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APRESENTACAO

Caro(a) aluno(a),

Estamos iniciando a disciplina de Matematica Basica Il. A finalidade desta disciplina é rever
alguns conceitos estudados no Ensino Médio, dando-lhes maior fundamentacao. Ela vem
como um complemento a disciplina de Matematica Basica |. Estudaremos, assim, andlise
combinatoria, Probabilidade, bindmio de Newton, Numeros Complexos e Polinbmios. A
disciplina divide-se em oito aulas, as quais, por sua vez, sao divididas em topicos. Em cada
topico, apresentamos definicoes e propriedades dos objetos estudados, e ainda exercicios
resolvidos.

Vamos ao trabalho, entéo!

APRESENTAGAO




AU L A -l Analise
combinatoria

Ola!

Nesta aula, vocé revisitara assuntos abordados no Ensino Médio, como o
Principio Multiplicativo e calculos que envolvem fatorial. Vamos verificar de
guantas maneiras diferentes pode ser realizado um procedimento constituido de
varias etapas. Calcularemos, por exemplo, quantas palavras diferentes podem ser
formadas com as letras do seu nome ou de quantas maneiras diferentes vocé e
seus amigos podem sentar-se ao redor de uma mesa.

E muito importante que vocé atente para esta introducéo de conceitos, uma vez
que, a partir deles, vocé tera condicdes de resolver problemas mais elaborados
de andlise combinatdria. Vamos comecar!

Objetivos

e (Conhecer variantes de problemas de contagem

e Analisar meios diretos e indiretos de realizacdo de contagem

e Desenvolver técnicas que facilitem o processo e/ou simplifiqguem a maneira
de escrever as respostas

‘ Matematica Basica Il




TOPICO 1

Neste topico comegaremos a estudar

analise combinatéria, que ¢é a parte da
Matematica que estuda métodos para contagem
dos elementos de um conjunto, quando esses sao

agrupados de maneiras pré-estabelecidas.

Exempro 1

Se A ¢é o conjunto formado por todos os
numeros de trés algarismos distintos formados
pelos digitos 2, 5 € 7, temos que A = {257, 275,
527, 572, 725, 752} e, assim, a quantidade de

Arvores de possibilidades

OBJETIVOS

* Iniciar o estudo dos métodos de contagem

e Construir e analisar a arvore de possibilidades
de um experimento

e Listar, de forma organizada, as diferentes
maneiras de realizagdo de um experimento

/

I
SAIBA MAIS

No site https://www.infoescola.com/
matematica/analise-combinatoria/, vocé
podera obter mais informagdes sobre

analise combinatoria.

elementos de A € 6, o que sera representado por n(A) = 6.

ExEmpLO 2

Se B ¢ o conjunto de resultados possiveis nos langamentos de duas moedas,

temos B = {(cara, cara), (cara, coroa), (coroa, cara), (coroa, coroa)}, o que nos leva

a concluir que n(B) = 4.

A primeira vista, pode parecer estranho que um ramo da Matematica se dedique

apenas a contar, que ¢ uma atividade tao elementar, mas aqui faremos uso de técnicas que

facilitam o processo, organizando-o de forma a agilizar essa contagem. O exemplo seguinte

mostra que nem sempre a contagem direta dos elementos do conjunto é o melhor caminho.

‘ TOPICO 1 ‘
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Exempro 3

Considere C como o conjunto de todas as sequéncias de trés letras que
podem ser formadas usando apenas as vogais do nosso alfabeto. Nao é complicado
fazer uma lista de todos os elementos de C, o que, em ordem alfabética, comegaria
com AAA, seguido por AAE, AAIL.. e terminaria por UUO, UUU. Contar esses
elementos, depois de listados, seria, entdo, uma saida para determinar a quantidade
de elementos de C. Entretanto isso gastaria muito tempo. Guarde esse exemplo para
ver que o numero procurado podera ser encontrado de maneira bem simples, antes
que cheguemos ao fim desta aula.

Comecemos, entdo, com uma maneira simples de organizar os procedimentos
estudados que sio chamados de Arvore de Possibilidades. Esse método consiste,
basicamente, em dividir cada procedimento em etapas e analisar as possibilidades
de cada etapa em relagdo a etapa anterior, de forma a ndo “esquecer” nenhum, nem
repetir elementos, como mostram o nosso Exemplo 1. Vamos voltar a ele.

Um numero de trés algarismos pode ser escolhido encontrando um algarismo para
cada posicao e essa seria cada etapa. Assim, para a primeira etapa, temos 2, 5 e 7 como

possibilidades. Para cada uma dessas escolhas, temos escolhas diferentes para a segunda.

Figura 1 — Arvore de possibilidades do Exemplo 1

Etapa1 Etapa2 Etapa 3 Resultado

2% 5 = 7 —>»257
7 = 5 —»275
2 wmp 7 — 3527
5% 7 == 2 — 3572
7% 2 mmp 5 — 3725
5 == 2 —3»752

Cada elemento do conjunto A ¢, assim, determinado por um dos ramos da
“arvore” da Figura 1. Dessa forma, contar os elementos de A equivalente a contar
os ramos finais da arvore, pois cada um deles fornece um resultado.

Observe o que acontece com o exemplo 2, das duas moedas, quando esquemati-

zado pela arvore de possibilidades:

10 ‘ Matematica Basica Il




Figura 2 — Arvore de possibilidades do Exemplo 2

Moeda 1 Moeda 2

Cara
Cara C
Coroa

Cara
Coroa C

Coroa

Assim, contamos os ramos da arvore da figura 2 e obtemos n(B) = 4.

ExempLro 4

Uma moeda ¢ lancada tantas vezes quantas forem necessarias até que
se obtenham duas caras ou duas coroas, ndo necessariamente consecutivas. A
quantidade de maneiras segundo as quais isso pode acontecer pode ser fornecida
pela arvore de possibilidades do problema, em que cada etapa significa um
langamento da moeda. Note que a quantidade de langamentos em cada ramo ¢

variavel.

Figura 3 — Arvore de possibilidades do Exemplo 4

Lancamento 1 Lancamento 2 Lancamento 3

Cara
Cara %
Cara
Coroa %
Coroa
Cara (%)
Cara %
Coroa I@ Coroa
Coroa

AULAT | TOPICOt | i




Os ramos em destaque na Figura 3 ja alcangaram o objetivo, sendo, cada um deles,
um resultado possivel; ha, portanto, 6 maneiras de realizar o procedimento. O ramo
sinalizado com (*) significa coroa no primeiro lancamento e cara nos dois seguintes.

A arvore de possibilidades é, entao, uma maneira de organizar o processo para uma
contagem mais direta, e ainda fornece todos os resultados possiveis. E importante ressaltar
que a arvore pode ser desenhada mesmo que a quantidade de etapas nao seja a mesma em
qualquer situagdo. E esse vai ser o caso em que ela sera de mais utilidade. Como veremos
adiante, os exemplos 1 e 2 podem ser resolvidos de maneira ainda mais rapida.

Chegamos ao final do primeiro tépico e sabemos construir a arvore de
possibilidades de um experimento realizado em varias etapas, o que possibilita
a contagem de todos os elementos de um conjunto, de forma precisa, sem que

esquegamos nenhum deles ou que contemos algum deles repetidamente.

Matematica Basica Il




TGPICU 2 Principio fundamental
da contagem

OBJETIVOS

* Fundamentar as bases para uma regra mais geral
de contagem
* Compreender o funcionamento do Principio

Multiplicativo
e Aplicar os conceitos e resolver problemas de
contagem de maneira rapida

omo vocé estudou no tépico 1, a

Arvore de Possibilidades ajuda

bastante no processo de contagem, mas,

SAIBA MAIS quando a quantidade de etapas for fixa e soubermos

de quantas maneiras diferentes cada etapa pode ser

Acesse o site: http://www.infoescola. . L. .
realizada, poderemos usar uma técnica, conhecida como

com/matematica/principio- ) o
Principio Fundamental da Contagem (PEC), ou Principio
fundamental-da-contagem/ e  veja

. multiplicativo.
alguns exemplos que utilizam o PFC.

Emlinhasgerais, setivermosum procedimento
R rcatlizado em n etapas consecutivas e independentes
e soubermos de quantas maneiras cada uma delas pode ser realizada, a quantidade
de maneiras de realizar o procedimento como um todo se dara pelo produto dessas
quantidades.

Inicialmente, vejamos como o PFC age para um procedimento realizado

em duas etapas consecutivas e independentes.

Exemrro 1
Em uma turma de 12 mogas e 9 rapazes, quantos casais diferentes podem ser

formados?

\ TOPICO 2 \ 13
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Solugao: Observe que a escolha de um casal (procedimento) é realizada em duas
etapas: a escolha do homem, que pode ser feita de 9 maneiras diferentes, e a escolha
da mulher, que pode ser feita de 12 maneiras diferentes. Assim, o total de casais

diferentes que podem ser formados é 9.12 = 108.

Exempro 2

Voltemos ao caso das sequéncias de trés vogais (Exemplo 3, tépico 1), no qual
queremos saber quantas sao as sequéncias de trés letras que podem ser formadas
usando apenas as vogais no nosso alfabeto. Vemos que o procedimento completo se
realiza em trés etapas, cada uma das quais consiste na escolha de uma vogal, que
pode ser realizada de 5 maneiras diferentes. Dessa forma, o total de possibilidades

€5.5.5 = 125, 0 que ¢ um numero ja bem grande para se fazer a lista completa.

Exempro 3A

Dispondo apenas dos algarismos 3, 5, 6, 7, 8 € 9, quantos niimeros de trés
algarismos podemos formar?
Solugao: Nesse caso, temos as trés etapas de escolha dos algarismos (centenas,
dezenas e unidades). Cada uma das etapas pode ser realizada de 6 maneiras

diferentes. Assim, o total de possibilidades sera: 6.6.6 = 216.

ExempLo 3B

Dispondo apenas dos algarismos 3, 5, 6, 7, 8 € 9, quantos nimeros de trés
algarismos distintos podemos formar?

Solugado: Continuamos com a escolha em trés etapas, mas quando escolhemos
um algarismo para a posi¢ao das centenas, ele ndo podera ser utilizado na posigao
das dezenas, pois queremos algarismos distintos (o numero 553 ndo vale, por
exemplo). Assim, continuamos tendo 6 possibilidades para a primeira etapa, mas
apenas 5 para a segunda etapa e, pelo mesmo motivo, apenas 4 para a terceira etapa.

Dessa forma, o total de nimeros formados é 6.5.4 = 120.

ExempLro 4
De quantas maneiras diferentes podemos posicionar quatro pessoas em uma fila?
Solugao:Temos aqui o procedimento realizado em quatro etapas: a escolha da
primeira pessoa da fila, a escolha da segunda, e assim por diante. Um dado relevante
¢ que a pessoa que for escolhida para a primeira posi¢ao ndo podera ocupar nenhuma

outra. Assim, ha 4 maneiras de escolher a primeira pessoa, 3 para escolher a segunda, 2

‘ Matematica Basica Il




para escolher a terceira e 1 para escolher a quarta. O total de possibilidades ¢, portanto,

43.2.1=24

Exempro 5
No langamento de cinco moedas, ha dois resultados possiveis para cada
moeda, fazendo com que o numero total de possibilidades de resultado para as

cinco moedas seja de 2.2.2.2.2 = 2° = 32.

ExempLo 6

Quantos divisores inteiros positivos tem o nimero 72?

Solugdo: Fazendo a fatoragio em nimeros primos, temos 72 = 2°.3%. Assim,
um divisor de 72 consiste em um numero da forma 23", em que m pode assumir os
valores 0, 1, 2 ou 3 e n pode assumir os valores 0, 1 ou 2. Dessa forma, a escolha de um
divisor de 72 consiste na escolha de um expoente para o 2 (quatro possibilidades) e um
expoente para o 3 (trés possibilidades). Temos, entao, que o total de divisores positivos

de72¢4.3=12.

Ao final de mais um tépico, vemos o quanto a analise cuidadosa dos dados,
aliada a um pouco de criatividade, faz com que desenvolvamos métodos mais
rapidos para resolucao de certos problemas. O principio estudado aqui é essencial

para uma boa compreensdo dos topicos que seguem.

\ TOPICO 2 \ 15




TﬁPICU 3 Fatorial de um
numero natural

OBJETIVOS

e Desenvolver e calcular expressdes numéricas que
envolvem fatorial

* Relacionar o fatorial com problemas de contagem e
o PEC

e acordo com o que vocé aprendeu no topico 2, nos problemas que
envolvem o PFC e os elementos que ndo podem ser repetidos, a
quantidade de escolhas possiveis para uma etapa sera sempre uma
a menos que a da etapa anterior. Um calculo comum que aparece é n.(n — 1).(n — 2)...
com a quantidade de fatores dependendo da quantidade de etapas do processo. Para
facilitar ainda mais essas contas, introduzimos um conceito simples. Para cada niimero
natural 7, o fatorial de z (ou “n fatorial”’) é denotado por n! e é calculado multiplicando-

se n por todos os numeros naturais menores que ele, inclusive 1.

ocrco 1 [

Para o ntiimero inteiro positivo n, temos n! = n.(n—1).(n—2). ... . 3. 2.1.
Para alguns problemas, é conveniente também definir o fatorial do niimero 0.
Por convencao, entdo, definamos 0! = 1.
-
Exempro 1
Calcule o valor de 4!, 5!, 7! e 10!
Solugéo: Pela definigao 1, temos:
41=432.1=24
5!=5.4.3.2.1 =120
7!'=7.6.5.4.3.2.1 = 5040
10! = 10.9.8.7.6.5.4.3.2.1 = 3628800

16 ‘ Matematica Basica Il




A medida que o nimero n aumenta, o calculo direto de n! torna-se muito
trabalhoso, por isso, em muitos casos, usaremos a simplificagio n! = n.(n — 1)!
para encontrar, com menos trabalho, o valor de certas expressdoes que envolvem o

fatorial de numeros.

ExempLo 2

Calcule o valor de

(a ut

10!

. 11! 11.10!
Solugdo: Usando o fato de que 11! = 11.10!, temos: — = =11
10! 10!

9!

(b) =
9! 9.8.7!

Solugao: Aqui, podemos fazer 9! = 9.8.7! e teremos: -~ - 72

13!
c) —.
© 10!3!

13! 13.12.11.10! 13.12.11
Solugado: Temos: = = =286 .
10!.3! 10!.3! 3.2.1

(n+1)
(d) (n—1) ' para qualquer 7 natural positivo.
Solugao: Fazendo (n + 1) = (n + 1)n(n - 1), temos:

(n+1) _(n+1)n(n—1) _ 2
(n-1y (-1

+n.

Com essa notagao, podemos, entao, simplificar as respostas de certos processos

resolvidos pelo PEC. Veja a seguir.

Exempro 3
De quantas maneiras diferentes podemos colocar dez livros lado a lado em

uma estante?

Solucgao: Ha dez maneiras de colocar o primeiro livro, nove de colocar o segundo,
oito para o terceiro, e assim sucessivamente. Dessa forma, o total de possibilidades

¢10.9.8.7.6.5.4.3.2.1 = 10!.

AULA 1 \ TOPICO 3 \ 17
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Exempro 4
De um grupo de doze pessoas, de quantas maneiras podemos escolher uma

comissao formada por um presidente, um secretario e um tesoureiro?

Solugao: Sabendo queamesma pessoanao pode ocupar duasfungdesaomesmo
tempo, ha doze maneiras de escolher o presidente, onze de escolher o secretario e
dez para escolher o tesoureiro. Assim, o total de possibilidades ¢ 12.11.10. Uma

9! 12-11-10-9! 12!

maneira alternativa de escrever esse numero é 12-11-10-— = o1 = ? .

Com o que foi exposto neste nosso topico 3, vocé ja é capaz de calcular o
valor de expressdes que envolvam o fatorial de nimeros naturais e escrever de
forma sucinta e usando do simbolo apropriado o resultado de certos problemas
de contagem. Como sugestdo de atividade de recapitulagdo, identifique quais dos
exemplos apresentados no topico 2 podem ter a solugdo expressa com o auxilio do

simbolo de fatorial.

‘ Matematica Basica Il




TGPICU 4 Permutaces

OBJETIVOS

* Associar diretamente problemas de contagem com
numeros fatoriais
¢ Identificar tipos especificos de agrupamentos

os topicos iniciais desta aula, vocé aprendeu a identificar processos de
contagem e a resolver alguns problemas de maneira organizada e rapida,
além de apresentar a resposta de forma simplificada, por meio do fatorial.
Neste topico, iremos estudar as maneiras segundo as quais todos os elementos de um conjunto
podem ser ordenados. Comecemos, entdo, com uma defini¢do simples, mas que pode gerar

varios problemas interessantes.

ocrcio . [

Dado o conjunto A = {a,, a,, ..., a }, uma permutagdo dos elementos de A ¢é

qualquer sequéncia de n termos formada por todos os elementos de A

Podemos interpretar uma permutagdo como um ordenamento qualquer dos
elementos do conjunto. B importante destacar que a definigio 2 exige que todos
os elementos do conjunto aparecam na sequéncia. Uma vez que se deve ter uma
quantidade de termos igual a quantidade de elementos do conjunto, nenhum

elemento pode ser repetido.

Exemrro 1

Listar todas as permutagdes dos elementos do conjunto B = {1, 2, 3}.

Solugdo: Temosqueescreverastriplasordenadasdentimerosdistintos que podemser
formadas comtodososelementosde B. Alistacontém (1, 2, 3),(1, 3,2),(2, 1, 3),(2,3,1),
3,1,2)e(3, 2 1)

\ TOPICO 4 \ 19
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Fazendo a associagdo com o que discutimos nos tépicos anteriores, podemos
listar as permutagdes possiveis em um conjunto através da arvore de possibilidades
e determinar quantas sdo através do Principio Fundamental da Contagem.

Considere, entdo, um conjunto com n elementos. A quantidade de maneiras
segundo as quais podemos escolher o primeiro elemento da permutagdo é n. Como
nao podemos repetir elementos, o segundo elemento pode ser escolhido apenas
entre os n — 1 restantes, o elemento seguinte, entre os n — 2 restantes e assim por
diante até que o tltimo elemento s6 possa ser escolhido de uma tnica forma. Entao,
a quantidade de permutagdes de um conjunto de n elementos sera n.(n — 1).(n — 2).
... .2.1 = nl. A quantidade de permutagdes de um conjunto de n elementos sera
representada por Pn. Assim, temos:

P =n!

Dessa forma, poderiamos prever a quantidade de permutagdes possiveis do
conjunto {1, 2, 3}, fazendo P3 = 3! = 6.

Um caso interessante de aplicagdo da féormula para o numero de permutagdes
¢ 0 anagrama. Um anagrama ¢ uma nova palavra formada com todas as letras da
palavra original quando elas sdo dispostas em qualquer ordem, mesmo que o
resultado ndo tenha significado. Por exemplo, MIRA, MIAR e IAMR sdo alguns

dos anagramas da palavra RIMA.

ExemprLoO 2

Quantos anagramas tem a palavra SOLIDEZ?

Solugdo: Os anagramas de SOLIDEZ podem ser vistos como as permutagdes dos
elementos do conjunto {S, O, L, I, D, E, Z}. A resposta ¢, portanto, P_=7!=5040.

Ha casos, porém, em que alguns dos elementos do conjunto que queremos
permutar sdo indistinguiveis, como no caso de anagramas de palavras com letras
repetidas. Por exemplo, se na palavra GEOMETRIA trocarmos as posi¢des das
duas letras E, ndo obteremos um novo anagrama. Assim, o total de anagramas é o
numero de permutagdes das letras, dividido pelo niumero de possibilidades que as

letras repetidas tém de trocarem de posigao.
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ExemrLro 3

Quantos anagramas tem a palavra ELEFANTE?

Solucao: A palavra ELEFANTE tem 8 letras. Entdo a ideia inicial era de que

houvesse 8! anagramas, mas ha trés letras E, que podem trocar de posigdo de 3!

8!

3

O exemplo 3 motiva a defini¢do de uma férmula para o nimero de permutagdes

maneiras diferentes. Assim, o total procurado ¢é

quando ha elementos repetidos. Quando houver n elementos, dos quais a sdo
n!

a J—
indistinguiveis, o total de permutagdes sera dado por: Pn = ;

ExEmrLo 4

Calcule a quantidade de anagramas da palavra ARARA.

Solugao: A palavra ARARA possui cinco letras, sendo trés letras A e duas letras R.

Assim, devemos compensar 5!, dividindo pelas maneiras segundo as quais as letras

A podem trocar de posi¢do sem gerar um novo anagrama, que sao 3! e 0 mesmo
5!

ocorrendo para as letras R. Assim, o total de anagramas é =10

3121

Com o que vimos no tépico 3 da nossa aula, o calculo de permutagdes pode
ser feito de maneira bem direta com o auxilio do fatorial. Vocé ja deve, a essa altura,

ter calculado quantos anagramas tem o seu nome.

\ TOPICO 4 \ 21




AU L A 2 Arranjos e
combinagoes

(O]F:1

Comegaremos agora a nossa segunda aula de matematica basica 2, que dara
continuidade ao que estudamos na aula 1, apresentando casos especificos de
agrupamento e técnicas de contagem que utilizam os conceitos que aprendemos
na aula passada. Uma leitura répida nas principais definicbes da aula passada
ajudara a manter bem sedimentadas as nogdes de que vamos precisar para dar
prosseguimento ao assunto. Continuemos, entéo.

Objetivos

e Apresentar variantes de agrupamento

e Diferenciar arranjos de combinagdes e decidir qual formula usar em cada
caso

e Combinar as técnicas que facilitam o processo e/ou simplificam a maneira de
escrever matematicamente as respostas com novas técnicas para a solucao
de problemas mais elaborados
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TOPICO 1 =

OBJETIVOS

e Distinguir um tipo especial de agrupamento

* Analisar e aplicar os elementos da férmula de
arranjos

e Identificar os casos nos quais a férmula de

arranjos pode ser usada

omo vocé viu na aula 1, sempre que tivermos uma quantidade n
de objetos distintos a serem ordenados, teremos P = n! maneiras
diferentes. Além disso, se algum desses objetos for repetido,

devemos fazer “compensagdes”, como foi exposto do no final da aula 1.
Neste topico, continuaremos a analisar a quantidade de maneiras segundo as
quais alguns objetos podem ser ordenados, mas com algumas restrigdes. Observe o

exemplo:

Exemrro 1

Usando apenas algarismos impares, quantos numeros de trés algarismos
podem ser formados?
Solucgao: Aqui os algarismos disponiveis sio 5, a saber, os do conjunto {1, 3,5,7,
9}. Assim, ha igualmente 5 possibilidades para a escolha de cada um dos algarismos,
de onde concluimos que o total ¢ 5.5.5 = 5°.

De modo geral, se tivermos n objetos para ordenar em p posi¢des e pudermos
repetir os objetos, ha n? maneiras diferentes, pois em cada uma das posigdes termos

n maneiras diferentes de escolha.

ocrcio s [

Arranjo com repeticdo ¢ dado pela seguinte expressao n”, onde n € o total
de objetos a disposigao e p € a quantidade de posi¢des a serem preenchidas (a

ordem importa e os objetos podem ser repetidos).
e
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ExemprLo 2
Quantos sao os resultados possiveis de serem obtidos com o langamento de

sete moedas?

Solugdo: Nesse caso, podemos interpretar que temos dois resultados possiveis em

cada uma das sete moedas. Dai a quantidade total de resultados é 27 = 128.

Exempro 3

No langamento de dois dados, o total de resultados possiveis é 6> = 36.

Agora consideremos o caso em que nao podemos repetir os objetos
envolvidos. Devemos lembrar que, sem poder repetir, para cada etapa teremos uma
possibilidade a menos que na etapa anterior e a notagao de fatorial nos ajudara a

escrever as solugdes.

ExemrLro 4
Usando apenas algarismos impares, quantos nimeros de trés algarismos

distintos podem ser formados?

Solugao: Note que, nesse caso, ha cinco possibilidades para a escolha do

primeiro algarismo, quatro para o segundo e trés para o terceiro. Assim, o total de

possibilidades é 5.4.3. Esse nimero ¢ o comego do fatorial de 5 (faltando apenas
2!

! 5!
2!). Completando, temos 5.4.3 =5.4.3.— = — . Assim, podemos usar a notagao de
202!

fatorial para simplificar a resposta.

Mais geralmente, se tivermos n objetos, mas apenas p posi¢des para ordena-los,
sem repetigdo, temos 7 possibilidades para a primeira posigdo, n — 1 para a segunda,
n — 2 para a terceira e assim por diante, de modo que na ultima posigao, termos n —
(p — 1). Desse modo, usando o PFC, o total de possibilidades é n.(n — 1).(n — 2). ... .

(n—p + 1). Multiplicando esse resultado por (7 — p)!, completaremos 7n!.

- |
Assim, n-(n—l)-(n—Z)...(n—p+l)'(n p). = ! , a que chamare-

(n—p)! (n—p)!

mos de formula de arranjos simples, e usaremos quando os objetos nao puderem ser

repetidos e a ordem dos objetos importarem no resultado final. Portanto

n!

o O

n,p
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S6 poderemos usar a féormula (*) se p < n.

Exempro 5
Quantos anagramas de quatro letras podem ser formados com as letras da

palavra PERNAMBUCO?
Solugdo: Temos dez letras distintas para ordenar em quatro posi¢des. Devemos,

| | .0.8.7.6!
10! _10!_10-98-7-6! o
(10-4)! 6! 6!

entao, calcular o valor de A10 4=

ExeEmMPLO 6
Uma turma de dez alunos tem aula em uma sala com quinze cadeiras. De

quantos modos distintos as cadeiras podem ser ocupadas pelos alunos?

Solugdo: Aqui podemos pensar que ha algo errado se usarmos diretamente a
férmula paran = 10 e p = 15, pois 10 — 15 = =5 e ndo definimos fatorial de niimero
negativo. Para resolver esse problema, basta que invertamos um pouco o que é
objeto e o que é posi¢do. O primeiro aluno pode escolher uma dentre as 15 cadeiras

disponiveis, enquanto o segundo aluno s6 tem as 14 restantes, e assim por diante.

Com essas consideragdes, vamos usar a formula de arranjos simples, mas com 7 = 15

. 15! 15! ) o
e p=10. Temos, entio: A5, =7 = - Para efeitos de simplificagio, a

(15-10)! 5!

resposta pode (e deve) ficar dessa forma.

Depois do que vimos neste topico, podemos destacar que um arranjo é uma
maneira de ordenar elementos de um conjunto, ou seja, de formar sequéncias
com alguns deles. A férmula para arranjos com repeti¢ao sera usada quando os
elementos nao forem necessariamente distintos, e a férmula para arranjos simples

sera usada quando ndo houver possibilidade de repetigao.
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Tﬁplcu 2 Combinaces

OBJETIVOS

* Apresentar formas de contagem quando a
ordem nao importa no resultado final

* Comparar combina¢des com arranjos

o tépico anterior, vocé aprendeu como obter a quantidade de
possibilidades segundo as quais alguns objetos podem ser
ordenados em algumas posi¢des. Ou seja, contamos quantas

sequéncias podem ser feitas com os elementos de um determinado conjunto.
Ha situagdes, porém, nas quais a ordem dos elementos envolvidos nio altera
o resultado final, como, por exemplo, quando escolhemos as frutas de uma salada
ou formamos comissdes sem fungdes pré-estabelecidas. Nesses casos, o resultado

final é apenas um conjunto, e ndo uma sequéncia. Observe o seguinte exemplo:

Exemrro 1
Determine quantos subconjuntos com exatamente 3 elementos possui o

conjunto W= {a, b, c,d, e, f, g}.
Solucdo: A primeira vista, poderiamos pensar em usar simplesmente a férmula

77654

de arranjos simples e fazer <173 :Z_ 4 =210, mas esse procedimento

nos forneceria a quantidade de sequéncias de trés letras distintas formadas pelos
elementos de W, o que ndo é o que se quer, pois, apesar de as sequéncias (a, b, c)
e (b, ¢, a) serem diferentes, os conjuntos {a, b, c} e {b, ¢, a} ndo o sdo. Assim, o
resultado final deve ser compensado, da mesma forma que nas permutagdes com

elementos repetidos, pelas maneiras segundo as quais estes trés elementos tém de

mudar de posicao entre si, que sabemos serem P, . Assim, o numero total procurado
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A, 210 210
¢ B =" 35,
P, 3 6

Tendo como base o exemplo 1, e relembrando o que deduzimos a respeito

de arranjos, podemos concluir que, se tivermos um conjunto com 7 elementos,
podemos formar A sequéncias de p nlimeros distintos. Mas se quisermos encontrar
a quantidade de conjuntos com exatamente p elementos, devemos compensar o

resultado, dividindo-o por P,. Assim, a quantidade de subconjuntos de p elementos

A

n,p
que podem ser formados com os n elementos de um conjunto é P - A cada um
P

desses subconjuntos, daremos o nome de combinagao simples dos elementos e

ao total de combinagdes possiveis estabelecemos a notagao C,, Assim, podemos

colocar: ¢ —=_"P .
np

PP

Exempro 2
Ha 20 times participando de um campeonato de futebol, no qual cada time deve

enfrentar todos os outros apenas uma vez. Quantos sao os jogos desse campeonato?

Solugédo: Cadajogodesse campeonatoédeterminado pelaescolhadedoistimesdentre
0s 20 possiveis. Como a ordem dos times ndo importa, pois os jogos “time A x time B”

e “time B x time A” ndo sdo contados duas vezes, devemos encontrar o valor de

| | .19-.18!
200_107_20-19-18' _ 380 chegamos,
18! 6! 138!

C,,,- Antes disso, calculamos Azo,z =

~ Cypp 380
entdo, a Cy,=—==—>=190.
P 2

2

Como sabemos calcular 4, e Pp, podemos encontrar uma maneira direta

P

n!

1
Pp (n—p)!p!'

. 1
de calcular Cn,p. Fagamos: Cn’p = TP = An,p F
p p

J
— Assim, a quantidade de combinagdes possiveis de

SAIBA MAIS

n objetos distintos em p posigdes sera dada por:

Acesse o site: https://brasilescola.uol. |
n.

=(n—p) p!

com.br/matematica/geometria-plana. np
htm e revise alguns tépicos da geometria

plana.
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ExemrLo 3

Determine a quantidade de diagonais de um poligono convexo de n vértices.

Solugado: Uma diagonal fica bem determinada se escolhermos dois dos vértices do

poligono, e como o segmento de reta AB nio ¢ diferente do segmento BA, devemos,

entdo, combinar os n vértices dois a dois e do
resultado tirar os n lados do poligono. Assim,

se d é a quantidade de diagonais, temos d =

C —n:n—!—n:w_
" (n—2)12! (n—2)12
_nn=1) 2n _ nn-1-2) n(n—3)
2 2 2 2

Dai a conhecida férmula para a quantidade de

diagonais de um poligono convexo.

Vale ressaltar que, embora as situagdes

GUARDE BEM 1SS0

Uma vez que nos arranjos a ordem importa, é
natural que a quantidade de combina¢des nunca

ultrapasse a quantidade de arranjos. Ou seja, em

linhas gerais, podemos dizer que C p < Anp

de uso sejam parecidas, combinagdes e arranjos sao diferentes no sentido de que

nos arranjos a ordem importa e nas combinag¢des a ordem nao importa.

Nos exercicios desta aula, vocé tera a oportunidade de treinar situagdes em que essa

diferenca ¢ percebida. Mas, antes disso, acompanhe os exemplos do tdpico seguinte, que

reforcam a distingdo entre arranjos e combinagdes.
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Tﬁ PI CU 3 Problemas diversos

* Resolver problemas de contagem que envolvam
diversas técnicas
¢ Simplificar algumas expressdes com arranjos e

combinagdes

esta aula, ja aprendemos foérmulas para calcular o numero de
arranjos e de combinagdes. Depois de rever os exemplos do tépico
anterior, a diferenga entre arranjos e combinagdes deve estar bem
clara para vocé. Neste tépico, veremos uma série de exemplos nos quais podemos

usar as formulas para A, e C, . Vamos la!

Exemrro 1

Calcule C, para todos os valores possiveis de p.

Solugdo: Observe que, para que o calculo de C; seja possivel, ¢ necessario que p
seja um inteiro com 0 < p < 5. Nao podemos calcular C, , por exemplo, pois isso
significaria formar grupos de 6 objetos tendo apenas cinco objetos a disposicao.

Usando a férmula obtida no tépico anterior, podemos, fazer:

o St s oo St _sar
*(5—o0)0! 511 o-pr 41
o5 543 __ 5t 543
2 (5—-2)121 312 o (5-3)131 213!

_ 5t 54 st 51

5,4 5,5

(5—4)4r 1141 (5—5)15! 0151
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Neste exemplo, ha algumas “coincidéncias”. Por exemplo, os nimeros C, , e C, |
sdo iguais, 0 mesmo acontecendo com C | e C_,. Esse fato pode ser explicado da se-
guinte forma: quando, de um grupo de 5 objetos, escolhemos 3, automaticamente
deixamos 2 de fora. Assim, escolher os 3 da combinagdo ¢ equivalente a escolher

dois para nao fazer parte dela. Podemos provar de forma mais geral o seguinte fato:

PHUPUSIGI\U

Se 0s numeros Cnp e qu podem ser calculados e, além disso, p+qg=n,

entio C,, =C, .
Demonstragao: Se p+q = n, temos, claramente, quen—p=qen—q = p. As-
sim:
n! n! n! n!
— = ,mas C, = = ,logo C,, =C,, .
(z=p)ipt qtp! © lemgigt gl

n,p

A partir daqui, veremos alguns exemplos de como as combinagdes e os
arranjos podem ser usados em problemas de contagem e como optar corretamente

pelo uso de uma ou de outra férmula.

ExemprLO 2
Em uma circunferéncia sio destacados oito pontos distintos. Quantos

triangulos podem ser formados cujos vértices sejam trés dos pontos dados?

Solugdo: Para que formemos um tridngulo, sdo necessarios trés pontos, entiao

devemos ver de quantas maneiras podemos escolher trés dos oito pontos dados.
. . . 5 - .

Aqui surge um questionamento: vamos usar A , ou C .,? A principal diferenga

entre os dois é que para arranjos a ordem importa e para combinagdes, nao. Como

o triangulo ABC nao ¢ diferente do triangulo BCA, a ordem com que escolhemos os
8! 8.7.6.5!
= =56
(8 —3)!3! 51.6

trés pontos nao é relevante. Assim, calculamos C, , =

Exempro 3
Em uma prova de natagdo com oito atletas, quantas sdo as possibilidades de

formagao de poédio com distribui¢do de medalha de ouro, de prata e de bronze?

Solugdo: Aqui temos oito atletas para dispor nas trés posi¢des do pddio e surge a

mesma pergunta: arranjos ou combinag¢des? Como ha uma ordem em cada pddio,

_ , 8! 8.7.6.5!
devemosusaraférmulaparaarranjos. Assim, temos A, , = = =

(8—3)! 5!
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ExEmr10 4

Para que valor natural de m vale a igualdade A =180.C 2
. ~ . . m! m! N,
Solugao: A equagdo dada ¢ equivalentea — " —180.— . Dividindo
(m —5)! (m —3)!3!
1 180

ambososmembrosdaigualdade porm!ecalculando 3!, temos = ,
(m—5)! (m—3).6

que ¢ equivalente a 6.(m — 3)! = 180.(m — 5)!. Dividindo ambos os membros da
igualdade por 6 e usando o fato de que (m — 3)! = (m — 3).(m — 4).(m — 5)!, obtemos
(m — 3).(m — 4).(m — 5)! = 30.(m — 5)!
(m—3).(m—4) =30
m*—7m + 12 = 30
m* —7m — 18 = 0, que é uma equagdo do segundo grau com raizes 9 e —2, mas
como C__ s6 faz sentido quando m € natural maior ou igual a 5, a unica solugdo valida ¢

m=9.

No préximo exemplo, veremos que, em um mesmo problema de contagem,

podemos usar mais de uma férmula para obter o resultado desejado.

ExempLo 5
De um grupo de 13 homens e 9 mulheres, quantas comissdes de cinco pessoas

podem ser formadas, com, necessariamente, trés homens e duas mulheres?

Solugdo: Aqui, o problema pode ser dividido em duas etapas: a escolha dos homens
e a escolha das mulheres da comissdo. Se soubermos de quantas maneiras cada um
desses dois procedimentos pode ser feito, basta que multipliquemos os resultados.
Como ha 13 homens, ha C, , maneiras de escolher os homens da comissdo. Como
ha 9 mulheres, ha C,, maneiras de escolher as mulheres. Dessa forma, o total de
comissoes possiveis € C, .C, . = 10296 (confira).

Como tltimo exemplo desta aula, vejamos um caso no qual devemos analisar

e separar os elementos que temos a disposi¢do antes de aplicar alguma férmula.

ExemprLo 6

Os funcionarios de uma microempresa, entre os quais Julia e Augusto, devem
fazer uma viagem para representa-la, mas s6 ha vagas para quatro pessoas. De todas
as possibilidades de escolha dos que vao viajar, ha 28 maneiras para que Julia e

Augusto viajem juntos. Quantos sdo os funcionarios da empresa?
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Solugdo: Veja aqui que, se chamarmos de n a quantidade de funcionarios
da empresa, inicialmente ha C , possibilidades de escolha para os quatro
representantes. Entretanto, sabemos que, em um grupo no qual Julia e Augusto
viajam juntos, s6 ha vagas para mais dois funcionarios, que devem ser escolhidos
entre os restantes, que sdo n — 2. Assim, temos a equagdo C_,, = 28. Resolvendo-a,

obtemos
(-2 _
(n—2)—2)121

n—2,2

(n—2).(n—3).(n—4)!
(n—4)".2

=28

(n —2).(n — 3) = 56, dai n* — 5n + 6 = 56, 0 que resulta em 7’ —5n—50 =
0, que tem raizes n = 10 e n = —5. Esta ultima possibilidade deve ser descartada,
pois n deve ser um numero natural. Dai, concluimos que a empresa possui 10

funcionarios.

Agora que vocé ja conhece arranjos e combinagdes, procure identificar
situagbes do cotidiano em que as formulas para A ‘e C, podem ser usadas. Uma
breve recapitulagao desses conceitos é sugerida. Vocé vera que ja temos muitas

ferramentas interessantes para resolver problemas de contagem. Ao trabalho, entao!
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AUL A 3 Triangulo de Pascal e
Binbmio de Newton

Ola aluno (a),

Nesta aula, veremos a analise combinatéria de um ponto de vista mais técnico,
fornecendo os elementos necessarios para a construgéo, com o rigor matematico
adequado, de relacdes entre 0s numeros de arranjos e de combinacdes. Veremos
também como esses nuimeros podem ser usados em situacdes especificas da

Algebra, como no desenvolvimento de expressées do tipo (x+ )", paran natural.

Objetivos

e Definir os nUmeros binomiais e estabelecer relacdes entre eles

e Determinar os numeros binomiais de maneira direta através apenas de
somas

e Construir uma tabela de numeros binomiais

e Desenvolver a formula para o termo geral do desenvolvimento de um
binbmio de Newton




TﬁPICU -l Numeros Binbmiais

* Definir numeros binomiais
* Observar relagdes importantes entre os numeros
binomiais

* Resolver equagdes que envolvam numeros

binomiais

as ultimas aulas, vimos como verificar a quantidade de elementos de
determinados conjuntos de maneira indireta, porém de forma bem mais

objetiva do que a contagem

elemento a elemento. Vimos também que, em casos

especificos, podemos escrever as respostas de

SAIBA MAIS

maneira simplificada usando a notagao de fatorial.

A partir daqui, utilizaremos o que foi Faga uma revisdo dos conceitos basicos de

. . . . . fatorial acessando ao site:
aprendido nas aulas anteriores, investigando mais

http: : icadidatica.com.
a fundo as propriedades entre a quantidade de ttp://www.matematicadidatica.com.br/

L . Fatorial.aspx
combinagdes, para a qual daremos o nome especial

. ; ; x |
de numero binomial, bem como uma notac¢io

especial.

n
Dados os nimeros naturais # e p, com p < n, o numero binomial » ¢é definido

simplesmente como o ntimero de combinagdes de 72 objetos em p posigdes, ou seja, por C, .

ny n!
p) (n—p)p

numero p é o denominador do numero binomial.

para p <n. O numero n é chamado de numerador e o
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Acompanhe o seguinte exemplo, em que foi

ATENGAO!

utilizado aplicagdo direta da definigao.

Vale ressaltar que, embora os termos

. p ,, . . Exemrro 1
numerador” e “denominador” sejam

usados, nao se deve confundir um nimero 6 + 6
Calcule o valor de .

binomial com uma fragdo. Por isso nao se

pode simplificar diretamente “dividindo”

Solugdao: Usando a  definicaio 1, temos
o0s termos pelo menos nimero.

6 6! 6-5-4!
| 21" 4121 4101

6 | .5.4.3!
_ 6! :6 5-4 3.:20
3 31.3!1 31.6!

6 6
Assim, + =15+20=35.
2 3

Como vimos na aula passada, sempre que p + g =n, entdio C__ = C . Dessa
np n.q
forma, podemos escrever esta regra como primeira propriedade para os nimeros

binomiais.

PRUPUSI[}[\D 1

n n
Os numeros binomiais (pJ e (qj sdoiguais se, e somentese, p=qgou p+q =n.

n

q

n
Dizemos, nesse caso, que os nimeros binomiais (pj € ( j sdo complementares.

A demonstragao para a proposi¢ao ¢ imediata a partir do que ja foi feito na aula
passada, portanto sera omitida. Com essa propriedade, quando quisermos calcular

todos os numeros binomiais de um determinado numerador, na verdade, sé precisa-

3] (3
remos fazer as contas para metade dos nimeros. Por exemplo, temos que [O] =[ ]

) |
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ExempLro 2
15 ’ . . 7’
, ha a solugao imediata ¥ = 9, mas também devemos

15
Para a equagao =
X
considerar o caso de nimeros complementares, ou seja, x + 9 = 15, que resulta em x =

6, que ¢ a outra solugao. Assim, a solu¢ao do problema ¢é o conjunto {6, 9}.

Ha varias outras propriedades interessantes a respeito de numeros binomiais.

A seguir, listaremos dois numeros vbinomiais especificos.

PRUPUSIGI\U 4

n n
Para qualquer numero natural n 2= 1, vale [O]zl e i =n.

0) (n—0)Lo! nl.l

n . Uma maneira equivalente de verificar es-

Demonstraciao: Pela defini¢dao, temos: [

[”] n! n.(n—1)! _

”] n! n!

1] (n—DL1l (n—1)1
se fato € perceber que, de n objetos, podemos formar exatamente um conjunto

com nenhum objeto (o conjunto vazio), e n conjuntos com 1 objeto.

Uma vez que n + 0 = n, podemos usando as propriedades 1

n
e 2, concluir que também vale [

]:1, para
n

qualquer numero natural n. Assim, se listarmos

SAIBA MAIS

}

todos os numeros binomiais de um mesmo
. Conhega um pouco da histéria do matematico
numerador em ordem crescente de denominador, o
o . o alemao Michael Stifel acessando ao site: https://
primeiro e o ultimo elementos sempre serao iguais
www.somatematica.com.br/biograf/stifel.php.
a 1. Vocé podera calcular, por exemplo, todos os

numeros binomiais com numerador 6 para verificar
este fato e treinar as propriedades. A seguir, destacamos outra propriedade relevante a

respeito dos niumeros binomiais, a qual também podera ser chamada de Relagdo de Stifel.
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PRUPOSIG[\U 3
n n n+1
Para quaisquer niimeros naturais n e p, com p < n, vale p + p+1 - p+1 . Os

numeros binomiais do primeiro membro sdo chamados de consecutivos.

Demonstragao: Pela defini¢ao, o primeiro membro da igualdade vale:

n]+[ n ]: n! n n!
p) \ptl) (n—p)p! (—(p+)p+1! _

n! n!

= p—p—Dip! (1= p—Di(p1p! _
nl(p+1)+nl(n—p) nl.(p+1+n—p)
— (r=p)n—p=D(p+1).p! _ (n—p)(p+1)!
nl.(n+1) (n+1)! n+1]
— (r+)=(p+)(p+1)! — (n+)—(p+D)(p+1)! _ [p+1

Essa demonstragdo é bem técnica, porém, uma vez completada, podemos

fazer-lhe uso para simplificar alguns calculos. Acompanhe os seguintes exemplos:

Exemprro 3

12 11 11
Se quisermos encontrar todos os valores de k para os quais [k ] = [ 4 ] +[ s ]

, podemos simplificar o segundo membro usando a Relagdo de Stifel paran=11ep =

12 12
4. Assim a igualdade se torna [ K ] = [ s ] , que sabemos ser verdade para k = 5 e para
k+5=12,logok =17.

Exemrro 4
5 5 6 7 8
Calcule o valor de [ ]+[ ]+[ ]+[ ]+[ ]
2 3 4 5 6
5 5 6
Solugdo: Podemos usar a proposigio 3 e perceber que 5 + 3 = [3] .
Basta fazer n = 5 e p = 3.
5 5 6 7 8 6 6 7 8
Assim, [ J—l—[ ]+[ ]+[ J—l—[ ] = []—1—[ ]—l—[ ]+ . Usando novamente a
2 3 4 5 6 3 4 5 6

4 5

7 7 8
propriedade 3 para as duas primeiras parcelas, temos [ ] + [ + [6] .Enovamente:
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8) (8
_|_

5] |6

91  9.8.7.6! 504

316! 6.6! 6

. Ainda mais uma vez e tudo que precisamos calcular é o valor de [6] =

84 .

No préximo tépico, juntaremos todas as informagdes vistas até esse momento em
uma tabela que facilitara, e muito, o processo de encontrar nimeros binomiais, além de
deixar ainda mais evidentes certas relagdes entre eles. Reveja os exemplos para que essa

nova forma de representar a quantidade de combinagdes lhe seja mais familiar.

38 ‘ Matematica Basica Il




TGPICU 2 O Triangulo de Pascal

OBJETIVOS

* Analisar as propriedades do triangu

qui organizaremos os numeros binomiais, fazendo uso das
propriedades apresentadas no tépico anterior. A “tabela”
resultante dessa organizagdo é conhecida como Tridngulo de
Pascal e é muito util na determinagdo direta quando quisermos varios nimeros
binomiais.
Inicialmente, vamos dispor os numeros binomiais com o mesmo numerador em
n
s6 faz
p

sentido se 0 < p <, a linha que contém todos os niimeros binomiais de numerador 7

uma linha em ordem crescente de denominador. Como o niumero binomial [

teran + 1 elementos (lembre que aqui estamos contando a partir do 0). Por exemplo,

se listarmos sucessivamente paran =0, 1, 2, 3, 4 e 5, temos (ver figura 1):

Figura 1 — Numeros binomais para n <5

p=0 p=1 p=2 p=3 p=4
. 0
"= 0
| 1 1
"= 0 1
2 2 2
n=2 0 1 2

* Observar relagdes entre numeros binomiais

lo de Pascal
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Como (Oj:( j = 0, para qualquer natural n, cada linha comegara e
n

terminara com o nimero 1. Para encontrar os numeros do “miolo” da tabela, podemos

usar a relagdo de Stifel, a partir dos elementos da linha anterior, a partir do esquema

da figura 2:

Figura 2 - Calculo do n° linha

N n
p N p+1
1
n—+1
p+1

Assim, se soubermos dois elementos consecutivos de uma linha da tabela,
basta que os somemos para obter o elemento imediatamente abaixo. Assim, para
que encontremos todos os elementos da linha n = 5, basta que conhegamos todos os
elementos da linha n = 4. O processo comeca simples porque sabemos que, tanto na

linha n = 0 como na linha n = 1, todos os elementos valem 1. Se quisermos, entéo,
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identificar os elementos da linha n = 2, temos de comegar e terminar por 1 e o
outro elemento sera a soma dos dois elementos acima e a esquerda. O procedimento
¢ repetido para as linhas seguintes, de forma a encontrar os nimeros binomiais
usando apenas somas. As cinco primeiras linhas se tornam como observado na

figura 3:

Figura 3: Calculo dos niimeros binomiais das 6 primeiras linhas do Tridangulo de Pascal

p=0 p=1 p=2 p=3 p=4 p=35

n=0 1

n=1 1 1

n=2 1 2 1

n=3 1 3 3

n=4 1 4 6 4 1

n=>5 1 5 10 10 5 1

Dessa forma, a construgdo do Triangulo de Pascal nos permite afirmar

5 4
diretamente que =10 e =60.
3 2

Exemrro 1:
Um coquetel é formado por duas ou mais bebidas distintas. Dispondo de seis

bebidas diferentes, quantos coquetéis podemos formar?

Solugdo: A quantidade de coquetéis que podem ser preparados com

6 6
2 bebidas ¢ (2} com 3 bebidas a quantidade é [3} e assim por

6 6 6 6 6
diante. Calculemos, entao, + + + + . Usando a
2 3 4 5 6

linha n=35 do Triangulo de Pascal, podemos encontrar a linha n=26

e obter de forma mais direta os numeros binomiais procurados, conforme figura 4.
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Figura 4 - Calculo da 6? linha

6 6 6 6 6
A soma + + + + vale, dessa forma,
2 3 4 5 6

15+20+15++6+1=57.

Com essa construgdo, se precisarmos de varios numeros binomiais para a
resolu¢do de um problema, umamaneira pratica para obté-los sera o desenvolvimento

do Triangulo de Pascal.

Para fecharmos o tépico, construa um tridngulo de Pascal até a linha n=8 e
verifique, com os exemplos da aula passada, como os niimeros binomiais poderiam

ter sido encontrados diretamente.
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TOPICO 3

SAIBA MAIS

Para revisar tépicos dos conceitos de
produtos notaveis, acesse o site https://
www.infoescola.com/matematica/

produtos-notaveis/.

BinOmio de Newton

OBJETIVOS

e Identificar expressdes binomiais
e Realizar comparagdes entre poténcias de bindmios
e o Triangulo de Pascal

e Obter a férmula do termo geral do desenvolvimento

de expressdes do tipo (x + y)n

0s topicos passados estudamos o
numero de combina¢des de forma
abstrata, ou seja, sem fazer relacao
com nenhum processo real. Neste topico, relacionaremos
0s numeros binomiais a expressdes matematicas. Aqui
queremos estudar o desenvolvimento de expressdes do

tipo (x + y)’, para qualquer n natural. Uma expressio

do tipo citado é conhecida como binémio de Newton.

Comecemos pelos casos conhecidos, que chamamos de produtos notdveis.

Exempro 1

Obtenha o desenvolvimento de (x + y)" paran =0, 1, 2 e 3.
Solugdo: Temos: (x +y)°’=1e(x +y)' =x + y.
(e TP = Fy)(r+y)= o +ay fay+y =2+ 20y + y

(xty) =@ tyP(x+y)= (@ +2xy+y)(x Ty) =+ 3%y + 3xy* + 5.

Se listarmos esses produtos explicitando todos os coeficiente e expoentes de x e de

y, teremos:

Paran =0, (x + y)° = 1x%°

Paran =1, (v +y)' = Ix'y® + 1x%!

Paran = 2, (x + y)* = 1Ixy° + 2x'y" + 1x%?

Paran =3, (x +y) = 1xy° + 3%y + 3xly” + 1a%°)
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Observando o exemplo 1, podemos tirar algumas conclusdes a respeito
desses desenvolvimentos:
os coeficientes de cada linha sdo os mesmos da linha correspondente no Trian-

gulo de Pascal
. o expoente da variavel x comeca igual a n e depois vai diminuindo
uma unidade até zerar.
. o expoente da variavel y comega igual a 0 e depois vai aumentando
uma unidade até n.

Assim, seguindoessatendéncia, podemosescreverodesenvolvimentode(x+y)*,
vendo que teremos cinco termos com coeficientes 1, 4, 6, 4, 1 (obtidos da linha
n = 4 no Triangulo de Pascal). O primeiro desses termos tera x com expoente 4,
diminuindo uma unidade para cada termo seguinte, e y com expoente 0, aumentando
uma unidade até atingir 4. A sequéncia sera x*y°, x’y', x*y?, x'y’, x°%*. Juntando as
duas informagdes, podemos escrever:

(x 9/ = 1% + 4%y + 657y + 4x'y’ + 14°y ou, simplesmente x* + 4x’y + 6x°y” + 4xy’
+ 9.

ExeEmprLO 2

Usando a suposigao acima, escreva o desenvolvimento de (x + y)’.

Solugdo: Os elementos da linha n =35 do Triangulo de Pascal sio 1, 5, 10, 10, 5,
1. Para cada um deles, colocamos x com expoentes decrescentes e y com expoente

crescente. Assim, podemos escrever, (x + ) = x5 + Sx*y + 10x*)y? + 10x%)* + Sxy*+
5

y.
Pelo que vimos até aqui, podemos supor que, ao desenvolver uma expressao

do tipo (x + )", os coeficientes serdo os elementos da linha 7 do Tridngulo de

n n n n
Pascal, a saber, os numeros binomiais s ) e, com x comeg¢ando com

1 2 n

expoenter, diminuindouma unidade até zerar e o expoente de y comegando com zero

. . w a0 [ an [Tz 2 ny o
até atingir n. Assim: (x+y)' = 0 X'y + 1 Xy + ) X Tyt 4+ X'y
n

n

Antes de provar que o desenvolvimento acima vale para qualquer n, vamos

fazer um exemplo para treinar a técnica.
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Exemrro 3

Usando a férmula acima, obtenha o desenvolvimento de (x + 2)6.
Solugdo: Basta fazer y = 2 e usar os elementos da linha n = 6 do Triangulo de

Pascal. Teremos:

6 6 6 6 6 6 6
(x+2)° = (ijé 20+ (st 2"+ (2}6422 + (3])63 2’ + (4jx2 2%+ (5}61 2° + (6]360 2°

Fazendo os calculos iniciais, teremos

(x+2)° =x°+6x°.2+15x* 4+ 20x° .8 +15x°16 + 6x.32 + 64

Por fim, (x+2)° = x* +12x” +60x"* +160x’ +240x> +192x + 64 .

Por mais trabalhoso que possa parecer, ainda assim é mais pratico do que
multiplicar (X + ) por ele mesmo seis vezes. Entretanto, nem sempre sera necessario
fazer o desenvolvimento completo (ha situagdes em que isso é impraticavel). O
que ¢ interessante ¢ saber que a expressdo acima nos fornece qualquer termo do
desenvolvimento.

Antes de ver tais problemas, vamos a formaliza¢do do resultado.

mPara qualquer 72 natural, tem-se que
n h n_0 n n—1_1 n n-2_2 n 0..n
X+ = X + X + X AF 000 X *

Demonstrago: Inicialmente, sabemos que (X + )" = (x + y).(x + y)....(x + ),
com o produto feito 7 vezes. Usando a distributividade, sabemos que cada termo
do resultado podera usar um X ou um y de cada fator. Assim, ele sera uma expres-
sdo do tipo x?y”, na qual ¢ representa a quantidade de fatores nos quais o ter-
mo x foi escolhido e p representa a quantidade de fatores nos quais o termo y foi
escolhido. Como o total de fatores é n, temos necessariamente que p+¢q =1n,
de onde concluimos que ¢ =7 — p . Além disso, essas parcelas podem ser repeti-
das de acordo com as maneiras segundo as quais podemos escolher em qual dos fato-

res selecionaremos y. A quantidade dessas parcelas ¢ C, . Desse modo, cada termo

n
do tipo X" y” tera como coeficiente o ntimero binomial (pj ,com 0< p<nm,

o que demonstra o resultado.
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Na expressio do teorema, o primeiro termo ocorre para
p=0, o segundo para p=1 e assim por diante. Assim, se quisermos saber o

oitavo termo no desenvolvimento de um bindmio de Newton, devemos fazer

n=p..p
p="T. Dessa forma, podemos dizer que a expressio (pjx Y" ¢ o termo de

ordem p +1do desenvolvimento de (x + )" .

ExemrLo 4

Qual o quinto termo no desenvolvimento de (2a + 3)” em poténcias decrescentes
de a?
Solugdo: Aqui podemos usar diretamente a expressao obtida acima paran=7,p =4

(pois queremos o quinto termo), x = 2a e y = 7. Temos, entao que o quinto termo (7.)
- (2a)3 34 in .
sera igual a 4 . Usando o triangulo de Pascal ou calculando diretamente,

7
obtemos [4) =35. Como 2’ =8 ¢ 3* =81, T, =35.84".81=22680a’ .

Um resultado bem interessante da férmula (*) aparece se fizermos x=1 e

y=1. Veja:

n n n n
(x+y)' = x”y0 + x'Hy1 + x"’zy2 +...+ xoy” ,
0 1 2 n

para x=1e y=1, fica:

A1y = e e e e
0 1 2 n
n n n n n
2= 0 + 1 + o) Foot nl o seja, a soma de todos os elementos da linha 7

do Tridngulo de Pascal ¢ igual a 2". Vocé pode verificar isso nas primeiras linhas

do triangulo construido nesta aula.
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ExEMPLO 5

Quantos subconjuntos possui o conjunto V= {a, b, ¢, d, e}?

Solucio:
O conjunto V possui 5 elementos. A partir dele, temos de ver quantos

subconjuntos podemos formar com 0, 1, 2, 3, 4 ou 5 elementos. Essas quantidades

5 5 5 5 5 5
sao , , , , e , respectivamente. Assim, temos que encontrar
0 1 2 3 4 5

S e

De modo geral, podemos aqui concluir um fato simples da Teoria de Conjuntos:
Se um conjunto tem n elementos, a quantidade de seus subconjuntos é 2",

5
1

Agora que ja sabemos por que C pode ser chamado de nimero binomial,
np
podemos ir ao proximo tépico e observar outras aplicagdes para os resultados obtidos

até aqui.
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TﬁPICU 4 Bindbmio de Newton -
Aplicacoes

OBJETIVOS

* Analisar problemas que envolvem binémio de
Newton

* Estudar o desenvolvimento de expressoes
do tipo (x + y)"

elo que  vimos no  topico  anterior, o  termo

geral no desenvolvimento de (% + )y
. n n—p _p .

em poténcias decrescentes de ¥ ¢ T,,, =| [x" "y". Aqui vamos

aprender como aplicar essa expressio e os demais resultados vistos na aula.

Comecemos pela questao abaixo:

Exempro 1
Encontre o coeficiente de ¥’ no desenvolvimento de (x + 4)°.

~ , 5— . .
Solugao: Nesse caso, o termo geral sera T,,, =| |x~ "4”. Para obter o coeficiente

de x°, devemos fazer 5 — p = 3, ou seja, p = 2. Assim, teremos o terceiro termo:

5
T.. =| |x’24® = 104°%.16. Ou seja, o coeficiente procurado ¢ 160.
2+1 2 .]

Como visto neste exemplo, nem sempre precisamos encontrar todos os coeficientes
de um desenvolvimento para obter a resposta para um problema de bindmio de Newton.
No mesmo exemplo dado, se quiséssemos varios coeficientes, seria interessante escrever
o Triangulo de Pascal até a linha n = 5. Na verdade, ter o Tridngulo de Pascal até a linha

n = 8 sera de muita utilidade para todos os demais exemplos deste tépico.
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ExempLo 2

6
Encontre o termo independente de x no desenvolvimento de (x + —j .
X

Solugéo: (0] termo geral do desenvolvimento é
6 1) 6 1 6
p X p X p
O termo independente de x é aquele que possui x com expoente 0. Logo, fazemos 6
— 2p = 0 para encontrar o p desejado. Temos p = 3 ¢, assim, determinamos o quarto

6
termo: T, = 3]906(2'3) =20.

No desenvolvimento de expressdes do tipo (x — y)*, podemos fazer x —y = x + (-y) e

aplicar os procedimentos do que ja determinamos anteriormente. Siga o exemplo:

ExemprLro 3

Encontre o sexto termo do desenvolvimento de (3x — 2)’.
7 .
Solucgao: Fazendo 3x —2 = 3x + (-2), o termo geral fica T,,, = » (3x)""(—=2)", no
7 7-5 5
qual devemos fazer p = 5 para obter o sexto termo. Assim: T, , = s (3x) " (=2),
ou seja T, = 21.(3x)*(—2)’ = 21.94%.(—32)= —6048x>.

Exemrro 4

No desenvolvimento de (@ — 3b)", ha nove termos. Encontre o terceiro deles.
Solucao: Neste problema, ndo temos diretamente o valor do expoente, mas sabemos
que, no desenvolvimento de um binémio com expoente n, ha n + 1 termos assim,

podemos concluir, pelo exposto no enunciado, que n + 1 = 9, de onde tiramos n =

8
8. O termo geral fica T,., :[ ]asp(—3b)P , no qual devemos usar p = 2 para ober

8
o terceiro termo T,,, = [z]agz(—Sb)2 . Assim, obtemos T, = 28.a°.9b*> = 252a°b.

Até aqui, ja temos bastante material para resolver diversos problemas de
analise combinatéria e bindmio de Newton. Sugerimos que vocé faga uma breve

recapitulada nos temas desta aula. Agora, partamos para os exercicios.
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AU L A 4 NUmeros complexos |

Ola aluno (a),

Nesta aula, comegaremos a abordar o conjunto dos nimeros complexos, que
servira como um complemento para o estudo sobre Conjuntos Numeéricos
feito na disciplina de matematica basica |. Aqui introduziremos o conceito de
unidade imaginaria, estendendo o conjunto dos numeros reais, e analisaremos as
principais propriedades, verificando como se processam as operacdes aritméticas
elementares nesse novo conjunto. Para tanto, sempre que for necessario, faca
uma revisao na aula que trata sobre 0s numeros reais daquela disciplina.

Objetivos

e Estabelecer a construgéo do conjunto dos numeros complexos a partir dos
ndmeros reais

e Realizar operacdes com numeros que envolvam a unidade imaginaria

e Apresentar conceitos pertinentes, como modulo e conjugado de um numero
complexo
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Tﬁplco -l Definictes

OBJETIVOS

¢ Identificar problemas algébricos sem
solugdo no conjunto dos numeros reais

e Apresentar a unidade imaginaria

* Definir o conjunto dos numeros complexos

o conjunto dos numeros naturais, nao se pode fazer a operagao

5—8, uma vez que isso representaria tirar oito elementos de um

conjunto que possui cinco elementos. Além disso, se 5—8=n,
terfamos 5 =841, mas, como 8 é maior que 5, tal natural N nio existe. Entretanto,
como ja foi estudado, podemos associar a ideia de numero negativo, dando ao
simbolo “—3" o significado do numero que precisamos somar ao numero 8 para
obter o niimero 5. Com essa técnica, criamos o conjunto dos nimeros inteiros, no
qual todo numero possui inverso aditivo e a subtragdo m —né sempre possivel,
para quaisquer inteiros m e 1.

12

No conjunto dos numeros inteiros, ndo se pode fazer a operagio —, uma
vez que isso representaria encontrar um numero 7 tal que ? =n, o que equivale

a 5n=12, mas sabemos que 12 nio é multiplo inteiro de 5, logo tal inteiro n

nao existe. Entretanto, como ja foi estudado, podemos associar a ideia de numero

nio-inteiro, dando ao simbolo “—" o significado do nimero que precisamos
multiplicar por 5 para obter 12. Com essa técnica, criamos o conjunto dos nimeros

racionais, no qual todo nimero diferente de zero possui inverso multiplicativo e a

a
divisao Z é sempre possivel para quaisquer racionais a e b, com b # 0 .

No conjunto dos numeros racionais, ha alguns problemas que ndo podem ser

: . 2 [ x4
resolvidos, como encontrar um nimero X tal que x° =2 (sabemos que V2 nao é um
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numero racional) ou encontrar um numero y tal que 2° =3 (sabemos que log, 3 ndo
¢ um numero racional). Para resolver tais problemas, estudamos os ntiimeros reais, pois,
através deles, podemos calcular, por exemplo, a raiz quadrada de qualquer nimero nao
negativo.

Até aqui, entdo, o conjunto dos nliimeros reais € o maior campo de atuagao e ¢ nele
que procuramos as solugdes para os nossos problemas. Ha, porém, algumas equagdes
que envolvem operagdes conhecidas para as quais nao ha solugao real. Um exemplo para

isso surge naturalmente quando se pergunta pela raiz quadrada de niimeros negativos.

Exemrro 1

Encontre a solugdo para a equagio ¥ +x+1=0.
Solucio: Usando a féormula de Bhaskara, calculamos A =1* —4.1.1=—3 e, uma vez
que encontramos o discriminante negativo, encerramos o processo e a solugdo é vazia no
conjunto dos numeros reais. O motivo para tal é que, logo em seguida, irfamos procurar a

raiz quadrada de —3, que nao pode ser encontrada no conjunto dos nimeros reais.

Para justificar o final da solu¢ao do exemplo anterior, pense que exista

. 2 . .
um numero real z tal que z° =-3, equivalentemente a z-z =-3. No conjunto
dos numeros reais, ha uma ordenacao total, também chamada lei da tricotomia:

qualquer numero real é positivo, negativo ou zero. Entretanto

* sez épositivo, z-z também é positivo, ndo podendo ser igual a —3;
* se Z é negativo, z-z é positivo, ndo podendo ser igual a —3;

* se Z é zero, por motivo ainda mais direto ndo pode z-z seriguala —3.

Todas as possibilidades se esgotam e, com isso, percebemos de maneira bem
simples por que equagdes como X° +x+1=0 e z° = -3 nio possuem raizes reais.

Assim como o que foi feito para “aumentar” o conjunto dos nimeros naturais,
a fim de que a operacdo de subtracdo pudesse ser realizada, ou o conjunto dos
numeros inteiros, para que se possa efetuar a divisdo, vamos estender o conjunto
dos numeros reais, mantendo as operagdes existentes, com a finalidade de, no novo
conjunto, obter solugdes para as equagdes acima.

Uma vez que os numeros negativos podem ser obtidos a partir dos positivos pela
multiplicagdo por —1 (por exemplo —12 = 12.(-1) e —25 = 25.(-1)), um caso basico que

devemos definir ¢ um numero que, elevado ao quadrado, resulte em —1. Esse numero, pelo
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que foi exposto, ndo pertence ao conjunto dos niimeros reais €, apenas por causa disso, vamos
chama-lo de unidade imagindria. Para ele, vamos atribuir o simbolo i. Ou seja: i* = —1

De maneira semelhante ao que fazemos com os ntimeros reais e, ™ e V2 ,

a multiplicagdo de i por um numero real nao sera

v simplificada além da justaposicao dos simbolos.

— Por exemplo, temos 4e, 3 V2 , 107, etc. Igualmente
SAIBA MAIS .y NS .
sera feito para 5i, 2i, ¥3 i. Com isso, resolvemos, de

Muitas curiosidades surgem quando nos uma vez s6, o problema de encontrar niimeros cujos

deparamos com os nimeros complexos. quadrados sdo numeros negativos. Acompanhe:

Acesse o site http://www.matematica.br/ (51)2 =25i* = 25.(—1)=—25, ou seja, 5i ¢

historia/complexos.html e descubra mais uma solugio para x> =-25;

sobre esses elementos (2i)’ =4i* =4.(—1)=—4, ou seja, 2i é uma
solugdo para x> =—4;

(\/gi)2 =3i’=3.(—1)=-3, ou seja \/gi é
uma solugdo para x* =—3.

De maneira analoga, também n2o simplificaremos expressdes do tipo4 + 7,3 + 1,3 +
2i, no intuito de manter as operagdes existentes no conjunto dos nuimeros reais. O que vamos
fazer com esse novo simbolo é operar como se ele fosse uma incégnita, mantendo todas as
propriedades da soma e da multiplicagdo, mas sempre tendo em mente que seu quadrado
vale —1.

Assim, basta que acrescentemos i ao conjunto dos nimeros reais para ganhar
um novo conjunto, no qual poderemos encontrar raiz quadrada mesmo de ntimeros
negativos.

Definiremos o conjunto dos niimeros complexos e representaremos pela letra C
o conjunto de todas as expressoes do tipo z = a + b.i, onde a e b sdo nimeros reais.

C={a+bi,ac€RbeERei’=—1}

Uma vez que, para qualquer numero real x vale x = x + 0., temos que o conjunto
dos numeros reais esta contido nesse novo conjunto. Podemos, entdo, completar a cadeia:
NCZcQcRrcc

Para o nimero complexo z = a + bi, se b = 0, tem-se que z ¢ um nuimero real. Além disso,

sea=0eb#0, dizemos que z é imagindrio puro. Por exemplo, 4i ¢ um niimero imaginario puro.
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ExemprLo 2

Determine o valor real de k para que z=9—k” + 2i seja imaginario puro.

Solugao: Para que z seja imaginario puro, devemos ter 9 —k* =0, o que resulta em
k=3ouk=-3.

Para o niimero complexo z = a + bi, chamamos o numero real a de parte real
de z e denotamos por Re(z), enquanto o numero real b é a parte imagindria de z e o

denotamos por Im(z). Como ilustragdo, se w = 4 + 3i, tem-se Re(w) = 4 e Im(w) = 3.

ExemrLoO 3

Determine a parte real e a parte imaginaria do nimero complexo z = (4 +i)*.

Solugao: S6 podemos encontrar a parte real e imaginaria de um
numero complexo quando ele estiver na forma a + bi. Para tanto,
desenvolveremos o quadrado e simplificaremos o que for possivel. Temos
(4+i)=4"+2.4i+i"=16+8i—1=15+8i. Temos: Re(z) = 15 e Im(z) = 8.

Dois nimeros complexos somente serdo iguais se tiverem mesma parte real
€ mesma parte imaginaria. Ou seja:

z=w < Re(z) = Re(w) e Im(z) = Im(w)

Observe que a parte imaginaria de um nimero complexo é um ntimero real,
portanto € incorreto dizer que Im (6+1i)=2i.

Como todo numero real é complexo, faz sentido falar de Re(9) ou Im(12),
sendo esses valores iguais a 9 e 0, respectivamente.

Embora a unidade i seja chamada de imaginaria, € o conjunto C contenha os
numeros complexos, esses nomes nao devem assustar. Assim como nos habituamos
a trabalhar com numeros negativos, “quebrados” ou irracionais, esses novos

numeros também nos serao familiares.
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~ Poténcias da unidade
TUPICU 2 imaginaria

OBJETIVOS

s Observar padrdes de repetigio para i

e Encontrar 1" para qualquer natural 77

o incluirmos a possibilidade de

um numero ter o quadrado igual

SAIBI.\ MAIS a —1, estendemos o conjuntos

dos numeros reais e obtemos um conjunto que

Conhega um pouco da histéria e das mantém as mesmas propriedades em relagio as

r fabul matemati ~ - . -
dlescobads dlesse Bhulliso wmeinvine operagdes basicas e ainda ganhamos a solugao de

italiano Gerolamo Cardano no site htps:// varios problemas. Este topico é devotado somente

clube.spm.pt/news/5395. ao numero i. Aqui veremos que, embora ele
tenha sido definido apenas tendo em vista o seu
e quadrado, suas poténcias com outros expoentes
seguem padroes interessantes, de modo que o conjunto dos numeros complexos
serve para resolver problemas mesmo de grau maior que 2. Na verdade, os numeros
complexos comegaram a ganhar importancia na Matematica no século XVI, quando
o matematico italiano Gerolamo Cardano desenvolveu uma férmula para resolver
equagdes de terceiro grau e foi percebido que mesmo ali se tinha a necessidade de
um ndimero cujo quadrado fosse negativo.
Comecemos percebendo o seguinte:
i’ =1, vamos manter a propriedade dos reais, segundo a qual qualquer
numero, diferente de zero, elevado a 0 vale 1.

.1 . ~ . . 7 7.
i =i, como ndo poderia deixar de ser, qualquer ntimero elevado a 1 ¢ igual

a ele proprio.
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.2 . e~ e e e . . .
i" =—1, pela definicao inicial da unidade imaginaria.

O que acontece com i", para n natural maior que 2 pode ser observado se
levarmos em conta que as propriedades de potenciagdo sdo mantidas. Vejamos.

=3
1

i’.i' =(—1).i=—1, ou seja, mesmo se elevarmos a unidade imaginaria ao
cubo, ainda obteremos um nuimero complexo, com parte real O e parte imaginaria
—1.

i"=i"i"=(—1).(—1)=1, ou seja, podemos dizer que z = i é uma solugado
para o problema z* =1. Além disso, é importante notar que i* é o0 elemento neutro
para o produto. Continuemos:

¥ =i"i'=li=i i*=i{"i"=1(-1)=—1 dar um espago separando
i'=i'i’=1.(-i)=—i

Como se percebe, teremos repeticao da sequéncia i, -1, —i, 1, i, -1, ... Observe

como obter outras poténcias.

Exempro 1
Qual a parte imaginaria de 5+2i+i"?

Solugdo: Como sabemos que i‘=1, podemos fazer a divisio de 79 por 4 e

obter 79 = 4.19 + 3. Logo i~ =i*"" =i"i"..i'i =11..1¢0 =¢

=—1i. Logo,
5+42i+i” =542i+(—i)=5+1, que tem parte imaginaria igual a 1.

Geralmente, para qualquer n natural, podemos usar o algoritmo da divisao
por 4 e sabemos que existem numeros naturais g e r, com 0<r <4 tais que n =
4q +r.

i"=i""=(1")"1" =1%i" =i". Uma vez que os restos possiveis na divisio
por 4 sdo apenas 0, 1, 2 e 3, para identificar qual o valor de i", basta saber qual o

resto da divisao de n por 4 e lembrar:

i =1
.1 .
i =i
2

i —1
«3
i=-i
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ExEmprLo 2

Se desenvolvermos (1+1i)’, pelo bindomio de Newton, qual seré o sexto termo?

7
_ T-p ;p
Solugdo: O termo geral do desenvolvimento de (141)’ ¢é T, = 17707 e
ANS
) R 17755
quisermos o sexto termo, devemos fazer p = 5. Assim, {541 = 5 1 de onde

. .5 . e e~ s .
tiramos T, =21i", e como 5 deixa resto 1 na divisao por 4, temos i> = 1ie o sexto

termo vale T, = 21i.

ExemrLo 3

Determine o valor da somaS=1+i+1i +i’ +i* +...+17.

Solugdo: As parcelas formam uma progressao geométrica de razdo i, com primeiro

termo igual a 1. E simples verificar que a férmula para a soma dos n primeiros

~ i S = 4 (qn _1) .
termos de uma progressao geométrica ¥n = g1 vale mesmo para os nimeros
l(i501 —-1)
complexos. Assim, aplicando a =1,qg=ien=501, temos S = —1 € como
l —

i—1
501 deixa resto 1 na divisao por 4, " =ieS :ﬁ =1.

i—
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TﬁPICU 3 Operacoes elementares

¢ Simplificar expressdes numéricas envolvendo
numeros complexos

* Observar as propriedades das operagdes
aritméticas entre complexos

o topico anterior, comegamos a trabalhar com o nimero i, que nao
¢ um numero real. A principal propriedade desse numero é que
seu quadrado vale —1. Os nimeros complexos foram definidos
como as expressdes do tipo z = a + bi, em que a e b sdo numeros reais, chamadas
parte real e imaginaria de z, respectivamente. Essa maneira de escrever um nimero
complexo é chamada de forma algébrica, pois, como se vera adiante, ela é bem facil
de ser trabalhada quando quisermos realizar operagdes de soma ou multiplicagao
entre numeros complexos. Comecemos pela adig¢do. Considere os niimeros reais a,
b, ced:
zy=a+bi,z,=c+di=z +z,=a+c+(b+d)i
Ou seja, a parte real da soma de dois numeros complexos é a soma das partes
reais das parcelas, e a parte imaginaria da soma ¢ a soma das partes imaginarias.
Usando a distributividade da multiplicagdao em relagio a adi¢do bem como o fato
de i* = -1, podemos fazer:
z,-z, = (a+bi)-(c+di) = ac+adi+bci +bdi’ = ac —bd + (ad +bc)i .
Na prética, o resultado acima nao precisa ser memorizado. E mais razoavel que, ao

operar com nimeros complexos, o produto seja feito usando a propriedade distributiva.
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Exemrro 1
Para os numeros complexos z = 3 + 4i e w = 2 — 5i, temos

a)z+w=3+4i+2-5i=5-i
by zw=3+4i)(2-5i)=6-15i+8i —20i° =6—-7i +20=26—7i
c)z" =(3+4i)° =9+24i+16i> =9+24i —16 =7 +24i

Com essas defini¢des, é possivel verificar que a soma de niimeros complexos é comu-
tativa, associativa, possui elemento neutro (o mesmo dos niimeros reais) e todo elemento
possui inverso aditivo. Do mesmo modo, a multiplicagdo é comutativa, associativa, possui
elemento neutro (o mesmo dos niimeros reais) e ¢ distributiva em relacao a soma.

Quanto ao elemento inverso para a multiplicagdo, vejamos o seguinte:

Exempro 2
Dado o numero complexo z =3+4i, encontre um numero complexo v tal que

z-v=1.

Solugdo: Fazendo v =c+di, para os reais ¢ e d, devemos ter (3+4i)(c+di)=1,

o que resulta em

3c+3di+4ci+4di* =1
3c+(3d +4c)i—4d =1
3c—4d+(3d +4c)i=1

Como dois nimeros complexos sdo iguais apenas quando suas partes reais

sdo iguais, devemos ter 3¢ — 4d = 1. Analogamente, temos 3d + 4c = 0. O sistema

3c—4d =1 3 4
3d+4c=0 possui solu¢io ¢=— e d =——. Assim, o numero procurado
3 4. . 1 o
VZE—z—l. Como zv=1, podemos dizer que v=—, ou seja, o inverso
R , o 3 4.
multiplicativo do numero 3+4i é o nimero ——2—51 .

Geralmente, dado o numero complexo z =a+bi, o inverso multiplicativo
-1 . . -1 -1 .
de z, denotado por z , caso exista, é tal que z-z  =1. Fazendo z~ =c+di,

devemos ter:

(a+bi)-(c+di)=1
ac—bd +(ad +bc)i =1
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. ac—bd =1 S
0 que nos leva ao sistema , nas incoégnitas ¢ e d. Resolvendo-o,
bc+ad =0
a b
obtemos €= e ¢ =7 . Este método para determinar o inverso
a’+b’ a’+b’ P

7 2 2 z 2 2
de um numero complexo vale sempre quea” +b” = 0, mas sera a” +b” = 0 apenas
quando a = b = 0, ou seja, nos nimeros complexos, todo o numero diferente de

zero possui inverso multiplicativo. Podemos concluir que:

(1) Re(z) ( 1 j Im(z)
Re| —|= 5 > e Im| — |=- > >
z Re(z) +Im(z) w Re(z) +Im(z)

A expressdo Re(z)’ +Im(z)’, que é um numero real ndo negativo, é chamada
de norma do ntimero complexo z e sera revisitada em breve.

Vistas todas as propriedades citadas neste tépico, podemos dizer que, assim
como o conjunto dos nimeros reais, o conjunto dos niimeros complexos ¢ um corpo,
pois com as operagdes de soma e de produto valem:

1) Vz,weC,z+weC (fechamento em relagio a soma)
) VzeC,z+0=z2

2 elemento neutro para a soma)

3)VzeC,3welCiz+w=0 inverso aditivo)
5 VzeC,z-1=z2
6) VzeC—-{0},3weC;z-w=1

(
(

4) Vz,weC,z-weC (fechamento emrelagdoao produto)
(elemento neutro para o produto)
(

inverso multiplicativo)

Além das operagdes serem comutativas e associativas, ha a distributividade
do produto em relagdo a soma.

Para fixagdo da técnica, acompanhe o ultimo exemplo do tépico.

ExemrLo 3

Para os numeros complexos z=2—iew =3+ 2i, encontre Re(z + —j .
w

1 1
Solugdo: Uma vez que Re(z + —j = Re(z) +Re (—) , podemos encontrar
w w

R
diretamente Re(z):2 e Re(lj= ze(w) = 3 5 =i. Logo,
w) Re(w) +Im(w) 3°+2° 13

Re z+l :2+i:§.
w 13 13
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TGPICU 4 Conjugado e divisdo

OBJETIVOS

* Apresentar a nogdo de conjugado de um
nimero complexo
¢ Obter a forma algébrica da divisao de

nameros complexos

uando, no tépico anterior, obtivermos o inverso de um numero

1 Re(z)
complexo ndo nulo, teremos: Re| — |= 5 €
z Re(z) +Im(z)
1 Im(z
Im(—j = > ( ) >
z Re(z) +Im(z)
1 a-b
Ou seja, se z = a + bi, em que a e b sao niimeros reais, vale que ; = m. (0]

denominador dessa expressao foi definido como a norma do numero z e represen-
taremos por N(z). O numerador difere do ntimero z apenas pelo sinal da parte ima-
ginaria. Trocar o sinal da parte imaginaria de z gera um novo nimero complexo, a
que chamamos de conjugado de z e representamos por “Z barra”. Ou seja, definimos

z=a+bi=Z=a—bi

Exempro 1:

Os conjugados dos numeros complexos 3 + 4i, 7 — 2i e 9i sdo 3 —4i, 7+ 2ie
—9i, respectivamente.

A respeito dos numeros complexos, temos as seguintes propriedades, cujas

demonstragdes sdo diretas e servirdo como exercicio.
1) Re(z)=Re(z) ¢ Im(z)=—Im|(z)
2) z4z= 2-Re(z) e Z—;=2'Im(2)'i
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Jz+w=z+wezw=zw

4) z:z =N(z), que é um numero real nio negativo, de onde temos também

1 z

z N(Z).

Da ultima propriedade, vemos que, se multiplicarmos um nimero complexo
pelo seu conjugado, obteremos um ntimero real. Este processo sera ttil se quisermos
obter a divisdo de numeros complexos

Dados dois numeros complexos w e z, com z= 0, para obtermos a forma

w
algébrica da fragao o multiplicaremos numerador e denominador pelo conjugado

do denominador, ficando, assim, apenas o numerador com a unidade imaginaria.

w_ wz
Acompanhe: — =—=
z zz
ExempLO 2
2+3i
Encontrar a parte real de -
1+4i

2+43i 1—4i  2—8i+3i—12i’
Solugdo: Usando oartificio acima, podemos fazer 31 - 1131 !

14+4i 1—4i I +4°
_ 1475 Opserve que, no denominador, usamos diretamente a propriedade 4.
17
2+3i| 14
O resultado final nos permite afirmar, entao, que Re = —, ¢ ainda que
1+4i) 17

[2+3i] 5 .
Im = ——
1+ 4i 17

A norma de um nimero complexo foi definida como a soma dos quadrados de suas
partes real e imaginaria. Ou seja, dado o nimero complexo z = a + bi, em que a e b sdo
niimeros reais, a norma de z vale N(z)=a’ +b°, que ndo apenas ¢ um nuimero real
(0 que nos ajudou a encontrar a forma algébrica da divisio de dois niimeros complexos)

como também ndo é negativo. A norma de um nimero complexo satisfaz as seguintes

propriedades:
1) N(z)=N(z)
2) N(z.w) = N(z).N(W)
3) N(z)=0 se, e somente se, z =0
4) N(z)=z z
Exemplo 3

Determine a norma dos numeros complexos u =3 + 4i, v=2-7i, w=Tie
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Solugdo: Temos

N(u) =3’ 44’ =25, N(v)=2" +(—7)" =53, N(w)=7" =49 e N(z)=8" =64

Por dltimo, mas ndo menos importante, temos a defini¢do de mddulo de um
nimero complexo, que corresponde a raiz quadrada da norma. Dado um niimero

complexo z = a + bi, em que a e b sdo numeros reais, definimos:

|z|=Va®+b’
que ¢é equivalente a |z|2 =N(z).
O médulo de um ntimero complexo também é um numero real ndo negativo
e satisfaz as seguintes propriedades:
NESER
2)|z f=zz
3) | = el
z

——ﬂ com w=0
’

[l
5) [z w] <2 +|wl

Vale ressaltar que, quando z é um numero real, a defini¢ao acima coincide

w

com a defini¢do de médulo de um nimero real.

Exemrro 4

Determine o médulo dos numeros complexos u =3 + 4i, v=2-7i, w = 7i
ez=8.
Solugdo: Como ja calculamos a norma no exemplo anterior, basta que calculemos as

VZ\/E, w|l=7e|z|=28
| [wi 2|

suas respectivas raizes quadradas. Assim |u|=5,

ExempLo 5

Encontre um nimero complexo que tenha parte real igual a 4 e médulo igual
abs.
Solucdo: Devemos encontrar z tal que Re(z)=4 e |z|=5 e ||=5. Da primeira
igualdade, podemos escrever z = 4 + bi, para algum numero real b. Da segunda
igualdade, temos 4’ +b> =50 que resulta em 16 + b®> =25 e concluimos que b

vale 3 ou —3. Assim os numeros procurados sdo 4 + 3i e 4 — 3i.
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AU LA 5 NUmeros complexos |l

Olal

Como vocé ja observou na aula passada, pela simples insercao de um ndmero
cujo quadrado seja -1, mantendo as operacOes previamente definidas,
conseguimos um conjunto com uma grande riqueza de propriedades. Nesta
aula, continuaremos a falar sobre os numeros complexos, revisaremos algumas
definicbes e veremos como 0S numeros complexos € a geometria estdo
relacionados.

Aqui precisaremos conhecer algumas nocdes elementares de trigonometria e
de geometria analitica. Vamos ao trabalho, entéo.

Objetivos

e Apresentar outras definicdes que envolvem numeros complexos

e Relacionar numeros complexos a geometria analitica

e Simplificar, através da forma trigonométrica, problemas de potenciagéo e
radiciacdo em C

64 ‘ Matematica Basica Il




Tﬁ PI CU -l Pares ordenados
e vetores

* Apresentar uma nova forma de escrever numeros

complexos

* Comparar a reta real com o plano complexo
e Fornecer uma interpretagao geométrica para o

moédulo de um nimero complexo

a aula 4, definimos a unidade imaginaria i e os numeros

complexos como sendo as expressdes do tipo em que a e b

sdo numeros reais, chamados, respectivamente, de parte real e
parte imaginaria de z. Desta forma, um nimero complexo fica bem caracterizado
quando dele sabemos as partes reais e imaginarias. Por exemplo, o numero
complexo que tem parte real 8 e parte imaginaria —4 ¢ o numero 8 — 4i.

Isso quer dizer que cada numero complexo fica bem determinado a
partir de dois numeros reais. Considere a fun¢io ¢:C— RxR dada por
p(a+bi)=(a,b) . Podemosrelacionar nimeros complexos com pares ordenados
de numeros reais, sendo que a primeira coordenada ¢ a parte real e a segunda
coordenada € a parte imaginaria. Usando a imagem de cada nimero complexo

pela fungdo ¢, ganhamos uma nova forma de representa-lo.

S Exemrro 1

~— Os numeros complexos 2 + 3i, 4 — 5i, 8i e

10 tém imagens (2, 3), (4, —5), (0, 8) e (10, 0) pela
funcao ¢ .

Relembre oassunto de fun¢aosobrejetiva

Uma vez que afuncdo p ésobrejetiva e injetiva,
e injetiva acessando o site http://clubes. 9 cdo ) )

obmep.org.br/blog/sala—de—ajuda— €SSa assocClagao € biunivoca, isto quer dizer que cada

funcoes-injetividade-sobrejetividade-e- numero real corresponde a um, e somente um, par

bijetividade/ ordenado de numeros reais. Dessa forma, podemos

trabalhar tanto com a expressio a +bi quanto com o
|
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par ordenado (g, b) quando quisermos operar com um nimero complexo. A alternancia

entre as duas formas fica a cargo da fungdo ¢ e de sua inversa @ (a,b)=a+bi .
Por simplicidade, entdo, o nimero z = a+bi e o par p(z) =(a,b) serdo considerados
iguais.

Com isso, além da forma algébrica, ha a forma de par ordenado para representar

um numero complexo.

ExemprLo 2

Dados os numeros complexos z = (3, 2) e w = (4, —1), calcule z.w.

Solugdo: Os pares ordenados (3, 2) e (4, —1) sdo equivalentes, na forma algébrica, a
3 + 2i e 4 — i, respectivamente.

Dessa maneira, zw=(3+2i).(4—i)=12—3i+8i—2i*=14+5i, que é a
forma algébrica do par ordenado (14, 5). Podemos escrever (3, 2).(4, —1) = (14, 5).

Observe que o produto de pares ordenados, quando representam numeros
complexos, ndo ¢ feito “termo a termo”, ou seja, ndo vale (a,b).(c,d)=(ac,bd). O
correto é

(a,b).(c,d) = (a+bi).(c+di) = ac+ adi + bci + bdi’
=ac—bd +(bc+ ad)i =(ac—bd,bc+ad)

Como a cada par ordenado corresponde um ponto do plano cartesiano, podemos
também dizer que a cada niimero complexo corresponde um ponto do plano cartesiano,
e vice-versa. Ja que ficou estabelecido que a primeira coordenada é a parte real do
numero, o eixo das abscissas sera o eixo real. Analogamente, o eixo das ordenadas sera o
eixo imagindrio. Assim, o niimero complexo z = a + bi pode ser representados pelo par
ordenado (a, b) e pelo ponto correspondente no plano cartesiano, conforme a figura 1.

O ponto marcado no plano cartesiano, que corresponde a representagao
geométrica do par equivalente, é chamado de afixo z = a + bi do nimero complexo.
Os numeros reais tém parte imaginaria nula, ficando seus afixos sobre o eixo
horizontal. Equivalentemente, os nimeros imaginarios puros tém a parte real nula,
ficando seus afixos sobre o eixo vertical. Outra maneira de representar um numero

complexo z ¢ através de um vetor, com inicio na origem do plano e fim no afixo de z.
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Figura 1 — Forma algébrica(1), de par ordenado(2) e representagao

geométrica (3) de um ntimero complexo z

eixo
imaginario
o T ,Z
Z=a +bi z = (a,b)
a  eixo real
(1) (2) (3)
ExEmprLO 3

Represente geometricamente os numeros complexos w=4+3iev=-3+2i.

Solugao: Devemos marcar os pontos w = (4, 3) e v = (-3, 2) ¢, em seguida, tragar
vetores comegando na origem do plano e terminando nos pontos dados. Veja a

figura abaixo.

Figura 2 — Afixo e vetor correspondentes aos niimeros 4 + 3i e -3 + 2i.

Usando a formula para a distancia entre dois pontos do plano cartesiano, ou mesmo
utilizando diretamente o Teorema de Pitagoras, podemos calcular o comprimento do vetor

correspondente ao nimero z = @ + bi . Chamando tal comprimento de r, veja a figura 3.

Pela relagao do Teorema de Pitagoras, vale r*=a’+b* , de onde concluimos

que r=~a’+b* =|z

comprimento do vetor correspondente.

, ou seja, o médulo de um numero complexo representa o
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Figura 3 — Comprimento

O plano cartesiano, quando interpretado
como representagdo de numeros complexos,
¢ também chamado de plano complexo (pela
correspondéncia entre pontos do plano e
elementos de C), ou ainda de plano de Argand-
Gauss, em homenagem a dois matematicos, o
francés Jean Robert Argand (1768 - 1822) e
o alemdo Carl Friedrich Gauss (1777 - 1855),
pioneiros na

representagdo e na analise

geométrica dos nimeros complexos.

VOCE SABIA?

Carl Friedrich Gauss ¢é considerado
um dos maiores matematicos de todos
os tempos. Gauss teve a estatura de
Arquimedes e de Newton, e seus campos
de interesse excederam os de ambos.
Gauss contribuiu para todos os ramos da

Matematica e para a Teoria dos Numeros.
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SAIBA MAIS

Jean Robert Argand matematico amador
e contador sui¢o nascido em Genebra,
que estudou a representagao grafica dos
numeros complexos dando origem ao
diagrama elaborado depois por Cauchy
que o denominou de diagrama Wesswl-
Argant-Gauss.

https://www.13snhct.sbhc.org.br/
resources/anais/10/1349713128

ARQUIVO_Argand-GertSchubring.pdf


https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf
https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf
https://www.13snhct.sbhc.org.br/resources/anais/10/1349713128_ARQUIVO_Argand-GertSchubring.pdf

Tﬁ PI CU 2 Argumento e forma
trigonométrica

OBJETIVOS

e Definir argumento de um nimero complexo

* Relacionar argumento e médulo com a forma
algébrica

* Apresentar a forma trigonométrica de um nimero

complexo

o topico anterior, vimos que o médulo de um nuimero complexo é

a distancia do seu afixo a origem do plano de Argand-Gauss, o que

equivale ao comprimento do vetor correspondente. Porém o fato de
sabermos o médulo de um niimero ndo € o suficiente para caracteriza-lo, a menos em caso
direto de médulo igual a zero, pois sabemos que o tinico nimero complexo de médulo 0
¢é o proprio numero 0.

Dado um numero real r > 0, o conjunto de niimeros complexos que satisfazem a
relagdo |zl =r contém todos aqueles cujos afixos distam r unidades da origem, ou seja,
formam uma circunferéncia com centro na origem e raio r, sendo, portanto, infinitos.

O moédulo fornece apenas a distancia do afixo até a origem, ou o comprimento
do vetor equivalente, mas sabemos que, para que um vetor fique bem determinado,
além de seu comprimento, precisamos indicar-lhe uma dire¢do e um sentido. Dentre
as varias maneiras de indicar uma dire¢do, uma interessante e que iremos adotar, por
padronizagao, ¢ medir o angulo que o vetor faz com o eixo real positivo, contado no
sentido anti-horario. Tal angulo sera chamado de argumento do numero complexo. Na

figura 4, o argumento do nimero z = a + bi esta sendo representado pela letra grega 6.
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Figura 4 — Argumento de um nimero complexo

Exemplo 1
Os argumentos dos numeros complexos v = -2 + 3i e w = 2 — i estdo

assinalados na figura 5 pelas letras a e 3, respectivamente.

Vo 43

Figura 5 — Argumento dos numeros complexos Ve w.

Dessa feita, podemos localizar o afixo de um nimero complexo sabendo qual

o seu médulo e qual o seu argumento.

Exempro 2:
Determine a forma algébrica de um nimero complexo de médulo 2 e argumento T
Solugao: ’
Devemos encontrar nimeros reais a e b de acordo com o esquema da figura
6. No tridngulo retangulo com catetos de medidas a e b, conhecemos a medida da
hipotenusa (m6dulo do niimero) e um angulo interno (argumento), assim podemos

estabelecer as relagoes

COSﬂ. a
r_a
3 2%

= eobtemosa=1;

a
2
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Se€n—=7",logo —— = 5 obtemos b =+/3 . Portanto, o ntimero complexo

3 2 2

procurado tem a forma algébrica z =1+ NS

Figura 6 — Esquema de tridngulo retangulo

De modo geral, dado um nimero complexo z=a+ bi, com a e b reais, se a repre-
sentagdo geométrica de z tiver argumento 0 e moédulo r>o0, podemos, a partir da

figura 4, obter as seguintes relagdes:

a b
cos=— e senf =—
r r

As formulas acima nos permitem fazer uma relagdo entre a forma algébrica de
um numero complexo e o médulo e o argumento de sua representagdo geométrica.
Equivalentemente temos a = r.cos 0 e b = r.sen 0

A partir da forma algébrica z = a + bi e pela substitui¢do acima, chegamos a z = r.cos 0 +
r.sen 0.i. Assim, obtemos ainda a forma trigonométrica de um ntiimero complexo z = r.(cos 0 +

isen 0)

ExEmprLo 3

Encontre o médulo e o argumento do niimero complexo z = 2 + 2i.

Solugao: O médulo pode ser encontrado diretamente por r= v2° +2° = J8=22

V2 2 2

2
—=—e¢esenfl=——==—,
222 2 222 2

s
de onde temos @ = — . Podemos, entio, colocar o nimero z na forma trigonométrica

. Além disso, para o argumento 6, vale cosf =

z= 2\/5.(cosE + isenE) .
4 4

A forma trigonométrica, embora seja mais extensa, sera util especialmente no

produto, e consequentemente na potenciagao e na radiciagdo de numeros complexos.
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Ja sabemos que o moédulo é “compativel” com o produto, ou seja, se os nimeros complexos z
e w tiverem moédulos r e s, respectivamente, o médulo de z.w sera r.s.
Além disso, suponhamos que z e w tenham argumentos o e 3, respectivamente.

Suas formas trigonométricas serdo z = r.(cos O + isen 0) e w = s.(cos O + isen 0).
Fagamos o produto z.w:

z.w = [r(cos o + isena)].[s.(cos[3 + isen (3)]

z.w =r.s.(cosa + isena).(cos3 + isen (3)

z.w =r.s.(cos.cosP + icosa.senf + isen a.cosf +i’sen c.senB)

z.w = r.s(cos c.cos 3 — senav.sen( + i(cos a.sen 4 sena. cos 3))

z.w = r.s(cos(a + 3) + isen(a + 3))

Isso reforga o fato de que o moédulo de z.w vale r.s e fornece uma nova informacao:
para obter o argumento do produto de dois niimeros complexos, basta somar os argumentos
dos fatores.

Fazendo z=r.(cosO+isen 0), temos zZ=r.(cosO—isen O)mas como o cosseno ¢é
uma fungdo par e o seno ¢ uma fun¢do impar, podemos reescrever z = r.(cos(—0) + i.sen(—0)).
Como ja sabfamos, um nuimero complexo e seu conjugado tém o mesmo médulo. Agora concluimos

que os argumentos sao simétricos, como podera ser visto na figura 7.

Figura 7 — Interpretagao geomatrica do conjugado

Bl

Na aula passada, vimos que o inverso de um numero complexo pode ser

1 z 1 -

obtido por — = | |2 = | |2 -Z . Usando a forma trigonométrica, podemos colocar
z |z z
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l = Lz.r(cos 0—isen8) — l(cos(—6?) +isen(—6)
z r r

Desse modo, o inverso de um numero complexo nao nulo z tem médulo igual ao inverso
domédulo de z e argumento —0. Com base nisso, podemos ver como funciona a divisao.
Suponha que o numero complexo z tenha médulo r e argumento «, e o

ntmero complexo w tenha médulo s e argumento 3 :

- z.i = r(cosa +isen a).l(cos(—ﬁ) +isen(—03)) =
w w S
Z_ ﬁ(cos(a — ﬂ) +isen (o — ﬁ)) )
w s
ExemrLo 4

O argumento do numero complexo
3-—-3i

5 pode ser encontrado sem que a divisao
+i

seja efetuada. Para z = 3 — 3i, o argumento

Uma vez que angulos que diferem de

7 .
vale 1 enquanto que para w = V3 +i

multiplos inteiros de 27 geram o mesmo 4
valor de seno e de cosseno, um numero , T . .
0 argumento € —. Pelo que vimos acima, o
complexo pode ter varios argumentos 0 6
0 0 . z r T _ 197
,V + 2T, + 4T, etc. Durante o topico, argumento de — vale — - — = —.
w 4 6 12

calculamos o argumento principal, que

esta entre 0 e 2T.

complexos ¢é convertida em

soma quando avaliamos os GUARDE BEM 1SS0!

argumentos e a divisdo ¢

transformada em subtra(;?io dos (0] argumento pr1nc1pal € unicamente

definido para um ntiimero complexo nao
argumentos. Se denotarmos

por arg(z) o argumento do nulo, pois, caso contrario, o argumento

, , pode ser qualquer nimero real, uma vez
numero complexo z, é verdade

que o médulo ja traria a informagao da
que arg(z.w) = arg(z) + arg(w)

e arg(z/w) = arg(z) — arg(w).

nulidade, independente do que aparecer

nas func;ﬁes SE€Nno € Cosseno.

\ TOPICO 2 \ 73




74

TOPICO 3

Potenciacao e
radiciacdo em C

OBJETIVOS

n
* Obter uma férmula para Z , com n natural,
usando a forma trigonométrica
* Encontrar raizes n-ésimas de um numero

complexo

imos que a forma trigonométrica de um numero complexo

simplifica certos calculos, em especial em relagdo ao produto e ao

quociente. Usaremos essa “facilidade” para encontrar poténcias

de numeros complexos, uma vez que a forma algébrica, neste caso, nao se mostra

tdo eficiente.

Como consequéncia das propriedades sobre médulo e argumento, podemos

facilmente concluir que se o médulo de z vale r, entdo o médulo de z" vale r”,

para qualquer n natural. Além disso, como o argumento de um produto é a soma

dos argumentos dos fatores, podemos observar que

arg(z") = arg(z.z...z) = arg(z) + arg(z) + ... +- arg(z) = narg(z)

Isso quer dizer que se o argumento de z é 0, entdo o argumento de z" é n0.

Juntando essa informacao aquela sobre o médulo, concluimos que se

z=r.(cosO +isenl) = z" =r".(cosnb + isen no)

Exemrro 1

Calcule o valor de (1+ i)4 , inicialmente usando o bindmio de Newton e, em

seguida, usando a férmula acima.

Solugédo: Pela féormula do bindomio de Newton, temos

1+i) =1"+4.ri+6.1%" +4.14° +4.15 +4° +1" =14+4i—6—4i+1=—4
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Para usar a férmula acima, precisamos encontrar o médulo r =+/1"+1° = J2,

1 2 1 2

T
além do cos=—==— ¢ senf =—=——. Logo o argumento vale 0 =— . Dessa
22 22 4

forma:

T T
1+1i)' = (\/5)4.(cos4.z + i.sen4.z) =4(cosT +isenn)=4.(—1+1i.0)=—4
Pelo exemplo 1, podemos achar que o método de Newton ¢é mais rapido, mas

a aparente vantagem do desenvolvimento se deve ao fato de que comegamos com o
numero na forma algébrica e tivemos o trabalho de encontrar seu argumento e seu
modulo. Se ja tivéssemos a forma trigonométrica, isso ndo precisaria ser feito. Além
disso, mesmo este trabalho seria compensado se o expoente fosse muito grande. Se
a mesma questao fosse feita para n = 10, o processo com a forma trigonométrica
seria o mesmo, enquanto o desenvolvimento com o binémio de Newton teria onze

parcelas.

ExempLo 2

, 7T 18 .
Se z tem moédulo 1 e argumento —, resulta que z  tem moédulo
12

m 3T 37T 3T

¥ =1e argumento 18.— = — . Assim, P 1.(cos—+isen—)=1.(0—i)=—i
12 2 2 2

ExEmrLo 3

’ . 6 7
Mostre que o niimero (\/5 — z) é real.

Solugdo: Usar o bindmio de Newton aqui ndo ¢ muito direto . Calculando antes o médulo

. 3 1
de ZZ\/g—l, obtemos r = 2. Para o argumento, valem 0059:7 e sen9:—5,

117 , 117 .
ou seja, f = ——. Assim, z° tem médulo 2° e argumento 6.—— = 11, de onde tiramos
6 6

que o argumento principal de (ﬁ - z')6 ¢ T, o seu vetor correspondente ¢ horizontal
e podemos dizer que ¢ um numero real. Se formos com a conta “até o fim”, obteremos
<\/§ - i)6 = 2°(cos T + i.senm) = 64.(— 1+ i.0) = —64, ou seja, um nimero real negativo.
A férmula z" =r"(cosnf +isen n0) é também conhecida como primeira
férmula de De Moivre, em homenagem ao matematico francés Abraham de Moivre
(1667 - 1754) e vale para qualquer 7 inteiro.
Agora que ja sabemos como encontrar poténcias de nimeros complexos,

podemos pensar no problema de encontrar raizes para eles.
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ExempLro 4

Encontre todos os numeros complexos z tais
que 2’ =1.
Solugdo: Como vimos anteriormente, a forma
trigonométrica nos permite trabalhar mais
diretamentecompoténciase, porisso,faremosusodela
pararesolver este problema. Se z = r(cos0 + i.sen 0)
, temos z’ =r’(cos30+isen 30). Dessa forma,
temos a equagdor’(cos30+isen 30)=1. De
onde tiramos que o moédulo de z deve ser 1.
Quanto ao argumento, devemos ter cos30=1
e sen 30=0, o que equivale a 30=2km, para
qualquer numero inteiro k. Fazendo k = 0,

temos 0=0 e z = 1.(cos 0 + i.sen 0) = 1, a raiz

real do problema. Com k 1, temos 0=—"—

Moivre  abriu

caminho para o

desenvolvimento da Geometria Analitica
e a Teoria de Probabilidade. Ele publicou
A Doutrina de Chance em 1718. A
definicao de independéncia estatistica
aparece neste livro junto com muitos
problemas com dados e outros jogos.
Ele também investigou estatisticas de
mortalidade e a fundag¢ao da teoria de
anuidades. Para saber mais sobre este
matamatico francés, acesse o site

http://www.somatematica.com.br/

3
2T 2T 1 3 i i
e z=1.(cos—+isen —)=——+ £i ) biograf/moivre.php
3 3 2 2

, 4T |

Aplicando k& = 2, temos 0= 5 ¢
4T 4T 1 3
z=1.(cos—+isen —)=——— £i . Fazendo k = 3, temos
3 3 2 2

6T S

0= Y =2Te voltamos ao primeiro valor encontrado. Com &k = 5,

voltamos ao segundo valor encontrado e assim sucessivamente, de modo que, tendo

. . . ~ 3 ~
COmo universo o conjunto dos numeros complexos, a €equagao z = 1 solugao

1
LA P N C
2 2 2 2

O procedimento realizado no exemplo 4 pode ser generalizado mesmo que o

resultado da poténcia ndo seja um numero real. O que devemos fazer é apenas obter a

forma trigonométrica, comparar os moédulos e encontrar os argumentos convenientes,

a partir de uma equagao com as fungdes seno e cosseno. Consideremos o seguinte:

PROBLEMA GERAL

Dado nimero complexo w e o numero natural n, encontre todos os numeros

complexos z tais que z" =w.
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O caso w = 0 é imediato, pois z" =0 se, e somente se, z = 0. Consideraremos
a partir daqui w=0 em sua forma trigonométrica w =r.(cos0+isen 0). Se
z=s.(cosa +isen o), tem-se z" =s".(cosna +isen na). Para os numeros reais
positivos r e s, obtemos a equagao real s"=r, de ondes= 3/; a raiz n-ésima real
positiva do nimero r. Em relagdo a nae 0, sabemos que eles devem ter mesmo

seno e mesmo cosseno, diferindo, portanto, de multiplos inteiros de 27, ou seja,

0 + 2km

na =0 +2k7 , de onde concluimos oy =-————, em que k varia nos ntiimeros
n

inteiros, o que nos levaria a pensar que a solugdo para o problema tem infinitos

elementos. Porém sempre que dois inteiros diferirem por um multiplo de 7, os

0  2km
argumentos & = — +—— divergirdo por multiplos inteiros de 2 7, nao resultando
n n

em numeros complexos diferentes. Assim, vamos considerar apenas os valores k =
0,1, 2, ..., n— 1, resultando nas 7 solugdes para o problema. Resumindo: se w =

r.(cos 8 +i. sen 0), ha n nimeros complexos z tais que z” = w. Sio eles

0 21 0 21
z, = %.(COS(——i—ﬂ)—f— i.sen(——i—ﬂ)) ,parak=0,1,2, .., n—1.
n n n n

A expressao acima é conhecida como segunda férmula de De Moivre.

EXEMPLO 5

. ’ . 6
Determine todos os nimeros complexos z tais que z" = 8.

Solucao: Veja que 8 tem mdédulo 8 e argumento 0, assim suas “raizes sextas” serdao do

0 2k 0 2k
tipo z, = Q/g.(cos(g—l—%) +i.sen (E—FTW)) ,parak=0,1, 2, ..., 5. Simplificando

km km
um pouco mais antes usar os valores de k, temos z, :\/E.(cos——l—i.sen —).
3 3

Acompanbhe:

Para k = 0, temosz, = \/E.(cosO +isen0) = V2.

T T
Para k =1, temos z, = x/z.(cos;—l— i.sen;) = \/E(

4T 4T \/E(—l—lﬁ) \/E \/g

Para k = 4, temos z, = ﬁ.(cosT—{— i.senT) =

LI AR CNR CR LY

5T
Para k = 5, temos z, = \/E.(cos? + i.sen?) =
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Como todas as solugdes de z" = w possuem o mesmo modulo, seus afixos
estdo a mesma distancia da origem, contidos em uma circunferéncia de raio

r. Além disso, os argumentos formam uma progressdo aritmética de primeiro

0 27
termo — e razdo — . Isso quer dizer que eles estdo igualmente espagados nessa
n n

circunferéncia sendo, portanto, os vértices de um poligono regular de 7 lados

inscrito na circunferéncia de centro na origem e raio r (para n > 2). Por exemplo,
27T
as solugdes de z> = 1 possuem todas moédulo 1 e argumentos distantes - 0 que

caracteriza um pentagono regular.

Uma vez que a solugdo da equagdo z" = w possui n elementos, o simbolo {/w
, para w complexo, denota um conjunto e ndo apenas um numero. De forma que, por

1 3.1 3.

exemplo, no conjunto dos nimeros complexos, Q/I =3l,——+—i,————i
2 2 2 2
Nesse sentido, ha de se tomar cuidado com o simbolo de raiz, pois ele nao funciona
da mesma forma que nos nimeros reais. Do contrario, poderiamos obter resultados
.2 ..
bem estranhos, como —1=i"=ii=+~—-1~N—-1=(.—1).(=1)= VI=1. 0 erro
aqui foi afirmar que i =+/—1, enquanto o primeiro ¢ um nimero e o segundo é um

conjunto. Assim, mesmo que definissemos i =+/—1, essa convengao nio estaria de

acordo com as propriedades com radicais, como se vé na expressao acima.
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AULA 6 Polinbmios |

Ola!

Vamos continuar 0 nosso estudo, agora abordando um assunto novo, mas
que esta fortemente ligado aos numeros complexos: os polinémios. Em linhas
gerais, uma funcao ¢é dita polinomial quando o resultado for obtido a partir da
variavel através de uma sequéncia finita de operacdes algébricas (multiplicacoes e
somas). Ja conhecemos 0s casos mais simples, que sao as “funcdes de primeiro
e segundo graus” e aqui generalizaremos 0 caso para qualquer expoente natural
e para coeficientes complexos.

Objetivos

e Fornecer os fundamentos basicos para o estudo de polinbmios
e QObter as propriedades sobre as operacdes elementares




Tﬁ PI CU -l Definicdes Iniciais

* Definir fungao polinomial
* Observar critérios de identidade de

polinémios e independéncia da variavel

* Obter a soma dos coeficientes

izemos que um mondmio na variavel x é uma expressao do tipo
M(x) = ax", em que o nimero complexo a é chamado de coeficiente
numérico ou simplesmente coeficiente do mondémio e n ¢ um
numero natural. O grau do monémio ¢ definido como 7, se a # 0 e nao ¢ definido,

caso contrario.

Exempro 1

A(y)=4y’, é um mondmio de grau 5 na variavel y

B(x)= 10x"> é um mondmio na variavel x se n >3

C(z) = (b—2)z’ é um mondmio de grau 3 na variavel z, para qualquer valor de b = 2

D(w)=2i ¢ um monomio de grau 0 na variavel w

E(t)=0¢’ ¢ um mondmio na variavel ¢, sem grau definido.

Um monomio pode ter mais de uma variavel e, caso o seu coeficiente seja nao
nulo, o grau ¢é definido como a soma dos coeficientes das variaveis, de modo que
4%’ y’z é um mondmio de grau 6. Igualmente poderemos considerar casos nos quais
os coeficientes sdao nimeros de um conjunto especifico, com estruturas algébricas
particulares. Nosso estudo, entretanto, se restringira aos termos com apenas uma
variavel e com coeficientes complexos (lembre-se bem de que os niimeros reais sao
complexos). Fungdes com mais de uma variavel ou com coeficientes nao complexos
serdo assunto de disciplinas posteriores.

Um polindmio na variavel x é uma soma de uma quantidade finita de

mondmios em x, ou seja, uma fungio p C— C ¢ dita polinomial quando ¢é
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do tipo p(x)=ax" +a, x" +..+ax +a,, em que os coeficientes a,,...,q,,q,
sdo numeros complexos. Além disso, para o valor especifico k, o valor numérico

de p em k é simplesmente f(k).

ExempLo 2A
A fungdo g(x)=x>—3x+2 é um polindmio com a, =1, a, =—3 ea, =2.
Uma vez que g(2)=2"—3.2+2=4, podemos dizer que o valor numérico de g(x)

no 2 ¢ 4. Analogamente, podemos dizer que g(0) = 2 e g(1) = 0.

Exempro 2B
A fungdo h(x)=x"+4 ¢é um polindmio com a, =1, q, =0 ea, =4 . Para este

polindmio, vale A(3) = 13, h(i) =3 e h(1 + i) =4 + 2i.

ExEmMPLO 2C

1
A fungao g(x)= Jx +—=—cosx ndo é um polinémio.

Jx

Dizemos que o nimero a ¢ uma raiz do polinomio p(x), ou simplesmente de

p, quando seu valor numérico correspondente € 0, ou seja, p(a) = 0. Para o exemplo
2a, o numero 1 é uma raiz de g(x) e é imediato verificar que 2i é uma raiz de h(x).
Encontrar raizes para polinémios foi um dos motivos para a extensdo que comegou
nos numeros naturais e levou aos complexos, como vimos nas aulas anteriores.

Os valores numéricos para x = 0 e para x = 1 sdo notaveis, pois

p(0)=a,, o termo constantes (ou independente) do polinémio.

p(l)=a,+a,  +..+a +a,, asomados coeficientes.
Um polindmio ¢ dito identicamente nulo (representamos por p = 0) quando

todos os numeros complexos forem suas raizes, ou seja p(x) =0,V x e C. Veremos
mais tarde que, se um dos coeficientes de um polindmio for diferente de zero, entdo a
quantidade de raizes € finita. Assim, podemos concluir que, para que um polindmio seja

identicamente nulo, necessariamente todos os seus coeficientes devem ser iguais a 0.

ExEmprLO 3
Determine os valores reais de a, b e ¢ para que o polindmio

x)=ax’ +3x —bx + 4c + 2 seja identicamente nulo.
p ]
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Solucdo: Podemos reescrever p(x)=ax’+(3—b)x+4c+2, mas, para que ele
seja identicamente nulo, devemos tera =0, b =3 ec = 2.

Analogamente, dizemos que dois polindmios sdo idénticos (ou iguais) quando
eles assumirem valores numéricos iguais para o mesmo valor da variavel. Isso

somente é possivel quando os coeficientes correspondentes sdo iguais.

Exempro 4

Para que os polindmiosx’ —2x+c eax’ +bx’ +dx+3 sejam idénticos,
devemostera=1,b=0,c=3ed=-2.

O grau de um polinémio nao identicamente nulo é definido como o maior
grau das suas parcelas. Equivalentemente, o grau é o maior expoente da variavel
que possui coeficiente diferente de zero. Denotamos o grau do polinémio p(x) por
gr(p) ou O p.

op=n<a,#0ea =0sek>n

ExempLo 5
O polinémio f(x)=ax’+bx+c, com a = 0 tem grau 2 e o polindmio

g(¥)=3x"—x’ tem grau 3, enquanto o polinémio h(x) = 4 tem grau 0.

OBSERVACOES
1. Nao ¢ definido grau para o polinémio identicamente nulo.
2.Se Op=0oup = 0, dizemos que o polindmio é constante ou independente de x.
3. O coeficiente do termo de maior grau é chamado de coeficiente lider e, no
caso em que ele for igual a 1, dizemos que o polinémio é monico.

4. Um polindmio de grau n tem no maximo n + 1 mondémios nao nulos.

O conjunto de todos os polindmios na variavel x e com coeficientes complexos pode
ser representado por C [x] . Se quisermos restringir-nos a polindomios com coeficientes

reais, podemos falar de R [x] e assim analogamente com qualquer conjunto numérico.

Interpretando os niimeros complexos como polindémios constantes, podemos dizer
que CcC [x] . Com essas nogdes iniciais, podemos passar para o estudo das operagdes

entre polindmios, no qual veremos que C [x] tem uma estrutura semelhante a Z no que

diz respeito ao fechamento da soma e da multiplicagdo e do processo de divisao.
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5 Operacoes entre
TDPICU 2 polinbmios

OBJETIVOS

e Verificar como as operagdes elementares se
processam entre polinémios

* Analisar o grau dos resultados

* Verificar o fechamento de (C[x] em relagdo

a soma e ao produto

efinimos C[x] como o conjunto de polinomios na

variavel x e com coeficientes complexos. Ou seja, se

p € C[x], existem numeros complexos (coeficientes)

a, .. a, a, tais que p(x)=ax"+a, x" "' +..+ax+a,.

Neste topico, veremos como realizar operagdes entre polinémios. De maneira bem

simplista, vamos usar a propriedade distributiva da multiplicagdo em relagdo a
soma e o que conhecemos sobre poténcias.

Inicialmente, temos que a soma de dois polinomios ¢é feita termo a termo, apenas

com o agrupamento de termos de mesmo grau. Com esta definicao, o resultado da soma

de dois polindomios é um polinémio. A soma ¢ uma operagdo comutativa, associativa

e com existéncia de elemento neutro, o polinémio identicamente nulo, e de elemento

inverso para qualquer polinémio, o que caracteriza C [x] como um grupo aditivo.

Exemrro 1
Dados os polinémios p(x)=3x" —7, q(x)=x+3 e r(x)=2x-3x", determine p
+ q, q +re pr + 7.
Solucao:
pHq=3x"—7+(x+3)=3x"+x—4
q+r=x+3+(2x-3x)=—-3x"+3x+3
p+r=3x"—74+(2x-3x")=2x+7
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Como pode ser percebido no exemplo acima, podemos ter dois polinémios
de grau 2, cuja soma tem grau 1, bastando para isso que os coeficientes lideres dos
dois polinomios sejam simétricos. Pode acontecer que a soma de dois polindmios
nao nulos gere o polindmio identicamente nulo. O que nunca pode acontecer ¢ que
o resultado da soma de polindmios tenha grau maior do que o maximo do grau das

parcelas. Resumindo:

I(p +q) <max{0p+0q}

A multiplicagdo de polindmios sera feita de modo a manter a distributividade

do produto em relagio a soma e o fato base (ax™).(bx")=abx""".
Exempro 2

Desenvolva (3x” —2x +1).(4x —8).

Solucio: (3x* —2x+1).(4x —8)=12x" —24x" —8x” +16x+ 4x—8
=12x" —32x’ +20x" +16x —8
Com a multiplicagdo definida dessa forma, (C[x] ¢ fechado em relagao ao
produto, a multiplicagdo de polindmios é comutativa, associativa e possui elemento

neutro, o polindmio p(x) = 1. Dizemos, por isso e pelo visto em relacdo a adigao, que

C [x] ¢ uma estrutura algébrica chamada anel comutativo com unidade.

No exemplo acima, o grau do resultado foi igual a soma dos graus dos
fatores. Caso um dos fatores fosse o polindmio identicamente nulo, o resultado
seria, também, identicamente nulo, caso em que nao fazemos estudo do grau. Se os
graus de p e g estiverem definidos, o grau de p.q seria igual a soma dos graus de p
€ g. Ou seja:

d(p-q)=09p+9q

Exempro 3

O polindmio p(x)=(3x +5).(2x —4).(x" + x +2) temgrau3 + 1 +4=28. Além
disso, nao precisamos fazer o desenvolvimento para saber o termo constante e a soma dos
coeficientes, pois eles valem p(0) e p(1), respectivamente. Temos p(0) = (3.0°> + 5)(2.0 — 4)
(0°+0+2)=5(-4)2=-40ep(1)= (3.1 + 5)2.1 —4)(1* + 1 + 2) = 8.(-2).4 = —64.

ExemrLo 4

Dados p(x’ 4 3x —4), encontre um polindmio g(x) tal que p(x) = g(x).(x — 1).

Solugio: Inicialmente, devemos ter 8p =90q+0kx-1) = 3=09q+1, de
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onde concluimos que o grau de g ¢ 2 e podemos escrever g(x) = ax” + bx + ¢, com
coeficientes a, b e ¢ a determinar. Fagamos:

%’ +3x—4=g(x).(x —1)=(ax’ + bx +¢).(x —1)

ax’ +ax’ +bx* —bx+cx—c=

ax’ +(—a+b)x* +(—b+c)x—c

Para que os polinomios sejam idénticos, devemos ter a = 1, —a + b = 0 (de
onde tiramos b = 1), —=b + ¢ = 3 (de onde tiramos ¢ = 4) e, por ultimo, —¢ = —4,
que corrobora com o determinado. Assim, obtemos g(x) = x” + x + 4 . Desse modo,
3
X +3x—4
podemos dizer que 1 =x"+x+4.
x—

O exemplo acima sugere um modo de fazer a divisdo entre dois

polinémios, mas nem sempre ela é possivel. Um caso bem simples que ilustra

esse fato é a busca por inverso multiplicativo.

ExXEMPLO 5

Encontre o inverso multiplicativo do polindmio p(x)=x".

Solugdo: Devemos encontrar um polindmio g(x) tal que p(x).q(x) = 1. Os polinémios
constantes tém grau 0, logo Op + ¢ =0 = 2+ 0 ¢ = 0, mas como o grau de um

polindmio é um nuimero natural, sabemos que tal g(x) nao existe.

ExeEmpLO 6:
Dados p(x)=x" 4 2x + 4, encontre um polinémio g(x) tal que p(x) = g(x).(x
+1).

Solugado: Primeiro, uma investigagdo a respeito do grau de g nos levaa dp = 0
g+ Od(x+1) = 2= 0q + 1, logo q deve ter grau 1, sendo da forma g(x) = ax
+ b. Comparemos p(x) =x"+2x+4=(ax+b).(x +1)=ax’ +ax+bx+b, que
resultaria nas equagao a = 1, a + b = 2 e b = 4, que nao podem ser satisfeitas
simultaneamente, impossibilitando, assim, a existéncia de um g(x) coma propriedade

procurada.

Assim, em C [x] nem sempre a divisdo é possivel, mas podemos pensar em
algo semelhante ao que acontece com numeros inteiros, o que sera feito no topico

seguinte.
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TﬁPICU 3 Divisao e o teorema
do resto

OBJETIVOS

* Estabelecer relagdes entre a divisao de
polindmios e a divisdo de inteiros

e Verificar critérios de divisibilidade

* Analisar as consequéncias do Teorema do
Resto

a sabemos o que ¢ um polinémio e como as operagdes de soma e produto se

processam em C[x]. Também vimos que nem sempre a divisdo é possivel,

ou seja, dados os polindomios A(x) e B(x), nem sempre € possivel encontrar
um polinomio g € C[x] tal que A(x) = B(x).q(x). Por isso o conjunto dos polinémios e o
conjunto dos ntimeros inteiros sao parecidos. Por causa disso, podemos proceder como na
divisao de ntimeros inteiros, ou seja, dividir A(x), chamado de dividendo, por B(x), o divisor,
¢ determinar polinémios ¢(x) e 1(x), chamados, respectivamente, de quociente e resto da
divisao, tais que

A() = B(x).q(x) + r(x)

Com o intuito de que o quociente e o resto sejam unicamente
determinados nos numeros inteiros, exigimos que o resto seja
menor que o moédulo do divisor, uma maneira de “comparar”
polindémios ¢é através do grau, isto ¢é, queremos Or<O0Bour=0.
Aqui podemos usar a mesma terminologia da divisdo de inteiros (divisdo exata,
divisivel por, divisor, multiplo).

Vale notar que, se o dividendo for identicamente nulo ou tiver grau
menor que o divisor, a divisdo ¢é feita de maneira imediata, sendo o quociente
identicamente nulo e o resto igual ao préprio divisor. Assim nos ateremos aos casos
em que o grau do dividendo é maior ou igual ao do divisor. Considerando, entao,
OA> 0B e Or<0Bour=0, para que a igualdade A(x) = B(x).q(x) + r(x) ocorra,
devemos ter JA=0(B.q+r)=0(B.q)=0B+0q, ou seja, a relagdo entre os graus dos
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fatores nos leva a dizer que o grau do quociente é igual ao grau do dividendo

menos o grau do divisor. Vejamos uma maneira de proceder.

Exemrro 1

Encontre o quociente e o resto da divisio de f(x)=x" —4x+2 por g(x) = x + 1.

Solugdo: Devemos encontrar polindmios g e r tais que f = g.g + r. Como 0f = 3
e 0g=1,énecessarioter 0q= Jf— dg=2,ouseja, q(x)=ax’ +bx+c,e dr<l,
sendo, portanto, constante, fagamos r(x) = d. Nosso trabalho, agora, é encontrar os

numeros a, b e ¢ na igualdade de polinomios:

f(x) = 8(*)q(x) + r(x)

= (x+1).(ax’ +bx+c)+d

=ax’ +bx’ +cx+ax’ +bx+c+d
x’—dx+2=ax’ +(b+c)x* +(b+c)x+c+d

A igualdade se verifica quando os coeficientes correspondentes sdo iguais,
ou seja:

a=1

b+ a =0, de onde podemos concluir que b = -1

c + b =—4, de onde podemos concluir que ¢ = -3

¢+ d =2, de onde podemos concluir que d = 5.

' O quociente ¢, desse modo, g(x)=x" —x—3

—
SAIBA MAIS e o resto é r(x) = 5. Podemos, entdo, escrever

X' —4x+2=(x+1).(x —x—3)+5.

No site:https://educacao.uol.com.br/ 0 método empregado no exemplo 1 ¢

biografias/rene-descartes.htmvocé , ,
& / chamado de método de Descartes ou método dos
encontrara mais informagdes sobre a vida ) ) ) .
coeficientes a determinar. Vamos usa-lo mais uma
e obra do matematico René Descartes. )
vez no exemplo abaixo:

L
ExempLo 2
Determine o valor real de k para que o polindmio A(x)=x"—6x+k seja

divisivel por B(x) = x — 1.
Solugdo:Paraque Asejadivisivel por B, orestodeveseridenticamentenulo, ouseja,
deveexistirumpolindmiogtalque A= B.q.Umestudosobreograunosfornece 0 g=

0 A— 0 B=3—-1=2.Devemexistirnumerosa, b e c para que q(x) =ax>+bx+c

satisfacga a relagao
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x> —6x+k=(x—1).(ax* +bx+c)
—ax’ +bx* +cex—ax’ —bx—c

=ax’ +(b—a)x* +(c—b)x—c

Se compararmos os coeficientes correspondentes, teremos

a=1

b—a =0, de onde tiramos b = 1

c¢—b =-6, de onde tiramos ¢ = —5 e por ultimo, € necessario que k =—, ou seja, k = 5.

Outro método para determinar o quociente e o resto na divisao de polinomios
¢ o método de chaves, semelhante a0 método empregado na divisio de nimeros
inteiros com muitos algarismos, comegando por dividir apenas os termos de maior

grau e diminuindo o grau do dividendo. Acompanhe:

Exempro 3

Dividir, usando o método de chaves, o polinémio 3x’ —2x*+x+1 por
x'—x+3.
Solugao: Primeiro posicionamos o dividendo e o divisor como se fossem niimeros

inteiros de acordo com o esquema:

30 = 2x% +x+1 X —x+3

Como o grau do quociente deve ser 1, o seu primeiro termo é da forma ax. Para
determinar o valor de g, dividimos os coeficientes lideres 3/1 = 1. Assim devemos colocar
3x no espago reservado ao quociente, fazer o produto pelo divisor (3x.(x* —x + 3) = 3%’ —

3x* + 9x) e colocar o resultado logo abaixo do dividendo, diminuindo-o. Veja:

3x° = 2x% +x+1 x2—x+3
—(3x” =3x” +9x) 3x
x—8x+1

. 2 7 .
Aqui obtemos x° —8x+1, que é chamado resto parcial. Como o grau do
resto parcial ndo é menor que o grau do divisor, o processo deve ser repetido. O

proximo termo do quociente deve ser 1. Repetindo o processo, obtemos:
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300 - 2x% +x+1 ‘ X’ —x+3

—(3x” =3x” +9x) 3x+1

x*—8x+1

—(x—x+3)

—Tx-2

Como o resto parcial obtido tem grau menor que o do divisor, a divisao ¢

encerrada e obtemos g(x) = 3x + 1 e r(x) = —7x — 2.

ExemrLO 4

Veja como fica, pelo método de chaves, a divisdo do exemplo 1:

X —4x+2 ‘ x+1

—(x34-x2)

2
x —x-3

—x* —4x+2
—(—=x* —x)

—3x+2

—(—3x + 2)

5

Naturalmente, obtivemos o mesmo resto e o0 mesmo quociente.

A partir de agora, vamos trabalhar com o casono qual o divisor é daforma x—a,
ou seja, um polindmio monico de primeiro grau. Se o polindémio p(x), de graun > 1,
for dividido por x — a, sabemos que o quociente tem grau n — 1 e o resto tem grau
0 ou ¢ identicamente nulo, ou seja, o resto € constante. Por exemplo, se dividirmos
p(x) = x*+ 2 por x — 1, o quociente é x> + x + 1 e o resto ¢ 3, que ¢ o mesmo valor

de p(1). Essa aparente coincidéncia é explicada pelo Teorema do Resto, que segue:
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Teorema do Resto: Na divisio do polindmio p(X) por X — a, o resto vale p(a).

Demonstragio: O quociente g(X) e oresto7(x) dadivisdo de p(x) por x—a satis-

fazemaigualdadep(x)=g(x).(x—a)+r(x). O valor numéricodep(x) paraa vale

p(a)=q(a)-(a—a)+r(a)=r(a), mas,comoorestodeveserconstanteer(a)=p(a),

tem-se 7(x) = p(a) para qualquer ntimero complexo a.

Como pode ser verificado no exemplo 4, quando dividimos o polinémio p

p(x)=x" —4x+2por x + 1, obtivemos resto igual a 5 = p(-1), ja que

x+1=x-(-1).

ExeEmMPLO 5
Determine a soma dos coeficientes do

quociente da divisdo de x” +32 por x — 2.

Solugdo: O valor numérico de x° + 32 para x
=2 vale 64 ¢, de acordo com o teorema, esse € o
valor do resto. Assim, podemos escrever
x’ +32=gq(x)(x—2)+64

Fazendo x = 1 na expressdo acima,
obtemos 1’ + 32 = ¢g(1)(1 — 2) + 64, de onde
obtemos g(1) =31, que é a soma dos coeficientes,
conforme visto no tépico 1. O fato pode ser
confirmado pela divisio direta, mas fazer a
divisdo pelo método das chaves ou pelo método
de Descartes com um dividendo de grau 5 ¢
bem trabalhoso.

Como consequéncia direta do Teorema do
Resto, ha um resultado conhecido como Teorema

de D’Alembert. Assim, “um polindmio p(x) ¢é

o

Jean Le Rond D’Alembert nasceu no
dia 17 de novembro em Paris. Ainda
pequeno, foi abandonado na igreja de
St. Jean Baptiste le Rond localizada
perto de Notre Dame. Recebeu o mesmo
nome do local onde foi encontrado - Le
Rond - e D’ Alembert, seu sobrenome, foi
acrescentado mais tarde quando iniciou
seus estudos. Mais informacgdes no
site:  http://ecalculo.if.usp.br/historia/

dalembert.htm

divisivel por x — a se, e somente se, p(a) = 0”. Isso ¢ valido porque, se a divisdo ¢é exata,

o resto vale O e, dessa forma, a € raiz de p. Reciprocamente, se a € raiz do polinomio, o

resto € 0 e a divisdo € exata.
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ExemprLo 6
Determine os valores reais de a e b para que o polinomio p(x) = x* — 3x*> + ax +

b seja divisivel por g(x) = x> — 3x + 2.

Solugao: Como g(x) é um polindmio ménico do segundo grau, podemos encontrar
suas raizes facilmente. Sdo elas 1 e 2, e ele pode ser escrito como g(x) = (x — 1)(x
— 2). Assim, ser divisivel por g(x) ¢é ser divisivel simultaneamente por x — 1 e por
x — 2. Pelo teorema de D’ Alembert, devemos ter p(1) = p(2) = 0, mas:
p()=0=>1"-31+al+b=a+b-2=0=a+b=2
p(2)=0=2"-32"+a2+b=a+b+20=0= 2a+b=-20

Para que as duas equagdes acima sejam satisfeitas, € necessario que a =—22 e b = 24.

ExemrpLo 7:

Obtenha um polindmio moénico de segundo grau que seja divisivel por x — 3
e cujos restos nas divisdes por x — 2 e x + 3 sdo iguais.

Solugio:

Um polindmio monico de segundo grau é da forma p(x) = x*> + bx + ¢, com
b e c numeros complexos. O resto da divisdiode p porx —2ép(2)=4+2b+ceo
resto da divisdo de p por x + 3 é p(-3) = 9 — 3b + c. Assim, temos a igualdade 4 +
2b + ¢ =9-3b + ¢, de onde concluimos que b vale 1. Para que p seja divisivel por
x — 3, devemos ter p(3) = 0, ou seja, 9 + 3b + ¢ = 0, mas como b = 1, chegamos ao
resultado ¢ = —12.

O teorema de D’Alembert pode ser usado para se verificar que a quantidade
de raizes de um polinémio nao identicamente nulo ¢ finita, ndo superando o grau do

polinémio.
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Proposigao: Um polinémio de grau 72 tem, no maximo, n raizes distintas.

Demonstragio: Suponha que o polinémio p seja tal que Op =1 e que ele possua
m raizes distintas. Se X, X,,..., X, sdo essas raizes, pelo teorema de D’Alembert,
p ¢é divisivel por X —X,,X—X,,..., X—X, , podendo, assim, ser rescrito como

p(x) = (x —X, ) . (x — X, ) et (x -X, ) -q(x) . Pelarelagio entre os graus, temos

8p=8((x—x1)-(x—xz)-...-(x—xm)-qx):
:6(x—x1)+8(x—x2)+...+6(x—xm)+8q=1+1+...+1+8q:m+8q

e como o grau ¢ um numero natural e temos Op=m+0q,
vale n=2m, ou seja, a quantidade de raizes nunca supera o grau.
Com isso, podemos concluir que a quantidade de raizes de um polindmio nao

identicamente nulo é finita.

Como vimos, nem sempre ¢ necessario fazer a divisdo para se obter
informagoes relevantes a respeito do quociente e do resto, mas, quando
for necessario obter todos os seus coeficientes,

ha de se utilizar um dos métodos descritos nesta >

y

aula. No caso especifico de o divisor ser da for- —
ma x — a, ja podemos comegar sabendo qual vai SAIBA MAIS

ser o resto. Além disso, ha um método simples e o ~
Obtenha mais informacgdes sobre

direto de encontrar os coeficientes do quocien- . o
Fun(;oes pohnomlals acessando o ste:

te, chamado de Dispositivo de Briot-Ruffini, que ) ;
http://www.matematica.pucminas.br/

sera explicado apenas na préxima aula. »
oficinas/cap03.pdf
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AULA 7  Poinomiost

(O]F:1

Nesta aula e pelo resto do nosso curso, vamos continuar dando atencao as
fungdes polinomiais, analisando relagdes entre seus coeficientes e suas raizes,
dependendo do conjunto numérico em que eles estejam. Estudaremos casos
especificos em C[x], R[x], Q[x] e Z[x], conheceremos a ligagéo mais forte
que ha entre os polinbmios € 0s nimeros complexos, além de descrever um
método pratico para se realizar a divisdo quando o divisor for de grau 1. Ja sé@o
muitas as definicbes com as quais vamos trabalhar, portanto é importante que se
tenha em mente todos os termos com os quais trabalhamos na aula passada,

especialmente grau e raizes.

Objetivos

e Relacionar as raizes e os coeficientes de um polindmio
e Estabelecer critérios sobre as raizes em cada conjunto numérico




TﬁPICU -l Dispositivo Pratico

OBJETIVO

* Realizar de maneira pratica a divisao por

polinémios de primeiro grau

omo visto na aula passada, realizar a divisdo entre os polinémios

A(x) e B(x) consiste em determinar um quociente g(x) e um resto

r(x) de tal forma que A(x)= B(x).q(x)+r(x), com a restrigdo

Or < OB ou r=0. Quando o resto ¢ identicamente nulo, a divisdo é dita exata e,
neste caso, as raizes de B(x) também sdo raizes de A(x).

Quando o divisor tem grau 1, o resto necessariamente é constante, pois deve

ser identicamente nulo ou ter grau 0. Vamos continuar estudando o caso da divisao

por polindmios monicos de primeiro grau, notadamente os da forma x —a, de onde

tiramos a (Unica) raiz diretamente.

ExempLo 1A
O ntmero 5 ¢é raiz do polinémio f(x)=x—5 e o numero —3 é raiz do

polindmio g(x)=x + 3, podemos até escrever g(x)=x—(—3).

1 ExemprLro 1B

~ Para o polindmio s(x)=x"—32 vale s(2)
SAIBA MAIS :
= 0, logo, pelo Teorema do Resto, s(x) deixa
Obtenha mais informagdes sobre o resto 0 na divisdo por x—2. Podemos, usando
Teorema de D’Alembert, acessando o o método de Descartes, obter o quociente
site http://www.mundoeducacao.com. q(x)= x4+ 2x° +4x* +8x+16.
br/matematica/teorema-dalembert.htm Este estudo é importante, pois, se soubermos

que o numero a é raiz do polindémio p(x), temos,
|
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pelo teorema de D’Alembert, que p(x) é divisivel por x — a, podendo ser escrito
como p(x)=(x—a).q(x), sendo dq=0p —1, ou seja, o grau de g ¢ menor que o de

p e o problema de encontrar as raizes vai diminuindo de complexidade.

Exempro 2
Sabendo que o ntimero 3 ¢ raiz do polinémio p(x)=x" —7x* +7x+k, em

que k é um numero real, encontre todas as outras raizes.

Solugao: Como 3 ¢ raiz, vale p(3)=0, ou seja, 3’ —-7.3"4+734+k=0, de onde
tiramos k = 15. Assim temos todos os coeficientes de p e sabemos que ele é divisivel
por x—3. Fazendo a divisdao por algum dos métodos ja vistos, encontramos
quociente x* —4x—5 e resto identicamente nulo (naturalmente). Desse modo,
podemos escrever p(x)=(x —3).(x* —4x —5) e encontrar as raizes de p equivale a
resolver a equagido (x —3).(x* —4x —5) =0, mas, para que o produto seja zero, um
dos fatores deve ser igual a zero, de onde tiramos:

x—3=0, que conduz a raiz que ja sabiamos, ou

x*—4x—5=0, que leva a x = 5 ou x = —1. A partir dai, temos as raizes 3,
5e—1. Como Jp =3, pelo que foi discutido no final da aula passada (a quantidade
maxima de raizes de um polinémio é o seu grau), ndo ha outra raiz a ser encontrada.

0 método do exemplo anterior ¢ interessante, mas exige que saibamos uma raiz
de antemaio, algo que podemos determinar através de testes, caso haja raizes inteiras e
de médulo pequeno. Antes de analisarmos métodos mais eficazes para testar raizes de
um polinémio, vejamos como fazer a divisao por x —a de modo pratico.

Comecemos, entdo, dividindo o polinémio p(x) =a,x" +a, x" +...+ax +q,
por x —a, usando o método dos coeficientes a determinar. Uma vez que o quociente
tera grau n — 1, podemos escrevé-lo g, x"' +...4+qx+q, e forgar a igualdade
p(x)=q(x).(x —a)+r(x), lembrando que o resto é constante. Temos

9(%)-(x = @)+ r(x) = (g, 8" ¢, 22" o qx+qo)(x¥ —a) + ()

=q,.%" —aq, %" +q,,%"" —aq, 2" ...+ qx —aq, +r(x)

= an—lxn (G2 — aqn—l)'x%l +(qus — 99, )x%2 + ..+ (qo —aq,)x +r(x) —aq,

Agora, se compararmos os coeficientes com os de p(x), encontraremos

a,_, =04,

ou seja, o primeiro coeficiente do quociente ¢ igual ao do dividendo.

9y 2 =49y =0, =g, , =049, ,ta,,

Assim, o segundo coeficiente do quociente sera obtido a partir do primeiro,

multiplicando-o por a e somando-o com o préximo coeficiente de p(x).
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qn73 - aqn—z = an72 = qn73 = aqn—z + anfl
Da mesma forma, o terceiro coeficiente do quociente sera obtido a partir do

segundo, multiplicando-o por a e somando-o com o préximo coeficiente de p(x).

Dai em diante, o mesmo acontece com todos os coeficientes, de modo que,

por fim, teremos
q, —aq, = a, = q, = aq, +a1; €

r(x)—aq, =a, = r(x)=aq, +a,.
Podemos registrar essas informagdes na seguinte tabela, que é conhecida

como o dispositivo prdtico de Briot-Ruffini, em homenagem ao matematico francés

Charles Briot (1817-1882) e ao italiano Paolo Ruffini (1765-1822). Colocaremos

apenas os coeficientes, por simplicidade.

a a, a_, a, . a, a,
. + .q .+ +
) a.-9,4" 8, a-q,,"8,, inss il _8-9g* 3
9o 9oz Qo3 q, ¥
Exemrro 3

Dividir o polinémio x> —6x* +7x+9 porx —4.
Solucao:
Sabemos que o quociente encontrado sera do segundo grau
e o resto constante. Nesse caso, temos 4 como raiz do divisor e os

coeficientes do dividendo sdo 1, =6, 7 e 9. Dispondo esses numeros

no dispositivo pratico, encontramos

4 | 1 6 7

Inicialmente, repetimos o primeiro coeficiente.

http://upload.wikimedia.org/wikipedia/

a | 1 6 7 9
|1 |
Em seguida, multiplicamos esse primeiro coeficiente por 4 e somamos com o
proximo coeficiente do dividendo, fazendo 1.4 + (—6) = —2, e anotamos o resultado
abaixo do —6.
4 | 1 6 7 9
-2 |
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O préximo passo é fazer (—2).4 + 7 = —1 e anotar esse numero logo abaixo
do 7.
4 | 1 -6 7 9
o > T

Por fim, (—1).4 + 9 = 5, que é o resto da divisao

4 | 1 -6 7
| 1 -2 1| 5

Além disso, temos os coeficientes 1, —2 e —1, que geram o quociente g(x) = x* —2x—1.
E importante observar que, no dispositivo, devemos colocar todos os
coeficientes do dividendo, mesmo que alguns deles sejam iguais a 0. Assim, por

exemplo, os coeficientes de x> —3sdo 1, 0, 0 e 3.

ExemrLo 4

Dividir x’ —4x+3 por x —2

Solugdo: Como o dividendo tem grau 5, o quociente tera grau 4. A raiz do divisor
¢ 2 e os coeficientes do dividendo sdo 1, 0, 0, 0, —4 e 3. Assim, dispomos esses

numeros no esquema abaixo:

2 | 0 0 o 4 3

Realizando os passos indicados acima, obtemos como resultado final

Assim, o quociente € o polinémio g(x) = x* + 2x° + 4x*> + 8x + 12 e o resto vale 21.

Mesmo que o divisor nio seja monico, o método pode ser empregado depois
de um pequeno ajuste. Considere, entdo, a divisao do polindmio p(x) por ax+b,
com g # 0, com quociente g(x) e resto r(x). Temos (ax + b).q(x)+r(x)= p(x).
Uma vez que ax+b=a.(x+—), podemos reescrever a igualdade como
(x +—).aq(x)+r(x)=p(x) e realiZar o processo de divisdo por x+— . Com isso,
obteraemos o quociente auxiliar Q(x) = aq(x) e o mesmo resto. Depois ge terminado
0 processo, entdo, bastara que o quociente auxiliar seja dividido por a para que

obtenhamos o quociente original. Acompanhe um exemplo deste método.

AULA 7
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ExEMPLO 5

Determine o quociente e o resto da divisio de f(x)=2x" —7x’ +2x* +5 por
g(x)=x—5.
A 5 .
Solugdo: Comecemos por colocar 2 em evidéncia em g(x)=2.(x _E) . Assim,

5
utilizamos o dispositivo de Briot-Ruffini parax—; e para dividir o quociente

encontrado por 2.

52 | 2 —7 9 0 5
R -2 4 10

Desse modo, o resto da divisio sera 30 e o quociente auxiliar

Q(x) =2x" —2x2+4x 410 . Dividindo-o por 2, obteremos g(x) = x3—x2+2x+5.
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TGPICU 2 Multiplicidade

OBJETIVOS

e Verificar raizes repetidas
*  Enunciar o Teorema Fundamental da Algebra

o final da aula 1, observamos que um polindmio de grau =
tem, no maximo, n raizes. Ou seja, se Op=n, entdo o conjunto
{z € C; p(z) = 0} possui no maximo n elementos. Por exemplo, o
polindmio p(x)=x2—4x+3 tem grau 2 e apenas uma raiz, enquanto o polinémio
q(x) = (¥ — 2)?.(x — 4) tem grau 3 e apenas duas raizes. Um fato importante ¢ enunciado

a seguir e sera admitido sem demonstragao.

TEOREMA FUNDAMENTAL DA ALGEBRA (TFA)

O conjunto dos nimeros complexos € algebricamente fechado, o que quer dizer que todo
polindmio com coeficientes complexos e nao constante tem pelo menos uma raiz em C.
Em notagdo, equivalea “Vp € C [x] (Op >1=3 z€C; p(z)=0)".

Considerando dp =n da forma p(x)=ax" +a, x" ' +..+ax+a,, o TFA
afirma que existe z, que € raiz de p(x), logo p(x) ¢ divisivel por x — z, ou seja,
p(x)=(x¥—2z).p,(x), com Op, =n—1 e mesmo coeficiente lider de p.

Uma vez que p, € um polindémio, podemos aplicar de novo o TFA e concluimos
que ele possui uma raiz z,, sendo, portanto, divisivel por x — z,, de onde podemos
escrever p,(x)=(x—z,).p,(x). Assim, p(x)=(x—z,).(x — z,).p,(¥)

O processo pode ser repetido n vezes até que obtenhamos p  constante (igual

ao termo lider de p) e o TFA ndo mais pode ser usado.
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Assim, qualquer polinomio de grau n pode ser escrito como
p(x)=a,.(x —z).(x —z,)(x —2;)....(x — 2,),
em que cada um dos z, ¢ raiz de p(x), ou seja, um polindomio de grau n tem

exatamente 7 raizes, mas nao necessariamente distintas.

Exempro 1
Uma vez que (x—3)%(x+4)=(x—3).(x—3).(x+4), podemos dizer que
p(x) = (x —3)?.(x +4) possui trés raizes, sendo duas iguais a 3 e uma igual a —4. O

numero 3 é chamado de raiz dupla e o —4 de raiz simples de p.

oercio |

O numero a € raiz de multiplicidade 7 do polindémio p(x) se p(a)=0 e, além

disso, p(x) = (x —a)" .q(x), com g(a)=0.
|

Para determinar a multiplicidade do niimero a como raiz de um polinémio, de-
vemos realizar divisdes sucessivas por x —a, nas quais o quociente de uma divisao

vira dividendo da préxima, e contar quantas vezes o resto dara 0.

ExemprLro 2

Encontre a multiplicidade do ntimero 2 como raiz de p(x)=x"* —3x3+x2+4.

Solugdo: Para verificar se 2 é raiz de p, usamos o dispositivo de Briot-Ruffini:

Como o resto encontrado foi 0, o numero 2 é raiz de p(x). Dividindo agora o
quociente encontrado por x —2, obtemos:

2 | 1 -1 1 2
|1 1

—
=]

O novo resto encontrado foi 0, significando que a multiplicidade de 2 como raiz

¢ pelo menos dois. Repetindo o processo, temos:

2 | 1 1 1
| 1 3 H 7

Como o resto nao foi 0, 0 nimero 2 nao tem multiplicidade trés como raiz de p(x).
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ExemrLo 3
Determine os valores reais de a e b para que o nimero 3 seja uma raiz

multiplicidade dois do polinémio p(x)=x3—2x2+ax+b

Solugao: Devemos realizar a divisdo de p(x) por x — 3 duas vezes e exigir que os

restos sejam iguais a 0. Usando o dispositivo de Briot-Ruffini, temos:

3 1 -2 a b

113 + a9 + 3a + b (1° resto)
15 +a = 0 (2°resto)

Fazendo 15+ a=0,obtemosa=—-15efazendo9+3a+b=0,devemosterb =36.

Podemos escrever p(x)=x2—2x2—15x+36=(x—3)%(x +4)

ExemrLo 4:
Encontre um polinémio cujas raizes sdo 5 e —1, com multiplicidades 2 e

3, respectivamente.

Solugao: O polinomio procurado é da forma:
p(x)=a.(x—5).(x+1).
Desenvolvendo-o, temos :

p(x)=a.(x* —10x +25).(x" +3x* + 3x + 1) = a.(x’ — 7x" —2x” + 46x” + 85x +25),
para qualquer a # 0.
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Tﬁ PI cu 3 RelagOes entre
coeficientes e raizes

OBJETIVO
* Determinar relagdes entre as raizes de um

polindémio e seus coeficientes

o toépico anterior, vimos, a partir do Teorema Fundamental
da Algebra, que todo polindmio pode ser escrito da forma
p(x)=a.(x—2z)(¥x—z)..[(r—z,), em que os numeros
complexos z, sdo as raizes de p(x). A multiplicidade de uma raiz é a quantidade
de vezes em que o seu fator correspondente aparece na fatoragio. Desse modo,
podemos ter raizes simples (multiplicidade um), raizes duplas, triplas, etc. Uma
vez que cada polindmio tem uma fatoragao dessa forma, é natural que os seus

coeficientes estejam relacionados de maneira direta com as raizes.

Exempro 1:

Encontre o polinémio monico de terceiro grau cujas raizes sao 1, 2 e 3.

Solucao:

Os coeficientes do polinémio podem ser encontrados se desenvolvermos
p(x)=(x—1).(x—2)(x—3)=x"—6x" +11x— 6

No estudo de fung¢des polinomiais do segundo grau, vimos que a soma € o
produto das raizes podem ser obtidos por uma razio simples entre os coeficientes
da fungdo. Relembrando: dado o polinémio f(x)=ax*+bx+c, com a=0. Se
suas raizes sdo z, e z,, podemos escrevé-lo como

f(x)=a.(x—2z).(x—z,)=a.(x* —(z, + 2,)x + z,z,) = ax’ —a.(z, + z,)x + az,z,
. Comparando os coeficientes, devemos ter —a(z, +z,)=b e azz, =c, ou seja,

c
z tz,=—— € zz,=—
a a
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Assim, para obter a soma das raizes, dividimos o segundo coeficiente pelo

primeiro e acrescentamos o sinal de menos. Para o produto, dividimos o terceiro
coeficiente pelo primeiro.

Procedendo de maneira analoga para o polinomio de terceiro grau
p(x)=ax’ +bx’+cx+d e com raizes z, z, ez,, teremos a fatoragdo
a.(x —z).(x —z,).(x — z,) que leva as relagdes:

zt+z,+z,=——, 2.z, + 2,2z, + 2,2, =< € 22,2, = —i
a a a

Se tomarmos as raizes uma por uma e as somarmos, encontraremos o segundo
coeficiente dividido pelo termo lider, com o sinal de menos. Se tomarmos os
produtos das raizes de duas em duas, obteremos o terceiro coeficiente dividido pelo

termo lider, e se tomarmos o produto das trés raizes, teremos o quarto coeficiente

dividido pelo termo lider, com o sinal de menos.

ExEmpLO 2
Ser, s etsdo asraizes do polindomio p(x)= x4’ —3x—7, podemos dizer

quer+s—+it=—4, rs+rt+st=-3 erst=7.

ExemrLo 3

Calcule a soma dos inversos das raizes da fungio f(x)=2x"—4x+5.

Solugdo: Como Jf =3, considere as raizes z,, z, e z,. O objetivo, entdo, é calcular

1 1 1 1 1 1 z,z,+2z2z,+2zz —4/2 4
—+—+—. Podemos fazer —+—+4— = =2 tantan [2_2

z, oz, z z, oz, oz, 2,2,2, -5/2 5

3 1

Asrelagdesacimasao chamadasde Relagdes

de Girard, em homenagem ao matematico -

A . I Y
francés Albert Girard (1595-1632). Elas podem
( - Blas p SAIBA MAIS
ser estendidas para um polinémio de qualquer

grau, de acordo com o que segue. Conhega um pouco mais sobre o
. O s .

Seja p(x)= anx” + anilx" +..+tax+a, matematico Albert Girard acessando o

: site http://www.somatematica.com.br

com raizes 20y Zyrenir 2,y Ou p:// /

seja, ele pode ser fatorado  como biograf/girard.php

p(x)=a,.(x —z)(x —2,)....(x — 2,) - S I ————————————
chamarmos de S, a soma dos produtos das
raizes de p, tomadas de k em k, obteremos

p(x)=ax"—aSx"" +aSx" 7 —aSx"" +. .. +(—1)a Sy +..+(—1)a,S

n
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Fazendo a comparagido com os coeficientes de p(x), encontraremos

a
5, = (1) 2

n

ATENGAD!

Observagdo: Ja que a soma Sk consiste

dos produtos das n raizes, tomadas em
grupos de k, podemos concluir, através
de nossos conhecimentos de analise

n

combinatéria, que Sk tem = parcelas.
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ExemrLo 4
Ser, s, t e u sdo as raizes do polindomio
p(x)=2x" +3x’ —5x> + x—7, encontre

rst + rsu + rut + sut .

Solucgao: Devemos encontrar a soma dos produtos

das raizes, tomadas trés a trés, ou seja, S, .

a a 1
Temos S, =(—1) =2 =(—1).—Lt=——

a a 2

4 4
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TUPICU 4 Raizes complexas e
raizes reais

OBJETIVOS

* Obter critérios para a existéncia de raizes em
conjuntos numéricos especificos
* Relacionar raizes complexas com seus

conjugados

abemos, pelo Teorema Fundamental da Algebra, que um polindmio
de grau n tem n raizes, distintas ou nao. Neste tépico, vamos analisar
como o grau de um polindmio e seus coeficientes estao relacionados
com a quantidade de raizes que ele possua em um conjunto numérico particular.
Iniciaremos com uma relagdo bastante simples, porém de consequéncias muito

interessantes.

Proposicao: Se o polindmio p(x) tem apenas coeficientes reais, entdo
p(z)=p(z), Vz€C.

Demonstracao: Considere o polindmio
p(x)=ax"+a, x""'+.+ax +a, com todos os coeficientes a,
reais. A respeito de nimeros complexos e seus conjugados, lembremos
que (E)n =2 e que se a é real, entdo a=a. Além disso, a-z=az.

A partir dai, teremos

p(2)=a,(z) +a,,(z) "+t (2)+a =

—\7 — /—\n-1 — = N
() v (2) " ra(Z) -

n

I
= |

- ol P
=a,z' +a, 2" +.ta.z+ta,=

_ n n—1 —
= anz +Cln_IZ +...+Cllz+ao—

_ n n—1 _
= anz +an712 +alz+a0 —p(Z)

\ TOPICO 4 \ 105




= ATENCAO!

O resultado ao lado s6 ¢ valido para

polinémios com todos os coeficientes reais.
O caso simples p(x)=x—1i tem i como
raiz, porém seu conjugado —i nao é raiz.

Exemrro 1

A proposicao acima afirma que a operagao de
conjugacdo comuta coma de obter o valor numérico
por uma func¢do polinomial de coeficientes reais.
Ou seja, podemos calcular o conjugado de um
numero e depois obter o seu valor numérico, ou
obter o valor numérico e depois obter o conjugado,

e teremos o mesmo resultado.

Seosnumerosreaisa, b, cedsiotais queopolindmio p(x) = ax’ + bx* +cx +d

¢ tal que f{2 + i) = 4 — 2i, obtemos, pela proposi¢do acima, que f(2 — i) = 4 + 2i.

Como consequéncia direta da proposi¢ao acima, veremos que, se um numero

complexo € raiz de um polindmio com coeficientes reais, entao o seu conjugado também

é raiz, pois, se p(z) =0 entdo p(;) = ﬁ —=0=0. Além disso, as suas multiplicidades

sdo iguais. Dessa forma, as raizes complexas nao reais de um polindmio com coeficientes

reais sempre vém aos pares.

Observacao 1: O resultado acima s6 é valido para polinomios com todos os coeficientes reais. O

caso simples tem i como raiz, porém seu conjugado —i nao ¢ raiz.

Observacgao 2: Como as raizes nao reais de um polinémio com coeficientes reais vém sempre aos

pares, se o grau desse polinomio for impar, ele tera pelo menos uma raiz real. Assim, podemos

garantir que o polindmio tem pelo menos uma raiz real ou, contando as multiplicidades, sempre

uma quantidade impar de raizes reais.

Observacao 3: Relembrando nossa notagao, um polinémio p(x) que tem apenas coeficientes reais

¢, em simbolos, equivalente a .

ExempLo 2

Qual o grau minimo de um polinémio com coeficientes reais que tenha -2, 3,

4 + ie 3 — 2i como raizes?

Solugdo: Se ndo houvesse restrigdo em relagao aos coeficientes, a resposta seria 4, pois

temos ai quatro nimeros complexos. Entretanto, se p € R[x]| dmite 4 + i como raiz,

admitira também 4 — i. De maneira analoga, 3 + 2i deve, também, ser raiz do polinémio.
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Assim, temos a obrigagdo de construir um

o o . . GUARDE BEM 1SS0 | &
pOlll’lOInlO CcOom S€i1s ralzes, ou seJa, (0] grau minimo

é6 Como as raizes ndo reais de um

Por fim, enunciaremos um resultado polindmio com coeficientes reais vém
conhecido como Teorema de Bolzano, em sempre aos pares, se o grau desse
homenagem ao matematico tcheco Bernardus polindmio for impar, ele tera pelo menos

Bolzano (1781-1848), que trata de raizes reais L i L A, o R i

Ao 5 2
em um intervalo fixado. A demonstra¢do desse quiz @ pelinbuiy 57 =48 52653 o

resultado sera omitida pelo menos uma raiz real ou, contando
as multiplicidades, sempre uma

quantidade impar de raizes reais.

TEOREMA DE BoLzZANO

Seja p(x) um polindmio que tem coeficientes reais e (a, b) um intervalo
real aberto. Se p(a) e p(b) tiverem o mesmo sinal, entao a quantidade de raizes
de p(x) em (a, b) é par e, se p(a) e p(b) tiverem sinais contrarios, a quantidade

de raizes de p(x) é impar.

Em outras palavras, podemos dizer que, se um Figura 2 — Bernardus Bolzano
polinémio tiver coeficientes reais e mudar de sinal em um

intervalo, ele tera pelo menos uma raiz nesse intervalo.

ExemprLo 3
Para o polinomio g(x)= x’ —x—4, temos g(0) = —4,
g(1) = —4 e g(2) = 2. Assim podemos garantir que g(x) tem

pelo menos uma raiz no intervalo (1, 2).

http://upload.wikimedia.org/wikipedia/
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AULA 8  Pomomiost

Caro (a) aluno (a),

Chegamos a nossa ultima aula do curso, também sobre polinbmios. Aqui
continuaremos estudando propriedades a respeito das raizes, além de identificar
maneiras diretas de encontrar as raizes de alguns tipos particulares de polinémios.
Ja conhecemos varias propriedades interessantes a respeito de polindmios,
assim, sempre que elas forem necessarias, vale a pena fazer uma revisao nas
definicbes equivalentes. Esperamos que o caminho tenha sido satisfatorio e
que tenha trazido informacgdes relevantes sob um ponto de vista que desperte a
curiosidade para aprender mais. Nessa tentativa de continuar com dados Uteis
para sua formacao, vamos ao material de encerramento.

Objetivos

e |dentificar mais critérios segundo os quais polinbmios tenham raizes
racionais

e Analisar tipos especificos de polindmios

e Estudar transformacdes de polinbmios que facilitem a determinagdo de
suas raizes
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’ " N
TU PI CU -l Raizes racionais
OBJETIVO

* Enunciar um teste sobre raizes de um

polinémio

embramos que um polindmio ¢é uma expressio do tipo
p(x)=ax"+a, x" ' +..+ax+a,, em que os coeficientes q,
sao numeros complexos. Quando a, =0, dizemos que o grau do
polinémio vale n e escrevemos Jp =n . Caso todos os coeficientes sejam iguais a
zero, o polindmio ¢é dito identicamente nulo, caso em que o grau nao ¢ definido.
Um numero z é chamado de raiz do polinémio

se p(z)=0.

- e A l- . . ,
ATENGAD' ' nalisados os dois casos acima, vemos

que o estudo a respeito de raizes s6 se torna ndo

Observacdo 1: Todo numero é raiz do

trivial caso o polinémio ndo seja constante. De

polinémio identicamente nulo. .
acordo com o que obtemos a partir do Teorema

Observagao 2: Os polindmios de grau 0 nao .
¢ £ e Fundamental da Algebra, todo polinomio de

tem raizes, pois sao da forma p(x)=a,, com ) o .
grau n tem n raizes em C, distintas ou nao.
a,=0.
A quantidade de vezes que uma raiz aparece
|
na fatoragio do polindmio ¢é chamada de

multiplicidade dessa raiz em relagdo ao polinémio.

Exempro 1

O numero 2 ¢é raiz do polindmio p(x)=x"—6x>+3x+10, pois
p(2)=23—-6.22+3.2+10=0. Assim, p(x) ¢ divisivel por x — 2. Usando o
dispositivo pratico de Briot-Ruffini, podemos encontrar o quociente e escrever

p(¥)=(x —2).(x* —4x—5) . As raizes de q(x)=x2—4x—5 também sdo raizes de
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p(x). Dai, pela formula de Bhaskara, obtemos ainda —1 e 5 como raizes, todas elas
simples (multiplicidade 1). Por fim, podemos escrever p(x) como produto de fatores
de grau 1: p(x)=(x —2).(x +1).(x —5).

O numero 2, fornecido no comego do exemplo, permitiu que encontrassemos
as outras raizes, pois o grau foi reduzido. Para realizar o mesmo procedimento em
outros casos, poderiamos testar alguns nimeros inteiros de médulo pequeno (O,
1, £2, £3, ...) até obter uma raiz. O problema é que o polindomio pode nem ter
raizes inteiras. A proxima proposi¢ao fornece um método de reduzir os testes a um

grupo pequeno de numeros, fora do qual nao ha raizes racionais.

Proposigao:
Se todos os coeficientes do polinémio f{x) forem inteiros e o nimero racional ; for raiz
de p(x), com p e g inteiros primos entre si, entao p é um divisor do termo constante, e g é

um divisor do termo lider de p(x).

~ . . A . —1
Demonstragio: Considere o polinémio f(x)=a,x" +a, x"" +...+ax+a,, em que os

p

coeficientes a, sdo numeros inteiros. Se = ¢ raiz de flx), vale f 2o , ou seja:
9

n—1
p

n—1

p

a, P_ﬂ +...4+a,~+a, =0, multiplicando a igualdade por g", obterermos

+ anfl
anp% + anflp'ilq +..+ alpZ'“1 +a,q" =0 (igualdade I)

Se isolarmos a,p” na igualdade I, encontraremos
-1 =2 —1 5 o -9 .
a,p"=—q(a, ,p" +..4+a,pq" " +a,q").Umavezque todos os coeficientes sdo inteiros,
=l =2 -1 ’ . . . , P
a,p" +..+apq" " +a,q" éumnumero inteiro e, assim, g é um divisor de a,p" , mas,

como q € p sdo primos entre si, concluimos que g € um divisor de a .

Analogamente, se na igualdade I isolarmos a g", obteremos:

-1 =X -1 . . ~
a,q" =—p(a,p” +a,,p" "q+..+apq"). Uma vez que todos os coeficientes sio
. . —1 =2 e A , . . . 7 P
inteiros, a,p" +a, ,p" "q+..+a,pq" ¢é um ndimero inteiro e, assim, p é um divisor
de a g", mas, como p e g sdo primos entre si, concluimos que p ¢ um divisor de a, como
queriamos demonstrar.

A proposicdo que acabamos de provar afirma que, se um polindmio de
coeficientes inteiros tiver raizes racionais, elas terdo numerador e denominador
apenas no conjunto dos divisores inteiros dos termos lider e constante,

respectivamente.
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ExEmprLoO 2

Encontrar todas as raizes de p(x)=x" —4x* +2x+3.

Solugdo: Como Jp =3, devemos encontrar trés raizes. Se soubéssemos uma delas,
poderiamos fatorar, encontrando facilmente as outras. Podemos fazer um teste para
verificar se p(x) possui alguma raiz racional. Caso afirmativo, ela sera do tipo ;,
em que p é um divisor de 3, logo pode ser £1 ou £3, € g é um divisor de 1, logo pode
ser £1. Por simplicidade, podemos pegar todos os possiveis valores de p e apenas os

positivos para g. Testando, encontraremos entao:
x=1=px)=0—41"4+21+3=2
x=—1=px)=(-1" —4(-1 +2.(-1)+3=—4
x=3=p(x)=3"—4.3"+23+3=0

logo temos o nimero 3 comoraiz. Se completarmos
ATEN G[\U I ‘ o teste, verificaremos que p(—3)#0, logo 3 éatinica

raiz racional do polindmio dado. Realizando,

Observacao 3: O teste desenvolvido

entdo, a divisdo de p(x) por » — 3, obteremos
no exemplo 2 ¢é valido apenas quando 5
p(x)=(x—3).(x" —x—1). Encontrando as raizes
f(x)€Z[x], ou seja, quando todos os

coeficientes forem inteiros, nao apenas o de x* —x—1 , Completamos o Conjunto de raizes
constante e o lider.
] 1+ \/g 1- \/g
R=<3— K ——>.
2 2
ExemrLro 3
AX+2,4 _ /m
Resolver a equagao y -
x—1,2
n!
Solugdo: Lembrando que, para os numeros naturaisnep, 4, , =———, devemos
" (n—p)!
procurar os numeros inteiros positivos x tais que A _,, =70.4 _ ,, ou seja:
x+2)! x—1)! (x +2)! (x—1)!
(G L Gl =N =70. 2N
(x+2—4)! (x—1—2)! (¥ —2)! (¥ —3)!

(x+2).(x +1)x.(x —1)! .
(x —2).(x —3)! (x—3)! (x—2)
x(x + 1)(x + 2) = 70(x — 2).

—1)! 2). 1).
(1) = w:m, que equivale a
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Temos, entdo, X +3x"+2x+70x—140 < x° +3x° —68x+140=0
Devemos  encontrar ~ uma raiz  natural para o  polindmio
f(x)=x"+3x"—68x+140=0. Os testes devem ser feitos apenas entre os
divisores positivos de 140, a saber, 1, 2, 4, 5, 7, 10, 14, 20, 35, 70 e 140. A raiz

procurada é x = 5.

Com o que foi visto, podemos reduzir os testes feitos para se encontrar raizes

inteiras de um polinémio, fatorando-o de modo a simplificar a procura por suas raizes.



TﬁPICU 2 Derivada de um
polinbmio

OBJETIVOS

* Apresentar a derivada de uma fungao
polinomial

* Estabelecer as principais propriedades do

processo de derivagao

este topico, vamos associar cada polinémio a outro, de grau menor,

a partir de certas regras que gerarao propriedades interessantes.

oercio |

Dado o polinémio p(x)=ax"+a, &' +..+ax+a,, a deriva-

da de p é o polindmio p'(®)=nax"" +(n—-1a,_x""+..+a,.

Decorre da defini¢do que a derivada de

' qualquer polinémio constante ¢ o polindémio

N

SAIBA MAIS identicamente nulo e que se dp=n>1, entdo
. Op'=n—1.
Acesse o site:
https://www.somatematica.com.br/
Exemrro 1:

historia/derivadas.php e conhega um
Calcule a derivada dos polinomios

f(x)=x"—2x24+5xr—8 e g(x)=5x" +3x+2.

pouco mais sobre derivada de uma

funcao
Solugao:

I —— Obtemos diretamente que
f'(x)=3x2—4x+5 e g'(x)=20x3+3.
Analisando termo a termo, vemos que o processo de derivagdo transforma o

N . n A . n—1 7 . Py
monoémio ax” no mondmio nax" . O processo ¢ feito aditivamente, de forma que a
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derivada da soma de monomios é a soma das derivadas de cada um deles, fato que

podemos generalizar na seguinte propriedade:

PROPRIEDADE 1:

Para quaisquer polinomios fe g, vale (f(x)+ g(x))'= f'(x) + g'(x)

Na verdade, a propriedade anterior vale para uma soma com qualquer
quantidade finita de parcelas. A seguir, veremos como a derivada funciona para o

produto de polindmios.

Proposicao 1:

Pblftedblehedd 1 {11k j fl plbkd 1 [ff (x).g(x))' = f'(%)-8(*) + f(%)-8'(%) +

Demonstracao:

=ll n—1

Considerando f(x)=ax" e g(x)=0bx", temos f'(x)=max"" e g'(x)=nx"" . Em

relacdo ao produto, temos
(f(%)-g(x))' = (abx™"")' = (m +n)abx™"" = mabx™ """ +nabx™""" =
= max" " .bx" +ax" nbx"" = f'(x).g(x) + f(x).'(x)

como queriamos demonstrar.
|
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Proposicao 2:
Se flx) ¢ um monémio e g(x) ¢ a soma de dois mondmios, entdo
()-8 = £ 1(x)-8(2) + £()-8').
Demonstracao:
Considere o polindmio g(x)=a,x" +a, x" " +..+ax+a,. Fazendo g(x)
= a x", ele pode ser escrito como soma dos monémios g (%), g,(x),....g,(x), ou seja,

8(*)= g, (¥)+ g,.(¥) + ... + &, (*) + go(¥) . Calculemos

Fx)8(%) = f(x)-(,(%) + &ua (#) -+ £(%) + 8o (%))
= f(#)-8:(#*) + f(#)-8sa(#) ...+ f()-81(%) + f(#).-8, (%)
Aqui temos a soma de monomios e, para deriva-la, usamos a propriedade 1. Entdo, temos
(f(x)g(x)'=(F(x)g,(x)+ [(x) g1 (x)+ . [(x)g(X)+ [(x) &(x))'=
= ((x)-&,(x)+(f(x) & (X)F . (S () &(X))'+(f(x) g(x)' =
= SUx) g (X)+[1(x) g (X)L 1(x)- g(X)+[(x) g (x)+
()8, () + (%) &, (X)+ ot f(x)-8(x)+ [(x) &'(x)=
= SU(x)(g(x)+ g (X)F .+ g(x)+ g (x)+ f(x)(g,(x)+
T8 ()t +g(x)+g(x)=
=/(x)-g(x)+f(x) g'(x)

Exempro 2:
Calcule a derivada do polindmios p(x)=x".(2x" —3x* 4+ x).
Solugdo: Temos
p'(x)=(x".26" —3x* +x))' = (¢")".(2¢° —3x" +x) +x".(22° —3x" +x)' =
p'(x)=4x".(2x" —3x" + x) + x* (10x* —6x +1)
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Teorema: Para quaisquer polindémios f{x) e g(x), vale

(f(x)-8(x))'= f'(%)-8(x) + f(x)-8'(*) -
Demonstracgao: Procedendo de maneira analoga ao que foi feito nas proposi¢des anteriores,
mas fazendo uso delas, podemos escrever f(x)= f, (x)+ f._(x)+...+ fi(x)+ f;(x), em que

cada um dos f,(x) é um mondmio. Assim teremos

(f(*)-8(x)" = (f(*) + firs(6) +-o F i(¥) + £ (5)-8(%))'
= (1.(3)-8(*) + (fima (%)-8(¥)) 4o +(fi(%)- 8 (*)) + (fo (%)-8(*))'
=1 '(%)-8(x) + f,(%)- (%) + £, '(%)-8(¥) + f 1 (%)- (%) + .. +
[(%)-8(x) + £i(%)-8'(¥) + fo '(%)-8(x) + fo(%)-8'(%)
= (L )+ A1(3)-8(0) + fo ' (%)-8(*) + (f, () + s (¥) o
L)+ fo(x))-8'(%)
(f(x)-8(x))" = f'(*)-8(x) + f(%)-8'(%)

Exemrro 3
A derivada do polinémio p(x)=(x" — 12x%).(3x" +5x —2) pode ser
encontrada por
p'(x)=(x" —12x%)".(3x" +5x —2)+ (x” —12x°).(3x" +5x —2)'
p'(x) = (7x° —24x).3x" 4+ 5x —2)+ (x" —12x%).(12x" +5)

Outra propriedade que nos sera ttil diz respeito a derivada da poténcia de
um polinémio.

Proposicado 3: Se os polinomios f(x), g(x) e o numero natural 7 sdo tais que f(x)=[g(x)]",
entio derivamos f'(x)=n.[g(%)]"".g'(x) -
Demonstracao:
Usaremos indugao sobre n. O caso n = 1 é imediato. Suponha, entao, que a propriedade
seja valida paran =k, ouseja, ([g(*)])' = k.[g(x)] ".g'(x) . Calculemos a derivada de [g(x)*" .
Siga:
(g1 =k[g)] " g'(x)
(g™ =(g(®)-[gM]) = g'x)-[g(x) ]+ g(x) ([g)])' =
[g(T)'=g'(x)- [ +g(x) kg g'(x) =
(g™ =g'x) [g@] +k-[gx)] - g'(x) =
[T =A+k) g'(0) [g)] = (k+1) [g)]*" - g(x)

0 que completa a prova.
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Exemrro 4

Determine a derivada da fungdo (2x+3)’.

Solucao:

Temos que ((2x +3)’)' =5.(2x +3)".(2x + 3)' =10.(2x + 3)".

Antes de voltar a falar sobre as raizes de um polinémio, observe que, uma vez
que a derivada de um polindémio ¢ outro polindmio, podemos deriva-lo novamente
e quantas vezes quisermos. Assim, podemos ter a derivada primeira, a derivada

segunda, a derivada terceira, etc.

Denotamos por f"(x) a derivada de ordem n da fungdo f. Assim, vale

="y

ExempLo 5
Encontre a derivada de quarta ordem do polindmio
p(x)=x"+x"—4x’ +2x—4.
Solucao:
Derivando sucessivamente, obteremos:
p'(x)=5x"+4x’ —12x" +2
PP (x)=20x" +12x% —24x +2
P (x) = 60x" + 36x —24
PV (x)=120x+ 36
Nos cursos de Calculo Diferencial, a derivada desempenha papel importante,
pela sua interpretagao geométrica. Na teoria de Polindmios, ela é usada, dentre
outras fung¢des, para estabelecer a multiplicidade de uma raiz, sem apelar para o
dispositivo de Briot-Ruffini. Uma vez que sabemos calcular a derivada de qualquer

polinémio, mesmo quando ele esta fatorado, podemos ir para o préximo tépico.
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Tﬁ PI cu 3 Raizes multiplas

OBJETIVO

* Relacionar derivagdo com multiplicidade de

raizes

a aula passada, vimos que o ntimero z ¢é raiz de multiplicidade m

do polindmio p(x) se for possivel a fatoragiao p(x)=(x —z)" .q(x)

, com g(x)= 0. Para determinar essa multiplicidade, dividimos
sucessivamente o polindmio por x — z, usando o método mais adequado, e vemos
quantas vezes o resto ¢ nulo.

Podemos usar a derivada do polindmio para determinar a multiplicidade de

uma de suas raizes, ganhando, assim, mais uma ferramenta no nosso estudo.

Proposigao 1: Se z é raiz de multiplicidade m do polindmio p(x), entdo z é raiz de

multiplicidade m — 1 de p’(x), a derivada de p.

Demonstracgao:
Pela definigdo de multiplicidade, podemos escrever p(x)=(x —z)".q(x), com g(x) =0 .

A partir dai, calculamos a derivada de p por essa expressao. Veja:

P ()=((x—-2)"-q(x))=[(x-2)"]"q(x) +(x—2)" - q'(x)
P@=m(x—2)""(x=2)"q()+(x—2)"q'()=m-(x—2)""-q(x) +(x—2)" - ¢'(x)

Fazendo OQ(x) = g(x) + (x —2)-q'(x) ,temos Q(z) = q(z) = 0 e p'(x) =m-(x — 2)" - O(x)

, de onde concluimos que z ¢ raiz de multiplicidade m — 1 de p’(x).

Se aplicarmos a proposi¢do acima para p'(x), temos que z é raiz de

multiplicidade m — 2 de p(z)(x] , sendo, portanto, raiz de multiplicidade 3 de p(3)(x)
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, ou seja, uma raiz de multiplicidade m do polindmio p(x) é raiz de multiplicidade
m — k do polinémio p*“'(x), de modo que nio é raiz de p™(x).

Um teste para determinar a multiplicidade do ntiimero z como raiz de um
polinémio consiste em achar os valores numéricos p(z), p'(z), p'*(2), p”(2), ... até

obter p™(z)= 0 pela primeira vez, caso em que a multiplicidade sera m.

Exempro 1
Encontrar todas as raizes inteiras do polindmio p(x) = x* —5x” + 6x2+ 4x — 8

e determinar suas multiplicidades.

Solugao: Inicialmente, usaremos o teste do comego da nossa aula, ou seja, devemos
procurar as raizes inteiras entre os divisores de —8. Fazendo, entdo, os testes com
*1, £2, +4 e 18, verificamos que apenas 2 e —1 sdo raizes de p(x). Poderiamos
dividir p(x) por x — 2 pelo dispositivo pratico, mas vamos treinar o processo de

derivagdo. Calculando as derivadas, teremos
p'(x)=4x’ —15x* +12x+4=p'2)=0ep'(—1)=—27

Como o valor numérico da primeira derivada para x = —1 deu diferente de zero,
a multiplicidade de —1 como raiz de p(x) vale um. Continuando o processo para

determinar a multiplicidade de x = 2, encontraremos

pP(x)=12x>—30x+12= p?(2)=0
pP(x)=24x—-30= p¥(2)=18

Aqui concluimos que 2 tem multiplicidade 3 como raiz de p(x). Somadas as
multiplicidades de 2 e —1, obtemos o grau de p(x), indicando que nao outras raizes

e, assim, podemos escrever p(x)=(x—2)*-(x+1).

ExempLo 2
Determinar os valores de a e b para que o polindmio f(x)=x" —6x2+ax+b

tenha uma raiz de multiplicidade trés.

Solugao: Calculando as derivadas de ordem 1, 2 e 3 do polinémio, teremos:
f(x)=4x’ —12x+a
fP(x)=12x> —12
fO(x)=24x
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Devemos garantir a existéncia de um ndmero complexo z tal que
f(2)=f'(z)=fP(z)=0= f?(2). Bsta tltima comparagio equivale a 24z =0,

0 que acontece para qualquer z = 0. As outras condigdes sao

D z'—6z"+ax+b=0
(1) 4z° —12z+a=0
(1) 1222-12=0

Da equagdo (III), obtemos z=dH41. Para z=-—1, substituindo
em (II), concluimos a =—8 e, com esses dois valores em (I), vale b =—3. Ja se

z=1,temos a=8 e b=-3.

Agora que vimos como amultiplicidade de umaraiz de p(x) é afetada pelas derivadas

de p, podemos determinar o grau de fatores do tipo X — @ na decomposigao de polindmios.

‘ Matematica Basica Il




y 4
Maximo divisor comum e
minimo multiplo comu

polinbmios
OBJETIVOS

conjuntos numéricos especificos

conjugados

uando a divisao do polinémio f{x) pelo polindomio g(x) apresenta
resto identicamente nulo, isto ¢, a divisdo é exata, podemos usar

a mesma terminologia que usamos em relagao aos inteiros. Assim,

dizemos que f{x) é um multiplo de g(x) e que g(x) é um divisor de f[(x).
Analogamente, podemos considerar o caso de buscar divisores comuns
a dois polinomios e determinar dentre eles o de maior grau. Para que tenhamos
um maximo divisor comum unicamente determinado, vamos exigir também que
ele seja monico. Pois bem, sabemos que, se g(x) ¢ um divisor de f{x), entdo k.g(x)
também ¢é divisor de f{x), para qualquer niimero complexo k. Assim o mdximo
divisor comum dos polindmios f{x) e g(x) ¢ um polindmio ménico de grau maximo,

de forma que seja divisor de f{x) e g(x) a0 mesmo tempo. Formalmente:

nerincio 1 |

Dados f(x) e g(x) € C[x], dizemos que h(x) = m.d.c.(f, g) se:
(1) h(x) é moénico;
(2) h(x) é divisor de f(x) e de g(x);
(3) se hO(x) é divisor de f(x) e de g(x), entdo hO(x) é divisor de h(x).
L
A condigao (2) garante que /(x) é um divisor comum a f{x) e g(x); a condigao

(3) que ele é maximal; e a condigao (1) ¢ imposta apenas para que ele seja tinico, mas

1
nio oferece nenhuma resisténcia, pois, se a_é o termo lider de h(x), entao —-2(¥)
a

n

AULA 8

m de

* Obter critérios para a existéncia de raizes em

* Relacionar raizes complexas com seus
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¢ monico. Portanto, a partir de agora, ndo nos preocuparemos com essa condigao,

pois, se obtivermos um polinémio qualquer que satisfaca as condigdes (2) e (3),
saberemos transforma-lo em um polindmio moénico.

Mais ainda, como o polinémio p(x) = 1 é divisor de qualquer polindmio,
o conjunto dos divisores comuns a dois polindmios nunca é vazio. Outro fato é
que a condi¢do (2) implica Oh<9If e O9h<0g, de onde podemos concluir que,
efetivamente, o conjunto dos divisores comuns aos dois polinomios tem um grau

maximo.

ExempLro 1A
O maximo divisor comum dos polindmios f(x)=x"—1e g(x)=x"—3x+2

¢ o polinémio h(x) = x — 1, pois satisfaz as trés condigdes.

ExempLo 1B

Para os polinémios f(x) =x" +x2—1e g(x) = x", tem-se h(x) = 1 é o m.d.c.(f,
g)- Nesse caso, dizemos que f{x) e g(x) sdo primos entre si.

Para determinar o maximo divisor comum entre dois polinémios, observe
que, se g(x) for divisor de f{x), entdo m.d.c.(f, g¢) = ¢ (lembrando que se g nao for
monico, basta transforma-lo de acordo com o exposto acima).

Caso isso ndo acontega, considere Jf > dg e divida f por g, obtendo um resto
r.

L
Prorosicio 1

Se r(x) é o resto da divisao de f{x) por g(x), entdo m.d.c.(f, g) = m.d.c.(g, 1)

Demonstracgdo:

Fazendo h = m.d.c.(f, g), temos que h é divisor de f e de g, logo podemos
escrever f=h.q, eg=h.q,. Como r é o resto da divisdo de f por g, podemos escrever
f=g4q+r,ou seja, r=f-g.q=h.q, + h.q,.g=h.(q, +q,.9) . Desse modo, temos que h ¢ um
divisor de r.

Agora considere h0 =m.d.c(g, 7). Como k €é divisor de g e de r, temos que / € divisor de ho. Se
mostrarmos que h, € divisor de A, teremos a igualdade que completa a prova.

Como h € divisor de g e de r, podemos escrever ¢ =h,.q, e r=h;.q, e substituindo
acima, temos f = g.q+r=h,.q;.g+h,.q, =h.(q;.¢+q,). Assim, h € divisor de f e como
jé era divisor de g, entao € divisor de 4. Como 4 é divisor de ho, e hO é divisor de &, temos h =
h0 e, assim, m.d.c.(f, g) = m.d.c.(g, ).
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A proposigdo anterior apenas transfere o problema de determinar o m.d.c.
entreos polinomios f e ¢ para encontrar o m.d.c. entre g e o resto da divisao de f
por g, mas com a vantagem de que os graus envolvidos sio menores. Repetindo
esse processo e se r, for o resto da divisao de g por r, temos m.d.c.(g, r) = m.d.c.(g,
r,), e assim sucessivamente até que encontremos uma divisao exata, caso em que o

divisor sera o m.d.c. dos dois polinémios iniciais.

ExEmPLO 2

Dados f(x) = x> —4x* +x+6 e g(x)=x" —4x+ 4, encontre m.d.c.(f, ).
Solugio:

Comecemos por dividir f{x) por g(x), obtendo quociente
q,(x¥) = x eresto r,(x) = —3x + 6 . Como a divisdo ndo foi exata, o processo continua
e temos m.d.c.(f, g = m.d.c.(g r). Dividindo g(x) por r(x), temos quociente
%(x)= —%x—{—; e resto identicamente nulo, caso em que o processo se encerra
e temos r, como m.d.c. procurado. Como r, ndo ¢ monico, devemos dividi-lo por —3
para que isso acontega, obtendo, assim, m.d.c.(f, g) = x — 2.

Da mesma forma que definimos o maximo divisor comum, podemos pensar
também em minimo miltiplo comum, que sera um multiplo simultaneo dos

polindmios envolvidos, com o menor grau possivel.

nerincio 2 [

Dados f(x) e g(x) € C[x], dizemos que h(x) = m.m.c.(f, g) se:

(1) A(x) é monico.

(2) A(x) é multiplo de f{x) e de g(x).

(3) se h (x) ¢ multiplo de f{x) e de g(x), entdo h (x) ¢ multiplo de A(x).

A condigdo (2) garante que /(x) é um multiplo comum a f{x) e g(x); a condigao
(3) que ele é minimal; e a condigio (1) é imposta apenas para que ele seja tinico, mas

. . . B 1 .
ndo oferece nenhuma resisténcia, pois, se a € o termo lider de /(x), entio —.h(x) €
n

monico. Portanto, a partir de agora, Ndo NOS preocuparemos com essa condigdo, pois,

se obtivermos um polindmio qualquer que satisfaga as condigdes (2) e (3), saberemos
transforma-lo em um polinémio moénico.
Mais ainda, como o polinémio p(x) = f{x).g(«x) ¢ multiplo de fe de g, o conjunto

dos multiplos comuns a dois polindmios nunca é vazio. Outro fato é que a condigao
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(2) implica Oh <Of e 0h<0g, de onde podemos concluir que, efetivamente, o
conjunto dos divisores comuns aos dois polindmios tem um grau minimo, maior ou

igual ao grau de qualquer um dos polindmios envolvidos.

ExeEmPpLO 3A
o minimo multiplo comum dos polinémios
f(x)=x"—1leg(x)=x"+x"+x+1 é o polindmioh(x)=x" —1, pois satisfaz as

trés condigdes.

ExempLo 3B

Para f(x)=x3eg(x)=x—1, tem-se mm.c(f,g)=x"—x".

Se soubermos todas as raizes de f(x) e de g(x) com suas multiplicidades,
poderemos encontrar A(x) = m.m.c.(f, g) diretamente, pois, como f{x) ¢ divisor de
h(x), todas as raizes de f devem ser raizes de & e com multiplicidade no minimo
igual a multiplicidade enquanto raiz de f. Se f e g tiverem raizes repetidas, elas ndo

serdo contadas repetidamente, com o intuito de minimizar o grau.

Exemrro 4

Dados os polinémios

f(x)=6.(x —2P.(x +1)".(x —1) e g(¥) = 2.(x —2)2(x +1)°.(x — 3),

determine m.m.c.(f, g).

Solucgio:

Fazendo h(x) = m.m.c.(f, g), temos que & ¢ um multiplo de f, sendo, portanto,
da forma h(x)= f(x).q(x)=6.(x —2)3.(x +1)*.(x —1).q(x) . O polindmio g(x) deve
ser construido de modo a que o resultado final seja divisivel por g(x) e com grau
minimo. Para que h(x) seja divisivel por g(x), deve conter (x—2)2.(x +1)°.(x —3)
na sua fatoragdo. Devemos entdo apenas completar os expoentes de modo que
isso seja possivel e acrescentar os fatores necessarios. Assim, nao ¢é necessario que
q(x) apresente (x—2)° em sua fatoragido, pois este termo ja aparece em f. Como
em f, o termo x + 1 aparece com expoente 4, basta que apareca (x +2)’ em q(x).
Como x — 3 ndo aparece na fatoragdo de f, deve aparecer em ¢. Assim, temos
q(x)=(x+1)°.(x —3) e h(x) =6.(x —2p3.(x +1)°.(x —1).(x —3) . De modo a tornar
moénico, dividimos por 6 (ou simplesmente omitimos o 6 no comego) e concluimos

mm.c(f,g)=(x—2p.(x +1)°.(x —1).(x —3).
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Pelo que foi visto no exemplo 4, para que determinemos o m.m.c. dos
polinomios f e g, devemos decompd-los em fatores da forma (x —z)", tomando
todos os fatores presentes (comuns ou nao) com o maior expoente possivel.

A fatoragdo também serve para que determinemos o m.d.c. dos polinémios

fe g, €aso €m que tomaremos apenas os fatores comuns e com o menor expoente.

ExempLO 5
Para f(x)= (v —4)’.(x + 2p.(x —3) e g(x) = (* —4)2(x +2)’.(x +1),  temos
md.c(f,g)=(x—4).(x +2Pe mmc(f,g)=(r—4).(x+2)".(x =3).(x +1).
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