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7APRESENTAÇÃO

APRESENTAÇÃO
Caro(a) aluno(a),

Estamos iniciando a disciplina de Matemática Básica II. A finalidade desta disciplina é rever 

alguns conceitos estudados no Ensino Médio, dando-lhes maior fundamentação. Ela vem 

como um complemento à disciplina de Matemática Básica I.  Estudaremos, assim, análise 

combinatória, Probabilidade, binômio de Newton, Números Complexos e Polinômios. A 

disciplina divide-se em oito aulas, as quais, por sua vez, são divididas em tópicos. Em cada 

tópico, apresentamos definições e propriedades dos objetos estudados, e ainda exercícios 

resolvidos. 

Vamos ao trabalho, então!
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AULA 1 Análise 
combinatória

Olá!

Nesta aula, você revisitará assuntos abordados no Ensino Médio, como o 

Princípio Multiplicativo e cálculos que envolvem fatorial. Vamos verificar de 

quantas maneiras diferentes pode ser realizado um procedimento constituído de 

várias etapas. Calcularemos, por exemplo, quantas palavras diferentes podem ser 

formadas com as letras do seu nome ou de quantas maneiras diferentes você e 

seus amigos podem sentar-se ao redor de uma mesa. 

É muito importante que você atente para esta introdução de conceitos, uma vez 

que, a partir deles, você terá condições de resolver problemas mais elaborados 

de análise combinatória. Vamos começar! 

Objetivos

•	 Conhecer variantes de problemas de contagem
•	 Analisar meios diretos e indiretos de realização de contagem
•	 Desenvolver técnicas que facilitem o processo e/ou simplifiquem a maneira 

de escrever as respostas
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Neste tópico começaremos a estudar 

análise combinatória, que é a parte da 

Matemática que estuda métodos para contagem 

dos elementos de um conjunto, quando esses são 

agrupados de maneiras pré-estabelecidas. 

Exemplo 1

Se A é o conjunto formado por todos os 

números de três algarismos distintos formados 

pelos dígitos 2, 5 e 7, temos que  A = {257, 275, 

527, 572, 725, 752} e, assim, a quantidade de 

elementos de A é 6, o que será representado por n(A) = 6. 

Exemplo 2

Se B é o conjunto de resultados possíveis nos lançamentos de duas moedas, 

temos B = {(cara, cara), (cara, coroa), (coroa, cara), (coroa, coroa)}, o que nos leva 

a concluir que n(B) = 4.

À primeira vista, pode parecer estranho que um ramo da Matemática se dedique 

apenas a contar, que é uma atividade tão elementar, mas aqui faremos uso de técnicas que 

facilitam o processo, organizando-o de forma a agilizar essa contagem. O exemplo seguinte 

mostra que nem sempre a contagem direta dos elementos do conjunto é o melhor caminho. 

TÓPICO 1 Árvores de possibilidades
Objetivos

•	 Iniciar o estudo dos métodos de contagem
•	 Construir e analisar a árvore de possibilidades 

de um experimento
•	 Listar, de forma organizada, as diferentes 

maneiras de realização de um experimento

S a i b a  m a i s

No site https://www.infoescola.com/

matematica/analise-combinatoria/, você 

poderá obter mais informações sobre 

análise combinatória.

https://www.infoescola.com/matematica/analise-combinatoria/
https://www.infoescola.com/matematica/analise-combinatoria/
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Exemplo 3

Considere C como o conjunto de todas as sequências de três letras que 

podem ser formadas usando apenas as vogais do nosso alfabeto. Não é complicado 

fazer uma lista de todos os elementos de C, o que, em ordem alfabética, começaria 

com AAA, seguido por AAE, AAI... e terminaria por UUO, UUU. Contar esses 

elementos, depois de listados, seria, então, uma saída para determinar a quantidade 

de elementos de C. Entretanto isso gastaria muito tempo. Guarde esse exemplo para 

ver que o número procurado poderá ser encontrado de maneira bem simples, antes 

que cheguemos ao fim desta aula. 

Comecemos, então, com uma maneira simples de organizar os procedimentos 

estudados que são chamados de Árvore de Possibilidades. Esse método consiste, 

basicamente, em dividir cada procedimento em etapas e analisar as possibilidades 

de cada etapa em relação à etapa anterior, de forma a não “esquecer” nenhum, nem 

repetir elementos, como mostram o nosso Exemplo 1. Vamos voltar a ele.

Um número de três algarismos pode ser escolhido encontrando um algarismo para 

cada posição e essa seria cada etapa. Assim, para a primeira etapa, temos 2, 5 e 7 como 

possibilidades. Para cada uma dessas escolhas, temos escolhas diferentes para a segunda.

Figura 1 – Árvore de possibilidades do Exemplo 1

Cada elemento do conjunto A é, assim, determinado por um dos ramos da 

“árvore” da Figura 1. Dessa forma, contar os elementos de A equivalente a  contar 

os ramos finais da árvore, pois cada um deles fornece um resultado.

Observe o que acontece com o exemplo 2, das duas moedas, quando esquemati-

zado pela árvore de possibilidades:
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Figura 2 – Árvore de possibilidades do Exemplo 2

Assim, contamos os ramos da árvore da figura 2 e obtemos n(B) = 4.

Exemplo 4 

Uma moeda é lançada tantas vezes quantas forem necessárias até que 

se obtenham duas caras ou duas coroas, não necessariamente consecutivas. A 

quantidade de maneiras segundo as quais isso pode acontecer pode ser fornecida 

pela árvore de possibilidades do problema, em que cada etapa significa um 

lançamento da moeda. Note que a quantidade de lançamentos em cada ramo é 

variável.

Figura 3 – Árvore de possibilidades do Exemplo 4
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Os ramos em destaque na Figura 3 já alcançaram o objetivo, sendo, cada um deles, 

um resultado possível; há, portanto, 6 maneiras de realizar o procedimento. O ramo 

sinalizado com (*) significa coroa no primeiro lançamento e cara nos dois seguintes.

A árvore de possibilidades é, então, uma maneira de organizar o processo para uma 

contagem mais direta, e ainda fornece todos os resultados possíveis. É importante ressaltar 

que a árvore pode ser desenhada mesmo que a quantidade de etapas não seja a mesma em 

qualquer situação. E esse vai ser o caso em que ela será de mais utilidade. Como veremos 

adiante, os exemplos 1 e 2 podem ser resolvidos de maneira ainda mais rápida.

Chegamos ao final do primeiro tópico e sabemos construir a árvore de 

possibilidades de um experimento realizado em várias etapas, o que possibilita 

a contagem de todos os elementos de um conjunto, de forma precisa, sem que 

esqueçamos nenhum deles ou que contemos algum deles repetidamente.
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TÓPICO 2 Princípio fundamental  
da contagem
Objetivos

•	 Fundamentar as bases para uma regra mais geral 
de contagem

•	 Compreender o funcionamento do Princípio 
Multiplicativo

•	 Aplicar os conceitos e resolver problemas de 
contagem de maneira rápida

Como você estudou no tópico 1, a 

Árvore de Possibilidades ajuda 

bastante no processo de contagem, mas, 

quando a quantidade de etapas for fixa e soubermos 

de quantas maneiras diferentes cada etapa pode ser 

realizada, poderemos usar uma técnica, conhecida como 

Princípio Fundamental da Contagem (PFC), ou Princípio 

multiplicativo.

Em linhas gerais, se tivermos um procedimento 

realizado em n etapas consecutivas e independentes 

e soubermos de quantas maneiras cada uma delas pode ser realizada, a quantidade 

de maneiras de realizar o procedimento como um todo se dará pelo produto dessas 

quantidades. 	

Inicialmente, vejamos como o PFC age para um procedimento realizado 

em duas etapas consecutivas e independentes.

Exemplo 1 

Em uma turma de 12 moças e 9 rapazes, quantos casais diferentes podem ser 

formados? 

S a i b a  m a i s

Acesse  o site: http://www.infoescola.

c o m / m a t e m a t i c a / p r i n c i p i o -

fundamental-da-contagem/ e veja 

alguns exemplos que utilizam o PFC. 
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Solução: Observe que a escolha de um casal (procedimento) é realizada em duas 

etapas: a escolha do homem, que pode ser feita de 9 maneiras diferentes, e a escolha 

da mulher, que pode ser feita de 12 maneiras diferentes. Assim, o total de casais 

diferentes que podem ser formados é 9.12 = 108.

Exemplo 2

Voltemos ao caso das sequências de três vogais (Exemplo 3, tópico 1),  no qual 

queremos saber quantas são as sequências de três letras que podem ser formadas 

usando apenas as vogais no nosso alfabeto. Vemos que o procedimento completo se 

realiza em três etapas, cada uma das quais consiste na escolha de uma vogal, que 

pode ser realizada de 5 maneiras diferentes. Dessa forma, o total de possibilidades 

é 5.5.5 = 125, o que é um número já bem grande para se fazer a lista completa.

Exemplo 3a

Dispondo apenas dos algarismos 3, 5, 6, 7, 8 e 9, quantos números de três 

algarismos podemos formar?

Solução: Nesse caso, temos as três etapas de escolha dos algarismos (centenas, 

dezenas e unidades). Cada uma das etapas pode ser realizada de 6 maneiras 

diferentes. Assim, o total de possibilidades será: 6.6.6 = 216.

Exemplo 3b

Dispondo apenas dos algarismos 3, 5, 6, 7, 8 e 9, quantos números de três 

algarismos distintos podemos formar?

Solução: Continuamos com a escolha em três etapas, mas quando escolhemos 

um algarismo para a posição das centenas, ele não poderá ser utilizado na posição 

das dezenas, pois queremos algarismos distintos (o número 553 não vale, por 

exemplo). Assim, continuamos tendo 6 possibilidades para a primeira etapa, mas 

apenas 5 para a segunda etapa e, pelo mesmo motivo, apenas 4 para a terceira etapa. 

Dessa forma, o total de números formados é 6.5.4 = 120.

Exemplo 4

De quantas maneiras diferentes podemos posicionar quatro pessoas em uma fila? 

Solução:Temos aqui o procedimento realizado em quatro etapas: a escolha da 

primeira pessoa da fila, a escolha da segunda, e assim por diante. Um dado relevante 

é que a pessoa que for escolhida para a primeira posição não poderá ocupar nenhuma 

outra. Assim, há 4 maneiras de escolher a primeira pessoa, 3 para escolher a segunda, 2 
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para escolher a terceira e 1 para escolher a quarta. O total de possibilidades é, portanto, 

4.3.2.1 = 24

Exemplo 5

No lançamento de cinco moedas, há dois resultados possíveis para cada 

moeda, fazendo com que o número total de possibilidades de resultado para as 

cinco moedas seja de 2.2.2.2.2 = 25 = 32.

Exemplo 6

Quantos divisores inteiros positivos tem o número 72?

Solução: Fazendo a fatoração em números primos, temos 72 = 23.32. Assim, 

um divisor de 72 consiste em um número da forma 2m3n, em que m pode assumir os 

valores 0, 1, 2 ou 3 e n pode assumir os valores 0, 1 ou 2. Dessa forma, a escolha de um 

divisor de 72 consiste na escolha de um expoente para o 2 (quatro possibilidades) e um 

expoente para o 3 (três possibilidades). Temos, então, que o total de divisores positivos 

de 72 é 4.3 = 12.

Ao final de mais um tópico, vemos o quanto a análise cuidadosa dos dados, 

aliada a um pouco de criatividade, faz com que desenvolvamos métodos mais 

rápidos para resolução de certos problemas. O princípio estudado aqui é essencial 

para uma boa compreensão dos tópicos que seguem.
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TÓPICO 3 Fatorial de um  
número natural
Objetivos

•	 Desenvolver e calcular expressões numéricas que 
envolvem fatorial

•	 Relacionar o fatorial com problemas de contagem e 
o PFC

De acordo com o que você aprendeu no tópico 2, nos problemas que 

envolvem o PFC e os elementos que não podem ser repetidos, a 

quantidade de escolhas possíveis para uma etapa será sempre uma 

a menos que a da etapa anterior. Um cálculo comum que aparece é n.(n – 1).(n – 2)... 

com a quantidade de fatores dependendo da quantidade de etapas do processo. Para 

facilitar ainda mais essas contas, introduzimos um conceito simples. Para cada número 

natural n, o fatorial de n (ou “n fatorial”) é denotado por n! e é calculado multiplicando-

se n por todos os números naturais menores que ele, inclusive 1.

d e f i n i ç ã o  1

Para o número inteiro positivo n, temos n! = n.(n – 1).(n – 2). ... . 3. 2.1.

Para alguns problemas, é conveniente também definir o fatorial do número 0. 

Por convenção, então, definamos 0! = 1.

Exemplo 1

Calcule o valor de 4!, 5!, 7! e 10!

Solução: Pela definição 1, temos: 

	 4! = 4.3.2.1 = 24

	 5! = 5.4.3.2.1 = 120

	 7! = 7.6.5.4.3.2.1 = 5040

	 10! = 10.9.8.7.6.5.4.3.2.1 = 3628800
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À medida que o número n aumenta, o cálculo direto de n! torna-se muito 

trabalhoso, por isso, em muitos casos, usaremos a simplificação n! = n.(n – 1)! 

para encontrar, com menos trabalho, o valor de certas expressões que envolvem o 

fatorial de números.

Exemplo 2

Calcule o valor de 

 (a) 11
10

!
!
.

Solução: Usando o fato de que 11! = 11.10!, temos: 
11
10

11 10
10

11
!
!

. !
!

= = .

(b) !7
!9

.

Solução: Aqui, podemos fazer 9! = 9.8.7! e teremos: 
9
7

9 8 7
7

72
!
!

. . !
!

= = .

(c) 13
10 3

!
! !

.

Solução: Temos: 
13

10 3
13 12 11 10

10 3
13 12 11

3 2 1
286

!
!. !

. . . !
!. !

. .
. .

= = = .

(d) )!1(
)!1(

−
+

n
n

, para qualquer n natural positivo.

 

Solução: Fazendo (n + 1)! = (n + 1).n.(n – 1)!, temos: 

nn
n

nnn
n
n

+=
−

−+
=

−
+ 2

)!1(
)!1.().1(

)!1(
)!1(

.

Com essa notação, podemos, então, simplificar as respostas de certos processos 

resolvidos pelo PFC. Veja a seguir.

Exemplo 3

De quantas maneiras diferentes podemos colocar dez livros lado a lado em 

uma estante? 

Solução: Há dez maneiras de colocar o primeiro livro, nove de colocar o segundo, 

oito para o terceiro, e assim sucessivamente. Dessa forma, o total de possibilidades 

é 10.9.8.7.6.5.4.3.2.1 = 10!.
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Exemplo 4

De um grupo de doze pessoas, de quantas maneiras podemos escolher uma 

comissão formada por um presidente, um secretário e um tesoureiro? 

Solução: Sabendo que a mesma pessoa não pode ocupar duas funções ao mesmo 

tempo, há doze maneiras de escolher o presidente, onze de escolher o secretário e 

dez para escolher o tesoureiro. Assim, o total de possibilidades é 12.11.10. Uma 

maneira alternativa de escrever esse número é 
9! 12 11 10 9! 12!12 11 10
9! 9! 9!

⋅ ⋅ ⋅
⋅ ⋅ ⋅ = = . 

Com o que foi exposto neste nosso tópico 3, você já é capaz de calcular o 

valor de expressões que envolvam o fatorial de números naturais e escrever de 

forma sucinta e usando do símbolo apropriado o resultado de certos problemas 

de contagem. Como sugestão de atividade de recapitulação, identifique quais dos 

exemplos apresentados no tópico 2 podem ter a solução expressa com o auxílio do 

símbolo de fatorial. 
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TÓPICO 4 Permutações

Objetivos

•	 Associar diretamente problemas de contagem com 
números fatoriais

•	 Identificar tipos específicos de agrupamentos

Nos tópicos iniciais desta aula, você aprendeu a identificar processos de 

contagem e a resolver alguns problemas de maneira organizada e rápida, 

além de apresentar a resposta de forma simplificada, por meio do fatorial. 

Neste tópico, iremos estudar as maneiras segundo as quais todos os elementos de um conjunto 

podem ser ordenados. Comecemos, então, com uma definição simples, mas que pode gerar 

vários problemas interessantes.

Podemos interpretar uma permutação como um ordenamento qualquer dos 

elementos do conjunto. É importante destacar que a definição 2 exige que todos 

os elementos do conjunto apareçam na sequência. Uma vez que se deve ter uma 

quantidade de termos igual à quantidade de elementos do conjunto, nenhum 

elemento pode ser repetido.

Exemplo 1

Listar todas as permutações dos elementos do conjunto B = {1, 2, 3}. 

Solução: Temos que escrever as triplas ordenadas de números distintos que podem ser 

formadas com todos os elementos de B. A lista contém (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), 

(3, 1, 2) e (3, 2, 1).

d e f i n i ç ã o  2

Dado o conjunto A = {a1, a2, ..., an
}, uma permutação dos elementos de A é 

qualquer sequência de n termos formada por todos os elementos de A
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Fazendo a associação com o que discutimos nos tópicos anteriores, podemos 

listar as permutações possíveis em um conjunto através da árvore de possibilidades 

e determinar quantas são através do Princípio Fundamental da Contagem. 

Considere, então, um conjunto com n elementos. A quantidade de maneiras 

segundo as quais podemos escolher o primeiro elemento da permutação é n. Como 

não podemos repetir elementos, o segundo elemento pode ser escolhido apenas 

entre os n – 1 restantes, o elemento seguinte, entre os n – 2 restantes e assim por 

diante até que o último elemento só possa ser escolhido de uma única forma. Então, 

a quantidade de permutações de um conjunto de n elementos será n.(n – 1).(n – 2). 

... .2.1 = n!. A quantidade de permutações de um conjunto de n elementos será 

representada por Pn. Assim, temos:

P
n
 = n! 

Dessa forma, poderíamos prever a quantidade de permutações possíveis do 

conjunto {1, 2, 3}, fazendo P3 = 3! = 6.

Um caso interessante de aplicação da fórmula para o número de permutações 

é o anagrama. Um anagrama é uma nova palavra formada com todas as letras da 

palavra original quando elas são dispostas em qualquer ordem, mesmo que o 

resultado não tenha significado. Por exemplo, MIRA, MIAR e IAMR são alguns 

dos anagramas da palavra RIMA. 

Exemplo 2

Quantos anagramas tem a palavra SOLIDEZ? 

Solução: Os anagramas de SOLIDEZ podem ser vistos como as permutações dos 

elementos do conjunto {S, O, L, I, D, E, Z}. A resposta é, portanto, P7 = 7! = 5040.

Há casos, porém, em que alguns dos elementos do conjunto que queremos 

permutar são indistinguíveis, como no caso de anagramas de palavras com letras 

repetidas. Por exemplo, se na palavra GEOMETRIA trocarmos as posições das 

duas letras E, não obteremos um novo anagrama. Assim, o total de anagramas é o 

número de permutações das letras, dividido pelo número de possibilidades que as 

letras repetidas têm de trocarem de posição. 
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Exemplo 3

Quantos anagramas tem a palavra ELEFANTE? 

Solução: A palavra ELEFANTE tem 8 letras. Então a ideia inicial era de que 

houvesse 8! anagramas, mas há três letras E, que podem trocar de posição de 3! 

maneiras diferentes. Assim, o total procurado é !3
!8

.

O exemplo 3 motiva a definição de uma fórmula para o número de permutações 

quando há elementos repetidos. Quando houver n elementos, dos quais a são 

indistinguíveis, o total de permutações será dado por: !
!

a
nPa

n =

Exemplo 4

Calcule a quantidade de anagramas da palavra ARARA. 

Solução: A palavra ARARA possui cinco letras, sendo três letras A e duas letras R. 

Assim, devemos compensar 5!, dividindo pelas maneiras segundo as quais as letras 

A podem trocar de posição sem gerar um novo anagrama, que são 3! e o mesmo 

ocorrendo para as letras R. Assim, o total de anagramas é 
5! 10

3!2!
= .

Com o que vimos no tópico 3 da nossa aula, o cálculo de permutações pode 

ser feito de maneira bem direta com o auxílio do fatorial. Você já deve, a essa altura, 

ter calculado quantos anagramas tem o seu nome.
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AULA 2 Arranjos e 
combinações

Olá! 

Começaremos agora a nossa segunda aula de matemática básica 2, que dará 

continuidade ao que estudamos na aula 1, apresentando casos específicos de 

agrupamento e técnicas de contagem que utilizam os conceitos que aprendemos 

na aula passada. Uma leitura rápida nas principais definições da aula passada 

ajudará a manter bem sedimentadas as noções de que vamos precisar para dar 

prosseguimento ao assunto. Continuemos, então.

Objetivos

•	 Apresentar variantes de agrupamento
•	 Diferenciar arranjos de combinações e decidir qual fórmula usar em cada 

caso
•	 Combinar as técnicas que facilitam o processo e/ou simplificam a maneira de 

escrever matematicamente as respostas com novas técnicas para a solução 
de problemas mais elaborados
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TÓPICO 1 Arranjos

Objetivos

•	 Distinguir um tipo especial de agrupamento
•	 Analisar e aplicar os elementos da fórmula de 

arranjos
•	 Identificar os casos nos quais a fórmula de 

arranjos pode ser usada

Como você viu na aula 1, sempre que tivermos uma quantidade n 

de objetos distintos a serem ordenados, teremos P
n
 = n! maneiras 

diferentes. Além disso, se algum desses objetos for repetido, 

devemos fazer “compensações”, como foi exposto do no final da aula 1. 

Neste tópico, continuaremos a analisar a quantidade de maneiras segundo as 

quais alguns objetos podem ser ordenados, mas com algumas restrições. Observe o 

exemplo:

Exemplo 1

Usando apenas algarismos ímpares, quantos números de três algarismos 

podem ser formados?

Solução: Aqui os algarismos disponíveis são 5, a saber, os do conjunto {1, 3, 5, 7, 

9}. Assim, há igualmente 5 possibilidades para a escolha de cada um dos algarismos, 

de onde concluímos que o total é 5.5.5 = 53.

De modo geral, se tivermos n objetos para ordenar em p posições e pudermos 

repetir os objetos, há np maneiras diferentes, pois em cada uma das posições termos 

n maneiras diferentes de escolha. 

d e f i n i ç ã o  3

Arranjo com repetição é dado pela seguinte expressão np , onde n é o total 

de objetos à disposição e p é a quantidade de posições a serem preenchidas (a 

ordem importa e os objetos podem ser repetidos).
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Exemplo 2

Quantos são os resultados possíveis de serem obtidos com o lançamento de 

sete moedas?

Solução: Nesse caso, podemos interpretar que temos dois resultados possíveis em 

cada uma das sete moedas. Daí a quantidade total de resultados é 27 = 128.

Exemplo 3

No lançamento de dois dados, o total de resultados possíveis é 62 = 36.

Agora consideremos o caso em que não podemos repetir os objetos 

envolvidos. Devemos lembrar que, sem poder repetir, para cada etapa teremos uma 

possibilidade a menos que na etapa anterior e a notação de fatorial nos ajudará a 

escrever as soluções.

Exemplo 4

Usando apenas algarismos ímpares, quantos números de três algarismos 

distintos podem ser formados?

Solução: Note que, nesse caso, há cinco possibilidades para a escolha do 

primeiro algarismo, quatro para o segundo e três para o terceiro. Assim, o total de 

possibilidades é 5.4.3. Esse número é o começo do fatorial de 5 (faltando apenas 

2!). Completando, temos 5 4 3 5 4 3
2
2

5
2

. . . . .
!
!

!
!

= = . Assim, podemos usar a notação de 

fatorial para simplificar a resposta.

Mais geralmente, se tivermos n objetos, mas apenas p posições para ordená-los, 

sem repetição, temos n possibilidades para a primeira posição, n – 1 para a segunda, 

n – 2 para a terceira e assim por diante, de modo que na última posição, termos n – 

(p – 1). Desse modo, usando o PFC, o total de possibilidades é n.(n – 1).(n – 2). ... . 

(n – p + 1). Multiplicando esse resultado por (n – p)!, completaremos n!.

Assim, ( ) ( ) ( ) ( )
( ) ( )

! !1 2  ... 1
! !

n p nn n n n p
n p n p
−

⋅ − ⋅ − − + ⋅ =
− −

, a que chamare-

mos de fórmula de arranjos simples, e usaremos quando os objetos não puderem ser 

repetidos e a ordem dos objetos importarem no resultado final. Portanto

)!(
!

, pn
nA pn −

=
  

(*)
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Só poderemos usar a fórmula (*) se p ≤ n.

Exemplo 5

Quantos anagramas de quatro letras podem ser formados com as letras da 

palavra PERNAMBUCO?

Solução: Temos dez letras distintas para ordenar em quatro posições. Devemos, 

então, calcular o valor de 
( )10,4

10! 10! 10 9 8 7 6! 5.040
10 4 ! 6! 6!

A ⋅ ⋅ ⋅ ⋅
= = = =

−
.

Exemplo 6

Uma turma de dez alunos tem aula em uma sala com quinze cadeiras. De 

quantos modos distintos as cadeiras podem ser ocupadas pelos alunos?

Solução: Aqui podemos pensar que há algo errado se usarmos diretamente a 

fórmula para n = 10 e p = 15, pois 10 – 15 = –5 e não definimos fatorial de número 

negativo. Para resolver esse problema, basta que invertamos um pouco o que é 

objeto e o que é posição. O primeiro aluno pode escolher uma dentre as 15 cadeiras 

disponíveis, enquanto o segundo aluno só tem as 14 restantes, e assim por diante. 

Com essas considerações, vamos usar a fórmula de arranjos simples, mas com 15n =  

e 10p = . Temos, então: 
( )15,10

15! 15!
15 10 ! 5!

A = =
−

. Para efeitos de simplificação, a 

resposta pode (e deve) ficar dessa forma.

Depois do que vimos neste tópico, podemos destacar que um arranjo é uma 

maneira de ordenar elementos de um conjunto, ou seja, de formar sequências 

com alguns deles. A fórmula para arranjos com repetição será usada quando os 

elementos não forem necessariamente distintos, e a fórmula para arranjos simples 

será usada quando não houver possibilidade de repetição. 
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TÓPICO 2 Combinações

Objetivos

•	 Apresentar formas de contagem quando a 
ordem não importa no resultado final

•	 Comparar combinações com arranjos

No tópico anterior, você aprendeu como obter a quantidade de 

possibilidades segundo as quais alguns objetos podem ser 

ordenados em algumas posições. Ou seja, contamos quantas 

sequências podem ser feitas com os elementos de um determinado conjunto. 

Há situações, porém, nas quais a ordem dos elementos envolvidos não altera 

o resultado final, como, por exemplo, quando escolhemos as frutas de uma salada 

ou formamos comissões sem funções pré-estabelecidas. Nesses casos, o resultado 

final é apenas um conjunto, e não uma sequência. Observe o seguinte exemplo:

Exemplo 1

Determine quantos subconjuntos com exatamente 3 elementos possui o 

conjunto W = {a, b, c, d, e, f, g}.

Solução: À primeira vista, poderíamos pensar em usar simplesmente a fórmula 

de arranjos simples e fazer 210
!4

!4.5.6.7
!4
!7

3,7 ===A , mas esse procedimento 

nos forneceria a quantidade de sequências de três letras distintas formadas pelos 

elementos de W, o que não é o que se quer, pois, apesar de as sequências (a, b, c) 

e (b, c, a) serem diferentes, os conjuntos {a, b, c} e {b, c, a} não o são. Assim, o 

resultado final deve ser compensado, da mesma forma que nas permutações com 

elementos repetidos, pelas maneiras segundo as quais estes três elementos têm de 

mudar de posição entre si, que sabemos serem P3 . Assim, o número total procurado 
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é 7,3

3

210 210
35

3! 6

A

P
= = = .

Tendo como base o exemplo 1, e relembrando o que deduzimos a respeito 

de arranjos, podemos concluir que, se tivermos um conjunto com n elementos, 

podemos formar A
n,p

 sequências de p números distintos. Mas se quisermos encontrar 

a quantidade de conjuntos com exatamente p elementos, devemos compensar o 

resultado, dividindo-o por P
p
. Assim, a quantidade de subconjuntos de p elementos 

que podem ser formados com os n elementos de um conjunto é 
p

pn

P
A ,

. A cada um 

desses subconjuntos, daremos o nome de combinação simples dos elementos e 

ao total de combinações possíveis estabelecemos a notação C
n,p

. Assim, podemos 

colocar: ,
,

n p
n p

p

A
C

P
= .

Exemplo 2

Há 20 times participando de um campeonato de futebol, no qual cada time deve 

enfrentar todos os outros apenas uma vez. Quantos são os jogos desse campeonato?

Solução: Cada jogo desse campeonato é determinado pela escolha de dois times dentre 

os 20 possíveis. Como a ordem dos times não importa, pois os jogos “time A x time B” 

e “time B x time A” não são contados duas vezes, devemos encontrar o valor de 

C20,2. Antes disso, calculamos 20,2
20! 10! 20 19 18! 380
18! 6! 18!

A ⋅ ⋅
= = = = . Chegamos, 

então, a C
C

P20 2
20 2

2

380
2

190,
,= = = .

Como sabemos calcular ,n pA  e pP , podemos encontrar uma maneira direta 

de calcular Cn,p. Façamos: 
( ) ( )

,
, ,

1 ! 1 !
! ! !

n p
n p n p

p p p

A n nC A
P P n p P n p p

= = ⋅ = ⋅ =
− −

. 

Assim, a quantidade de combinações possíveis de 

n objetos distintos em p posições será dada por: 

!)!(
!

, ppn
nC pn −

=

S a i b a  m a i s

Acesse o site: https://brasilescola.uol.

com.br/matematica/geometria-plana.

htm e revise alguns tópicos da geometria 

plana.

https://brasilescola.uol.com.br/matematica/geometria-plana.htm
https://brasilescola.uol.com.br/matematica/geometria-plana.htm
https://brasilescola.uol.com.br/matematica/geometria-plana.htm
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Exemplo 3

Determine a quantidade de diagonais de um polígono convexo de n vértices.

Solução: Uma diagonal fica bem determinada se escolhermos dois dos vértices do 

polígono, e como o segmento de reta  AB  não é diferente do segmento BA , devemos, 

então, combinar os n vértices dois a dois e do 

resultado tirar os n lados do polígono. Assim, 

se d é a quantidade de diagonais, temos d = 

,2

!
( 2)!2!n

n
C n n

n
- = -

-
 = 

.( 1).( 2)!

( 2)!2

n n n
n

n

- -
-

-
 

= 
( 1) 2

2 2

n n n-
-  = 

( 1 2)

2

n n- -
 = 

( 3)

2

n n-
 . 

Daí a conhecida fórmula para a quantidade de 

diagonais de um polígono convexo.

Vale ressaltar que, embora as situações 

de uso sejam parecidas, combinações e arranjos são diferentes no sentido de que 

nos arranjos a ordem importa e nas combinações a ordem não importa. 

Nos exercícios desta aula, você terá a oportunidade de treinar situações em que essa 

diferença é percebida. Mas, antes disso, acompanhe os exemplos do tópico seguinte, que 

reforçam a distinção entre arranjos e combinações.

g u a r d e  b e m  i s s o

Uma vez que nos arranjos a ordem importa, é 

natural que a quantidade de combinações nunca 

ultrapasse a quantidade de arranjos. Ou seja, em 

linhas gerais, podemos dizer que np npC A≤
.
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TÓPICO 3 Problemas diversos
Objetivos

•	 Resolver problemas de contagem que envolvam 
diversas técnicas

•	 Simplificar algumas expressões com arranjos e 
combinações

Nesta aula, já aprendemos fórmulas para calcular o número de 

arranjos e de combinações. Depois de rever os exemplos do tópico 

anterior, a diferença entre arranjos e combinações deve estar bem 

clara para você. Neste tópico, veremos uma série de exemplos nos quais podemos 

usar as fórmulas para A
n,p e C

n,p. Vamos lá!

Exemplo 1

Calcule C5,p para todos os valores possíveis de p.

Solução: Observe que, para que o cálculo de C
5,p seja possível, é necessário que p 

seja um inteiro com 0 ≤ p ≤ 5. Não podemos calcular C
5,6, por exemplo, pois isso 

significaria formar grupos de 6 objetos tendo apenas cinco objetos à disposição. 

Usando a fórmula obtida no tópico anterior, podemos, fazer:

5,0

5! 5!
1

(5 0)!0! 5!.1
C = = =

-
	

5,1

5! 5.4!
5

(5 1)!1! 4!.1
C = = =

-

5,2

5! 5.4.3!
10

(5 2)!2! 3!.2
C = = =

-

	
5,3

5! 5.4.3!
10

(5 3)!3! 2!3!
C = = =

-

5,4

5! 5.4!
5

(5 4)!4! 1!4!
C = = =

-

	

5,5

5! 5!
1

(5 5)!5! 0!5!
C = = =

-
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Neste exemplo, há algumas “coincidências”. Por exemplo, os números C5,2 e C5,3 

são iguais, o mesmo acontecendo com C5,1 e C5,4. Esse fato pode ser explicado da se-

guinte forma: quando, de um grupo de 5 objetos, escolhemos 3, automaticamente 

deixamos 2 de fora. Assim, escolher os 3 da combinação é equivalente a escolher 

dois para não fazer parte dela. Podemos provar de forma mais geral o seguinte fato:

A partir daqui, veremos alguns exemplos de como as combinações e os 

arranjos podem ser usados em problemas de contagem e como optar corretamente 

pelo uso de uma ou de outra fórmula.

Exemplo 2

Em uma circunferência são destacados oito pontos distintos. Quantos 

triângulos podem ser formados cujos vértices sejam três dos pontos dados?

Solução: Para que formemos um triângulo, são necessários três pontos, então 

devemos ver de quantas maneiras podemos escolher três dos oito pontos dados. 

Aqui surge um questionamento: vamos usar A8,3 ou C8,3? A principal diferença 

entre os dois é que para arranjos a ordem importa e para combinações, não. Como 

o triângulo ABC não é diferente do triângulo BCA, a ordem com que escolhemos os 

três pontos não é relevante. Assim, calculamos 8,3

8! 8.7.6.5!
56

(8 3)!3! 5!.6
C = = =

-
.

Exemplo 3

Em uma prova de natação com oito atletas, quantas são as possibilidades de 

formação de pódio com distribuição de medalha de ouro, de prata e de bronze?

Solução: Aqui temos oito atletas para dispor nas três posições do pódio e surge a 

mesma pergunta: arranjos ou combinações? Como há uma ordem em cada pódio, 

devemos usar a fórmula para arranjos. Assim, temos 8,3

8! 8.7.6.5!
330

(8 3)! 5!
A = = =

-

p r o p o s i ç ã o

Se os números npC  e nqC  podem ser calculados e, além disso, p q n+ = , 

então np nqC C= .

Demonstração: Se p q n+ = , temos, claramente, que n – p = q e n – q = p. As-

sim: 

,

!
( )! !n p

n
C

n p p
=

-
 = 

!
! !
n

q p
, mas ,

!
( )! !n q

n
C

n q q
=

-
 = 

!
! !
n

q p
, logo np nqC C= .
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Exe m p lo 4

Para que valor natural de m vale a igualdade A
m,5

 = 180.C
m,3 

?

Solução: A equação dada é equivalente a ! !
180.

( 5)! ( 3)!3!
m m

m m
=

- -
. Dividindo 

ambos os membros da igualdade por m! e calculando 3!, temos 1 180
( 5)! ( 3)!.6m m

=
- -

, 

que é equivalente a 6.(m – 3)! = 180.(m – 5)!. Dividindo ambos os membros da 

igualdade por 6 e usando o fato de que (m – 3)! = (m – 3).(m – 4).(m – 5)!, obtemos 

(m – 3).(m – 4).(m – 5)! = 30.(m – 5)! 

(m – 3).(m – 4) = 30 

m2 – 7m + 12 = 30 

m2 – 7m – 18 = 0, que é uma equação do segundo grau com raízes 9 e –2, mas 

como C
m,5 só faz sentido quando m é natural maior ou igual a 5, a única solução válida é 

m = 9.

No próximo exemplo, veremos que, em um mesmo problema de contagem, 

podemos usar mais de uma fórmula para obter o resultado desejado.

Exemplo 5

De um grupo de 13 homens e 9 mulheres, quantas comissões de cinco pessoas 

podem ser formadas, com, necessariamente, três homens e duas mulheres?

Solução: Aqui, o problema pode ser dividido em duas etapas: a escolha dos homens 

e a escolha das mulheres da comissão. Se soubermos de quantas maneiras cada um 

desses dois procedimentos pode ser feito, basta que multipliquemos os resultados. 

Como há 13 homens, há C13,3 maneiras de escolher os homens da comissão. Como 

há 9 mulheres, há C9,2 maneiras de escolher as mulheres. Dessa forma, o total de 

comissões possíveis é C13,3.C9,2 = 10296 (confira).

Como último exemplo desta aula, vejamos um caso no qual devemos analisar 

e separar os elementos que temos à disposição antes de aplicar alguma fórmula.

Exemplo 6

Os funcionários de uma microempresa, entre os quais Júlia e Augusto, devem 

fazer uma viagem para representá-la, mas só há vagas para quatro pessoas. De todas 

as possibilidades de escolha dos que vão viajar, há 28 maneiras para que Júlia e 

Augusto viajem juntos. Quantos são os funcionários da empresa?
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Solução: Veja aqui que, se chamarmos de n a quantidade de funcionários 

da empresa, inicialmente há C
n,4 possibilidades de escolha para os quatro 

representantes. Entretanto, sabemos que, em um grupo no qual Júlia e Augusto 

viajam juntos, só há vagas para mais dois funcionários, que devem ser escolhidos 

entre os restantes, que são n – 2. Assim, temos a equação C
n-2,2 = 28. Resolvendo-a, 

obtemos 

2,2

( 2)!
28

(( 2) 2)!2!n

n
C

n-

-
= =

- -

( 2).( 3).( 4)!
28

( 4)!.2

n n n

n

- - -
=

-

(n – 2).(n – 3) = 56, daí n2 – 5n + 6 = 56, o que resulta em  n2 – 5n – 50 = 

0, que tem raízes n = 10 e n = –5. Esta última possibilidade deve ser descartada, 

pois n deve ser um número natural. Daí, concluímos que a empresa possui 10 

funcionários.

Agora que você já conhece arranjos e combinações, procure identificar 

situações do cotidiano em que as fórmulas para A
n,p e C

n,p podem ser usadas. Uma 

breve recapitulação desses conceitos é sugerida. Você verá que já temos muitas 

ferramentas interessantes para resolver problemas de contagem. Ao trabalho, então!
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AULA 3 Triângulo de Pascal e 
Binômio de Newton 

Olá aluno (a), 	

Nesta aula, veremos a análise combinatória de um ponto de vista mais técnico, 

fornecendo os elementos necessários para a construção, com o rigor matemático 

adequado, de relações entre os números de arranjos e de combinações. Veremos 

também como esses números podem ser usados em situações específicas da 

Álgebra, como no desenvolvimento de expressões do tipo ( )nx y+ , para n natural.

Objetivos

•	 Definir os números binomiais e estabelecer relações entre eles
•	 Determinar os números binomiais de maneira direta através apenas de 

somas
•	 Construir uma tabela de números binomiais
•	 Desenvolver a fórmula para o termo geral do desenvolvimento de um 

binômio de Newton
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TÓPICO 1 Números Binômiais
Objetivos

•	 Definir números binomiais
•	 Observar relações importantes entre os números 

binomiais
•	 Resolver equações que envolvam números 

binomiais

Nas últimas aulas, vimos como verificar a quantidade de elementos de 

determinados conjuntos de maneira indireta, porém de forma bem mais 

objetiva do que a contagem 

elemento a elemento. Vimos também que, em casos 

específicos, podemos escrever as respostas de 

maneira simplificada usando a notação de fatorial.

A partir daqui, utilizaremos o que foi 

aprendido nas aulas anteriores, investigando mais 

a fundo as propriedades entre a quantidade de 

combinações, para a qual daremos o nome especial 

de número binomial, bem como uma notação 

especial.

Dados os números naturais n e p, com p n≤ , o número binomial 







p
n

 é definido 

simplesmente como o número de combinações de n objetos em p posições, ou seja, por  ,n pC .

S a i b a  m a i s

Faça uma revisão dos conceitos básicos de 

fatorial acessando ao site:

http://www.matematicadidatica.com.br/

Fatorial.aspx

d e f i n i ç ã o  1

!)!(
!

ppn
n

p
n

−
=








, para p n≤ . O número n é chamado de numerador e o 

número p é o denominador do número binomial.

http://www.matematicadidatica.com.br/Fatorial.aspx
http://www.matematicadidatica.com.br/Fatorial.aspx
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Acompanhe o seguinte exemplo, em que foi 

utilizado aplicação direta da definição.

Exemplo 1

Calcule o valor de 







+







3
6

2
6

.

Solução: Usando a definição 1, temos 

6 6! 6 5 4! 15
2 4! 2! 4! 2!
  ⋅ ⋅

= = =  ⋅ ⋅ 

e 
6 6! 6 5 4 3! 20
3 3! 3! 3! 6!
  ⋅ ⋅ ⋅

= = =  ⋅ ⋅ 
. 

Assim, 
6 6

15 20 35
2 3
   

+ = + =   
   

.

Como vimos na aula passada, sempre que p + q = n, então C
n,p = C

n,q. Dessa 

forma, podemos escrever esta regra como primeira propriedade para os números 

binomiais.

A demonstração para a proposição é imediata a partir do que já foi feito na aula 

passada, portanto será omitida.  Com essa propriedade, quando quisermos calcular 

todos os números binomiais de um determinado numerador, na verdade, só precisa-

remos fazer as contas para metade dos números. Por exemplo, temos que 
3 3

0 3

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
 

e 
3 3

1 2

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
.

p r o p o s i ç ã o  1

Os números binomiais 







p
n

 e 







q
n

 são iguais se, e somente se, p = q ou p q n+ = . 

 Dizemos, nesse caso, que os números binomiais 







p
n

 e 







q
n

 são complementares.

at e n ç ã o !

Vale ressaltar que, embora os termos 

“numerador” e “denominador” sejam 

usados, não se deve confundir um número 

binomial com uma fração.  Por isso não se 

pode simplificar diretamente “dividindo” 

os termos pelo menos número.
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Exemplo 2

Para a equação 
15 15

x 9

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
, há a solução imediata x = 9, mas também devemos 

considerar o caso de números complementares, ou seja, x + 9 = 15, que resulta em x = 

6, que é a outra solução. Assim, a solução do problema é o conjunto {6, 9}.

Há várias outras propriedades interessantes a respeito de números binomiais. 

A seguir, listaremos dois números vbinomiais específicos. 

Uma vez que n + 0 = n, podemos, usando as propriedades 1 

e 2, concluir que também vale 1
n

n

æ ö÷ç ÷=ç ÷ç ÷çè ø
, para 

qualquer número natural n. Assim, se listarmos 

todos os números binomiais de um mesmo 

numerador em ordem crescente de denominador, o 

primeiro e o último elementos sempre serão iguais 

a 1. Você poderá calcular, por exemplo, todos os 

números binomiais com numerador 6 para verificar 

este fato e treinar as propriedades. A seguir, destacamos outra propriedade relevante a 

respeito dos números binomiais, a qual também poderá ser chamada de Relação de Stifel.

p r o p o s i ç ã o  2

Para qualquer número natural n ≥ 1, vale 1
0

næ ö÷ç ÷=ç ÷ç ÷çè ø
 e 

1

n
n

æ ö÷ç ÷=ç ÷ç ÷çè ø
. 

Demonstração: Pela definição, temos: ! !
1

0 ( 0)!.0! !.1

n n n
n n

æ ö÷ç ÷= = =ç ÷ç ÷ç -è ø
 e 

.( 1)!!
1 ( 1)!.1! ( 1)!.1

n n nn
n

n n

æ ö -÷ç ÷= = =ç ÷ç ÷ç - -è ø
.  Uma maneira equivalente de verificar es-

se fato é perceber que, de n objetos, podemos formar exatamente um conjunto 

com nenhum objeto (o conjunto vazio), e n conjuntos com 1 objeto.

S a i b a  m a i s

Conheça um pouco da história do matemático 

alemão Michael Stifel acessando ao site: https://

www.somatematica.com.br/biograf/stifel.php.

https://www.somatematica.com.br/biograf/stifel.php
https://www.somatematica.com.br/biograf/stifel.php
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Essa demonstração é bem técnica, porém, uma vez completada, podemos 

fazer-lhe uso para simplificar alguns cálculos. Acompanhe os seguintes exemplos:

Exemplo 3

Se quisermos encontrar todos os valores de k para os quais 
12 11 11

k 4 5

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷= +ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

, podemos simplificar o segundo membro usando a Relação de Stifel para n = 11 e p = 

4. Assim a igualdade se torna 
12 12

k 5

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
, que sabemos ser verdade para k = 5 e para 

k + 5 = 12, logo k = 7. 

Exemplo 4

Calcule o valor de 
5 5 6 7 8

2 3 4 5 6

æ ö æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷+ + + +ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è ø
. 

Solução:  Podemos usar a proposição 3 e perceber que 
5 5 6

2 3 3

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷+ =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
.  

Basta fazer n = 5 e p = 3.  

Assim, 
5 5 6 7 8

2 3 4 5 6

æ ö æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷+ + + +ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç ç÷ ÷ ÷ ÷ ÷ç ç ç ç çè ø è ø è ø è ø è ø
 = 

6 6 7 8

3 4 5 6

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷+ + +ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø
. Usando novamente a 

propriedade 3 para as duas primeiras parcelas, temos 
7 7 8

4 5 6

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷+ +ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
. E novamente: 

p r o p o s i ç ã o  3

Para quaisquer números naturais n e p, com p < n, vale 
1

1 1

n n n

p p p

æ ö æ ö æ ö+÷ ÷ ÷ç ç ç÷ ÷ ÷+ =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç+ +è ø è ø è ø. Os 

números binomiais do primeiro membro são chamados de consecutivos.

Demonstração: Pela definição, o primeiro membro da igualdade vale:

! !
1 ( )! ! ( ( 1))!( 1)!

n n n n
p p n p p n p p

æ ö æ ö÷ ÷ç ç÷ ÷+ = +ç ç÷ ÷ç ç÷ ÷ç ç + - - + +è ø è ø  = 

= 

! !
( )( 1)! ! ( 1)!( 1). !

n n
n p n p p n p p p

+
- - - - - +  = 

= 

!.( 1) !.( )

( ).( 1)!( 1). !

n p n n p

n p n p p p

+ + -
- - - +  = 

!.( 1 )

( )!( 1)!

n p n p

n p p

+ + -
- +  = 

= 

!.( 1)

(( 1) ( 1))!( 1)!

n n

n p p

+
+ - + +  = 

( 1)!

(( 1) ( 1))!( 1)!

n

n p p

+
+ - + +  = 

1

1

n

p

æ ö+ ÷ç ÷ç ÷ç ÷ç +è ø
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8 8

5 6

æ ö æ ö÷ ÷ç ç÷ ÷+ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
. Ainda mais uma vez e tudo que precisamos calcular é o valor de 

9

6

æ ö÷ç ÷ç ÷ç ÷çè ø
 = 

9! 9.8.7.6! 504
84

3!6! 6.6! 6
= = = .

 No próximo tópico, juntaremos todas as informações vistas até esse momento em 

uma tabela que facilitará, e muito, o processo de encontrar números binomiais, além de 

deixar ainda mais evidentes certas relações entre eles. Reveja os exemplos para que essa 

nova forma de representar a quantidade de combinações lhe seja mais familiar. 
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TÓPICO 2 O Triângulo de Pascal

Objetivos

•	 Observar relações entre números binomiais
•	 Analisar as propriedades do triângulo de Pascal

Aqui organizaremos os números binomiais, fazendo uso das 

propriedades apresentadas no tópico anterior. A “tabela” 

resultante dessa organização é conhecida como Triângulo de 

Pascal  e é muito útil na determinação direta quando quisermos vários números 

binomiais.

Inicialmente, vamos dispor os números binomiais com o mesmo numerador em 

uma linha em ordem crescente de denominador. Como o número binomial 
n

p

æ ö÷ç ÷ç ÷ç ÷çè ø
 só faz 

sentido se 0 ≤ p ≤ n, a linha que contém todos os números binomiais de numerador n 

terá n + 1 elementos (lembre que aqui estamos contando a partir do 0). Por exemplo, 

se listarmos sucessivamente para n = 0, 1, 2, 3, 4 e 5, temos (ver figura 1):

Figura 1 – Números binomais para 5n£

0p = 1p = 2p = 3p = 4p = 5p =

0n =
0
0
 
 
 

1n =
1
0
 
 
 

1
1
 
 
 

2n =
2
0
 
 
 

2
1
 
 
 

2
2
 
 
 
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Como 
0
n n

n
   

=   
   

 = 0, para qualquer natural n, cada linha começará e 

terminará com o número 1. Para encontrar os números do “miolo”  da tabela, podemos 

usar a relação de Stifel, a partir dos elementos da linha anterior, a partir do esquema  

da figura 2:

Figura 2 – Cálculo do nº linha

Assim, se soubermos dois elementos consecutivos de uma linha da tabela, 

basta que os somemos para obter o elemento imediatamente abaixo. Assim, para 

que encontremos todos os elementos da linha n = 5, basta que conheçamos todos os 

elementos da linha n = 4. O processo começa simples porque sabemos que, tanto na 

linha n = 0 como na linha n = 1, todos os elementos valem 1. Se quisermos, então, 

3n =
3
0
 
 
 

3
1
 
 
 

3
2
 
 
 

3
3
 
 
 

4n =
4
0
 
 
 

4
1
 
 
 

4
2
 
 
 

4
3
 
 
 

4
4
 
 
 

5n =
5
0
 
 
 

5
1
 
 
 

5
2
 
 
 

5
3
 
 
 

5
4
 
 
 

5
5
 
 
 
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identificar os elementos da linha n = 2, temos de começar e terminar por 1 e o 

outro elemento será a soma dos dois elementos acima e à esquerda. O procedimento 

é repetido para as linhas seguintes, de forma a encontrar os números binomiais 

usando apenas somas. As cinco primeiras linhas se tornam  como observado na 

figura 3:

Figura 3: Cálculo dos números binomiais das 6 primeiras linhas do Triângulo de Pascal

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

n = 0 1
n = 1 1 1
n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

Dessa forma, a construção do Triângulo de Pascal nos permite afirmar 

diretamente que 
5

10
3
 

= 
 

 e 
4

6
2
 

= 
 

.

Exemplo 1:

Um coquetel é formado por duas ou mais bebidas distintas. Dispondo de seis 

bebidas diferentes, quantos coquetéis podemos formar? 

Solução: A quantidade de coquetéis que podem ser preparados com 

2 bebidas é 
6
2
 
 
 

,  com 3 bebidas a quantidade é 
6
3
 
 
 

 e assim por 

diante. Calculemos, então, 
6 6 6 6 6
2 3 4 5 6
         

+ + + +         
         

. Usando a 

linha 5n =  do Triângulo de Pascal, podemos encontrar a linha 6n =   

e obter de forma mais direta os números binomiais procurados, conforme figura 4.
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Figura 4 – Cálculo da 6ª linha

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

 A soma 
6 6 6 6 6
2 3 4 5 6
         

+ + + +         
            

vale, dessa forma, 

15 20 15 6 1 57+ + + + + = .

Com essa construção, se precisarmos de vários números binomiais para a 

resolução de um problema, uma maneira prática para obtê-los será o desenvolvimento 

do Triângulo de Pascal. 

Para fecharmos o tópico, construa um triângulo de Pascal até a linha 8n =  e  

verifique, com os exemplos da aula passada, como os números binomiais poderiam 

ter sido encontrados diretamente.
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TÓPICO 3 Binômio de Newton
Objetivos

•	 Identificar expressões binomiais
•	 Realizar comparações entre potências de binômios  

e o Triângulo de Pascal

•	 Obter a fórmula do termo geral do desenvolvimento 

de expressões do tipo ( )nx y+

Nos tópicos passados estudamos o 

número de combinações de forma 

abstrata, ou seja, sem fazer relação 

com nenhum processo real. Neste tópico, relacionaremos 

os números binomiais a expressões matemáticas. Aqui 

queremos estudar o desenvolvimento de expressões do 

tipo (x + y)n, para qualquer n natural. Uma expressão 

do tipo citado é conhecida como binômio de Newton. 

Comecemos pelos casos conhecidos, que chamamos de produtos notáveis.

Exemplo 1

Obtenha o desenvolvimento de (x + y)n para n = 0, 1, 2 e 3.

Solução: Temos: (x + y)0 = 1 e (x + y)1 = x + y.

(x + y)2 = (x + y).(x + y) = x2 + xy + xy + y2 = x2 + 2xy + y2.  

(x + y)3 = (x + y)2.(x + y) =  (x2 + 2xy + y2).(x + y) = x3 + 3x2y + 3xy2 + y3.

Se listarmos esses produtos explicitando todos os coeficiente e expoentes de x e de 

y, teremos:

Para n = 0,	 (x + y)0 = 1x0y0

Para n = 1,	 (x + y)1 = 1x1y0 + 1x0y1

Para n = 2,	 (x + y)2 = 1x2y0 + 2x1y1 + 1x0y2 

Para n = 3, 	 (x + y)3 = 1x3y0 + 3x2y1 + 3x1y2 + 1x0y3 \	 	

S a i b a  m a i s

Para revisar tópicos dos conceitos de 

produtos notáveis, acesse o site https://

www.infoescola .com/matemat ica/

produtos-notaveis/.

https://www.infoescola.com/matematica/produtos-notaveis/
https://www.infoescola.com/matematica/produtos-notaveis/
https://www.infoescola.com/matematica/produtos-notaveis/
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Observando o exemplo 1, podemos tirar algumas conclusões a respeito 

desses desenvolvimentos:

os coeficientes de cada linha são os mesmos da linha correspondente no Triân-

gulo de Pascal
•	 o expoente da variável x começa igual a n e depois vai diminuindo 

uma unidade até zerar.
•	 o expoente da variável y começa igual a 0 e depois vai aumentando 

uma unidade até n.

Assim, seguindo essa tendência, podemos escrever o desenvolvimento de (x + y)4,  

vendo que teremos cinco termos com coeficientes 1, 4, 6, 4, 1 (obtidos da linha 

n = 4 no Triângulo de Pascal). O primeiro desses termos terá x com expoente 4, 

diminuindo uma unidade para cada termo seguinte, e y com expoente 0, aumentando 

uma unidade até atingir 4. A sequência será x4y0, x3y1, x2y2, x1y3, x0y4. Juntando as 

duas informações, podemos escrever:

(x + y)4 = 1x4y0 + 4x3y1 + 6x2y2 + 4x1y3 + 1x0y4 ou, simplesmente x4 + 4x3y + 6x2y2 + 4xy3 

+ y4.

Exemplo 2

Usando a suposição acima, escreva o desenvolvimento de (x + y)5.

Solução: Os elementos da linha 5n =  do Triângulo de Pascal são 1, 5, 10, 10, 5, 

1. Para cada um deles, colocamos x com expoentes decrescentes e y com expoente 

crescente. Assim, podemos escrever, (x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4+ 
y5.

Pelo que vimos até aqui, podemos supor que, ao desenvolver uma expressão 

do tipo (x + y)n, os coeficientes serão os elementos da linha n do Triângulo de 

Pascal, a saber, os números binomiais   
0 1 2
n n n n

, , , ... ,
n

       
       
       

 com x começando com 

expoente n, diminuindo uma unidade até zerar e o expoente de y começando com zero 

até atingir n. Assim: 
nnnnn yx

n
n

yx
n

yx
n

yx
n

yx 022110 ...
210

)( 







++








+








+








=+ −−

Antes de provar que o desenvolvimento acima vale para qualquer n, vamos 

fazer um exemplo para treinar a técnica. 
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Exemplo 3

Usando a fórmula acima, obtenha o desenvolvimento de 6( 2)x + .

Solução: Basta fazer y = 2 e usar os elementos da linha n = 6 do Triângulo de 

Pascal. Teremos:

605142332415066 2
6
6

2
5
6

2
4
6

2
3
6

2
2
6

2
1
6

2
0
6

)2( xxxxxxxx 







+








+








+








+








+








+








=+

Fazendo os cálculos iniciais, teremos 

6 6 5 4 3 2( 2) 6 .2 15 .4 20 .8 15 16 6 .32 64x x x x x x x+ = + + + + + +

Por fim, 6 6 5 4 3 2( 2) 12 60 160 240 192 64x x x x x x x+ = + + + + + + .

Por mais trabalhoso que possa parecer, ainda assim é mais prático do que 

multiplicar (x + y) por ele mesmo seis vezes. Entretanto, nem sempre será necessário 

fazer o desenvolvimento completo (há situações em que isso é impraticável). O 

que é interessante é saber que a expressão acima nos fornece qualquer termo do 

desenvolvimento.  

Antes de ver tais problemas, vamos à formalização do resultado.

T E O R E M A  1                                      Para qualquer n natural, tem-se que 
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=+ −−   (*)

Demonstração: Inicialmente, sabemos que ( ) ( ).( ).....( )nx y x y x y x y+ = + + + , 

com o produto feito n vezes. Usando a distributividade, sabemos que cada termo 

do resultado poderá usar um x ou um y de cada fator. Assim, ele será uma expres-

são do tipo q px y , na qual q representa a quantidade de fatores nos quais o ter-

mo x foi escolhido e p representa a quantidade de fatores nos quais o termo y foi 

escolhido. Como o total de fatores é n, temos necessariamente que p q n+ = , 

de onde concluímos que q n p= − . Além disso, essas parcelas podem ser repeti-

das de acordo com as maneiras segundo as quais podemos escolher em qual dos fato-

res selecionaremos y. A quantidade dessas parcelas é ,n pC . Desse modo, cada termo 

do tipo n p px y−
 terá como coeficiente o número binomial 








p
n

, com 0 p n≤ ≤ , 

o que demonstra o resultado.



Matemát ica  Bás ica  I I46

Na expressão do teorema, o primeiro termo ocorre para 

0p = , o segundo para 1p =  e assim por diante. Assim, se quisermos saber o 

oitavo termo no desenvolvimento de um binômio de Newton, devemos fazer 

7p = . Dessa forma, podemos dizer que a expressão 
ppn yx

p
n −








 é o termo de 

ordem 1p + do desenvolvimento de ( )nx y+ .

Exemplo 4

Qual o quinto termo no desenvolvimento de 7(2 3)a +  em potências decrescentes 

de a?

Solução: Aqui podemos usar diretamente a expressão obtida acima para n = 7, p = 4 

(pois queremos o quinto termo), x = 2a e y = 7. Temos, então que o quinto termo (T5) 

será igual a 
433)2(

4
7

a







. Usando o triângulo de Pascal ou calculando diretamente, 

obtemos
 

7
35

4
 

= 
 

. Como 3 4 3 3
52 8 3 81, 35.8 .81 22680   T a a= = = =e .

Um resultado bem interessante da fórmula (*) aparece se fizermos 1x =  e 

1y = . Veja:
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para 1x =  e 1y = ,  fica:
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n
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nnnnn ...

210
2 , ou seja, a soma de todos os elementos da linha n 

do Triângulo de Pascal é igual a 2n. Você pode verificar isso nas primeiras linhas 

do triângulo construído nesta aula. 
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Exemplo 5 

Quantos subconjuntos possui o conjunto V = {a, b, c, d, e}?

Solução: 

O conjunto V possui 5 elementos. A partir dele, temos de ver quantos 

subconjuntos podemos formar com 0, 1, 2, 3, 4 ou 5 elementos. Essas quantidades 

são 
5

0

æ ö÷ç ÷ç ÷ç ÷çè ø
, 

5

1

æ ö÷ç ÷ç ÷ç ÷çè ø
, 

5

2

æ ö÷ç ÷ç ÷ç ÷çè ø
, 

5

3

æ ö÷ç ÷ç ÷ç ÷çè ø
, 

5

4

æ ö÷ç ÷ç ÷ç ÷çè ø
 e 

5

5

æ ö÷ç ÷ç ÷ç ÷çè ø
, respectivamente. Assim, temos que encontrar 

5 5 5 5 5 5

0 1 2 3 4 5

æ ö æ ö æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç ç÷ ÷ ÷ ÷ ÷ ÷+ + + + +ç ç ç ç ç ç÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç ç÷ ÷ ÷ ÷ ÷ ÷ç ç ç ç ç çè ø è ø è ø è ø è ø è ø
, que é igual a 25.

De modo geral, podemos aqui concluir um fato simples da Teoria de Conjuntos: 

Se um conjunto tem n elementos, a quantidade de seus subconjuntos é 2n.

Agora que já sabemos por que C
n,p pode ser chamado de número binomial, 

podemos ir ao próximo tópico e observar outras aplicações para os resultados obtidos 

até aqui.
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TÓPICO 4 Binômio de Newton – 
Aplicações
Objetivos

•	 Analisar problemas que envolvem binômio de 
Newton

•	 Estudar o desenvolvimento de expressões 
do tipo ( )nx y+

Pelo que vimos no tópico anterior, o termo 

geral no desenvolvimento de (x + y)n  

em potências decrescentes de x é 1
n p p

p

n
T x y

p
-

+

æ ö÷ç ÷=ç ÷ç ÷çè ø
. Aqui vamos 

aprender como aplicar essa expressão e os demais resultados vistos na aula. 

Comecemos pela questão abaixo:

Exemplo 1

Encontre o coeficiente de x3 no desenvolvimento de (x + 4)5.

Solução: Nesse caso, o termo geral será 5
1

5
4p p

pT x
p

-
+

æ ö÷ç ÷=ç ÷ç ÷çè ø
. Para obter o coeficiente 

de x3, devemos fazer 5 – p = 3, ou seja, p = 2. Assim, teremos o terceiro termo: 

5 2 2
2 1

5
4

2
T x -

+

æ ö÷ç ÷=ç ÷ç ÷çè ø
 = 10x3.16. Ou seja, o coeficiente procurado é 160.

Como visto neste exemplo, nem sempre precisamos encontrar todos os coeficientes 

de um desenvolvimento para obter a resposta para um problema de binômio de Newton. 

No mesmo exemplo dado, se quiséssemos vários coeficientes, seria interessante escrever 

o Triângulo de Pascal até a linha n = 5. Na verdade, ter o Triângulo de Pascal até a linha 

n = 8 será de muita utilidade para todos os demais exemplos deste tópico.

AULA 3 TÓPICO 4
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Exemplo 2

Encontre o termo independente de x no desenvolvimento de 

61






 +

x
x .

Solução:  O termo geral do desenvolvimento é 

6
1

6 1 p
p

pT x
p x

-
+

æ ö æ ö÷ç ÷ç÷=ç ÷ç÷ ÷çç ÷ç è øè ø
 = 6

6 1
.p

px
p x

-
æ ö÷ç ÷ç ÷ç ÷çè ø

 = 6 2
6

px
p

-
æ ö÷ç ÷ç ÷ç ÷çè ø

.  

O termo independente de x é aquele que possui x com expoente 0. Logo, fazemos 6 

– 2p = 0 para encontrar o p desejado. Temos p = 3 e, assim, determinamos o quarto 

termo: T4 = 6 (2.3)6
20

3
x -

æ ö÷ç ÷ =ç ÷ç ÷çè ø
.

No desenvolvimento de expressões do tipo (x – y)n, podemos fazer x – y = x + (–y) e 

aplicar os procedimentos do que já determinamos anteriormente. Siga o exemplo:

Exemplo 3

Encontre o sexto termo do desenvolvimento de (3x – 2)7.

Solução:  Fazendo 3x – 2 = 3x + (–2), o termo geral fica 7
1

7
(3 ) ( 2)p p

pT x
p

-
+

æ ö÷ç ÷= -ç ÷ç ÷çè ø
, no 

qual devemos fazer p = 5 para obter o sexto termo. Assim: 7 5 5
5 1

7
(3 ) ( 2)

5
T x -

+

æ ö÷ç ÷= -ç ÷ç ÷çè ø
, 

ou seja T6 = 21.(3x)2(–2)5 = 21.9x2.(–32)= –6048x2.

 Exemplo 4

No desenvolvimento de (a – 3b)n, há nove termos. Encontre o terceiro deles. 

Solução: Neste problema, não temos diretamente o valor do expoente, mas sabemos 

que, no desenvolvimento de um binômio com expoente n, há n + 1 termos assim, 

podemos concluir, pelo exposto no enunciado, que n + 1 = 9, de onde tiramos n = 

8. O termo geral fica 8
1

8
( 3 )p p

pT a b
p

-
+

æ ö÷ç ÷= -ç ÷ç ÷çè ø
, no qual devemos usar p = 2 para ober 

o terceiro termo 8 2 2
2 1

8
( 3 )

2
T a b-

+

æ ö÷ç ÷= -ç ÷ç ÷çè ø
. Assim, obtemos T3 = 28.a6.9b2 = 252a6b2.

 Até aqui, já temos bastante material para resolver diversos problemas de 

análise combinatória e binômio de Newton. Sugerimos que você faça uma breve 

recapitulada nos temas desta aula. Agora, partamos para os exercícios.
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AULA 4 Números complexos I

Olá aluno (a), 	

Nesta aula, começaremos a abordar o conjunto dos números complexos,  que 

servirá como um complemento para o estudo sobre Conjuntos Numéricos 

feito na disciplina de matemática básica I. Aqui introduziremos o conceito de 

unidade imaginária, estendendo o conjunto dos números reais, e analisaremos as 

principais propriedades, verificando como se processam as operações aritméticas 

elementares nesse novo conjunto. Para tanto, sempre que for necessário, faça 

uma revisão na aula que trata sobre os números reais daquela disciplina. 

Objetivos

•	 Estabelecer a construção do conjunto dos números complexos a partir dos 
números reais

•	 Realizar operações com números que envolvam a unidade imaginária
•	 Apresentar conceitos pertinentes, como módulo e conjugado de um número 

complexo

AULA 4
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TÓPICO 1 Definições

Objetivos

•	 Identificar problemas algébricos sem 
solução no conjunto dos números reais

•	 Apresentar a unidade imaginária
•	 Definir o conjunto dos números complexos

No conjunto dos números naturais, não se pode fazer a operação 

5 8− , uma vez que isso representaria tirar oito elementos de um 

conjunto que possui cinco elementos. Além disso, se 5 8 n− = , 

teríamos 5 8 n= + , mas, como 8 é maior que 5, tal natural n não existe. Entretanto, 

como já foi estudado, podemos associar a ideia de número negativo, dando ao 

símbolo “ 3− ” o significado do número que precisamos somar ao número 8 para 

obter o número 5. Com essa técnica, criamos o conjunto dos números inteiros, no 

qual todo número possui inverso aditivo e a subtração m n− é sempre possível, 

para quaisquer inteiros m e n.

No conjunto dos números inteiros, não se pode fazer a operação 
12
5

, uma 

vez que isso representaria encontrar um número n tal que 
12
5

n= , o que equivale 

a 5 12n = , mas sabemos que 12 não é múltiplo inteiro de 5, logo tal inteiro n 
não existe. Entretanto, como já foi estudado, podemos associar a ideia de número 

não-inteiro, dando ao símbolo “
12
5

” o significado do número que precisamos 

multiplicar por 5 para obter 12. Com essa técnica, criamos o conjunto dos números 

racionais, no qual todo número diferente de zero possui inverso multiplicativo e a 

divisão 
a
b

 é sempre possível para quaisquer racionais a e b, com 0b ≠ .

No conjunto dos números racionais, há alguns problemas que não podem ser 

resolvidos, como encontrar um número x tal que 2 2x =  (sabemos que 2  não é um 
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número racional) ou encontrar um número y tal que 2 3y =  (sabemos que 2log 3  não 

é um número racional). Para resolver tais problemas, estudamos os números reais, pois, 

através deles, podemos calcular, por exemplo, a raiz quadrada de qualquer número não 

negativo. 

Até aqui, então, o conjunto dos números reais é o maior campo de atuação e é nele 

que procuramos as soluções para os nossos problemas. Há, porém, algumas equações 

que envolvem operações conhecidas para as quais não há solução real. Um exemplo para 

isso surge naturalmente quando se pergunta pela raiz quadrada de números negativos. 

Exemplo 1

Encontre a solução para a equação 2 1 0x x+ + = .

Solução: Usando a fórmula de Bhaskara , calculamos 21 4.1.1 3D= - =-  e, uma vez 

que encontramos o discriminante negativo, encerramos o processo e a solução é vazia no 

conjunto dos números reais. O motivo para tal é que, logo em seguida, iríamos procurar a 

raiz quadrada de –3, que não pode ser encontrada no conjunto dos números reais. 

 Para justificar o final da solução do exemplo anterior, pense que exista 

um número real z tal que 2 3z = − , equivalentemente a 3z z⋅ = − . No conjunto 

dos números reais, há uma ordenação total, também chamada lei da tricotomia: 

qualquer número real é positivo, negativo ou zero. Entretanto

•	 se z é positivo, z z⋅  também é positivo, não podendo ser igual a 3− ;

•	 se z é negativo, z z⋅  é positivo, não podendo ser igual a 3− ;

•	 se z é zero, por motivo ainda mais direto não pode z z⋅  ser igual a 3− .

Todas as possibilidades se esgotam e, com isso, percebemos de maneira bem 

simples por que equações como 2 1 0x x+ + =  e 2 3z = −  não possuem raízes reais. 

Assim como o que foi feito para “aumentar” o conjunto dos números naturais, 

a fim de que a operação de subtração pudesse ser realizada, ou o conjunto dos 

números inteiros, para que se possa efetuar a divisão, vamos estender o conjunto 

dos números reais, mantendo as operações existentes, com a finalidade de, no novo 

conjunto, obter soluções para as equações acima. 

Uma vez que os números negativos podem ser obtidos a partir dos positivos pela 

multiplicação por –1 (por exemplo –12 = 12.(–1) e –25 = 25.(–1)), um caso básico que 

devemos definir é um número que, elevado ao quadrado, resulte em –1. Esse número, pelo 

AULA 4 TÓPICO 1
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que foi exposto, não pertence ao conjunto dos números reais e, apenas por causa disso, vamos 

chamá-lo de unidade imaginária.  Para ele, vamos atribuir o símbolo i. Ou seja: 2i 1=-

De maneira semelhante ao que fazemos com os números reais e, p  e 2 , 

a multiplicação de i por um número real não será 

simplificada além da justaposição dos símbolos. 

Por exemplo, temos 4e, 3 2 , 10p , etc. Igualmente 

será feito para 5i, 2i, 3 i. Com isso, resolvemos, de 

uma vez só, o problema de encontrar números cujos 

quadrados são números negativos. Acompanhe:
2 2(5i) 25i 25.( 1) 25= = - =- , ou seja, 5i é 

uma solução para 2x 25=- ;
2 2(2i) 4i 4.( 1) 4= = - =- , ou seja, 2i é uma 

solução para 2x 4=- ;
2 2( 3i) 3i 3.( 1) 3= = - =- , ou seja 3 i é 

uma solução para 2x 3=- .

De maneira análoga, também não simplificaremos expressões do tipo 4 + i, 3 + i, –3 + 

2i, no intuito de manter as operações existentes no conjunto dos números reais. O que vamos 

fazer com esse novo símbolo é operar como se ele fosse uma incógnita, mantendo todas as 

propriedades da soma e da multiplicação, mas sempre tendo em mente que seu quadrado 

vale –1.

Assim, basta que acrescentemos i ao conjunto dos números reais para ganhar 

um novo conjunto, no qual poderemos encontrar raiz quadrada mesmo de números 

negativos. 

Definiremos o conjunto dos números complexos e representaremos pela letra ℂ 

o conjunto de todas as expressões do tipo z = a + b.i, onde a e b são números reais.
2C {a bi,a R,b R e i 1}= + Î Î =-

Uma vez que, para qualquer número real x vale x = x + 0.i, temos que o conjunto 

dos números reais está contido nesse novo conjunto. Podemos, então, completar a cadeia:

Q R CNÌZÌ Ì Ì

Para o número complexo z = a + bi, se b = 0, tem-se que z é um número real. Além disso, 

se a = 0 e b ≠ 0, dizemos que z é imaginário puro. Por exemplo, 4i é um número imaginário puro.

S a i b a  m a i s

Muitas curiosidades surgem quando nos 

deparamos com os números complexos. 

Acesse o site http://www.matematica.br/

historia/complexos.html e descubra mais 

sobre esses elementos

http://www.matematica.br/historia/complexos.html
http://www.matematica.br/historia/complexos.html
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Exemplo 2 

Determine o valor real de k para que 2z 9 k 2i= - +  seja imaginário puro.

Solução: Para que z seja imaginário puro, devemos ter 29 k 0- = , o que resulta em 

k = 3 ou k = –3.

Para o número complexo z = a + bi, chamamos o número real a de parte real 

de z e denotamos por Re(z), enquanto o número real b é a parte imaginária de z e o 

denotamos por Im(z). Como ilustração, se w = 4 + 3i, tem-se Re(w) = 4 e Im(w) = 3. 

Exemplo 3

Determine a parte real e a parte imaginária do número complexo 2z (4 i)= + .

Solução: Só podemos encontrar a parte real e imaginária de um 

número complexo quando ele estiver na forma a + bi. Para tanto, 

desenvolveremos o quadrado e simplificaremos o que for possível. Temos 
2 2 2(4 i) 4 2.4.i i 16 8i 1 15 8i+ = + + = + - = + . Temos: Re(z) = 15 e Im(z) = 8.

 Dois números complexos somente serão iguais se tiverem mesma parte real 

e mesma parte imaginária. Ou seja:

z w Re(z) Re(w) e Im(z) Im(w)= Û = =

Observe que a parte imaginária de um número complexo é um número real, 

portanto é incorreto dizer que Im  (6 i) 2i+ = .

Como todo número real é complexo, faz sentido falar de Re(9) ou Im(12), 

sendo esses valores iguais a 9 e 0, respectivamente. 

Embora a unidade i seja chamada de imaginária, e o conjunto ℂ contenha os 

números complexos, esses nomes não devem assustar. Assim como nos habituamos 

a trabalhar com números negativos, “quebrados” ou irracionais, esses novos 

números também nos serão familiares.

AULA 4 TÓPICO 1
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TÓPICO 2 Potências da unidade 
imaginária
Objetivos

•	 Observar padrões de repetição para ni
•	 Encontrar ni para qualquer natural n

Ao incluirmos a possibilidade de 

um número ter o quadrado igual 

a 1− , estendemos o conjuntos 

dos números reais e obtemos um conjunto que 

mantém as mesmas propriedades em relação às 

operações básicas e ainda ganhamos a solução de 

vários problemas. Este tópico é devotado somente 

ao número i. Aqui veremos que, embora ele 

tenha sido definido apenas tendo em vista o seu 

quadrado, suas potências com outros expoentes 

seguem padrões interessantes, de modo que o conjunto dos números complexos 

serve para resolver problemas mesmo de grau maior que 2. Na verdade, os números 

complexos começaram a ganhar importância na Matemática no século XVI, quando 

o matemático italiano Gerolamo Cardano desenvolveu uma fórmula para resolver 

equações de terceiro grau e foi percebido que mesmo ali se tinha a necessidade de 

um número cujo quadrado fosse negativo.

Comecemos percebendo o seguinte:
0i 1= , vamos manter a propriedade dos reais, segundo a qual qualquer 

número, diferente de zero, elevado a 0 vale 1.
1i i= , como não poderia deixar de ser, qualquer número elevado a 1 é igual 

a ele próprio.

S a i b a  m a i s

Conheça um pouco da história e das 

descobertas desse fabuloso matemático 

italiano Gerolamo Cardano no site https://

clube.spm.pt/news/5395.

https://clube.spm.pt/news/5395
https://clube.spm.pt/news/5395
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2i 1=- , pela definição inicial da unidade imaginária.

O que acontece com ni , para n natural maior que 2 pode ser observado se 

levarmos em conta que as propriedades de potenciação são mantidas. Vejamos.
3 2 1i i .i ( 1).i i= = - =- , ou seja, mesmo se elevarmos a unidade imaginária ao 

cubo, ainda obteremos um número complexo, com parte real 0 e parte imaginária 

–1. 
4 2 2i i .i ( 1).( 1) 1= = - - = , ou seja, podemos dizer que z = i é uma solução 

para o problema 4z 1= . Além disso, é importante notar que 4i  é o elemento neutro 

para o produto. Continuemos:
5 4 1i i .i 1.i i= = =  6 4 2i i .i 1.( 1) 1= = - =-  dar um espaço separando

7 4 3i i .i 1.( i) i= = - =-

Como se percebe, teremos repetição da sequência i, –1, –i, 1, i, –1, ... Observe 

como obter outras potências.

Exemplo 1

Qual a parte imaginária de 795 2i i+ + ?

Solução: Como sabemos que 4i 1= , podemos fazer a divisão de 79 por 4 e 

obter 79 = 4.19 + 3. Logo 79 4.19 3 4 4 4 3 3 3i i i .i ....i .i 1.1...1.i i i+= = = = =- . Logo, 
795 2i i 5 2i ( i) 5 i+ + = + + - = + , que tem parte imaginária igual a 1.

 Geralmente, para qualquer n natural, podemos usar o algoritmo da divisão 

por 4 e sabemos que existem números naturais q e r, com 0 4≤ <r  tais que n = 

4q + r. 
4 qr q qn 4 r r ri i (i ) i 1 .i i+= = = = . Uma vez que os restos possíveis na divisão 

por 4 são apenas 0, 1, 2 e 3, para identificar qual o valor de ni , basta saber qual o 

resto da divisão de n por 4 e lembrar:

	 0

1

2

3

i 1

i i

i 1

i i

=

=

=-

=-
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Exemplo 2

Se desenvolvermos 7(1 i)+ , pelo binômio de Newton, qual será o sexto termo? 

Solução: O termo geral do desenvolvimento de 7(1 i)+  é 
pp

p i
p

T .1
7 7

1
−

+ 







= . Se 

quisermos o sexto termo, devemos fazer p = 5. Assim, 
557

15 .1
5
7

iT −
+ 








= , de onde 

tiramos 5
6T 21i= , e como 5 deixa resto 1 na divisão por 4, temos i5 = i e o sexto 

termo vale 6T 21i= . 

 Exemplo 3

Determine o valor da soma 2 3 4 500S 1 i i i i ... i= + + + + + + .

Solução: As parcelas formam uma progressão geométrica de razão i, com primeiro 

termo igual a 1. É simples verificar que a fórmula para a soma dos n primeiros 

termos de uma progressão geométrica 1
)1(1

−
−

=
q
qaS

n

n  vale mesmo para os números 

complexos. Assim, aplicando a1 = 1, q = i e n = 501, temos 1
)1(1 501

−
−

=
i

iS  e como 

501 deixa resto 1 na divisão por 4, 501i  = i e
i 1

S 1
i 1
-

= =
-

.
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TÓPICO 3 Operações elementares
Objetivos

•	 Simplificar expressões numéricas envolvendo 
números complexos

•	 Observar as propriedades das operações 
aritméticas entre complexos

AULA 4 TÓPICO 3

No tópico anterior, começamos a trabalhar com o número i, que não 

é um número real. A principal propriedade desse número é que 

seu quadrado vale –1. Os números complexos foram definidos 

como as expressões do tipo z = a + bi, em que a e b são números reais, chamadas 

parte real e imaginária de z, respectivamente. Essa maneira de escrever um número 

complexo é chamada de forma algébrica, pois, como se verá adiante, ela é bem fácil 

de ser trabalhada quando quisermos realizar operações de soma ou multiplicação 

entre números complexos. Comecemos pela adição. Considere os números reais a, 

b, c e d:

1 2 1 2, ( )z a bi z c di z z a c b d i= + = + ⇒ + = + + +
Ou seja, a parte real da soma de dois números complexos é a soma das partes 

reais das parcelas, e a parte imaginária da soma é a soma das partes imaginárias.

Usando a distributividade da multiplicação em relação à adição bem como o fato 

de 2 1i = − , podemos fazer:

2
1 2 ( ) ( ) ( )z z a bi c di ac adi bci bdi ac bd ad bc i⋅ = + ⋅ + = + + + = − + + .

Na prática, o resultado acima não precisa ser memorizado. É mais razoável que, ao 

operar com números complexos, o produto seja feito usando a propriedade distributiva. 
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Exemplo 1

Para os números complexos z = 3 + 4i e w = 2 – 5i, temos

2

2 2 2

) 3 4 2 5 5
) . (3 4 )(2 5 ) 6 15 8 20 6 7 20 26 7
) (3 4 ) 9 24 16 9 24 16 7 24

a  z w i i i
b  z w i i i i i i i
c  z i i i i i

+ = + + − = −

= + − = − + − = − + = −

= + = + + = + − = − +	

Com essas definições, é possível verificar que a soma de números complexos é comu-

tativa, associativa, possui elemento neutro (o mesmo dos números reais) e todo elemento 

possui inverso aditivo. Do mesmo modo, a multiplicação é comutativa, associativa, possui 

elemento neutro (o mesmo dos números reais) e é distributiva em relação à soma. 

Quanto ao elemento inverso para a multiplicação, vejamos o seguinte:

Exemplo 2

Dado o número complexo 3 4z i= + , encontre um número complexo v tal que 

1z v⋅ = .

Solução:  Fazendo v c di= + , para os reais c e d, devemos ter (3 4 )( ) 1i c di+ + = , 

o que resulta em
23 3 4 4 1

3 (3 4 ) 4 1
3 4 (3 4 ) 1

c di ci di
c d c i d
c d d c i

+ + + =
+ + − =
− + + =

Como dois números complexos são iguais apenas quando suas partes reais 

são iguais, devemos ter 3c – 4d = 1. Analogamente, temos 3d + 4c = 0. O sistema 





=+
=−

043
143

cd
dc

 possui solução 
3

35
c =  e 

4
25

d −
= . Assim, o número procurado 

é 
3 4
25 25

v i= − . Como 1zv = , podemos dizer que 
1v
z

= , ou seja, o inverso 

multiplicativo do número 3 4i+  é o número
 

3 4
25 25

i− .

Geralmente, dado o número complexo z a bi= + , o inverso multiplicativo 

de z, denotado por 1z− , caso exista, é tal que 1 1z z−⋅ = . Fazendo 1z c di− = + , 

devemos ter:
( ) ( ) 1

( ) 1
a bi c di

ac bd ad bc i
+ ⋅ + =
− + + =
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o que nos leva ao sistema
 

1
0

ac bd
bc ad

− =
 + =

, nas incógnitas c e d. Resolvendo-o, 

obtemos 22 ba
ac
+

=  e 22 ba
bd
+

−= . Este método para determinar o inverso 

de um número complexo vale sempre que 2 2a b 0+ ¹ , mas será 2 2a b 0+ = apenas 

quando a = b = 0, ou seja, nos números complexos, todo o número diferente de 

zero possui inverso multiplicativo. Podemos concluir que: 

( )
( ) ( )2 2

Re1Re
Re Im

z
z z z

  = 
  +  

e  ( )
( ) ( )2 2

Im1Im
Re Im

z
w z z

  = − 
  +

A expressão 2 2Re(z) Im(z)+ , que é um número real não negativo, é chamada 

de norma do número complexo z e será revisitada em breve.

Vistas todas as propriedades citadas neste tópico, podemos dizer que, assim 

como o conjunto dos números reais, o conjunto dos números complexos é um corpo, 

pois com as operações de soma e de produto valem:

1) , ,z w z w∀ ∈ + ∈  			   (fechamento em relação à soma)

2) , 0z z z∀ ∈ + = 				   (elemento neutro para a soma)

3) , ; 0z  w z w∀ ∈ ∃ ∈ + =  	 	 (inverso aditivo)

4) , ,z w z w∀ ∈ ⋅ ∈  			   (fechamento em relação ao produto) 

     5) , 1z z z∀ ∈ ⋅ = 	 			   (elemento neutro para o produto)

6) {0}, ; 1z  w z w∀ ∈ − ∃ ∈ ⋅ =  		  (inverso multiplicativo)

Além das operações serem comutativas e associativas, há a distributividade 

do produto em relação à soma.

Para fixação da técnica, acompanhe o último exemplo do tópico.

Exemplo 3

Para os números complexos z 2 i e w 3 2i= - = + , encontre 
1Re z
w

 + 
 

.

Solução: Uma vez que ( )1 1Re Re Rez z
w w

   + = +   
   

, podemos encontrar 

diretamente ( )Re 2z =  e 
( )

( ) ( )2 2 2 2

Re1 3 3Re
3 2 13Re Im

w
w w w

  = = =  +  +
. Logo, 

1 3 29Re 2
13 13

z
w

 + = + = 
 

.

AULA 4 TÓPICO 3
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TÓPICO 4 Conjugado e divisão

Objetivos

•	 Apresentar a noção de conjugado de um 
número complexo

•	 Obter a forma algébrica da divisão de 
números complexos

Quando, no tópico anterior, obtivermos o inverso de um número 

complexo não nulo, teremos:
 

( )
( ) ( )2 2

Re1Re
Re Im

z
z z z

  = 
  +

e 

( )
( ) ( )2 2

Im1Im
Re Im

z
z z z

  = 
  +

 .

Ou seja, se z = a + bi, em que a e b são números reais, vale que 22
1

ba
bia

z +
−

= . O 

denominador dessa expressão foi definido como a norma do número z e represen-

taremos por N(z). O numerador difere do número z apenas pelo sinal da parte ima-

ginária. Trocar o sinal da parte imaginária de z gera um novo número complexo, a 

que chamamos de conjugado de z e representamos por “z barra“. Ou seja, definimos

z a bi z a bi= + Þ = -

Exemplo 1: 

Os conjugados dos números complexos 3 + 4i, 7 – 2i e 9i são 3 – 4i, 7 + 2i e 

–9i, respectivamente.

A respeito dos números complexos, temos as seguintes propriedades, cujas 

demonstrações são diretas e servirão como exercício.

1) ( ) ( )Re Rez z=  e ( ) ( )Im Imz z= −

2) ( )2 Rez z z+ = ⋅  e ( )2 Imz z z i− = ⋅ ⋅
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3) wzwz +=+  e wzwz .. =

4) ( )z z z⋅ = Ν , que é um número real não negativo,  de onde temos também

( )
1

N
z

z z
= . 

Da última propriedade, vemos que, se multiplicarmos um número complexo 

pelo seu conjugado, obteremos um número real. Este processo será útil se quisermos 

obter a divisão de números complexos

Dados dois números complexos w e z, com z¹ 0, para obtermos a forma 

algébrica da fração z
w

, multiplicaremos numerador e denominador pelo conjugado 

do denominador, ficando, assim, apenas o numerador com a unidade imaginária.  

Acompanhe: zz
zw

z
w

.
.

=

Exemplo 2

Encontrar a parte real de 
2 3
1 4
+
+

i
i

.

Solução:  Usando o artifício acima, podemos fazer 
2 3
1 4

1 4
1 4

2 8 3 12
1 4

2

2 2

+
+

−
−
=
− + −

+
i
i

i
i

i i i
.

 

=
−14 5
17

i . Observe que, no denominador, usamos diretamente a propriedade 4. 

O resultado final nos permite afirmar, então, que Re
2 3
1 4

14
17

+
+






=

i
i

, e ainda que 

Im
2 3
1 4

5
17

+
+






=−

i
i

. 

A norma de um número complexo foi definida como a soma dos quadrados de suas 

partes real e imaginária. Ou seja, dado o número complexo z = a + bi, em que a e b são 

números reais, a norma de z vale 2 2N( )z a b= + , que não apenas é um número real 

(o que nos ajudou a encontrar a forma algébrica da divisão de dois números complexos) 

como também não é negativo. A norma de um número complexo satisfaz as seguintes 

propriedades:

	 1) N Nz z( )= ( )
	 2) N N Nz w z w. .( )= ( ) ( )
	 3) N 0z( )=  se, e somente se, z = 0.

	 4) N z z z( )= .

Exemplo 3

Determine a norma dos números complexos u = 3 + 4i, v = 2 – 7i, w = 7i e 

z = 8.

AULA 4 TÓPICO 4
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Solução: Temos 

3 2 2 2 2 2N(u) 3 4 25,  N(v) 2 ( 7) 53,  N(w)=7 49 e N(z)=8 64= + = = + - = = =

Por último, mas não menos importante, temos a definição de módulo de um 

número complexo, que corresponde à raiz quadrada da norma. Dado um número 

complexo z = a + bi, em que a e b são números reais, definimos: 

22|| baz +=
que é equivalente a 2z N(z)= . 

O módulo de um número complexo também é um número real não negativo 

e satisfaz as seguintes propriedades:

	 1) |||| zz =

	 2) zzz .|| 2=

	 3) z.w z . w=  

	 4) 
zz

w w
= , com w¹ 0

	 5) z w z w+ £ +

Vale ressaltar que, quando z é um número real, a definição acima coincide 

com a definição de módulo de um número real. 

Exemplo 4

Determine o módulo dos números complexos u = 3 + 4i, v = 2 – 7i, w = 7i 

e z = 8.

Solução: Como já calculamos a norma no exemplo anterior, basta que calculemos as 

suas respectivas raízes quadradas. Assim u 5,  v 53,  w 7 e z 8= = = =

Exemplo 5

Encontre um número complexo que tenha parte real igual a 4 e módulo igual 

a 5. 

Solução: Devemos encontrar z tal que Re(z) 4 e z =5=  e z =5 . Da primeira 

igualdade, podemos escrever z = 4 + bi, para algum número real b. Da segunda 

igualdade, temos 4 52 2+ =b , o que resulta em 216 b 25+ =  e concluímos que b 

vale 3 ou –3. Assim os números procurados são 4 + 3i e 4 – 3i.
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AULA 5 Números complexos II

Olá!

Como você já observou na aula passada, pela simples inserção de um número 

cujo quadrado seja –1, mantendo as operações previamente definidas, 

conseguimos um conjunto com uma grande riqueza de propriedades. Nesta 

aula, continuaremos a falar sobre os números complexos, revisaremos algumas 

definições e veremos como os números complexos e a geometria estão 

relacionados.

Aqui precisaremos conhecer algumas noções elementares de trigonometria e 

de geometria analítica. Vamos ao trabalho, então.

Objetivos

•	 Apresentar outras definições que envolvem números complexos
•	 Relacionar números complexos à geometria analítica
•	 Simplificar, através da forma trigonométrica, problemas de potenciação e 

radiciação em 

AULA 5
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TÓPICO 1 Pares ordenados 
e vetores
Objetivos

•	 Apresentar uma nova forma de escrever números 
complexos

•	 Comparar a reta real com o plano complexo
•	 Fornecer uma interpretação geométrica para o 

módulo de um número complexo

Na aula 4, definimos a unidade imaginária i e os números 

complexos como sendo as expressões do tipo em que a e b 

são números reais, chamados, respectivamente, de parte real e 

parte imaginária de z. Desta forma, um número complexo fica bem caracterizado 

quando dele sabemos as partes reais e imaginárias. Por exemplo, o número 

complexo que tem parte real 8 e parte imaginária –4 é o número 8 – 4i.

Isso quer dizer que cada número complexo fica bem determinado a 

partir de dois números reais. Considere a função :j ® ´   dada por 

(a bi) (a,b)j + = . Podemos relacionar números complexos com pares ordenados 

de números reais, sendo que a primeira coordenada é a parte real e a segunda 

coordenada é a parte imaginária. Usando a imagem de cada número complexo 

pela função j , ganhamos uma nova forma de representá-lo.

Exemplo 1

Os números complexos 2 + 3i, 4 – 5i, 8i e 

10 têm imagens (2, 3), (4, –5), (0, 8) e (10, 0) pela 

função j .

Uma vez que a função j  é sobrejetiva e injetiva, 

essa associação é biunívoca, isto quer dizer que cada 

número real corresponde a um, e somente um, par 

ordenado de números reais. Dessa forma, podemos 

trabalhar tanto com a expressão a bi+  quanto com o 

S a i b a  m a i s

Relembre o assunto de função sobrejetiva 

e injetiva acessando o site http://clubes.

obmep.org.br/blog/sala-de-ajuda-

funcoes-injetividade-sobrejetividade-e-

bijetividade/

http://clubes.obmep.org.br/blog/sala-de-ajuda-funcoes-injetividade-sobrejetividade-e-bijetividade/
http://clubes.obmep.org.br/blog/sala-de-ajuda-funcoes-injetividade-sobrejetividade-e-bijetividade/
http://clubes.obmep.org.br/blog/sala-de-ajuda-funcoes-injetividade-sobrejetividade-e-bijetividade/
http://clubes.obmep.org.br/blog/sala-de-ajuda-funcoes-injetividade-sobrejetividade-e-bijetividade/
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par ordenado (a, b) quando quisermos operar com um número complexo. A alternância 

entre as duas formas fica a cargo da função j  e de sua inversa 1( , )a b a biϕ− = + . 

Por simplicidade, então, o número z a bi= +  e o par (z) (a,b)j =  serão considerados 

iguais. 

Com isso, além da forma algébrica, há a forma de par ordenado para representar 

um número complexo.

Exemplo 2

Dados os números complexos z = (3, 2) e w = (4, –1), calcule z.w. 

Solução: Os pares ordenados (3, 2) e (4, –1) são equivalentes, na forma algébrica, a 

3 + 2i e 4 – i, respectivamente. 

Dessa maneira, 2z.w (3 2i).(4 i) 12 3i 8i 2i 14 5i= + - = - + - = + , que é a 

forma algébrica do par ordenado (14, 5). Podemos escrever (3, 2).(4, –1) = (14, 5).

 Observe que o produto de pares ordenados, quando representam números 

complexos, não é feito “termo a termo”, ou seja, não vale (a,b).(c,d) (ac,bd)= . O 

correto é
2( , ).( , ) ( ).( )a b c d a bi c di ac adi bci bdi= + + = + + +

( ) ( , )ac bd bc ad i ac bd bc ad= − + + = − +

Como a cada par ordenado corresponde um ponto do plano cartesiano, podemos 

também dizer que a cada número complexo corresponde um ponto do plano cartesiano, 

e vice-versa. Já que ficou estabelecido que a primeira coordenada é a parte real do 

número, o eixo das abscissas será o eixo real. Analogamente, o eixo das ordenadas será o 

eixo imaginário. Assim, o número complexo z a bi= + pode ser representados pelo par 

ordenado (a, b) e pelo ponto correspondente no plano cartesiano, conforme a figura 1.

O ponto marcado no plano cartesiano, que corresponde à representação 

geométrica do par equivalente, é chamado de afixo z a bi= +  do número complexo. 

Os números reais têm parte imaginária nula, ficando seus afixos sobre o eixo 

horizontal. Equivalentemente, os números imaginários puros têm a parte real nula, 

ficando seus afixos sobre o eixo vertical. Outra maneira de representar um número 

complexo z é através de um vetor, com início na origem do plano e fim no afixo de z.

AULA 5 TÓPICO 1
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Figura 1 – Forma algébrica(1), de par ordenado(2) e representação  

geométrica (3) de um número complexo z

 

Exemplo 3

Represente geometricamente os números complexos w = 4 + 3i e v = –3 + 2i.

Solução: Devemos marcar os pontos w = (4, 3) e v = (–3, 2) e, em seguida, traçar 

vetores começando na origem do plano e terminando nos pontos dados. Veja a 

figura abaixo.

Figura 2 – Afixo e vetor correspondentes aos números 4 + 3i e -3 + 2i.

Usando a fórmula para a distância entre dois pontos do plano cartesiano, ou mesmo 

utilizando diretamente o Teorema de Pitágoras, podemos calcular o comprimento do vetor 

correspondente ao número z a bi= + .  Chamando tal comprimento de r, veja a figura 3.

Pela relação do Teorema de Pitágoras, vale 2 2 2r a b= + , de onde concluímos 

que ||22 zbar =+= , ou seja, o módulo de um número complexo representa o 

comprimento do vetor correspondente.
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Figura 3 – Comprimento

O plano cartesiano, quando interpretado 

como representação de números complexos, 

é também chamado de plano complexo (pela 

correspondência entre pontos do plano e 

elementos de  ), ou ainda de plano de Argand-

Gauss, em homenagem a dois matemáticos, o 

francês Jean Robert Argand  (1768 - 1822) e 

o alemão Carl Friedrich Gauss  (1777 - 1855), 

pioneiros na representação e na análise 

geométrica dos números complexos. 

AULA 5 TÓPICO 1

v o c ê  s a b i a?

Carl Friedrich Gauss é considerado 

um dos maiores matemáticos de todos 

os tempos. Gauss teve a estatura de 

Arquimedes e de Newton, e seus campos 

de interesse excederam os de ambos. 

Gauss contribuiu para todos os ramos da 

Matemática e para a Teoria dos Números.

S a i b a  m a i s

Jean Robert Argand matemático amador 

e contador suíço nascido em Genebra, 

que estudou a representação gráfica dos 

números complexos dando origem ao 

diagrama elaborado depois por Cauchy 

que o denominou de diagrama Wesswl-

Argant-Gauss.

https://www.13snhct.sbhc.org.br/

resources /ana i s /10/1349713128_

ARQUIVO_Argand-GertSchubring.pdf

https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf
https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf
https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf
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TÓPICO 2 Argumento e forma 
trigonométrica
Objetivos

•	 Definir argumento de um número complexo
•	 Relacionar argumento e módulo com a forma 

algébrica
•	 Apresentar a forma trigonométrica de um número 

complexo

No tópico anterior, vimos que o módulo de um número complexo é 

a distância do seu afixo à origem do plano de Argand-Gauss, o que 

equivale ao comprimento do vetor correspondente. Porém o fato de 

sabermos o módulo de um número não é o suficiente para caracterizá-lo, a menos em caso 

direto de módulo igual a zero, pois sabemos que o único número complexo de módulo 0 

é o próprio número 0.

Dado um número real r 0> , o conjunto de números complexos que satisfazem a 

relação z r=  contém todos aqueles cujos afixos distam r unidades da origem, ou seja, 

formam uma circunferência com centro na origem e raio r, sendo, portanto, infinitos. 

O módulo fornece apenas a distância do afixo até a origem, ou o comprimento 

do vetor equivalente, mas sabemos que, para que um vetor fique bem determinado, 

além de seu comprimento, precisamos indicar-lhe uma direção e um sentido. Dentre 

as várias maneiras de indicar uma direção, uma interessante e que iremos adotar, por 

padronização, é medir o ângulo que o vetor faz com o eixo real positivo, contado no 

sentido anti-horário. Tal ângulo será chamado de argumento do número complexo. Na 

figura 4, o argumento do número z a bi= +  está sendo representado pela letra grega q .
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Figura 4 – Argumento de um número complexo

Exemplo 1

Os argumentos dos números complexos v = –2 + 3i e w = 2 – i estão 

assinalados na figura 5 pelas letras a  e b , respectivamente.

Figura 5 – Argumento dos números complexos v e w.

Dessa feita, podemos localizar o afixo de um número complexo sabendo qual 

o seu módulo e qual o seu argumento.  

Exemplo 2: 

Determine a forma algébrica de um número complexo de módulo 2 e argumento 
p
3

. 

Solução: 

Devemos encontrar números reais a e b de acordo com o esquema da figura 

6. No triângulo retângulo com catetos de medidas a e b, conhecemos a medida da 

hipotenusa (módulo do número) e um ângulo interno (argumento), assim podemos 

estabelecer as relações

23
cos a

=
π

, logo 22
1 a
=  e obtemos a = 1;

AULA 5 TÓPICO 2
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23
sen b

=
π

, logo 
22

3 b
=  e  obtemos 3b = . Portanto, o número complexo 

procurado tem a forma algébrica = +1 3z i .

 

Figura 6 – Esquema de triângulo retângulo

De modo geral, dado um número complexo z a bi= + , com a e b reais, se a repre-

sentação geométrica de z tiver argumento q  e módulo r 0> , podemos, a partir da 

figura 4, obter as seguintes relações:
a b

cos  e sen
r r

q = q=

As fórmulas acima nos permitem fazer uma relação entre a forma algébrica de 

um número complexo e o módulo e o argumento de sua representação geométrica. 

Equivalentemente temos a = r.cos q  e b = r.sen q

A partir da forma algébrica z = a + bi e pela substituição acima, chegamos a z = r.cos q  + 

r.sen q .i. Assim, obtemos ainda a forma trigonométrica de um número complexo  z = r.(cos q  + 

i.sen q )

Exemplo 3

Encontre o módulo e o argumento do número complexo z = 2 + 2i.

Solução: O módulo pode ser encontrado diretamente por r = 22 + = =2 8 2 22

. Além disso, para o argumento q , vale cosq= =
2

2 2

2
2

 e sen q= =
2

2 2

2
2

, 

de onde temos θ
π

=
4

. Podemos, então, colocar o número z na forma trigonométrica  

z 2 2.(cos isen )
4 4
p p

= + .

A forma trigonométrica, embora seja mais extensa, será útil especialmente no 

produto, e consequentemente na potenciação e na radiciação de números complexos. 
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Já sabemos que o módulo é “compatível” com o produto, ou seja, se os números complexos z 

e w tiverem módulos r e s, respectivamente, o módulo de z.w será r.s. 

Além disso, suponhamos que z e w tenham argumentos a  e b , respectivamente. 

Suas formas trigonométricas serão z = r.(cos q  + i.sen q ) e w = s.(cos q  + i.sen q ).  

Façamos o produto z.w:

	

2

z.w [r(cos isen )].[s.(cos isen )]

z.w r.s.(cos isen ).(cos isen )

z.w r.s.(cos .cos icos .sen isen .cos i sen .sen )

z.w r.s(cos .cos sen .sen i(cos .sen sen .cos ))

z.w r.s(cos( ) isen(

= a+ a b+ b
= a+ a b+ b

= a b+ a b+ a b+ a b
= a b- a b+ a b+ a b
= a+b + a ))+b

	

Isso reforça o fato de que o módulo de z.w vale r.s e fornece uma nova informação: 

para obter o argumento do produto de dois números complexos, basta somar os argumentos 

dos fatores. 

Fazendo z r.(cos isen )= q+ q , temos z r.(cos isen )= q- q mas como o cosseno é 

uma função par e o seno é uma função ímpar, podemos reescrever z  = r.(cos(–q ) + i.sen(–q )).  

Como já sabíamos, um número complexo e seu conjugado têm o mesmo módulo. Agora concluímos 

que os argumentos são simétricos, como poderá ser visto na figura 7.

Figura 7 – Interpretação geomátrica do conjugado

Na aula passada, vimos que o inverso de um número complexo pode ser 

obtido por z
zz

z
z

.
||

1
||

1
22 == . Usando a forma trigonométrica, podemos colocar

AULA 5 TÓPICO 2
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)sen (cos.11
2 θθ ir

rz
−=

 
= ))(sen)(cos(1 θθ −+− i

r  

Desse modo, o inverso de um número complexo não nulo z tem módulo igual ao inverso 

do módulo de z e argumento –q . Com base nisso, podemos ver como funciona a divisão.

Suponha que o número complexo z tenha módulo r e argumento a , e o 

número complexo w tenha módulo s e argumento b :

1 1
. (cos sen ). (cos( ) sen( ))

z
z r i i

w w s
a a b b= = + - + - =

 (cos( ) sen ( ))
z r

i
w s

a b a b= - + - .

Exemplo 4

O argumento do número complexo 
3 3

3

i
i

-
+

 pode ser encontrado sem que a divisão 

seja efetuada. Para z = 3 – 3i, o argumento 

vale 
7
4
p

 enquanto que para w = 3 i+   

o argumento é 
6
p

. Pelo que vimos acima, o 

argumento de 
w
z

 vale 
4

7π
 – 

6
π

 = 
19
12
p

. 

Resumindo, a multiplicação de números 

complexos é convertida em 

soma quando avaliamos os 

argumentos e a divisão é 

transformada em subtração dos 

argumentos. Se denotarmos 

por arg(z) o argumento do 

número complexo z, é verdade 

que arg(z.w) = arg(z) + arg(w) 

e arg(z/w) = arg(z) – arg(w).

g u a r d e  b e m  i s s o !

O argumento principal é unicamente 

definido para um número complexo não 

nulo, pois, caso contrário, o argumento 

pode ser qualquer número real, uma vez 

que o módulo já traria a informação da 

nulidade, independente do que aparecer 

nas funções seno e cosseno.

at e n ç ã o !

Uma vez que ângulos que diferem de 

múltiplos inteiros de 2π geram o mesmo 

valor de seno e de cosseno, um número 

complexo pode ter vários argumentos q

, q  + 2π,  q  + 4π, etc. Durante o tópico, 

calculamos o argumento principal, que 

está entre 0 e  2π.
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TÓPICO 3 Potenciação e 
radiciação em 

Vimos que a forma trigonométrica de um número complexo 

simplifica certos cálculos, em especial em relação ao produto e ao 

quociente. Usaremos essa “facilidade” para encontrar potências 

de números complexos, uma vez que a forma algébrica, neste caso, não se mostra 

tão eficiente. 

Como consequência das propriedades sobre módulo e argumento, podemos 

facilmente concluir que se o módulo de z vale r, então o módulo de nz  vale nr , 

para qualquer n natural. Além disso, como o argumento de um produto é a soma 

dos argumentos dos fatores, podemos observar que
narg(z ) arg(z.z...z) arg(z) arg(z) ... arg(z) narg(z)= = + + + =

Isso quer dizer que se o argumento de z é q , então o argumento de nz  é n q . 

Juntando essa informação àquela sobre o módulo, concluímos que se 
n nz r.(cos isen ) z r .(cosn isen n )= q+ q Þ = q+ q

Exemplo 1

Calcule o valor de 4(1 i)+ , inicialmente usando o binômio de Newton e, em 

seguida, usando a fórmula acima.

Solução: Pela fórmula do binômio de Newton, temos 

4 4 3 2 2 2 3 3 4(1 i) 1 4.1 .i 6.1 .i 4.1.i 4.1.i 4.i i 1 4i 6 4i 1 4+ = + + + + + + = + - - + =-

AULA 5 TÓPICO 3

Objetivos

•	 Obter uma fórmula para 
nz , com n natural, 

usando a forma trigonométrica
•	 Encontrar raízes n-ésimas de um número 

complexo
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Para usar a fórmula acima, precisamos encontrar o módulo 2 21 1 2r = + = , 

além do 
1 2

cos
22

q= =  e 
1 2

22
senq= = . Logo o argumento vale 

4
p

q= . Dessa 

forma:

4 4(1 i) ( 2) .(cos 4. i.sen4. ) 4(cos i.sen ) 4.( 1 i.0) 4
4 4
p p

+ = + = p+ p = - + =-

 Pelo exemplo 1, podemos achar que o método de Newton é mais rápido, mas 

a aparente vantagem do desenvolvimento se deve ao fato de que começamos com o 

número na forma algébrica e tivemos o trabalho de encontrar seu argumento e seu 

módulo. Se já tivéssemos a forma trigonométrica, isso não precisaria ser feito. Além 

disso, mesmo este trabalho seria compensado se o expoente fosse muito grande. Se 

a mesma questão fosse feita para n = 10, o processo com a forma trigonométrica 

seria o mesmo, enquanto o desenvolvimento com o binômio de Newton teria onze 

parcelas.

Exemplo 2

Se z tem módulo 1 e argumento 
12
p

, resulta que 18z  tem módulo  

181 1= e argumento 18.
12
p

 = 
3
2
p

. Assim,  18 3 3
z 1.(cos i.sen ) 1.(0 i) i

2 2
p p

= + = - =-

Exemplo 3

Mostre que o número ( )6
3 i-  é real.

Solução: Usar o binômio de Newton aqui não é muito direto . Calculando antes o módulo 

de  3z i= − , obtemos r = 2. Para o argumento, valem 
3 1

cos  e sen
2 2

q = q=- ,  

ou seja, q  = 
11

6
p

. Assim, 6z  tem módulo 62  e argumento 6.
11

6
p

 = 11p , de onde tiramos 

que o argumento principal de ( )6
3 i-  é p , o seu vetor correspondente é horizontal 

e podemos dizer que é um número real. Se formos com a conta “até o fim”, obteremos  

( )6 63 2 .(cos . ) 64.( 1 .0) 64i i sen ip p- = + = - + =- , ou seja, um número real negativo.

 A fórmula n nz r (cosn i.sen n )= q+ q é também conhecida como primeira 

fórmula de De Moivre, em homenagem ao matemático francês Abraham de Moivre 

(1667 - 1754) e vale para qualquer n inteiro. 

Agora que já sabemos como encontrar potências de números complexos, 

podemos pensar no problema de encontrar raízes para eles.



Matemát ica  Bás ica  I I76 AULA 5 TÓPICO 3

Exemplo 4

Encontre todos os números complexos z tais 

que 3z 1= .

Solução: Como vimos anteriormente, a forma 

trigonométrica nos permite trabalhar mais 

diretamente com potências e, por isso, faremos uso dela 

para resolver este problema. Se z r(cos i.sen )= q+ q

, temos 3 3z r (cos3 i.sen 3 )= q+ q . Dessa forma, 

temos a equação 3r (cos3 i.sen 3 ) 1q+ q = . De 

onde tiramos que o módulo de z deve ser 1. 

Quanto ao argumento, devemos ter cos3 1q =  

e sen 3 0q = , o que equivale a 3 2kq = p , para 

qualquer número inteiro k.  Fazendo k = 0, 

temos 0q =  e z = 1.(cos 0 + i.sen 0) = 1, a raiz 

real do problema. Com k = 1, temos 
2
3
p

q=  

e 
2 2 1 3

z 1.(cos i.sen ) i
3 3 2 2
p p

= + =- + .  

Aplicando k = 2, temos 
4
3
p

q=  e

4 4 1 3
z 1.(cos i.sen ) i

3 3 2 2
p p

= + =- - . Fazendo k = 3, temos  

6
2

3
p

q= = p e voltamos ao primeiro valor encontrado. Com k = 5, 

voltamos ao segundo valor encontrado e assim sucessivamente, de modo que, tendo 

como universo o conjunto dos números complexos, a equação 3z 1= solução 

1 3 1 3
1, ,

2 2 2 2
i i

ì üï ïï ï- + - -í ýï ïï ïî þ
.

 O procedimento realizado no exemplo 4 pode ser generalizado mesmo que o 

resultado da potência não seja um número real. O que devemos fazer é apenas obter a 

forma trigonométrica, comparar os módulos e encontrar os argumentos convenientes, 

a partir de uma equação com as funções seno e cosseno. Consideremos o seguinte: 

Problema Geral

Dado número complexo w e o número natural n, encontre todos os números 

complexos z tais que nz w= .

v o c ê  s a b i a?

Moivre abriu caminho para o 

desenvolvimento da Geometria Analítica 

e a Teoria de Probabilidade. Ele publicou 

A Doutrina de Chance em 1718. A 

definição de independência estatística 

aparece neste livro junto com muitos 

problemas com dados e outros jogos. 

Ele também investigou estatísticas de 

mortalidade e a fundação da teoria de 

anuidades. Para saber mais sobre este 

matamático francês, acesse o site

http://www.somatematica.com.br/

biograf/moivre.php
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O caso w = 0 é imediato, pois nz 0=  se, e somente se, z = 0. Consideraremos 

a partir daqui w 0¹  em sua forma trigonométrica w r.(cos i.sen )= q+ q . Se 

z s.(cos i.sen )= a+ a , tem-se n nz s .(cosn i.sen n )= a+ a . Para os números reais 

positivos r e s, obtemos a equação real ns r= , de onde ns r=  a raiz n-ésima real 

positiva do número r. Em relação a na e q , sabemos que eles devem ter mesmo 

seno e mesmo cosseno, diferindo, portanto, de múltiplos inteiros de 2p , ou seja, 

2n ka q p= + , de onde concluímos 
2k

n
q p

a
+

= , em que k varia nos números 

inteiros, o que nos levaria a pensar que a solução para o problema tem infinitos 

elementos. Porém sempre que dois inteiros diferirem por um múltiplo de n, os 

argumentos 
2k

n n
q p

a= +  divergirão por múltiplos inteiros de 2p , não resultando 

em números complexos diferentes. Assim, vamos considerar apenas os valores k = 

0, 1, 2, ..., n – 1, resultando nas n soluções para o problema. Resumindo: se w = 

r.(cos q  + i. sen q ), há n números complexos z tais que zn = w. São eles

n
k

2k 2k
z r.(cos( ) i.sen( ))

n n n n
q p q p

= + + + ,para k = 0, 1, 2, ..., n – 1.

A expressão acima é conhecida como segunda fórmula de De Moivre.

Exemplo 5

Determine todos os números complexos z tais que 6z 8= .

Solução: Veja que 8 tem módulo 8 e argumento 0, assim suas “raízes sextas” serão do 

tipo 6 0 2 0 2
8.(cos( ) .  ( ))

6 6 6 6k

k k
z i sen

p p
= + + + ,para k = 0, 1, 2, ..., 5. Simplificando 

um pouco mais antes usar os valores de k, temos 2.(cos .  )
3 3k

k k
z i sen

p p
= + .  

Acompanhe:

Para k = 0, temos 0z 2.(cos0 isen0) 2= + = .

Para k = 1, temos 1

1 3 2 6
z 2.(cos i.sen ) 2( i. ) i

3 3 2 2 2 2
p p

= + = + = + .

Para k = 2, temos 2

1 3 2 6
z 2.(cos i.sen ) 2( i. ) i

3 3 2 2 2 2
p p

= + = - + =- +

Para k = 3, temos 3

3 3
z 2.(cos i.sen ) 2( 1 i.0) 2

3 3
p p

= + = - + =-

Para k = 4, temos 4

4 4 1 3 2 6
z 2.(cos i.sen ) 2( i. ) i.

3 3 2 2 2 2
p p

= + = - - =- -

Para k = 5, temos 5

5 5 1 3 2 6
z 2.(cos i.sen ) 2( i. ) i.

3 3 2 2 2 2
p p

= + = - = - .



Matemát ica  Bás ica  I I78 AULA 5 TÓPICO 3

 Como todas as soluções de nz w= possuem o mesmo módulo, seus afixos 

estão à mesma distância da origem, contidos em uma circunferência de raio 

r. Além disso, os argumentos formam uma progressão aritmética de primeiro 

termo 
n
q

 e razão 
2
n
p

. Isso quer dizer que eles estão igualmente espaçados nessa 

circunferência sendo, portanto, os vértices de um polígono regular de n lados 

inscrito na circunferência de centro na origem e raio r (para n > 2). Por exemplo, 

as soluções de z5 = 1 possuem todas módulo 1 e argumentos distantes 
2
5
p

, o que 

caracteriza um pentágono regular. 

Uma vez que a solução da equação nz w= possui n elementos, o símbolo n w

, para w complexo, denota um conjunto e não apenas um número. De forma que, por 

exemplo, no conjunto dos números complexos, 3 1  = 
1 3 1 3

1, ,
2 2 2 2

i i
ì üï ïï ï- + - -í ýï ïï ïî þ

.  

Nesse sentido, há de se tomar cuidado com o símbolo de raiz, pois ele não funciona 

da mesma forma que nos números reais. Do contrário, poderíamos obter resultados 

bem estranhos, como 21 . 1. 1 (. 1).( 1) 1 1i i i- = = = - - = - - = = . O erro 

aqui foi afirmar que 1i = - , enquanto o primeiro é um número e o segundo é um 

conjunto. Assim, mesmo que definíssemos 1i = - , essa convenção não estaria de 

acordo com as propriedades com radicais, como se vê na expressão acima.
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AULA 6 Polinômios I

Olá!

Vamos continuar o nosso estudo, agora abordando um assunto novo, mas 

que está fortemente ligado aos números complexos: os polinômios. Em linhas 

gerais, uma função é dita polinomial quando o resultado for obtido a partir da 

variável através de uma sequência finita de operações algébricas (multiplicações e 

somas). Já conhecemos os casos mais simples, que são as “funções de primeiro 

e segundo graus” e aqui generalizaremos o caso para qualquer expoente natural 

e para coeficientes complexos. 

Objetivos

•	 Fornecer os fundamentos básicos para o estudo de polinômios
•	 Obter as propriedades sobre as operações elementares
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TÓPICO 1 Definições Iniciais
Objetivos

•	 Definir função polinomial
•	 Observar critérios de identidade de 

polinômios e independência da variável
•	 Obter a soma dos coeficientes

Dizemos que um monômio na variável x é uma expressão do tipo 

M(x) = axn, em que o número complexo a é chamado de coeficiente 

numérico ou simplesmente coeficiente do monômio e n é um 

número natural. O grau do monômio é definido como n, se a ≠ 0 e não é definido, 

caso contrário. 

Exemplo 1
5( ) 4A y y= , é um monômio de grau 5 na variável y

3( ) 10 nB x x -=  é um monômio na variável x se 3n³
3( ) ( 2)C z b z= -  é um monômio de grau 3 na variável z, para qualquer valor de 2b ¹

( ) 2D w i=  é um monômio de grau 0 na variável w
3( ) 0E t t=  é um monômio na variável t, sem grau definido.

Um monômio pode ter mais de uma variável e, caso o seu coeficiente seja não 

nulo, o grau é definido como a soma dos coeficientes das variáveis, de modo que 
2 34x y z é um monômio de grau 6. Igualmente poderemos considerar casos nos quais 

os coeficientes são números de um conjunto específico, com estruturas algébricas 

particulares. Nosso estudo, entretanto, se restringirá aos termos com apenas uma 

variável e com coeficientes complexos (lembre-se bem de que os números reais são 

complexos). Funções com mais de uma variável ou com coeficientes não complexos 

serão assunto de disciplinas posteriores. 

Um polinômio na variável x é uma soma de uma quantidade finita de 

monômios em x, ou seja, uma função  p →   é dita polinomial quando é 
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do tipo 1 1
1 1 0( ) ...n n

n np x a x a x a x a-
-= + + + + , em que os coeficientes 1 0,..., ,na a a  

são números complexos. Além disso, para o valor específico k, o valor numérico 

de p em k é simplesmente f(k). 

Exemplo 2a

A função 2( ) 3 2g x x x= - +  é um polinômio com 3 1 01,  a 3 e a 2a = =- = . 

Uma vez que 3(2) 2 3.2 2 4g = - + = , podemos dizer que o valor numérico de g(x) 

no 2 é 4. Analogamente, podemos dizer que g(0) = 2 e g(1) = 0.

Exemplo 2b

A função 2( ) 4h x x= +  é um polinômio com 2 1 01,  0 e a 4a a= = = . Para este 

polinômio, vale h(3) = 13, h(i) = 3 e h(1 + i) = 4 + 2i. 

Exemplo 2c

A função 
1

( ) cosq x x x
x

= + -  não é um polinômio.

Dizemos que o número a é uma raiz do polinômio p(x), ou simplesmente de 

p, quando seu valor numérico correspondente é 0, ou seja, p(a) = 0. Para o exemplo 

2a, o número 1 é uma raiz de g(x) e é imediato verificar que 2i é uma raiz de h(x). 

Encontrar raízes para polinômios foi um dos motivos para a extensão que começou 

nos números naturais e levou aos complexos, como vimos nas aulas anteriores.

Os valores numéricos para x = 0 e para x = 1 são notáveis, pois

0(0) ap = , o termo constantes (ou independente) do polinômio.

1 1 0(1) .... an np a a a-= + + + + , a soma dos coeficientes.	

Um polinômio é dito identicamente nulo (representamos por p º  0) quando 

todos os números complexos forem suas raízes, ou seja ( ) 0,  p x x= ∀ ∈ . Veremos 

mais tarde que, se um dos coeficientes de um polinômio for diferente de zero, então a 

quantidade de raízes é finita. Assim, podemos concluir que, para que um polinômio seja 

identicamente nulo, necessariamente todos os seus coeficientes devem ser iguais a 0. 

Exemplo 3 

Determine os valores reais de a, b e c para que o polinômio 
2( ) 3 4 2p x ax x bx c= + - + +  seja identicamente nulo.
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Solução: Podemos reescrever 2( ) (3 ) 4 2p x ax b x c= + - + + , mas, para que ele 

seja identicamente nulo, devemos ter a = 0, b = 3 e c = –2.

Analogamente, dizemos que dois polinômios são idênticos (ou iguais) quando 

eles assumirem valores numéricos iguais para o mesmo valor da variável. Isso 

somente é possível quando os coeficientes correspondentes são iguais. 

Exemplo 4

Para que os polinômios 3 3 22  e ax 3x x c bx dx- + + + +  sejam idênticos, 

devemos ter a = 1, b = 0, c = 3 e d = –2.

O grau de um polinômio não identicamente nulo é definido como o maior 

grau das suas parcelas. Equivalentemente, o grau é o maior expoente da variável 

que possui coeficiente diferente de zero. Denotamos o grau do polinômio p(x) por 

gr(p) ou ¶ p.

0  0  n kp n a e a se k n∂ = ⇔ ≠ = >

Exemplo 5

O polinômio 2( )f x ax bx c= + + , com a ¹  0 tem grau 2 e o polinômio 
2 3( ) 3g x x x= -  tem grau 3, enquanto o polinômio h(x) = 4 tem grau 0. 	

Observações 

1. Não é definido grau para o polinômio identicamente nulo.

2. Se ¶ p = 0 ou p º  0, dizemos que o polinômio é constante ou independente de x.

3. O coeficiente do termo de maior grau é chamado de coeficiente líder e, no 

caso em que ele for igual a 1, dizemos que o polinômio é mônico.

4. Um polinômio de grau n tem no máximo n + 1 monômios não nulos.

O conjunto de todos os polinômios na variável x e com coeficientes complexos pode 

ser representado por [ ]x . Se quisermos restringir-nos a polinômios com coeficientes 

reais, podemos falar de [ ]x  e assim analogamente com qualquer conjunto numérico.

Interpretando os números complexos como polinômios constantes, podemos dizer 

que [ ]x⊂  . Com essas noções iniciais, podemos passar para o estudo das operações 

entre polinômios, no qual veremos que [ ]x  tem uma estrutura semelhante a ℤ no que 

diz respeito ao fechamento da soma e da multiplicação e do processo de divisão.

AULA 6 TÓPICO 1
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TÓPICO 2 Operações entre 
polinômios
Objetivos

•	 Verificar como as operações elementares se 
processam entre polinômios

•	 Analisar o grau dos resultados
•	 Verificar o fechamento de [ ]x  em relação 

à soma e ao produto

Definimos ℂ[x] como o conjunto de polinômios na 

variável x e com coeficientes complexos. Ou seja, se 

p Î  ℂ[x], existem números complexos (coeficientes) 

a
n
, ..., a1, a0, tais que  1

1 1 0( ) .... an n
n np x a x a x a x-

-= + + + + .  

Neste tópico, veremos como realizar operações entre polinômios. De maneira bem 

simplista, vamos usar a propriedade distributiva da multiplicação em relação à 

soma e o que conhecemos sobre potências. 

Inicialmente, temos que a soma de dois polinômios é feita termo a termo, apenas 

com o agrupamento de termos de mesmo grau. Com esta definição, o resultado da soma 

de dois polinômios é um polinômio. A soma é uma operação comutativa, associativa 

e com existência de elemento neutro, o polinômio identicamente nulo, e de elemento 

inverso para qualquer polinômio, o que caracteriza [ ]x  como um grupo aditivo. 

Exemplo 1

Dados os polinômios 2 2( ) 3 7,  q(x)=x+3 e r(x)=2x-3xp x x= - , determine p 

+ q, q + r e p + r.

Solução: 	
2 2

2 2

2 2

3 7 ( 3) 3 4

x+3 (2x-3x ) 3 3 3

3 7 (2x-3x ) 2 7

p q x x x x

q r x x

p r x x

+ = - + + = + -

+ = + =- + +

+ = - + = +
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Como pode ser percebido no exemplo acima, podemos ter dois polinômios 

de grau 2, cuja soma tem grau 1, bastando para isso que os coeficientes líderes dos 

dois polinômios sejam simétricos. Pode acontecer que a soma de dois polinômios 

não nulos gere o polinômio identicamente nulo. O que nunca pode acontecer é que 

o resultado da soma de polinômios tenha grau maior do que o máximo do grau das 

parcelas. Resumindo: 

( ) max{ }p q p q¶ + £ ¶ +¶

A multiplicação de polinômios será feita de modo a manter a distributividade 

do produto em relação à soma e o fato base ( ).( )m n m nax bx abx += . 

Exemplo 2

Desenvolva 2(3 2 1).(4 8)x x x- + - .

Solução:  2 3 2 2

4 3 2

(3 2 1).(4 8) 12 24 8 16 4 8

12 32 20 16 8

x x x x x x x x

x x x x

- + - = - - + + -

= - + + -

Com a multiplicação definida dessa forma, [ ]x  é fechado em relação ao 

produto, a multiplicação de polinômios é comutativa, associativa e possui elemento 

neutro, o polinômio p(x) = 1. Dizemos, por isso e pelo visto em relação à adição, que   

[ ]x  é uma estrutura algébrica chamada anel comutativo com unidade.

No exemplo acima, o grau do resultado foi igual à soma dos graus dos 

fatores. Caso um dos fatores fosse o polinômio identicamente nulo, o resultado 

seria, também, identicamente nulo, caso em que não fazemos estudo do grau. Se os 

graus de p e q estiverem definidos, o grau de p.q seria igual à soma dos graus de p 

e q. Ou seja:

( . )p q p q¶ =¶ +¶

Exemplo 3

O polinômio 3 4( ) (3 5).(2 4).( 2)p x x x x x= + - + +  tem grau 3 + 1 + 4 = 8. Além 

disso, não precisamos fazer o desenvolvimento para saber o termo constante e a soma dos 

coeficientes, pois eles valem p(0) e p(1), respectivamente. Temos p(0) = (3.03 + 5)(2.0 – 4)

(04 + 0 + 2) = 5.(–4).2 = –40 e p(1) = (3.13 + 5)(2.1 – 4)(14 + 1 + 2) = 8.(–2).4 = –64. 

Exemplo 4

Dados 3( 3 4)p x x+ - , encontre um polinômio q(x) tal que p(x) = q(x).(x – 1).

Solução: Inicialmente, devemos ter ¶ p = ¶ q + ¶ (x – 1) Þ  3 = ¶ q + 1, de 
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onde concluímos que o grau de q é 2 e podemos escrever q(x) = ax2 + bx + c, com 

coeficientes a, b e c a determinar. Façamos:

3 2

3 2 2

3 2

3 4 ( ).( 1) ( ).( 1)

( ) ( )

x x q x x ax bx c x

ax ax bx bx cx c

ax a b x b c x c

+ - = - = + + -

+ + - + - =

+ - + + - + -

Para que os polinômios sejam idênticos, devemos ter a = 1, –a + b = 0 (de 

onde tiramos b = 1), –b + c = 3 (de onde tiramos c = 4) e, por último, –c = –4, 

que corrobora com o determinado. Assim, obtemos 2( ) 4q x x x= + + . Desse modo, 

podemos dizer que 
3

23 4
4

1
x x

x x
x
+ -

= + +
-

.	

 O exemplo acima sugere um modo de fazer a divisão entre dois 

polinômios, mas nem sempre ela é possível. Um caso bem simples que ilustra 

esse fato é a busca por inverso multiplicativo. 

Exemplo 5

Encontre o inverso multiplicativo do polinômio 2( )p x x= .

Solução: Devemos encontrar um polinômio q(x) tal que p(x).q(x) = 1. Os polinômios 

constantes têm grau 0, logo ¶ p + ¶ q = 0 Þ  2 + ¶ q = 0, mas como o grau de um 

polinômio é um número natural, sabemos que tal q(x) não existe. 

Exemplo 6: 

Dados 2( ) 2 4p x x x= + + , encontre um polinômio q(x) tal que p(x) = q(x).(x 

+ 1).

Solução: Primeiro, uma investigação a respeito do grau de q nos leva a ¶ p = ¶

q + ¶ (x + 1) Þ  2 = ¶ q + 1, logo q deve ter grau 1, sendo da forma q(x) = ax 

+ b. Comparemos 2 2( ) 2 4 ( ).( 1)p x x x ax b x ax ax bx b= + + = + + = + + + , que 

resultaria nas equação a = 1, a + b = 2 e b = 4, que não podem ser satisfeitas 

simultaneamente, impossibilitando, assim, a existência de um q(x) com a propriedade 

procurada. 

 Assim, em [ ]x  nem sempre a divisão é possível, mas podemos pensar em 

algo semelhante ao que acontece com números inteiros, o que será feito no tópico 

seguinte.
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TÓPICO 3 Divisão e o teorema 
do resto
Objetivos

•	 Estabelecer relações entre a divisão de 
polinômios e a divisão de inteiros

•	 Verificar critérios de divisibilidade
•	 Analisar as consequências do Teorema do 

Resto

Já sabemos o que é um polinômio e como as operações de soma e produto se 

processam em ℂ[x]. Também vimos que nem sempre a divisão é possível, 

ou seja, dados os polinômios A(x) e B(x), nem sempre é possível encontrar 

um polinômio q Î  ℂ[x] tal que A(x) = B(x).q(x). Por isso o conjunto dos polinômios e o 

conjunto dos números inteiros são parecidos. Por causa disso, podemos proceder como na 

divisão de números inteiros, ou seja, dividir A(x), chamado de dividendo, por B(x), o divisor, 

é determinar polinômios q(x) e r(x), chamados, respectivamente, de quociente e resto da 

divisão, tais que

A(x) = B(x).q(x) + r(x)

Com o intuito de que o quociente e o resto sejam unicamente 

determinados nos números inteiros, exigimos que o resto seja 

menor que o módulo do divisor, uma maneira de “comparar” 

polinômios é através do grau, isto é, queremos  ou r=0r B¶ <¶ .  

Aqui podemos usar a mesma terminologia da divisão de inteiros (divisão exata, 

divisível por, divisor, múltiplo).

Vale notar que, se o dividendo for identicamente nulo ou tiver grau 

menor que o divisor, a divisão é feita de maneira imediata, sendo o quociente 

identicamente nulo e o resto igual ao próprio divisor. Assim nos ateremos aos casos 

em que o grau do dividendo é maior ou igual ao do divisor. Considerando, então, 

 e r< B ou r=0A B¶ ³¶ ¶ ¶ , para que a igualdade A(x) = B(x).q(x) + r(x) ocorra, 

devemos ter A= (B.q+r)= (B.q)= B+ q¶ ¶ ¶ ¶ ¶ , ou seja, a relação entre os graus dos 
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fatores nos leva a dizer que o grau do quociente é igual ao grau do dividendo 

menos o grau do divisor. Vejamos uma maneira de proceder.

Exemplo 1

Encontre o quociente e o resto da divisão de 2( ) 4 2f x x x= - +  por g(x) = x + 1.

Solução: Devemos encontrar polinômios q e r tais que f = g.q + r. Como ¶ f = 3  

e ¶ g = 1, é necessário ter ¶ q = ¶ f – ¶ g = 2, ou seja, 2( )q x ax bx c= + + , e ¶ r < 1, 

sendo, portanto, constante, façamos r(x) = d. Nosso trabalho, agora, é encontrar os 

números a, b e c na igualdade de polinômios:

2

3 2 2

3 3 2

( )         ( ). ( ) ( )

                 ( 1).( )

                  = ax

x 4 2 = ax ( ) ( )

f x g x q x r x

x ax bx c d

bx cx ax bx c d

x b c x b c x c d

= +

= + + + +

+ + + + + +

- + + + + + + +

A igualdade se verifica quando os coeficientes correspondentes são iguais, 

ou seja: 

a = 1 

b + a = 0, de onde podemos concluir que b = –1

c + b = –4, de onde podemos concluir que c = –3

c + d = 2, de onde podemos concluir que d = 5. 

O quociente é, desse modo, 2( ) 3q x x x= - -

e o resto é r(x) = 5. Podemos, então, escrever 
3 2x 4 2 ( 1).( 3) 5x x x x- + = + - - + .

O método empregado no exemplo 1 é 

chamado de método de Descartes ou método dos 

coeficientes a determinar. Vamos usá-lo mais uma 

vez no exemplo abaixo:

Exemplo 2

Determine o valor real de k para que o polinômio 2( ) 6A x x x k= - +  seja 

divisível por B(x) = x – 1. 

Solução: Para que A seja divisível por B, o resto deve ser identicamente nulo, ou seja, 

deve existir um polinômio q tal que A = B.q. Um estudo sobre o grau nos fornece ¶ q = 

¶ A – ¶ B = 3 – 1 = 2. Devem existir números a, b e c para que ( ) 2q x ax bx c= + +  
satisfaça a relação

S a i b a  m a i s

No site:https://educacao.uol.com.br/

biografias/rene-descartes.htmvocê 

encontrará mais informações sobre a vida 

e obra do matemático René Descartes.

https://educacao.uol.com.br/biografias/rene-descartes.htm
https://educacao.uol.com.br/biografias/rene-descartes.htm
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2 2

3 2 2

3 2

6 ( 1).( )
                  
                  ( ) ( )

x x k x ax bx c
ax bx cx ax bx c
ax b a x c b x c

− + = − + +

= + + − − −

= + − + − −
	  

Se compararmos os coeficientes correspondentes, teremos 

a = 1

b – a = 0, de onde tiramos b = 1

c – b = –6, de onde tiramos c = –5 e por último, é necessário que k = –c, ou seja, k = 5. 

 Outro método para determinar o quociente e o resto na divisão de polinômios 

é o método de chaves, semelhante ao método empregado na divisão de números 

inteiros com muitos algarismos, começando por dividir apenas os termos de maior 

grau e diminuindo o grau do dividendo. Acompanhe:

Exemplo 3

Dividir, usando o método de chaves, o polinômio 3 23 2 1x x x- + +  por 
2 3x x- + .

Solução: Primeiro posicionamos o dividendo e o divisor como se fossem números 

inteiros de acordo com o esquema:

3 23 2 1x x x− + +
2 3x x− +

Como o grau do quociente deve ser 1, o seu primeiro termo é da forma ax. Para 

determinar o valor de a, dividimos os coeficientes líderes 3/1 = 1. Assim devemos colocar 

3x no espaço reservado ao quociente, fazer o produto pelo divisor (3x.(x2 – x + 3) = 3x3 – 

3x2 + 9x) e colocar o resultado logo abaixo do dividendo, diminuindo-o. Veja:

3 23 2 1x x x− + + 2 3x x− +

3 2(3 3 9 )x x x− − + 3x

2 8 1x x− +

Aqui obtemos 2 8 1x x- + , que é chamado resto parcial. Como o grau do 

resto parcial não é menor que o grau do divisor, o processo deve ser repetido. O 

próximo termo do quociente deve ser 1. Repetindo o processo, obtemos:
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3 23 2 1x x x− + + 2 3x x− +

3 2(3 3 9 )x x x− − + 3 1x +

2 8 1x x− +

( )3x x− − +

7 2x− −

Como o resto parcial obtido tem grau menor que o do divisor, a divisão é 

encerrada e obtemos q(x) = 3x + 1 e r(x) = –7x – 2.

Exemplo 4

Veja como fica, pelo método de chaves, a divisão do exemplo 1:

3 4 2x x− + 1x +

( )3 2x x− + 2 3x x− −

2 4 2x x− − +
2( )x x− − −

3 2x− +

( )3 2x− − +

5

Naturalmente, obtivemos o mesmo resto e o mesmo quociente.

A partir de agora, vamos trabalhar com o caso no qual o divisor é da forma x – a, 

ou seja, um polinômio mônico de primeiro grau. Se o polinômio p(x), de grau n ³  1, 

for dividido por x – a, sabemos que o quociente tem grau n – 1 e o resto tem grau 

0 ou é identicamente nulo, ou seja, o resto é constante. Por exemplo, se dividirmos 

p(x) = x3 + 2 por x – 1, o quociente é x2 + x + 1 e o resto é 3, que é o mesmo valor 

de p(1). Essa aparente coincidência é explicada pelo Teorema do Resto, que segue:
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Exemplo 5

Determine a soma dos coeficientes do 

quociente da divisão de 5 32x +  por x – 2.

Solução: O valor numérico de 5 32x +  para x 

= 2 vale 64 e, de acordo com o teorema, esse é o 

valor do resto. Assim, podemos escrever 
5 32 ( )( 2) 64x q x x+ = - +

Fazendo x = 1 na expressão acima, 

obtemos 15 + 32 = q(1)(1 – 2) + 64, de onde 

obtemos q(1) = 31, que é a soma dos coeficientes, 

conforme visto no tópico 1. O fato pode ser 

confirmado pela divisão direta, mas fazer a 

divisão pelo método das chaves ou pelo método 

de Descartes com um dividendo de grau 5 é 

bem trabalhoso. 

 Como consequência direta do Teorema do 

Resto, há um resultado conhecido como Teorema 

de D’Alembert. Assim, “um polinômio p(x) é 

divisível por x – a se, e somente se, p(a) = 0”. Isso é válido porque, se a divisão é exata, 

o resto vale 0 e, dessa forma, a é raiz de p. Reciprocamente, se a é raiz do polinômio, o 

resto é 0 e a divisão é exata.

v o c ê  s a b i a?

Jean Le Rond D’Alembert nasceu no 

dia 17 de novembro em Paris. Ainda 

pequeno, foi abandonado na igreja de 

St. Jean Baptiste le Rond localizada 

perto de Notre Dame. Recebeu o mesmo 

nome do local onde foi encontrado - Le 

Rond - e D’Alembert, seu sobrenome, foi 

acrescentado mais tarde quando iniciou 

seus estudos. Mais informações no 

site: http://ecalculo.if.usp.br/historia/

dalembert.htm

Teorema do Resto: Na divisão do polinômio p(x) por x – a, o resto vale p(a).

Demonstração: O quociente q(x) e o resto r(x) da divisão de p(x) por x – a satis-

fazem a igualdade p(x) = q(x).(x – a) + r(x). O valor numérico de p(x) para a vale  

p(a) = q(a).(a – a) + r(a) = r(a), mas, como o resto deve ser constante e r(a) = p(a),  

tem-se r(x) = p(a) para qualquer número complexo a. 

Como pode ser verificado no exemplo 4, quando dividimos o polinômio p
2( ) 4 2p x x x= - + por x + 1, obtivemos resto igual a 5 = p(–1), já que  

x + 1 = x – (–1).
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Exemplo 6

Determine os valores reais de a e b para que o polinômio p(x) = x5 – 3x2 + ax + 

b seja divisível por q(x) = x2 – 3x + 2.

Solução: Como q(x) é um polinômio mônico do segundo grau, podemos encontrar 

suas raízes facilmente. São elas 1 e 2, e ele pode ser escrito como q(x) = (x – 1)(x 

– 2). Assim, ser divisível por q(x) é ser divisível simultaneamente por x – 1 e por 

x – 2. Pelo teorema de D’Alembert, devemos ter p(1) = p(2) = 0, mas: 

	 p(1) = 0 Þ 15 – 3.12 + a.1 + b = a + b – 2 = 0 Þ  a + b = 2

	 p(2) = 0 Þ 25 – 3.22 + a.2 + b = a + b + 20 = 0 Þ  2a + b = –20

Para que as duas equações acima sejam satisfeitas, é necessário que a = –22 e b = 24.

Exemplo 7:

Obtenha um polinômio mônico de segundo grau que seja divisível por x – 3 

e cujos restos nas divisões por x – 2 e x + 3 são iguais.

Solução:

Um polinômio mônico de segundo grau é da forma p(x) = x2 + bx + c, com 

b e c números complexos. O resto da divisão de p por x – 2 é p(2) = 4 + 2b + c e o 

resto da divisão de p por x + 3 é p(–3) = 9 – 3b + c. Assim, temos a igualdade 4 + 

2b + c = 9 – 3b + c, de onde concluímos que b vale 1. Para que p seja divisível por 

x – 3, devemos ter p(3) = 0, ou seja, 9 + 3b + c = 0, mas como b = 1, chegamos ao 

resultado c = –12.

 O teorema de D‘Alembert pode ser usado para se verificar que a quantidade 

de raízes de um polinômio não identicamente nulo é finita, não superando o grau do 

polinômio.
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Como vimos, nem sempre é necessário fazer a divisão para se obter 

informações relevantes a respeito do quociente e do resto, mas, quando 

for necessário obter todos os seus coeficientes, 

há de se utilizar um dos métodos descritos nesta 

aula. No caso específico de o divisor ser da for-

ma x – a, já podemos começar sabendo qual vai 

ser o resto. Além disso, há um método simples e 

direto de encontrar os coeficientes do quocien-

te, chamado de Dispositivo de Briot-Ruffini, que 

será explicado apenas na próxima aula.

Proposição: Um polinômio de grau n tem, no máximo, n raízes distintas.

Demonstração: Suponha que o polinômio p seja tal que p n∂ =  e que ele possua 

m raízes distintas. Se 1 2, , ..., mx x x  são essas raízes, pelo teorema de D’Alembert, 

p é divisível por 1 2, , ... , mx x x x x x− − − , podendo, assim, ser rescrito como 

( ) ( ) ( )1 2( )  ...  ( )mp x x x x x x x q x= − ⋅ − ⋅ ⋅ − ⋅ . Pela relação entre os graus, temos

( ) ( ) ( )( )
( ) ( ) ( )

1 2

1 2

 ... 

 ... 1 1  ... 1
m

m

p x x x x x x qx

x x x x x x q q m q

∂ = ∂ − ⋅ − ⋅ ⋅ − ⋅ =

= ∂ − + ∂ − + + ∂ − + ∂ = + + + + ∂ = + ∂

e, como o grau é um número natural e temos p m q∂ = + ∂ , 

 vale n m≥ , ou seja, a quantidade de raízes nunca supera o grau.  

Com isso, podemos concluir que a quantidade de raízes de um polinômio não 

identicamente nulo é finita.

S a i b a  m a i s

Obtenha mais informações sobre 

Funções polinomiais acessando o ste: 

http://www.matematica.pucminas.br/

oficinas/cap03.pdf
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AULA 7 Polinômios II

Olá!

Nesta aula e pelo resto do nosso curso, vamos continuar dando atenção às 

funções polinomiais, analisando relações entre seus coeficientes e suas raízes, 

dependendo do conjunto numérico em que eles estejam. Estudaremos casos 

específicos em [ ]x , [ ]x , [ ]x  e [ ]x , conheceremos a ligação mais forte 

que há entre os polinômios e os números complexos, além de descrever um 

método prático para se realizar a divisão quando o divisor for de grau 1. Já são 

muitas as definições com as quais vamos trabalhar, portanto é importante que se 

tenha em mente todos os termos com os quais trabalhamos na aula passada, 

especialmente grau e raízes.

Objetivos

•	 Relacionar as raízes e os coeficientes de um polinômio
•	 Estabelecer critérios sobre as raízes em cada conjunto numérico
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TÓPICO 1 Dispositivo Prático

Objetivo

•	 Realizar de maneira prática a divisão por 
polinômios de primeiro grau

Como visto na aula passada, realizar a divisão entre os polinômios 

( )A x  e ( )B x  consiste em determinar um quociente ( )q x  e um resto 

( )r x  de tal forma que ( ) ( ). ( ) ( )A x B x q x r x= + , com a restrição 

r B¶ <¶  ou 0r = . Quando o resto é identicamente nulo, a divisão é dita exata e, 

neste caso, as raízes de ( )B x  também são raízes de ( )A x . 

Quando o divisor tem grau 1, o resto necessariamente é constante, pois deve 

ser identicamente nulo ou ter grau 0. Vamos continuar estudando o caso da divisão 

por polinômios mônicos de primeiro grau, notadamente os da forma x a- , de onde 

tiramos a (única) raiz diretamente.

Exemplo 1a

O número 5 é raiz do polinômio ( ) 5f x x= -  e o número –3 é raiz do 

polinômio ( ) 3g x x= + , podemos até escrever ( ) ( 3)g x x= - - .

Exemplo 1b

Para o polinômio 5( ) 32s x x= -  vale s(2) 

= 0, logo, pelo Teorema do Resto, s(x) deixa 

resto 0 na divisão por 2x- . Podemos, usando 

o método de Descartes, obter o quociente 
4 3 2( ) 2 4 8 16q x x x x x= + + + + .	 

Este estudo é importante, pois, se soubermos 

que o número a é raiz do polinômio p(x), temos, 

S a i b a  m a i s

Obtenha mais informações sobre o 

Teorema de D’Alembert, acessando o 

site http://www.mundoeducacao.com.

br/matematica/teorema-dalembert.htm
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pelo teorema de D’Alembert, que p(x) é divisível por x – a, podendo ser escrito 

como ( ) ( ). ( )p x x a q x= - , sendo 1q p¶ =¶ - , ou seja, o grau de q é menor que o de 

p e o problema de encontrar as raízes vai diminuindo de complexidade. 

Exemplo 2

Sabendo que o número 3 é raiz do polinômio 3 2( ) 7 7p x x x x k= - + + , em 

que k é um número real, encontre todas as outras raízes. 

Solução: Como 3 é raiz, vale (3) 0p = , ou seja, 3 23 7.3 7.3 0k- + + = , de onde 

tiramos k = 15. Assim temos todos os coeficientes de p e sabemos que ele é divisível 

por 3x- . Fazendo a divisão por algum dos métodos já vistos, encontramos 

quociente 2 4 5x x- -  e resto identicamente nulo (naturalmente). Desse modo, 

podemos escrever 2( ) ( 3).( 4 5)p x x x x= - - -  e encontrar as raízes de p equivale a 

resolver a equação 2( 3).( 4 5) 0x x x- - - = , mas, para que o produto seja zero, um 

dos fatores deve ser igual a zero, de onde tiramos:

3 0x- = , que conduz à raiz que já sabíamos, ou
2 4 5 0x x- - = , que leva a x = 5 ou x = –1. A partir daí, temos as raízes 3, 

5 e –1. Como 3p¶ = , pelo que foi discutido no final da aula passada (a quantidade 

máxima de raízes de um polinômio é o seu grau), não há outra raiz a ser encontrada.

O método do exemplo anterior é interessante, mas exige que saibamos uma raiz 

de antemão, algo que podemos determinar através de testes, caso haja raízes inteiras e 

de módulo pequeno. Antes de analisarmos métodos mais eficazes para testar raízes de 

um polinômio, vejamos como fazer a divisão por x – a de modo prático. 

Comecemos, então, dividindo o polinômio 1
1 1 0( ) ...n n

n np x a x a x a x a-
-= + + + +  

por x – a, usando o método dos coeficientes a determinar. Uma vez que o quociente 

terá grau n – 1, podemos escrevê-lo 1
1 1 0...n

nq x q x q-
- + + +  e forçar a igualdade 

( ) ( ).( ) ( )p x q x x a r x= - + , lembrando que o resto é constante. Temos 
1 2

1 2 1 0

1 1 2
1 1 2 2 0 0

1 2
1 2 1 3 2 0 1 0

( ).( ) ( ) ( ... )( ) ( )

... ( )

( ). ( ) ... ( ) ( )

n n
n n

n n n n
n n n n

n n n
n n n n n

q x x a r x q x q x q x q x a r x

q x aq x q x aq x q x aq r x

a x q aq x q aq x q aq x r x aq

- -
- -

- - -
- - - -

- -
- - - - -

- + = + + + + - +

= - + - + + - +

= + - + - + + - + -

Agora, se compararmos os coeficientes com os de p(x), encontraremos

1n na a- = , 

ou seja, o primeiro coeficiente do quociente é igual ao do dividendo.

2 1 1 2 1 1n n n n n nq aq a q aq a- - - - - -- = Þ = +

Assim, o segundo coeficiente do quociente será obtido a partir do primeiro, 

multiplicando-o por a e somando-o com o próximo coeficiente de p(x).
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3 2 2 3 2 1n n n n n nq aq a q aq a- - - - - -- = Þ = +

Da mesma forma, o terceiro coeficiente do quociente será obtido a partir do 

segundo, multiplicando-o por a e somando-o com o próximo coeficiente de p(x).

Daí em diante, o mesmo acontece com todos os coeficientes, de modo que, 

por fim, teremos

0 1 1 0 1 1q aq a q aq a- = Þ = + ; e 

0 0 0 0( ) ( )r x aq a r x aq a- = Þ = + .

Podemos registrar essas informações na seguinte tabela, que é conhecida 

como o dispositivo prático de Briot-Ruffini, em homenagem ao matemático francês 

Charles Briot (1817-1882) e ao italiano Paolo Ruffini (1765-1822). Colocaremos 

apenas os coeficientes, por simplicidade.

Exemplo 3

Dividir o polinômio 3 26 7 9x x x- + +  por 4x- .

Solução: 

Sabemos que o quociente encontrado será do segundo grau 

e o resto constante. Nesse caso, temos 4 como raiz do divisor e os 

coeficientes do dividendo são 1, –6, 7 e 9. Dispondo esses números 

no dispositivo prático, encontramos

4 1 –6 7 9

Inicialmente, repetimos o primeiro coeficiente.

4 1 –6 7 9
1

Em seguida, multiplicamos esse primeiro coeficiente por 4 e somamos com o 

próximo coeficiente do dividendo, fazendo 1.4 + (–6) = –2, e anotamos o resultado 

abaixo do –6.

4 1 –6 7 9
1  –2

Figura 1: Paolo Ruffini    

http://upload.wikimedia.org/wikipedia/



97AULA 7 TÓPICO 1

O próximo passo é fazer (–2).4 + 7 = –1 e anotar esse número logo abaixo 

do 7.
4 1 –6 7 9

1  –2 -1

Por fim, (–1).4 + 9 = 5, que é o resto da divisão

4 1 –6 7 9
1  –2 -1 5

Além disso, temos os coeficientes 1, – 2 e –1, que geram o quociente q(x) = x2 – 2x – 1.

É importante observar que, no dispositivo, devemos colocar todos os 

coeficientes do dividendo, mesmo que alguns deles sejam iguais a 0. Assim, por 

exemplo, os coeficientes de x3 – 3 são 1, 0, 0 e 3.

Exemplo 4

Dividir 5 4 3x x- +  por 2x-  

Solução: Como o dividendo tem grau 5, o quociente terá grau 4. A raiz do divisor 

é 2 e os coeficientes do dividendo são 1, 0, 0, 0, –4 e 3. Assim, dispomos esses 

números no esquema abaixo:

2 1 0 0 0 –4 3

Realizando os passos indicados acima, obtemos como resultado final 

2 1 0 0 0 –4 3
1 2 4 8 12 21

Assim, o quociente é o polinômio q(x) = x4 + 2x3 + 4x2 + 8x + 12 e o resto vale 21.

Mesmo que o divisor não seja mônico, o método pode ser empregado depois 

de um pequeno ajuste. Considere, então, a divisão do polinômio ( )p x  por ax b+ ,  

com a ≠ 0, com quociente q(x) e resto r(x). Temos ( ). ( ) ( ) ( )ax b q x r x p x+ + = .  

Uma vez que .( )
b

ax b a x
a

+ = + , podemos reescrever a igualdade como 

( ). ( ) ( ) ( )
b

x aq x r x p x
a

+ + =  e realizar o processo de divisão por 
b

x
a

+ . Com isso, 

obteremos o quociente auxiliar Q(x) = aq(x) e o mesmo resto. Depois de terminado 

o processo, então, bastará que o quociente auxiliar seja dividido por a para que 

obtenhamos o quociente original. Acompanhe um exemplo deste método.
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Exemplo 5

Determine o quociente e o resto da divisão de 4 3 2( ) 2 7 2 5f x x x x= - + +  por 

( ) 5g x x= -  .

Solução: Comecemos por colocar 2 em evidência em 
5

( ) 2.( )
2

g x x= - . Assim, 

utilizamos o dispositivo de Briot-Ruffini para
5
2

x-  e para dividir o quociente 

encontrado por 2.

5/2 2 –7 9 0 5
2 –2 4 10 30

Desse modo, o resto da divisão será 30 e o quociente auxiliar
3( ) 2 2 ² 4 10Q x x x x= - + + . Dividindo-o por 2, obteremos ( ) ³ ² 2 5q x x x x= - + + .
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No final da aula 1, observamos que um polinômio de grau n 

tem, no máximo, n raízes. Ou seja, se p n¶ = , então o conjunto 

{ ; ( ) 0}z p zÎ = possui no máximo n elementos. Por exemplo, o 

polinômio ( ) ² 4 3p x x x= - +  tem grau 2 e apenas uma raiz, enquanto o polinômio 

( ) ( 2)².( 4)q x x x= - -  tem grau 3 e apenas duas raízes. Um fato importante é enunciado 

a seguir e será admitido sem demonstração.

Considerando p n¶ =  da forma 1
1 1 0( ) ...n n

n np x a x a x a x a-
-= + + + + , o TFA 

afirma que existe z1 que é raiz de p(x), logo p(x) é divisível por x – z1, ou seja, 

1 1( ) ( ). ( )p x x z p x= - , com 1 1p n¶ = -  e mesmo coeficiente líder de p. 

Uma vez que p1 é um polinômio, podemos aplicar de novo o TFA e concluímos 

que ele possui uma raiz z2, sendo, portanto, divisível por x – z2, de onde podemos 

escrever 1 2 2( ) ( ). ( )p x x z p x= - . Assim, 1 2 2( ) ( ).( ). ( )p x x z x z p x= - -

O processo pode ser repetido n vezes até que obtenhamos p
n
 constante (igual 

ao termo líder de p) e o TFA não mais pode ser usado.

TÓPICO 2 Multiplicidade

Objetivos

•	 Verificar raízes repetidas
•	 Enunciar o Teorema Fundamental da Álgebra

Teorema Fundamental da Álgebra (TFA)

O conjunto dos números complexos é algebricamente fechado, o que quer dizer que todo 

polinômio com coeficientes complexos e não constante tem pelo menos uma raiz em ℂ. 

Em notação, equivale a “  [ ] ( 1  ;  ( ) 0)p x p z p z" Î ¶ ³ Þ$ Î =  ”.
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Assim, qualquer polinômio de grau n pode ser escrito como 

1 2 3( ) .( ).( )( ).....( )n np x a x z x z x z x z= - - - - ,

em que cada um dos kz  é raiz de p(x), ou seja, um polinômio de grau n tem 

exatamente n raízes, mas não necessariamente distintas. 

Exemplo 1

Uma vez que ( 3)².( 4) ( 3).( 3).( 4)x x x x x- + = - - + , podemos dizer que 

( ) ( 3)².( 4)p x x x= - +  possui três raízes, sendo duas iguais a 3 e uma igual a –4. O 

número 3 é chamado de raiz dupla e o –4 de raiz simples de p. 

Para determinar a multiplicidade do número a como raiz de um polinômio, de-

vemos realizar divisões sucessivas por x a- , nas quais o quociente de uma divisão 

vira dividendo da próxima, e contar quantas vezes o resto dará 0.

Exemplo 2

Encontre a multiplicidade do número 2 como raiz de 4( ) 3 ³ ² 4p x x x x= - + + .

Solução: Para verificar se 2 é raiz de p, usamos o dispositivo de Briot-Ruffini:

2 1 –3 1 0 4
1 –1 –1 –2 0

Como o resto encontrado foi 0, o número 2 é raiz de p(x). Dividindo agora o 

quociente encontrado por 2x- , obtemos:

2 1 –1 -1 -2
1 1 1 0

O novo resto encontrado foi 0, significando que a multiplicidade de 2 como raiz 

é pelo menos dois. Repetindo o processo, temos: 

2 1 1 1
1 3 7

Como o resto não foi 0, o número 2 não tem multiplicidade três como raiz de p(x).

d e f i n i ç ã o 

O número a é raiz de multiplicidade m do polinômio ( )p x  se ( ) 0p a =  e, além 

disso, ( ) ( ) . ( )mp x x a q x= - , com ( ) 0q a ¹ .
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Exemplo 3

Determine os valores reais de a e b para que o número 3 seja uma raiz 

multiplicidade dois do polinômio ( ) ³ 2 ²p x x x ax b= - + +  

Solução: Devemos realizar a divisão de p(x) por x – 3 duas vezes e exigir que os 

restos sejam iguais a 0. Usando o dispositivo de Briot-Ruffini, temos:

3 1 -2 a b

113 + a9 + 3a + b (1º resto)

15 + a = 0 (2º resto)

Fazendo 15 + a = 0, obtemos a = –15 e fazendo 9 + 3a + b = 0, devemos ter b = 36. 

 Podemos escrever ( ) ² 2 ² 15 36 ( 3)².( 4)p x x x x x x= - - + = - +

Exemplo 4: 

Encontre um polinômio cujas raízes são 5 e –1, com multiplicidades 2 e 

3, respectivamente.

Solução: O polinômio procurado é da forma:

 2 3( ) .( 5) .( 1)p x a x x= - + .

Desenvolvendo-o, temos :

2 3 2 5 4 3 2( ) .( 10 25).( 3 3 1) .( 7 2 46 85 25)p x a x x x x x a x x x x x= - + + + + = - - + + + , 

para qualquer 0a ≠ .
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TÓPICO 3 Relações entre 
coeficientes e raízes
Objetivo

•	 Determinar relações entre as raízes de um 
polinômio e seus coeficientes

No tópico anterior, vimos, a partir do Teorema Fundamental 

da Álgebra, que todo polinômio pode ser escrito da forma

1 2( ) .( ).( )....( )np x a x z x z x z= - - - , em que os números 

complexos kz  são as raízes de p(x). A multiplicidade de uma raiz é a quantidade 

de vezes em que o seu fator correspondente aparece na fatoração. Desse modo, 

podemos ter raízes simples (multiplicidade um), raízes duplas, triplas, etc. Uma 

vez que cada polinômio tem uma fatoração dessa forma, é natural que os seus 

coeficientes estejam relacionados de maneira direta com as raízes. 

Exemplo 1: 

Encontre o polinômio mônico de terceiro grau cujas raízes são 1, 2 e 3. 

Solução: 

Os coeficientes do polinômio podem ser encontrados se desenvolvermos 
3 2( ) ( 1).( 2).( 3) 6 11 6p x x x x x x x= - - - = - + -

No estudo de funções polinomiais do segundo grau, vimos que a soma e o 

produto das raízes podem ser obtidos por uma razão simples entre os coeficientes 

da função. Relembrando: dado o polinômio 2( )f x ax bx c= + + , com 0a ¹ . Se 

suas raízes são 1z  e 2z , podemos escrevê-lo como 
2 2

1 2 1 2 1 2 1 2 1 2( ) .( ).( ) .( ( ) ) .( )f x a x z x z a x z z x z z ax a z z x az z= - - = - + + = - + +

. Comparando os coeficientes, devemos ter 1 2 1 2( )  e aa z z b z z c- + = = , ou seja, 

1 2

b
z z

a
+ =-  e 1 2

c
z z

a
=
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Assim, para obter a soma das raízes, dividimos o segundo coeficiente pelo 

primeiro e acrescentamos o sinal de menos. Para o produto, dividimos o terceiro 

coeficiente pelo primeiro.

Procedendo de maneira análoga para o polinômio de terceiro grau 
3 2( )p x ax bx cx d= + + +  e com raízes 1 2 3,   e z z z , teremos a fatoração 

1 2 3.( ).( ).( )a x z x z x z- - -  que leva às relações:

1 2 3

b
z z z

a
+ + =- , 1 2 1 3 2 3

c
z z z z z z

a
+ + =  e 1 2 3

d
z z z

a
=-

Se tomarmos as raízes uma por uma e as somarmos, encontraremos o segundo 

coeficiente dividido pelo termo líder, com o sinal de menos. Se tomarmos os 

produtos das raízes de duas em duas, obteremos o terceiro coeficiente dividido pelo 

termo líder, e se tomarmos o produto das três raízes, teremos o quarto coeficiente 

dividido pelo termo líder, com o sinal de menos.

Exemplo 2

Se r, s e t são as raízes do polinômio 3 2( ) 4 3 7p x x x x= + - - , podemos dizer 

que 4,  rs+rt+st=-3 e rst=7r s t+ + =- .

Exemplo 3

Calcule a soma dos inversos das raízes da função 3( ) 2 4 5f x x x= - + .

Solução: Como 3f¶ = , considere as raízes 1 2 3,   e z z z . O objetivo, então, é calcular 

1 2 3

1 1 1
z z z

+ + . Podemos fazer 
1 2 3

1 1 1
z z z

+ +  = 2 3 1 3 1 2

1 2 3

z z z z z z
z z z

+ +
 = 

4 / 2 4
5 / 2 5

-
=

-
.

As relações acima são chamadas de Relações 

de Girard, em homenagem ao matemático 

francês Albert Girard (1595-1632). Elas podem 

ser estendidas para um polinômio de qualquer 

grau, de acordo com o que segue.

Seja 1
1 1 0( ) ...n n

n np x a x a x a x a-
-= + + + +  

com raízes 1 2,  ,...., nz z z . Ou 

seja, ele pode ser fatorado como 

1 2( ) .( ).( )....( )n np x a x z x z x z= - - - . Se 

chamarmos de kS  a soma dos produtos das 

raízes de p, tomadas de k em k, obteremos 
1 2 3 1

1 2 3( ) ... ( 1) ... ( 1)n n n n k n n
n n n n n k n np x a x a S x a S x a S x a S x a S- - - -= - + - + + - + + -

S a i b a  m a i s

Conheça um pouco mais sobre o 

matemático Albert Girard acessando o 

site http://www.somatematica.com.br/

biograf/girard.php
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Fazendo a comparação com os coeficientes de p(x), encontraremos
 

( 1)k n k
k

n

a
S

a
-= -

Exemplo 4

Se r, s, t e u são as raízes do polinômio 
4 3 2( ) 2 3 5 7p x x x x x= + - + - , encontre 

rst rsu rut sut+ + + .

Solução: Devemos encontrar a soma dos produtos 

das raízes, tomadas três a três, ou seja, 3S . 

Temos 3 4 3 1
3

4 4

1
( 1) ( 1).

2

a a
S

a a
-= - = - =- .

at e n ç ã o !

Observação: Já que a soma Sk consiste 

dos produtos das n raízes, tomadas em 

grupos de k, podemos concluir, através 

de nossos conhecimentos de análise 

combinatória, que Sk tem ,n kC
 parcelas.
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TÓPICO 4 Raízes complexas e 
raízes reais
Objetivos

•	 Obter critérios para a existência de raízes em 
conjuntos numéricos específicos

•	 Relacionar raízes complexas com seus 
conjugados

Sabemos, pelo Teorema Fundamental da Álgebra, que um polinômio 

de grau n tem n raízes, distintas ou não. Neste tópico, vamos analisar 

como o grau de um polinômio e seus coeficientes estão relacionados 

com a quantidade de raízes que ele possua em um conjunto numérico particular. 

Iniciaremos com uma relação bastante simples, porém de consequências muito 

interessantes. 

Proposição: Se o polinômio p(x) tem apenas coeficientes reais, então 

( ) ( ),  zp z p z= " Î .

Demonstração: Considere o polinômio 

1
1 1 0( ) ...n n

n np x a x a x a x a−
−= + + + +  com todos os coeficientes a

k
 

reais. A respeito de números complexos e seus conjugados, lembremos 

que ( )n nz z=  e que se a é real, então a a= . Além disso, a z az⋅ = .  
A partir daí, teremos

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

1

1 1 0

1

1 1 0

1
1 1 0

1
1 1 0

1
1 1 0

...

  ...

 . . ... .

 ...

 

n n

n n

n n

n n

n n
n n

n n
n n

n n
n n

p z a z a z a z a

a z a z a z a

a z a z a z a

a z a z a z a

a z a z a z a p z

−

−

−

−

−
−

−
−

−
−

= + + + + =

= + + + + =

= + + + + =

= + + + + =

= + + + =
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A proposição acima afirma que a operação de 

conjugação comuta com a de obter o valor numérico 

por uma função polinomial de coeficientes reais. 

Ou seja, podemos calcular o conjugado de um 

número e depois obter o seu valor numérico, ou 

obter o valor numérico e depois obter o conjugado, 

e teremos o mesmo resultado.

Exemplo 1

Se os números reais a, b, c e d são tais que o polinômio 3 2( )p x ax bx cx d= + + +  

é tal que f(2 + i) = 4 – 2i, obtemos, pela proposição acima, que f(2 – i) = 4 + 2i.

Como consequência direta da proposição acima, veremos que, se um número 

complexo é raiz de um polinômio com coeficientes reais, então o seu conjugado também 

é raiz, pois, se ( ) 0p z = , então ( ) ( ) 0 0p z p z= = = . Além disso, as suas multiplicidades 

são iguais. Dessa forma, as raízes complexas não reais de um polinômio com coeficientes 

reais sempre vêm aos pares. 

Exemplo 2

Qual o grau mínimo de um polinômio com coeficientes reais que tenha –2, 3, 

4 + i e 3 – 2i como raízes?

Solução: Se não houvesse restrição em relação aos coeficientes, a resposta seria 4, pois 

temos aí quatro números complexos. Entretanto, se [ ]p xÎ  dmite 4 + i como raiz, 

admitirá também 4 – i. De maneira análoga, 3 + 2i deve, também, ser raiz do polinômio. 

Observação 1: O resultado acima só é válido para polinômios com todos os coeficientes reais. O 

caso simples   tem i como raiz, porém seu conjugado –i não é raiz.

Observação 2: Como as raízes não reais de um polinômio com coeficientes reais vêm sempre aos 

pares, se o grau desse polinômio for ímpar, ele terá pelo menos uma raiz real. Assim, podemos 

garantir que o polinômio  tem pelo menos uma raiz real ou, contando as multiplicidades, sempre 

uma quantidade ímpar de raízes reais.

Observação 3: Relembrando nossa notação, um polinômio p(x) que tem apenas coeficientes reais 

é, em símbolos, equivalente a  . 

at e n ç ã o !

at e n ç ã o !

O resultado ao lado só é válido para 

polinômios com todos os coeficientes reais. 

O caso simples ( )p x x i= -  tem i como 

raiz, porém seu conjugado –i não é raiz.
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Assim, temos a obrigação de construir um 

polinômio com seis raízes, ou seja, o grau mínimo 

é 6.

 Por fim, enunciaremos um resultado 

conhecido como Teorema de Bolzano, em 

homenagem ao matemático tcheco Bernardus 

Bolzano (1781-1848), que trata de raízes reais 

em um intervalo fixado. A demonstração desse 

resultado será omitida.

Em outras palavras, podemos dizer que, se um 

polinômio tiver coeficientes reais e mudar de sinal em um 

intervalo, ele terá pelo menos uma raiz nesse intervalo.

Exemplo 3

Para o polinômio 3( ) 4g x x x= - - , temos g(0) = –4, 

g(1) = –4 e g(2) = 2. Assim podemos garantir que g(x) tem 

pelo menos uma raiz no intervalo (1, 2).

g u a r d e  b e m  i s s o

Como as raízes não reais de um 

polinômio com coeficientes reais vêm 

sempre aos pares, se o grau desse 

polinômio for ímpar, ele terá pelo menos 

uma raiz real. Assim, podemos garantir 

que o polinômio 5 24 3x x x- + + tem 

pelo menos uma raiz real ou, contando 

as multiplicidades, sempre uma 

quantidade ímpar de raízes reais.

Figura 2 – Bernardus Bolzano

http://upload.wikimedia.org/wikipedia/

Teorema de Bolzano

Seja p(x) um polinômio que tem coeficientes reais e (a, b) um intervalo 

real aberto. Se p(a) e p(b) tiverem o mesmo sinal, então a quantidade de raízes 

de p(x) em (a, b) é par e, se p(a) e p(b) tiverem sinais contrários, a quantidade 

de raízes de p(x) é ímpar.
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AULA 8 Polinômios III

Caro (a) aluno (a),

Chegamos à nossa última aula do curso, também sobre polinômios. Aqui 

continuaremos estudando propriedades a respeito das raízes, além de identificar 

maneiras diretas de encontrar as raízes de alguns tipos particulares de polinômios. 

Já conhecemos várias propriedades interessantes a respeito de polinômios, 

assim, sempre que elas forem necessárias, vale a pena fazer uma revisão nas 

definições equivalentes. Esperamos que o caminho tenha sido satisfatório e 

que tenha trazido informações relevantes sob um ponto de vista que desperte a 

curiosidade para aprender mais. Nessa tentativa de continuar com dados úteis 

para sua formação, vamos ao material de encerramento. 

Objetivos

•	 Identificar mais critérios segundo os quais polinômios tenham raízes 
racionais

•	 Analisar tipos específicos de polinômios
•	 Estudar transformações de polinômios que facilitem a determinação de 

suas raízes

AULA 8
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TÓPICO 1 Raízes racionais
Objetivo

•	 Enunciar um teste sobre raízes de um 
polinômio

Lembramos que um polinômio é uma expressão do tipo 
1

1 1 0( ) ...n n
n np x a x a x a x a-

-= + + + + , em que os coeficientes ka  

são números complexos. Quando 0na ¹ , dizemos que o grau do 

polinômio vale n e escrevemos p n¶ = . Caso todos os coeficientes sejam iguais a 

zero, o polinômio é dito identicamente nulo, caso em que o grau não é definido.

Um número z é chamado de raiz do polinômio 

se ( ) 0p z = . 

Analisados os dois casos acima, vemos 

que o estudo a respeito de raízes só se torna não 

trivial caso o polinômio não seja constante. De 

acordo com o que obtemos a partir do Teorema 

Fundamental da Álgebra, todo polinômio de 

grau n tem n raízes em  , distintas ou não. 

A quantidade de vezes que uma raiz aparece 

na fatoração do polinômio é chamada de 

multiplicidade dessa raiz em relação ao polinômio.

Exemplo 1

O número 2 é raiz do polinômio 3 2( ) 6 3 10p x x x x= - + + , pois 

(2) 2³ 6.2² 3.2 10 0p = - + + = . Assim, p(x) é divisível por x – 2. Usando o 

dispositivo prático de Briot-Ruffini, podemos encontrar o quociente e escrever 
2( ) ( 2).( 4 5)p x x x x= - - - . As raízes de ( ) ² 4 5q x x x= - -  também são raízes de 

at e n ç ã o !

Observação 1: Todo número é raiz do 

polinômio identicamente nulo.

Observação 2: Os polinômios de grau 0 não 

tem raízes, pois são da forma ( ) op x a= , com 

0 0a ¹ .
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p(x). Daí, pela fórmula de Bhaskara, obtemos ainda –1 e 5 como raízes, todas elas 

simples (multiplicidade 1). Por fim, podemos escrever p(x) como produto de fatores 

de grau 1: ( ) ( 2).( 1).( 5)p x x x x= - + - . 

O número 2, fornecido no começo do exemplo, permitiu que encontrássemos 

as outras raízes, pois o grau foi reduzido. Para realizar o mesmo procedimento em 

outros casos, poderíamos testar alguns números inteiros de módulo pequeno (0, 

±1, ±2, ±3, ...) até obter uma raiz. O problema é que o polinômio pode nem ter 

raízes inteiras. A próxima proposição fornece um método de reduzir os testes a um 

grupo pequeno de números, fora do qual não há raízes racionais.

A proposição que acabamos de provar afirma que, se um polinômio de 

coeficientes inteiros tiver raízes racionais, elas terão numerador e denominador 

apenas no conjunto dos divisores inteiros dos termos líder e constante, 

respectivamente. 	

Proposição: 

Se todos os coeficientes do polinômio f(x) forem inteiros e o número racional q
p

 for raiz 

de p(x), com p e q inteiros primos entre si, então p é um divisor do termo constante, e q é 

um divisor do termo líder de p(x). 

Demonstração: Considere o polinômio 1
1 1 0( ) ...n n

n nf x a x a x a x a-
-= + + + + , em que os 

coeficientes a
k
 são números inteiros. Se 

p
q

 é raiz de f(x), vale 0
p

f
q

æ ö÷ç ÷=ç ÷ç ÷çè ø
, ou seja:

1

1 1 01
... 0

n n

n nn n

p p p
a a a a

q q q

-

- -+ + + + = , multiplicando a igualdade por qn, obterermos
1 1

1 1 0... 0n n n n
n na p a p q a pq a q- -

-+ + + + =  (igualdade I)

Se isolarmos n
na p  na igualdade I, encontraremos

1 2 1
1 1 0( ... )n n n n

n na p q a p a pq a q- - -
-=- + + + . Uma vez que todos os coeficientes são inteiros, 

1 2 1
1 1 0...n n n

na p a pq a q- - -
- + + +  é um número inteiro e, assim, q é um divisor de n

na p , mas, 

como q e p são primos entre si, concluímos que q é um divisor de a
n
.

Analogamente, se na igualdade I isolarmos a0q
n, obteremos:

1 2 1
0 1 1( ... )n n n n

n na q p a p a p q a pq- - -
-=- + + + . Uma vez que todos os coeficientes são 

inteiros, 1 2 1
1 1...n n n

n na p a p q a pq- - -
-+ + +  é um número inteiro e, assim, p é um divisor 

de a0q
n, mas, como p e q são primos entre si, concluímos que p é um divisor de a0, como 

queríamos demonstrar.
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Exemplo 2

Encontrar todas as raízes de 3 2( ) 4 2 3p x x x x= - + + .

Solução: Como 3p¶ = , devemos encontrar três raízes. Se soubéssemos uma delas, 

poderíamos fatorar, encontrando facilmente as outras. Podemos fazer um teste para 

verificar se p(x) possui alguma raiz racional. Caso afirmativo, ela será do tipo q
p

, 

em que p é um divisor de 3, logo pode ser ±1 ou ±3, e q é um divisor de 1, logo pode 

ser ±1. Por simplicidade, podemos pegar todos os possíveis valores de p e apenas os 

positivos para q. Testando, encontraremos então: 

3 2

3 2

3 2

1 ( ) 1 4.1 2.1 3 2

1 ( ) ( 1) 4.( 1) 2.( 1) 3 4

3 ( ) 3 4.3 2.3 3 0

x p x

x p x

x p x

= Þ = - + + =

=- Þ = - - - + - + =-

= Þ = - + + =

logo temos o número 3 como raiz. Se completarmos 

o teste, verificaremos que p(–3) ≠ 0, logo 3 é a única 

raiz racional do polinômio dado. Realizando, 

então, a divisão de p(x) por x – 3, obteremos 
2( ) ( 3).( 1)p x x x x= - - - . Encontrando as raízes 

de 2 1x x- - , completamos o conjunto de raízes 

1 5 1 53, ,
2 2

R
 + − =  
  

.

Exemplo 3

Resolver a equação  70
2,1

4,2 =
−

+

x

x

A
A

.

Solução: Lembrando que, para os números naturais n e p, ,

!
( )!n p

n
A

n p
=

-
, devemos 

procurar os números inteiros positivos x tais que 2,4 1,270.x xA A+ -= , ou seja:

( 2)! ( 1)!
70.

( 2 4)! ( 1 2)!

x x

x x

+ -
=

+ - - -
 ⇔ 

( 2)! ( 1)!
70.

( 2)! ( 3)!

x x

x x

+ -
=

- -  ⇔ 

( 2).( 1). .( 1)! ( 1)!
70.

( 2).( 3)! ( 3)!

x x x x x

x x x

+ + - -
=

- - -
 ⇔ 

( 2).( 1).
70

( 2)

x x x

x

+ +
=

-
, que equivale a  

x(x + 1)(x + 2) = 70(x – 2). 

at e n ç ã o !

Observação 3: O teste desenvolvido 

no exemplo 2 é válido apenas quando 

( ) [ ]f x xÎ , ou seja, quando todos os 

coeficientes forem inteiros, não apenas o 

constante e o líder. 



Temos, então, 3 2 3 23 2 70 140 3 68 140 0x x x x x x x+ + + − ⇔ + − + =
. Devemos encontrar uma raiz natural para o polinômio 

3 2( ) 3 68 140 0f x x x x= + − + = . Os testes devem ser feitos apenas entre os 

divisores positivos de 140, a saber, 1, 2, 4, 5, 7, 10, 14, 20, 35, 70 e 140. A raiz 

procurada é x = 5.

Com o que foi visto, podemos reduzir os testes feitos para se encontrar raízes 

inteiras de um polinômio, fatorando-o de modo a simplificar a procura por suas raízes.

AULA 8 TÓPICO 1
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TÓPICO 2 Derivada de um 
polinômio
Objetivos

•	 Apresentar a derivada de uma função 
polinomial

•	 Estabelecer as principais propriedades do 
processo de derivação

Neste tópico, vamos associar cada polinômio a outro, de grau menor, 

a partir de certas regras que gerarão propriedades interessantes. 

Decorre da definição que a derivada de 

qualquer polinômio constante é o polinômio 

identicamente nulo e que se 1p n¶ = > , então 

' 1p n¶ = - .

Exemplo 1:

Calcule a derivada dos polinômios 
3( ) 2 ² 5 8f x x x x= - + -  e 4( ) 5 3 2g x x x= + + .

Solução: 

Obtemos diretamente que 

'( ) 3 ² 4 5f x x x= - +  e '( ) 20 ³ 3g x x= + .

Analisando termo a termo, vemos que o processo de derivação transforma o 

monômio nax  no monômio 1nnax - . O processo é feito aditivamente, de forma que a 

S a i b a  m a i s

Acesse o site:

https://www.somatematica.com.br/

historia/derivadas.php e conheça um 

pouco mais sobre derivada de uma 

função

d e f i n i ç ã o 

Dado o polinômio 1
1 1 0( ) ...n n

n np x a x a x a x a-
-= + + + + , a deriva-

da de p é o polinômio 1 2
1 1'( ) ( 1) ...n n

n np x na x n a x a- -
-= + - + + . 

https://www.somatematica.com.br/historia/derivadas.php
https://www.somatematica.com.br/historia/derivadas.php
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derivada da soma de monômios é a soma das derivadas de cada um deles, fato que 

podemos generalizar na seguinte propriedade:

Propriedade 1: 

Para quaisquer polinômios f e g, vale ( ( ) ( )) ' '( ) '( )f x g x f x g x+ = +

Na verdade, a propriedade anterior vale para uma soma com qualquer 

quantidade finita de parcelas. A seguir, veremos como a derivada funciona para o 

produto de polinômios.

AULA 8 TÓPICO 2

Proposição 1:

Se f(x) e g(x) são  mo  nô mios  , entã o  ( ( ). ( )) ' '( ). ( ) ( ). '( )f x g x f x g x f x g x= + .

Demonstração: 

Considerando ( ) mf x ax=  e ( ) ng x bx= , temos 1'( ) maxmf x -=  e 1'( ) ng x nx -= . Em 

relação ao produto, temos

	  1 1 1

1 1

( ( ). ( )) ' ( ) ' ( )

                     = max . . '( ). ( ) ( ). '( )

m n m n m n m n

m n m n

f x g x abx m n abx mabx nabx

bx ax nbx f x g x f x g x

+ + - + - + -

- -

= = + = + =

+ = +

como queríamos demonstrar.
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Exemplo 2: 

Calcule a derivada do polinômios 4 5 2( ) .(2 3 )p x x x x x= - + .

Solução: Temos 
4 5 2 4 5 2 4 5 2

3 5 2 4 4

'( ) ( .(2 3 )) ' ( ) '.(2 3 ) .(2 3 ) '

'( ) 4 .(2 3 ) (10 6 1)

p x x x x x x x x x x x x x

p x x x x x x x x

= - + = - + + - + =

= - + + - +
 

Proposição 2: 

Se f(x) é um monômio e g(x) é a soma de dois monômios, então

( ( ). ( )) ' '( ). ( ) ( ). '( )f x g x f x g x f x g x= + .

Demonstração: 

Considere o polinômio 1
1 1 0( ) ...n n

n ng x a x a x a x a-
-= + + + + . Fazendo g

k
(x) 

= a
n
xn, ele pode ser escrito como soma dos monômios 1 2( ), ( ),..., ( )ng x g x g x , ou seja, 

1 1 0( ) ( ) ( ) ... ( ) ( )n ng x g x g x g x g x-= + + + + . Calculemos

1 1 0

1 1 0

( ). ( ) ( ).( ( ) ( ) ... ( ) ( ))

                 = ( ). ( ) ( ). ( ) ... ( ). ( ) ( ). ( )
n n

n n

f x g x f x g x g x g x g x

f x g x f x g x f x g x f x g x
-

-

= + + + +
+ + + +

 

Aqui temos a soma de monômios e, para derivá-la, usamos a propriedade 1. Então, temos

n n

n n

n n

( f ( x ).g( x ))' ( f ( x )g ( x ) f ( x ) g ( x ) ... f ( x ).g ( x ) f ( x ) g ( x ))'
                       ( f ( x ) g ( x ))' ( f ( x ) g ( x ))' ... ( f ( x ) g ( x ))' ( f ( x ) g ( x ))'
                      f '( x ) g ( x ) f '( x ) g ( x )

1 1 0

1 1 0

1

-

-

-

= + × + + + × =

= × + × + + × + × =

= × + × +

n n

n n n

... f '( x ) g ( x ) f '( x ) g ( x )
                      + f ( x ) g '( x ) f ( x ) g '( x ) ... f ( x ) g '( x ) f ( x ) g '( x )
                       f '( x ) ( g ( x ) g ( x ) ... g ( x ) g ( x )) f ( x ) ( g '( x )

1 0

1 1 0

1 1 0

                   

-

-

+ × + × +

× + × + + × + × =

= × + + + + + × +

n g '( x ) ... g '( x ) g '( x ))
                     f '( x ) g( x ) f ( x ) g'( x )  

1 1 0   -+ + + + =

= × + ×
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Exemplo 3
A derivada do polinômio 7 2 4( ) ( 12 ).(3 5 2)p x x x x x= - + -  pode ser 

encontrada por
7 2 4 7 2 4

6 4 7 2 3

'( ) ( 12 ) '.(3 5 2) ( 12 ).(3 5 2) '

'( ) (7 24 ).(3 5 2) ( 12 ).(12 5)

p x x x x x x x x x

p x x x x x x x x

= - + - + - + -

= - + - + - +

Outra propriedade que nos será útil diz respeito à derivada da potência de 

um polinômio.

AULA 8 TÓPICO 2

Teorema: Para quaisquer polinômios f(x) e g(x), vale

 ( ( ). ( )) '= '( ). ( ) ( ). '( )f x g x f x g x f x g x+ .

Demonstração: Procedendo de maneira análoga ao que foi feito nas proposições anteriores, 

mas fazendo uso delas, podemos escrever 1 1 0( ) ( ) ( ) ... ( ) ( )n nf x f x f x f x f x-= + + + + , em que 

cada um dos ( )kf x  é um monômio. Assim teremos

1 1 0

1 1 0

1 1

( ( ). ( )) ' ( ( ) ( ) ... ( ) ( ). ( )) '

                     = ( ( ). ( )) ' ( ( ). ( )) ' ... ( ( ). ( )) ' ( ( ). ( ))'

                     = '( ). ( ) ( ). '( ) '( ). ( ) (

n n

n n

n n n n

f x g x f x f x f x f x g x

f x g x f x g x f x g x f x g x

f x g x f x g x f x g x f

-

-

- -

= + + + +
+ + + +
+ + +

1 1 0 0

1 0 1

1 0

). '( ) ...

'( ). ( ) ( ). '( ) '( ). ( ) ( ). '( )

                    = ( '( ) ... '( ). ( ) '( )). ( ) ( ( ) ( ) ...

( ) ( )). '( )

( ( ). ( )) ' '( ). ( ) ( ). '( )

n n n

x g x

f x g x f x g x f x g x f x g x

f x f x g x f x g x f x f x

f x f x g x

f x g x f x g x f x g x

-

+ +
+ + +

+ + + + + + +
+

= +

Proposição 3: Se os polinômios f(x), g(x) e o número natural n são tais que ( ) [ ( )]nf x g x= , 

então derivamos 1'( ) .[ ( )] . '( )nf x n g x g x-= .

Demonstração: 

Usaremos indução sobre n. O caso n = 1 é imediato. Suponha, então, que a propriedade 

seja válida para n = k, ou seja, 1([ ( )] ) ' .[ ( )] . '( )k kg x k g x g x-= . Calculemos a derivada de 1[ ( )]kg x + . 

Siga:

([ ( )] ) ' .[ ( )] '( )
([ ( )] ) ' ( ( ) [ ( )] ) ' '( ) [ ( ) ] ( ) ([ ( )] ) '
([ ( )] ) ' '( ) [ ( )] ( ) [ ( )] '( )
([ ( )] ) ' '( ) [ ( )] [ ( )] '( )
([ ( )] ) ' ( ) '

k k

k k k k

k k k

k k k

k

g x k g x g x
g x g x g x g x g x g x g x
g x g x g x g x k g x g x
g x g x g x k g x g x
g x k g

1

1

1 1

1

1 1

-

+

+ -

+

+

= ×

= × = × + × =

= × + × × =

= × + × × =

= + × ( )( ) [ ( )] ( ) [ ( )] ( )k kx g x k g x g x1 11 + -× = + × ×

o que completa a prova.
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Exemplo 4

Determine a derivada da função 5(2 3)x + .

Solução: 

Temos que 5 4 4((2 3) ) ' 5.(2 3) .(2 3) ' 10.(2 3)x x x x+ = + + = + .

Antes de voltar a falar sobre as raízes de um polinômio, observe que, uma vez 

que a derivada de um polinômio é outro polinômio, podemos derivá-lo novamente 

e quantas vezes quisermos. Assim, podemos ter a derivada primeira, a derivada 

segunda, a derivada terceira, etc.

Denotamos por f(n)(x) a derivada de ordem n da função f. Assim, vale 
( ) ( 1)( ) ( ( )) 'n nf x f x-= .

Exemplo 5

Encontre a derivada de quarta ordem do polinômio
5 4 3( ) 4 2 4p x x x x x= + - + - .

Solução: 

Derivando sucessivamente, obteremos:

	
4 3 2

(2) 3 2

(3) 2

(4)

'( ) 5 4 12 2

( ) 20 12 24 2

( ) 60 36 24

( ) 120 36

p x x x x

p x x x x

p x x x

p x x

= + - +

= + - +

= + -

= +

Nos cursos de Cálculo Diferencial, a derivada desempenha papel importante, 

pela sua interpretação geométrica. Na teoria de Polinômios, ela é usada, dentre 

outras funções, para estabelecer a multiplicidade de uma raiz, sem apelar para o 

dispositivo de Briot-Ruffini. Uma vez que sabemos calcular a derivada de qualquer 

polinômio, mesmo quando ele está fatorado, podemos ir para o próximo tópico.
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TÓPICO 3 Raízes múltiplas

Objetivo

•	 Relacionar derivação com multiplicidade de 
raízes

Na aula passada, vimos que o número z é raiz de multiplicidade m 

do polinômio p(x) se for possível a fatoração ( ) ( ) . ( )mp x x z q x= -

, com ( ) 0q x ¹ . Para determinar essa multiplicidade, dividimos 

sucessivamente o polinômio por x – z, usando o método mais adequado, e vemos 

quantas vezes o resto é nulo. 

Podemos usar a derivada do polinômio para determinar a multiplicidade de 

uma de suas raízes, ganhando, assim, mais uma ferramenta no nosso estudo.

Se aplicarmos a proposição acima para '( )p x , temos que z é raiz de 

multiplicidade m – 2 de (2) ( )p x , sendo, portanto, raiz de multiplicidade 3 de (3) ( )p x

Proposição 1: Se z é raiz de multiplicidade m do polinômio p(x), então z é raiz de 

multiplicidade m – 1 de p’(x), a derivada de p.

Demonstração: 

Pela definição de multiplicidade, podemos escrever ( ) ( ) . ( )mp x x z q x= - , com ( ) 0q x ¹ . 

A partir daí, calculamos a derivada de p por essa expressão. Veja:

'( ) (( ) ( ) ') [( ) ]' ( ) ( ) '( )
'( ) ( ) ( ) ' ( ) ( ) '( ) ( ) ( ) ( ) '( )

m m m

m m m m

p x x z q x x z q x x z q x
p x m x z x z q x x z q x m x z q x x z q x1 1- -

= - × = - × + - ×

= × - × - × + - × = × - × + - ×
	

Fazendo ( ) ( ) ( ) '( )Q x q x x z q x= + - × , temos ( ) ( )   '( ) ( ) ( )mQ z q z p x m x z Q x10 e -= ¹ = × - ×

, de onde concluímos que z é raiz de multiplicidade m – 1 de p’(x).
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, ou seja, uma raiz de multiplicidade m do polinômio p(x) é raiz de multiplicidade 

m – k do polinômio ( ) ( )kp x , de modo que não é raiz de ( ) ( )mp x .

Um teste para determinar a multiplicidade do número z como raiz de um 

polinômio consiste em achar os valores numéricos (2) (3)( ),  '( ), ( ), ( ),....p z p z p z p z  até 

obter ( ) ( ) 0mp z ¹  pela primeira vez, caso em que a multiplicidade será m.

Exemplo 1

Encontrar todas as raízes inteiras do polinômio 4 3( ) 5 6 ² 4 8p x x x x x= - + + -  

e determinar suas multiplicidades.

Solução: Inicialmente, usaremos o teste do começo da nossa aula, ou seja, devemos 

procurar as raízes inteiras entre os divisores de –8. Fazendo, então, os testes com 

±1, ±2, ±4 e ±8, verificamos que apenas 2 e –1 são raízes de p(x). Poderíamos 

dividir p(x) por x – 2 pelo dispositivo prático, mas vamos treinar o processo de 

derivação. Calculando as derivadas, teremos

'( ) '( )  e '( )p x x x x p p3 24 15 12 4 2 0 1 27= - + + Þ = - =-

Como o valor numérico da primeira derivada para x = –1 deu diferente de zero, 

a multiplicidade de –1 como raiz de p(x) vale um. Continuando o processo para 

determinar a multiplicidade de x = 2, encontraremos

( ) ( )( ) ² ( )p x x x p2 212 30 12 2 0= - + Þ =
( ) ( )( ) ( )p x x p3 324 30 2 18= - Þ =

Aqui concluímos que 2 tem multiplicidade 3 como raiz de p(x). Somadas as 

multiplicidades de 2 e –1, obtemos o grau de p(x), indicando que não outras raízes 

e, assim, podemos escrever ( ) ( )³ ( )p x x x2 1= - × + .

Exemplo 2

Determinar os valores de a e b para que o polinômio 4( ) 6 ²f x x x ax b= - + +  

tenha uma raiz de multiplicidade três.

Solução: Calculando as derivadas de ordem 1, 2 e 3 do polinômio, teremos:

( )

( )

'( )
( )
( )

f x x x a
f x x
f x x

3

2 2

3

4 12

12 12

24

= - +

= -

=



Matemát ica  Bás ica  I I120

Devemos garantir a existência de um número complexo z tal que 
( ) ( )( ) '( ) ( ) ( )f z f z f z f z2 30= = = ¹ . Esta última comparação equivale a 24 0z ¹ , 

o que acontece para qualquer 0z ¹ . As outras condições são

(I) z
(II) 4z
(III) 12z²-12=0

z ax b
z a

4 2

3

6 0

12 0

- + + =

- + =

Da equação (III), obtemos z 1=± . Para z 1=- , substituindo 

em (II), concluímos a 8=-  e, com esses dois valores em (I), vale 3b =- . Já se 

z 1= , temos a 8=  e b 3=- .

Agora que vimos como a multiplicidade de uma raiz de p(x) é afetada pelas derivadas 

de p, podemos determinar o grau de fatores do tipo x – a na decomposição de polinômios. 
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TÓPICO 4 Máximo divisor comum e 
mínimo múltiplo comum de 
polinômios

Objetivos

•	 Obter critérios para a existência de raízes em 
conjuntos numéricos específicos

•	 Relacionar raízes complexas com seus 
conjugados

Quando a divisão do polinômio f(x) pelo polinômio g(x) apresenta 

resto identicamente nulo, isto é, a divisão é exata, podemos usar 

a mesma terminologia que usamos em relação aos inteiros. Assim, 

dizemos que f(x) é um múltiplo de g(x) e que g(x) é um divisor de f(x).

Analogamente, podemos considerar o caso de buscar divisores comuns 

a dois polinômios e determinar dentre eles o de maior grau. Para que tenhamos 

um máximo divisor comum unicamente determinado, vamos exigir também que 

ele seja mônico. Pois bem, sabemos que, se g(x) é um divisor de f(x), então k.g(x) 

também é divisor de f(x), para qualquer número complexo k. Assim o máximo 

divisor comum dos polinômios f(x) e g(x) é um polinômio mônico de grau máximo, 

de forma que seja divisor de f(x) e g(x) ao mesmo tempo. Formalmente:

A condição (2) garante que h(x) é um divisor comum a f(x) e g(x); a condição 

(3) que ele é maximal; e a condição (1) é imposta apenas para que ele seja único, mas 

não oferece nenhuma resistência, pois, se a
n
 é o termo líder de h(x), então 

1
. ( )

n

h x
a

 

d e f i n i ç ã o  1

Dados ( ) e ( ) [ ]f x g x xÎ , dizemos que h(x) = m.d.c.(f, g) se:

(1) h(x) é mônico;

(2) h(x) é divisor de f(x) e de g(x);

(3) se h0(x) é divisor de f(x) e de g(x), então h0(x) é divisor de h(x).
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é mônico. Portanto, a partir de agora, não nos preocuparemos com essa condição, 

pois, se obtivermos um polinômio qualquer que satisfaça as condições (2) e (3), 

saberemos transformá-lo em um polinômio mônico.

Mais ainda, como o polinômio p(x) = 1 é divisor de qualquer polinômio, 

o conjunto dos divisores comuns a dois polinômios nunca é vazio. Outro fato é 

que a condição (2) implica  e h f h g¶ £¶ ¶ £¶ , de onde podemos concluir que, 

efetivamente, o conjunto dos divisores comuns aos dois polinômios tem um grau 

máximo.

Exemplo 1a

O máximo divisor comum dos polinômios 2 2( ) 1 e ( ) 3 2f x x g x x x= - = - +  

é o polinômio h(x) = x – 1, pois satisfaz as três condições. 

Exemplo 1b

Para os polinômios 3 4( ) ² 1 e ( )f x x x g x x= + - = , tem-se h(x) = 1 é o m.d.c.(f, 

g). Nesse caso, dizemos que f(x) e g(x) são primos entre si.

Para determinar o máximo divisor comum entre dois polinômios, observe 

que, se g(x) for divisor de f(x), então m.d.c.(f, g) = g (lembrando que se g não for 

mônico, basta transformá-lo de acordo com o exposto acima). 

Caso isso não aconteça, considere f g¶ ³¶  e divida f por g, obtendo um resto 

r.

Proposição 1

Se r(x) é o resto da divisão de f(x) por g(x), então m.d.c.(f, g) = m.d.c.(g, r)

Demonstração: 

Fazendo h = m.d.c.(f, g), temos que h é divisor de f e de g, logo podemos 

escrever 1 2.  e g=h.qf h q= . Como r é o resto da divisão de f por g, podemos escrever 

1 2 1 2. ,  seja, r=f - g.q= . h.q . .( q . )f g q r ou h q q h q q= + + = + . Desse modo, temos que h é um 

divisor de r.

Agora considere h0 = m.d.c.(g, r). Como h é divisor de g e de r, temos que h é divisor de h0. Se 

mostrarmos que h0 é divisor de h, teremos a igualdade que completa a prova. 

Como h0 é divisor de g e de r, podemos escrever 0 3 0 4.  e r=h .g h q q=  e, substituindo 

acima, temos 0 3 0 4 0 3 4. .q . h .q h .(q . q )f g q r h q q= + = + = + . Assim, h0 é divisor de f e como 

já era divisor de g, então é divisor de h. Como h é divisor de h0, e h0 é divisor de h, temos h = 

h0 e, assim, m.d.c.(f, g) = m.d.c.(g, r).
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A proposição anterior apenas transfere o problema de determinar o m.d.c. 

entreos polinômios f e g para encontrar o m.d.c. entre g e o resto da divisão de f 

por g, mas com a vantagem de que os graus envolvidos são menores. Repetindo 

esse processo e se r2 for o resto da divisão de g por r, temos m.d.c.(g, r) = m.d.c.(g, 

r2), e assim sucessivamente até que encontremos uma divisão exata, caso em que o 

divisor será o m.d.c. dos dois polinômios iniciais.

Exemplo 2 

Dados 3 2 4( ) 4 6 e ( ) 4 4f x x x x g x x x= - + + = - + , encontre m.d.c.(f, g).

Solução:

Comecemos por dividir f(x) por g(x), obtendo quociente 

1 1( )  e resto ( ) 3 6q x x r x x= =- + . Como a divisão não foi exata, o processo continua 

e temos m.d.c.(f, g) = m.d.c.(g, r1). Dividindo g(x) por r1(x), temos quociente 

2

1 2
( )

3 3
q x x=- +  e resto identicamente nulo, caso em que o processo se encerra 

e temos r1 como m.d.c. procurado. Como r1 não é mônico, devemos dividi-lo por –3 

para que isso aconteça, obtendo, assim, m.d.c.(f, g) = x – 2.

Da mesma forma que definimos o máximo divisor comum, podemos pensar 

também em mínimo múltiplo comum, que será um múltiplo simultâneo dos 

polinômios envolvidos, com o menor grau possível. 

A condição (2) garante que h(x) é um múltiplo comum a f(x) e g(x); a condição 

(3) que ele é minimal; e a condição (1) é imposta apenas para que ele seja único, mas 

não oferece nenhuma resistência, pois, se a
n
 é o termo líder de h(x), então 

1
. ( )

n

h x
a

é 

mônico. Portanto, a partir de agora, não nos preocuparemos com essa condição, pois, 

se obtivermos um polinômio qualquer que satisfaça as condições (2) e (3), saberemos 

transformá-lo em um polinômio mônico.

Mais ainda, como o polinômio p(x) = f(x).g(x) é múltiplo de f e de g, o conjunto 

dos múltiplos comuns a dois polinômios nunca é vazio. Outro fato é que a condição 

d e f i n i ç ã o  2

Dados ( ) e ( ) [ ]f x g x xÎ , dizemos que h(x) = m.m.c.(f, g) se:

(1) h(x) é mônico.

(2) h(x) é múltiplo de f(x) e de g(x).

(3) se h0(x) é múltiplo de f(x) e de g(x), então h0(x) é múltiplo de h(x).
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(2) implica  e h f h g¶ £¶ ¶ £¶ , de onde podemos concluir que, efetivamente, o 

conjunto dos divisores comuns aos dois polinômios tem um grau mínimo, maior ou 

igual ao grau de qualquer um dos polinômios envolvidos.

Exemplo 3a

O mínimo múltiplo comum dos polinômios 
2 3 2( ) 1 e ( ) 1f x x g x x x x= - = + + +  é o polinômio 4( ) 1h x x= - , pois satisfaz as 

três condições.

Exemplo 3b

Para ( ) ³ e ( ) 1f x x g x x= = - , tem-se 4 3. . ( , )m m c f g x x= - . 

Se soubermos todas as raízes de f(x) e de g(x) com suas multiplicidades, 

poderemos encontrar h(x) = m.m.c.(f, g) diretamente, pois, como f(x) é divisor de 

h(x), todas as raízes de f devem ser raízes de h e com multiplicidade no mínimo 

igual à multiplicidade enquanto raiz de f. Se f e g tiverem raízes repetidas, elas não 

serão contadas repetidamente, com o intuito de minimizar o grau. 

Exemplo 4

Dados os polinômios 
4 6( ) 6.( 2)³.( 1) .( 1) e ( ) 2.( 2)².( 1) .( 3)f x x x x g x x x x= - + - = - + - ,

 determine m.m.c.(f, g).

Solução: 

Fazendo h(x) = m.m.c.(f, g), temos que h é um múltiplo de f, sendo, portanto, 

da forma 4( ) ( ). ( ) 6.( 2)³.( 1) .( 1). ( )h x f x q x x x x q x= = - + - . O polinômio q(x) deve 

ser construído de modo a que o resultado final seja divisível por g(x) e com grau 

mínimo. Para que h(x) seja divisível por g(x), deve conter 6( 2)².( 1) .( 3)x x x- + -

na sua fatoração. Devemos então apenas completar os expoentes de modo que 

isso seja possível e acrescentar os fatores necessários. Assim, não é necessário que 

q(x) apresente 2( 2)x-  em sua fatoração, pois este termo já aparece em f. Como 

em f , o termo x + 1 aparece com expoente 4, basta que apareça 2( 2)x + em q(x). 

Como x – 3 não aparece na fatoração de f, deve aparecer em q. Assim, temos 
2 6( ) ( 1) .( 3) e ( ) 6.( 2)³.( 1) .( 1).( 3)q x x x h x x x x x= + - = - + - - . De modo a tornar 

mônico, dividimos por 6 (ou simplesmente omitimos o 6 no começo) e concluímos
6. . ( , ) ( 2)³.( 1) .( 1).( 3)m m c f g x x x x= - + - - .
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Pelo que foi visto no exemplo 4, para que determinemos o m.m.c. dos 

polinômios f e g, devemos decompô-los em fatores da forma ( )mx z- , tomando 

todos os fatores presentes (comuns ou não) com o maior expoente possível.

A fatoração também serve para que determinemos o m.d.c. dos polinômios 

f e g, caso em que tomaremos apenas os fatores comuns e com o menor expoente.

Exemplo 5

Para 3 5( ) ( 4) .( 2)³.( 3) e ( ) ( 4)².( 2) .( 1)f x x x x g x x x x= - + - = - + + , temos 
2. . ( , ) ( 4) .( 2)³m d c f g x x= - + e 3 5. . ( , ) ( 4) .( 2) .( 3).( 1)m m c f g x x x x= - + - + .
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