 8: Questão do Enade que exige uma perspectiva na 
Didática do ensino da Geometria Dinâmica

Um último exemplo destacado por Lima (2001, p. 163) refere-se ao ensino Soviético:

De 1893 até o final da década de 60, o ensino da Geometria na Rússia, 
depois União Soviética, foi decisivamente influenciado pelo livro “Geo-
metria Elementar” de A. P. Kiselev (1852-1940), que em mais de 50 edi-
ções sofreu melhoramentos e adaptações visando aperfeiçoar suas qua-
lidades didáticas e sólida concepção, nas quais se baseou a formação de 
muitas gerações de cientistas, tecnólogos e matemáticos daquele país.

O autor ainda menciona que o desenvolvimento da ciência e tecnologia impulsio-

nou na União Soviética uma reforma no ensino da Matemática no sentido “de atuali-

zar material obsoleto e introduzir novos conhecimentos compatíveis com as exigên-

cias da época” (LIMA, 2001, p. 163).

Lima (2001, p. 163) relata a existência de duas abordagens didáticas distintas. Ex-

plica que uma delas foi liderada pelo extraordinário matemático A. N. Kolmogorov, 

o qual, segundo o autor:

Comandou uma equipe para redigir os textos de Geometria baseados nos grupos 
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de transformações geométricas. A outra tendência foi a do eminente geômetra 

A. V. Pogorelov, que adotou os princípios metodológicos de Kiselev, dando-

lhes melhor consistência lógica, simplificando a apresentação, provendo-a de 

mais objetividade, modernizando o estilo e tirando proveito de progressos 

matemáticos obtidos em épocas recentes.

A reforma descrita por Lima apresenta uma preocupação interna com a organi-

zação da própria teoria matemática. Isso é um exemplo da transposição científica re-

alizada pelos matemáticos com vistas ao ensino acadêmico, entretanto sabemos que 

o nível cognitivo dos estudantes pré-adolescentes é diferente de um estudante de 

nível universitário. Assim, na próxima etapa, precisamos pensar na transposição di-

dática que tornará adequado este conteúdo ao professor da escola.

Acreditamos que seja relevante refletir por que a aprendizagem de Geometria por 

algumas crianças não é satisfatória. Embora esta resposta possa ser inferida a partir 

das colocações de Lima, assumimos a posição de que o ensino vai mal, em parte, por-

que os professores saem das universidades (de modo particular no Ceará) tanto com 

uma frágil formação em Geometria, como com uma fragilizada formação didática, a 

qual poderia potencializar transposições adequadas do referido conteúdo.

Para concluir este tópico, destacamos algumas considerações de Lima acerca do 

ensino de Matemática com referência à realidade dos países mencionados há pouco 

e alguns ensinamentos no que diz respeito à realidade brasileira. 

O primeiro deles nos faz lembrar que:

A Matemática é muito mais do que um encadeamento lógico de proposições 

referentes a conceitos abstratos, a partir das quais se pode chegar a conclusões 

de rara beleza e vasto alcance. Não apenas por isso que ela é universalmente 

ensinada. Nem tampouco é verdade que a aprendizagem se faz sob forma de 

silogismos, do geral para o particular. O lado prático, algorítmico e utilitário de 

certos tópicos da Matemática Elementar não pode ser menosprezado (LIMA, 

2001, p. 164).

O segundo diz respeito ao fato de não podermos ignorar a presença dos 

computadores na vida diária das pessoas e a necessidade de acompanhar a evolução 

tecnológica. Assim, o ensino bem como as sequências didáticas do professor devem 

evoluir e manterem-se atualizados. A discutida formação tecnológica poderia 

ocorrer de modo sistêmico nas universidades.

É interessante observar que o futuro professor de Matemática,  embora curse 

disciplinas de computação, cálculo numérico e outros objetos relacionados a linguagens 
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computacionais, no momento de trabalhar com um software para o ensino de Álgebra, 

se vê bastante perdido. Por outro lado, o emprego computacional pode explicitar as 

limitações dos modelos matemáticos e enfraquecer o caráter de infalibilidade do saber 

matemático. Isso faz parte de uma transposição didática do docente, na medida em 

que busca estimular nos seus alunos um pensamento autônomo, de forma a não se 

restringir à repetição das regras estabelecidas na aula de Matemática.

AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) Apresentamos as definições formais e mais gerais possíveis sobre a função 

logaritmo e a função exponencial. Responda:

a) Tais definições constituem saberes científicos?

b) Tais formulações necessitam sofrer alguma transposição didática com 

vistas à adaptação ao contexto escolar? Quais? 

c) Indique as dificuldades de explorarmos as propriedades geométricas dos 

gráficos destas funções, sem o auxílio computacional. 

d) Que adaptações você executaria sobre tais definições tornando-as mais 

acessíveis ao entendimento do estudante? Você discutiria a noção de 

continuidade? 

e) Pelos gráficos destas funções que exibimos na figura 1, é possível conduzir 

e estimular o raciocínio do estudante sobre a propriedade que diz serem 

uma a inversa da outra? 

2. (I) A função +¥ ® log : (0, )a  tem as seguintes propriedades:

a) = +log ( ) log ( ) log ( )a a axy x y ;

b) = ×log ( ) logr
a ax r x , para qualquer r  e qualquer > 0x ;

c) =log ( )x
a a x , para todo x, e =loga xa a , para todo > 0x ;

d) log a  é crescente quando > 1a  e decrescente quando < <0 1a ;
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e) se > 1a , +®
=-¥

0
log ( )ax

Lim x
 e ®+¥ = +¥log ( )x aLim x ;

se < <0 1a , +®
= +¥

0
log ( )ax

Lim x
 e ®+¥ =-¥log ( )x aLim x ;

f) log a  é sobrejetora. 

(II) Definimos a função exponencial 
+® exp :  como sendo a inversa 

da função logaritmo. Assim, por definição, = Û =exp( ) logx y y x . Em 

particular, =exp(log( ))y y  e =log(exp( ))x x .

3) No contexto da Análise Real, dizemos que ®:f X Y  

é um homemorfismo entre os conjuntos Ì ,X Y ,  

quando temos que f  é contínua e bijetiva, e sua inversa 
-1f  é contínua. 

Assim, pode-se verificar que 
+ ® log :  é um homeomorfismo. Isto 

constitui um saber escolar ou um saber científico? O professor precisa 

conhecer esta propriedade para garantir que na figura abaixo temos de fato 

um homeomorfismo? 

Relações entre as funções exponencial e logaritma

4) Enunciamos um teorema que diz respeito ao saber científico.

Teorema: a função exponencial é uma bijeção crescente de   sobre 
+

 . 

Ela é infinitamente diferenciável, com =(exp)'( ) exp( )x x . Além disso, para 
Î ,x y , vale + = ×exp( ) exp( ) exp( )x y x y . E para todo Îr , tem-se que 

=exp( ) rr e . Discuta a transposição didática necessária que torne tal saber 

científico discutível no contexto escolar.

5) No trecho abaixo destacamos um momento de discussão entre aluno e 

professor. Indique os momentos em que a professora não executa de modo 
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eficiente a transposição didática adequada para sua turma de alunos. Indicar 

que propriedades axiomáticas formais a mesma faz referência. 

Trecho do livro de Kline (1971, p. 15)
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Caro(a) aluno(a), 

Nesta aula continuaremos apresentando a didática da matemática e a contribuição 

desta para a atuação do professor em formação.

Objetivo

•	 Apresentar algumas concepções do erro em Matemática e suas relações 
com o contrato didático

AULA 2 Didática da 
Matemática
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TÓPICO 1 O Contrato Didático segundo 

a escola francesa
Objetivo

•	 Descrever os principais elementos do Contrato 

Didático

A partir dos anos 70 surgiu no mundo da pesquisa em Didática 

da Matemática a ideia de contrato didático, lançada por Guy 

Brousseau (IREM Bordeaux, 1978). “A ideia nasceu para estudar as 

causas do fracasso eletivo em Matemática, isto é, daquele fracasso típico, reservado 

apenas ao domínio da Matemática, por parte dos estudantes que, por outro lado, 

parecem mais ou menos arranjarem-se na outras matérias (D´AMORE, 2007, p. 99).

D´amore (2007, p. 100) descreve que esta noção foi sistematizada e aplicada 

de modo empírico num dos estudos de Brousseau na França. Ele relata o caso do 

aluno Gael do seguinte modo:

Gaël é um menino que frequenta a segunda série do ensino fundamental 

mesmo tendo mais de 8 anos; a condição na qual os pesquisadores encontraram 

Gaël é descrita a seguir: 
•	 ao invés de exprimir conscientemente o próprio conhecimento, Gaël o 

exprime sempre e somente em termos que envolvem o professor;
•	  as suas competências nunca são próprias competências, mas aquilo que 

a professora lhe ensinou;
•	  as suas capacidades estratégicas nunca são próprias capacidades, mas o 

que (e como) a professora disse que deve ser feito.

É interessante como encontramos crianças e adolescentes com os mesmos 

problemas e limitações no que diz respeito ao raciocínio matemático. O diferencial 

da equipe de pesquisadores que trabalharam com Brousseau é a sistematização 

de identificação de especificidades intrínsecas às barreiras enfrentadas pelos 
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estudantes no momento da aprendizagem.

Neste sentido, Brousseau destaca que, em muitos casos, o professor, após o seu 

ensino, espera a repetição, em linhas gerais, de fragmentos daquele conteúdo. Todavia, 

o mestre não pode esquecer que, na maioria das vezes, o que representa um problema 

para si pode não fazer sentido ou representar um problema interessante para o iniciante.

Neste âmbito, o autor faz referência à atividade de solução problemas que se 

apresenta como umas das principais no seu estudo sobre Didática da Matemática. 

O autor ainda sublinha a possibilidade que o professor deve construir para que 

o estudante “entre no jogo”; para que a situação que lhe é apresentada seja 

interessante.

De fato, no âmbito da resolução de problemas, o aluno precisa ser motivado 

a encarar situações que envolvem raciocínios nem sempre imediatos. É nítida a 

dificuldade e, por que não dizer comodidade do professor em estimular apenas a 

aplicação de uma fórmula para a obtenção daquele gabarito, não importando o que 

ela significa ou não.

Neste sentido, Brousseau (1996, p. 66) continua salientando que:
•	 Mas se o aluno recusa ou evita o problema, ou não o resolve? O 

professor possui então a obrigação social de ajudar e mesmo as vezes 
de se justificar de ter colocado uma questão difícil. 

•	 Então se firma uma relação que determina – explicitamente para 
uma pequena parte, mas, sobretudo implicitamente, o que cada 
participante, o docente e o aprendiz, possui como responsabilidade 
de gerenciar e de uma maneira ou outra, um será responsável perante 
o outro. 

Na sequência, Brousseau caracteriza a noção de contrato didático como sendo 

um sistema de obrigações recíprocas que se assemelham a um contrato. E o que lhe 

interessa concernente ao contrato diz respeito aos conteúdos matemáticos visados. 

Ele apresenta ainda as seguintes características desta relação:
•	 O professor é supostamente capaz de criar condições suficientes para a 

apropriação dos conhecimentos, e deve reconhecer tal apropriação quando 
a mesma se opera;

•	 O aluno é supostamente capaz de satisfazer tais condições;
•	 A relação didática deve continuar a “todo custo”;
•	 O professor assegura então as condições de aquisição anteriores e as 

condições novas fornecem ao estudante a possibilidade da aquisição 
desejada.

Assim, o professor de matemática dependerá do maior ou menor interesse 
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de sua classe, sem mencionar o fato de que, culturalmente falando, os alunos já 

manifestam sinais de temor ou apreensão quando sabem que a próxima aula é de 

Matemática.

Neste sentido, todos os tipos de relações que mencionamos fazem parte de 

uma cultura didática que envolve o saber matemático. Neste sentido, Brousseau & 

Gibel (2005, p. 22) explicam que:

No caso o raciocínio formulado pelo professor é tanto: um objeto explicito do 

ensino na fase de institucionalização, porém, correlacionado com a situação 

objetivamente definida ou um suporte de aprendizagem e recordação de uma 

sentença ensinada; ou um argumento teórico usado como meio didático para 

auxiliar os estudantes na compreensão do enunciado.

Na Figura 1 vemos parte das relações estabelecidas de modo explícito ou 

implícito em sala de aula. 

Figura 1: Diagrama que explica a situação de devolução

No que diz respeito ao contrato didático, D´Amore (2007, p. 102) esclarece 

que:

O estudante considera que em Matemática devem ser feitos cálculos; por isso, 

mesmo que a resposta à questão colocada em um problema pudesse ser dada apenas 

com palavras, o aluno sente-se incomodado e tende a usar os dados numéricos 

presentes no texto do problema, para dar, de qualquer maneira, uma resposta 

formal, usando alguma operação, ainda que escolhida ao acaso. Foram amplamente 

documentados casos de alunos que, a fim de produzir cálculos, escrevem operações 

sem sentido, desvinculadas do que é pedido no problema, mas que têm como 

operadores os dados numéricos presentes no texto.

O que relata D´Amore pode ser vivenciado em sala de aula por você, basta 

chegar em sala de aula, em qualquer nível escolar, e colocar o seguinte problema: 
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num curral encontramos 16 bodes e 12 cabras. Qual é a idade do dono do curral? 

Percebe-se que aqui adaptamos a realidade nordestina, uma vez que o problema 

original, foi colocado na quarta série do ensino fundamental (estudantes de 9-10 

anos) o seguinte problema “Um pastor tem 12 ovelhas e 6 cabras. Quantos anos têm 

o pastor?”.

É interessante o relato destacado por D´Amore quando menciona que todas 

as crianças submetidas ao experimento e tal questionamento matematicamente 

ilógico forneceram respostas. Além disso, o autor salienta a aflição da professora 

diante de um problema colocado que não apresentava resposta, tendo em vista que 

ela sempre colocava problemas com solução para suas crianças.

Figura 2: Representa contrato didático entre professor e aluno.

Evidenciamos assim o contrato didático estabelecido por esta professora e 

seus alunos que, implicava, pelo menos implicitamente, que todas as situações-

problema deveriam ter resposta e certamente um roteiro/receita para os alunos 

seguir. Neste caso, a clausula do contrato diz que “se a professora dá um problema, 

este certamente deve ser resolvido” (D´AMORE, 2007, p. 104).

Com respeito aos fenômenos identificados diante da colocação de problemas por 

parte do professor de matemática, Brousseau (1996) idêntica algumas situações que ele 

chama de paradoxais relacionadas às situações de devolução. Neste sentido, ele diz que:

O docente deve conseguir que o aluno resolva os problemas que o mesmo 

propõe a fim de constatar e poder fazer constatar que o estudante cumpriu sua 

própria tarefa. Mas se o aluno produziu sua resposta sem o mesmo ter feito as 

escolhas que caracterizam o saber convencional e que diferencie o saber dos 

conhecimentos insuficientes, indica-se possivelmente um erro (BROUSSEAU, 

1996, p. 85).



Didát ica  da  Matemát ica36

Bem, antes de discutirmos as últimas colocações, devemos esclarecer o 

significado do termo situação de devolução. É comum numa aula de Matemática o 

professor iniciar com um problema interessante de Matemática. Diante da situação 

desafiadora, pelo menos na perspectiva do professor, os estudantes podem encarar 

a situação-problema como uma real barreira que deve ser superada, um grande 

desafio, ou apenas um meio para consumir o tempo daquela aula chata.

Outras situações podem ocorrer. Por exemplo, o professor apresenta uma 

ideia-chave do conteúdo matemático a ser explicado e o aluno não compreende 

a referida ideia, isso poderá refletir negativamente nas etapas subsequentes e, 

em certos casos, com referência a determinados conceitos, o aluno pode carregar 

consigo uma falsa ideia ou uma concepção equivocada ao longo de toda a sua vida 

estudantil.

Podemos rapidamente exemplificar com referências aos conceitos de: 

parâmetro, variável, valor determinado, valor indeterminado. O professor poderia 

apresentar aos estudantes a seguinte lista de itens que exibimos abaixo. Em 

cada item identificar os elementos parâmetro, variável, valor determinado, valor 

indeterminado, constante e função. Explicar ainda por que de cada escolha.

i)  (área do retângulo)A b h= ×

ii)  xx x= " Î

iii) 2x = Î

iv) 2 5 6 0x x- + =

v) 
( 1)

2n

n n
S

+
=

vi) 2 2( ) cos ( ) 1sen q q+ =

vii) (2 ) 0sen q =

viii) 2ax bx c y+ + =

ix) ( )Sen x y=

x) 34
3

V Rp= × . 

Percebe-se que nos itens acima evidenciamos conceitos estudados desde as séries 

iniciais, entretanto, em consequência do ensino o qual fomos submetidos, estamos 

acostumados a calcular e/ou resolver e não dizer/explicar a natureza do objeto com que 

lidamos. 

Notamos ainda nas colocações anteriormente devidas a Brousseau que o mesmo 

destaca a ocorrência de o aluno produziu sua resposta sem o mesmo ter feito as escolhas que 
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caracterizam o saber convencional. Com isto ele acentua que o professor de matemática, 

diante de uma situação-problema, sabe, ou pelo menos deveria saber de onde o aluno 

deve partir e aonde ele deve chegar e inclusive antever os problemas que enfrentará.

Ainda com respeito à resposta do aluno ser convencional ou não, resta ainda 

observar se a resposta do estudante será ou não considerada, por parte do professor, 

como uma demonstração ou prova do que de fato foi demandado na questão. A 

importância desta noção é descrita por Arsac (1987, p. 269) quando explica que:

A demonstração ocupa em matemática um lugar central desde que é o método 

de prova o qual empregamos de modo sistemático que caracteriza esta 

disciplina entre as outras ciências. Compreendemos desde cedo que ele possui 

um papel importante nos cursos escolares. Ela constitui então um objeto de 

estudos a priori privilegiado pelos didatas da matemática e isto porque sua 

introdução é fonte de dificuldades para muitas crianças. 

Apesar do fato que Gilbert Arsac relata as dificuldades com respeito às 

relações estabelecidas entre os alunos franceses diante da tarefa de efetuar uma 

demonstração, nossa realidade é bastante semelhante. Pior do que isso, em vários 

casos, a atividade demonstrativa foi abolida da sala de aula e substituída pelo 

emprego automático de algorítmicos.

Possivelmente este quadro lamentável explica a condição de que muitas 

pessoas com base pouco sólida e/ou inicial em matemática considerem-na 

como a ciência dos números.

Para exemplificar a respeito da noção de demonstração, observemos o seguinte 

enunciado: Mostre que 2 21b b a+ + =  não possui soluções inteiras positivas.

Demonstração: Assim, desejamos mostrar que a igualdade 
2 21b b a+ + =  não pode ser verdadeira para ,a b +Î . Podemos até prever o 

comportamento de alguns casos particulares como 2 21 e b=2 2 2 1 1a = \ + + =  

ou 2 22 e b=1 1 1 1 2a = \ + + = . Isto nos deixa desconfiar da propriedade que 

possivelmente pode ser verdadeira. Procedemos tradicionalmente do seguinte modo. 

Primeiro assumimos que o resultado seja verdadeiro, ou seja, assumimos exatamente 

o oposto do que tencionamos verificar. Assim, suponha que 2 21b b a+ + =  possua 

tal propriedade. Mas notamos da igualdade que 2 2 2[ 1]b b b a< + + = , pois 

1 0b+ > . Assim, temos:
2 2 2 2 2[ 1]b b b a b a< + + = ® < . Extraindo a raiz quadrada, obtemos 

a relação 2 2 2 2b a b b a a< ® = < = , pois ,a b +Î . Portanto, 

concluímos até o momento que b a< . Retornando a expressão 
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2 2 2 21 1 ( )( ) 1b b a a b b a b a b b+ + = « - = + « + - = + (*). 

Agora vamos comparar os números ( )( ) e 1a b a b b+ - + . Pelo lado esquerdo, 

temos que 1a b> ³ , assim, 1 ( ) 1a b a b³ + « - ³ , pois a b> . Além disso, temos 

1 2 1 2 1 (1 )a b a b b b a b b b b b- ³ « - + ³ + \ + ³ + + = + + . Concluímos que o 

lado esquerdo ( )( )a b a b+ -  é maior do que ( )( ) (1 ) 1 1a b a b b b b+ - ³ + + × > +  o 

que contraria a igualdade. Portanto, chegamos a uma contradição diante do fato que 

havíamos suposto, ou seja, a possibilidade de existirem inteiros positivos que satisfazem 

( )( ) 1a b a b b+ - = +  o que equivale a igualdade desejada. 

Se você se sente completamente perdido com esta demonstração, fique 

tranquilo, você não é o único. Seus alunos, numa situação hipotética como esta, 

devem se encontrar da mesma forma. É sempre bom, mas difícil, buscar analisar aos 

olhos do sujeito que se depara com uma argumentação como esta pela primeira vez. 

De fato, aos olhos do estudante, o professor de matemática deseja verificar 

uma propriedade que ele, de antemão já sabe que não é verdadeira; ou seja, 

que não existem inteiros satisfazendo a igualdade 2 21b b a+ + = , então por 

que insistir nisso, além dos fatos evidenciados inicialmente que verificam que 
2 21 e b=2 2 2 1 1a = \ + + ¹ .

Outro aspecto que se relaciona ao contrato didático diz respeito ao tempo 

de atenção. Neste caso, diante do comprimento das argumentações, os alunos 

não se lembram mais o que devem mesmo provar. Isto pode gerar desinteresse e 

a devolução poderá ficar comprometida. 

“Podem ocorrer casos extremos em que o professor se refugia na segurança dos 

algorítmicos prontos, fraciona a atividade matemática em etapas pelas quais passa 

mecanicamente, esvaziando o seu significado” (SILVA, 2002, p. 46). Deste modo, 

o contrato didático se resume na mera execução das atividades arbitrariamente 

definidas pelo professor, quer se tenha ou não aprendizagem. 

Percebe-se que diante das dificuldades impostas por um problema de 

resolução não imediata, o professor de matemática se vê diante do que Brousseau 

(1996, p. 86) chama de injunção paradoxal que ocorre quando:

Tudo o que o professor coloca buscando produzir nos estudantes os 

comportamentos que o mesmo espera, tende a privar estes últimos de condições 

necessárias à compreensão e à aprendizagem visada. [...] O estudante aceita, 

segundo o contrato, os resultados, ele não os estabelece e, portanto, ele não 

aprende matemática. Ele não se apropria. Se, por outro lado, o estudante recusa 

tudo do mestre, a relação didática é rompida (1996, p. 86).
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Para encerrar este tópico, sublinhamos que no próximo tópico relacionaremos 

a noção de erro em Matemática com a noção de contrato didático. Salientamos 

que discutiremos apenas alguns aspectos e dimensões, nomeadamente, os aspectos 

didáticos e lógico-matemáticos. Os aspectos psicológicos e filosóficos do erro em 

Matemática serão objeto de estudo em outra disciplina.
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TÓPICO 2 Os erros dos estudantes e os 
paradoxos do contrato didático

Objetivo

•	 Apresentar algumas concepções do erro em Matemática e 

suas relações com o contrato didático

Vamos iniciar com a observação de um experimento aplicado pelas 

pesquisadoras inglesas Célia Hoyles, professora da Universidade de 

Londres e Lulu Healy, professora da Universidade Bandeirantes em 

São Paulo. As estudiosas colocaram para crianças o seguinte questionamento: quando 

adicionamos dois números pares quaisquer, a resposta é sempre um par. Na sequência 

traduzimos para o português algumas das estratégias mais empregadas pelos estudantes 

que participaram da investigação.

Resposta do aluno 1:

a é um inteiro qualquer

b é um inteiro qualquer

2a  e 2b  são dois números pares

Assim 2 2 2( )a b a b+ = +

Resposta do aluno 2:

2 2 4       4+2=6

2 4 6       4+4=8

2 6 8        4+6=10

+ =
+ =
+ =

Resposta do aluno 3:

Todo número par pode ser dividido 
por 2. Quando adicionamos outro 
número com este mesmo fator, a res-
posta sempre terá o mesmo fator em 
comum 2. 

Resposta do aluno 4:

Todo número par acaba em 0, 2, 4, 6 ou 8. 
Quando se adiciona dois números para o final 
continua sendo em 0, 2, 4, 6 ou 8. É correto!
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Resposta do aluno 5:

Dados  x número qualquer=  e 

 y número qualquer= . Escrevemos 

x y z+ =  e assim, temos: z x y- =  

e z y x- = . Segue que:  

( ) ( ) ( ) ( )

2

z x z y z z x y

x y z

- + - = + - +
= + =

portanto segue que a soma é par. 

Resposta do aluno 6:

Resposta do aluno 7:

Eu escolho um número par arbi-
trário, digamos 245224 e 5439876. 
Quando eu os adiciono então, obtenho 
245224+5439876=5685100 que é par. 

Resposta do aluno 8:

Aqui é o que desejamos dois números pares 
dados 12 e 22. Como 12=6+6 e 22=11+11 por-
tanto 12+22=(6+11)+(6+11) e eu posso fazer o 
mesmo com dois números pares quaisquer. 

Resposta do aluno 9:

Dado um número a par, assim, 2a k=
.

Dado um número b par, assim 2b l= .

Assim, 2( )a b k l+ = + . 

Resposta do aluno 10:

Dado um número z soma de dois números pares 

2z p= , podemos escrever z m n= + , assim, 
2 2z m n= +  que é soma de dois pares. Assim, 

z é par. 

Observando as estratégias acima, que nota você daria para cada um destes alunos 

e por quê? Visto de fora pode parecer uma atividade avaliativa simples, entretanto, 

este exemplo singelo mostra como a avaliação em Matemática é um processo complexo. 

De fato, como identificar um raciocínio incorreto? Qual o tipo de erro matemático 

manifestado do aluno? O referido erro é casual ou está ligado a uma concepção 

apreendida de modo inadequado e que acompanha o aluno já há algum tempo?

Mas nos referimos apenas ao aluno, entretanto, o professor também pode 

errar. Mas um erro porventura cometido pelo professor, pode até mesmo possuir 

um caráter didático-pedagógico. Neste sentido, existe uma concepção cultural 

atribuída a quem detém o saber matemático. Quando a pessoa domina muitos 

conhecimentos em História ou Geografia, não observamos nenhuma distinção 

social, todavia, quando a pessoa, e nesse caso o professor de matemática, domina 

muito conteúdo matemático, é considerado pelos demais como um “gênio” ou um 

alienígena, um espécie de E. T. 
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Assim, ao professor cometer um erro, os alunos percebem que todos são 

passíveis de equívocos, que eles têm permissão de tentar resolver uma situação-

problema e errar. Que aquilo faz parte do aprendizado e se caracteriza como uma 

etapa que precisa ser superar e não contornada ou evitada. 

Neste sentido, Cury (1994, p. 78) nos traz interessantes colocações quando 

destaca “a preocupação com a eliminação dos 

erros cometidos pelos alunos, tão própria da 

concepção que vê a Matemática como o domínio 

do conhecimento absoluto e infalível, parte da 

ideia equivocada de que os textos matemáticos 

não têm erros”. 

Ela cita a obra do matemático e filósofo 

Philip Davis que “comenta a existência de uma 

obra, publicada em 1935, na qual, em mais de 

130 páginas, são listadas erros cometidos por 

matemáticos, desde a antiguidade, arrolando, 

também, os autores que descobriram os erros e as 

discussões por eles geradas” (1994, p. 78). 

Deste modo, evidenciamos que o contrato 

didático do professor necessita contemplar e 

prever os erros dos estudantes, entretanto, 

a forma de encará-los, por parte do mestre, dependerá em muito da vertente 

epistemológica (behaviorismo ou construtivismo, por exemplo) que o mesmo 

simpatiza. Em muitos casos a visão sobre avaliação do professor de Matemática é 

construída na própria academia. De fato, os primeiros exemplos e paradigmas de 

professores de Matemática serão seus próprios formadores. 

Notamos que na identificação de um erro e, consequentemente na 

possibilidade de superação do referido obstáculo, na medida em que o aluno 

compreende por que errou, ocorre um processo de adaptação do estudante diante 

da situação colocada pelo professor. Brousseau sublinha a importância desse 

processo ao dizer que:

s a i b a  m a i s !

O termo Behaviorismo foi utilizado inicialmente 

em 1913 em um artigo denominado “Psicologia: 

como os behavioristas a vêem” por John B. 

Watson. “Behavior” significa “comportamento” 

e ele definiu como: “Um ramo experimental e 

puramente objetivo da ciência natural. A sua meta 

é a previsão e controle do comportamento...”. 

Watson postulava o comportamento como 

objeto da Psicologia. http://www.euniverso.

com.br/Psyche/Psicologia/comportamental/

behaviorismo.htm
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As situações permitem adaptação do aluno e são na maioria das vezes de natureza 

repetitiva: o aluno deve poder realizar várias tentativas, investir na situação 

com o auxílio de suas representações, extrair consequências de seus fracassos 

ou do seu sucesso mais ou menos fortuitos. A incerteza na qual ele é colocado 

é fonte ao mesmo tempo de angustia e prazer. A redução desta incerteza é o 

objetivo da atividade intelectual e seu motor (1996, p. 93).

Brousseau menciona aspectos delicados do ensino de Matemática. Um deles é o 

que chamamos de gerenciamento da certeza matemática dos estudantes. Por exemplo, o 

professor pode chegar na sala de aula e enunciar o seguinte teorema.

:Teorema  Dados dois números ,x y Î  ímpares. Então o seu 

produto x y×  deve ser ímpar.

Demonstração: De fato, vamos tomar dois números ,x y Î  ímpares quaisquer, 

deste modo, podemos escrevê-los do seguinte modo 2 1x a= +  e 2 1y b= + , onde 

,a bÎ . De imediato, temos que (2 1)(2 1) 2(2 ) 1 2 1x y a b ab a b k× = + + = + + + = + ,  

onde 2k ab a b= + + Î . Segue o resultado esperado.

Em outra situação, o professor poderia apresentar os exemplos abaixo que 

apresentamos na tabela. Notamos que temos aqui apenas alguns casos particulares. 

A partir desta situação, o professor pode sugerir que, possivelmente, o resultado é 

verdadeiro. Pode desafiar algum estudante mais interessado em trazer um resultado 

que invalide a afirmação do teorema. Assim, o professor evitar concluir, com a 

precisão e rigor da demonstração matemática, a resolução de um problema. 
x y x y×

1 1 1
3 1 3
3 3 9
3 7 21
5 1 5
5 7 35

Diferenciamos mesmo o tipo de discurso presente nas duas exposições. 

O primeiro método, que é de fato a demonstração, nos traz aquela sensação de 

certeza, de credibilidade num fato, entretanto, uma vez o resultado estabelecido, 

o debate em sala de aula poderá encerrar, uma vez que o problema está resolvido. 

Já no segundo caso em que apresentamos uma tabela, descrevemos apenas uma 

argumentação matemática. Uma argumentação não fornece nenhum caráter de 

validade ou confiança maior a respeito de determinada propriedade. 	
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Vejamos outro exemplo observando o seguinte teorema.

:Teorema  Se dois lados de um triângulo são congruentes, então os 

ângulos opostos a esses lados são congruentes.

Vamos inverter agora. Iniciando com uma argumentação matemática que 

possa convencer aos alunos sobre a possibilidade de ocorrer a propriedade desejada. 

Notamos que poderíamos construir um triângulo de medidas: 3AB cm= ; 3AC cm=  

e 1,5BC cm= . Medindo com o transferidor os seus ângulos opostos obteríamos que 
^

60ºB =  e 
^

60ºC = . O que verifica apenas para o caso particular. Mas vejamos a 

demonstração propriamente dita.

Consideremos um triângulo ABCD , e o segmento AM  de modo que 

BM MC BC+ = , com M o ponto médio deste lado. Notamos que, por hipótese, 

podemos escrever AB ACº . Pela propriedade reflexiva, temos AM AM= (todo 

segmento é congruente a si mesmo). Mas em virtude do ponto médio temos BM MC= .  

Assim, os triângulos AMB AMCD ºD , pois possuem os três lados congruentes. 

Se admitirmos conhecido o fato de que ângulos opostos a lados congruentes de 

triângulos congruentes são congruentes, teremos que 
^ ^

B C=  c. q. d. 

Figura 3: Triângulo

Notemos que a figura acima é empregada apenas como um auxílio ao raciocínio. 

Além disso, a figura representa um triângulo particular. A nossa argumentação 

inicial envolveu também um caso particular. Por outro lado, a demonstração, uma 

vez realizada e comprovada ser isenta de contrações, funcionará para qualquer 

triângulo com tais propriedades previstas nas hipóteses deste teorema.

E contrato didático onde fica no meio de toda essa discussão? Bem, 

encontramos professores de Matemática que valorizam as argumentações e os casos 

particulares. Vejam que com tais casos, o debate em sala de aula pode ser prolongado 

ao máximo. Enquanto que, quando recorremos a demonstração, o problema está 

resolvido, tendo em vista de termos a crença de que o mestre acabou de estabelecer 

uma verdade absoluta em sala de aula. Toda situação-problema, dali em diante, será 
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solucionada com a aplicação do teorema. Nem mesmo a demonstração precisa ser 

recordada pelos estudantes, apenas o seu resultado.

Em relação a tal reducionismo que caracteriza a atividade matemática 

como uma simples aplicação e rotinas de algoritmização, os autores Hanna & 

Barbeau (2009, p. 90) lembram que:

Enquanto estudantes na escola são expostos a uns poucos “teoremas”, 

particularmente em outras áreas diferentes da Geometria, eles, entretanto 

devem aprender um pequeno número de fórmulas, que são essencialmente 

enunciados de resultados. Um exemplo disso é a fórmula de resolução da 

equação quadrática. As soluções da equação quadrática 
2 0ax bx c+ + = ,  

onde 0a ¹ , são dadas por 
2 4

2
b b ac

x
a

- ± -
= . No mais básico nível, 

os estudantes podem usar esta fórmula para resolver equações quadráticas 

particulares. É mesmo possível para eles aplicá-la cegamente, não percebendo 

que eles podem checar suas soluções por substituição de volta à equação. [...] 

Neste ponto, os estudantes percebem que existem dois modos independentes 

de resolução de equações quadráticas, um fatorando, onde nem sempre obtêm 

sucesso, a o outro, usando a fórmula, que sempre funcionará.

Resumimos as colocações acima na figura 04 que descreve o funcionamento de 

uma aula de Matemática que privilegia fortemente esta perspectiva de mecanização 

e aplicação restrita de resultados matemáticos com uma larga margem de segurança, 

principalmente para o professor, que nem precisa se esforçar muito. 

Figura 4: Contrato didático fundamentado no processo de aprendizagem algoritmizado

Percebe-se neste processo de aprendizagem baseada na algoritmização, é difícil o aluno 

errar, pois, basta fornecer os dados para a máquina contendo a fórmula matemática, garantida 

por um teorema, mencionado en passant pelo professor, que obteremos uma resposta.
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De fato, neste sistema de ensino temos uma condição de extrema “comodidade” 

para o professor de matemática, uma vez que, embora tenha 200 provas para corrigir, 

em cada uma delas, ele pode avaliar apenas a resposta. Por outro lado, devemos 

observar também que, quando professor de Matemática quer complicar demais, 

tentando avaliações que fujam desse processo descrito na ilustração acima, via de 

regra, aparece algum estudante para reclamar na coordenação. No final, conclui-se 

que é bem mais fácil, para todos no processo (professor e estudante) permanecer no 

esquema da figura 4.
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TÓPICO 3 Tipos de erros e o Contrato 
Didático

Objetivo

•	 Caracterizar alguns tipos de erro e relacioná-los com a 

noção de contrato didático

Vamos iniciar nossa discussão observando duas situações em que 

identificamos a ocorrência de erros. Notamos que se tratam de 

erros que envolvem o emprego inadequado de regras de inferência 

e/ou equivalências lógicas indevidas. Mas como diferenciar (I) e (II)?

Figura 5: Erros envolvendo inferências e equivalências lógicas não permitidas.

Mas vejamos um erro frequente e difícil de apresentar uma causa facilmente 

identificável. Para você presenciar a sua manifestação em sala de aula, basta você requisitar 

a um aluno representar o gráfico da seguinte progressão aritmética {1,3,5,7,9,....}. 

Observamos que além de ser uma questão pouco colocada, uma vez que o tratamento 

dedicado às progressões aritméticas e geométricas é totalmente algébrico e não geométrico, 

o aluno esboçará algo semelhante ao que exibimos na figura 6. 
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Figura 6: Descrição do gráfico de uma progressão aritmética por um aluno. 

Bem, aparentemente o nosso aluno hipotético descreveu algo semelhante a 

uma reta do tipo y ax b= + . E, de algum modo ele relacionou esta representação 

da reta com 1 ( 1)na a n r= + - × , a questão não trivial agora é saber por quê? Que 

razões levaram o aluno a manifestar tal estratégia? 

Esta estratégia se diferencia de modo substancial no que diz respeito à figura 

4. De fato, nesta, nossa atenção se volta à manipulação e à aplicação de regras de 

operação. Para o professor de Matemática, estas podem ser mais fáceis de corrigir, 

pois são mais perceptíveis e se inserem num contexto mais simples. Por outro lado, 

o que foi contrariado, numa perspectiva matemática, para que o professor possa 

dizer que a estratégia da figura envolvendo a progressão aritmética está errada? 

Se trata de uma concepção ou noção mal apreendida, desde quando este aluno 

carrega consigo tal concepção equivocada? Estas questões, geralmente, não possuem uma 

resposta imediata. Por simplicidade, o professor de Matemática da série atual coloca culpa 

no professor da série anterior e, assim, sucessivamente. Possivelmente, continuando com 

este processo, a culpa recai sobre os pais que colocaram a criança na escola.

Por vezes o professor se depara com estratégias mirabolantes, como 
1 1 2
2 3 5
+ =

. Mas, outro aspecto deve ser observado é que, apesar de não ser explícito no contrato 

didático, pode ocorrer que um aluno, após realizar um duro esforço na resolução 

de uma questão, de sua resposta não atender exatamente o que foi demandado pelo 

mestre e, mesmo assim, diante do seu empenho, o estudante cobrar do professor 

alguma pontuação diante do enorme esforço gasto na resolução da questão. Neste 

caso, sua resposta poderia estar correta em outro contexto, mas de acordo com o 

que é requisitado na questão, o mestre poderia considerar completamente errado. 
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Trata-se de uma situação delicada do contrato didático, todavia, a nota deve ser 

atribuída e este valor numérico que atribuímos ao estudante pode ser o ápice de um 

processo meticuloso conduzido e delineado pelo mestre. De fato, Cury (1994 p. 74) lembra:

O momento de aplicação da prova também tem, em geral, um ritual implícito, 

mais ou menos aceito por todos. O professor solicita uma determinada disposição 

das classes, faz algumas admoestações sobre possíveis colas, marca o tempo de 

duração da prova e recusa-se a auxiliar os alunos. A toda essa encenação subjaz a 

ideia de que o conhecimento, transmitido aos alunos de uma determinada forma, 

deva ser assim reproduzido de única maneira considerada correta. Dessa forma, o 

diálogo entre o professor e aluno, que possa ter sido estimulado durante as aulas 

e que possa ter, efetivamente, levado o aluno a atingir uma melhor compreensão 

dos conteúdos, é bruscamente interrompido. A prova introduz uma quebra do 

contrato didático, um desequilíbrio nas relações entre professor e os alunos, em 

torno do saber.

Um tipo de erro encontrado em Matemática e explorado na tese de Cury (1994) 

é o caso da falsa generalização. Situações como a b a b× = ×  a b a b+ = +  

ou ( ) ( ) ( ) ( )a bi c di a c b d i+ + + = + + +  ou ( ) ( ) ( ) ( )a bi c di a c b d i+ × + = × + ×  

caracterizam a direção natural que o ser humano apresenta em busca de padrões, 

sejam eles aritméticos, geométricos ou algébricos.

Merece comentário, por exemplo, a adição natural de números complexos e, 

na sequência dos conteúdos, os estudantes são apresentados às regras envolvendo 

multiplicação em que devem empregar a relação 2 1i =-  que surge como um 

verdadeiro passe de mágica.

O erro em Matemática que é chamado por alguns autores de falsa generalização 

é estimulado, de modo completamente equivocado, segundo Lima (2001) pelos livros 

didáticos do ensino médio. Como por exemplo, sejam a soma de nÎ  números em 

P.G descritos por 2 1
1 2 3 1 1 1 1.... .... n

n nS a a a a a a q a q a q -= + + + + = + + + + , assim 

temos 2 3
1 1 1 1.... n

nS q a q a q a q a q× = + + + + , portanto: 

( ) ( )2 1 2 3
1 1 1 1 1 1 1 1.... ....n n

n nS S q a a q a q a q a q a q a q a q-- × = + + + + - + + + +

1
1 1 1 1

(1 )
(1 ) (1 ) (1 )

(1 )

n
n n n

n n n n

a q
S S q a a q a q S q a q S

q

-
- × = - = - \ - = - « =

-

, ou 1( 1)

( 1)

n

n

a q
S

q

-
=

-
. Na sequência conclui que tal propriedade foi demonstrada 

para n" Î  (natural). Assim, o livro e, consequentemente o professor inadvertido, 

estimulou uma prática em deduzir o geral a partir de um caso específico ( nÎ ) 
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inicialmente fixado em (*).

Vejamos um exemplo interessante descrito da dissertação de Bondaniman 

(2007 p. 173). A autora apresentou a seguinte tarefa envolvendo a noção de soma. 

Ela verificou que a maioria os alunos não obtiveram resultados corretos para 

os valores numéricos, entretanto, respeitaram a hierarquia para a resolução dos 

mesmos. Destaca ainda a dificuldade em trabalhar com números. 

Figura 7: Tarefa sugerida por Bondaniman (2007, p. 173). 

Ao lado, temos as respostas obtidas pela investigadora. Nesse estudo, após 

a representação das atividades na escrita algébrica, a autora requisitou a mesma 

representação com o uso de materiais manipuláveis ou desenhos geométricos como 

vemos à direita da figura 7. Em casos como este, o aluno se vê na obrigação de testar 

e comparar suas respostas tanto na representação ligada à Aritmética, como em 

Álgebra e na Geometria. Sugerimos ao professor uma perspectiva de avaliação a ser 

desenvolvida pelo Contrato Didático que possibilite e estimule ao aluno enxergar 

as relações que descrevemos na figura 8.

v

Figura 8: Relações estimuladas na avaliação do professor

Certamente tais relações não são facilmente alcançadas pelo professor de 
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Matemática iniciante. Nem mesmo o experiente, tendo em vista que ambos foram 

submetidos ao estudo de disciplinas compartimentalizadas ou estanques no locus 

acadêmico. De fato, ainda nos aprofundaremos em questões relacionadas às mínimas 

relações estabelecidas entre a formação pedagógica e a relação específica. Tal dicotomia 

prejudica a visão do futuro professor e, em última instância, estudos evidenciam que 

ensinamos da maneira que aprendemos. Mas isto será um assunto para outra aula. 

AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) No que diz respeito às definições formais de função afim e função 

exponencial, quais das duas definições exigem um maior tempo didático? 

Qual transposição didática exigirá mais do professor? Qual a definição 

propicia maiores dificuldades ao entendimento dos aprendentes? Justificar 

usando as noções da Didática da Matemática.

2) Descreva formalmente as propriedades da função de proporcionalidade 

direta. Fornecer exemplos de questões que envolvem esta função.

3) Os saberes científicos relacionados com a função de proporcionalidade 

direta devem constituir os saberes particulares do professor? 

4) É peculiar o professor “menos experiente” se valer de todo o seu 

conhecimento recém aprendido na academia e desenvolver uma transposição 

didática afetada por sua formação acadêmica. Identificar este tipo de 

contágio no trecho da figura 3. A linguagem excessivamente formal pode 

gerar dificuldades aos estudantes? Como lidar com tais dificuldades?

Trecho de Kline (1971, p. 17) 
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5) É mais cômodo para o professor apresentar sua aula apoiada no 

raciocínio lógico e formal. A vantagem reside na organização, na precisão 

e sistematização do saber matemático. Na figura abaixo, enfatizamos uma 

situação didática em que o professor de Matemática se vale da condição em 

que os exercícios e atividades são suficientes para que os alunos, de modo 

automático, aprendam a lição. Indique a transposição didática inadequada 

neste caso. 

Trecho do livro de Kline (1971, p. 20)
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AULA 3 A noção de obstáculo 
epistemológico

Olá aluno (a),

Nesta aula, iremos abordar a noção de obstáculo epistemológico estudado em 

didática e suas implicações para o ensino, bem como descrever as noções de 

argumentação, prova e demonstração e as implicações didáticas destas noções. 

Vamos lá!

Objetivos

•	 Entender o obstáculo epistemológico no estudo da didática da matemática
•	 Compreender a argumentação, prova e demonstração matemática e suas 

implicações didáticas
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TÓPICO 1
A noçao de obstáculo 
epistemológico estudado em 
didática da matemática

Objetivo

•	 Descrever a noção de obstáculo epistemológico 

e suas implicações para o ensino

Iniciamos esta seção com alguns questionamentos: por que é mais 

difícil ensinar aos estudantes a noção de função exponencial e função 

logarítmica do que função afim e/ou função polinomial do segundo 

grau? Por que os estudantes preferem Álgebra em vez de Geometria Plana? 

Aos olhos do incipiente ou o pouco treinado no saber matemático, essas questões 

podem não ter muito sentido, mas para o professor de Matemática, ser consciente do 

valor e das possíveis respostas para tais questões é essencial para a sua atividade. A 

primeira observação que fazemos é a seguinte: determinadas dificuldades enfrentadas 

pelos estudantes dependem de modo específico do conteúdo contemplado na ação 

didática. 

Com isto, queremos dizer que, independentemente do professor, os alunos 

sempre sentem mais dificuldades na aprendizagem de função logarítmica do que 

na aprendizagem de função afim. Os alunos sempre preferem Álgebra a Geometria. 

Este sentimento de aversão e insegurança pode ser gerada pelo próprio conteúdo. 

Foi por isso que alguns didatas da Matemática passaram a se preocupar com as 

dificuldades intrínsecas oferecidas pelos próprio objeto matemático.

Historicamente, os matemáticos precisaram de mais tempo para formalizar 

a noção de limite, comparado-a ao tempo empregado com as noções de Derivada e 

Integral. É como se o tempo para a apreensão e compreensão de um objeto matemático 

fosse mais prolongado do que o outro; e isto dependeria das características próprias 

de cada objeto conceitual.



55AULA 3 TÓPICO 1

Outro aspecto interessante é que isto foi objeto de reflexão para muitos epistemólogos, 

que de modo particular estudaram a expansão e evolução do conhecimento matemático. 

Joshua e Dupin (1989, p. 61) descrevem parte deste processo quando recordam que:

Em particular, as matemáticas não formais, quase empíricas, não se desenvolveram 

por meio de uma acumulação contínua de teoremas inquestionavelmente 

estabelecidos, mas por meio de um aperfeiçoamento incessante de conjecturas 

graças à especulação crítica, graças à lógica de provas e refutações.

Na citação acima, vemos alguns vestígios 

apontados pelos didatas franceses ao sublinhar que 

a Matemática não se desenvolve por meio de um 

acúmulo de teoremas. De modo semelhante, o saber 

do aluno também não evolui à medida que passa a 

conhecer vinte teoremas em vez de apenas dez. Esta 

seria uma visão muito simplista da missão do ensino.

A partir desta visão que se preocupava 

em acompanhar e explicar os progressos das 

Ciências e da Matemática, alguns cientistas 

conceberam e criaram algumas noções que 

poderiam sistematizar e explicar, ou, pelo menos, 

prever surgimento de determinadas barreiras 

inevitáveis à evolução do saber. A noção mais 

celebrada nesse âmbito é chamada de obstáculo 

epistemológico.

Seu fundamental criador foi o filósofo e 

poeta francês Gastón Bachelard (1884-1962), que, 

conforme Joshua e Dupin (1989, p. 63), descreve uma 

lista impressionante de obstáculos que interditam 

o modo de pensar pré-científico. Igliori (2002, p. 

91) lança alguns questionamentos interessantes 

ao propor: O que é o conhecimento? Como se 

processo o conhecimento? Qual é a natureza dos 

objetos que compõem uma determinada ciência? 

Em que sentido é a Matemática um conjunto de 

objetos e um conjunto de ideias?

v o c ê  s a b i a?

Epistemólogos são os cientistas que se debruçam 

sobre a compreensão dos motivos da expansão do 

conhecimento científico.

v o c ê  s a b i a?

D´Amore (2007, p. 211) explica que no ensino-

aprendizagem, por um lado, é necessário que se 

formem ideias transitórias, mas, por outro lado, 

é preciso levar em conta que tais ideais resistirão 

(tentarão resistir) depois, quando da tentativa de 

serem superadas. [...] Pode-se dizer que um obstáculo 

é uma ideia que, no momento de formação de um 

conceito, foi eficaz para enfrentar os problemas 

anteriores, mas que se revela um fracasso quando 

se tenta aplicá-la a um novo problema. Dado o êxito 

obtido, tende-se a conservar a ideia já adquirida e 

comprovada e, apesar do fracasso, busca-se salvá-

la; mas esse fato acaba sendo uma barreira para 

aprendizagens sucessivas. 
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Acrescentamos a importância de refletir sobre: O que é o conhecimento 

matemático? Como se processa o conhecimento matemático? Qual é a natureza 

dos objetos que compõem a Matemática? Sublinhamos que, dentre as tendências 

evidenciadas na Epistemologia, nos interessamos, de modo particular, pela 

epistemologia das problemáticas “que se propõe a analisar como os problemas, 

que têm conduzido o homem ao conhecimento científico, modelaram as teorias 

inventadas para resolver estes problemas” (IGLIORI, 2002, p. 92).

Como sempre, as revoluções e quebra de paradigmas ocorridos na Matemática 

passam a influenciar e determinar mudanças em outros campos do saber. Nesse 

sentido, Igliori (2002) destaca os trabalhos de Karl Popper (1902-1994), que baseou 

sua abordagem em parte nas investigações desenvolvidas pelo matemático e físico 

Imre Lakatos (1922- 1974). 

Ilustramos esse fato em seguida e sublinhamos as duas possibilidades: 

particular geralÞ  e geral particularÞ . São impressionantes os exemplos na 

Ciência que mostram o modo como pensadores se apoiaram em casos particulares 

para compreender as revoluções em caráter geral. Diante disto, o ingênuo professor 

de Matemática pode concluir que a trajetória particular geralÞ  é mais aconselhada 

para o sujeito que se depara pela primeira vez com um conhecimento. 

]

Figura 1: Caminhos da Ciência e da Matemática

Por outro lado, para quem sabe e conhece, como no caso presumimos seja 

o professor de Matemática, a trajetória geral particular geralÞ Þ  deve ser 

facilmente alcançada, entretanto podem ocorrer situações de quebra do contrato 

didático em que o mestre adota, por comodidade ou por preferência, apenas o 

caminho geral particularÞ .

Fazemos uma pequena digressão aqui para sublinhar a importância do 

futuro professor de Matemática adquirir e cultivar, ao longo de sua profissão, uma 

visão globalizante do saber matemático. Neste sentido, quando temos a missão de 

ensinar um conceito matemático, acreditamos ser essencial conhecer os aspectos 
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que condicionaram sua gênese, os porquês do seu surgimento. Na Figura 2 abaixo, 

vemos o que chamamos de aspectos históricos (1). 

Figura 2: Preocupações do professor de Matemática

Sendo o professor de Matemática conhecedor dos embates e problemas que 

necessitaram ser ultrapassados pelos matemáticos profissionais do passado para a 

sistematização das ideias referentes ao conceito matemático, passamos a um segundo 

momento. Neste o professor precisar ater-se aos aspectos lógicos e filosóficos (2) 

que caracterizam a natureza e o papel que desempenha este conceito dentro da 

teoria em questão. Por fim, uma vez compreendida e construída pelo professor 

a visão que responde pela natureza e pelo campo de validade e aplicação deste 

conceito, é que o mestre passa a desenvolver uma preocupação com a transposição 

didática mais adequada para transformar o saber relacionado ao conceito em algo 

alcançável e compreensível pelos estudantes. Este último momento chamamos de 

aspectos metodológicos e didáticos (3). Assim, descrevemos a trajetória 1 2 3® ® . 

Ao professor deve ficar claro que determinados saberes devem possuir 

um caráter provisório e que, num momento inicial, os alunos podem não possuir 

maturidade e/ou estruturas cognitivas que lhes possibilitem a aquisição daquele 

saber. 

O professor sabe que tipos de erro os alunos devem cometer e vê tudo aquilo 

como uma etapa necessária para a aprendizagem. Num período ou série subsequente, 

o mesmo professor continua sua vigilância agora no sentido de sanar e aprimorar 

determinadas concepções equivocadas pelos seus estudantes.

Se houver uma troca de professor na escola durante o ano, o próximo professor 

dificilmente conhecerá os antigos erros e concepções errôneas dos alunos que precisam 

ser corrigidas. O caminho mais simples é, como alerta Brousseau (1996 p.127), colocar a 

culpa no professor do ano anterior. Mais adiante o mesmo autor declara:
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Os conhecimentos evoluem segundo processos complexos. Desejar explicar esta 

evolução unicamente por meio de interações efetivas no meio seria certamente 

um erro, pois, em breve, os estudantes podem interiorizar as situações que lhes 

interessam e operar com suas representações internas experienciais mentais 

importantes.

Desse modo, inevitavelmente os estudantes devem sentir mais dificuldades em 

uns conceitos do que em outros. A evolução dos processos cognitivos relacionados 

a alguns conceitos matemáticos passa por momentos de letargia, momentos de 

estagnação ou inércia. Momentos que alguns estudiosos da Psicologia Cognitiva 

chamam de acomodação. 

O interessante é que, sem tais momentos de atividade, os estudantes não 

conseguem alcançar uma etapa subsequente. É como se fosse necessário enfrentar 

aquelas dificuldades, sentir aquela insegurança e incerteza. 

Nesse sentido, passa a ser dever do 

professor possuir de modo claro a identificação 

a priori de todos os obstáculos à aprendizagem 

dos estudantes, o que nem sempre se constitui 

como uma simples tarefa. Arsac (1987, p. 307) 

acrescenta ainda que:

Uma questão importante é a seguinte, 

do ponto de vista didático: a passagem 

ao estádio de demonstrações pode 

ter sido motivada por necessidades 

internas à própria Matemática, isto é, a demonstração pode ter aparecido 

inicialmente como um instrumento indispensável para certas ocasiões, ou 

é necessário se resignar a um forte apelo às informações transmitidas pelo 

docente e mesmo as exigências introduzidas indiretamente pelo contrato 

didático?

De fato, o questionamento de Arsac (1987) exige uma resposta, como dizem 

os matemáticos, não trivial. Reparamos como o mesmo faz menção ainda à noção 

de demonstração em Matemática. E esta pode agir como um obstáculo em sala de 

aula. Vejamos um exemplo comentado por Barbosa (2004, p. 16).

:Teorema  Um segmento possui exatamente um único ponto médio. Para 

demonstrá-lo, Barbosa (2004) usa a seguinte proposição.

v o c ê  s a b i a?

É a modificação de um esquema ou de uma 

estrutura em função das particularidades do 

objeto a ser assimilado.

http://penta.ufrgs.br/~marcia/teopiag.htm#aco
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Proposição: sejam A, B, e C pontos distintos de uma mesma reta cujas 

coordenadas são, respectivamente, a, b e c. O ponto C está entre A e B se, e somente 

se o número c está entre a e b. 

Passaremos agora à demonstração propriamente dita do teorema. 

Prova: (Existência) Sejam a e b as coordenadas das extremidades do 

segmento. Consideremos agora o número 
2

a b
c

+
= . De acordo com um axioma III 

da Geometria Plana (BARBOSA, 2004, p. 14), existe C que possui como coordenada 

o ponto determinado pela relação 
2

a b
c

+
= , determinado pelas coordenadas 

de extremidade do segmento. Assim, em virtude ainda do Axioma, escrevemos 

AC CB AB+ = . Vemos, então, que 
2 2 2

a b a b
AC a c a

+
= - = - = -  e 

2 2 2
a b a b

CB c b b
+

= - = - = - e  concluímos que AC CB= . Mas considerando 

que o número 
2

a b
c

+
=  está entre os números a e b, segue-se, pela proposição, que 

C está entre os pontos A e B; assim C é o ponto médio de AB . 

(Unicidade) Seja C como obtido na prova da existência anterior, vamos admitir 

que exista um outro ponto 'C , outro ponto do segmento AB  tal que ' 'AC BC= . 

Sejam a, b e 'c  as coordenadas dos pontos A, B e 'C respectivamente, então teremos: 

(i) ' 'c a b c- = - , no caso em que 'a c b< < ; e (ii) ' 'a c c b- = - , no caso em que 

'b c a< < . Em todos os casos concluímos que '
2

a b
c c

+
= = . E mais uma vez, por outro 

axioma (BARBOSA, 2004, p. 15), temos os pontos 'C C= , como se queria demonstrar. 

Sublinhamos que, de acordo com a apresentação axiomática da Geometria, 

é difícil demonstrar o resultado enunciado neste teorema sem passar por algumas 

ideias centrais empregadas pelo matemático e pesquisador cearense João Lucas 

Marques Barbosa. Outro aspecto interessante é que determinados rituais formais 

executados pelo professor, em certos casos, não possuem um significado constituído 

para os estudantes. Este teorema que discutimos é um exemplo. 

Percebe-se que o autor buscou caracterizar a existência e a unicidade do objeto chamado 

de ponto médio do segmento. De fato, em Matemática, as noções de existência e a unicidade 

são basilares para a evolução e a sistematização das ideias desta ciência; a dificuldade é a 

obtenção de entendimento pelos estudantes de sua necessidade e importância.

Assim, caso esta trajetória seja a preferida pelo professor, podemos prever um 

obstáculo à compreensão dos alunos. Todavia, o obstáculo aqui é determinado a partir 
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da ação didática do professor em sala de aula. Este tipo de obstáculo é chamado por 

alguns autores de obstáculo de ordem metodológica. Com respeito aos vícios e distorções 

introduzidas na formação do futuro professor que podem favorecer a reprodução no 

ambiente escolar de verdadeiros obstáculos de ordem metodológica, Robert e Penninckx 

(1999, p. 95) advertem:

Embora tais alunos possuam o conhecimento, eles manifestam a tendência à 

reprodução de certos modelos. Por exemplo, eles se refugiam em quadros de 

predileção ou de métodos privilegiados e apresentam resistência às mudanças. 

Eles recorrem sistematicamente aos algoritmos, ao quadro numérico e/ou ao 

quadro analítico. Falamos de concepções condutoras de práticas redutoras. 

Apesar das autoras Robert e Penninckx mencionarem a realidade acadêmica 

de formação na França, aqui no Brasil a situação não é diferente. Por exemplo, 

encontramos concepções condutoras de práticas redutoras em diversos momentos 

da formação do professor de Matemática. Um exemplo clássico é o ensino 

compartimentalizado dos conteúdos dentro da própria universidade. 

De fato, que relações o licenciando é levado a descobrir entre Álgebra Linear e 

Geometria? Que relações o aluno começa a perceber entre a Álgebra aparentemente 

ingênua da escola básica e a famigerada disciplina de Estruturas Algébricas? Como 

os fundamentos da Análise Real auxiliam o aluno na compreensão de propriedades 

básicas dos números naturais, inteiros, racionais e reais?

Na prática, o currículo de Matemática é distribuído em gavetas e cabe, em 

muitos casos, ao estudante relacionar por conta própria a ligação dos conceitos da 

Matemática Avançada, que “aparentemente” não tem nenhuma aplicação escolar 

com a Matemática escolar. Pode parecer uma piada de mau gosto, mas nem mesmo 

o estudante consegue realizar a ligação conceitual entre função afim x progressões 

aritméticas ou função exponencial x progressões geométricas, que dirá as ligações 

e implicações necessárias entre a Matemática Avançada com a Matemática escolar. 

Tal currículo conduz a um ensino desconexo e separado em caixinhas. E 

o estudante, de modo semelhante, aprenderá tudo de modo separado e sem as 

ligações conceituais necessárias. Ora, isto caracteriza um sério obstáculo didático 

que dificilmente mudará sem uma mudança radical nos pressupostos filosóficos 

dos cursos de graduação de professores.

Brousseau (1996) estudou uma diversidade de obstáculos que devem ser 
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considerados no plano didático. Assim podemos ter:

- Obstáculos epistemológicos: os constatados por Bachelard, que se 

caracterizam como inerentes ao próprio conhecimento. São percebidos nas 

dificuldades pelas quais os matemáticos passam para superá-los ao longo da 

história, como atestam as pesquisas em Epistemologia e Historia da Matemática;

- Obstáculos didáticos: 

são aqueles decorrentes de determinadas estratégias de ensino. São resultantes de 

uma transposição didática que o professor dificilmente pode negociar no contexto 

restrito da classe. O conhecimento de um obstáculo de tal natureza permite ao 

professor rever a abordagem anterior sobre o assunto para esclarecer melhor a 

dificuldade vivida pelo aluno (GOUVÊA, 1998, p. 11);

- Obstáculos psicológicos: são aqueles que surgem quando a aprendizagem 

está em contradição com as representações profundas do sujeito ou quando ela causa 

uma desestabilização inaceitável (GOUVÊA, 1998, p. 11).

       - Obstáculos ontogênicos: são aqueles que se originam de uma aprendizagem fora 

do desenvolvimento psíquico do sujeito e das limitações de uma maturidade conceitual.

Para concluir esta seção, vamos comentar algumas das características 

dos obstáculos e de que modo eles podem surgir a partir da relação entre: 

 matemáticoaluno saber professor- - . Para discutir alguns exemplos de obstáculos 

epistemológicos, recordamos as colocações de Kline (1976, p. 30) que explica:

O primeiro e principal passo dado pelos gregos foi insistir em que a Matemática 

lidasse com conceitos abstratos. Para ver o que isto significa, recordamos 

que quando pensamos sobre números, inicialmente, idealizamos coleções de 

particulares de objetos, tais como: duas maçãs, três homens, etc. Gradualmente, 

e nem sempre conscientemente, pensamos sobre os números 2, 3, etc. e todos 

os outros sem a necessidade de os associarmos a outros objetos do mundo 

físico. Rapidamente, atingimos a um estágio elevado de adição, subtração e 

executamos outras operações com números sem mesmo possuir alguma coleção 

de objetos para compreender tais operações, cujos resultados se coadunam 

com a experiência.

Apesar de extenso, em linhas gerais, o matemático profissional Morris Kline 

se refere ao processo mental de abstração. De fato, observando suas explicações, 

notamos que inicialmente, ele faz referências a objetos percebidos empiricamente, 

objetos que nos circundam. No segundo momento, sua atenção recai sobre conjuntos 
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de objetos colocados em relação a certos tipos de simbologias que culturalmente 

são chamadas de números. No terceiro momento, o processo abstrativo já se 

encontra num patamar tão elevado que não necessitamos ver os objetos para 

idealizar operações que os empreguem, e, neste nível, o que importa são as relações 

estabelecidas entre conjuntos em que, na condição em que tenhamos alguma 

coleção particular e material de objetos, tais relações se adéquam de modo perfeito.

Aqui evidenciamos um caráter que sempre provoca mal estar nos estudantes, 

o caráter abstrato dos conceitos matemáticos que requerem processos cognitivos 

especializados para a sua internalização. Neste contexto, alguns objetos possibilitam 

mais barreiras ao entendimento do que outros. Por exemplo, se um professor professa 

sua aula de Matemática segundo o tópico função polinomial do primeiro grau, 

certamente as dificuldades devem ser menores quando comparadas a sua aula relativa 

à função logarítmica. Assim, independentemente do professor, o segundo tópico 

proporciona maiores dificuldades à aprendizagem. Tais barreiras são chamadas, assim, 

de obstáculos epistemológicos porque são relacionadas ao próprio conteúdo.

Por outro lado, mesmo quando referenciamos o mesmo conteúdo, os professores 

devem promover distintos pontos de vista de abordar e compreender o mesmo objeto. 

Dessa forma, em relação ao mesmo conteúdo, sentimos mais dificuldades com um 

professor do que com o outro. Identificamos aqui um obstáculo de natureza didática. 

Obstáculos psicológicos podem ocorrer na ocasião em que tencionamos ensinar 

um determinado conteúdo matemático, que reconhecidamente apresenta sempre 

algum pré-requisito e, por algum motivo, os alunos ainda não dispõem daquele 

modelo mental que os capacite a determinada aprendizagem. Podemos gerar 

obstáculos de natureza cognitiva se tentarmos ensinar a operação de divisão sem 

os alunos estarem familiarizados suficientemente com a operação de multiplicação. 

Por fim, não se consegue ensinar a noção de limite, derivada ou integral para uma 

criança de 10 anos, uma vez que, do ponto de vista maturacional, ainda se apresenta 

incapacitada para tal aprendizado. Tal situação envolve um obstáculo de natureza 

ontogenética. 

Este assunto é inesgotável e apresenta um enorme campo de aplicações. 

Na próxima aula, ainda discutiremos outros aspectos relacionados à noção de 

obstáculos epistemológicos.
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TÓPICO 2
Argumentação, prova e 
demonstração em matemática

Objetivo

•	 Descrever as noções de argumentação, 

prova e demonstração e as implicações 

didáticas destas noções

Uma das teses mais citadas em trabalhos acadêmicos interessados em 

investigação sobre o ensino/aprendizagem em Matemática é a do pesquisador 

francês Nicolas Balacheff. É interessante observarmos como as dificuldades 

diante de situações-probema que requerem o uso de demonstrações agem de 

modo aterrorizador nos estudantes. Numa perspectiva de caracterização da noção 

demonstração e seus efeitos em sala de aula, Balacheff (1988, p. 19) diz que:

De modo implícito as situações de ensino em Matemática delegam aos alunos 

a responsabilidade da verdade. Isto é particularmente identificado quando 

colocamos problemas do tipo: “Mostrar que...”. Em tal formulação do 

enunciado em questão já se tem a afirmação verdade, o que resta é descobrir 

a demonstração. Além disso, o critério de recebimento desta demonstração 

não se estabelece apenas diante da validade do enunciado em questão, mais 

ainda que ela satisfaça o professor. [...] Os critérios destes julgamentos não 

são suscetíveis de serem totalmente explícitos. Neste contexto, a demonstração 

aparece como uma retórica específica na classe de Matemática.

Notamos como Balacheff indica o poder relativo ao professor no momento de 

aplicar situações que requerem algum processo de demonstração. Sublinhamos ainda 

o caso de uma determinada propriedade poder apresentar inúmeras demonstrações; 

assim necessitamos saber qual delas pode satisfazer o mestre. Citamos o caso da 

propriedade entre os catetos e a hipotenusa relacionados por 2 2 2a b c= + .

Outra questão interessante e delicada diz respeito à colocação do enunciado 
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das situações-problema. Por exemplo, encontramos em Lima (2001, p. 37) os 

seguintes enunciados: Prove as igualdades (i) ( ) ( ) ( )X Y Z X Z Y ZÈ Ç = Ç È Ç  e 

( )C C CX Y Z X Y ZÈ Ç = È È . Ou ainda, usando indução matemática, mostre que 

2 2
3 3 3 3 ( 1)

1 2 3 ....
4

n n
n

+
+ + + + = .

Isto é justamente o que é denunciado por Balacheff (1988) e se torna mais 

nocivo no ensino escolar. A priori, os alunos já sentem que estão lidando com uma 

verdade matemática, o problema é recordar a demonstração feita pelo professor 

para se repetir exatamente a mesma coisa durante a avaliação.

Mas antes de nos aprofundarmos nestas questões de âmbito didático-

metodológico, apresentamos a caracterização assumida por Nicolas Balacheff. 

O autor inicia dizendo que os verbos explicar, provar e demonstrar são usados 

frequentemente como sinônimos na prática do ensino de Matemática (1988, p. 27).

Assim, ele propõe uma maior precisão do vocabulário para desenvolver o 

sistema de ensino envolvendo estas noções na escola. Ao citar Piaget, recorda que 

explicar, sobre o terreno das ciências dedutivas, significa obter razões para responder 

a questão do por quê. Mas, do ponto de vista da Matemática, fornecer as razões de 

um teorema significa explicar, e demonstrar e evidenciar exigências distintas.

Balacheff (1988) refere-se ao que os matemáticos nomeiam de fazer apelo 

à intuição; ele destaca as significações, isto é, a compreensão da validade de uma 

asserção, não no sentido lógico, mas no sentido das relações com os corpos de 

conhecimentos matemáticos.

Mais adiante o mesmo autor explica que, segundo a tradição dos linguistas, 

situamos uma explicação no nível do sujeito locutor e acrescenta que

É inicialmente para ele que a argumentação estabelece e garante a validade 

de uma proposição, ele toma raízes nos conhecimentos e no que constitui a 

sua racionalidade, isto é, suas próprias regras de decisão da verdade. Desde 

que se exprime em um discurso, a explicação visa tornar inteligível a outrem 

a verdade de uma proposição já aceita por um locutor. Ele não se reduz 

necessariamente em uma cadeia dedutiva (BALACHEFF, 1988, p. 28).

Vejamos um exemplo de explicação recordada por Lima (2004, p. 151). Ele 

lembra que um antigo professor seu costumava explicar ao jovem Elon Lages Lima 

e aos seus colegas as “regras do sinal” do seguinte modo:

1ª) O amigo do meu amigo é meio amigo, ou seja, ( )( ) ( )+ + = + ;
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2º) O amigo do meu inimigo é meu inimigo, isto é, ( )( ) ( )+ - = - ;

3º) O inimigo do meu amigo é meu inimigo, quer dizer que ( )( ) ( )- + = - ; 

4º) O inimigo do meu inimigo é meu amigo, o que significa ( )( ) ( )- - = + .

Na sequência, o autor acrescenta sem dúvida que a ilustração era um 

bom artifício didático, embora alguns de nós não concordássemos com a filosofia 

maniqueísta contida na quarta regra (poderíamos muito bem imaginar três pessoas 

inimigas entre si) (LIMA, 2004, p. 151).

Notamos claramente os limites da explicação fornecida pelo antigo professor. 

Seu uso é metafórico e por tempo didático limitado, pois, mais cedo ou mais tarde, os 

alunos devem ser conduzidos aos limites desta explicação matemática. Se o mesmo 

professor, entretanto, desejasse apresentar uma propriedade que independesse do 

caráter particular daquela situação didática, por exemplo, ( 1)( 1) 1- - = , poderia 

simplesmente declarar que este fato é uma consequência da lei distributiva da 

multiplicação em relação à adição (LIMA, 2004, p. 152).

De fato, nossa discussão tem lugar em  , onde cada número a possui 

simétrico (ou inverso aditivo). Assim, axiomaticamente, temos ( ) 0a a+ - = , para 

todo a Î . Em particular concluímos que ( )a a=-- , como destaca Lima. Mas 

precisamos de outra propriedade descrita por 0 0 aa × = " Î (*). De fato, notamos 

que: 0 1 0 (1 0) 1 0 0 0 a a a a a a a a a a a a+ × = × + × = + = × = = + \ + × = + " Î , 

isto deve implicar que 0 0a × = , o que prova a propriedade (*). 

Em seguida Lima (2004, p, 153) mostra que ( 1) a a- × =-  para todo a" Î . 

Com efeito, notamos que ( )
(*)

( 1) 1 ( 1) 1 ( 1) 0 0
distributividade

a a a a a a+ - × = × + - × = + - × = × =

. A conclusão é que o elemento ( 1) a- ×  é o simétrico de a, ou seja, como já 

sabíamos que seu simétrico era ( )a a- =- , devemos ter a unicidade ( 1) a a- × =-

. Em particular chegamos a : ( 1) 1 1- × =-  (**) para 1a = . Finalmente provamos que 

[ ]
(**)

( 1)( 1) ( 1) 1 ( 1) ( 1) 1 ( 1) 1 ( 1) ( 1) 1- - = - × × - = - × × - =- × - =-- = , pois já tínhamos  

( )a a=-- , e neste caso 1a = , vale 1 ( 1)=-- , o que conclui a demonstração de 

simples relação ( 1)( 1) 1- - = . 

Ainda falando sobre a noção de explicação, Balacheff (1988) diz que, quando 

uma explicação reconhecida é aceita com possibilidades reais de se atingir uma 

verdade matemática, é necessário designar e dispor termos que permitam marcar o 

seu grau de independência do locutor. Por exemplo, não foi Talles de Mileto (624 a. 

C. – 556 a. C.) que inventou o teorema que carrega até hoje seu nome. Ele descobriu 
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em outras civilizações o esboço de ideias particulares de natureza geométrica e 

sistematizou-as.

Assim, ele se familiarizou com determinadas argumentações que, após a 

formalização e transformação no teorema, passaram a independer da figura do 

antigo grego. Mas vamos à explicação de Balacheff (1988, p. 30) ao destacar que:

A passagem de uma explicação à prova faz referência a um processo social 

segundo o qual um discurso assegurando a validade de uma proposição muda 

o seu estatuto sendo aceito por uma comunidade. Tal estatuto não é definitivo, 

ele pode evoluir ao longo do tempo com a evolução dos saberes sobre os 

quais se apóia. Além disso, uma prova pode ser aceita por uma comunidade e 

recusada por outra.

Por outro lado, existem paradigmas em Matemática que, diferentemente 

de outras ciências, podem levar séculos para sofrerem alguma mudança. Já, por 

exemplo, ocorrem algumas teorias pedagógicas, como encontramos na História 

da Educação, que podem resistir a algumas poucas décadas e em seguida são 

substituídas por outras. 

Retomando nossa discussão, encontramos um tipo de prova dominante em 

Matemática que trata de enunciados organizados seguindo regras bem formuladas 

e determinadas. Um enunciado, quando estabelecido como verdadeiro, deverá 

ser deduzido a partir de regras previamente estabelecidas. Assim, chamamos de 

demonstração este tipo de prova que:

É caracterizado por demonstrações com um gênero de discurso em uma 

forma estritamente codificado. De fato, tal rigor formal deve ser se graduar ao 

decorrer da prática, por exemplo, certos etapas de uma demonstração podem 

não ser explicitadas mas deixadas ao gosto do leitor (BALACHEFF,1988, p. 30).

Balacheff sublinha uma prática comum manifestada pelo discurso do 

matemático. Por exemplo, evidenciamos, nos extraordinários livros produzidos 

por Elon Lages Lima, determinados momentos em que o autor, propositadamente, 

deixa de modo subliminar tarefas para o leitor quando emite aquelas frases que nós 

já estamos acostumados de ver: Assim, é fácil de ver que....ou De imediato...teremos 

o resultado...

Antes de prosseguirmos na discussão destas noções, vejamos alguns exemplos 

que nos ajudarão a discernir uma argumentação, um prova e uma demonstração. 
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Para tanto, observemos a seguinte figura abaixo. Nesta figura, Balacheff recorda 

que Bhascara realizou a prova do teorema de Pitágoras. 

Advertimos que, na observância de determinado momento histórico, um 

resultado aceito como prova pode perder tal status. De fato, na época do auge da 

matemática indiana, este resultado era aceito como uma prova, entretanto, após 

uma reforma ocorrida no interior da Matemática no século XIX, para muitos 

matemáticos isto não é uma prova, pois depende da representação particular do 

objeto em questão. 

Figura 3: Resultado matemático recordado por Balacheff e diagrama

Segundo uma acepção moderna, e certamente uma corrente filosófica 

específica da Matemática, isto é um exemplo de argumentação. No lado direito da 

Figura 3, observamos a relação: 
2 2 2 21 1 ;1 3 4 2 ;1 3 5 9 3 ;1 2 5 7 4= + = = + + = = + + + = .

Assim, podemos inferir que 21 3 5 .... (2 1)n n+ + + + - = ? Não estamos no 

valendo do modelo de prova chamado de Indução Matemática, assim isto é uma 

argumentação e não uma prova matemática. Vejamos agora um exemplo de prova. 

:Lema  Se uma função é definida pela forma 2y ax bx c= + + , então pode 

ser escrita pela forma 
2

2 4
b

y a x
a a

æ ö D÷ç= + -÷ç ÷çè ø
, onde 2 4b acD= - . 

Demonstração: Notemos que 
0

2 2
a b

y ax bx c y a x x c
a

¹ æ ö÷ç= + + « = + + «÷ç ÷çè ø

2 2 2 2
2 2

2 2 24 4 4 4
b b b b b b

y a x x c y a x x c
a a a a a a

æ ö æ ö÷ ÷ç ç÷ ÷« = + + - + « = + + + - «ç ç÷ ÷ç ç÷ ÷è ø è ø

2 2 22 2 4
2 4 2 4 2 4
b b b b ac b

y a x c y a x y a x
a a a a a a

æ ö æ ö æ ö- D÷ ÷ ÷ç ç ç= + + - « = + - « = + -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
 

Segue o resultado. Agora o professor enuncia o seguinte teorema.
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:Teorema  Se uma função é definida pela forma 2y ax bx c= + +

, então o contradomínio é o conjunto dos números reais maiores ou 

iguais a 
4a

æ öD ÷ç- ÷ç ÷çè ø
 se 0a>  e menores ou iguais a 

4a

æ öD ÷ç- ÷ç ÷çè ø
 se 0a < .

Demonstração: Recorrendo ao resultado anterior, vamos retomar a seguinte ex-

pressão 
2

2
b

x
a

æ ö÷ç + ÷ç ÷çè ø
, que se mostrou essencial no lema passado. Notamos que todo 

quadrado de um número real não pode ser negativo, assim temos 
2

0
2
b

x
a

æ ö÷ç + ³÷ç ÷çè ø
. De 

acordo com as hipóteses do teorema, temos dois casos para considerar. No primeiro, 

quando 
2

0 0
2
b

a a x
a

æ ö÷ç> \ ´ + ³÷ç ÷çè ø
, mas se 

2

0 0
2
b

a a x
a

æ ö÷ç< \ ´ + £÷ç ÷çè ø
. Agora temos 

que se 
2 2

0 0 0
2 2 4 4 4
b b

a a x y a x
a a a a a

æ ö æ ö æ öæ ö æ ö D D D÷ ÷ ÷÷ ÷ ç ç çç ç> \ + ³ Þ = + + - ³ + - = -÷ ÷ ÷÷ ÷ ç ç çç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è ø
.

De modo semelhante, temos:

2 2

0 0 0
2 2 4 4 4
b b

a a x y a x
a a a a a

æ ö æ ö æ öæ ö æ ö D D D÷ ÷ ÷÷ ÷ ç ç çç ç< \ + £ Þ = + + - £ + - = -÷ ÷ ÷÷ ÷ ç ç çç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è ø
.

Por fim temos que quando 0
4

a y
a

æ öD ÷ç> Þ ³ - ÷ç ÷çè ø
 e se 0

4
a y

a

æ öD ÷ç< Þ £ - ÷ç ÷çè ø
. 

Uma vez terminada a demonstração deste teorema, destacamos que o 

professor fictício prefere enunciar os resultados de acordo com o seu status 

matemático devido. Notamos que ele enunciou primeiramente um Lema e na 

sequencia um Teorema. Percebemos claramente que ele emprega o Lema quando 

escreve 
2

2

2 4
b

y ax bx c a x
a a

æ öæ ö D ÷÷ çç= + + = + + - ÷÷ çç ÷ ÷ç çè ø è ø
. 

Mas vamos voltar nossa atenção ao principal alvo de nossa ação didática, 
ou seja, o estudante. Se toda a classe entendeu e aceitou como verdadeiros ambos 

os resultados, na perspectiva de Balacheff (1988), ainda não podemos chamar 

de demonstração, apenas de prova, uma vez que a validade dos resultados ainda 

possui um caráter particular. 

Mas se o professor em questão é aquele que dá suas aulas de modo 

semelhante, repetindo todas as vírgulas e, em sua percepção, o que importa é a 

elegância da apresentação e concisão dos resultados, então podemos chamar isto de 
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uma demonstração. Balacheff (2009, p. 131) adverte que:

A aprendizagem em Matemática inicia-se com os primeiros anos de escola, 

ao menos do ponto de vista institucional. Como já é bem documentado, os 

aprendizes neste nível elementar dependem largamente de sua experiência 

com o professor e com referência na distinção de suas opiniões, suas crenças 

e seu conhecimento atual. O critério para o acesso desta diferença permanece 

tanto na eficiência tangível do conhecimento validado de modo ad hoc pelo 

professor

Deste modo, se assumimos os resultados como verdadeiros, independentemente 

do convencimento que precisamos obter dos alunos e a promoção de um debate social 

dentro da sala de aula, podemos chamar os dois últimos resultados de demonstração. 

Percebe-se que, segundo a tradição do discurso matemático, iniciamos a redação 

escrevendo “Demonstração:”. Se o professor assume esta cômoda posição e não se 

esforça para convencer os seus estudantes, a função do aluno fica relegada ao 2º 

plano, afinal, tudo o que foi dito na 1ª aula pode ser repetido até a última aula, e o 

ensino passa a ser determinado por este automatismo.

Adaptamos ao nosso estudo em Didática da Matemática as noções de Balacheff 

(2009). Na Figura 4 a seguir, vemos as relações entre explicação, prova e argumentação. 

Numa perspectiva didática, equivale ao professor de Matemática iniciar sua aula 

com uma explicação de um fato ou propriedade matemática. Em seguida, começa a 

identificar e separar as conjecturas com mais chances de êxito, sem esquecer e descartar 

de modo precipitado as conjecturas que tendem ao erro ou ao fracasso da estratégia.

Figura 4: Ilustração comentada por Balacheff (2009, p. 130) 

Realizamos, assim, a prova de uma conjectura apontada pelo grupo de alunos com 

mais chances de sucesso, entretanto sugerimos que o professor não se precipite, deixe que 

os alunos descubram o caminho que é bem diferente de ele mesmo apontar o caminho. 

Retomando a questão da representação particular de propriedades 
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matemáticas, Balacheff fornece a seguinte explicação ao comparar o modelo 

matemático formal com as representações particulares geradas pelo computador: 

Este caso referenda a ideia de relações complexas entre representação e 

objetos matemáticos – ou mais precisamente, o papel das representações como 

mediadores para a conceitualização dos objetos matemáticos. Isto convida a 

uma maior atenção em considerar a evidência numa representação não verbal. 

Não dizendo que representações não verbais ou expressões de um argumento 

não tenham valor; antes, porém, eu enfatizo que uma frequente reclamação em 

educação é que “Uma figura é melhor do que sem palavras” possui limites e não 

pode ser aceita sem um exame posterior (2009, p. 121).

Balacheff coloca em discussão a questão relacionada à aceitação de determinados 

raciocínios baseados em figuras ou diagramas. E na condição em que o professor junto com 

os estudantes não realize uma inspeção posterior das ideias principais e sua dependência 

ou não de uma figura particular, todo o esforço pode estar perdido. Por outro lado, o 

professor experiente pode, em alguns casos, baseando o seu discurso num diagrama, 

ludibriar os estudantes e conduzi-los ao erro, mas um erro controlado e previsto. 

Gouvêa (1998) apresenta o seguinte quadro esquemático que resume as noções 

formuladas por Nicolas Balacheff. 

Figura 5: Esquema sugerido por Gouvêa (1998, p. 97)

Para concluir, vejamos outro exemplo de demonstração. O resultado é 

chamado por Lima (2001(b), p. 95) de Teorema Fundamental da Proporcionalidade e 

é enunciado como segue.
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:Teorema Seja :f ®   uma função crescente. As seguintes 

propriedades são equivalentes:

(i) ( ) ( )f n x n f x× = ×  para todo nÎ  e x Î

(ii) Pondo (1)a f=  tem-se que ( )f x a x= ×  para todo x Î

(iii) ( ) ( ) ( )f x y f x f y+ = +  para quaisquer ,x y Î .

Lima (2001) desenvolve um modelo típico de demonstração que, em geral, 

não é empregado no ensino escolar, entretanto, para o professor de Matemática, tal 

modelo deve ser conhecido e compreendido.

Demonstração: Provaremos as implicações ( ) ( ) ( ) ( )i ii iii i® ® ® . Inicialmente, 

vamos verificar que ( ) ( )i ii® . Assim, nossa hipótese será que :f ®   é uma 

função crescente e vale ( ) ( )f n x n f x× = ×  para todo nÎ  e x Î . Vamos generalizar 

a propriedade para números racionais, ou seja, ( ) ( )f r x r f x× = ×  para todo r Î .

De fato, dado um racional da forma 
m

r
n

=  onde ,m nÎ  temos que: 

( ) ( ) (( ) ) ( ) ( )
Hipotese Hipotese

n f r x f nr x f nr x f m x m f x× × = × = × = × = × . Logo obtemos 

que ( ) ( ) ( ) ( ) ( ) ( ) ( )
m

n f r x m f x f r x f x r f x f r x r f x
n

× × = × « × = × = × \ × = ×

(*) para todo 
m

r
n

= Î . Note-se que :f ®   e podemos 

avaliar 1 (1) ( ( ))f a CDom f xÎ \ = Î =  , considerando que 

(0) (0 0) 0 (0) (0) 0
Hipotese

f f f f= × = × \ =  e a função é monótona (crescente) 

e diante de 0 1 0 (0) (1) (1) 0f f a f< ® = < \ = > . Além disso, temos  
(*)

( ) ( 1) (1) ( )f r f r r f r a f r a r= × = × = × \ = ×  para todo 
m

r
n

= Î . Desejamos agora 

verificar que ( )f x ax=  para todo x Î . 

Neste momento Lima (2001(b), p. 95) emprega o método de raciocínio por 

absurdo. Ele supõe que exista algum número real (que deve ser irracional tendo em 

vista que já temos a igualdade para o caso de números racionais) tal que ( )f x ax¹

, onde x Î -  .

Vejamos que podemos ter as possibilidades: (i) ( )f x ax< 	(ii) ( )f x ax> ,  

mas assumindo que 
( )

( )
f x

f x ax x
a

< « < . Agora, vamos empregar um argumento 

que deve ser conhecido pelo professor de Matemática, pelo menos em um ponto 

de vista intuitivo. O argumento é chamado de densidade, e, de modo intuitivo, 

podemos dizer que, dado um intervalo [ , ]a b , podemos encontrar no seu interior 

tanto um número racional quanto um número irracional.
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Considerando o intervalo 
( )

[ , ]
f x

x
a

, por densidade, encontramos um número 

racional 
( )

[ , ]
f x

r x
a

Î Ç  tal que:

( )
( )

f x
r x f x a r a x

a
< < « < × < × , pois (1) 0a f= > , e a desigualdade 

preserva o sentido. Assim, escrevemos ( ) ( )f x f r a x< < × . Mas reparamos que 

isto é uma contradição, tendo em vista que, por hipótese, a função :f ®   

é crescente e, como r x< , deveríamos ter ( ) ( )f r f x< , entretanto vimos que 

( )
( ) ( )

f x
r x f x f r a x

a
< < « < < × , portanto temos uma contradição obtida a partir 

do fato de termos feito a suposição relativa à qual existisse um número tal que 

( )f x ax¹ , onde x Î -  . Conclusão, a igualdade ( )f x a x= ×  para todo x Î  

vale sempre, o que demonstra a tese descrita em (ii).

Na sequência, Lima (2001(b), p. 96) destaca que as implicações 

( ) ( ) e (iii) ( )ii iii i® ®  são óbvias. Você concorda? Para nos prevenir de alguma 

incompreensão, vamos demonstrar a primeira implicação. Neste caso, por hipótese, 

pondo (1)a f=  temos ( )f x a x= ×  para todo x Î . Assim, dados ,x y Î , 

teremos ( ) ( ) ( ) ( )
Hipótese Distributividade

f x y a x y a x a y f x f y+ = × + = × + × = + , e em seguida 

( ) ( ) ( )f x y f x f y+ = + . Por fim, para concluir que ( ) ( )f n x n f x× = ×  para todo 

nÎ  e x Î , a partir de (iii) notamos que ( ) ( ) ( ) 2 ( )f x x f x f x f x+ = + = ×

; ( 2 ) ( ) (2 ) 3 ( )f x x f x f x f x+ = + = ×  e, por indução matemática, assumimos que 

( ) ( )f n x n f x× = × e escrevemos: 
( )   

(( 1) ) ( ) ( ) ( ) ( ) ( ) ( 1) ( )
iii Hipotese de Indução

f n x f x n x f x f n x f x n f x n f x+ = + × = + × = + × = +

Concluímos, assim, que ( ) ( )f n x n f x× = ×  para nÎ . Mas temos:

0 (0) ( ( )) ( ) ( ) ( ) ( )
Hipótese

f f n n f n f n f n f n= = + - = + - « - =- , quando nÎ .

Dessa forma, para :

( 1 ) ( 2 ) ( ( 2 )) ( ) ( 2 ) ( 2 ) ( ) ( )
Hipotese

f x f x x f x x f x f x f x f x f x- × = - = + - = + - \ - = - -

, que equivale a ( 2 ) ( ) ( ) 2 ( )f x f x f x f x- =- - =- . 

Usamos  0 (0) ( ( )) ( ) ( ) ( ) ( )f f x x f x f x f x f x= = + - = - + ® - =- . A partir 

destes casos, obteremos ( ) ( )f n x n f x× = ×  para todo nÎ  e x Î , o que evidencia 

a implicação (iii) ( )i®  não tão óbvia como comentado pelo autor. Para finalizar 
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esta seção, advertimos: embora teoremas como este não possam ser diretamente 

ensinados na escola, o professor de Matemática tem a obrigação moral de conhecer 

e dominar este resultado, bem como outros teoremas e resultados formais que 

garantem a validade dos modelos matemáticos empregados. De modo estranho e 

pitoresco, encontramos em cursos de licenciatura alunos que sabem calcular um 

limite ou uma derivada, mas desconhecem resultados tais como o que acabamos de 

demonstrar. 

AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) Existem definições formais que são mais acessíveis à intuição do que 

outras? No momento inicial de uma transposição didática, é mais adequado 

trabalharmos o raciocínio lógico ou o intuitivo? 

2) Indique, no trecho abaixo devido a Kline (1971), as dificuldades de se 

explorar a dimensão intuitiva dos números irracionais. 

Trecho do livro de Kline (1971, p. 54)

3) É possível elaborar uma transposição didática que coloca ênfase nas 

propriedades intuitivas de um objeto matemático sem que o professor 

conheça de modo aprofundado suas propriedades lógicas formais? 

4) A Historia da Matemática registra que na atividade dos matemáticos 

a intuição exerceu papel indiscutível. Analisar o trecho abaixo devido à 

Kline (1971). Por outro lado, você sabe o que significar “intuir” algo? Qual 
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a natureza da intuição matemática? É possível realizar uma transposição 

didática satisfatória se não sabemos sequer o que significa intuir? 

Kline (1971, p. 57) indica a importância da intuição para os matemáticos.

5) O que significa o termo “abstração”, ou a expressão “abstração 

matemática”? As teorias matemáticas são mais “abstratas” do que as teorias 

pedagógicas? 

6) Fornecer exemplos que colocam em evidência o caráter falível, impreciso 

e local do saber matemático. Isto pode ser utilizado de modo frutífero em 

uma transposição didática? 
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AULA 4 Didática da Matemática e a noção 

de situação Didática e a-Didática

Caro(a) aluno(a),

Nesta aula, iremos descrever as características das situações didáticas e 

a-didáticas, assim como o emprego da noção de resolução de problemas no âmbito 

da teoria das situações didáticas de Brousseau. Em seguida, apresentaremos o 

pensamento algorítmico.

Objetivo

•	 Compreender as situações didáticas que envolvem o ensino de matemática
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TÓPICO 1 Situações Didáticas e 
a-Didáticas
Objetivo

•	 Descrever as características de situações 

didáticas e a-didáticas

Sugere a Didática da Matemática iniciarmos uma lição propondo à 

classe uma discussão que envolva um bom problema de Matemática. 

A questão é discernir quando temos um problema interessante? 

Interessante para quem, apenas para o professor ou para os estudantes? Como 

formular uma situação-problema e dela extrair o maior número de ensinamentos e 

ainda promover a maior diversidade de experiências possíveis?

A aprendizagem em Matemática sempre foi objeto de investigação para 

inúmeros estudiosos, como, por exemplo, Jean Piaget, que identificou e categorizou 

determinados raciocínios peculiares da Matemática.

Por outro lado, encontramos ainda visões estreitas que admitem a necessidade 

apenas de um bom professor com domínio de conteúdo para que tudo transcorra às 

mil maravilhas. Brousseau (1996 , p. 63) adverte que:

O esquema socrático pode ser aperfeiçoado se supusermos que o estudante 

é capaz de extrair o saber por meio de suas próprias experiências, de suas 

próprias interações com o meio, mesmo que este meio não esteja organizado 

com fins de aprendizagem. [...] O aluno aprende se adaptando ao meio que é 

um fator de contradição, de dificuldades, de desequilíbrios, em parte como a 

sociedade humana. Este saber flui por adaptação do aluno, se manifesta por 

meio de respostas novas que são a prova da aprendizagem.

Destacamos esse significativo trecho de Brousseau, com profundas raízes 

piagetianas, principalmente porque sublinha que o aluno aprende se adaptando 
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ao meio. Quando nos referimos ao meio, consideramos implicitamente a tríade 

já comentada aluno-professor-saber matemático. A diferença é que temos que 

considerar onde se dão estas trocas, relações assimétricas e simétricas de poder.

Mas vamos observar a perspectiva que o pai da Didática da Matemática 

relaciona à concepção moderna de ensino quando menciona que:

A concepção moderna de ensino vai então demandar ao professor provocar nos 

alunos as adaptações desejáveis, por meio da escolha judiciosa, de problemas que 

ele propõe. Estes problemas, escolhidos de modo que o aluno possa aceitar devem 

fazê-lo reagir, falar, refletir, evoluir de seu próprio movimento. [...] O aluno sabe 

que o problema escolhido pelo professor visa a aquisição de um conhecimento 

novo, mas ele deve saber também que este conhecimento é inteiramente 

justificado por uma lógica interna da situação. (BROUSSEAU, 1996, p. 64).

Como já mencionamos, a dificuldade reside na escolha de bons problemas que 

resultem no desequilíbrio e posterior equilíbrio dos aprendentes. Percebe-se que 

nem sempre o aluno aceita a responsabilidade por uma situação de aprendizagem. 

Em geral, os alunos pensam na situação apenas na frente do professor, em sala de 

aula, e permanecem na expectativa de o mestre oferecer-lhes a fórmula que resulta 

no gabarito e aniquila o interesse naquela situação em poucos minutos.

Neste sentido nos valemos da distinção apontada por D´Amore (2007 , p. 81) 

quando explica:

Dizemos que uma situação didática, sobre certo tema relativo ao saber, 

possui dois componentes: (i) uma situação a-didática	 (ii) um contrato 

didático. Trata-se de um modelo teórico: se em um ambiente organizado para 

a aprendizagem de determinado assunto falta a intenção didática explícita do 

professor, tem-se uma situação a-didática. [..] A situação a-didática final de 

referência, a que caracteriza o saber, pode ser estudada de maneira teórica, mas 

na situação didática, tanto para o professor como para o estudante, existe uma 

espécie de ideal cuja direção busca-se convergir. O professor deve, sem descanso, 

ajudar o aluno a eliminar, o mais possível, todos os seus artifícios didáticos, para 

permitir-lhe o conhecimento pessoal e objetivo.

Assim, os didatas da Matemática diferenciam situações organizadas com 

a intenção didática e outras situações que, mesmo sem a intenção objetiva e a 

presença do professor, a aprendizagem se processa. D´Amore destaca um aspecto 

importante, ainda que não seja fácil para o aprendiz que se vê diante de uma nova 
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teoria: diferenciar e separar os artifícios didáticos da real situação que o aluno 

pressupõe que o mestre deseja que adquira.

Brousseau (1996, p. 65) acrescenta que:

O contrato didático é regido pelo jogo e pela estratégia da situação didática. 

É o meio que o mestre possui de se colocar em cena. Mas a modificação da 

situação modifica o contrato didático que permitem então a obtenção de nova 

situação. De modo semelhante, os conhecimentos são expressos por regras da 

situação a-didática e por estratégias. A evolução destas estratégias requer a 

produção de conhecimentos que permitem ao seu modo a concepção de novas 

situações a-didáticas.

Percebemos os dois elementos principais apontados por Bruno D´Amore que 

constituem uma situação didática, a saber: uma situação a-didática e o contrato didático. 

Tais relações poderão ser mais ou menos eficientemente estabelecidas na dependência 

da ação didática do professor, uma vez que o significado do saber matemático escolar 

para o aluno é fortemente influenciado pela forma didática com que o conteúdo lhe é 

apresentado (FREITAS, 2002 , p. 66). Assim, se o mestre estimula em sala de aula um 

saber matemático sem instigar a necessidade individual de autonomia e gerenciamento 

da própria aprendizagem, as situações a-didáticas permanecem comprometidas.

É como se aquela situação-problema tivesse importância apenas na presença 

do professor. Por outro lado, diante de uma situação didática que exige a presença do 

professor de Matemática, notamos que a mesma é regida por um determinado tipo 

de contrato didático, ou seja, um conjunto de obrigações implícitas ou explícitas 

relativas a um saber entreposto professor e os alunos (FREITAS, 2002, p. 67).

Mais adiante acrescenta:

Segundo essa concepção o professor deve atuar não a simples comunicação 

de um conhecimento, mas a devolução de um bom problema. A devolução 

aqui tem o significado de transferência de responsabilidade, uma atividade na 

qual o professor, além, de comunicar o enunciado, procura agir de tal forma 

que o aluno aceite o desafio de resolvê-lo como se o problema fosse seu, e não 

somente porque o professor quer (FREITAS, 2002, p. 68).

A noção de situação a-didática assume um importante papel na teoria 

desenvolvida por Brousseau, uma vez que esse tipo de situação é caracterizado pela 

oportunidade de sucesso do estudante, por meio de seus próprios méritos, que consegue 

sintetizar um conhecimento e empregá-lo de modo relativamente diferenciado da 
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maneira pela qual foi ensinado. É bem conhecido aquele professor de Matemática que 

aceita somente determinada resposta que envolve a regra de Matemática ensinada 

dentro da sala de aula. Se um aluno manifesta outro modo de solução de uma situação-

problema, o professor declara que a questão está errada. Nem mesmo compreende, em 

alguns casos, aquele raciocínio totalmente atípico. De fato, a estratégia fornecida pelo 

estudante envolve a lógica do aluno que se diferencia da lógica do professor.

Nesse caso, o professor cerceia e impede a evolução de situações de aprendizagem em 

que os estudantes não conseguem contar efetivamente com a presença do mestre. Para me-

lhor compreender as correlações existentes entre situações didáticas, situações a-didáticas e 

a resolução de problemas, vamos nos debruçar sobre alguns problemas concretos.

Um exemplo é o que encontramos numa publicação do Institut Universitaire de 

Recherche et l´Enseignement des Mathematiques – IREM de Strasbourg (1973). Veja 

abaixo na Figura 1:

]

Figura 1: Situação problema proposto num manual de formação do IREM 

A tarefa se distingue por relacionar de modo íntimo Geometria com Álgebra. 

Inicialmente o professor pode chamar o segmento EB x=  sabendo por hipótese 

que AB BC= =1. Considerando que, segundo o enunciado, há sete retângulos que 

dividem a figura, o professor adverte que, apesar da figura poder não ser perfeita, 

teremos dentro do quadrado de lado AB BC= =1 sete retângulos de mesma área. 

Assim, o professor escreve 1 1 7 7
1

7
2 = = ⋅ ⋅ = ⋅ ⋅ ∴ =BF EB BF x BF

x
. Dessa 

forma, temos BF
x

=
1

7
. 

Na sequência o professor questiona como escrever o segmento FC  em 

função de EB x= . Um aluno se apresenta e argumenta que basta considerar 
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que BF FC FC BF
x

x

x
+ = ∴ = − = − =

−
1 1 1

1
7

7 1
7

. Assim, com a sugestão do 

estudante, o mestre estabelece que FC
x

x
=

−7 1
7

. E, de modo semelhante, podemos 

escrever 1 1 72 = = ⋅ ⋅FG FC ? Sim, pois temos outro retângulo que foi construído no 

quadrado ABCD. Dessa forma, o professor escreve FG
FC x

x

x

x
=
⋅
= ⋅ − =

−
1

7
1
7

1
7 1

7
7 1

. Mais uma vez o professor pergunta se é possível obter o segmento GH x= .

Contando com a participação de outro aluno e contando com a aquiescência da 

turma,escreve: x GH FG GH x FG x
x

x

x x

x
= + ∴ = − = −

−
=

−
−7 1

7 2

7 1

( )

.

Portanto GH
x x

x
=

−
−

( )7 2

7 1
. Passados alguns instantes, os alunos, 

por contra própria, começam a deduzir de modo semelhante que 

1 1 7
1

7
1
7

1
7 2
7 1

7 1
7 7 2

2 = = ⋅ ⋅ ∴ = = ⋅ −
−

=
−
−

GI GH GI
GH x x

x

x

x x( ) ( )
. 

Notamos que todas as relações algébricas são extraídas a partir da disposição 

geométrica da figura que foi antecipadamente observada e que apresentava 

imperfeições. No entanto a noção da área do quadrado é sempre empregada 

para a obtenção de cada relação. Mais uma vez, obtemos 1 1 72 = = ⋅ ⋅JK JI  e 

JI IG FC+ = . Dessa forma, efetuando as devidas operações, chegamos a 

JI FC IG
x

x

x

x x

x x

x x
= − =

−
−

−
−
=

− −
−

7 1
7

7 1
7 7 2

7 1 7 3

7 7 2( )

( )( )

( )
. Assim teremos que 

1 7
1

7
1

7
7 1 7 3

7 7 2

7 2

7 1 7
= ⋅ ⋅ ∴ = =

⋅
− −
−

=
−

−
JK JI JK

JI x x

x x

x x

x x( )( )
( )

( )

( )( −−3)
. Notamos 

que as relações continuam se complexificando a cada passo. É essencial o professor 

gerenciar a motivação da sua classe. Possivelmente algum aluno não esteja 

compreendendo aonde o mestre deseja chegar e é delicado lidar com este sentimento 

do aluno, tendo em vista que, para o professor, deve estar claro o seu objetivo de 

aprendizagem, todavia, para o aluno, tudo se reduz a uma simples desconfiança.
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Entretanto, na condição em que consiga administrar 

bem a atenção da turma, o professor obterá que 

1 1 1
7 2

7 1 7 3
= + + ∴ = − − = −

−
− −

−KD KJ JC KD KJ JC
x x

x x
GF

( )

( )( )
. Segue que 

KD KJ JC
x x

x x
GF

x x

x x
= − − = −

−
− −

− = −
−

− −
−1 1

7 2

7 1 7 3
1

7 2

7 1 7 3

( )

( )( )

( )

( )( )
xx

x7 1−
. 

No final da aula, o professor recomenda aos estudantes descrever os 

segmentos restantes AE AL LD KD; ; ; , e assim por diante. O interessante é 

o professor saber que valores numéricos existem por trás desta situação. Na 

ocorrência de algum avanço das aprendizagens na sua ausência, possivelmente os 

alunos devem encontrar um valor determinado para o segmento KD , pois note-se 

que KD
x

x
=
−
−

1
6 7

. Portanto, devem obter que x= +
1

14
7 19( ) .

Assim, de acordo com o envolvimento da turma, devem ocorrer situações a-didáticas 

na busca destes valores. Neste momento, no ensino-aprendizagem deve haver condições 

para que o aluno realize ele mesmo suas aproximações, mobilize seus conhecimentos e seja 

capaz de explicitar seus procedimentos e raciocínios utilizados (FREITAS, 2002, p. 73). 

Se, no decorrer do contrato didático, o professor trabalhou com situações-

problema relativamente simples, com respostas suficientes para que a investigação 

possa se extinguir dentro da sala de aula, sentirá rejeições dos estudantes diante da 

tarefa investigativa que apresentamos.

Neste caso, de acordo com a evolução de situações a-didáticas, no momento 

de devolução, que se caracteriza como um ato de ensino que produz a aceitação do 

estudante a responsabilidade de uma situação de aprendizagem (BROUSSEAU, 1996), 

o professor cria uma expectativa de retorno das atividades propostas.

Transcrevemos, a título de ilustração, uma situação típica em sala de aula 

que caracteriza impossibilidade de situações a-didáticas. O trecho é destacado por 

Domingues (1995 , p. 15). O autor descreve o seguinte:

Certa ocasião, no início de um ano letivo, ouvi casualmente uma conversa entre 

duas jovens estudantes. A mais velha havia passado para a 6 ª série e a mais nova 

para a 5ª série. Falavam sobre suas impressões a respeito das colegas, das aulas, 

das matérias e dos professores. A aluna da 6ª série ficara surpresa com as aulas de 

Geometria: “Imagine”, dizia ela, “que a professora chega, desenha dois triângulos 

iguais no quadro e depois passa o resto da aula procurando provar que eles são de 

fato iguais. Não entendo. Por que é preciso isso?”. “E nas provas, como você vais 
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se arranjar?”, perguntou-lhe a mais nova. “Estudarei pelo livro...mas é tão difícil 

lembrar onde se devem pôr as letras....” Neste mesmo dia, à tarde, ouvi como essa 

jovem, sentada junto a uma janela, estudava geometria: “Para fazer a demonstração 

devemos superpor o triângulo DABC  ao triângulo DA B C’ ’ ’, repetia várias 

vezes. Sinto não ter ficado sabendo os resultados obtidos pela jovem em Geometria, 

mas certamente ele deve ter achado essa matéria difícil.

Aparentemente a situação pitoresca e anedótica descrita por Domingues 

não é rara. Casos semelhantes ocorrem em todos os níveis, com destaque para a 

Geometria Plana, e continuam no ambiente acadêmico. Um aspecto delicado aqui 

é que o professor não pode esperar que o aluno declare com naturalidade que não 

sabe ou enfrenta muita insegurança diante das tarefas, talvez por medo ou devido 

ao constrangimento social do grupo ao qual pertence. 

A partir do interessante diálogo entre as estudantes, vemos que muita coisa 

é simplesmente aceita pelo estudante, sem nenhuma atitude crítica. Neste sentido, 

D´Amore (2007, p. 105) acrescenta:

Diante dos enunciados de problemas, os alunos se [...] acostumaram a não colocar 

em discussão a legitimidade e a pertinência das perguntas do professor, e isso lhes 

permite, por outro lado, funcionar de maneira econômica, tendo “de maneira 

natural” confiança no adulto. De acordo com essa lógica, todo problema tem 

solução, uma solução ligada aos dados presentes no enunciado.

Por outro lado, o professor de Matemática deveria optar por uma 

aprendizagem que evitasse esses automatismos.  A observância e a importância 

de se considerar as múltiplas estratégias apresentadas pelos estudantes têm sido 

objeto de interesse no exame Enade, como observamos na ilustração abaixo, que 

reproduz uma situação didática do ensino de Álgebra. 

Percebe-se ainda que o erro matemático também faz parte da discussão e requer uma 

visão formada a respeito, principalmente no que diz respeito ao papel formativo do estudante.

Figura 2: Exemplo de situação didática explorada pelo Enade/2008 
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Figura 3: Possibilidades de resposta da questão. 

A partir dessa questão proposta pelo Enade, sentimos que é impossível 

discutir as noções de situações didáticas de modo isolado, sem considerar a noção 

de situações de resolução de problemas de Matemática, entretanto nos deteremos 

em uma análise didático-metológica, tendo em vista que, em outra disciplina, 

voltaremos a abordar a noção de resolução de problemas e então evidenciaremos os 

esquemas cognitivos mobilizados ante cada tipo de tarefa.
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TÓPICO 2 Situações didáticas a noção 
de resolução de problemas

Objetivo

•	 Descrever o emprego da noção de resolução 

de problemas no âmbito da teoria das situa-

ções didáticas de Brousseau

Como elaborar situações-problema 

que estimulem a habilidade do 

aluno de generalizar conteúdos 

matemáticos? Como instigar o exercício da 

flexibilidade do processo mental ante uma situação-

problema? Como instrumentalizar o aluno 

com uma percepção adequada para perceber a 

possibilidade da redução de passos de raciocínio? 

Como estimular sempre o aprendiz para encontrar 

o modo mais fácil, claro e econômico para resolver 

problemas? 

A trivialidade da resposta dessas questões 

é completamente descartada por psicólogos que 

trabalham analisando os fenômenos cognitivos 

que se manifestam diante da resolução de um 

problema matemático. Como nossa cultura 

valoriza o ensino em detrimento da aprendizagem, 

de modo geral, nós, professores, desconhecemos 

muitos destes fatores cognitivos que interferem de modo decisivo.

O desafio urge que equalizemos possíveis saídas e possibilidades vantajosas 

para os estudantes, no que diz respeito à aprendizagem. Como já discutimos no 

v o c ê  s a b i a?

Os autores Sternberg & Been-Zeev (1996, p. 

31) explicam que existem três elementos para a 

descrição de um problema: a condição dada, o 

objetivo da condição, e operações exequíveis. 

Solução de problemas ocorre quando um 

solucionador encara um dado problema. Um 

problema vai ser caracterizado como problema 

matemático quando algum procedimento 

eminentemente matemático é exigido. Por 

fim, resolução de problemas de matemática 

ocorre quando um solucionador de problemas 

matemáticos reconhece uma situação encarada 

como desafio busca resolver.
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tópico anterior, do professor de Matemática é exigida a concepção de situações, com 

ou sem a sua presença, que possibilitem, por exemplo, a evolução de habilidades 

cognitivas tais como as que mencionamos no início desta secção.

É de suma importância a noção de situações a-didáticas uma vez que:

Uma situação assim é definida como a-didática quando estão em jogo os estudantes e 

o objeto do conhecimento, mas não o professor (nessa ocasião particular). A situação sugere 

exigências e os alunos respondem a elas. Não existem obrigações didáticas e, portanto, 

aquilo que se faz não está ligado a estímulos por parte do professor. O estudante faz 

tentativas (sozinho ou em grupo), verifica que elas não funcionam ou são ineficazes; que a 

prova deve ser refeita várias vezes.[...] A demanda de efetuar aquela atividade matemática 

não foi proposta pelo professor, não seria necessária do ponto de vista escolar. Ao contrário 

é uma necessidade motivada pela atividade (D´AMORE, 2007, p. 234).

Mas como conceber situações-problema interessantes que despertem o 

interesse do estudante tanto em sala de aula com 

o grupo quanto em casa de modo individual? 

Que estratégia desenvolver para que o professor 

possa prever o direcionamento das aprendizagens 

ocorridas ao longo das interações por ele previstas, 

sob o seu controle, e as interações que ocorrem 

naturalmente com o grupo de estudantes que se 

relacionam com determinado conteúdo?

Cabe ao professor a formulação destas 

estratégias que, aos olhos dos estudantes, não se 

assemelhem a simples tarefas solitárias gabaritadas, 

e sim, a um jogo (espécie de aplicação) que requer 

o seu envolvimento e o envolvimento do grupo 

diante do desafio que se estabelece.

Muitos defensores se apresentam quando 

falamos de aplicação de jogos em sala de aula. 

Quando falamos então da dimensão lúdica da 

Matemática, ficam embriagados pelo termo 

“lúdico”, quase em transe hipnótico. De fato, alguns desses incipientes do saber 

matemático possuem a crença ingênua de que a dimensão lúdica e o prazer eventual 

de situações que envolvem a referida dimensão é a salvação das almas aflitas no 

estudo da Matemática.

s a i b a  m a i s !

Os jogos matemáticos não são as únicas formas 

lúdicas de trabalhar um conteúdo ou de evoluir 

o currículo, mas é uma das mais bem aceitas 

pelos alunos. A escolha de um jogo não deve ser 

aleatória, é necessário selecionar um conteúdo, 

relacionar conceitos, pensar em matérias, estudar 

contextos, observar os alunos e refletir sobre a 

eficácia do que é proposto. Com certeza, aplicar 

um jogo matemático que tenha relação direta com 

um conteúdo é muito trabalhoso, mas a resposta 

dos alunos é mais satisfatória do que a tradicional 

aula quadro e giz.
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No entanto, questionamos se, no final do jogo, ocorre, por parte do 

professor, um balanço final da evolução das aprendizagens? Que habilidades foram 

impulsionadas, como, por exemplo, as que mencionamos no início desta seção? 

Encontramos também outros dados 

interessantes que podem instigar nossa discussão 

sobre o uso do jogo na aula e de modo não 

planejado. Nesse sentido, Wiellewski (2005 , p. 

72) menciona que o russo Vadim Andreevich 

Krutetskii (1917-1989) identificou em seus 

estudos três categorias básicas de constituição 

matemática da mente, que foram descritas da 

seguinte maneira:

- Estilo analítico: o pensamento é 

caracterizado pela predominância de um 

bem desenvolvido componente verbal-lógico em contraposição com um fraco 

desenvolvimento do componente visual-pictórico;

- Estilo geométrico: o pensamento é caracterizado pela predominância de 

um bem desenvolvido componente visual-pictórico em contraposição com um bem 

desenvolvido verbal-lógico;

- Estilo harmônico: é caracterizado por um equilíbrio relativo dos 

componentes verbal-lógico e visual-pictórico, ambos bem desenvolvidos.

Reflita: Diante de uma situação prática, que jogo o professor poderia propor no 

sentido de instigar de modo prioritário nos estudantes o estilo geométrico? Ou o estilo 

analítico? 

Como você pode perceber, avaliar e identificar com que tipo de estudante o 

professor conta em sala de aula é uma tarefa difícil. 

No âmbito da solução de problemas, Wiellewski (2005, 

p.85) relata que foi fornecida aos estudantes a seguinte expressão: 

C D E E C D+ +( )⋅ + +( ) . Alguns identificaram o seguinte padrão 

C D E E C D C D E C D E C D E+ +( )⋅ + +( )= + +( )⋅ + +( )= + +( )2 , que se 

relacionava com a fórmula do quadrado de um binômio. Outro estudante compôs 

um algoritmo para resolver todos os problemas dessa categoria.

Em outra situação, foi dado o seguinte problema: Prove que o quadrado da 

primeira fração mais a segunda é igual ao quadrado da segunda fração mais a primeira. 

Um dos estudantes que participaram do estudo argumentou que as frações podem 

v o c ê  s a b i a?

Atividade lúdica é todo e qualquer movimento 

que tem como objetivo produzir prazer quando 

de sua execução, ou seja, divertir o praticante. 

A atividade lúdica também é conhecida como 

brincadeira.
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ser descritas por 
x

y

x

y
 e 1  -  de modo que sua soma é 

x

y

x

y
 + 1  =1-  como requer 

o problema. Além disso, ele escreveu 
x

y

x

y

x

y

x

y











−










−









+

2

 +  1  =  1
2

(*). Com 

isto, você acha que ele resolveu o problema? A identidade em (*) é verdadeira 

sempre? 

É comum no dia-a-dia dos estudantes, encontrarmos respostas numéricas. Por 

exemplo, nesse último problema, nenhum número é mencionado e a solução anterior é 

a mais geral possível, mas pode acontecer de alunos preferirem verificar o que se pede 

para casos particulares que não propiciam a generalização do modelo envolvido.

Em outra parte do estudo, Wiellewski (2005, p. 114) destaca os problemas 

de natureza geométrica explorados por Krutetskii. Segundo a autora, foi 

apresentada a seguinte situação: Cada lado de um quadrado foi aumentado em 3cm e, 

consequentemente, sua área foi aumentada em 39 cm2 . Encontre o lado do quadrado 

resultante. Krutetskii evidenciou que os estudantes da 6ª série resolvem em poucos 

segundos por meio de ( )x x+ − =3 392 2 (Figura 4-I). Ele salientou ainda que quase 

todos os estudantes pesquisados que pertencem ao estilo geométrico o resolveram 

de uma maneira mais complicada. Primeiro fizeram o desenho. 

Outro problema apresentado ao grupo foi o seguinte: Agora, eu sou duas vezes 

tão velho quanto meu irmão era quando eu era tão velho quanto ele é agora. Nós dois 

juntos somamos 63. Quantos anos cada um de nós tem? Esse problema geralmente 

é resolvido por sistemas de equações, no entanto um estudante apresentou uma 

resolução geométrica descrita na Figura 4. 

Figura 4: Situações-problema desenvolvidas pelos estudantes
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Em seguida, argumentou: Bx é a diferença entre nossa idade. Quando 

eu tinha Ax, ele tinha Cz; ou seja, Cz
AB

=
2

(pela condição) e Ay
AB

=
2

. Mas 

como Bx Dz= , isto significa que By Bx= ⋅ ⋅ ×2   AB=4 B e CD=3 B; . Assim, 

concluímos que podemos ter 36 e 27 anos.

Krutetskii, conforme Wiellewski (2005, p. 116), destacou a atividade de 

uma aluna da 6ª série que interpretou geometricamente o quadrado da soma de 

dois números (Figura 4-III). Depois que conseguiu interpretar a fórmula, a criança 

declarou que só naquele momento realmente entendia aquela propriedade. Após esse 

momento, a mesma estudante interpretou todas as outras fórmulas geometricamente. 

Mais adiante a autora destaca:

Krutetskii constatou que o estudante de estilo geométrico sentia uma 

necessidade de interpretar um problema em um plano geral, contudo esse 

plano geral continuava sendo apoiado por imagens. Nem todos os esquemas 

visuais pictóricos utilizados por eles eram relativamente generalizados, muitos 

eram imagens visuais particulares e concretas (WIELLEWSKI, 2005, p. 117).

Na parte exploratória da pesquisa, Wiellewski apresentou o seguinte 

problema: De todos os retângulos que têm o mesmo perímetro, qual o que tem maior 

área? Wiellewski explica que o aluno participante do estudo sabia, de modo 

intuitivo, que se tratava do quadrado, porém sentia que precisava demonstrar. 

Desenhou, então, na sua resolução, um retângulo que vemos na Figura 5. 

Figura 5: Argumentação desenvolvida pelo aluno (WIELLEWSKI, 2005, p. 136).

Entretanto tentou resolver o problema de forma abstrata. Pensou na variação 

dos lados do retângulo. Para manter o mesmo perímetro, ele disse: “se aumenta 1 

em y, diminui 1 em x”. Em seguida, escreveu: “Se aproximar x de y, em 1 unidade 

temos: ( )x-1  e (y+1) . Área x y xy x y= − + = + − +( )( ) ( )1 1 1 . Se, após aumentar 
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y para y+1 e diminuir x para x-1, estes valores forem iguais, então teremos a área 

Área x y xy x y xy= − + = + − + = +( )( ) ( )1 1 1 1 . A área aumenta de uma unidade. 

Wiellewski (2005, p. 137) continua descrevendo que o aluno não conseguiu 

obter uma prova matemática. Após outras tentativas de resolução sem sucesso, ele 

procedeu da seguinte forma:

Área x
P

x x
x y

x x
Px

= ⋅ −






= ⋅

+
−







=− +

2

2

2 2
2( )

, e quando

A x
P

x
P

P x= − + = ↔ = ∴ =0
2

0
2

4 quando x=0 ou quando . Como se 

trata de um retângulo, os lados são todos iguais quando se tem maior área. Durante 

a resolução, ele mencionava que o problema poderia ser resolvido pelo conceito de 

função, no entanto ele não se recordava do procedimento. Por isso tentou outros 

processos de resolução antes de resgatar esse por meio de função na qual recorreu à 

representação gráfica (WIELLEWSKI, 2005, p. 137).

A partir das considerações da autora e de algumas das demonstrações discutidas 

anteriormente, observamos claramente que, quando limitamos nosso ensino ao emprego 

de fórmulas e estimulamos apenas o raciocínio algorítmico, o esforço do professor de 

Matemática diminui de modo considerável. Como em ocasiões, por exemplo, em que o 

professor trabalha com seus alunos o cálculo da inversa de funções do tipo y x= +
1
2

3

, que pode conter 30 questões com o uso do mesmo procedimento e, mesmo assim, o 

estudante não sabe dizer o que é uma função inversa.

Entretanto, quando buscamos uma abordagem de resolução de problemas 

mais interessante, inúmeras exigências surgem no horizonte de preocupação. Como 

vimos, as características idiossincráticas de cada estudante não podem ser ignoradas. 

Uma outra dificuldade é a formulação de problemas realmente interessantes, tanto 

para o professor como para  os aprendizes.

Nesse sentido, Milauskas (1994 , p. 90) aconselha:

Quando você se dispõe a criar bons problemas para seus alunos de geometria, 
é preciso ter certas coisas em mente. Tente encontrar problemas de enunciado 
simples, mas que tenham algo diferente ou uma solução nova. Problemas 
reais talvez sejam motivadores, mas outros totalmente irreais, inusitados ou 
incomuns também poderão sê-lo. Esses problemas espicaçam a curiosidade e 
convidam à resolução. Bons problemas às vezes contêm informações estranhas 
ou insuficientes. Às vezes o mais importante não é o problema em si, mas sim 
o raciocínio, a análise e as técnicas necessárias para a sua solução. Também é 

preciso considerar a maneira como o problema é colocado. 

Notamos uma forte preocupação com o ensino de Geometria. E de fato não é uma 

mera coincidência ou simples preferência da autora. Em países como Espanha, Portugal, 
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França, Inglaterra, por exemplo, já encontramos um currículo de formação de professores 

de Matemática com a presença de Didática do ensino de Geometria ou Didática do ensino 

de Álgebra, diferentemente de nossa realidade curricular nordestina, que promove uma 

formação compulsória de Psicologia da Aprendizagem e Psicologia do Desenvolvimento. O 

aluno egresso de um curso de licenciatura não conhece as características de um esquema 

cognitivo mobilizado para resolver uma operação específica com frações. 

Questões problemáticas sobre a formação serão retomadas ainda neste curso. Por 

ora, vamos nos deter em um ponto delicado comentado por Milaukas (1994). De fato, não é 

muito simples arranjar aplicação para todo conteúdo colocado em sala de aula. Isso exigiria 

um tempo dobrado do professor de Matemática para a elaboração de sua aula, a qual não 

pode ser uma mera repetição do livro, o que na maioria das vezes acaba acontecendo.

Mais adiante, Milauskas (1994, p. 91) aconselha que:

O professor deve exercer um controle sobre onde e como um problema é 

utilizado. Talvez haja a necessidade de pistas e atividades preliminares. Talvez 

seja conveniente permitir que os alunos trabalhem em grupo. Um determinado 

problema pode ser mais adequado a uma discussão em classe do que a ser feito 

como tarefa de casa.

Milauskas seleciona alguns problemas interessantes e sugere “pistas” ou 

“sugestões”. Exibimos alguns deles a seguir. Observe cada um para responder aos 

questionamentos que levantamos:

i) No que diz respeito ao exercício (I), o que você definiria para discutir com o 

estudante em caráter de sugestão ou pista? Que raciocínio você valorizaria de modo 

prioritário – analítico-verbal ou geométrico-pictórico – no momento de atribuir uma nota? 

ii) Em (II), a autora apresenta as argumentações fornecidas pelos estudantes 

que tentaram resolver o problema. Existe outra solução para a mesma situação? Você 

é o tipo do professor que valoriza o esboço do desenho dos objetos da Geometria 

Espacial que estão essencialmente no espaço tridimensional?

iii) Por fim, na questão (III), em sua opinião, o esboço do desenho do cubo 

está claro para o estudante ou é apenas um detalhe sem importância?

AULA 4
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Figura 6: Exercício I proposto por Milauskas (1994, p. 91)

Figura 7: Exercício II proposto por Milauskas (1994, p. 91)
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Figura 8: Exercício III proposto por Milauskas (1994, p. 92)

Nenhuma das perguntas feitas anteriormente pode ser descartada. Nelas o amparo 

ao raciocínio fornecido pela figura é essencial. Recordamos aquele tipo de professor que, 

quando ensina Geometria Espacial, nunca perde tempo desenhando figuras na lousa.

A faculdade intuitiva daquele estudante está sendo exigida no momento em 

que ele busca estabelecer relações entre o enunciado e o objeto que busca desenhar 

na folha de papel. A mesma figura poderá servir para explicar o seu raciocínio para 

os colegas, no momento do debate em sala de aula.
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TÓPICO 3
O pensamento algorítmico  
e a resolução de problemas

Objetivo

•	 Descrever o pensamento algorítmico

Veja o comentário de Elon Lages Lima abaixo. O autor se refere a 

determinados livros didáticos do Ensino Médio.

O viés pelo adestramento, com desprezo de várias outras habilidades 

cognitivas deveriam ser desenvolvidas – capacidade de induzir leis gerais 

(teoremas) a partir de alguns exemplos; capacidades de síntese e de análise; 

capacidade para formular e testar conjecturas; capacidade para avaliar 

resultados de problemas e exercícios; capacidade para verificar a plausabilidade 

de resultados, usando inclusive o cálculo mental – verifica-se exemplarmente 

na seção sobre “triângulos quaisquer”. Neste campo, em que seria fácil dar 

exemplos simples, contextualizados e interessantes de cartografia, não se 

encontra nenhum exercício contextualizado. Isso reforça a crença, já incutida 

no aluno por toda a apresentação até este ponto, de que a trigonometria – e 

por extensão a Matemática – não tem nenhuma aplicação a não ser resolver 

problemas de vestibular (LIMA, 2001, p. 147).

O autor evidencia e coloca em discussão a antiga tônica de que a atividade 

matemática promovida pelo livro é incentivar o estudante a “fazer contas”. E o 

referido hábito é motivado desde as séries iniciais. De fato, logo no contato com a 

Aritmética, observamos situações didáticas em que, na possibilidade de transição, 

o professor emprega estratégias algébricas, em vez de estratégias aritméticas que, 

na maioria dos casos, demandam mais tempo e esforço.

Nesse sentido, Sadovsky & Sessa (2005, p. 89) advertem que “numerosas 

pesquisas no mundo inteiro têm se ocupado do estudo dos obstáculos 
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epistemológicos e as rupturas didáticas envolvidas na transição da Aritmética para 

a Álgebra, tanto na perspectiva do professor quanto na do aluno”. Assim, a referida 

transição apresenta problemas específicos que necessitam serem compreendidos se 

desejamos realizar uma ação didática com a intenção real de obter uma compreensão 

autônoma do sujeito.

Tall (1992 , p. 8) comenta que:

Quando a criança se encontra com a Álgebra pela primeira vez frequentemente 

enfrenta inúmeros problemas para compreender o significado das notações. Eles 

podem escrever “x” e depois “y” próximos um do outro como x y , mas eles 

estão dizendo que xy  é “x vezes y”. Eles se confundem com o símbolo 2 3+ x

. Se isto significa adicionar 2 a 3 vezes x, então existe um problema que não pode 

ser calculado até que x seja conhecido. [...] A expressão 2 3+ x  pode significar 

diferentes coisas. Pode ser o processo de adicionar 2 e 3 vezes x, como o produto 

do processo.

No trecho acima, o matemático inglês David Tall comenta que a criança pode 

enxergar a expressão 2 3+ x  em termos do processo que possibilita com a realização 

de um produto por três e depois uma soma. Ou apenas com o resultado do processo, 

sem atentar o suficiente para o modo de constituição da expressão.

Por exemplo, se a expressão 2 3+ x  é apenas um procedimento para obter 

determinados valores como x= → + ⋅ =2 2 3 2 8 , a criança sentirá dificuldades de 

compreender a manipulação seguinte: 3 2 3 2 2 3 3 2 3 2( ) ( ) ( )( )+ + + = + +x x x x x . 

Neste caso a expressão age como um objeto e não estamos interessados em fazer contas. 

Percebe-se que, quando falamos sobre Álgebra, devemos considerar uma 

sintaxe e regras operatórias bem específicas cujo resultado, na maioria dos casos, 

o estudante não compreende. Sublinhamos que, para o professor, pensar de modo 

flexível na expressão 2 3+ x  tanto como objeto mental e como processo matemático 

é algo bastante razoável, entretanto para o aluno isto pode ser bastante difícil.

Crowley, Tall & Thomas (1994 , p. 3) mencionam as incompreensões ante a salada 

de frutas da Álgebra. O símbolo 3 4a b+  é explicado significar  três maçãs e quatro 

bananas. Algumas crianças ficam desiludidas quando deparam com 3 4 2a b a+ + , 

que significa três maçãs, quatro bananas e duas bananas e que significa cinco maças, 

quatro bananas. Outras crianças interpretam esta expressão como 9 maças e bananas. 

Nesse âmbito outras dificuldades e erros frequentes e resistentes no 

aprendizado de Álgebra podem ser identificados. Todavia tencionamos direcionar 

nossa atenção para um hábito adquirido nas séries iniciais que se propaga e se 
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repete durante boa parte da vida escolar e até mesmo acadêmica do indivíduo.

O aspecto que desejamos destacar foi mencionado por Tall (1992) quando 

a criança é ensinada a buscar apenas o resultado da expressão 2 3+ x  sem se 

preocupar com o objeto em si ou o processo matemático que o mesmo sintetiza. 

De fato, é comum o professor de Matemática explicar a noção de função 

inversa, com ênfase no seguinte procedimento: “Para você calcular a função inversa 

de y x= −2 3 , basta trocar o que for y pela variável x e onde estiver a variável x 

trocar por y. No final deve isolar y”. O procedimento algorítmico resta do seguinte 

modo como descrevemos na Figura 9.

Figura 9: Metáfora da máquina

Por outro lado, alguns autores preferem empregar a utilização da função como 

uma máquina. Acima vemos a máquina realizando o funcionamento normal. Ela pega a 

variável x, multiplica por 2, e na sequência soma 3. Quando invertemos o processo da 

máquina, não apenas a ordem das operações, como também as próprias operações, são 

invertidas. De fato, a máquina multiplica e depois soma. Quando trabalha no sentido 

inverso, ela deverá subtrair e depois dividir. Observamos sua ação na ilustração acima. 

Outra ocasião com ênfase no raciocínio algorítmico clássico ocorre quando 

o professor demanda ao estudante exibir a inversa de A=










1 3

2 7
. Na prática, 

o mestre orienta que o aluno empregue a condição 
1 3

2 7

1 0

0 1









⋅








=










a b

c d
 e 

resolva os sistemas de duas incógnitas obtidas. No final obtemos A− =
−

−











1
7 3

2 1
. 
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Pelo menos em alguns casos, o livro didático, e possivelmente o professor, 

enuncie o teorema.

Teorema : Se A é inversível, então existe uma única matriz B tal que 

A B B A In⋅ = ⋅ = . 

Demonstração: Vamos admitir que existe uma outra matriz C tal que 

A C C A In⋅ = ⋅ = . Assim, temos 

C I C A B C B A C
opriedade

n

Hip tese Hip tese Associat

= ⋅ = ⋅( )⋅ = ⋅( )⋅ =
Pr iividade Hip tese

n

opriedade

B A C B I B⋅( ) = ⋅ =
Pr

=C I C A B C B A C
opriedade

n

Hip tese Hip tese Associat

= ⋅ = ⋅( )⋅ = ⋅( )⋅ =
Pr iividade Hip tese

n

opriedade

B A C B I B⋅( ) = ⋅ =
Pr

Percebe-se que, para os desavisados, a demonstração acima presente em 

muitos livros didáticos tem uma aparência de perfeição. Entretanto Lima (2001, p. 

193) adverte que determinando B tal que nB A I⋅ =  e já que não foi apresentado 

o teorema (aliás, nesse livro seria no máximo uma observação) que garante que se 

A é quadrada e A B In⋅ =  então B A In⋅ = , a única conclusão que se pode tirar 

é que ou A não é invertível ou B é realmente a inversa de A. Os autores tinham a 

obrigação de verificar realmente que B A In⋅ = . 

Notamos que, como Otte (1991)  que adverte dizendo que os algoritmos estão 

relacionados apenas funcionalmente à realidade objetiva; eles não a explicam em nada, você 

pode ter um aluno que tenha conseguido fazer 30 questões sobre funções inversas pelo 

método algorítmico e outro aluno que tenha resolvido 80 questões, entretanto este último 

não será, necessariamente, mais esperto ou mais sábio do que o primeiro estudante. 

O conhecimento algorítmico é referendado por regras operacionais. Aplicando-

as, obteremos com certeza algum resultado, obtemos um dado; entretanto não 

obtemos um significado para os dados inferidos. Talvez seja essa característica 

que agrega a preferência dos estudantes. Ao deparar com uma questão que exige 

tão somente o raciocínio algorítmico, simplesmente o estudante emprega a fórmula, 

pois a certeza da validade do seu funcionamento já foi a priori estabelecida 

pelo professor. O aluno sabe, de antemão, que deverá encontrar um valor, basta 

identificar os dados necessários no enunciado.

Por outro lado, um conhecimento intencionalmente desejado pelo professor 

de Matemática é o conhecimento conceitual, que se caracteriza por ser rico em 

relações, que se restringe apenas à aplicação de fórmulas e nunca é linear, como no 

caso de uma demonstração formal. Nas próximas aulas retomaremos à discussão 

sobre o conhecimento conceitual em Matemática, essencial para a aprendizagem.
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AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) Forneça exemplos de situações corriqueiras em sala de aula, nas quais o 
contrato didático é rompido.

2) Explique e contextualize a noção de devolução em termos da Didática da 
Matemática. 

3) Forneça um exemplo de uma explicação ou argumentação, de uma 
demonstração e de uma prova matemática.

4) O método formal e axiomático é colocado em evidência de acordo com 
as regras do contrato didático estabelecido com a turma. Identifique as 

consequências negativas desta atitude do professor no trecho da figura abaixo. 

Trecho do livro de Kline (1971, p. 61) 

5) O professor pode se refugiar na segurança dos algoritmos prontos. Tal atitude 
que pode ser caracterizada como uma cláusula do contrato didático, pode 
encobrir suas lacunas e falhas pessoais. Analise no trecho sublinhado na figura 

abaixo, um elemento que pode influenciar de modo negativo o contrato didático. 

Trecho devido a Kline (1971, p. 63)
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Olá, aluno (a)!

Nesta aula, iremos estudar a tipologia das situações didáticas que estão diretamente 

relacionadas ao ensino da matemática. É importante que você reflita sobre elas e 

sobre suas implicações no processo de ensino e aprendizagem da matemática.

Objetivo

•	 Conhecer as principais tipologias das situações didáticas relacionadas ao 
ensino e aprendizagem da matemática

AULA 5 A tipologia das Situações 
Didáticas de Guy Brousseau
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TÓPICO 1 A tipologia das Situações 
Didáticas - TSD

Objetivo

•	 Descrever a tipologia das situações 

didáticas concebidas por Brousseau

Na citação abaixo, Brousseau faz uma clara menção a determinados 

subterfúgios empregados pelo professor que ocorrem, por 

exemplo, diante da resolução de uma situação-problema, que 

apresenta inúmeras estratégias admissíveis.

Imaginemos que o professor realize uma devolução a um aluno de uma fonte 

de questões auto-controláveis ou de um problema. Se o estudante resolve este 

problema, ele pode pensar que o mesmo o fez pelo exercício normal de seus 

conhecimentos anteriores. O fato de ter resolvido o problema se mostrará para ele 

como a prova de que não existe nada de novo a ser aprendido a respeito. Mesmo 

se ele tem consciência de ter substituído uma estratégia antiga e culturalmente 

identificada por uma outra de sua “invenção”, e será muito difícil de declarar 

que tal “inovação” se trata de um saber novo: que necessita ser identificado 

como um método tendo em vista que parece poder ser produzido facilmente 

quando necessário? (BROUSSEAU, 1996, p. 91). 

Entretanto, o professor ensinou e estabeleceu aquela estratégia específica que, em 

certos casos, exige um maior esforço do estudante. Por outro lado, aquela outra estratégia 

pelo mestre de modo semelhante conhecida não foi discutida ou apresentada ao grupo.

Todavia, não podemos e nem devemos ousar controlar a inventividade e criatividade 

do estudante. Pode ocorrer que eles mesmos ou algum membro do grupo encontre ou 

identifique a referida estratégia camuflada pelo mestre. A mesma, como declara Brousseau, 

trata-se de uma “inovaçao” ou “invenção”. Em todo caso, prevemos certo descontentamento 
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da turma, na ocasião em que o professor admita a possibilidade da estratégia para a 

resolução do problema, vislumbrada pelo estudante, e não indicada pelo mestre.

Existe uma tendência natural do estudante em optar pela estratégia que 

exige um menor esforço mental e, em certos casos, o emprego automático sem uma 

devida compreensão. Desse modo, o professor, percebendo um momento como este, 

deve se antecipar e declarar o estatuto de pertinência e importância daquela nova 

estratégia para a resolução do problema. De qualquer modo, para o professor de 

Matemática, deve ficar claro a condição de que “o que impulsiona o processo de 

ensino/aprendizagem são as atividades envolvendo a resolução de problemas, o 

trabalho pedagógico tem início exatamente com a escolha de um bom problema que 

deve ser compatível com o nível de conhecimento do aluno” (FREITAS , 2002, p. 77).

Na situação que descrevemos envolvendo a possibilidade de várias estratégias 

de resolução do problema, o professor, de acordo com o contrato didático, apontará 

a estratégia mais eficiente, ou, em última instância, permitirá que a própria turma 

eleja a mais eficiente. Entretanto, uma vez o problema considerado “interessante” 

e “compatível” seja escolhido o mesmo, ele deverá destacar as possíveis fases pelas 

quais uma estratégia de resolução apresenta.

“Assim, para descrever as relações do aluno com essa diversidade de possibilidades de 

utilização do saber, Brousseau desenvolveu uma tipologia de situações didáticas, analisando 

as principais atividades específicas da aprendizagem da Matemática” (FREITAS, 2002, p. 

77). De modo resumido, as categorias concebidas foram nomeadas por ele de: situação de 

ação, situação de formulação, situação de validação e situação de institucionalização.

Numa situação de ação, o estudante joga com novas oportunidades e 

desenvolve estratégias. Geralmente, “uma estratégia é adotada por intuição ou 

pela rejeição natural de uma estratégia anterior. Uma nova estratégia é, entretanto 

adotada como resultado de uma experimentação. Isto é, aceita ou rejeitada a partir 

da avaliação do estudante no que diz respeito à sua eficácia; tal avaliação pode ser 

implícita.” (BROUSSEAU, 2002, p. 9). 

Na figura 1, exibimos os elementos e as relações analisadas por Guy Brousseau 

(2002, p. 9) na ocasião em que se dá a resolução de um problema matemático. Ele 

explica ainda que “as sequências de situações de ação constituem o processo pelo 

qual o estudante forma estratégias, isto quer dizer, “ensina a si próprio” um método 

de resolução do seu problema.” 
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Figura 1: Esquema descrito por Brousseau (2002, p. 9).

O didata francês Brousseau analisa ainda as relações que de modo muito 

rigoroso se estabelecem. Na Figura 1, temos os elementos que caracterizam, segundo 

ele, a “dialética da ação”. E acrescenta que:

Quando utilizamos o termo “dialética” em vez de “relação” é por que, por 

outro lado, o estudante é capaz de antecipar os resultados de suas escolhas e, suas 

estratégias são, deste modo, proposições confirmadas ou invalidadas por meio da 

experimentação numa espécie de diálogo com a situação. No curso da “dialética da 

ação”, a criança organiza suas estratégias, e constrói uma representação da situação 

que serve como “modelo” e guia para a mesma durante as decisões (2002, p. 9).

Brousseau explica que, neste nível, o professor 

deve ficar atento para se deparar com estratégias 

formuladas pelos estudantes originadas a partir de 

modelos mentais implícitos. Nesse sentido, ele explica 

que modelos implícitos descrevem um conjunto de 

relações ou regras as quais o estudante toma a sua 

decisão sem necessariamente ser consciente da mesma.  

Desse modo, exigir dos estudantes logo no início 

das tarefas as justificativas e os porquês de cada 

estratégia e escolha pode antecipar de modo pouco 

natural as etapas cognitivas pelas quais o estudante 

precisa enfrentar ante à situação-problema.

Num segundo momento, Brousseau descreve a situação de formulação.  Nessa situação, 

após um devido tempo para pensar nas possíveis estratégias, os estudantes começam a propor 

estratégias que podem depender de um feedback da própria turma. Por exemplo, o professor 

pode estimular alguns membros do grupo a descrever na lousa as possíveis escolhas. 

Na figura 2, apresentamos uma parte desta dinâmica da sala de aula. 

at e n ç ã o !

Note-se que é importante dispensar algum tempo 

na sua própria carteira no sentido de esboçar 

uma estratégia de resolução individual, o que 

demonstra a sua autonomia, inclusive, em relação 

ao professor de matemática.
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Figura 2: Esquema descrito por Brousseau (2002, p. 10).

Brousseau sugere que, na situação de formulação, o estudante, ao expor e 

tentar convencer à respeito das possibilidades de acertos, mas também de erros, 

necessita estabelecer uma linguagem uniformizada, no sentido de que todos os 

membros do grupo compreendam. Além disso, menciona que:

Em cada momento, a construção da linguagem deve ser testada do ponto de vista 

da inteligibilidade.[...] A construção de certa linguagem ou código (repertório, 

vocabulário, sintaxe) num linguagem ordinária ou linguagem formalizada torna 

possível uma explicação das ações e modelos de ação (2002, p. 12).

Já o momento de validação envolve o 

estabelecimento de teoremas. Para tanto, o 

professor deve antever as conjeturas que podem 

conduzir aos erros e identificar as que propiciam 

a um possível sucesso. Não aconselhamos 

expressões do tipo: “Basta fazer isto que o 

problema está encerrado!”, ou ainda “Se você usar 

este argumento, acabou a questão!”. Num outro 

extremo, são desaconselháveis expressões do tipo: 

“Esta conjectura está errada!”, ou ainda, “Se você 

continuar com este raciocínio, você vai errar!”.

Brousseau diz que fazer matemática não 

consiste somente de receber, aprender e enviar 

mensagens matemáticas corretas (2002, p. 15). 

s a i b a  m a i s !

O discurso do professor deve apoiar uma atitude 

e/ou uma escolha própria do estudante, pois se 

na ocasião em que o aluno conseguir resolver o 

problema, o mesmo sentirá uma realização maior 

na medida em que atingiu o alvo sem necessitar 

da indicação do mestre. No outro caso, com 

a indicação do professor, o aluno sente uma 

realização compartilhada, uma vez que desconfia 

que, sem o auxílio providencial do professor, o 

mesmo não teria conseguido.
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Desse modo, as situações de erro devem ser exploradas, não podem ser descartadas 

e devem ser recordadas, uma vez que, determinada estratégia de solução de uma 

questão pode ser ineficaz em uma situação, mas pode ser a opção correta em outra. 

Para concluir este tópico, apresentamos a opinião de Borasi a respeito da 

noção de erro quando comenta a perspectiva piagetiana para a interpretação do erro. 

Nesse sentido, uma visão possível dos erros como catálise de uma aprendizagem. De 

fato, “psicólogos cognitivistas sustentam a ideia de que o conflito ou a dissonância 

cognitiva são catálises que provocam a aprendizagem e o desenvolvimento. Deste 

modo, erros são naturalmente criados em tais situações conflituais e, assim, pode 

fazer os estudantes tornarem-se conscientes da necessidade de criticar seus próprios 

procedimentos e adquirir mais informação “ (BORASI, 1996, p. 31).

Borasi (1996, p. 32) acrescenta na sequência que:

Ademais, o erro pode desempenhar um papel positivo nas atividades 

matemáticas do estudante é indiretamente mostrado em inúmeras pesquisas 

na aprendizagem de matemática e na resolução de problemas, informados pelos 

construtivistas e perspectiva nas ciências cognitivas.

No tópico seguinte, trazemos aplicações particulares das TSD no ensino 

médio. 
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TÓPICO 2 Exemplo e aplicações da Tipologia 
das Situações Didáticas - TSD no 
Ensino Médio: o caso do ensino de 
sequências numéricas
Objetivo

•	 Aplicar os princípios das tipologias ao ensino 

de sequências numéricas

Iniciamos este tópico com o seguinte exemplo adotado por Brodie  (2010, 

p, 93):

O raciocínio adaptativo refere-se a capacidade mental de pensar logicamente e 

inclui o conhecimento de como justificar conclusões. É importante o aprendiz 

conhecer e compreender que as respostas estão certas por que fazem sentido e 

são oriundas a partir de um raciocínio válido, em vez do que aceitar meramente 

o que o professor e o livro didáticos dizem.

Brodie discute a seguinte situação-problema: a seguinte função 

f n n n( )= − +2 11 , onde nÎ  sempre produz números primos? Responda ainda 

os itens:

(a) Determinar f f f f f( ), ( ), ( ), ( ), ( ),.....1 2 3 4 5

(b) Prove e justifique a afirmação.

(c) Descreva geometricamente no plano alguns dos seus pontos.

Em todo caso, esta situação-problema é típica de uma experimentação 

que o aluno precisa desenvolver em Aritmética, inicialmente. Paulatinamente, 

o aprendiz é estimulado a descobrir os valores para f ( )1 1 1 11 112= − + =  que 

é primo. Ainda que f ( )2 2 2 11 132= − + =  que é primo. Pode observar também 

que f ( )3 3 3 11 172= − + =  mais um número primo. Sucessivamente, temos 

f ( ) ;4 23=   f(5)=31... .

Este momento de debruçamento inicial sobre o problema, para a identificação 

de alguma estratégia possível, caracteriza o primeiro momento das Tipologias das 
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Situações Didáticas (TSD). Aqui, a ação dos sujeitos se desenvolve na testagem da 

validade de afirmação da propriedade acerca dos números primos. Esta situação é 

caracterizada pela necessidade de um contraexemplo, como sublinha Brodie (2010, p. 

93). Entretanto, tal fato não necessita ser explicitado pelo professor.

Por parte dos alunos é esperado desenvolver um raciocínio e uma 

argumentação que dê conta se a propriedade é verdadeira ou por que possui falha. 

Alguns erros iniciais podem e devem ocorrer como consequências da evolução do 

raciocínio adaptativo dos estudantes. Nesse sentido, Brodie esclarece:

O fato de que existem as incompreensões mostra que os aprendizes constroem seu 

próprio conhecimento. Erros e incompreensões são sinais de que os aprendizes 

estão envolvidos na sua aprendizagem e seus processos de pensamentos se 

encontram engajados. A aceitação de erros e incompreensões como parte normal 

do processo de ensino e da aprendizagem significa que explicações posteriores 

dos estudantes podem ser encorajadas com a intenção de compreender o porquê 

do surgimento dos erros e incompreensões (2010, p. 75).

Prevemos que os erros nas etapas iniciais devem possuir uma origem 

operatória de Aritmética. Por outro lado, na situação prevista por Brousseau, 

chamada de formulação, o professor pode chamar a atenção, dentre todas as 

estratégias discutidas com a turma, a que possivelmente terá mais êxito e, sugerir/

discutir a estratégia que poderia conduzir ao fracasso.

Assim, na situação de formulação, o estudante começa a desenvolver 

argumentações e inferências típicas de um modelo matemático subjacente à situação-

problema. O referido modelo matemático deve ser compreendido e dominado com 

habilidade e eficiência pelo mestre. Nesse caso, fazemos uso da noção chamada de 

sequência, costumeiramente encontrada nos livros do Ensino Médio.

O motivo da adoção deste primeiro exemplo é justificado nas palavras de 

Lima  (2001, p. 22) quando adverte:

O capítulo começa com a definição de sequência como um conjunto ordenado. Além de 

apelar para uma noção que não foi e nem será explicada pelo livro (a de conjunto ordenado), 

esta definição é incorreta, pois um conjunto (ordenado ou não) não tem elementos repetidos. 

Além disso, o conjunto dos números reais é ordenado, mas não é uma sequência. Na 

verdade, uma sequência é uma função cujo domínio é o conjunto dos números naturais 

(sequencia infinita) ou o conjunto dos n primeiros números naturais (sequência finita, com 

n elementos). [...] As sequências são definidas em crescentes, decrescentes ou estacionárias, 

deixando a impressão de que não existem sequências de outro tipo. 
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Nas colocações de Lima, evidenciamos inúmeros aspectos que podem 

gerar incompreensões e imprecisões no manuseio destes objetos. O primeiro que 

chamamos atenção é que a sequência f n n n( )= − +2 11  não apresenta nenhuma 

razão. Por outro lado, na situação de formulação, é peculiar a adoção de uma notação 

ou simbologia. A mesma deve ser operacionalizável no sentido de pode conduzir os 

estudantes a algum resultado conclusivo. 

Assim, o objeto matemático descrito por f n n n( )= − +2 11  precisa ser 

identificado como uma sequência, tal qual descrita por Lima na citação anterior. 

Desse modo, o aluno identifica a f n n nn   . . ( )≡ = − +2 11 . Assim, o sujeito descobre 

que f f f f f( ), ( ), ( ), ( ), ( ),.....1 2 3 4 5  podem ser substituídos por a a a a a1 2 3 4 5, , , , ,.....  

Incluímos também o item (c) com a intenção de explorar uma perspectiva 

pouco encontrada nos livros didáticos escolares, ou seja, a interpretação geométrica 

da sequência. Mas para tanto, o aluno necessita compreender o sentido da notação 

( , ( )) . )1 1f  .  (1,a1º ; ( , ( )) . )2 2f  .  (2,a2º ; ( , ( )) . )3 3f  .  (3,a3º . 

O professor pode requerer dos estudantes um esboço do gráfico a partir das 

identificações estabelecidas anteriormente. São previstas imperfeições e ajustes no 

gráfico. Na figura 3, exibimos uma aproximação para o mesmo. 

Figura 3: Interpretação da sequência no plano

No próximo tópico, discutiremos um campo de aplicação das sequências 

numéricas. 
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TÓPICO 3
Exemplo e aplicações da Tipologia 

das Situações Didáticas - TSD no 

Ensino Médio: o caso das progressões 

aritméticas – P. A.
Objetivo

•	 Aplicar os princípios das tipologias ao 

ensino de progressão aritmética

Lima (2001a) desenvolve críticas consideráveis ao tratamento 

dispensado pelos autores de livros às noções de progressões 

aritméticas – P. A. e progressões geométricas – P. G. Daqui em 

diante, passaremos a descrever a utilização da metodologia de ensino formulada 

por Brousseau com a intenção de evitar alguns equívocos e a evolução de hábitos 

indesejados nos estudantes. Utilizaremos o conceito de progressões aritméticas – 

(PA) para uma discussão em caráter teórico de aplicação da Sequência. 

Para o início de nossa aplicação em caráter teórico, apresentamos a descrição 

da primeira etapa da Sequência. 

Nível 1 Situação de ação – apresentação do problema ou de um teorema. 

Neste nível, o pesquisador-professor apresenta 

uma situação-problema, descrita na Figura 4, 

para o grupo de alunos, que devem possuir 

meios de atacar o problema envolvido mediante 

a aplicação do conhecimento a ser ensinado.

Comentários: No nível 1, a lição que 

podemos extrair indica que não há necessidade 

de o professor explicitar ou apresentar aos alunos 

um problema. Este deve ser descoberto pelos 

próprios alunos; todavia, eles já devem saber o 

que é uma progressão. Além disso, a atividade 

at e n ç ã o !

Duval (1995, p. 232) explica que a atividade de 

argumentação tem por objetivo modificar a 

natureza ou o grau de convicção atribuído por um 

interlocutor a uma proposição, de modo a fazê-la 

aceitar ou rejeitá-la. Assim, torna-se essencial 

neste nível a identificação das conjecturas que 

possuem mais chance de êxito, bem como as que 

irremediavelmente conduzem ao fracasso. 
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argumentativa dos alunos deve ser fortemente estimulada no momento inicial. 

Note-se que na condição de uma análise a priori do público-alvo, os estudantes 

podem ser apresentados à situação que discutiremos sem necessariamente já serem 

conscientes do que se trata formalmente uma P. A. Iniciamos com uma exploração 

das propriedades geométricas as quais são negligenciadas pelos livros didáticos.  

Figura 4: Disposição dos pares ordenados. 

Na Figura 4, o aluno deverá ser estimulado a encontrar uma progressão 

aritmética – P.A. em meio às combinações aritméticas e geométricas de pares 

ordenados ( ´ ) no plano. Nesta situação, podemos questionar que espécie de 

propriedade percebemos na disposição exibida acima, embora não esteja explícito 

que a mesma diz respeito à P.A. 

Assumiremos de modo hipotético que o aluno relaciona os pares ordenados da 

figura 4. Portanto, ele relaciona os seguintes pares: ( , ) ( , ) ( , ) ...1 1 2 4 3 7® ® ® ® . 

Observe que tal trajetória se propaga indefinidamente a partir destes casos particulares. 

O símbolo " "®  indica o movimento perceptivo que o aluno descreve ao direcionar 

sua atenção ao desenho ilustrativo da situação. 
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Figura 5: Apresentação inicial do problema. 

Diante desta escolha (Figura 5-II), prevenimos que não há a necessidade 

de explicitar a natureza do problema; o professor deve conduzir o processo, 

permitindo que os próprios alunos percebam que o quadro (I) figura 5 envolve um 

problema; mas de quê? De que forma? Que objeto matemático se relaciona com a 

representação da Figura 3?

Em parte, estas questões podem ser resolvidas 

paulatinamente, na medida em que estimulamos o 

uso constante de determinadas imagens mentais. 

Advertimos para o argumento de que “muitos erros 

típicos dos alunos têm sua origem justamente neste 

momento de formação de determinadas imagens 

primárias.” (SAFUANOV , 2003, p. 89)

Observe-se que, mentalmente, por meio 

da intuição geométrica, o aluno será estimulado 

a imaginar a situação descrita na figura 5-II e a 

produzir argumentações relacionadas à situação. 

Observamos que a noção de infinito pode ser 

trabalhada quando imaginamos a propagação da 

relação descrita em figura 5-I até o infinito. 

Como uma tendência natural dos seus 

hábitos adquiridos, após imaginar a situação ao 

lado, o aluno em geral tenta ligar os pontos e 

visualizar um objeto familiar, que neste caso é 

uma reta (Figura 5-II).

Concordamos com Russell  (1921, p. 

112) quando defende que nossas percepções são 

constituídas de sensações, imagens e crenças. 

Dessa forma, devido o modelo familiar da Geometria Plana, o aluno tenta ligar 

g u a r d e  b e m  i s s o !

Vale lembrar que a possibilidade de esboçar 

um desenho, viabiliza ao aluno explicitar 

suas percepções e crenças a respeito de cada 

representação e cada objeto.

at e n ç ã o !

Mayer, Lewis & Hegarty (1992, apud, CAMPBELL, 

1992, p. 138) explicam que erros matemáticos 

ocorrem no raciocínio qualitativo quando um 

solucionador de problemas entra em conflito 

com uma informação presente nas afirmações do 

problema.
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os pontos na figura 6. Ao realizar isso, que caracteriza um erro qualitativo de 

raciocínio, podemos perquirir sobre o seu conhecimento a respeito da noção de 

domínio de uma sequência f :� �® , do tipo a nn = −3 1 . 

Figura 6: Concepção equivocada dos alunos a respeito do gráfico da PA e representação no computa-
dor (elaboração própria).

Observamos que este exemplo e outros frequentes que explicitam concepções 

e conceitos construídos sobre raciocínios inconsistentes e, em flagrante contradição 

com o modelo matemático formal, podem ser paulatinamente modificados com o 

auxílio de um recurso informático (Figura 6-(II e III)). 

Nível 2 Formulação – compreensão e identificação das variáveis envolvidas 

no problema. (Destinado à discussão e debate envolvendo os elementos: professor-

alunos-saber).

Comentários. Desde que esclarecemos psicologicamente o significado do 

termo “abstração”, supomos que a atenção do aluno se voltará para a relação unívoca 

entre os pares ( , );( , );( , )1 1 2 4 3 7  mostrados em (figura 6-III). Tal representação sugere 

implicitamente uma lei de formação de uma função? 

O aluno poderá conjecturar a existência de função do tipo:

f f f( ) ; ( ) ; ( )1 1 2 4 3 7= = = ; mas que tipo de função? Exponencial, 

logarítmica, polinomial? De que grau? Estas questões podem servir de fio condutor 

para uma investigação mais aprofundada ao final da Sequência Fedathi. 

Por outro lado, prolongando-se o gráfico e analisando-se a Figura 6-III, os 

comprimentos das projeções, o aluno deve concluir que o ângulo formado no eixo 

Ox é sempre constante. Assim, deve-se identificar o gráfico como de uma reta; 

entretanto o professor há de formular com os alunos questões relacionadas ao 

domínio desta função que, no caso, está em   e possui contradomínio em  ; por 

quê? 

Além disso, após vários questionamentos, o aluno pode escolher a seguinte 

representação f x ax b( )= +  e não outras possibilidades tais como: g x ex( )= ; 
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h x ax bx c( )= + +2 ; p x x( ) log ( )= 10 . Notamos que, em raras exceções, o aluno saberá 

as condições de existência de uma função afim nas condições fornecidas pelo problema. 

As noções de existência e unicidade poderão ser desenvolvidas no final da aplicação. 

Alguns ideais particulares que envolvem este momento relacionam-se 

ao seguinte modelo: f n a n b( )= ⋅ +  onde nÎ . Por sugestão do professor, os 

estudantes passam a adotá-lo baseados nessa representação, podendo relacionar os 

conceitos de função e progressão aritmética (PA). 

Vale evidenciar que a habilidade de relacionar tais conceitos caracteriza algo 

fundamental a ser perseguido pelo professor, no que diz respeito ao conhecimento 

conceitual. A importância deste conhecimento característico de um  estágio 

cognitivo do sujeito é sublinhada por Sierpinska  (1994, p. 106) ao explicar que o 

foco recai sobre a relação entre objetos particulares. 

Por outro lado, todos os que usam a linguagem dos gráficos podem ser 

auxiliados por um ponto de vista intuitivo do fenômeno e, nem sempre, o aluno 

consegue perceber as relações viabilizadas pelos gráficos. Além  disso, o auxílio de 

propriedades intrínsecas de um gráfico pode representar uma fonte de incompreensões 

pois  o gráfico constitui um sistema figurativo auto suficiente que não faz apelo ao 

significado extrínseco. (FISCHBEIN , 1987, p. 162)

Nível 3 Validação – apresentação e organização de esquemas/modelos 

que visem à solução do problema. Aqui, os alunos organizados em grupos ou de 

modo individual devem apresentar soluções que possam conduzir aos objetivos 

solicitados e convencer com suas argumentações outros grupos. 

Comentário. Introduzimos a notação conveniente, destacando que a 

sequência x f n a n bn = = ⋅ +( )  pode ser descrita por { ; ;... ;.....} }a a an n1 2  ou {an Î . 

Prevenimos que a precipitação em se adotar uma poderosa notação pode transformar 

o problema numa rotina algorítmica semanticamente pobre. Por outro lado, neste 

momento, a ausência de linguagens operatórias podem constituir um obstáculo à 

aprendizagem dos alunos (BALACHEFF , 1988, p. 149).

Convém observar, ainda, que notações aparentemente semelhantes podem 

inspirar intuições distintas; por exemplo, a situação em que { ; ; ;... ;.....}a a a an1 2 3  

sugere a continuidade ininterrupta dos termos; mas, no caso da notação

{an }nÎ ,corremos o risco de estimular uma concepção estática do conceito de 

sequências de números reais. 

Outro elemento que pode ser identificado, após se obter o termo geral 
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a r n a rn = ⋅ + −( )1 , é a interpretação geométrica do coeficiente angular e do coeficiente 

linear, algo pouco explorado pelos livros didáticos. Por este modo, enfraquecemos a 

prática algorítmica usual de tratamento do termo geral. Nesse sentido, Fischbein  (1999, 

p. 52) lembra que um algoritmo pode ser aprendido por repetição, pela prática; contudo, 

o algoritmo envolve elementos mais complexos do que aparenta, destacadamente os de 

natureza intuitiva. São justamente estes elementos que exploramos na figura 7.

Figura 7: Interpretação geométrica do termo geral (elaboração própria).

Quando exploramos a interpretação geométrica do termo 

geral, podemos desenvolver a ideia de “interpolação geométrica dos 

seus termos”. Por exemplo, se tomarmos a Figura 7, e tivermos que 

{ ; ; } { ,? ,? , } ( )a a r r1 3 1 10 10 1 4 1 3  a   ; a     2 4 = ∴ = + − ↔ = , poderemos 

encontrar a razão. 

Figura 8: A noção de Interpolação  geométrica dos termos de uma PA (elaboração própria).

Nesse caso, mudamos a forma tradicional, encontrada nos livros didáticos, 

para a representação de um problema de interpolação que, frequentemente, sugere 

o seguinte: ( ;___ )a a1 4  ; __ ;  o que não possibilita uma interpretação geométrica 
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e dinâmica desta nova noção. 

Nível 4 Prova/validação – apresentação e formalização do modelo matemático a ser 

ensinado. Aqui, a didática do professor determinará em que condições ocorrerá a aquisição 

de um novo saber. Além disso, todas as argumentações devem ser revistas e testadas, como 

também identificados os elementos que podem causar maior incompreensão. 

Comentário. Com uma formação sólida, para o professor de Matemática, 

a atividade de prova e, subsequente demonstração, assumem espaço privilegiado 

neste nível se nos restringirmos a uma aula tradicional; convém lembrar, entretanto, 

a diferença entre os termos prova e demonstração que, aparentemente, para muitos, 

são a mesma coisa.

Na tese de Pedemonte  (2002, p. 15) encontramos a classificação dos esquemas 

de prova matemática. Conforme a autora, os níveis caracterizados por alguns autores 

discutidos em seu trabalho podem ser descritos como: esquemas de provas externas 

de convencimento; esquemas de provas empíricas; esquemas de provas analíticas. A 

hipótese levantada é que para produzir uma demonstração axiomática, o aluno deve 

passar gradualmente por estes tipos de prova.

Além disso, quando se estabelece o momento de maior rigor e formalismo 

(nível 4, assumiremos a ideia de que o conhecimento matemático produzido 

deverá constituir uma teoria de fato e ser reconhecida como tal, isto é, aceita 

numa comunidade científica que desconsidera a necessidade de buscar a origem 

dos argumentos que utiliza; portanto, este momento é o da apresentação da 

demonstração matemática que se apóia sobre um corpo de conhecimentos fortemente 

institucionalizados... os quais possuem a validade socialmente partilhada. 

(BALACHEFF, 1984, apud, JOSHUA & DUPIN 1993, p. 291). 

Nesse contexto, Douady  (1984, p. 17) explica que o saber se difunde de modo 

diverso entre os alunos. Oficializar certos conhecimentos, atribuindo-lhes um estatuto 

de objeto matemático, é condição de homogeneização na classe. 

Ainda no nível 4, o professor poderá estimular, passo a passo, a descoberta 

dos teoremas (e contra exemplos) que enunciamos em seguida. Lembramos que 

podem ser inventadas diversas demonstrações para os teoremas que enunciamos na 

figura 9; contudo, destacamos a magnífica abordagem encontrada na obra de Lages  

(2004).
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Figura 9: Teoremas que permitem um aprofundamento a posteriori.

Neste último nível, o professor pode conduzir seu ensino segundo as orientações de 

Lakatos  (1978, p. 74), que classifica as provas matemáticas em pré-formais, formais e pós-

formais.

Trabalhamos neste nível, predominantemente, os aspectos formais e pós-

formais envolvidos em cada situação didática. Os teoremas da figura 10 podem 

compor os conhecimentos relacionados ao que ele chama de pós-formais. Em relação 

a este tipo de conhecimento, Lakatos (1978, p. 79) explica que frequentemente os 

estudantes de lógica deparam com provas que verificam às vezes mais do que se espera 

demonstrar. 

Ele exemplifica o caso dos axiomas de 

Peano que satisfazem não apenas à família 

dos números naturais, mas também a outras 

estruturas esquisitas. Finaliza afirmando que 

este último tipo de prova se relaciona com algum 

tipo de incerteza por conta das possibilidades 

até então não pensadas (LAKATOS, 1979, p. 69).

Dessa maneira, deparamos um momento 

didático em que o mestre tem a oportunidade de generalizar as ideias abordadas e 

relacionar determinadas ligações conceituais necessárias para a caracterização de um 

novo conhecimento conceitual, possibilitando nova sequência de aprendizagem. 

Para esclarecer melhor esta possibilidade e influenciando-nos nas 

considerações de Lakatos (1976, p. 142), quando aconselhava a fuga do estilo 

dedutivista de raízes euclidianas, orientamos no sentido de que, no final da 

sequência de ensino anterior, o professor pode trabalhar propriedades e relações, 

até o momento não identificadas, nos quatro níveis anteriores. 

s a i b a  m a i s !

Obtenha mais informações sobre o matemático 

italiano Giuseppe Peano, acessando o site http://

www.somatematica.com.br/biograf/peano.php
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Nossa argumentação adquire sentido ante às seguintes indagações: podemos 

afirmar, com arrimo do gráfico mostrado na Figura 10, que temos uma função 

definida do eixo Ox para o eixo Oy, que leva uma PA numa PA? 

Figura 10: Relações entre PA e PG (elaboração própria).

Com o amparo do gráfico, podemos assinalar, ainda, que temos uma função 

definida do eixo Oy para o eixo Ox. Que tipo de função leva uma PA numa PA? Que 

tipo de função leva uma PA numa PG? E no caso de uma progressão geométrica? 

Por outro lado, podemos generalizar o processo de obter a razão da sequência, 

com base nas representações geométricas. No processo de obtenção, empregamos o 

modelo de Indução Matemática. 

De fato, observando as figuras 11 e 12, temos que:

Figura 11: Obtenção generalizada da fórmula da razão.

Figura 12: Generalização do método geométrico de obter da razão (elaboração própria).
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Finalmente, quando consideramos o Teorema3  da Figura 10, podemos 

passar a considerar a sequência { , , ,.....} { }b b b bn n1 2 3 = ∈  que descreve a relação 

do gráfico acima do eixo Oy para o eixo Ox (Figura 13). Introduzindo esta nova 

notação, temos então que b1 1 2 3= = =; ; b  b4 7 . Podemos observar que { }bn nÎ  

também deverá ser uma PA, em virtude deste teorema, de razão r = 1
3 . 

Figura 13: Relações entre a inversa de uma P. A. 

No próximo tópico, apresentamos outra aplicação da Tipologia das Situações 

Didáticas formuladas por Brousseau ao conceito de Progressões Geométricas – P. G. 
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TÓPICO 4
Exemplo e aplicações da Tipologia 

das Situações Didáticas - TSD no 

Ensino Médio: o caso das progressões 

geométricas – P. G.
Objetivo

•	 Descrever a aplicação da TSD ao con-

ceito de P. G

A escolha do assunto relacionado a progressões geométricas se deve às 

colocações preocupantes de Lima (2001, 464), ao mencionar que não 

é feita a conexão entre P.G. e função exponencial, nem são oferecidos 

problemas não-artificiais que exibam situações de fato onde se poderiam usar P.G.´s ou 

funções exponenciais. 

O aspecto apontado por Lima diz respeito ao aprendizado de conceitos 

desconectados, sem uma aparente relação. No ambiente de formação de professores, 

suas consequências são mais nítidas, uma vez que, ao ser submetido a um ensino 

estanque e compartimentalizado por parte dos seus formadores, de modo semelhante 

o futuro professor reproduzirá sua ação docente.

Ao analisar a obra de Bonjorno  & Giovanni, Lima (2001, p. 177) menciona 

que:

Tal como acontecia nas progressões aritméticas, a classificação das progressões 

geométricas é extravagante: uma progressão não é crescente por ser uma 

sequência crescente; é crescente, por definição, por ter q>1  e a1 0>  (ou 

0<q  e a1 0< ), e não se faz nenhuma ligação com as noções de função 

crescente e decrescente, já vistas no mesmo volume. [..] O termo geral é apenas 

conjecturado a partir de exemplos, e indevidamente generalizado.

Vejamos a organização dos níveis de ensino

Nível 1 Situação de ação – apresentação do problema ou de um teorema. 

Neste nível, o pesquisador-professor apresenta uma situação-problema para o aluno 
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ou um grupo de alunos, que devem possuir meios de atacá-lo mesmo mediante a 

aplicação do conhecimento a ser ensinado.

Figura 14: Situação geométrica relacionada ao problema de P. G (Elaboração própria)

Vamos assumir hipoteticamente a ideia de que o aluno escolhe e liga os 

pontos (Figura 14): ( , )1 2 ; ( , )2 4 ; ( , )3 8 ; ( , )4 16 ; ( , )5 32 ; .... Podemos, no entanto, 

propor aos estudantes conjecturar o valor de ( ,?)7 ou ( ,?)12 , ou ainda ( ,?)50 . 

Em operações deste tipo, podemos recorrer ao software Maple 10, e fornecer uma 

grande listagem dos elementos da P.G. acima, descrita por an
n= 2 , para n³ 0 . 

Nível 2 Situação de Formulação – compreensão e identificação das variáveis 

envolvidas no problema. (Destinado à discussão e debate, envolvendo os elementos: 

professor-alunos-saber).

Comentário. Neste nível, a formulação e a adoção da simbologia conveniente 

podem ser estimuladas; lembrando que, segundo o modelo standard dos livros 

didáticos, designamos uma sequência por ( ; ; ;.....; ;....)a a a an1 2 3 . Em nosso caso, 

conduzimos, por meio do diagrama da Figura (1), o aluno a realizar a ligação entre 

a f nn = ≡ ∈ ×( )  . .   (n,f(n))   . Neste nível, permanecemos explorando a “intuition 

of”, entretanto, a atenção recai paulatinamente sobre uma simbologia que remete ao 

conceito, ao objeto. Aqui fazemos uso do processo mental chamado de comparação seletiva.

Nível 3 Validação/solução – apresentação e organização de esquemas/

modelos que visem à solução do problema. Aqui os alunos, organizados em grupos 

de cinco, devem apresentar soluções que possam conduzir aos objetivos solicitados 

e convencer com suas argumentações outros grupos (exploração da combinação 

seletiva). 

Comentário. Neste nível, estabelecemos uma notação. Vale esclarecer que, 
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apesar da notação (n,f(n)) ser pouco operacional, ela explicita a relação funcional 

onde a progressão está definida, como uma função do tipo f :� �® , o que 

estimula a combinação seletiva. Por outro lado, Gondino (2004, p. 20) lembra que 

uma das concepções comuns em muitos matemáticos, se caracteriza em considerar que 

o aluno deve adquirir primeiro as estruturas matemáticas fundamentais de forma 

axiomática. Supõe-se que, uma vez adquirida esta base, será fácil que o aluno por si 

só possa resolver aplicações e resolver exercícios. 

Neste nível, o licenciando e futuro professor de Matemática deveria saber 

que a única função que pode apresentar a propriedade do conjunto ( , )1 2 ; ( , )2 4 ; 

( , )3 8 ; ( , )4 16 ; ( , )5 32 ; .... inicial escolhido é uma função exponencial. Uma função 

afim ou uma função polinomial do 2º grau não satisfazem esta propriedade.  

Nível 4 Prova/demonstração – apresentação e formalização do modelo matemático 

a ser ensinado. Aqui, a didática do professor determinará em que condições ocorrerá a 

aquisição de um novo saber. Além disso, todas as argumentações devem ser revistas e 

testadas e identificados os elementos que podem causar maior incompreensão. 

Comentário. Neste nível, discutiremos de modo particular as afirmações e 

detalharemos as argumentações fornecidas por Lima (2004, p. 183). A ideia, comumente 

usada em Matemática, é preencher as lacunas. Nossa intenção é fornecer indicações 

do modo pelo qual o licenciando deve aprender a estudar Matemática pois, se ele 

não consegue completar as lacunas de uma obra didática que, em geral, são muitas, 

em virtude da economia e otimização do custo, ele não aprende. Consequentemente, 

ensinará de um modo restrito e deficitário. Apresentamos,  então, o primeiro teorema. 

Teorema1  Seja +→ :f  uma função monótona e injetiva. As seguintes 

afirmações são equivalentes: (1) ( )⋅ =( ) ( )
n

f n x f x  para todo ∈n  e todo ∈x

; (2) =( ) xf x a para todo ∈x , onde = (1)a f ; (3) + = ⋅( ) ( ) ( )f x y f x f y  para 

quaisquer ∈,x y .

Enunciamos um exemplo de teorema com o qual o aluno de graduação sen-

te dificuldades para compreender. A ideia é realizar o ciclo de equivalências 

( ) ( ) ( ) ( )1 2 3 1Þ Þ Þ . Muitos teoremas da Matemática escolar podem ser consi-

derados dentro deste tipo de raciocínio. Curiosamente, esta formulação é banida nos 

livros-textos. Um exemplo disso, para ilustrar, é o caso de definições formais equiva-

lentes do mesmo objeto matemático, que nomeamos como função injetora. 

O Teorema1 , porém, requer a utilização do seguinte lema. 
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Demonstração: de acordo com o enunciado, vamos tomar um intervalo 

qualquer [ , ]α β ⊂ +
 , onde assumimos que 0< <α β . A ideia deste teorema é 

provar a existência de um certo ar Î [ , ]α β . 

Figura 15: Disposição na reta

O primeiro caso, analisado por Lima (2004, p. 177), diz respeito à situação 

a,a>1 . Assim, sabemos que o comportamento das potências de expoentes naturais 

maiores do que 1 crescem de modo ilimitado. Assim, desde o inicio fornecemos um 

1< a ; mas temos três possibilidades: (i) 1< < <a α β ; (ii) 1< < <α βa  ou (iii) 

1< < <α β a . Representamos a situação abaixo. 

Figura 16: Casos possíveis.

Em qualquer situação, no entanto, sabemos por indução matemática, que:

1 2 3 1< < < < < < <+a a a a an n...... ..... é uma sequência de números reais 

ilimitada superiormente. De fato, intuitivamente, vemos na Figura 3, no tópico 

inicial, o comportamento de g n n( )= ⋅3 2 , onde a = 2 . Contudo, se consideramos 

por exemplo a função h n
n

( )=







1
2

.

Ses (i), (ii) ou (iii), existirá um ∈0M tal que 0 1 0< < < <α β aM . Por 

outro lado, vejamos que, desde o início, consideramos α β β α< ↔ < −0 .  Por 

:Lema fixando o número real positivo ≠ 1a , em todo intervalo de +
 , 

existe alguma potência ra , com ∈r .
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conseguinte, consideramos a seguinte fração 
β α-
aM0

. Podemos inferir rapidamente 

que:

0
0

<
−β α

aM , uma vez que tanto o numerador como o denominador 

são maiores do que 0; mas, se  argumento que usamos há pouco aplicado 

para potências de 1 1
0

<
−
+









β α
aM

, pode-se encontrar uma potência 

n0 Î  tal que 1 1
0

0

< <
−
+







a

aM

nβ α
.  Assim, extraindo a raiz, segue que 

0 1 1 0
1 1

0

0

0 0 0< < <
−
+







↔ < ⋅ < − +a

a
a a an

M
M n Mβ α

β α . 

Ou ainda: 

0 1 0 10 0
0

0
1

< ⋅ − < − ↔ < − < −a a aM n
M

n( ) ( )β α β α . 	 Observamos agora 

o comportamento da expressão a
M

n
0

0 . Com respeito ao seu expoente, Lima (2004, 

p. 178) impõe a seguinte condição 
m

n
M a a

m
n M

0
0 1 0 0≤ ⇒ < ≤ .  Portanto, temos

0 1 1
1 1

0< ⋅ − ≤ ⋅ − < −a a a a
m

n n M n( ) ( ) β α , assim, fazendo as contas, 

escrevemos 0
1

< − < −
+

a a
m

n

m

n β α ; note-se, porém, que β α-  é a amplitude 

do intervalo inicial [ , ]α β ⊂ +
 . E fazendo variar as frações, com a condição 

m

n
M

0
0£ , poderemos obter os expoentes  { , , , ,...., , }0

1 2 3

0 0 0 0
0n n n

m

n
M dos números 

{ , , , ,.... , }1
0 1 2 3

0 0 0 0 0 0= a a a a a an n n n
m

n M . Estes números são os extremos de 

intervalos consecutivos, todos de comprimento menor do que a amplitude β α-  

(Figura 17). 

Figura 17: Situação geométrica (elaboração própria)

Lembrando da condição inicial 0 1 0< < < <α β aM , segue que algum destes 
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números, digamos a
m

n0 Î [ , ]α β . Para um leitor curioso, sugerimos a comparação 

entre o texto da demonstração deste lema, que ocupa menos de 15 linhas; sem 

mencionar que Lima (2004, p. 178) deixa os casos: (a) a,a<1 ; (b) a< <1 a  e (c) 

a < <1 a  a cargo do leitor. 

Uma tarefa desta natureza, para um licenciando em Matemática, é mais 

importante do que calcular Lim
x y

x yx y( , ) ( , )→ +0 0

3

2 2

3
. Afinal, tal tarefa envolve um 

saber que será ministrado efetivamente na escola; mas, vejamos o próximo teorema. 

Na      sequência,    Lima       demonstra   a   implicação   mais   difícil 

( ) ( )1 2® , usando este lema. De fato, admitindo (1), ou seja, 

f n x f x
n

( ) ( )⋅ =( ) , tomamos r
m

n
m= ∈ ∈ ∴ ⋅( � � e n ) n r=m . Assim, temos 

f r x f n r x f m x f x
n m( ) ( ) ( ) ( )

( ) ( )

⋅( ) = ⋅ ⋅ = ⋅ =
1 1

.

Obtemos então: 

f r x f x f r x f x f x
n m

m

n r( ) ( ) ( ) ( ) ( )⋅( ) = ↔ ⋅ = = . Lima na sequência comenta 

que, quando colocamos f a( )1 = , escrevemos: f r f ar r( ) ( )⋅ = =1 1 , para todo 

r Î , o que verifica a propriedade desejada em  . 

Para completar a demonstração de que ( ) ( )1 2® , suponhamos, a fim de fixar 

as ideias, que f seja crescente, logo 1 0 1= < =f f a( ) ( ) . Admitamos, por absurdo, 

que exista um x Î  tal que f x ax( )¹ . Digamos, por exemplo, que seja f x ax( )<

(LIMA, 2001, p. 184). 

Assim, considerando o intervalo [ ( ), ]f x ax e empregando o mesmo raciocínio 

que o lema anterior, encontramos r Î  tal que:

a f x a f x a ar x r x∈ ↔ < <[ ( ), ] ( ) . Mas desde que a função é crescente, 

e tendo que f x a f r x rr( ) ( )< = ↔ < . Por outro lado, desde que a ar x<  

e lembrando que 1< a , devemos ter que r x< . Esta contradição prova que 

( ) ( )1 2® . Ele finaliza dizendo que as implicações ( ) ( ) ( )2 3 1Þ Þ são óbvias. 

De fato, , admitindo a condição f x ax( )= para todo x Î  (2), de imediato, 

teremos f x y a a a f x f yx y x y( ) ( ) ( )+ = = ⋅ = ⋅+ , o que demonstra a condição (3). 

Passamos a apresentar o segundo teorema. 

Teorema2 : Seja g :  → + uma função monótona e injetiva tal que, para 

x h, Î   quaisquer, o acréscimo relativo g x h g x
g x

( ) ( )
( )

+ −  depende apenas 

de h, mas não de x. Então, se b g= ∈ +( )0 

e a
g
g

=
( )
( )
1
0

, tem-se g x b ax( )= ⋅  

para todo x Î 
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Após apresentar e demonstrar o teorema 2, Lima (2004, p. 185) considera 

um P.A. { }xn nÎ , de razão h, ou seja, x x hn n+ − =1 , com nÎ . Então, os valores

{ ( )}f xn nÎ , segundo Lima, formam uma P.G. 

De fato, observamos que: 

f x

f x

f x

f x

f x

f x
n

n

( )

( )

( )

( )
....

( )

( )
...2

1

3

2

1= = = = =+  ou ainda, 

b a

b a

b a

b a

b a

b a

x

x

x

x

x

x

n

n

⋅
⋅
=
⋅
⋅
= =

⋅
⋅

= =
+2

1

3

2

1

.... ... , que equivale a (com b ¹ 0 ) , 

a a a ah x x x x x xn n= = = = =− − −+2 1 3 2 1.... ... . Portanto, de razão q ah= , lembrando que 

h é a razão da P.A. 

Teorema3 :  Seja f :  → +  uma função monótona injetiva que transforma 

toda progressão aritmética { }xn nÎ  numa progressão geométrica { }yn nÎ  

onde y f xi i= ( )  para i Î  . Se pusermos b f= ( )0  e a
f
f

=
( )
( )
1
0

, teremos 

que f x b ax( )= ⋅  para todo x Î  .

Após descrever brevemente suas hipóteses, Lima (2004, p. 186) toma x Î  

um elemento fixo, mas arbitrário e admite que os termos ( , , )x x0 -  formam uma 

P.A. Por definição, porém, temos: 0 0− =− − =− =x x x razª o( ) ( ) . Assim, tal P.A. 

é levada por hipótese em uma P. G. Assim, temos a P. G. ( ( ), ( ), ( ))g x g g x0 - .

Se esta última sequência, no entanto, é uma P.G., devemos ter a condição 

g

g x

g x

g
q cte

( )

( )

( )

( )
( )

0

0
=
−
=  , mas isto equivale a 

g x

g

g

g x

( )

( )

( )

( )

−
=

0

0
, onde g é uma 

função definida inicialmente por g x
f x

f
( )

( )

( )
=

0
. Assim, g

f

f
( )

( )

( )
0

0

0
1= = ∴

g x
g x

g x( )
( )

( )− = =( )−1 1
.

Na sequência, Lima considera a sequência ( , , , , ,....., ,....)0 2 3 4x x x x nx  

uma P.A. Assim, por hipótese, teremos a P.G. descrita por 

( ( ), ( ), ( ), ( ), ( ),....., ( ),....)g g x g x g x g x g nx0 2 3 4  é uma progressão geométrica, cuja 

razão evidentemente é g x( )  (LIMA, 2004, p. 186). O sentimento de evidência matemática 
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para o matemático é bem diferente do sentimento de evidência de um licenciando. 

Assim, verificamos que g x
g x

g

g x

g x

g x

g x

g n x

g nx
( )

( )

( )

( )

( )

( )

( )
.....

(( ) )

( )
..= = = = =

+
=

0

2 3

2

1
... ; 

visto que g( )0 1= .

Mais adiante, ele afirma que g n x g x
n

( ) ( )⋅ =( )  para nÎ ; mas o 

licenciando precisa verificar esta propriedade por indução. De fato, temos que 

g x
g x

g
g x g g x g x g x( )

( )

( )
( ) ( ) ( ) ( ) ( )= → = ⋅ = ⋅ =

0
0 1 1 Escrevemos em seguida que 

g x

g

g x

g x
g x g x

( )

( )

( )

( )
( ) ( )

0

2
2

2
= → =( ) . Assim, continuamos nossa argumentação, usando 

a igualdade 
g x

g x

g x

g x
g x

g x g x

g x

g x g x( )

( )

( )

( )
( )

( ) ( )

( )

( ) ( )2 3

2
3

2 2
2 2

= → =
⋅

=
( ) ⋅( )

gg x( )
, segue 

que g x g x( ) ( )3
3

=( ) . Assumindo a hipótese de indução, temos: g n x g x
n

( ) ( )⋅ =( )

, entretanto, para verificar o próximo passo, observamos que g x
g n x

g nx
( )

(( ) )

( )
=

+1
. 

Segue que: g nx g x g x g x g x
n n

( ) ( ) ( ) ( ) ( )⋅ = ( )( )⋅ =( ) +1
. Na sequência, Lima 

(2004, p. 186), usando a igualdade g x g x( ) ( )− =( )−1

 verifica a propriedade para 

valores em nÎ  e x Î . O teorema 3 é essencial para o conhecimento do futuro 

professor. Ele nos diz que a única função que leva uma P.A. numa P.G. é uma função 

exponencial do tipo f x b ax( )= ⋅ ;  como também vale lembrar que a única função 

que leva uma P.A. numa P. A. é do tipo f x ax b( )= + . Esse conhecimento conceitual 

que relaciona modelos e objetos da Matemática deveria ser natural na formação de 

um professor. Por outro lado, se ele adquire um conhecimento fragmentado e sem 

conexão, o mesmo ocorrerá na sala de aula durante a sua regência. 

Por fim, salientamos que, embora o último nível previsto na sequência de 

ensino proposta por Brousseau referencie um saber nem sempre discutido no 

ambiente escolar, todavia, o professor deve conhecê-lo a ponto de modificá-lo a 

adaptá-lo ao nível de sua clientela. 
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AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) Descreva uma situação de ação, formulação, validação e institucionalização 
para o conceito de função e para o conceito de função injetora. 

2) Descreva uma situação de ação, formulação, validação e institucionalização 
para o conceito de função logaritma  e para o conceito de função exponencial.

3) Analise os momentos de ação, formulação, validação e institucionalização 
discutidos no livro de Didática da Matemática e execute o mesmo 
procedimento com respeito ao conceito de Matrizes e suas propriedades. 

4) Analise os momentos de ação, formulação, validação e institucionalização 
discutidos na apostila de Didática da Matemática e execute o mesmo 
procedimento com respeito ao conceito de Determinantes e suas propriedades. 

5) Analise os momentos de ação, formulação, validação e institucionalização 
discutidos na apostila de Didática da Matemática e execute o mesmo 
procedimento com respeito ao conceito de Números complexos e suas 
propriedades.
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Olá, aluno (a)!

Nesta aula, iremos estudar algumas situações didáticas que estão diretamente 

relacionadas ao ensino da matemática. Você deve refletir sobre elas e quais suas 

implicações dentro do processo de ensino e aprendizagem da matemática.

Objetivo

•	 Conhecer as técnicas, visões e situações didáticas relacionadas ao ensino e 
aprendizagem da matemática

AULA 6 Tipologia das Situações Didáticas 

no ensino de Matemática
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TÓPICO 1 Que metodologia de ensino 
empregar
Objetivo

•	 Descrever perspectivas diferenciadas 

para o ensino de Matemática

Nas aulas anteriores, discutimos as noções mais importantes 

formuladas por Guy Brousseau e as aplicamos a determinados 

conteúdos específicos.  Nesse momento, algumas questões são 

sempre abordadas e relacionadas de modo íntimo a tal discussão. Uma delas nos 

parece recorrente e, geralmente, merece atenção das pessoas,  mesmo aquelas que 

não são especialistas na área de ensino/aprendizagem em Matemática, é a que se 

refere à metodologia do ensino.

Segundo Polya (1973, p. 1), o professor 

deve

Auxiliar o estudante. Essa é uma das maiores tarefas 

do professor. Esta tarefa não é uma das mais fáceis, 

pois demanda tempo, prática, devoção e princípios 

definidos. O estudante deve adquirir experiência e 

trabalho independente tanto quanto possível. Todavia, 

se o mesmo for deixado sozinho com seu problema, 

sem auxílio ou apoio insuficiente, ele poderá não 

manifestar progresso algum. Mas se o professor 

auxiliar demais, nada restará para o estudante.

No caso da Matemática, encontramos com 

facilidade concepções fundamentadas no senso 

comum, dando conta da possibilidade da existência de uma metodologia do ensino 

s a i b a  m a i s !

No campo das matemáticas  - assim entendidos 

os vários saberes que a disciplina engloba -, 

esse trabalho vem avançando e o francês Guy 

Brousseau é um dos responsáveis por isso. Mais 

informações no site

http://educarparacrescer.abril .com.br/

aprendizagem/guy-brousseau-473927.shtml
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que funciona ou é aplicável a todos os conteúdos. Para o professor de Matemática 

em formação, deve ficar claro que: não existe uma proposta metodológica que 

viabilize qualquer conteúdo de Matemática a todos!

Destacamos que a concepção de Brousseau apresenta um avanço sem precedentes, 

uma vez que ela foi gerada a partir da sistematização de atividades em campo. A testagem 

operacional e dos dados obtidos diretamente no ensino do professor francês Brousseau, 

todavia, apresenta a mesma proposta de outros ensinos e se manifesta em um campo de 

aplicação eminentemente que contempla o ensino fundamental. 

Por outro lado,  no que diz respeito à 

desinformação de algumas pessoas quanto a 

possibilidade da existência de uma metodologia 

única para o ensino, isso pode se agravar de 

modo considerável quando compreendemos as 

colocações de Lima (2001, p. 462), esse caracteriza 

o hábito do professor, ao declarar que: 

O livro didático é o instrumento essencial 

utilizado pelo professor para realizar o seu trabalho. 

Dele são tiradas as listas de exercícios, é nele que 

estão as definições, os exemplos, as observações, 

as demonstrações e a linguagem a ser usada na 

comunicação com a classe. 

A referência destacada pelo autor diz respeito à lacuna acadêmica no ambiente de 

formação do futuro professor de Matemática, no que se refere às concepções de ensino de sua 

matéria. Concepções a respeito de um saber que não conseguimos discernir com clareza se 

distanciados da prática e de situações vivenciadas com o outro em torno do saber matemático. 

Retomando as colocações de Lima (2001), extraímos uma preocupante consequência: 

na ocasião em que o futuro professor, egresso em uma IES, não manifeste em sua formação, 

de modo substancial, noções e teorias acerca de ‘propostas metodológicas’ de ensino em 

Matemática, sua principal proposta a ser adotada se constitui a partir do livro didático.

Como consequência disso, concluímos que sua metodologia 

será a do próprio livro didático. Mas essa estratégia metodológica 

envolve vários riscos. A primeira é que, geralmente, o modo de 

apresentação dos livros didáticos gira em torno da seguinte estrutura: 

⇒ ⇒ ⇒ matemática teoremas exercicios de aplicação definição....definição  

A ideia, pelo menos no ambiente acadêmico de formação, é que, uma vez submetido 

g u a r d e  b e m  i s s o !

Não podemos esperar que a mesma estratégia que 

funciona para aprendizagem da multiplicação 

sirva de modo perfeito para a aprendizagem em 

Geometria Analítica, ou a mesma estratégia de 

ensino para frações seja perfeita para o ensino de 

funções logarítmicas.
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a este tratamento, o aluno sem dúvida aprenderá o conteúdo. 

Mas antes de discutirmos de modo pormenorizado as limitações desse modo 

‘linear de aprendizagem’, salientamos outro entrave, observado ainda no âmbito 

da formação de professores. Para exemplificar, sugerimos retomar a figura insigne 

de nosso jovem professor fictício que nominamos de Pierre Laurisse. No decorrer 

de sua formação, o mesmo aprendeu tudo sobre trigonometria, entretanto, sua 

aprendizagem se restringiu ao aspecto lógico-formal da teoria. Entretanto, numa 

ocasião qualquer, Pierre Laurisse recebeu uma oferta irrecusável de lecionar em uma 

enorme escola e que, pelos comentários, remunerava muito bem os profissionais. 

Mas o coordenador de área, responsável pela sua inserção em sala de aula, destacou 

que Pierre contava apenas com uma semana até o início de suas aulas. Para o 

professor, aquela notícia foi um verdadeiro choque, além de não dispor de muito 

tempo para preparar suas aulas de trigonometria, sentiu pela primeira vez a pressão 

de desenvolver uma argumentação que possibilitasse a compreensão do outro, do 

estudante. Sem mencionar que, em determinadas ocasiões, no âmbito psicológico 

pessoal, ele próprio ainda não se via como professor, e sim como um aluno. Na 

fase final do episódio delicado vivenciado de modo fictício também por nosso 

personagem, ele se depara com outro problema. 

De fato, Pierre sente que domina todo aquele conteúdo, entretanto, como 

mediar o saber relativo em sala de aula? Como adotar um tempo didático que 

proporcione o tempo de aprendizagem para todos? Como desenvolver mecanismos 

que despertem o interesse e atenção constante dos seus futuros alunos? Adotar  para 

cada turma uma metodologia diferente ou repetir a mesma coisa em todas as turmas?

Reconhecidamente, esses últimos questionamentos podem ser respondidos 

de modo simplista apenas na opinião de quem carrega consigo uma bagagem muito 

limitada de Matemática ou para aqueles que nunca vivenciaram uma situação como 

esta corriqueira para o professor em formação. De modo sistemático, apresentamos uma 

figura abaixo que delineia bem os momentos e fases enfrentadas por Pierre Laurisse.

Figura 1: Fases da evolução de um domínio de conteúdo
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Note que destacamos uma interrogação no estágio final do processo. Ademais, 

tais fases não se sucedem de modo suficientemente próximos no ambiente de formação. 

Nesse sentido, encontramos cursos de formação  em que o aluno estuda um conteúdo 

de Matemática do ensino escolar, depois de vários semestres, discute algo relacionado 

a uma metodologia, de modo geral, não particular e que considere a especificidade de 

cada conteúdo escolar e, quase no final do curso, se familiariza com a realidade escolar, 

mas desconsiderando as influências da aprendizagem daquele mesmo conteúdo.

Nesse momento, gostaríamos de destacar o nosso desconhecimento relativo ao 

qual pessoas acreditam que alunos em formação conseguem se apropriar de teorias 

generalistas que envolvem ideias distanciadas da realidade, relacionadas à Ciência, 

e que estes mesmos estudantes, algum dia, efetivarão a operacionalização, ao longo 

de sua evolução profissional, destas ideias e teorias em sala de aula. Na Figura 1, 

já se pode prever algumas dificuldades na efetivação de uma teoria metodológica 

cunhada especificamente para o ensino de Matemática, o que dizer sobre ‘teorias 

metodológicas generalistas’ concebidas em outras áreas do conhecimento. Nesse 

sentido, os autores Furkotter & Morelatti (2007 p. 230) salientam sua importância 

quando se reportam ao período do estágio supervisionado e sublinham:

Dessa forma, está vinculado a um projeto, avaliado conjuntamente pela escola de 

formação inicial e as escolas campo de estágio, com objetivos e tarefas claras e com 

as duas instituições assumindo responsabilidades e se auxiliando mutuamente. 

As atividades envolvem construção de proposta metodológica para conteúdos 

temáticos escolhidos pelos licenciandos, aplicação, avaliação e retomada dos 

mesmos, levando em conta as características dos alunos do ensino fundamental 

e médio, as necessidades da sociedade atual e os princípios e objetivos do projeto 

político pedagógico da escola.

A discussão que trazemos nesta aula é antiga, entretanto, nos dias atuais, 

ainda nos deparamos com problemas que se inserem justamente  no mesmo 

assunto. Para tanto, na Figura 2, trazemos uma questão exigida no ENADE/2008. 

Seu conteúdo explora um objeto matemático que vai se tornando, ou pelo menos 

deveria se tornar, familiar ao professor de Matemática, a partir de inúmeros pontos 

de vista.
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Figura 2: Questão proposta pelo ENADE/2008. 

Desde que o foco principal é a Geometria Plana, questionamos se, no 

decorrer do período de formação, o licenciando adquire conhecimento, em uma 

única disciplina, para formular estratégias de solução para o problema proposto? 

Nossa posição é de total descrédito, ou seja, dificilmente um licenciando adquire 

perspectivas diferenciadas em relação ao mesmo conteúdo no sentido de lhe 

fornecer subsídios para lidar com situações concretas em sala de aula.

Nosso ponto de vista, inicialmente, observa que o professor estuda Geometria 

Plana e, numa parte do estudo, familiariza-se com ‘construções geométricas’. Já 

vimos que, no momento inicial, sua preocupação é o ‘saber para si’. Num segundo 

momento, após um período de amadurecimento daquele conteúdo, ao longo da 

formação acadêmica, podemos ‘prevê uma preparação que deverá instigar neste 

sujeito o ‘saber para explicar/convencer’. 
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Infelizmente, a história não termina nesta fase, visto que, numa determinada 

altura de desenvolvimento do curso, o acadêmico deve ter contato com algum 

software matemático, afinal falamos de um ensino de Matemática que tenha de 

fato ultrapassado a fase do Paleolítico. E existem vários softwares que possibilitam 

a exploração de ‘construções geométricas’. Assim, num terceiro momento, o 

estudante deverá familiarizar-se com a sintaxe do software, suas potencialidades 

e aplicações, só então é que se pode falar na compreensão e limitação deste 

próprio software como instrumento tecnológico, para a explicação de uma teoria 

dentro da Geometria Plana. Na última fase é que o professor terá condições de 

explorar, de modo concomitante em sua aula, o aparato axiomático formal das 

construções geométricas com o recurso tecnológico, comparando-os e identificando 

possibilidades e limitações.

De modo resumido, apresentamos as fases simplificadas na sequência 

que caracterizam, no decorrer do período de formação, as mudanças sofridas na 

perspectiva de um professor, com respeito ao mesmo conteúdo matemático, até a 

etapa final que se consubstancia de fato com o ensino. 

Figura 3: Fases e mudanças que ocorrem durante a formação do professor. 

Conforme já anteriormente citado, a transição individual que deve 

sofrer o futuro professor de Matemática, no que diz respeito ao domínio de um 

‘conhecimento para si’,  seguindo na direção de um ‘conhecimento para explicar/

convencer’, o aprendiz  pode exigir um longo período de tempo. Aos olhos de um 

leigo, que nunca necessitou aprender um conteúdo como Números Complexos ou 

Geometria Espacial com vistas ao ensino, tudo pode parecer fácil e rapidamente 

operacionalizado num único momento, ou melhor, dizendo, numa única disciplina. 
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O tipo acima de questão presente no ENADE/2008 não é único. Neste exame e 

em outros (ENADE/2005), identificamos outras situações-problema, contextualizadas 

e que exigem um conhecimento situacional, tácito do professor, relacionado ao saber 

mobilizado pelo trinômio − − aluno saber matemático professor . O que se constata, 

na maioria dos casos relativos aos quadros de formação de professores, é a preparação 

propedêutica e generalista relativa a conteúdos que envolvem teorias gerais e que no 

final das contas, tudo ficará a cargo do futuro professor, equacionar, relacionar, interligar 

e  sistematizar aquelas ideias que poderiam lhe auxiliar em sala de aula.

Nesse sentido, são ilustrativas as colocações de Blanco (2003, p. 66) quando alerta que:

Da mesma forma, o fato de conceituar o conhecimento do professor de 

Matemática como situado leva-nos a considerar o conhecimento que existe 

na mente dos professores e as situações nas quais ele é adquirido e usado, 

assumindo, assim, que o conhecimento é inseparável dos contextos e das 

atividades nos quais se desenvolve. Isso nos permite afirmar que o contexto 

em que uma atividade realiza-se é uma parte integral da atividade e esta é, 

também, parte integral da aprendizagem que acontece no contexto. A ideia que 

consideramos chave e que pode ser deduzida de tudo o que foi dito acima é que 

o conhecimento deveria ser aprendido em contextos que sejam significativos.

No excerto acima, a professora da Universidade de Sevililha, Maria Mercedes 

Garcia Blanco, destaca com veemência o caráter ‘situacional do conhecimento do 

professor de Matemática’. Esse conhecimento possibilitará a efetivação de uma ação 

didático-metodológica mais ou menos eficiente em sala de aula. 

Aqui fazemos questão de destacar com ênfase ‘a sala de aula’, pois será nesse 

contexto  que o futuro professor necessitará mobilizar seus conhecimentos, sejam 

eles pedagógicos, sejam os conhecimentos específicos. É relevante pontuar, ainda, que 

é nesse ambiente  que presenciaremos a testagem de sua metodologia e que não 

pode ser única e ditada pelos livros didáticos. 
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TÓPICO 2 As incongruências na área 
do ensino de Matemática

Objetivo

•	 Evidenciar aspectos limitados e 

contraditórios em determinadas visões de 

ensino de Matemática

Neste tópico, continuaremos a discutir algumas questões relacionadas 

ao ensino de Matemática. Mas antes de apresentarmos de fato 

nossa argumentação com a intenção precípua de evidenciar 

aspectos limitados e contraditórios em determinadas visões de ensino de Matemática, 

acreditamos na conveniência de abordar algumas ideias comungadas por Machado 

(2002, p. 33). Esse autor, no início do seu livro,   chama a atenção com relação ao fato 

de que o tratamento matemático de um tema não se limita apenas à reapresentação 

do mesmo em linguagem matemática, nem transforma automaticamente este tema em 

Matemática.

Em seguida, com a intenção de ilustrar esse ponto de vista, o professor da 

Universidade de São Paulo, Nilson José Machado, discute a Teoria Axiomática 

dos Fantasmas. Ele recorda que, originalmente, a mencionada teoria é discutida 

pelo filósofo argentino Mário Bunge. De qualquer forma, para iniciar de modo 

sistemático a nossa teoria, vamos admitir como usualmente o fazemos em Geometria 

Plana, por exemplo, a adoção de algumas noções primeiras ou noções primitivas. 

Assim, consideramos: 

U conjunto: {=  de fantasmas}; E energia: {=  fantasmal ou fantasmag rica}
=: {  ectoplasmática}d densidade ; t idade: {=  do fantasma}; 

=: {  número de perversidades realizadas pelo fantasma até o tempo t}N O .
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Conforme acima, quando escrevemos a simbologia =: , significa que estamos 

definindo algo no sentido matemático. Agora, após definirmos formalmente tais 

noções primitivas, enunciaremos alguns axiomas ou postulados. Seguem que:

Note que já estamos admitindo que o ‘fantasma’ já possui uma densidade ecto-

plasmática  inicial 0d , relativo ao número de perversidades, com =2k cte . 

Na sequência, Machado (2002, p. 35) extrai os seguintes teoremas, fazendo 

algumas modificações. 

Demonstração: A partir dos axiomas 1Axioma  e 2Axioma , escrevemos: 

E k
d
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k N d
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Portanto, temos que E k k k k
d

tfantasma = ⋅ ⋅ + ⋅1 2 3 1
0

. 

Demonstração:  Dado um fantasma x UÎ ,  pelo teorema anterior, 

sua energia fantasmal é descrita por E k k k k
d

tfantasma = ⋅ ⋅ + ⋅1 2 3 1
0 ,  mas 

1 :Axioma  Para todo fantasma ∈x U , a energia deste fantasma x  

é diretamente proporcional à densidade do ectoplasma de ∈x U  e 

inversamente proporcional à sua idade. 

Simbolicamente, temos: = ⋅1fantasma

d
E k

t
, onde > =1( 0 e k )t cte . 

3 :Axioma  Para todo fantasma ∈x U , o número médio de 

perversidades realizadas até o tempo ‘t’ é constante. Simbolicamente 

escrevemos = 3MédioN k , onde =3k cte . Assim, para um tempo 

qualquer, o número de perversidades realizadas dependerá de 

=3k cte , escrevemos = ⋅3N k t . 

2 :Axioma  Para todo fantasma ∈x U , a energia deste fantasma x , a 

densidade do ectoplasma de x é uma função polinomial do 1º grau do 

número de perversidades que o fantasma já realizou. Simbolicamente, 

escrevemos: = ⋅ +2 0densidade perversidadesd k N d . 
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se tencionarmos saber como será sua existência num tempo bem 

mais no futuro, fazemos como no Cálculo t→+∞ ,  assim temos 

lim ( ( )) lim [ ]t fantasma tE t k k k k
d

t
k k k→+∞ →+∞= ⋅ ⋅ + ⋅ = ⋅ ⋅ + =1 2 3 1

0
1 2 3 0 kk k k cte1 2 3⋅ ⋅ =

Assim, o fantasma sempre permanecerá nas sombras, aprontando suas perversidades 

até o dia do julgamento final. Observe que , nesse caso, desconsideramos o “Gasparzi-

nho”, personagem de desenhos animados que é um fantasma camarada e por isso não faz 

perversidades N := 0 . Na sequência, Machado (2002, p. 35) questiona o leitor:

A partir de uma teoria assim apresentada, rapidamente muitos proble-
mas podem ser formulados, ora sendo dados os valores de t, d e N e pe-
dido o valor de N. Pode-se pedir, ainda, a partir de condições iniciais 
bem definidas, o valor da energia fantasmal do infinito, bem como o 
gráfico de E em função do tempo t, e outras tecnicidades mais. 

As considerações de Machado (2002) servem de argumentação que contraria aque-

le professor que tem profunda certeza de que, lendo todos aqueles teoremas, ocorrerá 

aprendizagem, ou conhecendo bem todo o formalismo, a compreensão estará garanti-

da. Como já mencionamos nas aulas passadas, os fenômenos relacionados à aprendiza-

gem pertencem a um universo bem mais amplo do que o da própria Matemática.

Entretanto, Machado provoca reflexões interessantes, no que concerne à preocupa-

ção didático-metodológica do professor. Interpretamos sua contribuição essencial no 

sentido de se compreender algumas incongruências no ensino de Matemática. Uma de-

las diz respeito à crença que atribuímos ao modelo matemático formal. 

De acordo com o já citado antes, um modelo matemático formal, por si só, não 

consegue produzir uma aprendizagem. O progresso do conhecimento do aprendiz 

ocorrerá na medida em que o professor opte por uma metodologia adequada. E para 

piorar a situação de modo considerável, recordamos que não existe uma única me-

todologia para o ensino de Matemática, pois, cada conteúdo matemático determina 

uma especificidade e, assim, nem sempre podemos empregar o mesmo princípio me-

todológico para todos os tópicos. Mas vejamos alguns exemplos:

Pr :oblema1  Vamos supor que

4 5 6 7 8 1281x = = = = =  5  ; 6  ; 7  ; .... ; 127x x x x2 3 2 124; . Quanto vale 

x x x x x1 2 3 123 124⋅ ⋅ ⋅ ⋅ =...... ?

Pr :oblema2  Um círculo de centro ( , )0 k , com k> 0 , é tangente às retas y x=  

e y x=−  e y = 6 . Encontrar o raio do círculo.

Pr :oblema3 O que é descrito no plano pela seguinte equação ( )x y x y+ = +2 2 2 ?

Pr :oblema4 A função polinomial f x x ax bx cx d( )= + + + +4 3 2 , com co-

eficientes reais a b c d, , , Î , tais que f i( )2 0=  e f(2+i)=0 . Estimar o valor de 

a b c d+ + + = ?
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Solução: ( Pr :oblema1 ) Temos por hipótese que 

4 5 6 7 8 1281x = = = = =  5  ; 6  ; 7  ; .... ; 127x x x x2 3 2 124; . Mas observamos 

que podemos decompor 128 2 4 47 7 7
2= = =( ) , como uma simples 

propriedade com potências racionais. Por outro lado, observamos que 

128 127 126 126123= =( ) =( ) = ⋅127x x x x x124 124 124
123 124x . De modo semelhante, obtemos: 

128 126 125 125122 122=( ) =( ) =( )⋅ ⋅ ⋅ ⋅x x x x x x123 124 123 124 123 124x x . Sucessivamente, concluímos: 

4 128 126 4
7

2 1 2 3 123 12= = = = =⋅ ⋅ ⋅ ⋅ ⋅127x x x124 123 124 .... ......x x x x x 44 . Assim, temos o 

seguinte valor x x x x x1 2 3 123 124

7
2

⋅ ⋅ ⋅ ⋅ =...... . 

Notamos que podemos identificar outro padrão algébrico no 

Problema1 , basta notar que a partir da expressão desejada, temos: 

x x x x x1 2 3 123 124 4 5 6 125 6 7⋅ ⋅ ⋅ ⋅ =( )⋅( )⋅( )⋅⋅⋅⋅⋅...... log log log log 66 127127 128( )⋅( )log . E 

usando outras propriedades da função logarítmica, inferimos: 

log log log log log

log

l

4 5 6 126 1275 6 7 127 128

5

( )⋅( )⋅( )⋅⋅⋅⋅⋅( )⋅( )=

=
oog

log

log

log

log
....

log

log

log

log

log

4

6

5

7

6

127

126

128

127
1⋅ ⋅ ⋅ ⋅ ⋅ = 00

10

7

2

128

4

2

2

7 2

2 2
7
2log

log

log

log

log
= =

⋅
⋅

=

Solução: ( Pr :oblema2 ) Nesse problema, o desenho ou figura, elaborado 

pelo estudante com o auxílio comedido do professor, é essencial como guia para o 

raciocínio. Nesse caso, denotamos por ‘O’ o centro do plano cartesiano e designamos 

por P o centro da circunferência investigada. O raio do centro a um ponto qualquer 

de tangência com a reta y x=  forma um triângulo retângulo de hipotenusa OP . 

Esse triângulo, entretanto, após instigar alguma conjetura  nos alunos, o professor 

deverá conduzir seus estudantes a perceberem que o referido triângulo será 

isósceles, e assim possui um ângulo de 45º  graus com o eixo Oy. Assim, escrevemos: 

sen
cateto oposto r

r
r r( ”)45

6
2

2
1

2
2 6= =

+
= = ↔ = +

 

hipotenusa
. Portanto, teremos 

que r r r2 6
6

2 1
6 2 6− = ↔ =

−
= + . 

Por outro lado, ao observar a interpretação do problema segundo a Figura 

4-II, notamos que a reta y x=−  intersecta o círculo na reta y = 6 , nos pontos M e 

K, respectivamente a reta y x=  intersecta o círculo e a reta y = 6  nos pontos N e 

L. Assim, segundo observamos na figura , consideramos que o quadrilátero PMON 

possui quatro ângulos retos e que MP PN= , portanto, PMON é um quadrado. 

Além disso, concluímos que MK KJ= = 6  e, assim, temos KO = 6 2 . Segue que 
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r MO MK KO= = + = +6 6 2 . 	

Figura 4: Possíveis formas de interpretar o problema.

No que diz respeito ao 3Pr oblema , notamos que dispomos da 

seguinte identidade ( )x y x y+ = +2 2 2 . O aluno, ao comparar a mesma com a 

identidade, ( )x y x xy y+ = + +2 2 22  poderá conjecturar que não pode existir 

resposta alguma, devido a uma flagrante contradição para a formulação do 

desenvolvimento do termo ( )x y+ 2 . Entretanto, podemos observar que 

( )x y x y x xy y x y xy x y+ = + ↔ + + = + ↔ = ↔ ⋅ =2 2 2 2 2 2 22 2 0 0 . Para 

divisar o comportamento desta relação, notamos que para x= ∈0 e y   temos o 

eixo das ordenadas, e para y= ∈0 e x   temos o eixo das abcissas. 

Figura 5: Lugar geométrico de x.y

Por fim, no Problema4 , a estratégia a ser empregada necessita do 

conhecimento de algum teorema sobre funções polinomiais. Nesse caso, 

como sabemos que f i( )2 0=  e f(2+i)=0 , por teorema, seus conjugados 
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f i( )− = −2 0 e f(2 i)=0  possuem a mesma propriedade. Assim, escrevemos 

f x x i x i x i x i x x x( ) ( )( )( ( ))( (( )) ( )( )= − + − + − = + − + =2 2 2 2 4 4 52 2

= − + − + = + + + +x x x x x ax bx cx d4 3 2 4 3 24 9 16 20 . A partir 

de uma propriedade das funções polinomiais, por consequência: 

a b c d+ + + =− + − + =4 9 16 20 9 .

Por outro lado, podemos escrever f x x i x i x i x i( ) ( )( )( ( ))( (( ))= − + − + −2 2 2 2  

em virtude de um teorema, para ∀ ∈x  . Notamos agora que, em particular, 

para x f a b c d f a b c d= → = + + + + ↔ − = + + +1 1 1 1 1 1 1 14 3 2( ) ( ) ( ) ( ) ( )

. De outra forma, obtemos então que: 

a b c d f i i i i+ + + = − = − + − + − − =( ) ( )( )( ( ))( (( ))1 1 1 2 1 2 1 2 1 2 1 9

Para concluir este tópico, vamos fazer alguns comentários de ordem metodológica. 

Notamos que o problema 1 se apresenta num quadro eminentemente aritmético-

algébrico. Em geral, os alunos preferem esse tipo de representação e manifestam 

maior insegurança em situações-problema que exigem que o estudante construa o 

desenho explicativo da situação. Desse modo, bem como discutimos no problema 2, é 

aconselhável que o professor deixe a cargo inicial a construção de figuras e desenhos 

que poderão auxiliar no futuro raciocínio e resolução efetiva das questões. 

Figura 6: Quadros de mudança e representação de um conceito matemático. 

Outra característica importante que sintetizamos no quadro acima (Figura 6), 

refere-se à mudança e exploração de várias representações para o mesmo conceito 

matemático. Assim, o professor deve empregar as representações algébricas, faz 

algumas contas na aritmética e pode utilizar também a Geometria. 

Outro fator que merece nossa atenção é que, em geral, os alunos produzem 

inferências e desenvolvem suas conclusões sem recordar de modo preciso de 

definições formais e teoremas, muito menos de sua demonstração. Isso pode ter 

como consequência que, em certas ocasiões, os alunos simplesmente repetem o que 
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lhes foi dito algum tempo antes da avaliação. 
Em outras situações, na ocasião em que o pro-

fessor vai elaborar listas de exercícios, de prin-
cípio, ‘exercícios’ devem ser explorados, toda-
via, em relação às questões mais avançadas, 
prefira ‘problemas’. Em outra disciplina, envol-
vendo os aspectos psicológicos da resolução de 
problemas, retomaremos esta diferença entre 

≠exercício problema , mas de modo simplório, o 
exercício é identificado na medida em que o aluno 
não gasta muito tempo até encontrar o instrumen-
to principal que resolve a situação. Vejamos dois 
exemplos.

Pr :oblema5 Numa progressão aritmética de razão 
r = 3  e a1 2= , calcular o termo de ordem a2010 = ? . 

Solução: a2010 2 3 2010 1 2 3 2009 6020= + − = + ⋅ =( ) .

No problema acima, basta o aluno recordar o termo geral da P. A. a a n rn = + −1 1( ) . 

O aluno pode resolver 40 questões desse tipo e, semelhante ao que discutimos acima, com 

a teoria axiomática dos fantasmas, o seu conhecimento sobre progressões não avança em 

nada. O conhecimento aqui é algorítmico, operacional e não conceitual. Uma vez dispon-

do de todos os dados, simplesmente o aluno obterá uma resposta, sem uma reflexão maior, 

visto que a fórmula a a n rn = + −1 1( )  sempre funcionará. Temos aqui um exemplo de 

‘exercício de Matemática’. 

Na Figura 7, trazemos alguns elementos que devem ser observados no momento 

da elaboração de atividades para os estudantes. Certamente que elas não contem-

plam todos os elementos, todavia, acreditamos que são as principais, a partir de um 

ponto de vista didático-metodológico apenas. 

Figura 7: Dessemelhanças entre exercícios e problemas. 

at e n ç ã o !

Sublinhamos que a maioria dos problemas 

apresentados admite mais de uma solução. Pode 

ser fortuito, também, apresentar situações-

problema que não admitem soluções,  o professor 

mesmo pode apresentar uma estratégia errada, 

de modo proposital, para testar o nível crítico e a 

autonomia de raciocínio dos escolares.
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Em alguns problemas, o professor pode estimular um “pontapé” inicial no 

estudante ao fornecer algumas ‘sugestões’. Observemos os próximos problemas.

Pr :oblema6 Dada uma função f com as seguintes propriedades

(i) f ( )1 1=

(ii) f n n f n( ) ( )2⋅ = ⋅  para nÎ . Encontrar o valor de f ( ) ?2100 =

Sugestão: Recursivamente e indutivamente, avaliar 

f f f f f n( ) ( ) ( ) ( ) ( )2 2 2 2 21 2 3 4 ;  ;  ;  ; ...... .

Pr :oblema7 Analisando o gráfico, responda:

(i) Quantas soluções teremos para f f x( ( ))= 6 ?

(ii) Em que trechos o gráfico é crescente?

(iii) Em que trechos o gráfico é decrescente?

(iv) Em que trechos o gráfico não é decrescente e nem decrescente? 

Figura 8: Interpretação geométrica do problema

Notamos que f f x f f( ( )) ( ) ( )= ↔ − = =6 2 6 1 6 e . Mas, nesses dois casos, 

contamos com outra condição f x f x( ) ( )=− =2 1 e . Mas o aluno poderia apenas 

marcar no gráfico, com recurso de uma reta horizontal para y=−2 e y=1 e 

verificar que, na primeira, ocorrem duas interseções, enquanto que na segunda, 

divisamos quatro intersecções, num total de 6 soluções. 

Destacamos que esta questão não requer o conhecimento de nenhuma fórmula. 

Exige apenas o conhecimento conceitual da noção de função. É frequente o aluno 

conhecer que, se x x f x f x1 2 1 2< → <( ) ( )  caracteriza uma função crescente e, se 

x x f x f x1 2 1 2< → >( ) ( )  uma função decrescente, todavia, dificilmente ele saberá 

formular a definição de uma função que não seja nem crescente e nem decrescente, 

como a questão demanda. 
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Por fim, depois de toda esta discussão, evidenciamos outra incongruência no 

ensino de Matemática, que diz respeito ao sentimento que os alunos constroem ao 

pensarem que a Matemática se resume em fazer contas. Tal visão estreita deste saber é 

consequência de um ensino que se detém na exploração de exercícios e não na exploração 

de ‘problemas’, consequentemente de ideias e raciocínios mais aprofundados.

Desse modo, ao efetivar seu ensino, evite transformar sua aula numa sequência 

de rotinas repetitivas e enfadonhas. Nessas rotinas, os alunos simplesmente repetem 

e reproduzem um raciocínio que não lhes pertence de fato. Eles reproduzem nas 

avaliações as mesmas orientações do professor e, no final, após aquela avaliação 

quantitativa, tudo dará certo ao observamos que alunos obtêm nota máxima, sem 

que, no entanto, manifestem uma mínima compreensão conceitual mais elaborada. 
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TÓPICO 3 Outras técnicas metodológicas 
para o ensino de Matemática
Objetivo

•	 Apresentar outras perspectivas relacio-

nadas ao ensino

Alguns autores chamam a atenção para certos detalhes específicos 

que poderiam passar despercebidos aos olhos de uma pessoa 

desatenta. O primeiro diz respeito ao emprego de símbolos 

específicos na Matemática e suas consequências à aprendizagem. O emprego de um 

sistema particular de simbologia é cada vez mais incessante em Matemática. 

De fato, desde os primeiros anos de escolaridade, nos deparamos com coisas 

do tipo: 1
4

 ; 1:4 ; 0,25 ; 1
4

. Apesar de simplória, nela observamos o mesmo 

processo matemático (divisão) simbolizado em inúmeras formas diferentes. Note 

que, ao longo do processo de familiarização com tais simbologias, o aluno deverá 

paulatinamente perceber que se trata da mesma operação, e isto nem sempre ocorre 

de imediato.

Na tabela abaixo, trazemos alguns símbolos básicos que denotam um conceito 

matemático que se relaciona com um processo matemático. Destacamos a diferença 

entre ≠ matemático processo matemáticoconceito . Qualquer metodologia que vise 

de fato uma aprendizagem significativa, se não diferenciar estes dois termos, possui 

sérias chances à obtenção de um insucesso. 
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SIMBOLOGIA CONCEITO MATEMÁTICO PROCESSO MATEMÁTICO

2 3+   Adição de números naturais
Adicionar, juntar, unir, agrupar, 

etc. 

1
2

1
3

+ Adição de números racionais Adicionar/dividir, separar, etc. 

23 Potenciação de números naturais
Multiplicar repetidas vezes a 

mesma parcela. 

3 2-
Subtração de números naturais 

em 
Subtrair, retirar, repartir, etc. 

2 3-
Subtração de números naturais 

em 
Subtrair, retirar. 

Quadro 1: Relação simbologia, conceito e processo matemático

Destacamos, neste primeiro momento, uma simbologia relacionada às séries 

iniciais. Na coluna do meio, descrevemos o conceito matemático, isto é, o que a 

simbologia designa em Matemática. Entretanto, na última coluna, descrevemos 

a ação que precisamos executar para efetivar/realizar o processo matemático 

designado pela simbologia. Observamos que a simbologia determina quase tudo, 

ou seja, a simbologia determina o tipo de procedimento que devemos desenvolver 

e o modo de compreender/interpretar o conceito.

Por exemplo, na simbologia 2 3+  e 
1
2

1
3

+ , encontramos o mesmo símbolo 

da adição, todavia, a adição no conjunto dos naturais é completamente diferente da 

adição no campo dos números racionais, basta observar que 
1
2

1
3

1 3 1 2
2 3

5
6

+ =
⋅ + ⋅
⋅

= . 

Isso pode proporcionar muitas dificuldades para quem está aprendendo, uma vez que 

temos o mesmo símbolo que designa operações matemáticas completamente distintas. 

Tall et all (2001) diferencia os símbolos com os quais fazemos Matemática e 

os símbolos com os quais ‘refletimos sobre’. Ele observa que determinadas ações do 

indivíduo dependem claramente a partir do que é percebido pelo mesmo. A partir 

desta percepção, suas estratégias podem ser elaboradas na dependência das teorias 

que o sujeito conhece.

Tall et all (2001) analisa o aspecto dual da simbologia em Matemática, que 

tanto se relaciona ao conceito matemático, como também se relaciona ao processo 

matemático. Assim, qualquer metodologia que desconsidere tal dimensão dual 

pode permanecer seriamente comprometida. 
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Figura 9: Caráter dual dos símbolos matemáticos descrito por Tall et all. 

Na Figura 9, do lado direito, Tall fornece um exemplo que ocorre de modo 

frequente com as crianças ao longo da aprendizagem do ‘processo de adição’. Em 

geral, o professor proporciona ou apresenta uma série de situações relacionadas 

ao mesmo ‘processo matemático’. Paulatinamente, na medida em que as crianças 

executam operações materiais com as bolinhas indicadas acima, compreendem e 

internalizam outras propriedades. 

Assim, o significado do ‘conceito de 

adição’ vai sendo paulatinamente construído 

na medida em que o sujeito age e interage 

em situações específicas relacionadas aquele 

‘conceito matemático’. As ações efetuadas pela 

criança são condicionadas pelas características 

intrínsecas do ‘processo de adição’. Ao longo 

da aprendizagem, a criança deverá adquirir uma 

familiaridade suficiente ao ponto de substituir 

todos aqueles objetos pela compacta simbologia 

2 3 5+ = .

Vale notar que este processo de aquisição de estruturas cognitivas, a partir da in-

teração e ação executada sobre os objetos, é condição de aprendizagem em qualquer 

nível de ensino. De fato, quando o aluno do locus acadêmico se depara com a simbo-

logia limx

x

x→

−
−
=1 2

1
1

1
2

, um sentimento de estranheza e incompreensão se apodera 

do mesmo.

s a i b a  m a i s !

Obtenha mais informações sobre o que  

são obstáculos epistemológicos e seu 

principal pesquisador no site http://www.

nucleosephora.com/impressao/pdf/disc21_

obstaculoepstemolo.pdf
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Parte desta incompreensão inicial é devida às características intrínsecas 

ao próprio conceito, é o que chamamos nas aulas passadas de obstáculos 

epistemológicos. Mas quando comparamos a aprendizagem da noção de limite, 

identificamos alguns traços comuns relativos ao entendimento da operação 

2 3 5+ = .

Inicialmente, ambos os símbolos apresentam uma estrutura dual, que tanto se 

referem ao ‘conceito matemático’, como se relacionam a um ‘processo matemático’. 

Alguém poderia afirmar, por exemplo, que o símbolo limx

x

x→

−
−
=1 2

1
1

1
2

 é mais 

abstrato do que 2 3 5+ = , todavia, ambas as simbologias encerram um determinado 

grau de abstração.

De fato, 2 3 5+ =  se relacionava a uma tarefa concreta proposta pelo professor 

para as crianças que podiam manipular e ver os objetos materiais relacionados a tarefa, 

entretanto, no decorrer do ciclo de aprendizagem, as crianças começam a substituir as 

bolinhas por símbolos matemáticos que se relacionam de algum modo com a mesma 

tarefa. 

Assim, temos aqui um processo progressivo de abstração e generalização 

do pensamento. De fato, os símbolos 2 3 5+ =  podem se relacionar e explicar 

completamente a tarefa (Figura 9), mas podem também fornecer conclusões para 

outras situações. Por outro lado, o símbolo limx

x

x→

−
−
=1 2

1
1

1
2

, também se relaciona 

a um processo matemático. Do mesmo modo que não encontramos no corredor da 

escola um número ‘cinco’, também não encontramos o valor 
1
2

. 

Todavia, ao passo que o processo matemático proporcionado pela simbologia 

2 3 5+ =  descreve um modelo finito, no caso de limx

x

x→

−
−
=1 2

1
1

1
2

, estamos lidando 

com um processo infinito de aproximação. Vale destacar que o processo matemático 

de limite foi extraído e formulado no pensamento grego por meio de observações 

do mundo que o cercava. As ideias originais estavam colocadas no mundo material, 

e a capacidade humana de abstração proporcionou sua evolução e apresentação até 

nossos dias em que, frequentemente, deparamos com alunos reclamando da noção 

de limite.

Para finalizar este tópico, lembramos que qualquer abordagem metodológica 

necessita levar em consideração as especificidades das representações e simbologias 

utilizadas em Matemática. A natureza destas representações pode dificultar, pode 

condicionar e até mesmo impedir a evolução de determinadas ideias fundamentais 

relacionadas a um determinado conceito. Em aulas futuras, retomaremos algumas 

destas temáticas aqui discutidas. 
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AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) Indique as incongruências no ensino de Matemática.

2) O que é Metodologia do ensino de Matemática para você?

3) Descreva a metodologia de ensino geralmente explorada no contexto das 
Olimpíadas de Matemática? Indique alguns dos seus pressupostos.

4) Que abordagem metodológica Kline (1971) critica no trecho abaixo? 

Kline (1971, p. 67) critica abordagens de ensino. 

5) Pesquise sobre a proposta metodológica sugerida por George Polya.
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Olá aluno(a),

Nessa aula, iremos dar continuidade aos estudos das situações didáticas desta 

vez abordando as metodologias utilizadas no ensino da Matemática. Refletiremos 

sobre elas e sobre as implicações existentes a partir de situações didáticas dentro 

do processo de ensino e aprendizagem da Matemática.

Objetivo

•	 Conhecer os aspectos teóricos que envolvem os estudos sobre as 
metodologias do ensino da Matemática

AULA 7 Metodologia do Ensino de 
Matemática
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TÓPICO 1 Um ensino de Matemática 
baseado na “crença” ou na 
“certeza”?
Objetivo

•	 Descrever perspectivas diferenciadas 

para o ensino de Matemática

Os aspectos filosóficos do conhecimento matemático devem ser 

explorados na disciplina de Filosofia da Matemática. Para tanto, 

cabem aqui alguns pontos de vista do filósofo da Matemática Paul 

Ernest quando observa que:

A visão absolutista da Matemática consiste em uma base de verdades imutáveis. 

De acordo com esta perspectiva, o conhecimento matemático é constituído a 

partir de verdades absolutas, e isto representa o seu único objetivo, a partir 

de declarações lógicas verdadeiras em virtude do significado dos seus termos. 

[...] O método dedutivo fornece a garantia de certeza das afirmações sobre o 

conhecimento matemático (ERNEST, 1991, p. 8).

A respeito do que afirma Paul Ernest, quando consideramos um contexto 

de ensino/aprendizagem, devemos fazer as seguintes indagações: uma vez 

estabelecidos os resultados pelo professor, podemos de fato acreditar em tudo que 

foi explicado? Todas aquelas formulações constituem uma verdade para os alunos 

e para o professor? 

A realidade de ensino é cruel, uma vez que o professor, em geral, dispõe de 

pouco tempo para lecionar todo o seu conteúdo, assim é bem mais fácil estabelecer 

tudo como verdadeiro, descrever o modo de operar com aqueles conceitos e obter 

respostas das questões. Dessa forma, seu trabalho pode ser simplificado de modo 

mágico.

O título do tópico dessa aula instiga uma discussão acerca da ação do professor. 
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Sua condução mediadora pode ser assentada na crença ou na certeza matemática. 

Tal afirmação merece maiores explicações. De fato, todo o campo de crenças e o 

modo de agir e professar o saber matemático depende, em última instância, da 

visão que o docente possui acerca do saber matemático.

Se o docente possui a convicção a respeito da verdade matemática daquele 

conhecimento, de que não existe contradição no que ele afirmou, automaticamente ele 

deve transmitir esse sentimento ao estudante,  o qual não possui o mesmo amadurecimento 

teórico e, principalmente, o mesmo treinamento que o professor já teve.

Observamos então dois pontos de reflexão para o estudante:
•	 O primeiro diz respeito à ação de aceitar tudo aquilo que é comunicado 

pelo professor , pensando-se na prova final. 
•	 O segundo é observar de modo cauteloso o que está sendo trabalhado em 

sala e não aceitar tudo que é declarado como uma verdade matemática 
inquestionável. 

O segundo ponto de análise é hegemônico em nosso ensino, pois basta 

observar a sua forma de manifestação mais radicalizada no ambiente acadêmico. 

Esta categoria de ensino que caracterizamos como um ensino baseado na certeza 

é, na maioria dos casos, fortalecido por um instrumento imprescindível na 

atividade matemática. Tal instrumento é chamado de ‘prova’ ou ‘demonstração’, 

que já mencionamos nas aulas anteriores. Vamos observar agora a perspectiva de 

outro pesquisador francês. No início do seu artigo, Duval (1991, p.233) realça que: 

As dificuldades apontam que a maior parte dos estudantes experimentam que 

compreender uma demonstração constitui um dos obstáculos mais resistentes 

ao qual se rende o ensino de Matemática. Ou quando observam que a atividade 

demonstrativa nos problemas de Geometria constitui uma tarefa decisiva. 

Neste artigo, Raymond Duval investiga algumas dificuldades na aprendizagem 

da noção de demonstração em Geometria Plana, para crianças em uma faixa etária 

de 13-14 anos, segundo o sistema de ensino francês. Uma questão discutida por 

ele diz respeito às diferenças entre a atividade argumentativa e uma atividade 

demonstrativa. As consequências são imediatas para o professor de Matemática 

que, não diferenciando uma argumentação de uma demonstração, não logrará êxito 

na criação de um terreno fértil para aprendizagens diferenciadas.

Vejamos algumas questões iniciais colocadas pelo didata francês. Logo no 

início, Duval adverte que, no funcionamento do raciocínio, é importante distinguir 

dois tipos de passagem: um corresponde a um passo de raciocínio, e outra consiste na 
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transição de um passo de raciocínio para outro. O 

primeiro tipo constitui uma inferência, o segundo 

um ‘encadeamento’ (1991, p. 235).

O primeiro tipo de passagem ao qual 

Duval faz referência é conhecido como 

‘inferência’. Por exemplo, quando temos 

um triângulo retângulo ABCD , de catetos 

 e AB b AC c= =  e hipotenusa BC c= , então, 

por meio de uma ‘inferência’, concluímos que 
2 2 2c a b= + . De modo semelhante, se sabemos 

que, em um triângulo qualquer ABCD , temos a seguinte relação entre os catetos 

e a hipotenusa, 2 2 2c a b= + , então, necessariamente, o mesmo deve ser retângulo 

com relação a algum dos seus vértices.

Figura 1: Diagrama explicativo proposto por Duval (1991, p. 235).

Note-se que acabamos de descrever o teorema de Pitágoras e sua pouco 

divulgada e/ou conhecida recíproca. Duval explica que este tipo de ‘inferência’ ou 

passagem se faz por meio de uma regra explícita, relevante a uma teoria, assim o 

passo de raciocínio possui uma organização ternária (1991, p. 235). Tal observação 

introduzida por Duval proporciona uma primeira distinção entre o raciocínio 

dedutivo e o raciocínio argumentativo. Além da dependência das representações 

dos interlocutores, é justamente o recurso e emprego de “regras” nem sempre 

explícitas que revelam a própria estrutura da língua, um caráter marcante do 

raciocínio argumentativo.

Por outro lado, notamos que, no caso particular do teorema de Pitágoras, 

apenas o estatuto operatório é levado em consideração, ou seja, a possibilidade 

concreta de verificar a tese, referendando-se nas premissas mencionadas há pouco. 

Em relação a este fato, Duval esclarece:

s a i b a  m a i s !

Saiba mais sobre o trabalho do pesquisador 

francês Raymond Duval acessando o site http://

www.diadematematica.com/Ubiratan_Arrais/

ARTIGO_REGISTROS_DE_REPRESENTACAO_

SEMIOTICA.htm
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Dizendo de outro modo, em um passo de dedução, as proposições não são 

relacionadas em função de suas relações semânticas entre seus conteúdos 

respectivos (oposição, sinonímia, particularização, etc.), mas unicamente em 

virtude de seu estatuto previamente fixado (hipóteses de partida ou conclusões já 

obtidas e regras de inferência) (1991, p. 236, tradução nossa)

As palavras de Raymond Duval são esclarecedoras e nos conduzem a conceber 

a seguinte caracterização: o ensino baseado na certeza se fundamenta no valor lógico das 

proposições e obedece às regras de inferência, independentemente do conteúdo semântico.

Na perspectiva de Duval, encontramos a caracterização do que ele chama de 

“atitudes proposicionais”. Tal noção é caracterizada como as expressões chamadas 

‘atitudes proposicionais’ que podem igualmente preencher um papel: “sabemos que... 

(proposição de entrada), estou certo de que...(conclusão), graças ao teorema...”.

Mais adiante, Duval (1991) acrescenta:

Nos prendemos a uma proposição, em geral, ao seu valor lógico: ela é verdadeira ou 

falsa. Mas independentemente de seu valor, ou em relação a tal, uma proposição 

pode possuir outros valores: ela pode parecer evidente e incontestável, incerta, 

conjeturável, absurda, indecidível, possível, etc. [...] O valor epistêmico é grau 

de certeza ou de convicção atribuída a uma proposição. Toda proposição, assim, 

possui um valor epistêmico pelo simples fato que seu conteúdo é considerado 

como relevante ou de uma opinião, ou de uma crença, de uma suposição, ou de 

uma evidência comum, ou de um fato estabelecido, ou de uma convenção, etc. (p. 

254-255, tradução nossa)

O longo excerto de Duval merece vários comentários e esclarecimentos. 

Salientamos o primeiro aspecto mencionado que se refere ao ‘valor lógico’ de uma 

proposição, transforma-se em uma exigência constante no ensino/aprendizagem de 

Matemática. Tão intensa é tal exigência que, praticamente, todo o ensino gira em torno 

disto.

Vale recordar que, quando um professor contempla e busca verificar 

determinada inferência, ela, para o experiente, já possui um valor lógico 

verdadeiro, uma vez que ele conhece, detém aquele conhecimento que diz respeito 

à determinada propriedade formal enunciada. Porém para o aluno, toda a sua 

idiossincrasia repousa no campo da ‘crença’, na compreensão de um conteúdo; uma 

vez que, na maioria das ocasiões, o aluno não sabe com exatidão aonde o professor 

tenciona chegar. 
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Para exemplificar o que foi dito, vamos observar a questão proposta na prova 

do Enade/2005. O seu enunciado já denuncia a existência apenas de uma proposição 

verdadeira quando destaca ‘assinale a opção correta’ e, consequentemente, todos 

os outros itens devem ser falsos. Aqui, o objetivo é avaliar o valor lógico das 

proposições, com referência ao enunciado. Depreende-se também que o enunciado 

do problema tem solução e é única.

A respeito da força e condicionamento exercido pelo modelo de ‘prova’ em 

Matemática, Brousseau & Gibel (2005) alertam:

Em Matemática, o ensino do raciocínio era usado para conceber um modelo 

de apresentação de provas, o qual deve ser fielmente reproduzido pelo 

estudante. Porém, os professores atualmente, assim como psicologistas, tomam 

o raciocínio como uma atividade mental e não uma simples recitação de uma 

prova memorizada. Desde que é necessária a ideia de confrontar o estudante 

com ‘problemas’, onde seria natural para eles engajá-los num raciocínio. Porém, 

sempre existe o risco de reduzir a solução de problemas a uma aplicação de 

receitas e algoritmos, o que elimina a possibilidade de um raciocínio verdadeiro 

(p. 14, tradução nossa.)

Figura 2: Exemplo de situação-problema no Enade/2005. 
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Observamos que Brousseau & Gibel chamam a atenção para o tipo de ensino 

que privilegia o raciocínio algorítmico. Esta forma de raciocínio, apesar de cômodo 

para o professor, não proporciona a evolução de uma compreensão individual do 

estudante, e sim, como já mencionamos, a simples reprodução dos modelos de 

provas e demonstrações estabelecidos pelo professor, reforçando, assim, um ensino 

baseado na certeza matemática. 

Neste sentido, Brousseau & Gibel mencionam um exemplo relativo ao modelo 

‘Se A... então B’, como no caso do teorema de Talles. Tal teorema é estabelecido e 

escrito no quadro. O professor aceita o raciocínio estabelecido pelo estudante do 

tipo ‘Se A... então B’, sem nenhuma justificativa maior. Por exemplo, estudante 

nenhum desconfia da validade da afirmação 2 2 2( ) 2a b a ab b+ = + + . 

Vejamos alguns problemas a fim de de contextualizar algumas de nossas 

afirmações anteriores.

1Pr :oblema  Consideremos o gráfico abaixo da função polinomial 
3 2( )f x ax bx cx d= + + + . Encontre o valor de ?b =

2Pr :oblema Na figura 3-II abaixo, exibimos o gráfico abaixo da função 

polinomial 3 2( )f x ax bx cx d= + + + . É possível identificar o valor de ?b = . 

3Pr :oblema  Na figura 3-I abaixo, exibimos o gráfico abaixo da função polinomial 
3 2( )f x ax bx cx d= + + + . Identifique o item correto relacionado ao valor de ?b = . 

Figura 3: Situação-problema envolvendo a interpretação geométrica

Nos problemas anteriores, apesar de envolverem o mesmo objetivo, suas 

formas de instigar e conduzir a atividade dos estudantes são distintas. No primeiro 

problema, de antemão, o aluno já sabe que existe uma única resposta, todavia os 

valores devem ser extraídos a partir de uma análise do gráfico. Já no segundo 

problema, não fornecemos a certeza de que é possível encontrar uma resposta. No 
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último caso, já é fornecido os itens e valores possíveis para ?b = . Neste último 

caso, os alunos já possuem os valores iniciais que pode tentar encontrar.

Observamos que o segundo problema é baseado em um ensino que tomo como 

parâmetro a certeza matemática. Ele condiciona a ação do sujeito. Sua influência é 

suavizada, pelo menos em parte, por intermédio do uso do gráfico no plano 2
 , de 

uma função polinomial. Vejamos outros exemplos:

4Pr :oblema Determinar os valores de x e y de modo que as matrizes 
1 2 0 1

 e B  
1 0

A
x y

æ ö æ ö÷ ÷ç ç÷ ÷= =ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 comutem.

5Pr :oblema Existem matrizes que comutam com a matriz 
1 1

3 0
A

æ ö- ÷ç ÷=ç ÷ç ÷çè ø
?

6Pr :oblema Consideremos o seguinte sistema 

2 1

2

3 4

x y z

x y z

x y z

ì + - =ïïïï + + =íïï - + =ïïî

. Analisando a 

posição geométrica dos planos determinados por cada equação, podemos afirmar 

que existe solução para ele? 

Figura 4: Posição geométrica dos planos.

Observamos no problema 4 a imposição de uma condição A B B A× = ×  e a 

antecipação de que existem soluções para o problema. Já no problema 5, apesar 

de existirem várias soluções, não se afirma de modo contundente a condição de 

que existe de fato alguma solução. Já no último problema, proporcionamos, antes 

de qualquer atividade ou emprego de fórmulas, a inspeção da figura. Por fim, 

apresentamos mais um problema. 

7Pr :oblema Sejam 1a b³ > , identificar o maior valor assumido por 

log log ?a b

a b
b a

æ ö æ ö÷ ÷ç ç+ =÷ ÷ç ç÷ ÷ç çè ø è ø
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Solução: Seja log 0ac b= > , desde que temos a condição inicial 1a b³ >

, teremos então que 
( ) ( ) ( ) ( )

( ) ( )

log log log log log log

1
1 log 1 log 2

a b a a b b

a b

a b
a b b a

b a

b a c
c

æ ö æ ö÷ ÷ç ç+ = - + - =÷ ÷ç ç÷ ÷ç çè ø è ø

= - + - = - -

Segue que 
22 ( 1)2 1

log log 0a b

ca b c c
b a c c

-æ ö æ ö - +÷ ÷ç ç+ = = £÷ ÷ç ç÷ ÷ç çè ø è ø - -
. Notamos que a 

fração 
2( 1)

0
c

c

-
£

-
 assume seu maior valor quando 

2( 1)
0 1

c
c

c

-
= « =

-
. Neste 

caso, temos, como consequência, 1 loga b a b= « = . 

Decididamente, esta situação-problema não é típica de ocorrer nos livros 

didáticos, entretanto o conhecimento do professor deve ultrapassar aquele 

conhecimento exibido nestes, a ponto de criticá-lo, identificar falhas, inconsistências 

e, principalmente, limitações. Além disso, após toda esta discussão, aconselhamos 

ao futuro professor desenvolver um ensino baseado na crença e não na certeza. 

Mas, na prática, como isso pode funcionar?

O docente pode evitar utilizar em seu discurso, sobretudo em sala de aula, 

expressões do tipo neste exercício, basta fazer isto....; é só empregar esta fórmula que 

está concluído....; aplicando este resultado, de imediato, obtemos que....; desde que tal 

propriedade é sempre verdadeira....teremos que.....

Estas são expressões que reforçam/ratificam o caráter universal e 

inquestionável do conhecimento matemático. Todavia, para efetivar uma ação 

didático-metodológica baseada na crença, o professor nunca pode, de modo 

precipitado, fornecer todas as condições ‘suficientes’ aos alunos, apenas explorar 

argumentações ‘necessárias’. Atitudes proposicionais do tipo: por este caminho 

aqui, possivelmente obteremos que...; aparentemente a resposta pode ser esta....; 

talvez empregando este argumento consigamos algum resultado....; tenho a impressão 

de que este modo pode auxiliar na tarefa...; possivelmente isto pode ser usado para 

uma conclusão...; acredito que sim...;

Tais colocações podem suavizar o caráter absolutista do conhecimento 

matemático evidenciando que um conhecimento, mesmo aquele que possui 

paradigmas tão rígidos e formais como os da Matemática, produzido por um ser 

mundano, passível de limitações e contradições, não pode ser imune a elas. 

Neste sentido, após realizar um estudo com professores de Matemática que 
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atuam no ensino publico em São Paulo, Silva (2009, p. 155) destaca: 

A nosso ver, esse objetivo primeiro traçado pelos professores, parece 

reproduzir a ideia de que a Matemática é uma ciência imutável e firmada na 

lógica aristotélica, na qual toda pergunta poderia ser respondida por apenas 

de duas formas: sim ou não. Como vimos, essa meta parece transparecer uma 

característica formalista marcante, que pode ser interpretada pelos alunos 

como verdades que caem do céu e na qual as justificativas ou provas devem ser 

aceitas ou são muito difíceis de serem compreendidas pela maioria. 

No próximo tópico, discutiremos alguns elementos pertinentes à formação de 

professores e conheceremos ainda vários elementos condicionantes nesta formação 

vinculados ao caráter absolutista da Matemática. 
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TÓPICO 2 A formação inicial de 
professores de Matemática

Objetivo

•	 Discutir alguns dilemas da profissão e da 

formação inicial

Em um de seus artigos, o pesquisador português João Pedro da Ponte 

(2002, p. 3) denuncia:

A formação inicial de professores recebe com frequência comentários 
muito críticos de diversos sectores. Os professores universitários das 
áreas de especialidade consideram que os jovens professores não saem 
devidamente preparados nas matérias que irão ensinar. Os professores 
da área de educação lamentam que tudo o que ensinam acaba por ser 
“varrido” pelo conservadorismo da prática de ensino. Os novos pro-
fessores lamentam que nada do que aprendem na formação inicial lhes 
serviu para alguma coisa e que só na prática profissional aprenderam o 
que é importante. Os professores já em serviço também acham, muitas 
vezes, que os jovens professores não vêm devidamente preparados no 
que seria mais necessário. Na sociedade, em geral, parece existir uma 
grande desconfiança em relação à qualidade da formação inicial de pro-
fessores. Não há dúvida que existe um mal estar em relação a esta ques-
tão, como acontece, aliás, em relação a (quase) tudo o que se passa na 
educação em geral.

No trecho acima, o autor aponta entraves específicos da formação de professores 

de Matemática que não se apresentam como um privilégio apenas do caso português. 

De fato, os mesmos problemas atingem de modo substancial o modelo de formação 

inicial do professor de Matemática aqui no Brasil. Note-se que o autor faz referência a 

dois grupos de formadores de professores: o primeiro refere-se aos formadores da área 

específica; enquanto o segundo grupo trata dos profissionais da área da Educação. Vamos 

destacar o seguinte trecho: os professores já em serviço também acham, muitas vezes, que 

os jovens professores não vêm devidamente preparados no que seria mais necessário.
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Da declaração sustentada por João Pedro da Ponte 

podemos concluir várias coisas pertinentes à formação, 

todavia a que achamos mais importante é a preparação 

e instrumentalização do futuro docente em teorias que 

não explicam  e/ou são utilizadas diretamente em seu 

ofício diário. Certamente que não tencionamos assumir 

aqui uma posição reducionista que prioriza o estudo 

apenas daquilo que é efetivamente utilizado em sala 

de aula pelo professor na escola. Se assim tivesse sido 

nossa opção, a primeira medida seria eliminar todas as 

disciplinas de Cálculo Diferencial e Integral, Variável 

Complexa, Estruturas Algébricas, etc. 

Por outro lado, se existe um Currículo de 

Matemática, existem também grupos específicos especialistas da área da Matemática Pura 

que determinam, por influência dos paradigmas internacionais, o que deve ser estudado em 

um curso de graduação em Matemática. Schubring (2003, p. 12) nos fornece uma perspectiva 

histórica interessante ao lembrar que:

Embora mudanças estruturais nos sistemas educacionais de alguns estados 

europeus já tivessem em endamento, as reformas curriculares, por volta de 1900, 

estavam muito atrasadas. A instrução matemática era particularmente afetada 

pelas tensões estruturais agora visíveis nos sistemas educacionais, tensões essas 

induzidas pelas profundas transformações na sociedade em geral; dentro das 

estruturas tradicionais, a matemática costumava servir como um paradigma 

para o pensamento lógico, de modo que os conteúdos eram usualmente bastante 

elementares e os métodos de ensino enfatizavam aspectos formais; a matemática 

escolar tinha um caráter estático e desligado das aplicações práticas.Por outro lado, 

a industria e o comercio demandavam não apenas uma instrução matemática mais 

ampla, mas também conhecimentos mais modernos e avançados que servissem de 

base para aplicações tecnicas. 

Por enquanto não pretendemos discutir estas e outras questões relacionadas 

ao currículo de Matemática. Sendo assim, destacamos outros elementos que 

merecem atenção no ambiente de formação e que são destacados por Lapert & Ball 

(1998, apud VISEU, 2008, p. 62) quando indicam que:

As práticas de ensino predominantes na formação inicial de professores assentam 

no pressuposto de que a teoria transmitida aos candidatos lhes será útil um dia, em 

v o c ê  s a b i a?

João Pedro da Ponte é reconhecido na comunidade 

internacional e mantém, juntamente com seus 

colaboradores, um grupo de pesquisas específicas 

sobre a formação de professores de Matemática. 

Diferentemente do Brasil, Portugal apresenta uma 

história de investigações nesta área desde o início 

dos anos 80.
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contextos que irão encontrar na sua prática de ensino, não os preparando para a 

compreensão dos problemas profissionais e para a tomada de decisões em situações 

particulares da sala de aula. 

Para estas autoras, há outras razões além das apontadas acima que fazem com que 

os programas de formação tenham pouco impacto na preparação dos futuros professores 

para ensinar Matemática, tais como (i) não atender às crenças, concepções e conhecimentos 

que os futuros professores possuem; (ii) transmitir a percepção de que para ensinar não é 

necessário um conhecimento profissional específico, sendo pouco mais preciso do que senso 

comum; (iii) não evidenciar a importância do conhecimento didático; (iv) não estabelecer a 

ligação entre a teoria e a prática; e (v) dar pouca atenção à prática profissional.

O desenho esquemático da figura 5 nos proporciona a uma das razões 

apontadas por Lapert & Ball, quando salientam a ligação entre teoria e prática. 

Figura 5: Relação teoria prática

Observando o diagrama, prevemos algumas dificudaldes, uma vez que os 

conteúdos matemáticos no Brasil não são fornecidos ao licenciando com uma grande 

ênfase ou preocupação com ensino. Já comentamos na aulas passadas, por exemplo, 

o caso dos conteúdos de Geometria Plana que são bastante extensos, entretanto, na 

graduação, aparentemente, tudo parece ser visto em um semestre. Assim, o aluno 

precisa percorrer sozinho a seguinte trajetória: 

     exp /   

  sin /       

Aprender Geometria para si Aprender para licar convencer o outro

Aprender como en ar operacionalizar o conteúdo em sala de aula

Þ Þ
Þ

O percurso acima está longe de ser atingido, pelo menos em grande parte, 

em um curso de licenciatura, o que se caracteriza um sério problema que deve ser 

pensado por formadores e formandos. Na figura 6, ilustramos a concepção de curso 

de formação de professores de Matemática em Portugal. 
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Figura 6: Concepção de Currículo de formação de professores em Portugal. 

Reparamos uma presença marcante de uma Didática direcionada ao ensino de 

conteúdos específicos de Matemática integrando os currículos de formação na Europa. 

Sua necessidade pode ser evidenciada pelo fato de mobilizarmos ‘modelos mentais’ 

distintos quando raciocinamos em termos de Aritmética, Álgebra e Geometria. 

Num largo sentido, as formas específicas de raciocínios nestes ramos da 

Matemática apresentam carcterísticas em comum. Neste sentido, Brousseau & Gibel 

(2005, p. 17) definem um raciocínio como uma relação R entre dois elementos A e B tal 

que:
•	 A denota a condição ou um fato observado, que poderia ser contigente 

em circunstâncias particulares; 
•	 B é uma consequência, uma decisão ou fato previsto;
•	 R é uma relação, uma regra, ou, geralmente, algo aceito como conhecido. 

A relação R conduz a ação do pensamento segundo em que a condição 
A seja satisfeita ou o fato representado por A assuma posição, para se 
poder predizer B, prever B ou estabelecer que B é verdade.

Além disso, um raciocínio contém:
•	 Um agente E (aluno ou professor) que usa a relação R;
•	 Um projeto, deteminado pela situação S que requer o uso desta relação. 

Além de ilustrar e identificar os elementos essenciais em uma forma de 

raciocínio em Matemática, Brousseau & Gibel diferenciam níveis diversificados de 

manifestação das relações entre A, B, R, E e S. De fato, Brousseau & Gibel (2005, p. 

18) identificam três níveis ou categorias de raciocínios, a saber:

NÍVEL 1 ( 1N ): É definido como um raciocínio que é não formulado de modo 

explícito, porém pode ser pode ser tomado como um assunto ou alvo de suas ações 
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e constrói um modelo de ação para o sujeito;

NÍVEL 2 ( 2N ): É definido como um raciocínio ainda incompleto, do ponto 

de vista formal, porém com lacunas que podem ser consideradas preenchidas de 

modo implícito por meio de ações do sujeito numa situação em que uma formulação 

completa não parece ser justificada. 

NÍVEL 3 ( 3N ): É definido como um raciocínio completamente formal baseado 

em uma sequência correta de inferências, com referência explícita aos elementos 

pertinentes da situação ou um conhecimento partilhado por uma classe.  

Vamos abordar alguns exemplos para ilustrar as colocações dos nossos 

ilustres autores. Por exemplo, dados *,a b +Î , sabemos que

2 2 2( ) 0 2 0a b a ab b- ³ \ - + ³ . Ou ainda, obtemos que 

2 2 2 2
a b

a b ab
b a

+ ³ « + ³ . Neste caso, podemos tomar: 

•	 A: 2( ) 0a b- ³

•	 B: 2
a b
b a
+ ³

Observamos que, para realizar a inferência explorada neste raciocínio 

matemático 
R

A BÞ , empregamos uma relação ou regra 1R . Neste caso, exploramos 

a relação 2 2( )( ) 2a b a b a ab b- - = - + . Além disso, necessitamos também da regra 

 e 
a b
b a

 existem, pois , {0}a b +Î - . Por outro lado, usando a relação 2
a b
b a
+ ³ , 

e substituindo 
1

: 2
a

x x
b x

= ® + ³ . 

Notamos ainda que 
2 2 2

2 2 2 2 2 2 2 2 2 2 2 ( ) ( )
2 2 2( ) ( )

4 2

a b a b
a b ab a b a b a b ab a b a b

+ +
+ ³ « + + + ³ + + « + ³ + \ £

Segue que 
2 2( ) ( )

{ , }
2 2

a b a b
Max a b

+ +
£ £ . De fato, sem perda de 

generalidade, podemos considerar { , }a b Max a b b£ \ = . Assim, temos 

2 2 2 2 2( ) ( ) (2 )
{ , }

2 2 2

a b b b b
b Max a b

+ +
£ £ = = . Por outro lado, observamos 

ainda que a seguinte relação 2 2 2a b ab+ ³  foi verificada para quaisquer *,a b +Î

, deste modo, substituímos *,a b +Î  por *,a b +Î  para obter a relação 

2
2

a b
a b a b ab

+
+ ³ × \ £ . 

Logo temos 
2 1 2

2
a b ab ab ab

ab ab
a b ab a bab ab

+
£ « £ × = « £

+ +
. 

Vejamos o seguinte exemplo: sejam os números , ,a b c Î  em progressão 
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aritmética. Prove que os números 
1 1 1

 ,  , 
b c c a a b+ + +

 também formam 

um P. A.

Aqui identificamos A como a condição de uma progressão aritmética 

e, neste caso, escrevemos ( )b a c b d razão- = - =  e 2c a d- = ×  para ( , , )a b c  

em P. A. Podemos dizer que B se refere à propriedade que desejamos inferir 

para os números 
1 1 1

 ,  , 
b c c a a b

æ ö÷ç ÷ç ÷çè ø+ + +
. Para tanto, vamos tomar 

1

1 1
= A

c a b c
-

+ +
 e 2

1 1
= A

a b c a
-

+ +
. Se conseguirmos verificar 

que 1 2A A= , alcançaremos o objetivo desejado. Assim, precisamos analisar dois 

casos (i) se 0 0d b a c b= \ - = - = , e se 1 2 0A A= = . Porém, se (ii) 0d ¹ , 

podemos realizar algumas racionalizações. Por exemplo, a regra 1R  que garante: 

1 1

1 1 1 1
: =  

2
c a b c c a b c

R A
d dc a b c c a c a b c b c

- - - -
- = × - × = +

+ + + - + -

1 1

1 1 1 1
: =  

2
c a b c c a b c

R A
d dc a b c c a c a b c b c

- - - -
- = × - × = +

+ + + - + -

Aplicando a mesma regra, inferimos: 

2

1 1 1 1
= = 

2
b a c a b a c a

A
d da b c a b a b a c a c a

- - - -
- × - × = -

+ + + - + -
	

2

1 1 1 1
= = 

2
b a c a b a c a

A
d da b c a b a b a c a c a

- - - -
- × - × = -

+ + + - + -

Mas reparamos:

1 2

2
2 2 2

c a b c b a c b a c a
A A

d d d d d
- - - - - -

= + = = - = . 

De modo sistemático, empregamos o raciocínio 
1R

A BÞ . Notamos, contudo, que 

as regras aqui foram aplicadas de modo explícito, entretanto, na maioria dos casos, os 

estudantes não se lembram de tais regras ou recorrem a elas de modo automático. A 

dificuldade agora é elaborar uma série de atividades que envolvam a referida propriedade. 

Discutimos aqui com brevidade alguns argumentos usuais da Álgebra. 

No caso da Aritmética e da Geometria, deparamos também como raciocínios 

específicos. Isso no leva a afirmar que ramos específicos da Matemática necessitam 

e condicionam abordagens particulares ou, melhor dizendo, existem metodologias 
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específicas para abordagens de conteúdos específicos de Matemática. 

Tal argumentação reforça de modo inquestionável a necessidade de 

conhecimento de metodologias específicas para o ensino de conteúdos particulares 

da Matemática. No próximo tópico, retomaremos outros elementos relacionados à 

formação do professor que podem proporcionar sérios entraves à implementação 

de concepções como a que discutimos na Figura 6. 
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TÓPICO 3 Ainda sobre a formação inicial 
de professores de Matemática

Objetivo

•	 Compreender aspectos  relacionados à 

formação docente

João Pedro da Ponte aponta algumas de suas colocações  que considera 

preocupantes e merecem atenção. Veja na citação abaixo:

Falar de formação é um terrível desafio. Em primeiro lugar, porque a formação 

é um mundo onde se inclui a formação inicial, contínua e especializada, onde 

é preciso considerar os modelos, teorias, e investigação empírica sobre a 

formação, analisar a legislação e a regulamentação e, o que não é de menor 

importância, estudar as práticas reais dos atores e das instituições no terreno 

e as suas experiências inovadoras. Em segundo lugar, porque a formação é um 

campo de luta ideológica e política. Não há grupo com interesses na educação 

que não tenha as suas posições a defender, e fá-lo com todo o à-vontade e, às 

vezes, com grande agressividade. E, em terceiro lugar, porque a formação é um 

daqueles domínios em que todos se sentem à vontade para emitir opiniões, de 

onde resulta a estranha impressão que nunca se avança (PONTE, 1998, p.9). 

De fato, inicialmente, identificamos a preocupação do autor com respeito a 

alguma homogeneização referente aos programas e concepções de formação, sejam 

elas as iniciais ou as formações continuadas propostas pelas Instituições de Ensino 

Superior em Portugal. Outra preocupação relevante diz respeito à crença de que 

a formação está muito associada à ideia de “frequentar” cursos, enquanto que o 

desenvolvimento profissional ocorre através de múltiplas formas, que incluem 

cursos, mas também atividades como projetos, troca de experiências, leituras, 

reflexões, etc. 
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Assim, os formadores criam falsas expectativas que, uma vez conhecedores 

daquelas teorias generalistas, consequentemente, sua aplicação e operacionalização 

estará garantida. Por fim, os estudantes acabam sendo compulsoriamente 

apresentados a teorias pertencentes a outros campos do saber que não fornecem 

explicação/predição/interpretação dos fenômenos relacionados ao saber matemático, 

prevalecendo um ‘vício’ denunciado por muitos investigadores reconhecidos no 

cenário internacional da tendência em “encher linguiça” no ambiente acadêmico. 

Em segundo lugar, na formação, o movimento é essencialmente de fora para 

dentro, cabendo ao professor assimilar os conhecimentos e a informação que lhe são 

transmitidos. Já no desenvolvimento profissional, temos um movimento de dentro 

para fora, cabendo ao professor às decisões fundamentais relativamente às questões 

que se quer considerar, aos projetos que se quer empreender e ao modo como se 

quer executar. Em terceiro lugar, na formação, atende-se principalmente àquilo 

em que o professor é carente; enquanto que no desenvolvimento profissional se dá 

especial atenção às suas potencialidades. 

Em quarto lugar, a formação tende a ser vista de modo compartimentado, por 

assuntos ou por disciplinas, enquanto o desenvolvimento profissional implica o professor 

como um todo nos seus aspectos cognitivos, afetivos e relacionais. Finalmente, a formação 

parte invariavelmente da teoria e frequentemente não chega a sair da teoria, ao passo que o 

desenvolvimento profissional tende a considerar a teoria e a prática de uma forma interligada.

No desenvolvimento profissional, dá-se grande importância à combinação de 

processos formais e informais. O professor deixa de ser objeto para passar a ser sujeito 

da formação. Não se procura a “normalização”, mas a promoção da individualidade de 

cada professor. Tem-se atenção não só aos conhecimentos e aos aspectos cognitivos, como 

também se valorizam os aspectos afetivos e relacionais do professor.

Além disso, a formação pode ser encarada de modo mais amplo do que é habitual, 

não necessariamente subordinada a uma lógica de transmissão de um conjunto de 

conhecimentos. Na realidade, não há qualquer incompatibilidade entre as ideias de 

formação e de desenvolvimento profissional. A formação pode ser perspectivada de 

modo a favorecer o desenvolvimento profissional do professor, do mesmo modo que 

pode, através do seu “currículo escondido”, contribuir para lhe reduzir a criatividade, 

a autoconfiança, a autonomia e o sentido de responsabilidade profissional. O professor 

que quer se desenvolver plenamente tem toda a vantagem em tirar partido das 

oportunidades de formação que correspondam às suas necessidades e objetivos.

Todavia, a realidade vai no caminho contrário a toda uma retórica que 
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encontramos na academia. Neste sentido, Roma (2010, p. 67) explica que: 

Embora os estudos recentes sobre o aluno que frequenta os cursos de formação 

de professores sejam reduzidos, a problemática mais ampla tomada a partir dos 

estudos sobre os cursos de licenciatura já é objeto de preocupação dos pesquisadores 

há bastante tempo [...] Ao se tomar contato com o artigo de parte da análise de 

documento resultante de um debate sobre o Bacharelado e a Licenciatura ocorrido 

na década de 80, na Faculdade de Ciências e Letras da UNESP de Araraquara, pode-

se verificar que os desafios destacados naquele momento permanecem presentes nas 

discussões sobre as fragilidades enfrentadas pelos cursos de formação de professores. 

Os velhos desafios incluem a falta de clareza sobre o perfil profissional desejado, a 

desintegração entre os eixos de formação (bacharelado e licenciatura), o isolamento e 

desprestígio das práticas pedagógicas e a dicotomia teoria e prática. Um dos estudos 

daquela época já apontava a desmotivação dos graduandos para a profissão do 

magistério [...].

No excerto, identificamos determinados entraves constituintes dos cursos de 

formação de professores desde a sua criação no Brasil. Apesar de podermos observar 

seus traços atuais ainda presentes e agirmos de forma nociva à referida formação, 

ter consciência deles  constitui um passo inicial para a sua superação, sem o que 

não se pode esperar que o ensino da Matemática progrida para índices positivos 

razoáveis, o que de certo modo se tornar cada vez mais uma exigência dos órgãos 

educacionais, como o Ministério da Educação, como identificamos na figura 7. 

Figura 7: Discute o peso maior concedido para as questões de caráter discursivo no Enade (2005). 

Observamos que esta mudança, no que se refere às exigências do vem a ser 

um bom domínio da Matemática por parte do professor, apresenta sempre um fator 

social condicionado pela superação e estabelecimento de novos paradigmas no 

ambiente acadêmico. De fato, com respeito à reforma promovida pelo alemão Felix 

Klein, Schuring (2003, p. 20) explica:
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O ponto chave para entender as novas características é que a dinâmica desses 

processos não se desenvolveu dentro do subsistema das escolas secundárias. 

Foram antes problemas de transição desses subsistemas para a educação 

superior que induziram essa onde de reforma. Foi esse complexo problema de 

transição que levou Klein a se tornar ativo e desenvolver agenda de reforma. 

Mesmo no nível internacional, parece que os movimentos de reforma mais 

importantes e efetivos de transição da educação secundária para a superior 

eram mais agudos – e aí que os matemáticos estavam ativamente envolvidos. 

Para concluir, vale destacar a título de informação do leitor, sobre o documento 

que caracteriza os Referenciais Curriculares Nacionais dos Cursos de Licenciatura. 

Este documento fornece uma orientação e estabelece alguns paradigmas para a 

formação de futuros professores: 

O Licenciado em Matemática é o professor que planeja, organiza e desenvolve 

atividades e materiais relativos à Educação Matemática. Sua atribuição central 

é a docência na Educação Básica, que 

requer sólidos conhecimentos sobre 

os fundamentos da Matemática, sobre 

seu desenvolvimento histórico e suas 

relações com diversas áreas; assim como 

sobre estratégias para transposição do 

conhecimento matemático em saber 

escolar. Além de trabalhar diretamente na 

sala de aula, o licenciado elabora e analisa 

materiais didáticos, como livros, textos, 

vídeos, programas computacionais, 

ambientes virtuais de aprendizagem, entre outros. Realiza ainda pesquisas em 

Educação Matemática, coordena e supervisiona equipes de trabalho. Em sua 

atuação, prima pelo desenvolvimento do educando, incluindo sua formação 

ética, a construção de sua autonomia intelectual e de seu pensamento crítico 

(p. 79). 

Notamos de início a importância apontada pelo documento relacionada com a 

formação do futuro professor relacionado com os conteúdos de Educação Matemática 

(Didática da Matemática, Psicologia da Aprendizagem em Matemática, Filosofia 

da Educação Matemática e da Matemática, História da Matemática, Sociologia da 

Educação Matemática, Novas tecnologias no Ensino de Matemática, Etnomatemática). 

s a i b a  m a i s !

Mais informações sobre os Referenciais 

Curriculares Nacionais dos Cursos de Licenciatura 

no site http://www.dca.ufrn.br/~adelardo/PAP/

ReferenciaisGraduacao.pdf

http://www.dca.ufrn.br/~adelardo/PAP/ReferenciaisGraduacao.pdf
http://www.dca.ufrn.br/~adelardo/PAP/ReferenciaisGraduacao.pdf
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AT I V I D A D E S  D E  A P R O F U N D A M E N T O

1) É possível explorar uma situação de analogia entre às definições formais 
de função afim e função exponencial? Que tipo de raciocínio heurístico 
podemos enfatizar em sala de aula?

2) É possível confiarmos plenamente nos livros didáticos que discutem 
os conceitos de função afim e função exponencial? Se sim, a transposição 
didática está automaticamente garantida, basta executar a apresentação do 
autor do livro?

3) Assista a vídeo aula, disponível no link http://video.impa.br/index.
php?page=janeiro-de-2010, do professor e pesquisador do IMPA Elon 
Lages Lima. Em seguida analise e descreva sua transposição didática, sua 
metodologia de ensino e suas concepções relativas ao ensino das funções 
função afim, quadrática e exponencial.

4) Assista a vídeo aula, disponível no link http://video.impa.br/index.
php?page=janeiro-de-2011, do professor e pesquisador do IMPA, Paulo 
Cezar. Em seguida analise e descreva sua transposição didática, sua 
metodologia de ensino e suas concepções relativas ao ensino de Sistemas 
Lineares. 



Didát ica  da  Matemát ica170

Olá, aluno (a)! 

Em nossa última aula, abordaremos algumas temáticas delicadas. A primeira 

diz respeito à abordagem de ensino de Matemática por meio da ‘Resolução de 

Problemas’, mas, quando podemos afirmar que temos um problema interessante? 

Esse questionamento mostrou-se delicado e extremamente imponderável para 

matemáticos de reconhecido talento. Por fim, abordaremos, com brevidade, 

em virtude dos limites de síntese desta aula, a Teoria dos Campos Conceituais, 

concebida pelo psicólogo de raízes piagetianas Gerard Vergnaud. O diferencial 

dessa teoria, diferentemente de muitas teorias cognitivistas estudadas em disciplinas 

passadas, todavia, sem aplicação, é que a Teoria dos Campos Conceituais tem 

proporcionado a obtenção de dados e resultados empíricos, sobretudo em sala 

de aula, quando efetivamente explorada no ambiente de ensino/aprendizagem em 

Matemática.

Objetivo

•	 Discutir a natureza de um problema em Matemática

AULA 8 Metodologia do Ensino em 
Matemática
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TÓPICO 1 Como caracterizar um bom 
problema de Matemática

Objetivo

•	 Discutir problemas de aplicação e bar-

reiras metodológicas

Indiscutivelmente, um sentimento que adquirimos apenas na prática, no convívio 

direto com os estudantes, é a necessidade de identificação de um bom problema 

de Matemática, afinal, como já mencionamos em aulas passadas, uma boa au-

la  dessa disciplina se inicia por meio de um bom problema, entretanto, como fazê-lo?

Vamos, por exemplo, analisar o seguinte problema: sejam os números , ,a b c Î  em 

progressão aritmética. Prove que os números 
1 1 1

 ,  , 
b c c a a b+ + +

 também 

formam um P.A. Vamos admitir que este modelo seja conhecido apenas pelo professor. 

Sublinhamos, então, que podemos apresentar os seguintes problemas aos estudantes: 

1 :Problema  Considerando que (2,5,8)  estão em P.A. o que se pode afirmar à 

respeito de 
1 1 1

 ,  , 
5 8 8 2 2 5

æ ö÷ç ÷ç ÷çè ø+ + +
?

Solução - Num primeiro momento, os alunos podem achar estranha a 

notação e o professor pode estimular os alunos a fazerem contas. Como por exemplo 
1 1 1 1 1 1

 ,  ,  ,  , 
2,23606... 2,8284... 2,8284.. 1,4142.. 1,4142.. 2,2360...5 8 8 2 2 5

æ ö æ ö÷ ÷ç ç=÷ ÷ç ç÷ ÷çç è øè ø + + ++ + +

1 1 1 1 1 1
 ,  ,  ,  , 

2,23606... 2,8284... 2,8284.. 1,4142.. 1,4142.. 2,2360...5 8 8 2 2 5

æ ö æ ö÷ ÷ç ç=÷ ÷ç ç÷ ÷çç è øè ø + + ++ + +
Mas essa estratégia vai se mostrar muito cansativa. O professor pode, também, 

tentar algumas representações geométricas., Veja, se tivéssemos a sequência 

(2,5,8,11,14,17,20) , quem seriam os termos correspondentes na P.A.?

Usando um raciocínio analógico, os alunos devem chegar às listagens:
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1 1 1 1 1 1
 ,  , ,  ,  , ,  ?

5 8 8 2 2 5 14 17 17 11 11 14

æ ö÷ç ÷ç ÷çè ø+ + + + + +
 

que podem ser representados no plano por: 1 2 3 4 5 6( , , , , , )a a a a a a =  

1 1 1 1 1 1
(1, ) , (2, ) , (3, ),(4, ) , (5, ) , (6, ),  ?

5 8 8 2 2 5 14 17 17 11 11 14

æ ö÷ç ÷ç ÷çè ø+ + + + + +
	

Já vimos, nas aulas passadas, que o gráfico de uma P.A. (figura 1-II) se 

constitui a partir de pontos que não podem ser ligados no plano 2
 , mas quando 

realizamos a ligação entre os mesmos, percebemos que os três primeiros estão 

alinhados na mesma reta, enquanto os três últimos também. Pelo gráfico, os alunos 

devem ser estimulados a fazer conjecturas baseadas num raciocínio intuitivo. 

Nele vemos que temos possivelmente duas P.A.´s: 1 2 3 1 2 3( , , ) e ( , , )a a a b b b

Figura 1: Interpretação geométrica da P.A.

Na sequência, o professor pode sugerir alguns artifícios algébricos, como: 

2 1

1 1
a a =  

8 2 5 8
- -

+ +
 e 3 2

1 1
a a =   

2 5 8 2
- -

+ +
 e verificar suas 

relações. De fato, 2 1

1 1 1 1
a a =  =

8 2 5 8 8 2 8 5
- - - =

+ + + +

1 8 2 1 8 5 8 2 8 5 8 2 8 5
8 2 8 5 6 38 2 8 2 8 5 8 5

- - - - - -
= × - × = - = - =

- -+ - + -

1 8 2 1 8 5 8 2 8 5 8 2 8 5
8 2 8 5 6 38 2 8 2 8 5 8 5

- - - - - -
= × - × = - = - =

- -+ - + -

8 2 8 5 8 2 2 8 2 5 2 5 2 8
6 3 6 6
- - - - + - -

= - = = . De modo 
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análogo, inferimos ( )3 2

1 1 1 1
a a =   = 

2 5 8 2 5 2 8 2
- - - =

+ + + +

( )2 1

1 5 2 1 8 2 5 2 8 2 2 5 2 8
a a

5 2 8 2 65 2 5 2 8 2 8 2

- - - - - -
= × - × = - = = -

- -+ - + -

( )2 1

1 5 2 1 8 2 5 2 8 2 2 5 2 8
a a

5 2 8 2 65 2 5 2 8 2 8 2

- - - - - -
= × - × = - = = -

- -+ - + -

Assim, observamos de fato que 1 2 3( , , )a a a  estão 

em P.A., pois ( ) ( )3 2 2 1a a a a cte- = - = , entretanto, 

1 2 3

1 1 1
( , , ) (4, ) , (5, ) , (6, )

14 17 17 11 11 14
b b b =

+ + +
 estão em P.A., 

mas não fazem parte da primeira lista de números. Então, exigimos que 

1 2 3

1 1 1
( , , ) (1, ) , (2, ) , (3, )

14 17 17 11 11 14
b b b =

+ + +
. Assim, o professor, a 

partir do modelo geral que deduzimos na aula passada, pode elaborar atividades 

particulares, sem necessariamente explicitar o modelo geral formal. 

Outro elemento de difícil análise aqui diz respeito aos limites de validade 

da situação problema que deve ser conhecida pelo professor. Por exemplo, neste caso 

o professor não poderia enunciar: sejam os números ( , , ,.....,...)a b c  em progressão 

aritmética. Prove que os números 
1 1 1

 ,  , 
b c c a a b+ + +

,... também formam 

uma P.A. De fato, a propriedade que analisamos aqui, o modelo matemático demonstrado 

prevê o comportamento apenas de três números em P.A. basta observar a figura 1. 

Vejamos outro modelo geral que possibilita a replicação de várias situações 

problemas particulares.

2 :Problema Os números 1 2 3( , , ,......, )nx x x x  formam uma P.A. 

Encontre tal progressão, sabendo que 1 2 3( ...... )nx x x x a+ + + + =  e 
2 2 2 2 2

1 2 3( ...... )nx x x x b+ + + + = .

Solução - Vamos admitir nossa razão d, assim, temos: 

1 2 3( ...... )nx x x x a+ + + + = «

1 1 1 1( 2 ...... ( 1) )x x d x d x n d a+ + + + + + + - =  e

 2 2 2 2 2
1 2 3( ...... )nx x x x b+ + + + = . No primeiro caso temos:

1 1 1 1 1( 2 ...... ( 1) ) ( 2 ...... ( 1) )x x d x d x n d a n x d d n d a+ + + + + + + - = « × + + + + - = «

1 1 1

( 1)
( ( 2 ...... ( 1) )) ( ( ) ) ( ( ) )

2 2

d n d nd
n x d d n d a n x n a n x n a

æ ö+ - æ ö÷ ÷ç ç× + + + + - = « × + = « × + =÷ ÷ç ç ÷ç÷ç è øè ø



Didát ica  da  Matemát ica174

2

1( )
2

n d
n x a

æ ö÷ç ÷× + =ç ÷ç ÷è ø
. 

Por outro lado, observamos que 2 2 2 2 2
1 2 3( ...... )nx x x x b+ + + + = «

2 2 2 2 2
1 1 1 1( ( ) ( 2 ) ...... ( ( 1) ) )x x d x d x n d b+ + + + + + + - = . Fazendo as contas, 

desenvolvendo os termos ao quadrado e colocando fatores convenientes em 

evidência, encontramos a expressão: 

( ) ( )2 2 2 2 2 2 2
1 1 1 1

( 1)(2 1)
2 1 2 ....( 1) 1 2 ....( 1) ( 1)

6

n n n
nx x d n d n nx n n x d d

- -
+ + + - + + + - = + - +

Portanto: 2 2 2
1 1

( 1)(2 1)
( 1)

6

n n n
b nx n n x d d

- -
= + - +  e lembrando que 

2

2

1 1
2( )

2

n d
an d

n x a x
n

-æ ö÷ç ÷× + = « =ç ÷ç ÷è ø
, substituindo, teremos: 

22 2

2 2

22

2
2 2

( 1)(2 1)2 2( 1)
6

( 1)(2 1)2 ( 1)
2 6

n d n d
a a n n n

b n n n d d
n n

n d
a n n nn d

b n n a d d
n

æ ö æ ö÷ ÷ç ç- -÷ ÷ç ç÷ ÷ - -ç ç÷ ÷ç ç÷ ÷= + - + «ç ç÷ ÷ç ç÷ ÷÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

æ ö÷ç - ÷ç æ ö÷ - -ç ÷ ÷çç ÷ ÷« = + - - +çç ÷ ÷ç ÷ç ÷ è ø÷ç ÷ç ÷çè ø

Assim, obtemos 
2 2 22

2 2
2 2

( 1) 12( )

12 ( 1)

n n nb aa
d b d

n n n

- -
= - \ =±

-
 

e 1

( 1)1
2

n n
x a d

n

é ù-
= -ê ú

ê úë û
.  Nesse caso, a progressão desejada (condição de 

validade) que 2 212( ) 0nb a- ¹ . Note-se que nessas condições e a partir desse 

modelo geral proposto pela questão, podemos gerar várias situações-problemas 

diferentes.

Para concluir essa discussão, recordamos o questionamento inicial que 

trazemos nesta seção descrita por quando temos um bom problema de 

Matemática? Até aqui diferenciamos o termo ‘exercício’ do termo ‘problema’, assim, 

decididamente a resposta para essa questão não se relaciona a um exercício que, 

na maioria dos casos, envolve um emprego de uma fórmula que irremediavelmente 

conduz a uma resposta de modo quase instantâneo, dispensando uma reflexão mais 
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aprofundada por parte do solucionador. Um bom problema pode apresentar um 

enunciado de fácil caracterização, por exemplo: é possível que os números 2, 3 e 5 

estejam em P.G.?

Observamos que não perguntamos de modo usual encontrado nos livros 

didáticos se os termos (2,3,5,...)  formam uma P.G. e sim (....,2,.....,3,......,5,......)  

podem pertencer a uma P.G. Digamos que sua razão seja q , assim, podemos escrever 

3 2 nq= ×  e 5 3 mq= × , para alguns  e n m Î . Desse modo 
3
2

nq =  e 
5
3

mq = , portanto, 

3 5
3 2 5

2 3

m n
m n m n

m n
+= « = × . Agora concordamos que 3m n+  é sempre ímpar, enquanto 

que para 2 5m n×  termos um número impar, teremos que 00 5 3 3m q= \ = × =  que é 

uma contradição. Assim, se 0m ¹  temos 3 2 5m n m n

ímpar par

+ = ×  um absurdo. 

Salientamos que um problema como esse não é muito corriqueiro no ensino 

escolar, apesar de que o professor deveria conhecer com profundidade. Em outras 

situações, um bom problema envolve uma manipulação inesperada, como no caso 

de simplificar a expressão 3 2 2+ .

De fato, observamos 

( ) ( )2 2
3 2 2 1 2 2 2 1 2 3 2 2 1 2+ = + × + = + \ + = + , assim, 

3 2 2 1 2+ = + . E podemos formular alguns problemas mais interessantes 

descritos por: (i) a seguinte expressão 3 2 2-  pode ser simplificada? ; (ii) 

simplificar a expressão 3 2 2- .

Já comentamos aqui que a primeira formulação é bem mais interessante para 

o aprendiz. Nesse sentido, temos: 

( )2 23 2 2 1 2 2 2 1 2 2 2 (1 2) 1 2- = + - = + - = - = -  que, 

no entanto, está errada, uma vez que 1 2 0- < . A resposta certa será 2 1- . Em 

vários casos pode ocorrer que o estudante forneça soluções diferenciadas para um 

problema que naturalmente permite uma diversidade de estratégias de  resoluções, 

por exemplo, a prova da inequação 
2

a b
ab

+
£ . De fato, seu estudante poderia 

argumentar que a soma das áreas dos quatro retângulos de lados a e b é menor do que 

a área do quadrado de lado ( )a b+ , você aceitaria tal resposta intuitiva como válida? 
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Figura 2: Prova geométrica da propriedade

Para concluir com a discussão referente à caracterização de um bom 

problema de matemática, apresentamos a seguinte formulação: se , ,a b c +Î  e 

vale 2 2 2a b c= + , então será o triângulo de lado a, b e c retângulo?

Para verificar esta propriedade pouco explorada nos livros didáticos, 

tomamos no ABCD  os segmentos ,  e AB c CA b BC a= = = . De um ponto de vista 

didático-metodológico, separamos em dois casos: (i) se 
^

90ºA<  e (ii) se 
^

90ºA> .

Nesse caso, exploramos os seguintes diagramas como guia para o raciocínio 

do estudante. 

Figura 3: Diversos casos possíveis de triângulos

No caso (i) temos 
^

90ºA<  e vamos admitir que b c£  baseando-se no 

desenho. Assim, tomamos o ponto D como projeção do vértice C sobre o segmento 

AB c= . Sejam assim AD x= , DB c x= -  e CD h= . Desde que o triângulo 

BDCD  é retângulo em 
^

D  e com a mesma razão ADCD , pela inferência conhecida 

do teorema sabemos que 2 2 2( )a h c x= + - «
2 2 2 2 2 2 2 2 2 2 2 2( 2 ) ( ) ( 2 ) ( ) ( 2 )a h c cx x a b x c cx x a b c cx= + - + « = - + - + « = + - «

2 2 2( 2 )a b c cx= + - , todavia, veja que ( 2 ) 0cx- < \
2 2 2 2 2 2( 2 )a b c cx b c a= + - < + =  o que é uma contradição. 

No caso (ii) temos 
^

90ºA> . Assim, vamos tomar agora os triângulos 

DACD  e DBCD , escrevemos: 
2 2 2 2 2 2 2 2 2 2 2 2( ) ( 2 ) ( 2 )a h c x a h c cx x a b x c cx x= + + « = + + + « = - + + + «

2 2 2 2 2 2( 2 )a b c cx b c a= + + > + =  ,ou seja, outra contradição.  Com isso, 
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acabamos de demonstrar que: (iii) se 
^

90ºA< , então 2 2 2a b c< +  e (iv) se 
^

90ºA>  

obtemos 2 2 2a b c> + . Já podemos concluir o que buscamos demonstrar de fato? 

Vários estudos indicam a importância de conduzirmos o estudante à 

produção de conjecturas sobre determinados fatos e propriedades matemáticas, 

evitando apenas o emprego de rotinas algorítmicas. Ademais, é essencial, como 

já sublinhamos nos parágrafos anteriores, o professor de Matemática antever os 

problemas, limitações, inconsistências e barreiras relacionadas a determinados 

problemas que tenciona explorar com seus pupilos. Vejamos por exemplo: (i) 

encontrar todas as soluções de ( )( ) ( )2 21 1 2( )(1 ) 4 1x y x y xy xy+ + + - - = + ; (ii) 

é possível encontrar as soluções de ( )( ) ( )2 21 1 2( )(1 ) 4 1x y x y xy xy+ + + - - = + ?

Observamos, na figura 4, o modelo geométrico que antecipa a informação 

para o professor que é consciente de que a situação-problema admite soluções do 

tipo ( , )x y . Mas vejamos alguns malabarismos algébricos que antecedem a resposta.

Inicialmente temos ( )( ) ( )2 21 1 2( )(1 ) 4 1x y x y xy xy+ + + - - = + «

( )22 2 2 22 1 2 2( )(1 ) 4 1 ( ) 4x y xy x y xy x y xy xy x y- + + + - + - - = « - - - = «

Assim, encontramos:

( ) ( )( )
( )( )
( )( )

2 1 1 2
1 ( ) 4 1 1 2

1 1 2

x y
xy x y x y

x y

ìï + - =ïï- - - = \ + - =± «íï + - =-ïïî
e ao 

impor essas condições, encontramos quatro sistemas que exibimos na figura abaixo, 

do lado direito. Quando resolvemos tais sistemas, devemos encontrar os pares 

ordenados (1,2) ; ( 3,0) ; (0,3) ; ( 2, 1) ; (1,0) ; ( 3,2) ; (0, 1) ; ( 2,3)- - - - - - . 

Figura 4: Argumentação geométrica e algébrica da solução

Acrescentamos que encontrar, formular, conceber e caracterizar um bom 

problema de Matemática não é uma questão imediata e simples, na própria História 

da Matemática, encontramos exemplos de situações em que mesmo matemáticos 
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profissionais possuíam em suas mãos problemas 

que exigiram séculos para a sua resolução, 

todavia, não percebiam como um problema 

propriamente dito ou algo que os conduzisse 

a algum resultado mais interessante, do ponto 

de vista matemático. Como exemplo, temos 

o caso da conjectura de Christian Goldbach 

que propunha que qualquer número maior 

que dois é soma de dois primos. Por exemplo: 

4 2 2; 6=3+3; 8=3+5; 12=5+7= + . Usando um 

computador, encontramos cerca de um bilhão de 

exemplos, contudo, podemos acreditar que tal conjectura é sempre verdadeira? 

Ainda não temos até agora uma resposta (DEVLIN, 1998, p. 39).

Advertimos as condições que caracterizam um pseudo-problema de 

Matemática que acontece quando aparentemente o professor transmite a ideia de 

que se trata de um problema, que exige uma maior reflexão, todavia, não passa 

de um enunciado que pode ser desvelado por meio da aplicação de uma fórmula. 

Vejamos dois enunciados de pseudo-problemas:

As idades de duas irmãs correspondem às raízes da equação 2 10 21 0x x- + = .  

Quantos anos possui cada uma delas?

A idade de Alfreda dividida pela idade de sua irmã gera a seguinte dízima 

0,7272... . Qual a idade de cada uma?

Determinar todos inteiros positivos  e yx Î , tais que 
1 1 1

19x y
+ = .

Determinar todos inteiros  e yx , tais que 
1 1 1

19x y
+ = .

Determinar todos os números  ou yx Î Î  , tais que 
1 1 1

19x y
+ = .

Solução:

Na primeira situação, a contextualização foi completamente infeliz, aliás, 

o estudante poderia resolver a equação 2 10 21 0x x- + =  sem nem mesmo ler o 

enunciado. 

No segundo caso, identificamos a falta de precisão na formulação da questão 

e dos dados procurados. De fato, nesse caso, o solucionador poderia escrever 

0,7272...
99

= .

s a i b a  m a i s !

Christian Goldbach, matemático prussiano-russo, 

amigo de Euler a quem este confiou a descoberta 

de que uma potência imaginária de um número 

imaginário pode ser um número real. Mais 

informações no site http://www.dec.ufcg.edu.br/

biografias/ChrstiaG.html
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Dificilmente o aluno consegue evitar as seguintes manipulações:

191 1 1 1
19 19 19 19

19 19 19

x y y
x y xy xy x y x

x y xy y

+
+ = « = « + + « - = « =

-
. 

Nesse ponto, o solucionador deve empregar suas hipóteses ( ) e yx Î  e, 

assim, impõe a condição 
19

19

y
x

y
= Î

-
 . Assim, podemos ter a possibilidade de 

que 
19 20

19 1 20 380
1

y y x
×

- = « = \ = = . Pode ocorrer também a possibilidade 

de que 19y-  divide 19  ou 19y-  divide y . Mas como 19 é primo, tem-se que 

19 19 38y y- = « = , e neste caso, 
19 38

19
x

×
= Î .

No caso em que 19y-  divide (19 )y y t y« = × - . Por outro lado, sabemos que 

2

x y
xy

+
£ , daí, observamos que 

11 2 2 19
19 19 2 2

x y
x y x y xy

xy xy

+
+ +

= « = « × = . 

Sublinhamos que uma pequena modificação poderá alterar e expandir a 

quantidade de possibilidades para o mesmo problema.

De fato, agora podemos ter a condição descrita em que temos 
19

19

y
x

y
= Î

-
 , assim, 

19 19
1 19 19 20 19

19 20

y
y y y y

y
=- « = - « = « = Ï

-
 . Portanto, o enunciado 

neste item não apresenta soluções em  , quando tivermos a possibilidade de que 

19
1

19

y
x

y
= =-

-
. Entretanto, o solucionador desse problema precisaria ficar atento 

à possibilidade 19 19 0y y- =- « =  e 0x = , mas nunca poderia ocorrer esta 

possibilidade.

Deixaremos a cargo do leitor!

A moral da história é que, diferentemente de um ‘exercício’ de Matemática, 

um verdadeiro problema apresenta a ‘flexibilidade’, dispõe de um repertório maior 

de distintas e diferenciadas estratégias e possibilidades de solução. Nesse caso, 

fornecemos com uma ligeira modificação enunciados distintos nos itens c), d) e e 

(deixaremos a cargo do aluno)). 

Em qualquer caso, na análise a priori da escolha de uma situação-problema, o 

professor deve estar cônscio de que toda situação problema apresenta um conceito 

matemático principal que se quer aferir um conhecimento por parte do aprendiz. 

Ademais, todo conceito matemático se relaciona e é condicionado por uma definição 
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formal matemática, apesar de que, na maioria dos casos, os estudantes resolvem 

problemas por intuição e sem se recordar com precisão e consciência das definições 

matemáticas formais exigidas por vezes de modo implícito. 

Realmente, não é concebível uma aula desenvolvida pelo professor que nem 

mesmo ele possui de forma clara e precisa o motivo pelo qual a aprendizagem de um 

conceito matemático pode ou não ocorrer, que fatores cognitivos podem acelerar ou 

causar lentidão no processo paulatino de sua internalização, e mesmo que fatores podem 

atuar de forma efetiva impedindo que a aprendizagem evolua a uma falsa/equivocada 

concepção. 

Para esclarecer um pouco mais essas possibilidades que apresentamos  

agora, de modo pormenorizado, abordaremos uma teoria de base cognitivista, de 

raízes piagetianas que consegue explicar, ou pelo menos esclarecer, alguns pontos 

relacionados ao multifacetado processo de aprendizagem em Matemática. 
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TÓPICO 2 Definição matemática  
e conceito matemático
Objetivo

•	 Diferenciar conceito e definição 

matemática

No campo do ensino da Matemática, poucos nomes são tão 

respeitados quanto o de Gérard Vergnaud. 

Formado em Psicologia, fez a própria tese de doutoramento com 

ninguém menos que Jean Piaget. “O título era A Resposta Instrumental como Resolução 

de Problemas. Pura teoria”. 

A Teoria dos campos conceituais proposta 

por Vergnaud (1996, p. 197):

É uma teoria cognitivista que visa a fornecer um quadro 

coerente e alguns princípios de base para o estudo do 

desenvolvimento e da aprendizagem de competências 

complexas, notadamente das que revelam das ciências 

e das técnicas. 

Vergnaud acrescenta que uma de suas 

principais finalidades é fornecer um quadro que 

permita compreender as relações e rupturas entre 

os conhecimentos das crianças e adolescentes 

(1996, p. 197). Apesar de não ser específica da 

Matemática, seu campo de aplicação nesta ciência 

tem se revelado promissor em inúmeros estudos 

realizados.

Um dos elementos essenciais em sua teoria é a noção de esquema cognitivo. Acrescenta 

que um conceito não pode se reduzido a sua própria definição, a não ser que estejamos 

s a i b a  m a i s !

Gérard Vergnaud, aos 75 anos de idade e depois de 

orientar mais de 80 teses de mestrado e doutorado, 

continua trabalhando como diretor emérito 

de estudos do Centro Nacional de Pesquisas 

Científicas (CNRS, na sigla em francês), em Paris. 

Mais informações http://homolog.novaescola.

abril .com.br/matematica/fundamentos/

todos-perdem-quando-nao-usamos-pesquisa-

pratica-427238.shtml
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interessados em seu ensino e na sua aprendizagem (Idem, 1996, p. 198). Outros autores, assim 

como Vernaud, com notáveis influências piagetinanas, explicam que:

Um esquema é sempre um sistema organizado de interpretações sequenciais 

e juntamente procedurais para um certo nível de maturação e um suficiente 

volume de experiência. Um esquema é tanto estável como flexível. Ele expressa 

um caminho de pensamento, interpretação e solução. De fato, o conceito 

formal de prova matemática é um esquema mental, por que é expresso pelo 

princípio de que em matemática a verdade de um enunciado não é estabelecida 

pela confrontação com a realidade, porém dedutivamente em conformidade 

das regras lógicas. Uma criança de 8 anos de idade não possui esquemas para 

compreender a necessidade de verificação de um enunciado aparentemente 

evidente (FISCHBEIN & MARIOTTI, 1997, p. 30).

Vernaud diferencia de modo enfático:
•	 As classes de situações nas quais o sujeito dispõe, em seu repertório, 

de um dado de seu desenvolvimento e sobre circunstâncias, as 
competências necessárias ao tratamento relativamente imediato para 
determinada situação;

•	 As classes de situações pelas quais o sujeito não dispõe de todas as competências 
necessárias, o que o obriga a um tempo de reflexão e de exploração, de 
hesitações, e de tentativas abortadas, e que podem conduzir eventualmente ao 
sucesso ou ao fracasso.

Vernaud diferencia o papel do esquema cognitivo nesses dois casos distintos. 

No primeiro, observamos que as condutas do sujeito são largamente automatizadas, 

organizadas por um esquema único; e no segundo caso, observamos a adaptação 

sucessiva de vários esquemas, que podem entrar em competição e que podem também 

comprometer a solução desejada, devem ser combinados e recombinados e tal processo 

de acomodação envolve necessariamente um processo de descoberta (VERGNAUD, 

1996, p. 199).

Vergnaud designa por esquema cognitivo a organização invariante da conduta 

de um sujeito por meio de uma classe de situações dadas. São os esquemas que devemos 

procurar nos conhecimentos mobilizados pelo sujeito, isto é, os elementos cognitivos 

que permitem que a ação do sujeito seja operatória (VERGNAUD, 1996, p. 199).

Por exemplo, Vergnaud explica que alunos entre 5 e 7 anos descobrem que 

não é necessário recompor todo o conjunto A BÈ , se já conhecemos e contamos a 

quantidade de elementos que possui o conjunto A e a quantidade de elementos em 
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B. Mesmo desconhecendo o resultado formal, os alunos exprimem o que Vergnaud 

chama de teorema-em-ato, descrito nesse caso por ( ) ( ) ( )Card A B Card A Card BÈ = + , 

na condição em que A BÇ =Æ . Abreviamos aqui Card cardinalidade= .

Vergnaud discute algumas propriedades operadas pelos alunos sobre conjuntos que di-

zem respeito a teoremas-em-ato do tipo: se ( ) ( )A B Card A Card BÌ ® £ ; A B A BÈ = Ç  

e  A B A BÇ = È . Ele explica que alguns alunos conseguem e extraem de situações-pro-

blema essas e outras propriedades de modo intuitivo, sem o conhecimento a priori das pro-

priedades formais que exigem um conhecimento acadêmico de Matemática. 
Outro teorema-em-ato destacado por Vergnaud é empregado quando demandamos 

a crianças de 8 a 10 anos completar as listagens: 
{ 1 , 2 , 3 ,  4 ,  5  ,   6 , .....}

{ 2 , 4 , 6 , 8 , 10 , 12 , .....}
. Nesse 

caso, o teorema-em-ato pode ser descrito por ( ) 2 ( ) xf x f x= × " Î , mesmo desconhe-

cendo este modelo formal.

Vergnaud adverte que os conceitos são raramente explicitados pelos alunos ao pas-

so que são construídos na ação, são conceitos em ato, ou categorias em ato (1996, p. 

208). Por exemplo, quando o aluno declara: quando temos um triângulo de lados a, b 

e c, com um ângulo de 90º, temos que 2 2 2a b c= +  que é uma sentença proposicional 

a respeito de uma propriedade geométrica. 

Em geometria, essa sentença proposicional pode ser considerada como (V) verda-

deira ou (F) falsa. Além disso, o aluno pode acreditar nela sem mesmo conhecer sua 

demonstração, o que, às vezes, ocorre até no caso do professor. Em algumas situações, 

o aluno apenas emprega uma estratégia já familiar, apresentada em certos casos pelo 

professor na resolução de um problema que o mesmo sente ser relacionado com o te-

orema de Pitágoras. Se o aluno observa que seu emprego teve êxito, o mesmo tende a 

preservá-lo, modificá-lo e empregá-lo em novas situações relacionadas. 

Nesse sentido, Vergnaud (1996) explica:

Assim quando uma criança utiliza um esquema ineficaz para uma situ-
ação, a experiência o conduz a modificar por outro esquema, ou mesmo 
modificar o próprio esquema. De modo semelhante à Piaget, podemos di-
zer que são os esquemas que estão no centro do processo de adaptação de 
estruturas cognitivas, assimilação e acomodação (p. 202).

Vergnaud designa os conceitos-em-ato e os teoremas-em-ato como os conhecimen-

tos contidos nos esquemas cognitivos. As terminologias acrescentadas por Vergnaud 

‘em ato’ sublinha o caráter situacional e diz respeito a um conhecimento mobilizado 

por um sujeito naquele momento, diante da tentativa de resolução de um problema. 

Na figura 5, observamos os elementos discutidos em sua teoria. 
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Figura 5: Os elementos constituintes de um esquema cognitivo

Observamos que a ideia de Gerard Vergnaud se relaciona de modo intrínseco 

com um ensino baseado por meio de uma aquisição conceitual dos saberes. Toda 

a aprendizagem gira em torno de uma aquisição, compreensão, modificação e 

sistematização de um repertório cognitivo de conceitos e, em nosso caso, conceitos 

matemáticos. De um modo metafórico, podemos imaginar o conceito de ‘função 

afim’ como o alvo principal a ser ensinado pelo professor. 

Por outro lado, na medida em que conhecemos bem outros conhecimentos 

e conceitos relacionados com este, teremos melhores condições de compreensão e 

internalização do conceito de função afim. Sua ideia vai num sentido contrário à 

crença de uma aprendizagem linear (lado direito) de conceitos, pois caminha antes 

para uma  aprendizagem em forma de ‘teia’, como sugere um campo conceitual. 

 
Figura 6: Conceitos relacionados com o conceito de função 

Na figura 7, vemos um exemplo de outro campo conceitual em torno da noção 
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de número complexo. Observamos que qualquer pessoa, mesmo sendo aluno ou 

professor, descreveria o mesmo campo conceitual de modos, ligações e relações 

distintas, e quanto mais o sujeito sabe sobre determinado conceito, mais elaborado 

e/ou complexo poderá ser seu campo conceitual. 

Figura 7: Conceitos relacionados ao conceito de número complexo

Neste ponto da discussão, percebemos que a aprendizagem se dá pela 

internalização progressiva e a incorporação ao ‘arquivo cognitivo’ do aprendiz, mas 

o que é mesmo um conceito? Como relacionar uma definição matemática formal e 

um conceito matemático?

Essas questões estão longe de admitirem respostas definitivas e triviais. A 

preocupação maior é encontrarmos um professor de Matemática em sala de aula 

acreditando que, ao conhecer as definições formais em Matemática, necessariamente 

o estudante aprende, ou ainda, aquela apresentação linear de conceitos, definições 

e teoremas garantem a internalização dos mesmos. Vejamos a teorização concebida 

por Vergnaud. A partir das considerações anteriores, Vergnaud considera um 

conceito matemático como constituído de três conjuntos:

S : conjunto de situações em que o sentido do conceito é constituído 

(referência);

i : conjunto de invariantes operatórios, conceitos-em-ato e teoremas-em-ato 

que intervém nos esquemas de tratamento dessas situações (o significado);

L : conjunto de representações linguísticas e não linguísticas que permitem 

representar simbolicamente o conceito, suas propriedades, as situações nas quais 

ele se aplica e os procedimentos de tratamento que dele se nutrem (o significante).

Assim, podemos caracterizar um conceito matemático pelo conjunto 

( , , )conceitoC S i L= . Vejamos o exemplo de funções polinomiais do tipo ( )f x ax b= + . 

Note-se que esta representação analítica já faz parte do conjunto L . Tal objeto pode 

ser representado também por y ax b= + , ou ainda, por uma condição particular 

0 ax b= + . Em cada caso, ao se deparar com uma representação particular, o sujeito  
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necessita acionar um esquema cognitivo específico responsável por determinada 

operação. Vergnaud diz que a automatização é evidentemente uma das manifestações 

mais visíveis do caráter invariante da organização da conduta (1996, p. 201). Nos 

casos anteriores, o aluno pode tratar a representação y ax b= +  restrita ao contexto 

da Geometria Analítica, enquanto que ( )f x ax b= +  pode ser considerada apenas 

como um polinômio. Assim, as operações e/ou regras empregadas em cada caso são 

específicas e diferenciadas. Observamos abaixo algumas ações que constituem os 

invariantes operatórios operacionais de cada conceito

y ax b= + , 
onde 0a ¹

2 5 6 0x x- + =
Dividir 

4 3 24 4 0 9x x x x+ + + +  

por 2 1x x+ -

2 1 0x + =

c ax b

c b ax

c b
x

a

= + «
- = «

-
= Î

25 4 1 6 1

5 1
2 1raizesx

D= - × × = \

±
=

×

4 3 2

2 2

4 4 0 9

( 1)( 3 2)

( 11)

x x x x

x x x x

x

+ + + + =

+ - + + +
+ +

2

2 2

1 0

0

( )( ) 0

 x=  

e x=

x

x i

x i x i

Raízes i

i

+ = «

- = «
- + =

- Î
Î





Tabela 1: Invariantes operatórios operacionais

Vergnaud (1996, p. 205-206) nos fornece um comentário interessante quando destaca que:

Existem numerosos exemplos de esquemas de adaptação em Matemática. Cada 

esquema é relativo a uma classe de situações as quais as características são bem 

definidas. Todavia, podem ser aplicados por um sujeito individual a uma classe 

reduzida de situações que são as que podem ser aplicadas com eficacidade. Se 

coloca então o problema da extensão do esquema a uma classe mais extensa 

[...] O reconhecimento dos invariantes são os pontos chave da generalização 

do esquema. [...] Mas um esquema pode também ser aplicado por um sujeito 

individual a uma classe mais larga [...].

Suas palavras merecem um comentário extra. O primeiro diz respeito ao 

caráter adaptativo dos esquemas privativos de cada sujeito, com referência a 

cada situação referente. Vergnaud observa acima que um esquema cognitivo é 

um elemento gerador de ações que podem ser aplicadas em uma série de classe e 

situações diferentes, principalmente, em momentos diferentes da vida do sujeito. 

Por exemplo, quandocriança, aprendemos a noção e o conceito de fração 
a
b

.

Durante vários anos de escolaridade, em inúmeras ocasiões em nossa vida, 

escutamos algo, nos deparamos no dia-a-dia com coisas que nos remetem ao 

conceito apresentado formalmente na escola. No caso do professor de Matemática, 
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que estuda formalmente o conceito mais abstrato de fração 
a
b

é ù
ê ú
ê úë û

, como uma classe 

de equivalência,  quando na vida prática, o símbolo 
1
2

 representa bem mais 

do que a metade de uma pizza, e sim é um representante e gerador da classe 

1 1 2 4
{ , , ,......}

2 2 4 8

é ù
=ê ú

ê úë û
. Todavia, esse formalismo é incongruente com o saber escolar, 

apesar de que o professor deveria dominá-lo com profundidade.

Mais adiante ainda, o mesmo professor deverá ensinar aos seus próprios filhos 

o conceito de fração, assim, diante de cada situação, no decorrer do tempo, o sentido/

significado do conceito de fração evolui, modifica-se, sistematiza-se e relaciona-se de modo 

conceitual com outros conceitos pertencentes ao repertório particular deste professor.

Neste ponto é que se tornam importantes o caráter da extensão, adaptação, 

generalização e automatização dos esquemas de ação e antecipação de um sujeito 

que aprende determinado conceito, como bem coloca Vergnaud. 

Além disso, quanto mais o aluno vivencia situações diferenciadas, inéditas 

e, no caso do licenciando em Matemática, ensina para outras pessoas, de modo 

concomitante, precisa e/ou se conscientiza de formas diferencias de resolução, 

estratégias que ainda não tinham sido percebidas e empregadas, com isso adquire 

outros pontos de vista,  enfim, amadurece cada vez mais em relação a determinado 

assunto, adquire o que não se ensina na academia: ‘experiência’.

Por outro lado, a partir das considerações de Vergnaud, depreendemos que a 

noção de conceito matemático é mais ampla e globalizante do que a noção de definição 

matemática. Se fôssemos representar como um conjunto, poderíamos descrever que 

 formais  matemáticosdefinições conceitosC CÌ (conjunto das definições está contido no conjunto dos 

conceitos formais) e de modo esquemático, propomos a figura 5. O que deveria ficar bem 

claro ao futuro professor é que conhecer a definição formal de um conceito não implica 

ou conduz de modo imediato na compreensão desse conceito. Assim, é importante para o 

sujeito conhecer e vivenciar situações-problema relacionadas com determinado conceito 

para que o mesmo adquira significado, de modo paulatino e gradual, para o sujeito. 

Note-se que nosso comentário, numa perspectiva cognitiva, contraria mesmo a 

famosa propriedade conjuntista descrita há pouco por  formais  matemáticosdefinições conceitosC CÌ  

assim, podemos caracterizar que  formais  matemáticos sujeito definições conceitosx C C$ Î - , ou seja, 

pode existir um sujeito  sujeitox$  que conhece uma definição formal matemática, 
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todavia, não possui/apresenta nenhuma significação para a mesma. E de modo 

interessante pode existir  matemáticos  formais sujeito conceitos definiçõesx C C$ Î -  como na situação 

em que frequentemente o sujeito resolve um problema desconhecendo ou não se 

recordando com detalhes da definição formal requerida. 

Figura 8: Diferenças entre conceito matemático e definição matemática

Observamos que: 

Quando definimos axiomaticamente um objeto matemático ou realizamos 

formalmente a sua construção, adquirimos a possibilidade de distinguir 

este objeto definido dos demais. Adquirimos a possibilidade de raciocinar 

e conjecturar sobre tal objeto, que agora, passa a ser um objeto de nosso 

pensamento, de nossa reflexão (ALVES, 2010, p. 128). 

Buffet (2003) esclarece que etimologicamente, “definir” significa: delimitar 

o que é do que não é. Este aspecto é frequentemente encontrado em enciclopédias 

e dicionários (p. 17, tradução nossa).

Com respeito à importância das definições, Henri Poincaré destaca “as 

definições em Matemática são enunciadas como convenções, contudo, a maior parte 

dos espíritos se revoltará se quisermos impor por meio de convenções arbitrárias” 

(POINCARÉ, 1904, p. 268, tradução nossa).

Assim, uma definição matemática formal permite as operações que podemos 

efetuar sobre os objetos matemáticos, tanto operações físicas como operações 

estritamente mentais e mais sofisticadas. 

Vejamos um exemplo interessante que constou na avaliação do Enade (2005). 

Não precisamos muito tempo de reflexão para concluir que a situação-problema se 

refere ao conceito matemático de posição relativa entre duas circunferências. Nesse 

enunciado, as representações são descritas em língua materna e registros analíticos, 

desse modo, a ação particular de cada sujeito no sentido de esboçar desenhos/

figuras que possam guiar/orientar as decisões que devem ser tomadas apresentam 

um caráter particular da aprendizagem do indivíduo.
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Note-se que um solucionador qualquer de problemas não poderia resolver 

de modo semelhante o problema abaixo, como também um problema relacionado, 

por exemplo, com números complexos, o que coloca em evidência os invariantes 

operatórios peculiares a cada conceito. 

Figura 9: Questão do Enade (2005) discutido por Lara (2007, p. 183). 

Nesse caso, podemos caracterizar o conjunto ( , , )conceitoC S i L=  como:

:S Cada posição possível entre as circunferências 1 2 e CC  caracteriza e 

condiciona um sentido/significado diferente. O contexto em que elas são colocadas 

e discutidas caracteriza a referência da situação apresentada;

:i  Os invariantes operatórios dizem respeito ao modo de agir e elaborar 

conjecturas, realizar e empregar regras intrínsecas aos conceitos de circunferência. 

:L As equações 2 2 4 4 4 0x y x y+ + - + =  (circunferência) e 1y x=- +  

(reta) são representações particulares de objetos específicos. Cada representação 

condiciona ações e estratégias específicas. 

Observamos que, no citado caso, existe um modelo matemático mais geral 

que caracteriza a equação 2 2 2( ) ( )x a y b r- + - =  ou de equação geral dada por 
2 2 0x y Ax By C+ + + + =  obtida a partir da primeira. Notamos, ainda, que cada 

sentença acima pode proporcionar um significado distinto ao leitor. O leitor-

estudante  pode, por exemplo, extrair um significado geométrico distinto. De fato, 

no item (A), o sujeito pode atribuir os seguintes sentidos (referências). Por outro 

lado, do ponto de vista algébrico, as seguintes estratégias deverão estar presentes 

nas resoluções dos estudantes: 
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2 2

2 2

2 2 2 2 2 2

2 2 2 2

2 2

4 4 4 0

2 2 2 2 4

2 2 2 2 2 2 4 2 2
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x x y y
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x y Raio

+ + - + = «

+ × + - × =- «

+ × + + - × + =- + + «

+ × + + - × + =- + + = «

+ + - = \ -

De maneira análoga, um tratamento similar deverá ser dado à equação 
2 2 2 2 1 0x y x y+ - + + = . Nas ilustrações abaixo, descrevemos algumas 

possibilidades de representação e interpretação geométrica das tarefas. 

Figura 10: Interpretação geométrica do item (a)

Figura 11: Interpretação geométrica do item (c). 

Certamente que de acordo com a interpretação geométrica de cada sujeito 

podemos esperar estratégias, escolhas, declarações e aplicações de regras de ação e 

antecipação distintas (invariantes operatórios). 

Domingos (2003) discute em sua tese uma teoria de base cognitivista que 

caracteriza as possíveis estratégias de solução de um problema. Não é muito 

simples para um professor de Matemática iniciante identificar nos protocolos 

produzidos pelos estudantes tal sistematização relacionada à estratégias de solução 

de problemas. Por outro lado, estas estratégias são completamente condicionadas 

pelo conhecimento conceitual do solucionador de problemas. Por exemplo, quando 

o professor apresenta um problema a um estudante, como já explicamos, a situação-

problema sempre possui um conceito principal que é o alvo principal do professor a 

ser ensinado. E quando temos um conceito matemático formal, de modo automático, 
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necessitamos de uma definição matemática correspondente. 

Figura 12: Domingos (2003) Esquemas de resolução de problemas em Matemática

As possibilidades de estratégias apresentadas na figura 12 deveriam ser 

de conhecimento para qualquer professor de Matemática, no sentido de analisar, 

avaliar, acompanhar os raciocínios qualitativos empregados pelos estudantes, 

todavia, sabemos que na prática é bem mais fácil avaliarmos quantitativamente 

suas estratégias (diagrama (II)). Acrescentamos que a noção de conceito imagem diz 

respeito ao significado atribuído pelo indivíduo a determinado conceito. 

Veja que conhecer sua definição formal não implica que o indivíduo 

compreenda,  entenda o significado ou sentido de um conceito/objeto matemático. 

Observamos que a estratégia (IV) refere-se a uma ação baseada completamente em 

um raciocínio intuitivo do sujeito com referência a uma definição formal que o 

mesmo não conhece. 

Por exemplo, um aluno pode resolver uma questão envolvendo a noção de P.G. 

conhecendo apenas a definição formal de P.A. Um estudante pode resolver de modo 

intuitivo um problema de multiplicação conhecendo apenas a noção de adição/subtração 

de números reais. Um estudante pode resolver, também, de modo intuitivo, questões de 

Geometria Analítica conhecendo apenas a teoria que chamamos de Geometria Plana. 

Na disciplina de Resolução de Problemas, voltaremos a discutir tais estratégias 

de resolução, com ênfase no lado psicológico do solucionador de um problema de 

Matemática. Podemos finalizar nossos comentários destacando que a estratégia 

mais significativa e que diz respeito a um domínio de conhecimento mais esperado 

diz  está relacionada  com a de Carneiro (2003).
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Figura 13: Carneiro (2003, p. 29). 

Na figura 13, distinguimos uma estratégia na qual o indivíduo possui uma 

interpretação intuitiva/significativa da definição formal de um objeto matemático 

particular. Essa é a relação conceitual esperada, por exemplo, para o caso do 

professor de Matemática, entretanto, nem sempre isso ocorre. Merece comentário 

que para se atingir, dominar e dispor de um esquema de raciocínio mental com 

as características acima, o aluno deverá experimentar um período de esforço, 

empenho, concentração com respeito a determinado conteúdo específico.

Certamente que avaliar estratégias, como nos casos figura 13(I), figura 13 

(III) e figura 13(IV), é razoavelmente mais complexo e  laborioso, entretanto, tarefas 

do tipo figura 13(II) são as que promovem/fornecem uma maior comodidade ao 

professor, é o que se chama de avaliação quantitativa. Nesta, as estratégias giram 

em torno da aplicação de uma única regra, como é corriqueiro nas questões de 

vestibulares que envolvem a escolha de intens.

Esse tipo de avaliação, conforme já mencionamos, é um condicionamento 

epistemológico do saber matemático, que finda por influência as práticas sociais que 

se desenvolvem em torno deste saber; o processo de observação e análise do mestre se 

restringe na observância e na constatação se o aluno conhece ou não a regra escolhida, 

se o aluno sabe ou não o teorema que funciona de modo mágico na resolução esperada. 

Todavia, dependendo da formulação apresentada, o professor poderá avaliar o aluno 

por meio de um viés mais qualitativo, como vemos na figura 14. 
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Figura 14: Fonte (ENADE/2008, p. 8) 

Vamos agora analisar o enunciado da figura 14, presente na avaliação do ENA-

DE/2008, na perspectiva da teoria dos campos conceituais. Observamos logo nas ter-

ceira e quarta linhas as expressões ‘conceitos’ e ‘propriedades’ da Geometria Plana. 

Sob a perspectiva de Gerard Vergnaud, as ‘propriedades’ condicionam um modus 

operandi peculiar no momento de resolução dos problemas, que diferem dos métodos 

de resolução dos campos da Aritmética e da Álgebra.

Notamos, também, que o conjunto das situações-problema discutidas com os estu-

dantes emprega a noção de manipulação e dobraduras de papel. Observamos que a pro-

fessora poderia ter restringindo toda sua aula ao ambiente da sala de aula, na lousa ou 

quadro negro, todavia, inseriu um material que proporciona a manipulação, a percepção 

e extração de propriedades a partir do contato físico e visual com objetos concretos.

Identificamos os conceitos-em-ato de mediatriz, segmentos congruentes, 

triângulo obtusângulo que devem condicionar/orientar as escolhas e estratégias 

do estudante. Por outro lado, identificamos, nas possibilidades de respostas, 

informações que conduzem às respostas do tipo verdadeiro/falso, entretanto, no 

caso dos candidatos que prestam esse tipo de exame, espera-se que apresentem 
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uma maior experiência e conhecimento conceitual aprofundado, Desse modo, 

reforçamos o caráter algorítmico do saber matemático que se baseia na crença que 

todo problema de Matemática deve apresentar uma única resposta.

Por outro lado, considerando as estratégias anteriores, o professor poderá 

antecipar e prevê regras de ação, escolha e, possivelmente, os erros dos estudantes.  

Nessa esfera , Vergnaud (1996, p. 207) acrescenta:

Se reconhecermos que um esquema é composto de regras de ação e antecipação uma 

vez que gera uma sequência de ações tendo em vista um objetivo a alcançar, não 

reconhecemos sempre que de modo semelhante o mesmo é composto de invariantes 

operatórios (conceitos-em-ato e conhecimentos-em-ato) e de inferências. As inferências 

são indispensáveis à colocação em prática do esquema em cada situação particular.

Uma contribuição importante de Vergnaud é a percepção de que toda aprendizagem 

gira em torno de conceitos matemáticos. Nesse sentido, a Teoria dos Campos Conceituais 

privilegiam modelos que fornecem um papel essencial aos próprios conceitos matemáticos 

(1996, p. 213). Além disso, as situações fornecem o sentido aos conceitos matemáticos. 

Em cada situação específica, seja descrita em língua materna, escrita algébrica, numérica 

ou gráfica, o sujeito consegue manifestar alguma decisão na condição em que a situação-

problema forneça algum sentido para o mesmo.  Vergnaud (1996, p. 228) esclarece que:

O sentido é uma relação do sujeito com o conjunto de situações e significantes. Mais precisamente, 

são os esquemas evocados pelo sujeito por meio de uma situação ou por um significante que 

constituem o sentido de uma situação ou dos significados destes significantes para o indivíduo.

Mas vejamos os exemplos descritos na tabela abaixo.

Tabela 2: Situações problemas

Problema sem sentido/sig-
nificado para um estudante 
de 7ª série 

Problema sem sentido/
significado para um estu-
dante do 1º ano do 2º grau

Problema sem sentido/significado 
para um estudante de graduação em 
Matemática

Dividir o polinômio ( )P x  

por ( )Q x  e encontrar o quo-
ciente e o respectivo resto da 
divisão. 

Encontrar o valor 

de 2010(2 )i+ , onde 

1z i= + Î . 

Seja 2:f ®   de classe C¥

, com ( ,0) (0, ) 0f x f y= =  para 

todos ,x y Î . Mostre que ex-

iste 2:g ®   de mesma classe 

tal que ( , ) ( , )f x y g x y xy= ×  para 

todo 2( , )x y Î  (LIMA, 1981, p. 
184). 
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Nas situações-problema acima, uma vez apresentadas para um solucionador de 

problemas imbuído em termos psicológicos da tarefa de resolver cada uma, se o mesmo 

não consegue manifestar nenhuma estratégia, escrever ou rabiscar nenhuma linha, 

apresentar simbologia ou equação que proporcione antever alguma escolha, isso significa 

que o problema não apresentou ou forneceu um significado/sentido para o sujeito.

Vergnaud adverte, ainda, que uma situação dada ou um simbolismo particular 

não evoca no sujeito todos os esquemas disponíveis (p. 228), e a razão disso possui 

uma base e explicação neurológica. De fato, nas próximas disciplinas, detalharemos 

algo mais a respeito das noções de memória de curto prazo e memória de longo prazo. 

No caso do professor, pelo fato de cotidianamente falar, pensar e discutir situações 

específicas sobre determinado assunto ou problema, o mesmo possui um grande 

repertório de informações sobre  isso. Assim, diante de um problema, o mesmo 

dispõe de uma grande e diversificada variação de esquemas cognitivos que lhe 

permitem, na prática, agir e tomar decisões com vistas a determinada solução.

Por outro lado, no caso do estudante, temos um conjunto limitado, incipiente, 

não necessariamente sistematizado e pronto para fornecer e proporcionar ações 

diante de uma situação-problema específica. Desse modo, nem sempre, em virtude 

de possuir na maioria dos casos uma memória a curto prazo, seus esquemas cognitivos 

disponíveis são imediatamente acionados,  podendo até mesmo não possuí-los.

Figura 15: Relações entre memórias a curto e a longo prazo

Para concluir esta aula, sublinhamos mais uma vez as explicações de Vergnaud  

no que diz respeito aos Campos Conceituais ao colocar que:

A teoria dos campos conceituais repousa sobre um princípio de elaboração 

pragmática de conhecimento. Não se pode teorizar sobre a aprendizagem de matemática 

nem somente a partir de símbolos, nem somente a partir de situações somente. É necessário 

considerar o sentido e os símbolos. A chave é considerar a ação do sujeito em situação, a 

organização de sua conduta. De onde vem a importância atribuída ao conceito (p. 240). 

Assim, seguindo as orientações de Gerard Vergnaud, que possui sua teorização 
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empregada em vários trabalhos empíricos relacionados de modo direto com o 

ensino/aprendizagem em Matemática, torna-se essencial para o professor  dessa 

disciplina observar, analisar e prever todos os comportamentos dos estudantes, 

seu discurso, a simbologia empregada, os erros recorrentes que constituem todas 

as ações do sujeito diante de um problema, como observamos na figura abaixo. 

Figura 16: O aprendizado do sujeito ganha significado com a ação

Entretanto, o funcionamento cognitivo do sujeito em situação depende do 

estado atual de seus conhecimentos, implícitos ou explícitos. É necessário manter grande 

atenção ao desenvolvimento cognitivo, seus constituintes, suas rupturas, suas passagens 

obrigatórias (VERGNAUD, 1996, p. 240). Assim, cabe ao professor permanecer vigilante 

com respeito à evolução do aprendizado dos estudantes, imbuí-los em situações de 

investigação em sala de aula de modo a que evitemos a concepção da Matemática como 

‘a ciência dos números’, ou ‘a Matemática é exata’, ou ainda, ‘a Matemática é abstrata’. 

São concepções superficiais, inconsistentes, limitadas e altamente contestadas 

ao longo dos séculos. Machado (1993, p. 32) nos fornece uma interessante explicação 

quando salienta que: 

De fato, aos olhos de um leigo, nenhum conhecimento pode ser considerado 

tão assentado em suas bases quanto o matemático. Algumas expressões 

consagradas pelo uso são sintomaticamente reveladoras de tal tendência, 

como por exemplo, a máxima da aritmética: ‘tão certo como dois mais dois são 

quatro’, ou sua corruptela lógica, de natureza poética, mas de idêntico sentido: 

‘tudo certo como dois e dois são cinco’. Ou ainda a homóloga algébrica, de 

sentido menos evidente, embora não menos utilizada: ‘vou provar por a+b’. 

No excerto acima, Machado coloca em evidência o lado pitoresco, anedótico da 

Matemática, um lado não reconhecido pela academia. Entretanto, na academia, deparamos 

com problemas, um deles é indicado por Alves (2010b, p. 6) ao comentar que:

A resposta para esta pergunta é óbvia, uma vez que, o ensino investigativo de 
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Matemática requer tempo, paciência e dedicação. E estes elementos e hábitos 

nem sempre são construídos no ambiente de formação de professores. 

Levando-se em consideração os dois ambientes, observamos de que modo 

as concepções e crenças do futuro professor são alteradas e condicionadas ao 

enfrentar as dificuldades do ambiente acadêmico. Mas vejamos mais uma colocação 

formulada por Machado (1993, p. 36): 

Naturalmente, não é essa a concepção de Matemática em que se funda o senso 

comum. Neste terreno, a Matemática parece possuir um conteúdo próprio, 

e é mais frequente a expectativa da subsunção da Lógica pela Matemática 

do que a inversa, como pretenderam os logicistas. Entretanto, resquícios de 

tal pretensão podem ser detectados mesmo no senso comum, quando são 

associados acriticamente o ensino da Matemática com o desenvolvimento do 

raciocínio lógico [...].

Com relação à outra característica frequentemente atribuída à Matemática, 

Machado acrescenta: 

De um modo geral, aos olhos do homem comum, poucas classificações 

dicotômicas parecem tão naturais quanto a que distingue o abstrato do concreto, 

da qual nem os substantivos lograram escapar. De fato, parece muito simples 

caracterizar o concreto, o real, o palpável, em contrapartida ao abstrato, ao 

imaginário, ao concebido. Nesta trilha, os objetos matemáticos, desde os mais 

simples até as estruturas mais complexas, admitidas ou não as raízes empíricas, 

são peremptoriamente  classificados como abstrações (MACHADO, 1993, p. 45).
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