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7APRESENTAÇÃO

APRESENTAÇÃO
Caro (a) aluno (a), no texto que segue temos a apresentação de algumas propriedades 

aritméticas dos números inteiros, especialmente aquelas referentes ao algoritmo da divisão.

Como pré-requisito para a sua leitura, recomenda-se alguma familiaridade com as operações 

aritméticas fundamentais - adição e multiplicação.

Os dois primeiros capítulos tratam dos divisores e dos múltiplos de um número inteiro, com 

enfoque nos números primos, e apresentamos a noção de congruência, aprofundada no 

terceiro capítulo.

As funções aritméticas m, s, t e f são estudadas nos dois capítulos seguintes, nos quais há 

exemplos computacionais e relações entre elas.

O princípio de Dirichlet (ou das gavetas) é abordado no sexto capítulo.

No penúltimo capítulo, estudamos os resíduos quadráticos, com ênfase no uso do símbolo 

de Legendre e da lei da reciprocidade quadrática, com a qual encerramos a teoria contida 

neste material.

O último capítulo apresenta uma miscelânea de exercícios sobre os diversos assuntos 

abordados. De posse deste livro, este último capítulo pode (e deve) ser consultado a qualquer 

momento, para melhor fixação da teoria.

Desejando a todos um bom proveito na leitura e um bom aprendizado, só resta começar o 

trabalho.

Jânio Kléo
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AULA 1 Divisores de um 
número

Olá, a todos. 

Em nossa primeira aula de Teoria dos Números, estudaremos o processo de 

divisão de números inteiros, detalhando e justificando suas principais propriedades. 

Alguns dos assuntos são nossos conhecidos de longa data, pois trataremos do 

conjunto   e das operações de soma e multiplicação. Além de acompanhar os 

exemplos fornecidos neste texto, não hesite em fazer testes para a verificação 

das propriedades e melhor assimilação das definições.

Objetivos

•	 Definir os principais termos da Teoria dos Números
•	 Analisar a divisão de números inteiros e os algoritmos correlatos
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A Teoria dos Números, do ponto de vista clássico, trata 

principalmente do conjunto dos números inteiros, denotado por 

 , que compreende todos os números naturais positivos, o zero 

e seus simétricos. 

	 { }..., 2, 1,0,1,2,3,...= - -

Para dois números inteiros a  e b , são definidas as operações de soma, 

representada infixamente por a b+ , e de multiplicação (ou produto), representada 

por .a b  ou simplesmente ab , que satisfazem as seguintes propriedades:

1. , , vale a b a b b a" Î + = +

(a soma é comutativa)

2. , , , vale ( ) ( )a b c a b c a b c" Î + + = + +

(a soma é associativa)

3. , vale 0a a a" Î + =

(existe um elemento 

 neutro para a soma)

4. , ( ) , tal que ( ) 0a a a a" Î $ - Î + - = 

(todo elemento possui  

inverso para a soma)

5. , , vale a b ab ba" Î =

(a multiplicação  

é comutativa)

6. , , , vale ( ) ( )a b c ab c a bc" Î =

(a multiplicação  

é associativa)

7. , vale .1a a a" Î =

(existe um elemento neutro  

para a multiplicação)

8. , , , vale ( )a b c a b c ab ac" Î + = +

(a multiplicação é distributiva  

em relação à soma)

TÓPICO 1 Divisibilidade

Objetivos

•	 Identificar as principais definições sobre os números inteiros e 

suas consequências

•	 Estabelecer o conceito de divisibilidade e as relações entre os 

divisores de um número inteiro
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Por causa da associatividade, podemos 

fazer a soma de qualquer quantidade finita de 

inteiros agrupando-os em qualquer ordem e, 

assim, os parênteses serão opcionais nesse caso, 

bem como no produto de uma sequência finita 

de inteiros. 

Aqui temos a relação de ordem:

... 2 1 0 1 2 3 ...<- <- < < < < < , na qual entre 

dois números listados consecutivamente não há 

nenhum número inteiro. 

É relevante observar que   não é 

limitado superiormente, ou seja,   não possui 

um elemento máximo, bem como não é limitado 

inferiormente, pois não possui um elemento 

mínimo.

Além disso, se a b< , então ,a c b c c+ < + " Î  e , 0ac bc c< " > .

EXEMPLO 1

Mostre que não existe o inverso multiplicativo do número 2.

Solução: 

Suponha que exista a Î  tal que 2. 1a = . Por um lado, este número deve 

ser maior que 0, pois, se 0a £ , teríamos 1 2 2.0 0a= £ = , ou seja, 1 0£ , que é 

falso. Da mesma forma, se 1a ³ , teríamos 1 2 2.1 2a= ³ = , ou seja, 1 2³ , que é 

falso, de onde concluímos que 1a < . Assim, deveríamos ter 0a>  e 1a < , mas 

sabemos que tal inteiro não existe. Logo 2 não possui inverso multiplicativo.

O mesmo raciocínio do exemplo acima pode ser aplicado para mostrar que 

os únicos números inteiros que possuem inverso multiplicativo em   são 1 e –1. 

A estes números damos o nome de unidades e denotaremos por ( )U  . Assim 

definimos ( ) { ; , 1}U n m mn= Î $ Î =    e vale ( ) { 1,1}U = - .

Passemos à definição central desta aula.

Definição 1: Dados os números inteiros a  e b , dizemos que a  divide b  (repre-

sentamos por |a b ) se existir um inteiro n  tal que .b a n= . Ou seja: 

| ;a b n b anÛ$ Î = .

Quando |a b , dizemos também que a  é um divisor de b  ou, equivalentemente, 

que b  é um múltiplo de a . 

at e n ç ã o !

Observação: A um conjunto com operações 

de soma e multiplicação que satisfazem as 

propriedades (1), (2), (3), (4), (6) e (8) damos o nome 

de anel; caso a propriedade (5) seja satisfeita, o 

anel é dito comutativo. Se (7) é satisfeita, dizemos 

que o anel possui identidade. O conjunto dos 

números inteiros é, portanto, um anel comutativo 

com identidade.
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EXEMPLO 2A

Como 30 = 5.6, podemos dizer que 5|30  e 6|30 , ou seja, 5 e 6 são divisores 

de 30.

EXEMPLO 2B

Podemos usar uma ideia semelhante 

à do exemplo 1 para mostrar que não existe 

nenhum inteiro n  para o qual 5 12n =  (tente 

repetir o processo de modo a demonstrar isso). 

Assim sendo, 5 não divide 12, o que pode ser 

representado por 5|12 , isto é, 12 não é um 

múltiplo de 5.

Proposição 1: A divisibilidade é uma re-

lação transitiva, ou seja, se |a b  e |b c ,  

então |a c .

Demonstração: Se |a b , então 1b an= . Se 

|b c , então 2 1 2c bn an n= = , logo |a c .

Proposição 2: Se |a b  e |b a , então a b=  ou a b=- .

Demonstração: Se |a b , então 1b an= . Se |b a , então 2 1 2a bn an n= = , logo 

1 2 1n n = , o que somente ocorre se 1 2 1n n= = , caso em que a b= , ou 1 2 1n n= =- ,  

caso em que temos a b=- .

Proposição 3: Se |a b  e c Î , com 0c ¹ , então |ac bc .

Demonstração: Se |a b , então b an= . Multiplicando esta igualdade por c Î ,  

temos bc acn= , logo |ac bc .

Proposição 4: Se |a b  e |a c , então |a b c+ .

Demonstração: Se |a b  e |a c , então existem inteiros m  e n  para os quais 

b am=  e c an= . Assim, ( )b c am an a m n+ = + = + , logo |a b c+ . 

Observação 1: Como recurso extra para o entendimento da expressão 

|a b c+ , poderíamos usar parênteses e escrever |( )a b c+ , entretanto a ausência 

at e n ç ã o !

Embora saibamos de antemão que o inverso do 

número 2 é o número 1/2, que não é inteiro, 

esse conhecimento prévio não deve ser tomado 

como imediato, pois envolve, na maioria dos 

casos, teorias mais elaboradas, como o estudo 

dos números racionais. Devemos, assim, tomar 

cuidado com o que parecer óbvio e tentar provar 

usando apenas as propriedades de cada objeto 

que estivermos analisando.
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deles não gera nenhuma ambiguidade, pois a expressão ( | )a b c+  não tem sentido 

definido.

Observação 2: Como consequência direta das duas últimas proposições, se 

|a b  e |a c , então |a mb nc+  para quaisquer inteiros m  e n .

A respeito dos divisores de um número, valem também as seguintes 

propriedades, que são consequências diretas da definição e cujas demonstrações 

são sugeridas como exercício.

1) 1|a , |a a  e |0a , para qualquer inteiro a ;

2) se |ab ac  e 0a ¹ , então |b c ;

3) se |a b , então |a b- , |a b-  e |a b- - ;

4) se |a b  e 0b ¹ , então a b£ ;

5) se |a b , então 
b

c
a

=  é inteiro e |c b .

Uma das implicações da propriedade 4 é que o conjunto de divisores inteiros 

de um número não nulo é limitado e, por isso, finito. Como resultado da propriedade 

3, a quantidade de divisores inteiros de um número não nulo é sempre par, já que 

sempre virão aos pares cada divisor e seu simétrico. Assim, basta conhecermos 

apenas os divisores inteiros positivos de um número, pois os negativos estarão 

automaticamente determinados. Denotaremos, então, por ( )D n  o conjunto de 

divisores inteiros positivos do número n , ou seja, ( ) { ; | }D n m m n+= Î .

EXEMPLO 3

Fazendo testes com os inteiros positivos 

de 1 a 8, vemos que (8) {1,2,4,8}D = . Assim, os 

divisores inteiros de 8 são 1± , 2± , 4±  e 8± .

Definição 2: O número inteiro n  é par se 

2|n  e é ímpar, caso contrário.

Durante nossa primeira aula, estudaremos métodos que, entre outras coisas, 

nos fornecerão a quantidade de divisores positivos de um número inteiro. Antes 

disso, observe o seguinte exemplo prático de como construir o conjunto ( )D n , 

usando principalmente a propriedade 5, indicada acima.

EXEMPLO 4A

Escreva o conjunto de divisores positivos do número 60. 

at e n ç ã o !

Pela transitividade da relação de divisibilidade, 

verifica-se facilmente que se |a b , então 

Ì( ) ( )D a D b .
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Solução: 

De princípio, sabemos que 1 e 60 devem entrar na lista, pois cada número 

inteiro tem pelo menos dois divisores positivos. Uma vez que podemos escrever 60 

= 2.30, podemos afirmar que 2|60  (60 é par) e, pelo mesmo motivo, 30|60 . Como 

não há nenhum inteiro entre 1 e 2, não há nenhum divisor inteiro de 60 entre 30 e 

60. Assim, os demais divisores estão entre 2 e 30. Fazendo testes semelhantes aos do 

primeiro exemplo, concluímos que 60 = 3.20. Assim, 3 (60)DÎ  e 20 (60)DÎ , e não 

há números entre 20 e 30 a serem considerados. Continuando assim entre 3 e 20, o 

próximo divisor de 60 é o número 4, pois 60 = 4.15. Entre 4 e 15, o próximo divisor de 

60 é o número 5, pois 60 = 5.12. Entre 5 e 12, o próximo divisor de 60 é 6, pois 60 = 6.10.  

Por fim, testando os números entre 6 e 10, não encontramos nenhum divisor de 60 

e encerramos a lista. (60) {1,2,3,4,5,6,10,12,15,20,30,60}D = . 

EXEMPLO 4B

Realizando processo semelhante, podemos concluir que 

(28) {1,2,4,7,14,28}D =  e (11) {1,11}D = .

Observação 3: Se os números inteiros positivos a  e b  são tais que |a b , 

com 1a ¹  e a b¹ , dizemos que a  é um divisor próprio de b . Assim, no exemplo 

anterior, os divisores próprios de 60 são 2, 3, 4, 5, 6, 10, 12, 15, 20 e 30, e o número 

11 não tem divisores próprios.

Observação 4: Para qualquer inteiro positivo n , o teste com os divisores só 

é necessário para os números menores ou iguais a n  por causa da propriedade 5.

Uma vez que sabemos construir o conjunto dos divisores inteiros positivos 

de um número, é ainda mais simples construir o conjunto dos divisores de um dos 

seus divisores. Do que obtivemos no exemplo 4a, ficaria bem simples encontrar os 

divisores de 30 ou de 15. Pelo resto de nossa aula, teremos a relação de divisibilidade 

como objeto relevante, acrescentando novas ferramentas e aprofundando com 

consequências interessantes.
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TÓPICO 2 Números primos

Objetivos

•	 Definir número primo e estudar suas propriedades

•	 Descrever o crivo de Erastótenes

Quando analisamos os divisores de um número, encontramos 

maneiras de fatorá-los, ou seja, de escrevê-los como produto 

de outros números, por exemplo escrevemos 60 da forma 2.30. 

Obviamente, podemos também fazer 60 = 1.60, que pode ser chamada de fatoração 

trivial. Neste tópico, estudaremos especificamente os números que não podem ser 

fatorados de maneira não trivial que não podem ser escritos como produtos de 

fatores menores. Começaremos com a definição central a seguir:

Definição 3: Um número inteiro 1p>  é dito primo se sempre que |p ab  

obtivermos |p a  ou |p b .

Guarde bem esta definição, pois ela será revisitada em outros cursos, como o 

de Estruturas Algébricas, nos quais se estudam outros conjuntos dentro dos quais 

a ideia de elemento primo também é relevante. Para números inteiros, podemos 

trabalhar com uma definição equivalente, como a que segue.

Suponha que o número inteiro positivo d  seja um divisor do número primo 

1p> , ou seja, que p dn= , para algum inteiro positivo n . Assim, os números 
2a d=  e 2b n=  são tais que 2 2 2( ) ( )( ) .ab d n dn dn dn p p= = = = , logo |p ab . Pela 

definição de número primo, temos |p a  ou |p b . Uma vez que |p a  equivale a 
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2|p d , significa que |p d , mas, como |d p  e são ambos positivos, concluímos que 

d p=  e 1n = . A outra alternativa seria |p b , que equivale a 2|p n , logo |p n ,  

mas, como |n p , concluímos que n p=  e 1d = . Aqui demonstramos que, se é 

primo, um número possui exatamente dois divisores positivos. A recíproca dessa 

afirmação é verdadeira e sua demonstração é 

deixada como exercício.

Assim, obtemos que 1p>  é primo se, e 

somente se ( ) {1, }D p p= , ou seja, um número 

maior que 1 é primo quando não possui divisores 

próprios ou ainda quando possui exatamente 

dois divisores positivos.

EXEMPLO 5

Analisando os dados do exemplo 4, vemos 

que 60 não é primo, pois o conjunto de seus 

divisores próprios é não vazio. O número 28 é 

múltiplo de 2, logo não é primo, enquanto 11 

possui exatamente 2 divisores positivos, sendo, 

portanto, primo.

Os números primos funcionam como os átomos dos números inteiros positivos, 

pois, como veremos adiante, todo número inteiro positivo pode ser escrito como 

produto de números primos e, igualmente importante, essa decomposição é feita de 

maneira única. 

Como a quantidade de divisores de um número inteiro positivo é finita, 

poderíamos nos perguntar qual o maior número primo que existe. Uma 

investigação mais apurada nos levaria a uma resposta interessante: não há um 

maior número primo! Acompanhe o seguinte raciocínio: se houvesse um maior 

número primo, isso significaria que a quantidade deles é finita. Seja, então, o 

conjunto 1 2{ , ,..., }kP p p p=  de “todos” os números primos. Dessa forma, considere 

o número inteiro 
1 2... 1kn p p p= + , que é maior que qualquer elemento de P , 

logo n PÏ . Além disso, vemos que |ip n , para todo 1,...,i k= , de onde obtemos 

que n  não possuiria nenhum divisor primo, o que é uma contradição, visto que 

1n> . Assim, a suposição de que há uma quantidade finita de números primos é 

incorreta. Podemos, então, enunciar o resultado:

Proposição 5: Existem infinitos números primos.

g u a r d e  b e m  i s s o !

1. Se o número inteiro positivo 1n>  não é 

primo, dizemos que ele é composto, pois ele 

pode ser escrito como produto de dois números 

menores que ele.

2. Todo número composto tem pelo menos 

um número primo como divisor (veremos a 

demonstração ainda nesta aula).

3. Os números 0 e 1 não são primos nem 

compostos, por definição.
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Se testarmos alguns dos números inteiros positivos maiores que 1 para 

sabermos seus divisores e determinarmos se eles são primos, podemos concluir 

que os primeiros cinco números primos são 2, 3, 5, 7 e 11. Já que a quantidade de 

números primos é infinita, poderíamos investigar como eles estão distribuídos ou 

quantos deles são menores que um número fixado.

Há um algoritmo, conhecido como crivo de Eratóstenes (matemático e 

geógrafo grego nascido no século III a.C.), que lista os números primos menores 

que n . Pelo observado anteriormente, os divisores devem ser procurados apenas 

até (no máximo) n . 

Observe como funciona o crivo de Erastótenes para 60n = . Inicialmente, 

vejamos que 60 7,7@ . Assim, o processo de busca de divisores próprios dos 

números da lista será encerrado no 7. Comecemos listando os números inteiros 

positivos de 1 a 60, e “riscamos” o 1, que não é primo. O primeiro número não 

marcado é o 2, que é primo, destaquemos por colchetes. 

1 [ ]2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

Em seguida, eliminamos todos os múltiplos seguintes de 2, pois eles não são 

primos.

1 [ ]2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

O primeiro número não marcado foi o 3 e como ele não tem divisores primos 

menores que ele, ele é primo. Em seguida, eliminamos os múltiplos de 3 (basta 

contar “de três em três”).

1 [ ] [ ]2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60
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O primeiro número não marcado foi o 5 e como ele não tem divisores primos 

menores que ele, ele é primo. Em seguida, eliminamos os múltiplos de 5.

1 [ ] [ ]2 3 4 [ ]5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

O primeiro número não marcado foi o 7 e como ele não tem divisores primos 

menores que ele, ele é primo. Em seguida, eliminamos os múltiplos de 7. E como é 

o último do teste, os que sobrarem sem marcação, são números primos.

1 [ ] [ ]2 3 4 [ ]5 6 [ ]7 8 9 10

[ ]11 12 [ ]13 14 15 16 [ ]17 18 [ ]19 20

21 22 [ ]23 24 25 26 27 28 [ ]29 30

[ ]31 32 33 34 35 36 [ ]37 38 39 40

[ ]41 42 [ ]43 44 45 46 [ ]47 48 49 50

51 52 [ ]53 54 55 56 57 58 [ ]59 60

Assim, os números primos menores que 60 são 2, 3, 5, 7, 11, 13, 17, 19, 23, 

29, 31, 37, 41, 43, 47, 53 e 59.

O crivo de Eratóstenes pode ser usado para qualquer valor de n , obviamente 

exigindo trabalho crescente. Muitos trabalhos atuais são feitos com testes de 

primalidade, alguns demandando esforços computacionais muito grandes. 

Máquinas modernas trabalham neste intuito e 

o maior número primo conhecido é 431126982 1- ,  

que em notação decimal tem quase treze mil 

algarismos e foi descoberto em 2008. 

EXEMPLO 6

Mostre que a equação 3 4 ² 59 0n n- - =  

não possui raízes inteiras.

Solução: 

A equação dada é equivalente a 3 4 ² 59n n- = , ou ainda 2 ( 4) 59n n- = . Assim 
2 |59n . Como 59 é primo, seus únicos divisores positivos são 1 e 59. Como 2 59n ¹ , 

para todo n  inteiro, a alternativa seria 2 1n = , que resulta em 1n =± . Entretanto, 

por substituição direta, vemos que nenhum desses valores é raiz da equação dada. 

Assim, ela não possui raízes inteiras.

s a i b a  m a i s !

No site http://www.ahistoria.com.br/eratostenes/ 

você pode conhecer um pouco mais sobre 

Eratóstenes e algumas de suas obras.
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Vale ressaltar que 2 é o único número primo par, pois todos os demais 

números pares têm pelo menos o 2 como divisor próprio. Assim, todo número 

primo maior que 2 é ímpar, mas nem todo número ímpar é primo, como bem ilustra 

o número 9.

Conhecer os números primos e suas propriedades é, de certa forma, 

conhecer todos os números inteiros. Dessa forma, é razoável que conheçamos 

pelo menos os primeiros números primos de cor. A tabela obtida no exemplo do 

crivo de Eratóstenes é um bom modo de fixar essas ideias. Entretanto, como parte 

fundamental da teoria dos números inteiros, há muito ainda o que se ver sobre os 

números primos, e isso se dará nos próximos tópicos.
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Nos tópicos anteriores, vimos como determinar se |a b , ou seja, 

se existe c Î  tal que b ac= . Nesse caso dizemos que b  é 

um múltiplo de a . Agora veremos o algoritmo da divisão, suas 

consequências e principais propriedades. Inicialmente, veja que, da mesma forma 

que definimos o conjunto dos divisores positivos de um número, podemos definir 

o conjunto dos múltiplos positivos de um número, o qual denotaremos por ( )M n , 

ou seja, ( ) { ; | }M n m n m*
+= Î .

De imediato verificamos que os múltiplos positivos do número inteiro positivo 

n  são 1.n , 2.n , 3.n , 4.n , ... Logo, concluímos simplesmente que são infinitos. 

Entretanto, fixado o número inteiro 0a> , o conjunto { ( ); } {0}m M n m aÎ £ È ,  

dos múltiplos não-negativos de n  que são menores ou iguais a a , é limitado 

superiormente e não-vazio, e assume, portanto, um máximo. Seja 0m  este 

máximo. Como 0m  é um múltiplo de n , podemos escrever 0m qn= , para algum 

inteiro positivo q . Necessariamente é válido que 0a m n- < , pois, do contrário, 

perderíamos a maximalidade de 0m . Se escrevermos r a qn= - , podemos, então, 

enunciar o seguinte resultado: 

TÓPICO 3 Divisão de inteiros e o 
algoritmo de Euclides
Objetivos

•	 Definir quociente e resto na divisão de inteiros

•	 Destacar as propriedades do máximo divisor comum

•	 Estudar métodos de inferência sobre o conjunto solução das 

equações diofantinas
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Dados os números inteiros positivos a  e n , existem números inteiros q  e r ,  

chamados respectivamente de quociente e resto da divisão, tais que 

a qn r= +  e 0 r n£ < .

Assim, dividir a  (chamado de dividendo) por n  (o divisor) consiste em 

encontrar o quociente e o resto que satisfazem a propriedade desejada. Aqui 

usamos o artigo definido porque tanto quociente quanto resto são unicamente 

determinados, como provado a seguir.

Proposição 6: O quociente e o resto da divisão entre os inteiros positivos 

a  e n  são únicos. 

Demonstração: Suponha que haja inteiros 1 2,q q  e 
1 2,r r  tais que 

1 1a q n r= +  e 
2 2a q n r= +  e 

1 20 ,r r n£ < . Dessa última desigualdade, 

fazemos 
2 2 1 1r n r r n r n< Þ - < - £ , ou seja, 2 1r r n- < . Analogamente, 

pode-se demonstrar que 2 1n r r- < - . Das igualdades acima, podemos inferir

1 1 2 2 1 2 2 1( )q n r q n r q q n r r+ = + Þ - = - , com base na qual podemos afirmar que 

2 1|n r r- . Mas como 2 1n r r n- < - < , a única possibilidade é 2 1 0r r- = , isto é, 

o resto é único e, assim, o quociente também é único, como se pode verificar da 

igualdade 
1 2 2 1( ) 0q q n r r- = - = .

EXEMPLO 1A

Uma vez que podemos escrever 13 = 5.2 + 3 e 3 < 5, podemos dizer que a 

divisão de 13 por 5 apresenta quociente 2 e resto 3.

EXEMPLO 1B

É verdade que 27 = 4.5 + 7, mas não podemos dizer que a divisão de 27 

por 4 gera quociente 5 e resto 7, pois 7 não é menor que 4. Da mesma maneira, 

embora 27 = 4.7 + (–1), o resto não pode por ser negativo. Na divisão de 27 por 4, 

o quociente vale 6 e o resto vale 3.

EXEMPLO 1C

Como 30 = 6.5, o quociente e o resto da divisão de 30 por 6 valem 5 e 0, 

respectivamente. 
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Observação: Embora a definição acima tenha sido estabelecida para números 

inteiros positivos, o processo pode ser, com pequenas adaptações, estendido para 

números inteiros quaisquer desde que o divisor seja diferente de zero. Quando 

o divisor for negativo, exigiremos para o resto que ele seja menor que o valor 

absoluto do divisor. Assim, fazendo a divisão de 33 por –5, o quociente é –7 e o 

resto é 2, pois 33 = (–5).(–7) + 2 e 0 2 5£ < - .

Pelo que definimos anteriormente, é imediato que, quando |a b , o resto da 

divisão de b  por a  é 0, caso em que dizemos que a divisão é exata.

Definição 4: Dados os números inteiros positivos a  e b , dizemos que o número 

d +Î  é o máximo divisor comum entre a  e b , e escrevemos ( , )d a b= , quando:

(i) |d a  e |d b , ou seja, ( ) ( )d D a D bÎ Ç ;

(ii) se 1|d a  e 
1|d b , então 1|d d , ou seja, d  é o maior número com a propriedade (i).

Quando ( , ) 1a b = , dizemos que a  e b  são relativamente primos ou primos entre si.

EXEMPLO 2A

Como (60) {1,2,3,4,5,6,10,12,15,20,30,60}D =  e (28) {1,2,4,7,14,28}D = , 

temos (60) (28) {1,2,4}D DÇ =  e, assim, (60,28) 4= .

EXEMPLO 2B

Como (16) {1,2,4,8,16}D =  e (27) {1,3,9,27}D = , temos (16,27) 1=  e, assim, 

16 e 27 são relativamente primos, embora nenhum deles seja um número primo. 

Vale ressaltar que, como o número 1 é divisor de qualquer inteiro, o conjunto 

dos divisores comuns a dois inteiros positivos nunca é vazio e é limitado por a  e 

b , logo possui um elemento máximo. Podemos, assim, concluir que sempre existe 

( , )a b . Vejamos, então, como determinar o máximo divisor comum entre dois 

números inteiros sem ter que listar todos os divisores de ambos.

Decorre diretamente da definição que se |a b , então ( , )a b a=  e não há o 

que fazer. Caso isso não aconteça, considere a b> , divida a  por b  e obtenha um 

resto r .

Proposição 7: Se r  é o resto da divisão de a  por b , então ( , ) ( , )a b b r= .

Demonstração: Fazendo ( , )d a b= , temos que d  é divisor de a  e de b , 
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logo podemos escrever 1a dq=  e 2b dq= . Como r  é o resto da divisão de a  por b , 

podemos escrever a bq r= + , ou seja, 1 2 1 2( )r a bq dq dq q d q qq= - = - = - . Desse 

modo, temos que d  é um divisor de r .

Agora considere 0 ( , )d b r= . Como d  é divisor de b  e de r , temos, pela 

condição (ii) da definição, que d  é divisor de 0d . Se mostrarmos que que 0d  é 

divisor de d , teremos a igualdade que completa a prova. 

Como 0d  é divisor de b  e de r , podemos escrever 0 3b d q=  e 0 4r d q=  e, 

fazendo as devidas substituições, temos: 0 3 0 4 0 3 4( )a bq r d q q d q d q q q= + = + = + . 

Assim, 0d  é divisor de a  e, como já era divisor de b , temos que 0d  é divisor de d . 

Dessa forma, d  é divisor de 0d , e 0d  é divisor de d . Chegamos, então, à conclusão 

de que são iguais, ou seja ( , ) ( , )a b b r= .

A proposição anterior apenas transfere o problema de determinar o máximo 

divisor comum entre os números a  e b  para encontrar o máximo divisor comum 

entre b  e r , o resto da divisão de a  por b , mas com a vantagem de que os números 

envolvidos são menores. Se |r b , vale dizer que ( , )b r r= , e o processo, então, se 

encerra. Caso contrário, repetimos este passo: se 2r  for o resto da divisão de b  por 

r , temos 
2( , ) ( , )b r r r= , e assim sucessivamente até que encontremos uma divisão 

exata, caso em que o divisor será o máximo divisor comum entre os números 

iniciais. 

O processo descrito é conhecido como Algoritmo de Euclides. 

EXEMPLO 3A

Determine o máximo divisor entre 60 e 28. 

Solução:

Comecemos dividindo 60 por 28; obtemos quociente 2 e resto 4. Assim 

(60,28) (28,4)=  e como 4|28 , vale (28,4) 4= , ou seja (60,28) 4= .

EXEMPLO 3B

Determine o máximo divisor comum entre 129 e 45.

Solução:

Observe que 129 = 45.2 + 39, assim transferimos o problema para os números 

45 e 39. Mas 45 = 39.1 + 6, e o problema passa para 39 e 6. Temos 39 = 6.6 + 3. 

Por fim, o problema de encontrar o máximo divisor comum entre 3 e 6 resolve-se 

diretamente do fato de 3 ser um divisor de 6, de modo que 3 é o máximo divisor 
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comum entre 3 e 6 e, logo, entre 129 e 45.

EXEMPLO 3C

Determine o máximo divisor comum entre 400 e 148.

Solução:

400 = 2.148 + 104 	 (400, 148) = (148, 104)

148 = 1.104 + 44		 (148, 104) = (104, 44)

104 = 2.44 + 16		  (104, 44) = (44, 16)

44 = 2.16 + 12 		  (44, 16) = (16, 12)

16 = 1.12 + 4		  (16, 12) = (12, 4)

12 = 3.4 + 0. 		  (12, 4) = 4

Assim, (400, 148) = 4.

Decorre também do algoritmo de Euclides que, se ( , )d a b= , então existem 

,m nÎ , tais que d ma nb= + . Adiante será provado que d  é o menor inteiro 

positivo que pode ser escrito dessa forma. Assim, por exemplo, a equação 

30 15 1m n+ =  não tem raízes inteiras porque 30 e 15 não são relativamente primos. 

Podemos dizer que 1 não pode ser escrito como combinação linear de 30 e 15.

EXEMPLO 4A

Encontre ,m nÎ  tais que 129 45 3m n+ = . 

Solução:

Uma vez que (129, 45) = 3, o problema é possível. Pelo algoritmo de Euclides, 

podemos proceder:

129 = 2.45 + 39, daqui podemos dizer que 39 = 129 – 2.45

45 = 1.39 + 6, assim 6 = 45 – 39 = 45 – (129 – 2.45) = 3.45 – 129 

39 = 6.6 + 3. 

Logo

3 = 39 – 6.6 = (129 – 2.45) – 6.(3.45 – 129) = 129 – 2.45 – 18.45 + 6.129 = 7.129 

– 20.45. Assim, os valores 7m =  e 20n =-  satisfazem a relação 129 45 3m n+ = .

Observe que podemos encontrar soluções inteiras para 129 45m n d+ =  para 

qualquer inteiro d  múltiplo de 3, bastando para isso multiplicar as soluções da 

equação original. 

EXEMPLO 4B
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Encontre dois números inteiros ,a b  tais que 60 25 30a b+ = . 

Solução:

Para que o algoritmo de Euclides forneça uma solução para o problema, 

é necessário que 30 seja múltiplo do máximo divisor comum entre 60 e 25. 

Comecemos determinando (60, 25).

60 = 2.25 + 10

25 = 2.10 + 5

20 = 4.5. 

Assim, encontramos (60, 25) = 5 e, aplicando o método descrito no exemplo 

anterior, podemos encontrar 5 como combinação linear de 60 e 25. O processo leva 

à igualdade 

5 = (–2).60 + 5.25

Como 30 = 6.5, basta multiplicar a última igualdade por 6 para obter: 

6.5 = 6.(–2).60 + 6.5.25  

E assim concluímos que 30 = (–12).60 + 30.25, ou seja, os valores 12a =-  

e 30b =  satisfazem a relação 60 25 30a b+ = .

Definição 5: Dados os números inteiros , ,a b c , a equação ax by c+ =  com 

incógnitas x  e y  é chamada de equação diofantina linear (em referência a Diofante, 

matemático e geógrafo considerado por muitos o maior algebrista grego, o qual tem 

para a Aritmética a importância que Euclides tem para a Geometria).

Proposição 8: A equação diofantina linear de duas incógnitas x  e y  dada 

por ax by c+ =  admite solução se, e somente se, ( , )|a b c .

Demonstração: Suponha que a equação ax by c+ =  tenha uma solução, 

ou seja, que existam inteiros 1x  e 1y  tais que 
1 1ax by c+ = . Sendo ( , )d a b= ,  

podemos escrever 
1a dq=  e 

2b dq= , para inteiros apropriados. Assim 

1 1 2 1 1 1 2 1( )c dq x dq y d q x q y= + = +  . Concluímos, então, que |d c . 

Pelo algoritmo de Euclides, podemos escrever 1 1d ax by= +  para inteiros 

apropriados, mas, se supusermos que |d c , poderemos escrever c dq= , onde q  é 

seria um inteiro. Assim 1 1 1 1( ) ( ) ( )c dq q ax by qx a qy b= = + = + . Logo, obtemos que 

os inteiros 1x qx=  e 1y qy=  satisfazem a relação ax by c+ =  e, assim, a equação 

tem solução inteira, o que completa a prova.

O algoritmo de Euclides para a determinação do máximo divisor comum 
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entre dois números fornece, como visto, uma maneira de resolver as equações 

diofantinas. Verifique nos exemplos que antecedem a definição de equação 

diofantina que poderíamos ter feito um teste com o máximo divisor comum entre 

os coeficientes para determinar se a equação era possível. Revise os conceitos 

da aula e faça testes com dois números a quaisquer para treinar a técnica. Em 

seguida, podemos passar ao próximo tópico, que trata do Teorema Fundamental da 

Aritmética e de suas implicações.



TÓPICO 4 O Teorema Fundamental 
da Aritmética
Objetivos

•	 Enunciar e demonstrar um teorema central para o curso

•	 Observar as principais consequências do teorema e suas 

aplicações

Vimos que um número primo possui exatamente dois divisores 

positivos e, portanto, não pode ser escrito como produto de dois 

números menores que ele. Assim, como 29 é um número primo, 

a única forma de escrevê-lo como produto de dois números inteiros positivos é  

29 = 1.29. 

Os números compostos possuem divisores triviais, podendo ser fatorados 

como produto de números menores. Por exemplo, 30 é composto e pode ser escrito 

como 30 = 6.5 = 2.15 = 3.10. Algo a se observar aqui é que nenhuma dessas 

maneiras de escrever o número 30 envolve apenas primos. De fato, a única maneira 

(a menos da ordem dos números) de escrever 30 como produto de números primos 

é 30 = 2.3.5. A seguir, veremos que podemos fazer isso com qualquer número 

inteiro maior que 1.

Comecemos por um resultado simples que servirá para, de certa forma, 

tornar a demonstração do teorema mais clara.

Lema: Se a  é um número composto, então o menor divisor próprio de n  é 

primo.

Demonstração: Seja d  o menor divisor próprio de n . Por definição, 1d ¹ .  

Se d  fosse composto, ele possuiria um divisor próprio, digamos 0d . Mas 0 |d d  e 

|d n  implicam que 0 |d n  e, como 0d d< , haveria um divisor próprio de n  menor 

que d , contrariando a sua minimalidade.
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Teorema (Fundamental da Aritmética): Todo número inteiro maior que 

1 pode ser escrito como produto de números primos. Em outros termos: dado 

qualquer número inteiro 1a> , existem primos 1,..., kp p  distintos, e inteiros 

positivos 1,..., ka a  tais que 1
1 ... k

kn p paa= . Além disso, a menos da ordem dos 

números, essa decomposição é feita de maneira única.

Demonstração: Se n  é primo, o resultado vale imediatamente. Seja, então, 

n  composto. Pelo lema anterior, o menor divisor próprio de n  é primo. Vamos 

chamá-lo de 1p . Podemos, então, escrever 1 1n p n= . Se 1n  é primo, o resultado vale 

imediatamente. Caso contrário, seja, então, 1n  composto. Da mesma forma, o menor 

divisor próprio de 1n  é primo. Vamos chamá-lo de 2p . Assim, podemos escrever 

1 1 1 2 2n p n p p n= = . O processo pode ser repetido, e como, a cada passo, 1i in n -< , 

ou seja, forma-se uma sequência decrescente de inteiros positivos e maiores que 1, 

haverá um momento no qual teremos m mn p=  primo e, assim, 1... mn p p= . Como os 

primos obtidos não são necessariamente distintos, podemos contar a quantidade de 

vezes que cada primo ip  aparece. Vamos chamar essa quantidade de ia  e concluir 

que 1
1 ... k

kn p paa= . 

Quanto à unicidade, suponha que 1
1 ... k

kn p paa=  e 1
1 ... r

rn q qb b=  sejam duas 

decomposições em números primos do número n . Como 1p  é primo e divide 
1

1 ... r
rn q qb b= , pela definição de número primo, temos 1| ip q  para algum i  e, 

como eles são primos, devem ser iguais, assim, podemos reordenar os primos 

da segunda decomposição para que 1 1p q= . Usando um argumento semelhante, 

podemos concluir que os expoentes devem ser iguais também. Da igualdade 
1 1

1 1... ...k r
k rp p q qaa b b= , e uma vez que 1 1p q=  e 1 1a b= , podemos concluir que 

2 2
2 2... ...k r

k rp p q qaa b b= . Daí, basta repetir a ideia de reordenamento para provar 

que 2 2p q=  e 2 2a b= . O raciocínio é repetido k  vezes, quando se esgotam os 

primos ip  o mesmo tendo que acontecer com os iq . Dessa forma, a quantidade 

de primos distintos nas duas decomposições é a mesma e, a menos de ordem dos 

números, elas possuem os mesmos fatores com os mesmos expoentes, o que conclui 

a demonstração.

Não é sem motivo que o teorema acima recebe o nome de fundamental, pois 

muitos outros resultados seguem diretamente dele, além da simplificação de uma 

série de outros problemas. 

EXEMPLO 1A

A decomposição em fatores primos do número 72 é 3 22 .3 . Dessa maneira, 

se |72d  , nenhum primo diferente de 2 e 3 pode dividir d , ou seja, podemos 
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escrever 2 3d a b= , com {0,1,2,3}aÎ  e {0,1,2}b Î . Assim, temos 4 possibilidades 

para o valor de a  e 3 para b . Pelo Princípio Fundamental da Contagem, podemos 

concluir, então, que 72 possui 4.3 = 12 divisores inteiros positivos.

EXEMPLO 1B

Como 2 2100 2 .5= , os divisores positivos de 100 são da forma 2 5d a b= , com 

, {0,1,2}a b Î . Assim, 100 possui 3.3 = 9 divisores positivos.

O número 2 43 .5 .7  possui 3.5.2 = 30 divisores positivos.

EXEMPLO 1C

Para determinar a quantidade de divisores positivos do 

número 3 2 34 .12 .15m = , devemos obter sua fatoração em primos: 
3 2 3 2 3 2 2 3 6 4 2 3 3 10 5 34 .12 .15 (2 ) .(2 .3) .(3.5) 2 .2 .3 .3 .5 2 .3 .5= = = . Dessa forma, m  possui 

11.6.4 = 264 divisores positivos.

Como visto nos exemplos, podemos 

determinar a quantidade de divisores positivos 

de um número inteiro de maneira prática a partir 

da sua decomposição em números primos. Outra 

utilidade dessa maneira de escrever os inteiros 

positivos é a determinação do máximo divisor 

comum.

Se a  e b  são inteiros positivos e ( , )d a b= ,  

é claro que |d a . Assim a decomposição de d  

possui apenas primos constantes na fatoração de 

a , não podendo exceder os expoentes dessa fatoração. O mesmo deve acontecer 

em relação a b , de modo que a fatoração de d  em primos contém exatamente os 

primos comuns às fatorações de a  e de b  com o menor expoente que aparecer.

EXEMPLO 2A

Como 2 3108 2 .3=  e 3120 2 .3.5= , o máximo divisor comum entre 108 e 120 

tem em sua fatoração apenas os primos 2 e 3, que são os fatores comuns a ambos. 

Além disso, se o expoente do 2 fosse maior que 2, o resultado não seria divisor do 

108. O expoente para 3 será 1, que é o máximo possível para ser divisor de 120. 

Dessa forma, temos 2(108,120) 2 .3 12= = .

EXEMPLO 2B

Como 3 272 2 .3=  e 35 7.5= , temos (72,35) 1= .

at e n ç ã o !

Se n<-1, então -n é um inteiro maior que 1 e, 

assim, possui decomposição em números primos, 

de modo que npode ser escrito como produto de 

números primos vezes –1.
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Se pusermos os números primos em ordem crescente e escrevermos 1 2p = ,  

2 3p = , 3 5p =  e assim sucessivamente, podemos dizer que todo número possui 

uma decomposição única da forma 1 2
1 2

1

... k
k

k

n p p paa a
¥

=

= =Õ , onde ka  é diferente de 

0 se |kp n , e igual a 0, caso contrário.

Dessa forma, se 
1

k
k

k

a pa
¥

=

=Õ  e 
1

k
k

k

b pb
¥

=

=Õ , vale dizer que 
1

( , ) k
k

k

a b pg
¥

=

=Õ , 

onde kg  é o mínimo entre ka  e kb .

É claro que muito mais se pode extrair da relação de divisibilidade e da 

decomposição em números primos. Continuaremos com esse assunto, dando-

lhe mais profundidade, vendo novos conceitos e revisitando outros. Por ora, 

encerramos essa primeira aula. Até breve.
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Olá a todos,

Continuamos nosso estudo de Teoria dos Números. Na aula 1, demos ênfase 

aos divisores de um número inteiro. Nesta aula 2, continuamos com o assunto, 

abordando também os seus múltiplos. Veremos alguns critérios de divisibilidade e 

como representar números em bases diferentes da base 10. 

Objetivos

•	 Dar prosseguimento ao estudo da divisibilidade
•	 Relacionar propriedades de divisibilidade e sistema decimal

AULA 2 Múltiplos
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TÓPICO 1 Mínimo Múltiplo Comum

Objetivos

•	 Definir e verificar as principais propriedades do 

mínimo múltiplo comum entre dois números

•	 Relacionar Mínimo Múltiplo Comum e Máximo Divisor 

Comum

Para os números inteiros positivos a  e b , vimos que |a b  quando 

=b aq  para algum inteiro q , caso em que dizemos que a  é um 

divisor de b , e b  é um múltiplo de a . O conjunto de múltiplos 

inteiros positivos do número a  é denotado por ( )M a  e é sempre ilimitado 

superiormente. 

Consequentemente podemos verificar, pela transitividade da relação de 

divisibilidade, que |a b  se, e somente se, Ì( ) ( )M b M a . Dessa relação, obtemos 

que se Î Ç( ) ( )c M a M b , então Ì Ç( ) ( ) ( )M c M a M b .

Definição 1: Dados os números inteiros positivos a  e b , dizemos que o núme-

ro m *
+Î  é o mínimo múltiplo comum e escrevemos = [ , ]m a b  quando:

(i) |a m  e |b m , ou seja, Î Ç( ) ( )m M a M b ;

(ii) se 1|a m  e 1|b m , então 1|m m , ou seja, m  é o menor número positivo com 

a propriedade (i).

EXEMPLO 1A: 

Como =(2) {2,4,6,8,10,...}M  e =(5) {5,10,15,20,25,....}M , vale [2, 5] = 10.

EXEMPLO 1B:

Observando que 7|721 , podemos dizer que [721, 7] = 721.

Uma vez que para os inteiros positivos a  e b  é sempre verdade que 

Î Ç( ) ( )ab M a M b , o conjunto dos múltiplos comuns a dois inteiros positivos nunca 
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é vazio e, como possui apenas números positivos, possui sempre um elemento 

mínimo, de onde podemos concluir que sempre existe [ , ]a b . 

Considerando os primos listados em ordem crescente (como no final da aula 

1) e as decomposições a
¥

=

=Õ
1

k
k

k

a p  e b
¥

=

=Õ
1

k
k

k

b p , vale w
¥

=

=Õ
1

[ , ] k
k

k

a b p , onde wk  é 

o máximo entre ak  e bk . De fato, se w
¥

=

=Õ
1

k
k

k

m p , vale |a m  e |b m . Além disso, 

qualquer múltiplo simultâneo de a  e b  deve conter todos os fatores primos das 

suas decomposições, fazendo com que o valor de m  seja o menor possível. 

EXEMPLO 2A:

Como = 2 236 2 3  e = 340 2 5 , vale = =3 2[36,40] 2 3 5 360 .

EXEMPLO 2B:

Quando dois números são primos entre si, eles não possuem fatores primos 

em comum. Assim sendo, seu mínimo múltiplo comum é igual ao produto dos dois. 

Por exemplo, = =[16,27] 16.27 432 .

Uma vez que para quaisquer números reais a  e b  vale mín a b{ , } + máx

a b{ , } = a b+ , é simples verificar que =( , ).[ , ] .a b a b a b , para quaisquer inteiros 

positivos a  e b . Assim, o algoritmo de Euclides fornece, também, uma maneira 

de encontrar o mínimo múltiplo comum entre dois números, como vemos a seguir.

EXEMPLO 3: 

Podemos determinar (60, 36) de acordo com o esquema:

	 60 = 36 + 24		  (60, 36) = (36, 24)

	 36 = 24 + 12		  (36, 24) = (24, 12)

	 24 = 2.12		  (24, 12) = 12

Assim, (60, 36) = 12, mas como =(60,36).[60,36] 60.36 , podemos escrever 

= =
60.36

[60,36] 180
12

.
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TÓPICO 2 Outras bases

Objetivo

•	 Escrever números inteiros em diversas bases

Observe que, ao escrevermos, por exemplo, o número 3272, estamos 

usando a base 10, o que significa que podemos representá-lo da 

seguinte forma:

= + + +3 2 1 03272 3.10 2.10 7.10 2.10 . 

Desde cedo aprendemos esse tipo de notação. Uma das consequências dessa 

notação é a propriedade que assegura que, para se multiplicar um número inteiro 

por 10, basta acresentar um 0 à direita do número. Neste tópico, veremos que é 

possível fazer o mesmo para qualquer base.

Teorema: Seja >1B  um número inteiro. Todo número inteiro positivo a  

pode ser expresso, de maneira única, na forma = + + +1 0...n
na r B r B r , com 

£ <0 kr B , para qualquer £ <0 k n . 

Demonstração: Comecemos dividindo a  por B , obtendo quociente 0q  e 

resto 0r . Assim, vale dizer que:

	 = +0 0a Bq r , com £ <00 r B .

	 Dividindo, então, 0q  por B , obtemos quociente 1q  e resto 1r . Assim, 

vale dizer também que:

	 = +0 1 1q Bq r , com £ <10 r B .

	 Note que >0 1q q . Repetindo o processo, podemos dividir 1q  por B , 

obtendo quociente 2q  e resto 2r , onde >1 2q q .

	 = +1 2 2q Bq r , com £ <20 r B .

	 Repetimos o processo até que = 0nq , o que fatalmente acontecerá, 
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EXEMPLO 1A:

Escreva 185 na base 7.

Solução:

Fazendo divisões sucessivas:

	 185 = 7.26 + 3

	 26 = 7.3 + 5.

	 Assim, temos 187 = 7.(7.3 + 5) + 3 = 2
73.7 5.7 3 (353)+ + =  

EXEMPLO 1B:

Escreva 2185 na base 5.

	 2185 = 437.5 + 0

	 437 = 87.5 + 2

	 87 = 17.5 + 2

uma vez que a sequência de quocientes é decrescente e formada apenas por nú-

meros não negativos.

	 Neste caso, teremos os dois últimos passos:

	 - - -= +2 1 1n n nq Bq r , com -£ <10 nr B .

	 - = + = + =1 .0n n n n nq Bq r B r r , com £ <0 nr B .

	 Por retrossubstituição, podemos fazer:

	 - - - -= + = +2 1 1 1n n n n nq Bq r Br r

	 - - - - - - -= + = + + = + +2
3 2 1 1 2 1 2( )n n n n n n n n nq Bq r B Br r r B r Br r

      - - - - - - - - -= + = + + + = + + +2 3 2
4 3 3 1 2 3 1 2 3( )n n n n n n n n n n nq Bq r B B r Br r r B r B r Br r

	 e assim sucessivamente até

	
- -

-

- -
-

= + = + + + + +

= + + + + +

2 3
0 1 1 1 3 2 1

1 2 2
1 3 2 1

( ... )

...

n n
n n

n n
n n

q Bq r B B r B r Br r r

B r B r B r Br r

	 E, por fim:				  

	 - -
-

-
-

= + = + + + + +

= + + + + +

1 2
0 0 1 2 1 0

1 2
1 2 1 0

( ... )

...

n n
n n

n n
n n

a Bq r B B r B r Br r r

B r B r B r Br r	

	 Assim, demonstramos a existência de tais coeficientes. 

	 Observe agora que 0r  é o resto da divisão de a  por B , sendo, portanto, 

unicamente determinado. Além disso, +1 0Br r  é o resto da divisão de a  por 2B , 

fazendo com que 1r  seja unicamente determinado. Uma repetição desse argumen-

to nos levará à unicidade da representação.

	 Por simplicidade, escrevemos = + + + =1 0 1 0... ( ... )n
n n Ba r B r B r r r r  e, como 

de costume, quando a base é omitida, é porque estamos usando 10.
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	 17 = 3.5 + 2

	 3 = 0.5 + 3

	 Por substituição, temos: 

	 = + = + + = + +287 17.5 2 (3.5 2).5 2 3.5 2.5 2
	 = + = + + + = + + +2 3 2437 87.5 2 (3.5 2.5 2).5 2 3.5 2.5 2.5 2

= + = + + + + = + + + + =3 2 4 3 2
52185 437.5 0 (3.5 2.5 2.5 2).5 0 3.5 2.5 2.5 2.5 0 (32220)

EXEMPLO 1C:

Passe 217 para a base 6

	 217 = 6.36 + 1

	 36 = 6.6 + 0 

	 6 = 1.6 + 0

	 1 = 0.6 + 1

	 Logo = 6217 (1001) .

Também podemos fazer o processo 

inverso, ou seja, transformar um número em 

uma base qualquer para a decimal, processo este 

que é feito de maneira ainda mais simples.

EXEMPLO 2:

Passe o número 8(432)  para a base 10.

Solução:

Vemos, pela definição, que 

	 = + + = + + =2
8(432) 4.8 3.8 2 4.64 24 2 292 .

EXEMPLO 3:

Independentemente da base > 2B , o número (121)B  é um quadrado perfeito, 

pois = + + = + + = +2 2 2 2(121) 1. 2. 1 2. .1 1 ( 1)B B B B B B , ou seja, o quadrado de um 

inteiro.

at e n ç ã o !

Em outras palavras, o teorema acima pode ser 

expresso por: 

Para cada par de números Î,a B , com >1B ,  

existe um único polinômio Î[ ]p x , com 

coeficientes menores que B  e não negativos tais 

que = ( )a p B .



TÓPICO 3 Congruência
Objetivos

•	 Estabalecer a notação de congruência

•	 Verificar as principais propriedades de congruência

Neste tópico, veremos uma maneira interessante de escrever o resto 

da divisão entre dois números. A notação que estabeleceremos 

será muito útil.

Definição 2: Dado o número inteiro positivo n , dizemos que os inteiros a  e b  

são congruentes módulo n , e representamos por º (mod )a b n  , quando -a b  é 

um múltiplo de n , ou seja:

º Û -(mod ) |a b n n a b

EXEMPLO 1:

Uma vez que 47 – 3 = 44, que é um múltiplo de 4, podemos escrever 

44 3(mod4)º . Podemos verificar também que º25 10(mod5) , º49 0(mod7)  e 

º50 2(mod6) .

 

Proposição 1: Se º (mod )a b n , então a  e b  deixam o mesmo resto na  

divisão por n .

Demonstração: Escrevendo = +1 1a nq r  e = +2 2b nq r , com £ <1 20 ,r r n  

e usando a definição, temos º Û - Û$ - =(mod ) | ;a b n n a b q a b nq .  

Assim, por substituição, obtemos + - + =1 1 2 2( ) ( )nq r nq r nq , ou seja, 

- = - + = - +1 2 1 2 1 2( )r r nq nq nq n q q q , de onde concluímos que -1 2|n r r , e, 

como £ <1 20 ,r r n , obtemos - =1 2 0r r , isto é, os restos são iguais. Ressalta-se 

aqui que a recíproca dessa proposição também é válida.
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Relembramos que a divisão do inteiro a  pelo inteiro positivo n  deixa 

resto não negativo e sempre menor que n . Dessa forma, se r  é tal resto, 

necessariamente £ <0 r n . Podemos, então, resumir essa informação em notação: 

" Î $ Î - º, {0,1,..., 1}; (mod )a m n a m n .

Teorema: Dado o inteiro positivo n , a relação de congruência módulo n  satis-

faz as seguintes propriedades:

(i) º (mod )a a n , para qualquer inteiro a , ou seja, é uma relação reflexiva;

(ii) se º (mod )a b n , então º (mod )b a n , para quaisquer inteiros a  e b , ou 

seja, é uma relação simétrica;

(iii) se º (mod )a b n  e º (mod )b c n , então º (mod )a c n , para quaisquer in-

teiros a , b  e c , ou seja, é uma relação transitiva;

A demonstração deste teorema é imediata, 

uma vez que, como provado anteriormente, dois 

números são congruentes módulo n  quando 

deixam o mesmo resto na divisão por n .

Vejamos agora que a relação de congruência 

é preservada por somas e produtos. 

Proposição 2: Se º (mod )a b n  e º (mod )c d n , então + º + (mod )a c b d n  e 

º (mod )ac bd n . 

Demonstração: Por definição º Þ -(mod ) |a b n n a b . Analogamente 

º Þ -(mod ) |c d n n c d . Sabemos que a soma de dois múltiplos de n  é também 

um múltiplo de n , ou seja, - + -a b c d  é um múltiplo de n , isto é, 

+ - +|( ) ( )n a c b d  e, assim, + º + (mod )a c b d n .

Se -|n a b , ocorre também que -|( )n a b c . Da mesma forma, se -|n c d , 

-|( )n c d b . Usando argumento semelhante, concluímos que, se -|n a b , 

vale dizer também que - + -( ) ( )a b c c d b  é um múltiplo de n , mas 

- + - = - + - = -( ) ( )a b c c d b ac bc bc bd ac bd , ou seja, -|n ac bd , de onde 

obtemos º (mod )ac bd n .

Como conclusão da proposição acima, podemos afirmar que a congruência 

não apenas é uma maneira simplificada de dizer que dois números possuem o mesmo 

resto na divisão por outro (e assim também uma maneira alernativa de dizer que 

g u a r d e  b e m  i s s o !

Uma relação reflexiva, simétrica e transitiva é 

chamada de relação de equivalência.
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um número é múltiplo do outro), mas também que é uma relação compatível com 

as operações de adição e de multiplicação. Obviamente, como - = + -( 1)a b a b ,  

concluímos que, também com a subtração, podemos operar com números 

congruentes sem alterar essa propriedade. Além disso, como a potência com 

expoente natural consiste de produto com fatores repetidos, podemos afirmar que 

se º (mod )a b n , então º (mod )k ka b n . Vejamos agora alguns exemplos de como 

essa propriedade pode ser aplicada para simplificar vários problemas.

EXEMPLO 2A:

Se o resto da divisão do número k  por 5 é 2, qual o resto da divisão de 

+4 13k  por 5?

Solução:

Observe que a condição inicial é equivalente a º 2(mod5)k  e, como 

º4 4(mod5) , podemos, pela conservação do resto na multiplicação, afirmar 

que º4 8(mod5)k . Por fim, como º13 3(mod5) , somamos para obter 

+ º4 13 11(mod5)k . Assim, o resto da divisão de +4 13k  por 5 é o mesmo que o 

de 11 por 5. A resposta é, portanto, 1.

EXEMPLO 2B:

Mostre que não existe inteiro a  tal que º2 2(mod3)a .

Solução:

Em relação à congruência módulo 3, temos três possibilidades:

•	se º 0(mod3)a , então º2 20 (mod3)a , ou seja, º2 0(mod3)a  e, claro, 

ºa 2(mod3) ;

•	se º1(mod3)a , então º2 21 (mod3)a , ou seja, º2 1(mod3)a  e, claro, 

ºa 2(mod3) ;

•	por fim, se º 2(mod3)a , então º2 22 (mod3)a , ou seja, º2 1(mod3)a  e, 

claro, ºa 2(mod3) ;

Assim, esgotam-se todas as possibilidade, e podemos afirmar que a equação 

º2 2(mod3)a  não possui soluções em  .

EXEMPLO 2C: 

Uma vez que º6 1(mod5) , podemos dizer que º406 1(mod5) . Geralmente, 

º6 1(mod5)k , para qualquer inteiro positivo k .

EXEMPLO 3:

Determine o algarismo das unidades de 1414 .
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Solução:

Podemos perceber diretamente que o algarismo das unidades de um número, 

na representação decimal, é o resto da divisão deste número por 10. Inicialmente, 

observamos que º14 4(mod10) .  Assim, º14 1414 4 (mod10) , mas = º24 16 6(mod10)  

e = º3 24 4 .4 6.4(mod10) , ou seja, º34 4(mod10) . Geramos, então, uma sequência 

periódica, sendo º4 4(mod10)n  se n  é ímpar, e º4 6(mod10)n  se n  é par. Desta 

feita, obtemos º144 6(mod10)  e, consequentemente, o algarismo das unidades de 
1414  é 6.

Outras informações a respeito de congruência serão discutidas nas próximas 

aulas, nas quais enunciaremos resultados importantes e suas respectivas aplicações.
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TÓPICO 4 Critérios de 
divisibilidade
Objetivo

•	 Analisar critérios segundo os quais um número divide 

o outro, sem apelar para a divisão direta

Usando a base 10, agora veremos como reconhecer múltiplos de 

alguns números sem ter que recorrer à divisão. Revisitaremos, 

então, algumas regras, justificando-as. 

Divisibilidade por 2: Um número é divisível por 2 se, e somente se, quando 

escrito na base 10, terminar em um algarismo par, ou seja, em 0, 2, 4, 6 ou 8.

Demonstração: Dado o número a , podemos escrevê-lo na base 10 da forma 

= 1 0...na r r r , significando -= + + + = + + +1
1 0 1 0.10 ... .10 10( .10 ... )n n

n na r r r r r r . 

Fazendo -= + +1
1.10 ...n

nk r r , temos, então = + = +0 010 2.5a k r k r . Assim, a  

e 0r  deixam o mesmo resto na divisão por 2.

EXEMPLO 1:

Os números 23472 e 8008 são divisíveis por 2, enquanto 98221 e 507 não são.

Observação: 

É importante ressaltar que os critérios descritos neste tópico estão sendo 

enunciados tomando a representação do número na base 10; quando a base for 

diferente, devem-se fazer os devidos ajustes. O número 5(324) , por exemplo, é 

ímpar, enquanto o número 7(11)  é par. (Verifique).
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Divisibilidade por 3: Um número é divisível por 3 se, e somente se, a soma dos 

seus algarismos na representação em base 10 for divisível por 3. 

Demonstração: Observe inicialmente que º10 1(mod3) , de onde podemos 

concluir que º10 1(mod3)k  para qualquer natural k , de onde também obte-

mos º.10 (mod3)kr r . Dado o número a , podemos escrevê-lo na base 10 da for-

ma = 1 0...na r r r , significando = + + +1 0.10 ... .10n
na r r r . Pelas propriedades da 

congruência, temos º + + +1 0... (mod3)na r r r . Assim, a  e + + +1 0...nr r r  dei-

xam o mesmo resto na divisão por 3.

EXEMPLO 2:

Para saber se o número 276534 é divisível 

por 3, podemos somar os algarismos que o 

compõem: 2 + 7 + 6 + 5 + 3 + 4 = 27. Como 27 

é múltiplo de 3, concluímos que 276543 também 

é múltiplo de 3. Realizando teste semelhante, 

podemos afirmar que 89332 não é múltiplo de 3. 

Divisibilidade por 4: Um número é divisível por 4 se, e somente se, os dois 

últimos algarismos da sua representação na base 10 formarem, na ordem em que 

aparecerem, um número divisível por 4.

Demonstração: Dado o número a , podemos escrevê-

lo na base 10 da forma = 1 0...na r r r , significando 
-= + + + = + + + +2

1 0 2 1 0.10 ... .10 100( .10 ... ) 10n n
n na r r r r r r r . 

Como 100 é divisível por 4, e fazendo -= + +2
2.10 ...n

nk r r , temos 

= + = + +0 1 0100 4.25 10a k r k r r . Assim, a  e +1 010r r  deixam o mesmo resto 

na divisão por 4.

EXEMPLO 3:

Uma vez que 32 é múltiplo de 4, podemos dizer que 399287532 é múltiplo 

de 4. 

at e n ç ã o !

Como º10 1(mod9) , o critério de divisibilidade 

por 3, descrito acima, também é válido para 

divisibilidade por 9, ou seja, para verificarmos se 

um número é múltiplo de 9, testamos a soma dos 

seus algarismos. Assim, por exemplo, podemos 

afirmar que 61758423 é múltiplo de 9, porque a 

soma de seus algarismos é um múltiplo de 9.
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Observação:

Como 1000 = 8.125, podemos proceder de maneira análoga ao visto acima 

para afirmar que um número é divisível por 8 quando o número formado pelos três 

últimos algarismos de sua representação decimal for um múltiplo de 8. 

Divisibilidade por 5: Um número é divisível por 5 se, e somente se, quando 

escrito na base 10 terminar em 0 ou 5.

Demonstração: Dado o número a , podemos escrevê-lo na base 10 da forma 

= 1 0...na r r r , significando -= + + + = + + +1
1 0 1 0.10 ... .10 10( .10 ... )n n

n na r r r r r r . 

Fazendo -= + +1
1.10 ...n

nk r r , temos, então, = + = +0 010 5.2a k r k r . Assim, a  

e 0r  deixam o mesmo resto na divisão por 5.

EXEMPLO 4:

Os números 9355 e 7530 são múltiplos de 5, enquanto 49873 e 541 não são.

Observação:

Os critérios acima podem ser combinados para se verificar se um número 

é múltiplo de 6, de 10 ou de 15. Por exemplo, como 15 = 3.5, um número será 

divisível por 15 se, e somente se, for divisível por 3 e por 5. Além disso, verifica-se 

facilmente que 660 é divisível por 2, por 3 e por 5, sendo, portanto, um múltiplo 

de 30.

Há critérios semelhantes aos apresentados 

até aqui que podem ser aplicados para se testar 

se um número é múltiplo de 7, de 11 ou de 

outros primos. Em seguida, apresentaremos 

um exemplo de como podemos verificar se um 

número é múltiplo de 7, entretanto, como se 

verá, a divisão direta pode ser meio mais prático 

para essa verificação.

EXEMPLO 5:

Como º10 3(mod7) , podemos, multiplicando por 3 e observando o resto na 

divisão por 7, escrever a sequência:

	 º210 2(mod7) ;

	 º310 6(mod7) ;

	 º410 4(mod7) ;

s a i b a  m a i s !

No site http://www.somatematica.com.br/

fundam/critdiv.php, você poderá rever os 

critérios de divisibilidade apontados e conhecer 

ainda outros, sobre os quais falaremos a seguir. 

Bom estudo!
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	 º510 5(mod7) , e assim sucessivamente. Usando esses resultados, podemos 

verificar se 3801 é divisível por 7. Façamos = + +3 23801 3.10 8.10 1 . Assim, 

º + +3801 3.6 8.2 1(mod7) , e como 3.6 + 8.2 + 1 = 35, que é um múltiplo de 7, 

podemos dizer que 3801 também é um múltiplo de 7. Pode-se repetir o processo e 

verificar que o resto da divisão de 4986 por 7 é 2.

EXEMPLO 6:

Observando inicialmente que 1001 = 7.11.13, temos º1001 0(mod7) , ou 

seja, º-1000 1(mod7) . Podemos verificar se um número é divisível por 7, 11 ou 

13 através de um teste que será descrito aqui com o número 124397. Uma vez que 

= +124397 124.1000 397 , temos º - +124397 124.( 1) 397(mod7) . Agora, como 

397 – 124 = 273, que é um múltiplo de 7, afirmamos que 124397 é múltiplo de 7. 

Como 11|273 , podemos dizer, pela mesma ideia, que 124397 não é múltiplo de 11.
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AULA 3 Alguns teoremas 
sobre congruência

Olá aluno(a),

Nesta nossa terceira aula, estudaremos detalhadamente a congruência de números 

inteiros, tratando, por meio de enunciado, demonstração e consequências, de 

três importantes resultados, os conhecidos teoremas de Wilson, Fermat e Euler.

Objetivo

•	 Complementar o estudo de congruência, dando-lhe mais aprofundamento
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TÓPICO 1 Teorema de Wilson

Objetivos

•	 Apreender os conceitos de cultura nacional e cultura 

organizacional

•	 Entender os planos ou níveis da cultura organizacional

•	 Conhecer técnicas de desenvolvimento organizacional

Na última aula, estabelecemos que a notação º (mod )a b n  para 

os inteiros a , b  e n  indica que a  e b  deixam o mesmo resto 

na divisão por n . Por exemplo, é verdade que º25 1(mod4)  e 

º19 4(mod5) , enquanto º 0(mod )a n  é equivalente a |n a .

Neste primeiro tópico, discutiremos algumas propriedades sobre congruência 

e enunciaremos alguns resultados relevantes.

Comecemos com algumas definições simples.

Definição 1: O conjunto = 0 1{ , ,..., }kS r r r  é um sistema completo de resíduos 

módulo n  se

    (i) º Û =(mod )i jr r n i j , ou seja, dois elementos distintos de S  deixam res-

tos distintos na divisão por n ;

    (ii) para todo inteiro a , tivermos º (mod )ia r n  para algum Îir S .

EXEMPLO 1A: 

O conjunto {5, 11, 22, 33, 44} é um sistema completo de resíduos módulo 5.

EXEMPLO1B:

Para qualquer inteiro >1n , o conjunto -{0,1,..., 1}n  é um sistema completo 

de resíduos módulo n .
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Algo que podemos verificar é que qualquer sistema completo de resíduos 

módulo n  possui exatamente n  elementos. De fato, se = 0 1{ , ,..., }kS r r r  é um sistema 

completo de resíduos módulo n , cada um dos números do conjunto -{0,1,..., 1}n  

é congruente a um dos Îir S . Logo, £k n . Reciprocamente, cada elemento de S  

é congruente a um número de -{0,1,..., 1}n , que é, também, um sistema completo 

de resíduos módulo n, de onde obtemos que £n k , o que resulta em =k n .

Definição 2: Dado o número inteiro a , dizemos que - Î1a  é um inverso de 

a  módulo n  se - º1. 1(mod )a a n .

EXEMPLO 2A:

Como 7.3 = 21 e 21 deixa resto 

1 na divisão por 5, vale º7.3 1(mod5) ,  

e podemos dizer que 3 é um inverso de 7 módulo 

5. 

EXEMPLO 2A:

Como 40 é múltiplo de 8, vale 

º40. 0(mod8)b , para qualquer inteiro b , de 

onde concluímos que 40 não possui inverso 

módulo 8. Mais geralmente, nenhum múltiplo 

de n  possui inverso módulo n .

Podemos investigar a existência de 

inversos módulo n  de acordo com o que segue.

Proposição 1: O número a  possui inverso módulo n  se, e somente se, 

=( , ) 1a n .

Demonstração: O inverso módulo n  é uma solução para a equação 

º1(mod )ax n . Supondo que exista tal solução, deve haver um inteiro y  tal 

que - =1ax ny , ou seja, - =1ax ny , que é uma equação diofantina linear nas 

variáveis x  e y , que, de acordo com o exposto na aula 1 (tópico 3), possui 

solução se, e somente se, ( , )|1a n , o que vale apenas quando =( , ) 1a n .

at e n ç ã o !

Na definição 2, usamos o artigo indefinido, pois, 

caso exista, o inverso módulo n  de um número 

não é único, por exemplo, º7.3 1(mod5)  e 

º7.8 1(mod5) , de onde podemos dizer que 8 

também é um inverso de 7 módulo 5. Entretanto, 

como veremos adiante, os inversos módulo n  de 

um mesmo número são congruentes módulo n .
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EXEMPLO 3A:

Os números 2, 4, 5, 6, 8 e 10 não possuem inverso módulo 10. 

EXEMPLO 3B:

Os números 1, 3, 7 e 9 são inversos módulo 10 de 1, 7, 3 e 9, respectivamente.

Exemplo 3c:

Para o número primo p , todos os números 1, 2, 3, -1p  possuem inverso 

módulo p .

Proposição 2: Se b  e c  são inversos de a  módulo n , então º (mod )b c n .

Demonstração: Pela definição, a hipótese diz que º1(mod )ab n  e 

º1(mod )ac n . Subtraindo essas duas congruências, obtemos - º( ) 0(mod )a b c n ,  

ou seja, -| ( )n a b c , mas, como =( , ) 1a n  é condição necessária para existir o in-

verso de a  módulo n , obtemos -|n b c , que conclui a demonstração.

Assim, quando um número a  possuir inverso módulo n , a quantidade de 

inversos é infinita, contudo, dentro de um sistema completo de resíduos módulo n ,  

esse inverso é único.

Especificamente, se p  é um número primo, então a  será seu próprio inverso 

módulo p  se, e somente se, º1(mod )a p  ou º-1(mod )a p , pois, se º2 1(mod )a p ,  

então vale - = + -2| 1 ( 1).( 1)p a a a , ou seja, +| 1p a  ou -| 1p a , casos que 

implicam º-1(mod )a p  e º1(mod )a p , respectivamente. A recíproca é imediata.

EXEMPLO 4:

Sabemos que o conjunto ={0,1,...,10}S  é um sistema completo de resíduos 

módulo 11. O número 0, obviamente, não possui inverso módulo 11. Como 11 é primo, 

todos os outros possuem inverso módulo 11, único no conjunto, e apenas 1 e 10 são 

seus próprios inversos. Assim, 2 e 6 são inversos 

módulo 11, o mesmo acontecendo com os pares 3 

e 4; 5 e 9; e 7 e 8.

Podemos, agora, enunciar e ter uma 

demonstração simples de um teorema que leva o 

nome do matemático inglês John Wilson (1741 – 

1793).

s a i b a  m a i s !

No site http://www.dec.ufcg.edu.br/biografias/

JohnWiso.html, você pode obter mais informações 

sobre o matemático John Wilson. Confira!
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Teorema de Wilson 1: Se p  é primo, então - º-( 1)! 1(mod )p p .

Demonstração: O caso = 2p  é de imediata verificação. Entre os números 

-1,2,..., 1p , apenas 1 e -1p  são seus próprios inversos módulo p . Os demais, 

-2,..., 2p , podem ser agrupados em pares cujo produto é congruente a 1 mó-

dulo p . Isso se deve ao fato de que eles possuem inverso módulo p , diferen-

te de si mesmo e pertencente ao conjunto, ou seja, se Î -{2,..., 2}a p , existe 

Î -{2,..., 2}b p , com ¹b a , tal que º1(mod )ab p . Se multiplicarmos todas es-

sas congruências sem repetir os números, obteremos - º2.3.....( 2) 1(mod )p p .  

Se multiplicarmos esta última congruência pela imediata - º-1 1(mod )p p , ob-

teremos - - º-2.3.....( 2).( 1) 1(mod )p p p , isto é, - º-( 1)! 1(mod )p p .

Teorema de Wilson 2: Se - º-( 1)! 1(mod )n n , então n  é primo.

Demonstração: Vamos supor que - º-( 1)! 1(mod )n n . Se <a n , aparece 

a  no cálculo de -( 1)!n , de onde concluímos que - º( 1)! 0(mod )n a . Se ti-

vermos |a n , da hipótese - +|( 1)! 1n n  e da transitividade da divisibilidade, 

- +|( 1)! 1a n , ou seja, - + º( 1)! 1 0(mod )n a . Subtraindo - + º( 1)! 1 0(mod )n a  

e - º( 1)! 0(mod )n a , obtemos º1 0(mod )a , mas isso somente é possível se 

=1a . Assim, 1 é o único inteiro positivo menor que n  que é divisor de n , de 

onde concluímos que n  é primo.

Poderíamos ter enunciado que “ - º-( 1)! 1(mod )n n  se, e somente se, n  é 

primo”. A fragmentação foi feita apenas por caráter didático. Com isso, obtemos um 

não muito objetivo teste de primalidade. 

EXEMPLO 5A:

Mostre que, se n  é um múltiplo de 5, o resto da divisão de 

+ + + +( 1)( 2)( 3)( 4)n n n n  por 5 é 4.

Solução:

Como º 0(mod5)n , então + º1 1(mod5)n , + º2 2(mod5)n ,  

+ º3 3(mod5)n  e + º4 4(mod5)n . Multiplicando as quatro 

congruências, obtemos + + + + º( 1)( 2)( 3)( 4) 1.2.3.4(mod5)n n n n , isto é, 

+ + + + º( 1)( 2)( 3)( 4) 4!(mod5)n n n n , mas, como 5 é primo, temos, pelo teorema 

de Wilson, - º-(5 1)! 1(mod5) . Como o resto deve ser um número positivo e 

- º1 4(mod5) , obtemos que o resto da divisão de + + + +( 1)( 2)( 3)( 4)n n n n  por 5 

é 4.
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EXEMPLO 5B: 

O produto de uma sequência de 16 números inteiros consecutivos pode ou não 

possuir um múltiplo de 17. Caso possua, o produto de todos eles deixará resto 0 na 

divisão por 17. Do contrário, teremos um sistema completo de resíduos módulo 17, e, se 

multiplicarmos todos eles, obteremos um número que, quando dividido por 17, deixa 

o mesmo resto que 16! = (17 – 1)!, mas, pelo teorema de Wilson, esse resto é congruente 

a -1. Assim, o produto de dezesseis números inteiros consecutivos deixa resto 0 ou 

16 na divisão por 17, de modo que a equação + + + º( 1)( 2)...( 15) 10(mod17)n n n n  

não possui solução.

EXEMPLO 6:

Como resultado embutido na demonstração do teorema de Wilson, podemos 

afirmar que, se p  é primo, então - º( 2)! 1(mod )p p , de modo que - =(11 2)! 9!  

deixa resto 1 na divisão por 11. Nesses termos, concluímos que -9! 1  é um múltiplo 

de 11. Analogamente -23|21! 1.
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TÓPICO 2 Teorema de Fermat
Objetivos

•	 Complementar o estudo sobre resíduos

•	 Enunciar e estudar as consequências do Pequeno 

Teorema de Fermat

Vamos aqui nos aproveitar dos resultados obtidos no tópico anterior 

para provar um resultado que leva o nome do matemático francês 

Pierre de Fermat (1601 – 1665). Um resultado forte que Fermat 

conjecturou e somente foi provado na década de 1990 pelo matemático inglês 

Andrew Wiles (1953 –  ), diz que, se > 2n  é um inteiro, a equação + =n n nx y z  

não possui solução não trivial. A demonstração desse fato envolveu esforços de 

muitos pesquisadores, construções sofisticadas e associações de muitos ramos da 

Matemática. Por comparação, o resultado que segue é enunciado, em muitos textos, 

como o Pequeno Teorema de Fermat, mas ele tem consequências muito interessantes 

na Teoria dos Números.

Teorema de Fermat: Se p  é um primo que não divide a , então 
- º1 1(mod )pa p .

Demonstração: Para começar, = -{0, ,2 ,3 ,...,( 1) }S a a a p a  é um sistema 

completo de resíduos módulo p . De fato, º (mod )ab ac p  e =( , ) 1a p  conduzem 

a º (mod )b c p , mas Î -, {0,1,2,...,( 1)}b c p , que é um sistema completo de 

resíduos módulo p , logo =b c . Assim, os números -,2 ,3 ,...,( 1)a a a p a  deixam 

restos -1,2,...,( 1)p  na divisão por p , não necessariamente nessa ordem. Temos, 

então, a congruência:

	 - º -.2 .3 .....( 1) 1.2.....( 1)(mod )a a a p a p p , que pode ser simplificada por 

	 - - º -1.( 1)! ( 1)!(mod )pa p p p .

Mas p  não divide -( 1)!p , de onde concluímos que - =( ,( 1)!) 1p p  e os fatores 

-( 1)!p  podem ser “cancelados” da última congruência, de onde obtemos a conclusão:

	 - º1 1(mod )pa p .

Com a hipótese de que p  não é um divisor de a , temos, então, - º1 1(mod )pa p .  

Se multiplicarmos a congruência pela imediata º (mod )a a p , obteremos 

º (mod )pa a p . Agora, se |p a , então - -1| .( 1)pp a a , ou seja, -| pp a a , e obtemos 

o mesmo resultado º (mod )pa a p . Assim, podemos enunciar o seguinte resultado, 
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sem hipóteses de divisibilidade:

Proposição: Se p  é primo e a  é um inteiro positivo qualquer, então 

º (mod )pa a p .

EXEMPLO 1A:

Encontre o resto da divisão de 1202  por 13. 

Solução:

Já que 13 é primo e não é um divisor de 2, podemos usar o Teorema de 

Fermat para concluir que - º13 12 1(mod13) , ou seja, º122 1(mod13) . Daí obtemos 

( )1012 102 1 (mod13)º , isto é, 1202 1(mod13)º  e, assim, o resto procurado é 1.

EXEMPLO 1B:

Encontre o resto da divisão de 1105  por 19. 

Solução:

Observe que não podemos usar exatamente o mesmo raciocínio do exemplo 

1a, pois 18 não é um divisor de 110, mas podemos escrever 110 = 18.6 + 2 e, assim, 

( )=
6110 18 25 5 .5 . Já que 19 é primo e não é um divisor de 5, podemos usar o Teorema 

de Fermat para concluir que - º19 15 1(mod19) , ou seja, º185 1(mod19) . Daí obtemos 

( ) º
618 65 1 (mod19) , isto é, º1085 1(mod19) . Alie-se a isso a congruência facilmente 

verificável º25 6(mod19)  e concluímos º1105 6(mod19) . O resto procurado é, 

portanto, 6.
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TÓPICO 3 Teorema de Euler
Objetivos

•	 Definir a função totiente de Euler e estudar suas 

características

•	 Generalizar o teorema de Fermat para todos os inteiros

O objeto principal deste tópico é um resultado devido ao matemático 

suíço Leonhard Euler (1707 – 1783) e trata de uma generalização 

do teorema de Fermat apresentado anteriormente. Antes de 

enunciá-lo, definiremos uma função especial. A primeira de uma série de funções 

– as funções aritméticas – que serão estudadas em uma aula posterior

Definição 2: A função f , chamada de totiente de Euler, associa a cada 

número inteiro positivo n  a quantidade de inteiros positivos relativamente pri-

mos com n . Mais precisamente, f ®:{1,2,...} {1,2,...}, definida por f( )n , é a 

quantidade de elementos do conjunto { ;0  e ( , ) 1}m m n m nÎ < £ = .

 

EXEMPLO 1A:

Como os números inteiros positivos que são menores que 12 e relativamente 

primos com 12 são 1, 5, 7 e 11, vale f =(12) 4 . Analogamente, os números inteiros 

positivos que são relativamente primos com 15 são 1, 2, 4, 6, 7, 8, 11, 13 e 14, de 

modo que f =(15) 9 .
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EXEMPLO 1B:

Para qualquer primo p , todos os inteiros positivos menores que p  são 

relativamente primos com p . Assim, vale f = -( ) 1p p .

EXEMPLO 1C:

A equação f =( )n n  possui apenas a solução =1n , pois, do contrário, 

f <( )n n .	

EXEMPLO 1D:

Podemos determinar f(100)  por meio de um crivo semelhante ao de 

Erastótenes. Para tanto, da lista dos números menores que 100, riscamos todos 

aqueles que sejam múltiplos dos mesmos divisores primos de 100, a saber: 2 e 5. Se 

listarmos os inteiros positivos de 1 a 100 e eliminarmos os múltiplos de 2, sobram 

apenas 50 números. Nesse primeiro passo, já foram eliminados os múltiplos de 5 

que terminam em 0, ficando para serem eliminados, no segundo passo, apenas os 

que terminam em 5. São eles: 5, 15, 25, ..., 95, num total de 10. Assim, riscando 

esses 10 números dos 50 que haviam restado ao 

final do primeiro passo, sobram 40, que é o valor 

de f(100) . 

Um raciocínio semelhante ao empregado 

no exemplo 1d pode ser usado para determinar 

o valor de f( )n , entretanto esse procedimento 

pode ser bem trabalhoso. Quando estudarmos as 

funções aritméticas, aprenderemos um método 

mais rápido para essa determinação. Por ora, 

ficamos com o que pode ser obtido diretamente 

da definição.

Definição 3: Dado o inteiro positivo n , o conjunto f= 1 ( ){ ,..., }nS r r  é um 

sistema reduzido de resíduos módulo n  se os elementos forem dois a dois incon-

gruentes módulo n  e forem todos relativamente primos a com n . Mais formal-

mente, f= 1 ( ){ ,..., }nS r r  é um sistema reduzido de resíduos módulo n  quando:

	 (i) = "( , ) 1,ir n i ;

	 (ii) º Þ =(mod )i jr r n i j .

at e n ç ã o !

Vimos, no tópico 1, que um número possui 

inverso módulo n  se, e somente se, ele e n  

forem relativamente primos. Podemos usar essa 

propriedade para definir, de forma equivalente, 

que f( )n  é a quantidade de inteiros positivos 

menores que n  que possuem inverso módulo n .
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Assim, uma maneira de obter um sistema reduzido de resíduos módulo 

n  é retirar de um sistema completo de resíduos todos aqueles que não forem 

relativamente primos com n . De modo a abranger todas as possibilidades, da 

maneira como foi definido, um sistema reduzido de resíduos módulo n  deve ter 

f( )n  elementos.

EXEMPLO 2A:

O conjunto ={1,5,7,11}S  é um sistema reduzido de resíduos módulo 12. 

EXEMPLO 2B:

Para qualquer primo p , o conjunto -{1,2,..., 1}p  é um sistema reduzido de 

resíduos módulo p .	

Agora vamos ao objetivo principal do tópico.

Teorema de Euler: Para os inteiros relativamente primos a  e n , vale 
f º( ) 1(mod )na n .

Demonstração: Essencialmente, a prova é a mesma que a feita do Teorema 

de Fermat. Aqui apenas ajustaremos para um sistema reduzido de resíduos. Com-

ecemos verificando que, se f= 1 ( ){ ,..., }nS r r  é um sistema reduzido de resíduos 

módulo n , o conjunto f= 1 ( )' { . ,..., . }nS a r a r  também o é. Para tal, basta obser-

var que, sendo todos os ir  relativamente primos com n e o mesmo acontecendo 

com a , então =( . , ) 1ia r n . Além disso, se º. . (mod )i ja r a r n , mais uma vez ape-

lando para =( , ) 1a n , obtemos º (mod )i jr r n . Entretanto, dentro de um sistema 

de resíduos, isso somente ocorre quando =i jr r . Observado isso, fica claro que o 

produto dos elementos de S  deixa o mesmo resto da divisão por n  que o produto 

dos elementos de 'S , ou seja, f fº1 2 ( ) 1 ( ). . . ..... . ..... (mod )n na r a r a r r r n , que é o mesmo 

que:

	 f
f fº( )

1 2 ( ) 1 ( ). . ..... ..... (mod )n
n na r r r r r n

E como f =1 ( )( , ..... ) 1nn r r , o fator f1 ( )..... nr r  pode ser “cancelado” na con-

gruência para obtermos f º( ) 1(mod )na n , que é o resultado desejado.

Bastar fazer n  primo e observar o exemplo 1b para obter o Teorema de 

Fermat como um corolário do Teorema de Euler.

EXEMPLO 3A:

Encontre o algarismo das unidades de 1007 , quando representado na base 10.
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Solução:

O algarismo das unidades, no sistema decimal, nada mais é que o resto da 

divisão do número por 10. Observe que f =(10) 4  e =(7,10) 1 , daí, pelo Teorema 

de Euler, º47 1(mod10) , de onde concluímos que ( )25100 4 257 7 1 (mod10)= º . 

Assim, a representação decimal de 1007  termina em 1.

EXEMPLO 3B

Podemos, também usando o Teorema de Euler, determinar o algarismo 

das dezenas de 4221 , já que os dois algarismos mais à direita na representação 

decimal de um número formam o resto da divisão do número por 100. Vimos que 

f =(100) 40  e, além disso, =(100,21) 1 . Logo º4021 1(mod100) . Multiplicando 

essa congruência por 221 , obtemos º42 221 21 (mod100) . Mas =221 441 . Assim, 

º4221 41(mod100)  e o algarismo das dezenas é 4.
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AULA 4 Funções aritméticas 
- parte I

Caro(a) aluno(a),

Nesta nossa quarta aula, daremos continuidade ao estudo de funções especiais 

que expressam alguma propriedade aritmética do número e cujo domínio é o 

conjunto dos inteiros positivos. De destaque, temos a função f  de Euler, a qual 

já começamos a estudar na aula 3, a função m  de Möbius, e as funções t  e s .

No decorrer desta aula, apresentaremos as funções e algumas de suas principais 

propriedades, ilustraremos com exemplos e estabeleceremos relações entre elas. 

Na aula 5, daremos continuidade a esse estudo.

Objetivos

•	 Conhecer as funções aritméticas mais importantes
•	 Obter meios diretos de determinação de imagem por essas funções
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TÓPICO 1 As funções t  e s

Objetivos

•	 Reconhecer as funções aritméticas t  e s
•	 Definir função multiplicativa

Começaremos o nosso estudo de 

funções aritméticas apresentando 

a função que associa a cada 

número inteiro positivo a quantidade dos seus 

divisores inteiros positivos. Uma maneira de 

contar elementos de um conjunto é somar 1 para 

cada vez que esse elemento aparecer. Assim, 

podemos enunciar:

Definição 1: Denotaremos pela letra grega 

t  (tau) a função que, para cada inteiro posi-

tivo n , associa o valor t =å
|

( ) 1
d n

n . Equiva-

lentemente, podemos colocar t =( ) # ( )n D n , 

onde # representa a quantidade de elementos 

do conjunto.

EXEMPLO 1A:

Como os divisores de 20 são 1, 2, 4, 5, 10 e 20, vale que t =(20) 6 .

EXEMPLO 1B:

Decorre diretamente da definição de número primo que t =( ) 2p , para 

qualquer primo p .

at e n ç ã o !

De acordo com o que estudamos no começo da 

primeira aula, os divisores inteiros de um números 

sempre vêm aos pares. Desse modo, basta estudar 

os divisores positivos, pois, se 3 é divisor de um 

número, “ganhamos” automaticamente o –3. 

Uma formulação mais precisa da definição ao lado 

seria t

>

=å
|

0

( ) 1
d n

d

n . Por simplicidade (para evitar 

excesso de notação), consideraremos a partir 

daqui apenas os divisores positivos.
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EXEMPLO 1C:

A tabela abaixo lista os valores de t( )n  para os 12 primeiros inteiros positivos.

n 1 2 3 4 5 6 7 8 9 10 11 12

t( )n 1 2 2 3 2 4 2 4 3 4 2 6

Do Teorema Fundamental da Aritmética, todo número inteiro positivo 

maior que 1 pode ser escrito de forma única como produto de primos. Seja, então, 
aa a= 1 2

1 2. ..... k
kn p p p . Pela transitividade da 

divisibilidade, um divisor de n  tem fatoração 

em primos que aparecem na fatoração de n , de 

modo que podemos listar todos os divisores de 

um número pela escolha dos expoentes. Para cada 

ip , o expoente pode variar de 0 até ai , sendo, 

ao todo, a +1i  possibilidades. Pelo Princípio 

Fundamental da Contagem (conforme estudado em 

Matemática Básica II), a quantidade de divisores 

de n  será, então, t a a a= + + +1 2( ) ( 1)( 1)...( 1)kn . 

EXEMPLO 2A:

Se p  é primo, vale t = +( ) 1kp k , para qualquer inteiro positivo k .

EXEMPLO 2B:

Determine o menor número inteiro positivo n  para o qual se tenha t =( ) 5n .

Solução:

Se aa a= 1 2
1 2. ..... k

kn p p p , a equação t =( ) 5n  é equivalente a 

a a a+ + + =1 2( 1)( 1)...( 1) 5k . Mas como 5 é primo, o produto do primeiro membro 

tem um fator igual a 5 e os outros iguais a 1, de modo que, assim, a =1 4  e todos 

os outros expoentes são nulos, ou seja, 4
1n p=  para algum primo p. De modo a 

minimizar o valor de n , consideramos o menor primo. Dessa forma, o menor 

número inteiro positivo n  para o qual se tenha t =( ) 5n  é = =42 16n .

Outra função aritmética interessante que está relacionada com os divisores de 

um número é aquela que associa a cada inteiro positivo a soma dos seus divisores.

g u a r d e  b e m  i s s o !

Como os divisores de um número nunca são 

maiores que o próprio número, a quantidade de 

divisores também não passa desse número. Assim, 

vale t £( )n n  e a igualdade somente ocorre para 

os números 1 e 2.
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Definição 2: Denotaremos pela letra grega s  (sigma) a função que, para 

cada inteiro positivo n , associa o valor s =å
|

( )
d n

n d . 

EXEMPLO 3A:

Como os divisores positivos de 10 são 1, 2, 5 e 10, é verdadeiro que 

s =(10) 18 .

EXEMPLO 3B:

Se p  é um número primo, seus únicos divisores positivos são 1 e p . Dessa 

forma, para qualquer número primo p  vale s = +( ) 1p p .

EXEMPLO 3C:

A tabela abaixo lista os valores de s( )n  para os 12 primeiros inteiros positivos.

n 1 2 3 4 5 6 7 8 9 10 11 12

s( )n 1 3 4 7 6 12 8 15 13 18 12 28

Se um número é da forma kp , com p  primo e k  inteiro positivo, seus únicos 

divisores são 21, , ,..., kp p p . Assim, s = + + + +2( ) 1 ...k kp p p p . Temos aqui 

a soma dos +1k  primeiros termos de uma progressão geométrica de razão p  e 

primeiro termo igual a 1. Considerando que a soma dos n  primeiros termos de uma 

progressão geométrica com primeiro termo 1a  e razão ¹1q  vale 
-

=
-

1( 1)

1

n

n

a q
S

q
, 

podemos concluir que s
+ -

=
-

1 1
( )

1

k
k p

p
p

.

EXEMPLO 4:

Uma vez que = 9512 2  e com base no exposto acima, podemos calcular 

s s
-

= = =
-

10
9 2 1

(512) (2 ) 1023
2 1

.

Antes de tratarmos de outras propriedades interessantes das funções s  e t ,  

vejamos o caso geral das funções multiplicativas.

Definição 3: A função f , cujo domínio é o conjunto dos inteiros positivos, é 

dita multiplicativa quando =( . ) ( ). ( )f m n f m f n  sempre que =( , ) 1m n , ou seja, 

m  e n  são relativamente primos. Quando a propriedade =( . ) ( ). ( )f m n f m f n  

for válida sempre, a função é dita completamente multiplicativa.
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EXEMPLO 5A:

Como 1 é o elemento neutro para o produto, a função (constante) =( ) 1f n  

para qualquer n  é completamente multiplicativa.

EXEMPLO 5B:

A função identidade =( )f n n  é completamente multiplicativa.

Proposição 1: A função t  é multiplicativa.

Demonstração: Considere os números inteiros positivos m  e n , com fatorações 

em primos aa a= 1 2
1 2. ..... k

km p p p  e b b b= 1 2
1 2. ..... r

rn q q q . Nessas condições, temos 

t a a a= + + +1 2( ) ( 1)( 1)...( 1)km  e t b b b= + + +1 2( ) ( 1)( 1)...( 1)rn . Se m  e n  

forem relativamente primos, os primos de uma e de outra decomposição são distintos, de 

modo que aa a b b b= 1 2 1 2
1 2 1 2. . ..... . . .....k r

k rm n p p p q q q  e não há simplificações nessa fatoração. 

Assim, temos:

	 t a a a b b b
t t

= + + + + + + =
=

1 2 1 2( ) ( 1)( 1)...( 1)( 1)( 1)...( 1)

( ) ( ).
k rmn

m n

Uma maneira alternativa de obter esse mesmo resultado é pela verificação de 

que, quando números são relativamente primos, os divisores do produto podem 

ser obtidos pela multiplicação dos divisores dos dois números, e, novamente 

pelo Princípio Fundamental da Contagem, a quantidade de divisores de mn  será 

t t( ) ( )m n .

Observação: Como t =(1) 1 , o caso em que um dos números envolvidos 

no produto é 1, não analisado na demonstração acima, se torna óbvio, pois 

t t t t t= = =(1. ) ( ) 1. ( ) (1) ( )m m m m . Dessa forma, omitiremos este caso também nas 

demonstrações sobre a multiplicabilidade das demais funções estudadas nesta aula.

Proposição 2: A função s  é multiplicativa.

Demonstração: Consideremos m  e n  números inteiros relativamente pri-

mos. Pela definição, temos s =å
|

( )
d mn

mn d . Entretanto, uma vez que os números 

são relativamente primos, cada divisor de mn  pode ser escrito como produto de 

um divisor de m  por um divisor de n . Assim, podemos escrever:

	 s s s= = = = =å å åå å å
1 1 2 1 2

2

1 2 1 2 1 2
|| | | | |
|

( ) . ( ) ( )
d md mn d m d n d m d n
d n

mn d d d d d d d m n .

Assim, obtemos que s  é multiplicativa.
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EXEMPLO 6:

Como =(9,10) 1 , valem

	 t t t t= = = =(90) (9.10) (9) (10) 3.4 12

 e s s s s= = = =(90) (9.10) (9) (10) 13.18 234 .

Observação: As funções t  e s  são multiplicativas, mas não são 

completamente multiplicativas. Veja, por exemplo, que t =(12) 6 , enquanto 

t t = =(2). (6) 2.4 8 . 

Como consequência da multiplicatividade da função s , se aa a= 1 2
1 2. ..... k

kn p p p  

é a decomposição em primos do inteiro positivo n , temos

	  

aa a

aa a

s s

s s s

= =

=

1 2

1 2

1 2

1 2

( ) ( . ..... )

( ). ( )..... ( ).

k

k

k

k

n p p p

p p p

Em seguida, pela expressão s
+ -

=
-

1 1
( )

1

k
k p

p
p

 obtida antes do exemplo 4, 

conseguimos uma fórmula para calcular o valor de s( )n . Temos, então:

	
aa a

s
++ +- - -

=
- - -

1 2 11 1
1 2 1

1 2

1 1 1
( ) . .....

1 1 1

k

k

p p p
n

p p p
.

EXEMPLO 7:

Determine o valor de s(72) .

Solução:

Pelo uso da fatoração = 3 272 2 .3 . De acordo com a fórmula anterior, obtemos:

	

s s s s
+ +

= = =

- - - -
= = =

- -
-

= - = =

3 2 3 2

3 1 2 1 4 3

(72) (2 .3 ) (2 ). (3 )

2 1 3 1 2 1 3 1
. .

2 1 3 1 1 2
27 1

16 1. 15.13 195.
2

Outra maneira, talvez mais trabalhosa, seria listar todos os divisores de 72 

e fazer sua soma, ou seja, + + + + + + + + + + + =1 2 3 4 6 8 9 12 18 24 36 72 195 .

Com esse estudo das funções t  e s , encerramos o tópico. No próximo, 

voltaremos a estudar a função f  definida na aula 3.
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TÓPICO 2 A função f  de Euler
Objetivos

•	 Definir a função totiente de Euler e estudar suas 

características

•	 Generalizar o teorema de Fermat para todos os inteiros

Na aula 3, apresentamos a função que associa a cada número 

inteiro positivo a quantidade de inteiros positivos menores 

ou iguais a ele com os quais ele é relativamente primo. 

Recapitulando esta definição:

Definição: Denotaremos pela letra grega f  (phi) a função que, para cada 

inteiro positivo n , associa o valor f = Î < < =( ) #{ ;0  e ( , ) 1}n k k n k n . 

EXEMPLO 1A:

A tabela abaixo lista os valores de f( )n  para os 12 primeiros inteiros 

positivos.

n 1 2 3 4 5 6 7 8 9 10 11 12

f( )n 1 1 2 2 4 2 6 4 6 4 10 4
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EXEMPLO 1B:

Para qualquer número primo p , vale f = -( ) 1p p .

Pelo que vimos no tópico anterior, se uma função aritmética é multiplicativa, 

basta que saibamos como ela age nos números primos e nas potências de primos. 

Antes de verificar que f  é uma função multiplicativa, vejamos como encontrar o 

valor de f( )n , no caso de n  ser potência de um primo, digamos = kn p . Como o 

único divisor primo de kp  é p , para que =( , ) 1m n , não deve aparecer o primo p  

na fatoração de m , ou seja, não pode ser um múltiplo de p , mas os múltiplos de 

p  que são menores ou iguais a kp  são -= 1,2 ,3 ,..., k kp p p p p p , no total, portanto, 

de -1kp . Assim, concluímos que f -= - 1( )k k kp p p . 

Proposição 3: A função f  é multiplicativa.

Demonstração: Considere os inteiros positivos m  e n , relativamente primos. 

Por definição, f( )mn  é a quantidade de números menores que mn  e que lhe são 

relativamente primos. Comecemos por separar os elementos de ={1,2,..., }A mn  

em suas classes de congruência módulo m , isto é, agruparemos em 

	 = < £ º1 { ;0  e 1(mod )}A a a mn a m ;

	 = < £ º2 { ;0  e 2(mod )}A a a mn a m ;

	 ...

	 = < £ º{ ;0  e (mod )}mA a a mn a m m .

Uma vez que {1,2,..., }m  é um sistema completo de resíduos módulo m , to-

dos os conjuntos descritos acima são disjuntos e a união de todos eles é o pró-

prio ={1,2,..., }A mn . Para cada =1,2,...r m , veja que, se m  e r  não forem 

relativamente primos, nenhum dos elementos de rA  será relativamente primo 

com mn , pois se m  e r  possuírem um divisor comum diferente de 1, então os 

números da forma +km r , que são os elementos de rA , serão divisíveis por es-

se divisor comum, logo serão divisíveis por m  e, pela transitividade da divisi-

bilidade, serão também divisíveis por mn . Assim, rA  só conterá algum núme-

ro relativamente primo com mn  se =( , ) 1m r . Mas de 1 a m , sabemos que há 

f( )m  destes números, pela definição da função totiente. 

Estudemos agora dentro de cada um dos f( )m  conjuntos rA  destacados na 

primeira etapa quantos elementos são relativamente primos com mn . Observe 

que os elementos de cada rA  são da forma +km r . Como m  e n  são relativa-

mente primos, cada conjunto rA  é um sistema completo de resíduos módulo n , 
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EXEMPLO 2:

Como = 481 3 , podemos escrever f f= = - = - =4 4 3(81) (3 ) 3 3 81 27 54 .

EXEMPLO 3:

Como =(9,10) 1 , vale f f f f= = = =(90) (9.10) (9). (10) 6.4 24 . 

Agora que sabemos que a função f  é multiplicativa e sabemos calcular os seus 

valores para qualquer potência de primo, podemos usar o Teorema Fundamental 

da Aritmética para estabelecer uma fórmula geral para f( )n .

Observe, inicialmente, que, para p  primo, obtivemos anteriormente 

f -= - 1( )k k kp p p , que pode ser reescrito como f
æ ö÷ç ÷= -ç ÷ç ÷çè ø

1
( ) 1k kp p

p
. Considere, 

então, a fatoração em primos aa a= 1 2
1 2. ..... k

kn p p p . Usando a multiplicabilidade da 

função f , podemos fazer:

	

aa a

aa a

aa a

aa a

f f

f f f

= =

= =

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷= - - - =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

æ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷= - - - =ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè øè ø è ø

= -

1 2

1 2

1 2

1 2

1 2

1 2

1 2
1 2

1 2
1 2

( ) ( . ..... )

( ) ( )... ( )

1 1 1
1 1 ... 1

1 1 1
... . 1 1 ... 1

1
. 1

k

k

k

k

k

k

k
k

k
k

n p p p

p p p

p p p
p p p

p p p
p p p

n
p

æ öæ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷- -ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè øè ø è ø1 2

1 1
1 ... 1 .

kp p

Assim, para encontrarmos o valor de f( )n , basta que multipliquemos n  

pela expressão 
æ ö÷ç ÷-ç ÷ç ÷çè ø

1
1

kp
 para cada um dos fatores primos kp  de sua decomposição.

	

havendo, portanto, f( )n  elementos que são relativamente primos com n  

e, assim, com mn .

Dessa forma, temos f( )m  conjuntos e em cada um deles há f( )n  elementos 

relativamente primos com mn . Assim, no total, temos f f( ) ( )m n  elementos do 

conjunto ={1,2,..., }A mn , que são relativamente primos com mn . Mas esta é 

exatamente a definição de f( )mn  e por ela concluímos que f f f=( ) ( ) ( )mn m n .
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EXEMPLO 4A:

Como 2 e 5 são os únicos primos na fatoração de 100, podemos fazer 

f
æ öæ ö÷ ÷ç ç= - - = =÷ ÷ç ç÷ ÷ç çè øè ø

1 1 1 4
(100) 100. 1 1 100. . 40

2 5 2 5
.

EXEMPLO 4B:

Pela fatoração = 3 272 2 .3 , obtemos: f
æ öæ ö÷ ÷ç ç= - - = =÷ ÷ç ç÷ ÷ç çè øè ø

1 1 1 2
(72) 72. 1 1 72. . 24

2 3 2 3
.

As informações contidas neste tópico são, obviamente, apenas uma introdução 

às principais propriedades da função f . No próximo tópico, estudaremos a função 

m  de Möbius.
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TÓPICO 3 A função m  de 
Möbius
Objetivos

•	 Reconhecer a função m  e algumas de suas propriedades

•	 Definir quando um número é livre de quadrados

O matemático e astrônomo alemão August Ferdinand Möbius 

(1790 – 1868) desenvolveu um trabalho de grande relevância 

na Matemática, especialmente no campo da Geometria, com a 

famosa faixa (ou fita) de Möbius, e nas Variáveis Complexas, com as transformações 

de Möbius. Na Teoria dos Números, deve-se a ele o estudo sobre a função que 

recebeu o seu nome e que apresentamos a seguir.

A função de Möbius (lê-se, aproximadamente, Mêbius) é alterada pela 

quantidade de primos que aparecem na fatoração de um número, mas, ao 

contrário das funções aritméticas anteriores, ela é limitada. 
Definição 5: Denotaremos pela letra grega m  (mi) a função que, para cada 

número inteiro positivo >1n , com fatoração em primos aa a= 1 2
1 2. ..... k

kn p p p , as-

socia o número 					  

1 2( 1) ,  se ... 1
( )

0,  caso contrário

k
kn

a a a
m

ìï - = = = =ï=íïïî
.

De modo a tornar m  definida para todos os inteiros positivos e não alterar a sua 

multiplicabilidade (ainda a ser demonstrada), definimos convenientemente m =(1) 1 .

Assim, a função m( )n  vale 0 sempre que n  possuir, em sua fatoração em 
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primos, um expoente maior ou igual a 2. Neste caso, n  é divisível pelo quadrado 

de algum primo. Mas para que seja divisível pelo quadrado de um inteiro maior 

que 1, um número deve também ser divisível pelo quadrado de um primo. Assim, 

quando ( ) 0nm ¹ , dizemos que o inteiro n  é livre de quadrados.

EXEMPLO 1A:

Como =30 2.3.5 , vale m = - =-3(30) ( 1) 1 , pois 30 tem 3 primos distintos 

em sua fatoração e nenhum dos expoentes é maior que 1. Analogamente, a 

fatoração =10 2.5  leva a m = - =2(10) ( 1) 1 . 

EXEMPLO 1B:

Para qualquer primo p , tem-se m =-( ) 1p .

EXEMPLO 1C:

A tabela abaixo lista os valores de m( )n  para os 12 primeiros inteiros 

positivos.

n 1 2 3 4 5 6 7 8 9 10 11 12

m( )n 1 –1 –1 0 –1 1 –1 0 0 1 –1 0

Proposição 4: A função m  é multiplicativa.

Demonstração: Para os números inteiros positivos e relativamente pri-

mos m  e n , temos duas possibilidades a considerar. Se m  e n  forem livres de 

quadrados, podemos escrever = 1 2... km p p p  e = 1 2... tn q q q , onde os primos en-

volvidos são todos distintos, de modo que mn  também será livre de quadrados. 

Daí, temos = 1 2 1 2... ...k kmn p p p q q q  e, portanto, 

	 m m m+= - = - - =( ) ( 1) ( 1) ( 1) ( ) ( )k t k tmn m n .

Se para algum primo p , tivermos 2 |p mn , isto é, mn  não for livre de quadra-

dos, o mesmo deve acontecer com m  ou n , já que eles são relativamente pri-

mos. Assim, m =( ) 0m  ou ( ) 0nm = , daí m m m= =( ) 0 ( ) ( )mn m n  e obtemos o 

mesmo resultado.

Nos tópicos anteriores, verificamos a multiplicabilidade de algumas funções 

de modo a obter uma expressão simplificada para o cálculo das imagens dessas 

funções quando sabemos a fatoração em primos do número. Com tal fatoração, o 

valor obtido na função m  é encontrado diretamente, de modo que a proposição 
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acima não será usada para a determinação de m , mas como resultado auxiliar 

para outros fatos, como o que segue.

Proposição 5: Para qualquer número inteiro positivo >1n , vale m =å
|

( ) 0
d n

d . 

Demonstração: Comecemos com o caso = kn p  para algum primo p . Os di-

visores de kp  são 21, , ,..., kp p p , logo:

	 m m m m m= + + + + =

= + - + + + =

å 2

|

( ) (1) ( ) ( ) ... ( )

1 ( 1) 0 ... 0 0.

k

k

d p

d p p p

Observe agora que, para m  e n  relativamente primos, procedemos de manei-

ra semelhante ao que fizemos para provar que s  é multiplicativa. Acompanhe o 

raciocínio, no qual empregamos o fato de m  ser multiplicativa.

	 m m m m m m= = =å å åå å å
1 1 2 1 2

2

1 2 1 2 1 2
|| | | | |
|

( ) ( ) ( ) ( ) ( ). ( ).
d md mn d m d n d m d n
d n

d d d d d d d

Dessa feita, para aa a= 1 2
1 2. ..... k

kn p p p , vale

a a a

m m m m=å å å å
1 2

1 2

1 2
| | | |

( ) ( ). ( )..... ( )
k

k

k
d n d p d p d p

d d d d . Mas cada um destes fatores é  

 
nulo, de onde temos o resultado válido para qualquer >1n .

Com esta propriedade, encerramos o estudo inicial das propriedades 

da função m . Além de outros fatos interessantes sobre cada uma das funções 

estudadas nesta aula, há uma série de relações relevantes entre elas. Tais relações 

serão o foco de nossa próxima aula.
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AULA 5 Funções aritméticas 
- parte II

Caro(a) aluno(a),

Na quinta aula de nosso curso de Teoria dos Números, daremos prosseguimento 

ao estudo das funções aritméticas, apresentando outras propriedades e, 

especialmente, algumas relações entre as funções aritméticas estudadas na 

aula 4, além de apresentar uma função especial, com domínio real, mas que 

desempenha papel relevante na análise dos números inteiros, tanto no estudo das 

funções aritméticas quanto no princípio das gavetas de Dirichlet, que será tema 

da aula 6.

Objetivos

•	 Prosseguir com o estudo das funções aritméticas
•	 Apresentar a função maior inteiro e algumas de suas propriedades
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TÓPICO 1
Outras propriedades das 
funções aritméticas
Objetivo
•	 Apresentar algumas propriedades sobre as funções 

aritméticas

Neste tópico, continuaremos o 

estudo iniciado na aula 4, na 

qual associamos, para cada 

inteiro positivo n , os seguintes valores:

•	 ( )nt , que é a quantidade de divisores 

positivos de n , por exemplo, (15) 4t = . Assim, 

|

( ) #{ ; | } 1
d n

n d d nt += Î =å

•	 ( )ns , que é a soma dos divisores 

positivos de n , por exemplo, (15) 24s = . Assim, 

|

( )
d n

n ds =å

•	 ( )nf , que é a quantidade de inteiros positivos menores que n  e 

relativamente primos com n , por exemplo, (15) 8f = . Assim,

( ) #{ ;  e ( , ) 1}n m m n m nf += Î < =

•	 ( )nm , que é 0, se n  não for livre de quadrados, e ( 1)k- , se k  for a 

quantidade de primos distintos que aparecem na fatoração de n , por exemplo,  

(15) 1m = . Assim:

1 2( 1) ,  se ...
( )

0,  caso contrário

k
kn p p p

nm
ìï - =ï=íïïî

at e n ç ã o !

Observação 1: Na fatoração do número 1 não 

aparece nenhum primo. Assim, podemos usar 

a definição ao lado também para o número 1, 

fazendo, portanto, 0k = .

Observação 2: A quantidade de elementos do 

conjunto A  pode ser representada por #A , mas 

também há as notações ( )n A , | |A  ou ( )card A .
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Vimos que todas essas funções são multiplicativas, em particular 

(1) (1) (1) (1) 1t s f m= = = = . Vejamos agora outras propriedades interessantes 

sobre as funções aritméticas, que serão demonstradas tomando em conta o fato de 

que se |d n , então 
n

a
d

=  é inteiro e |a n .

Proposição 1: Para qualquer inteiro positivo n , vale 
( )/2

|

n

d n

d nt=Õ

Demonstração: Aqui basta verificar que sempre que |d n , então 
n

a
d

=  é 

inteiro e |a n . Assim, se 

|d n

Q d=Õ , vale, igualmente, 
|d n

n
Q

d
=Õ . Daí, multiplicando as duas igualdades, 

temos 2

| |d n d n

n
Q d n

d
= =Õ Õ . No segundo membro, temos fatores todos iguais a n  e 

tantos quantos forem os divisores de n , ou seja, há ( )nt  fatores. Assim, ( )2 nQ nt= ,  

e como 0Q> , basta extrair a raiz quadrada nos dois membros da igualdade para 

obter o resultado. 

Na expressão acima, poderíamos pensar que o resultado do segundo membro 

resultaria em um número não inteiro, caso ( )nt  fosse ímpar. Mas ( )nt  é obtido pelo 

produto dos consecutivos dos expoentes da fatoração em primos de n , de modo 

que somente resultará ( )nt  ímpar se todos os expoentes da fatoração forem pares 

e, assim, n  é quadrado perfeito e ( )/2nnt  é inteiro.

Proposição 2: Para todo inteiro positivo n , vale 
|

( )
d n

d nf =å .

Demonstração: Comecemos separando os números do conjunto 

{1,2,..., }A n=  em subconjuntos de acordo com o segue:

	 1 { ;( , ) 1}A m A m n= Î = ;

	 2 { ;( , ) 2}A m A m n= Î = ;	

	 ...

	 { ;( , ) }nA m A m n n= Î = .

Observe que no conjunto { ;( , ) }kA m A m n k= Î =  será vazio se k  não 

for um divisor de n . Assim, teremos ( )nt  conjuntos não vazios e { }nA n= .  

Agora analisemos a quantidade de elementos de dA  para cada divisor de n . Ora, 

para que dm AÎ  é necessário que ( , )m n d= , mas isto significa que 
m
d

 e 
n
d

 são 
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inteiros sem divisores próprios comuns, ou seja, ( , ) 1
m n
d d

= . Dessa forma, cada 

conjunto dA  possui 
m
d

f
æ ö÷ç ÷ç ÷çè ø

 elementos. Como os subconjuntos dA  assim formados são 

disjuntos, a quantidade de elementos da união de todos vale 
| |

# ( / )d
d n d n

A n df=å

.  

Mas 
|

d
d n

A A=


, que possui n  elementos, de modo que temos a igualdade 
|

( / )
d n

n d nf =å .  

Mas, de novo usando o argumento de que quando d  percorre os divisores de n , os 

valores de /n d  também percorrem esses mesmos divisores, sem repetição, de modo que 

| |

( / ) ( )
d n d n

n d df f=å å , daí vale 
|

( )
d n

d nf =å .

Antes de prosseguir com outras propriedades das funções aritméticas, vamos 

estudar a função maior inteiro, que, embora não seja uma função com domínio 

no conjunto dos números inteiros, tem significativa importância na Teoria dos 

Números, como veremos a seguir.
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TÓPICO 2 A função maior inteiro

Objetivo

•	 Apresentar a função maior inteiro

No estudo das funções aritméticas, uma nova função surge para 

desempenhar papel relevante, ainda que não seja, ela própria, 

aritmética no sentido de ter domínio no conjunto dos inteiros 

positivos. Com os conhecimentos elementares sobre o conjunto dos números reais, 

podemos trabalhar com a seguinte definição, que será fundamentada no seguinte 

argumento

Definição 1: Dado o número real x, representamos por  xê úë û  o maior inteiro que 

é menor ou igual a x, equivalentemente, escrevemos: max{ ; }x n n xê ú = Î £ë û   . 

A função :f ®   dada por ( )f x xê ú= ë û  é chamada de função maior inteiro. 

O valor xê úë û  também pode ser chamado de parte inteira de x.

EXEMPLO 1A:

Para qualquer número inteiro n , vale diretamente da definição que n nê ú =ë û ,  

de modo que podemos concluir daqui que a função maior inteiro é sobrejetiva.
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EXEMPLO 1B:

Valem as igualdades 2 1ê ú =ê úë û , 3pê ú =ë û , 2eê ú =ë û  e 2,34 3ê ú- =-ë û . 

EXEMPLO 1C:

A solução (real) da equação 4xê ú =ë û  é o intervalo [4;5) , de modo que podemos 

concluir daqui que a função maior inteiro não é injetiva, pois 4 4,1ê ú ê ú=ë û ë û .

EXEMPLO 1D:

Suponha que o número inteiro positivo M , quando escrito na base decimal, 

tenha a forma 1 0 10 1 0( ... ) .10 ... .10k
k kM a a a a a a= = + + + , com 0ka ¹ , ou seja, 

tenha 1k +  algarismos. Temos aqui as desigualdades 110 10k kM +£ < . Aplicando 

o logaritmo decimal, obtemos log 1k M k£ < + , daí logM kê ú =ë û  e, assim, a 

quantidade de algarismos de M  na base decimal é log 1Mê ú +ë û . Mais geralmente, 

podemos verificar que a quantidade de algarismos usados para representar o 

número inteiro positivo M  na base 1B>  será igual a log 1B Mê ú +ë û .

EXEMPLO 1E:

Dados os inteiros positivos a  e b , podemos, pelo algoritmo da divisão, 

encontrar inteiros q  e r  tais que a bq r= + , com 0 r b£ < . Assim, temos:

bqa r r
q

b b b b
= + = + , de concluímos 

a r
q q

b b

ê ú ê ú
= + =ê ú ê ú

ê ú ê úë û ë û
, pois 0 1

r
b

£ < . 

Veja que para cada número inteiro n , a função maior inteiro é constante e 

vale n  dentro do intervalo [ ; 1)n n+ . Assim, o gráfico da função maior inteiro é 

formado de segmentos de reta horizontais, de comprimento 1, de acordo com o que 

segue:

Figura 1: Representação da função maior inteiro

A respeito da função maior inteiro, valem as seguintes propriedades, cujas 

demonstrações são deixadas como exercício.	
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(1) x n x nê ú ê ú+ = +ë û ë û , para qualquer real x  e qualquer inteiro positivo n .

(2) 1x x xê ú- < £ë û , para qualquer real x .

(3) Se x  não é um número inteiro, então 1x xê ú ê ú- =- -ë û ë û .

(4) x xê úê ú ê ú=ë û ë ûë û , para qualquer real x .

(5) Se x y< , então x yê úê ú £ë û ë û .

(6) 1x y x y x yê ú ê ú ê úê ú ê ú+ £ + £ + +ë û ë ûë û ë û ë û , para quaisquer reais x  e y .

Observação 1: A propriedade (4) pode ser reescrita nos seguintes termos: 

se ( )f x xê ú= ë û , então ( ( )) ( )f f x f x= . Uma função que satisfaz a propriedade 

( ( )) ( )f f x f x=  para qualquer elemento do domínio é dita idempotente.

Observação 2: A propriedade (5) pode ser reescrita nos seguintes termos: 

se ( )f x xê ú= ë û , então ( ) ( )x y f x f y< Þ £ . Uma função que satisfaz a propriedade 

( ) ( )x y f x f y< Þ £  para quaisquer elementos do domínio é dita monótona não 

decrescente. Se ( ) ( )x y f x f y< Þ ³ , então f  é monótona não crescente.

EXEMPLO 2A:

Sabendo que 4xê ú =ë û , determine os possíveis valores de 3xê úë û .

Solução:

Observe que 4xê ú =ë û  se verifica para todos os valores [4;5)x Î , isto é, 

4 4 5x xê ú = Û £ <ë û , de onde obtemos que 12 3 15x£ < , daí os possíveis valores 

para 3xê úë û  são 12, 13 e 14.

EXEMPLO 2B:

Se a  e b  são números reais tais que 6aê ú =ë û  

e 3bê ú =-ë û , encontre o menor valor possível para 

2 3a bê ú+ë û .

Solução:

Inicialmente temos que  

6 6 7a aê ú = Û £ <ë û  e 3 3 2b bê ú =- Û- £ <-ë û . 

Daí, multiplicando por 2 e 3, respectivamente, 

obtemos 12 2 14a£ <  e 9 3 6b- £ <-  e 

somando estes resultados, concluímos que 

3 2 3 8a b£ + < . Assim, o menor valor possível 

para 2 3a bê ú+ë û  é 3 e o maior valor possível é 7.

g u a r d e  b e m  i s s o !

Podemos usar a função maior inteiro para 

estender as funções aritméticas estudadas na aula 

4 para todos os números reais, definindo, por 

exemplo, ( )( )x xf f ê ú= ë û  para qualquer número 

real, embora esta extensão não acrescente fatos 

significativos à nossa teoria.
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Também é interessante perceber que, dados os inteiros positivos a  e b , a 

quantidade de números menores ou iguais a a  que são divisíveis por b  é a
b

ê ú
ê ú
ê úë û

. 

Vistas as propriedades iniciais a respeito da função maior inteiro, vamos 

voltar às funções aritméticas e mais algumas relações entre elas.
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TÓPICO 3 Outras relações

Objetivos

•	 Estudar outras relações entre as funções aritméticas

•	 Relacionar as funções aritméticas e a função maior 

inteiro

Vejamos agora algumas outras relações entre a Teoria dos Números 

e a função maior inteiro.

Proposição 3: Se n  é um número inteiro positivo e p  é primo, então | !p na  

se, e somente se, 
2

...
k

n n n
p p p

a
ê ú ê ú ê ú
ê ú ê ú ê ú£ + + +ê ú ê ú ê úë û ë û ë û

, onde k  é o maior inteiro pa-

ra o qual kp n£ . Alternativamente, a maior potência de p  que divide !n  é 

2
...

k

n n n
p p p

a
ê ú ê ú ê ú
ê ú ê ú ê ú= + + +ê ú ê ú ê úë û ë û ë û

.

Demonstração: Observe inicialmente que poderíamos ter acrescentado 

qualquer potência de p  à soma 
2

...
k

n n n
p p p

ê ú ê ú ê ú
ê ú ê ú ê ú+ + +ê ú ê ú ê úë û ë û ë û

, pois se kp n> , vale 

0
k

n
p

ê ú
ê ú =ê úë û

. Denote por ia  a quantidade de números menores ou iguais a n  que 

são divisíveis por ip . 

Como ! 1.2.....n n= , então teremos que 1 2 ... ka a aa= + + + , mas os números 

naturais que são divisíveis por ip  são ,2. ,3. ,..., .i i i i
i

n
p p p p

p

ê ú
ê ú
ê úë û

. Assim, i i

n
a

p

ê ú
ê ú= ê úë û

 

e 
2

...
k

n n n
p p p

a
ê ú ê ú ê ú
ê ú ê ú ê ú= + + +ê ú ê ú ê úë û ë û ë û

, como desejado.
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EXEMPLO 1A:

Se quisermos saber qual a maior potência 

de 2 que divide 21! fazemos

	 21 21 21 21
2 4 8 16

10 5 2 1 18.

a
ê ú ê ú ê ú ê ú

= + + + =ê ú ê ú ê ú ê ú
ê ú ê ú ê ú ê úë û ë û ë û ë û

= + + + =	

Assim, 182 |21!  e, logo, 2 |21!k , para 

qualquer 0,1,...,18k = .

EXEMPLO 1B:

A maior potência de 5 que divide 19! é 
19

3
5

ê ú
=ê ú

ê úë û
. De fato, dos números 

inteiros de 1 a 19, apenas 5, 10 e 15 são múltiplos de 5, e nenhum deles é múltiplo 

de 25. 

Adiante, veremos uma relação entre as funções f  e m .

Proposição 4: Para qualquer inteiro positivo n , vale 
|

( ) ( ).
d n

n
n d

d
f m=å .

Demonstração: Veja que para {1,2,..., }m nÎ , temos 
1

1
( , )m n

ê ú
ê ú =ê ú
ë û

, se m  e n  fo-

rem relativamente primos e 
1

0
( , )m n

ê ú
ê ú =ê ú
ë û

, caso contrário. Assim, obtemos uma 

nova maneira de obter o valor ( )nf , através da igualdade 
1

1
( )

( , )

n

k

n
k n

f
=

ê ú
ê ú= ê ú
ë û

å .

Vimos no final da aula 4 que 
|

( ) 0
d n

dm =å  para qualquer inteiro positivo 1n> .  

Uma vez que 
|1

( ) 1
d

dm =å , podemos sintetizar as duas informações com a 

igualdade 
|

1
( )

d n

d
n

m
ê ú

= ê ú
ê úë û

å , válida para qualquer inteiro positivo n . Logo 

|( , )

1
( )

( , )d k n

d
k n

m
ê ú
ê ú= ê ú
ë û

å .

Fazendo uso dessa última igualdade em 
1

1
( )

( , )

n

k

n
k n

f
=

ê ú
ê ú= ê ú
ë û

å , obtemos:

1 |( , )

( ) ( )
n

k d k n

n df m
=

=åå .

Agora, se |( , )d n k , é verdade também que |d n  e |d k , de modo que podemos 

ainda escrever:

at e n ç ã o !

A proposição 3 apenas conta quantos números de 

1 a n  são divisíveis por p , depois conta quantos 

são divisíveis por 2p  e assim sucessivamente.



79AULA  5 TÓPICO 3

EXEMPLO 2:

Com a expressão obtida anteriormente, podemos encontrar ( )nf  de outra 

maneira. Veja que 
|

20
(20) ( ).

d n

d
d

f m=å . Como os divisores inteiros positivos de 20 

são 1, 2, 4, 5, 10 e 20, podemos fazer: 

	
20 20 20 20 20 20

(20) (1). (2). (4). (5). (10). (20).
1 2 4 5 10 20

f m m m m m m= + + + + +

Mas 4 e 20 não são livres de quadrados, logo (4) (20) 0m m= = . Além disso, 2 e 5 

são primos, de onde temos (2) (5) 1m m= =-  e, pela definição, temos (1) (10) 1m m= = .  

Assim:

	

20 20 20 20 20 20
(20) 1. ( 1). 0. ( 1). 1. 0.

1 2 4 5 10 20
20 10 0 4 2 0 8.

f = + - + + - + + =

= - + - + + =
 

	

Com este tópico, encerramos nossa aula. Para melhor compreensão das 

ideias sobre as funções aritméticas e da função maior inteiro, recomenda-se uma 

recapitulação dos exemplos, com a troca dos números para melhor fixação dos 

conceitos e relações.

Como peças fundamentais da nossa teoria, vez por outra, revisitaremos as 

funções aritméticas, nesta ou em outras disciplinas. Na próxima aula, também 

voltaremos a aplicar a função maior inteiro.

1 |
|

( ) ( )
n

k d k
d n

n df m
=

=åå .

Sabemos que |d k  equivale a existir um inteiro q  tal que k qd= , mas para 

1 k n£ £ , temos 1
n

q
d

£ £ . Daí, obtemos:
/ /

| 1 | 1 |

( ) ( ) ( ). 1 ( ).
n d n d

d n q d n q d n

n
n d d d

d
f m m m

= =

æ ö æ ö÷ç ÷÷ çç= = = ÷÷ çç ÷ç÷ è ø÷çè ø
åå å å å , o que completa a demons-

tração.
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AULA 6 O princípio das gavetas

Caro(a) aluno(a),

Em nossa quarta aula, estudaremos o princípio das gavetas, o qual afirma que, 

se você tiver 1n+  objetos em n  gavetas, pelo menos uma dela conterá mais de 

um objeto. É uma afirmação simples e pode até ser considerada óbvia, mas traz 

consequências de grande relevância.

Objetivos

•	 Apresentar o Princípio de Dirichlet e problemas nos quais o princípio pode 
ser aplicado

•	 Destacar resultados do Princípio de Dirichlet na Teoria dos Números
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TÓPICO 1 Introdução

Objetivos

•	 Apresentar exemplos iniciais

•	 Enunciar formalmente o princípio

O matemático Johann Dirichlet (1805 - 1859) provou um caso 

particular ( 5n = ) do teorema de Fermat (veja comentário no início 

do tópico 2 da aula 3). Com seus estudos, ele proporcionou outras 

inúmeras contribuições para a Matemática e a Estatística, dentre elas o princípio 

que norteará nossa aula – o qual pode ser colocado nos seguintes termos: se 1n+  

pombos forem colocados em n  gaiolas, pelo menos uma das gaiolas conterá pelo 

menos dois pombos. Obviamente o resultado continua valendo para qualquer 

quantidade de pombos que seja superior à quantidade de gaiolas. Descrevendo 

mais tecnicamente, podemos enunciar da seguinte forma:

Princípio de Dirichlet: Se A  e B  são conjuntos finitos e A  tem mais 

elementos que B , então não pode haver uma função injetiva :f A B® , isto é, 

haverá elementos distintos ,x y AÎ  tais que ( ) ( )f x f y= .

Observe que, se P  for o conjunto de 1n+  pombos e G  o conjunto de n  

gaiolas, a função que associa cada pombo à sua gaiola não pode ser injetiva, de 

onde obtemos, naturalmente, o mesmo resultado, isto é, que dois pombos (pelo 

menos) devem ocupar a mesma gaiola.
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EXEMPLO 1A:

Em uma turma de 13 pessoas, necessariamente duas delas fazem aniversário 

no mesmo mês. Para verificar isso, podemos pensar nas pessoas como os “objetos” 

e os meses como as “gavetas”. Ao distribuir 13 pessoas nos doze meses do ano, 

necessariamente um dos meses deveria “conter” pelo menos duas pessoas.

EXEMPLO 1B:

Em uma lista de 6 números inteiros quaisquer, pelo menos dois deles deixam 

o mesmo resto na divisão por 5, pois os restos possíveis são 0, 1, 2, 3 ou 4. Nesse 

caso, temos seis números para “distribuir” em 5 possíveis restos. Usando a notação 

de função, basta considerar a função que associa cada um dos seis números dados 

ao seu resto na divisão por 5.

EXEMPLO 1C:

Em um parágrafo com 27 palavras, pelo menos duas delas começaram com a 

mesma letra.

EXEMPLO 1D:

No interior de um quadrado de lado 2m, são marcados cinco pontos. 

Se dividirmos o quadrado em quatro quadrados menores de lado 1m – e 

consequentemente de diagonal 2 1,41@ m – podemos associar cada ponto ao 

quadrado menor que o contém. Pelo princípio de Dirichlet, haverá pelo menos 

dois pontos no mesmo quadrado, mas a distância máxima entre dois pontos de um 

quadrado é a medida da sua diagonal, assim haverá pelo menos dois pontos que 

estarão a uma distância inferior a 2 m.

É com a ideia do princípio de Dirichlet e com algumas generalizações 

que vamos trabalhar do decorrer desta aula. A obviedade do princípio indica a 

simplicidade das demonstrações, sendo que a parte difícil (que deixa de ser difícil 

com um pouco de prática) é identificar, dentro do problema dado, o que são os 

“objetos” e as “gavetas” ou, equivalentemente, entre quais conjuntos vamos 

definir a função que não será injetiva.

EXEMPLO 2A:

Mostre que há um múltiplo de 19 cuja representação decimal contenha 

apenas algarismos 0 e 1.
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Solução:

Considere a sequência dos números formados apenas por algarismos 1: 

1, 11, 111, .... 

Se da lista considerarmos os 20 primeiros números, necessariamente dois 

deles deverão deixar o mesmo resto na divisão por 19. Para tanto, basta considerar 

a função que associa cada número ao resto da sua divisão por 19, que são apenas 

19 possibilidades. Sabemos que, se dois números deixam o mesmo resto na divisão 

por 19, então a subtração entre eles deixa resto 0, ou seja, é múltiplo de 19 (lembre 

que (mod19)a bº  equivale a 19|a b- ). Mas a subtração de dois dos números 

considerados gera um número formado apenas pelos algarismos 1 e 0, como 

desejado.

EXEMPLO 2B:

Mais geralmente, dado o inteiro positivo n  e um algarismo {1,2,...,9}aÎ ,  

podemos encontrar um múltiplo de n  cuja representação decimal contenha apenas 

os algarismos 0 e a . Para tanto, basta considerar os 1n+  primeiros termos 

da sequência dos números formados pela justaposição de algarismos a , isto é, 

, ,..., ...a aa aa a , com o último número tendo 1n+  algarismos todos iguais a a  e 

aplicar o raciocínio descrito anteriormente.

Alternativamente, podemos exprimir a ideia contida no princípio das gavetas 

também dizendo que, se tivermos n  gavetas, a quantidade mínima de objetos a 

serem postos nas gavetas de modo a assegurar que haja pelo menos uma gaveta com 

pelo menos dois objetos é 1n+ . 

EXEMPLO 3A:

Em uma urna, há 7 bolas pretas, 5 bolas brancas e 10 bolas azuis. Qual a 

quantidade mínima de bolas que devem ser retiradas às cegas para se garantir que 

há duas bolas da mesma cor? 

Solução:

Aqui temos o conjunto das bolas retiradas e para cada uma delas podemos 

associar uma cor. Como há três cores possíveis, devemos tirar 4 bolas para garantir 

que essa função não seja injetiva, ou seja, para termos certeza de que duas bolas 

tenham a mesma cor.
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EXEMPLO 3B:

O conjunto S  é formado por todos os inteiros que são relativamente primos 

com 18. Determine a quantidade mínima de elementos de S  que devem ser tomados 

para que haja dois deles cuja diferença é divisível por 18.

Solução:

Para que a diferença entre dois números seja um múltiplo de 18, eles devem 

deixar o mesmo resto na divisão por 18 e os restos possíveis nessa divisão são 0, 1, 

2, ..., 17, de onde poderíamos pensar que a resposta seria “no mínimo 19 números”. 

Entretanto devemos atentar para o fato de que não estamos considerando números 

inteiros quaisquer, mas apenas aqueles que são relativamente primos com 18, de 

modo que o conjunto de “gavetas” não contém todos os resíduos possíveis (não 

é um sistema completo), mas apenas aqueles que são primos com 18 (um sistema 

reduzido). Assim, temos (18)f  possibilidades para esses resíduos. Como (18) 6f = ,  

a quantidade mínima de elementos de S  que devem ser tomados para que se tenha 

a certeza de haver dois cuja diferença seja um múltiplo de 18 é 7.

Seguindo as ideias contidas nos exemplos deste tópico, podemos construir 

uma série de outros. Um exercício interessante é colecionar esses exemplos e 

discutir como o princípio de Dirichlet pode ser aplicado. Adiante, discutiremos 

como podemos generalizar os raciocínios envolvidos.
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TÓPICO 2 Generalização do 
princípio das gavetas
Objetivos

•	 Estudar situações generalizadas do problema das 

gavetas

•	 Aplicar a função maior inteiro nas soluções

Continuando com o princípio discutido no tópico anterior, podemos 

pensar que se 1nk +  objetos forem colocados em n  gavetas, então 

pelo menos uma das gavetas conterá 1k +  objetos. Esse fato pode 

ser demonstrado se agruparmos os 1nk +  em n  grupos de k  objetos e mais um 

objeto avulso. Temos aí 1n+  grupos de objetos para serem colocados em n  gavetas, 

de onde pelo menos uma gaveta deverá conter pelo menos dois desses grupos, ou 

seja, no mínimo 1k +  objetos.

Princípio de Dirichlet (generalização) Se A  e B  são conjuntos com 1nk +  

(ou qualquer quantidade superior a nk ) e n  elementos, respectivamente, e 

:f A B®  é uma função, então haverá um elemento de B  que é imagem de 

pelo menos 1k +  elementos de A .

EXEMPLO 1A:

Em um grupo de 36 pessoas, há pelo menos seis delas que fazem aniversário 

no mesmo dia da semana em 2010. Para tanto, basta verificar que os dias da semana 

(as gavetas) são 7 e as pessoas (objetos) são 36 = 5.7 + 1, de modo que o princípio 

pode ser aplicado e haverá pelo menos um dia correspondente a 6 pessoas.

EXEMPLO 1B:

Mostre que de um conjunto de 41 números distintos, podemos escolher 

cinco cuja soma é um múltiplo de 5.
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Solução:

Se somarmos cinco números congruentes módulo 5, teremos necessariamente 

um múltiplo de 5 como resultado. Observe que, se (mod5)ia kº  para 

qualquer elemento do conjunto 1 2 5{ , ,... }a a a , então a soma das congruências 

levará a 
1 2 5... 5 (mod5)a a a k+ + + º , mas 5k  é um múltiplo de 5, daí 

1 2 5... 0(mod5)a a a+ + + º , sendo a soma também um múltiplo de 5. Agora temos 

que garantir a existência de pelo menos cinco números que deixam o mesmo resto 

na divisão por 5. Os restos possíveis são 5 (as gavetas) e os números (objetos) são 21 

= 4.5 + 1. Usando o princípio para 5n =  e 4k = , garantimos que há pelo menos 

5 números que deixam o mesmo resto na divisão por 5. Analogamente, podemos 

estabelecer a função que associa cada número ao resto na divisão por 5 e usar a 

formulação em termos de função para o princípio de Dirichlet e obter o mesmo 

resultado.

Assim como feito no tópico anterior, também podemos obter a quantidade 

mínima de objetos a serem considerados para que tenhamos pelo menos uma gaveta 

com uma quantidade pré-estabelecida de objetos, depois da distribuição.

EXEMPLO 2A:

Cada um dos dez alunos de uma turma recebe uma cartela com quatro 

números inteiros positivos, distintos e menores ou iguais a 40, de modo que 

cada número aparece em apenas uma cartela. Serão sorteados sucessivamente os 

números de uma urna, um por um, até que um dos alunos preencha sua cartela, 

caso em que será determinado vencedor. Qual a quantidade máxima de números 

sorteados nessa atividade? 

Solução:

Obviamente, pode acontecer de os quatro primeiros números sorteados 

estarem na cartela de apenas um aluno, mas o sorteio pode continuar. Aqui 

queremos saber a quantidade mínima de números que devem ser sorteados para 

que se tenha certeza de que pelo menos um deles tenha 4 números. Se pensarmos 

nos números como os objetos e nas cartelas como as gavetas, queremos que cada 

uma delas tenha 4, ou seja, 3 + 1 objetos. Como são 10 cartelas ao todo, podemos 

fazer 10n = e 3k = , assim com a quantidade de 1 31nk + =  números sorteados, 

teremos certeza de ter um aluno vencedor, então não chegaremos a sortear o 32º 

número.
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EXEMPLO 2B:

Determine a quantidade mínima de pessoas que devem ser tomadas para que 

se possa formar um grupo de cinco pessoas com aniversário no mesmo mês.

Solução: 

Aqui podemos pensar em 12n =  (os meses como as gavetas) e 1 7k + =  

(a quantidade mínima de objetos que queremos garantir em pelo menos uma 

das gavetas). Assim, para 6, 12k n= = , temos que em um grupo de 1 73nk + =  

pessoas, há necessariamente um grupo de cinco com aniversário no mesmo mês.

Para o que segue da nossa teoria, faremos uso da função maior inteiro e de 

suas propriedades estudadas na aula 5. Lembremos que, dado o número real x ,  

representamos por xê úë û  o maior inteiro que é menor ou igual a x . Por exemplo: 

3,78 3ê ú =ë û .

A proposição a seguir é uma reformulação do princípio de Dirichlet, versão 

generalizada, acompanhada de uma demonstração.

Proposição 1: Se colocarmos k  objetos em n  gavetas, então pelo menos uma 

gaveta conterá pelo menos 
1

1
k

n

ê ú-
+ê ú

ê úë û
 objetos.

Demonstração: Da definição da função maior inteiro, vale x xê ú £ë û , para 

qualquer x  real, logo

1 1k k
n n

ê ú- -
£ê ú

ê úë û

Supondo que cada gaveta contenha no máximo 1k
n

ê ú-
ê ú
ê úë û

 objetos. Assim, 

teremos, no máximo, 
1

.
k

n
n

ê ú-
ê ú
ê úë û

 objetos. Então:

	
1 1

. . 1
k k

n n k k
n n

ê ú- -
£ = - <ê ú

ê úë û

Assim, a quantidade de objetos nunca chegaria a k , o que é uma contradição.

EXEMPLO 3A:

Se observarmos os meses de nascimento de um grupo de 50 pessoas, temos 

50k =  e 12n = , assim podemos garantir que haverá pelo menos um mês com 
50 1

1 4 1 5
12

ê ú-
+ = + =ê ú

ê úë û
 pessoas, ou seja, podemos concluir que, de um grupo de 
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50 pessoas, poderemos certamente escolher cinco que fazem aniversário no mesmo 

mês.

EXEMPLO 3B:

De um conjunto de 100 números, podemos garantir que há pelo menos 8 

números que deixam o mesmo resto na divisão por 13. Basta usar aqui 100k =  e 

13n = .

Com essa formulação geral do princípio de Dirichlet, encerramos este tópico. 

No próximo, veremos como aplicá-lo de outras maneiras também interessantes.
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TÓPICO 3 Exemplos gerais

Objetivos

•	 Estudar situações generalizadas do problema das 

gavetas

•	 Aplicar a função maior inteiro nas soluções

Para finalizar nossa aula, vejamos como princípio de Dirichlet pode 

ser aplicado em outras situações. 

EXEMPLO 1:

Se o plano for pintado de verde e azul, prove que haverá dois pontos de 

mesma cor cuja distância é exatamente 1 metro.

Solução:

Basta construir um triângulo equilátero de lado 1 m. Os vértices do triângulo 

(3) são em quantidade maior que o de cores possíveis (2), logo haverá dois vértices 

de mesma cor.

EXEMPLO 2:

Os números inteiros de 1 a 10 são escritos em um círculo, em qualquer ordem. 

Mostre que há três números adjacentes cuja soma é maior ou igual a 17.

Solução:

Podemos formar 10 sequências diferentes de três números adjacentes, de 

modo que, se somarmos todas as sequências possíveis, cada números aparecerá 3 

vezes. A soma total será, portanto, 3.(1 + 2 + ... + 10) = 3.55 = 165. Se todas as 

somas de três números adjacentes forem menores que 17, a soma total seria, no 

máximo, 10.16 = 160, o que não é verdade. Logo uma das sequências, pelo menos, 

deve ter soma maior ou igual a 17.



Teoria dos Números90

EXEMPLO 3:

Prove que há duas potências de 3, distintas, cuja diferença é divisível por 

2011.

Solução:

Considere o conjunto formado pelas 2012 primeiras potências de 3, isto é:
1 2 3 20123 ,3 ,3 ,...,3 .

Como o número de elementos do conjunto é maior que a quantidade de 

possíveis restos na divisão por 2011, haverá dois deles congruentes módulo 2011, 

ou seja, dois deles deixam mesmo resto na divisão por 2011. Isto é, há inteiros 

positivos ,m n  distintos tais que 3 3 (mod2011)m nº , ou seja, 2011|3 3m n- .

EXEMPLO 4:

Qual a quantidade mínima de brasileiros que devemos escolher para garantir 

que se possa formar um grupo com 6 pessoas que nasceram na mesma unidade da 

federação (total de 27)?

Solução:

Aqui usamos a formulação geral do princípio de Dirichlet, para 27n =  e 

5k = , de modo que o mínimo de pessoas a serem selecionada para se ter certeza 

da propriedade desejada é 27.5 1 136+ = .

Com essas ideias, encerramos a nossa aula. A sugestão é sempre buscar novos 

exemplos para complementar a teoria, bem como novos problemas que possam ser 

resolvidos como princípio apresentado aqui, sempre com o cuidado de identificar 

os “objetos” (ou pombos) e as “gavetas” (ou casas).
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AULA 7 Resíduos quadráticos

Caro(a) aluno(a),

Dando prosseguimento ao estudo da Teoria dos Números, em nossa sétima 

aula, continuaremos analisando as propriedades das congruências e verificando 

as condições que assegurem a existência de soluções para equações de tipo 

específico.

Objetivos

•	 Estudar os resíduos quadráticos e o símbolo de Legendre
•	 Apresentar a lei da reciprocidade quadrática
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TÓPICO 1 Resíduos  
quadráticos
Objetivos
•	 Definir os resíduos quadráticos

•	 Obter a quantidade de resíduos quadráticos

Aqui serão estudadas as equações do tipo 2 (mod )x a nº , o que 

pode ser interpretado como o problema de encontrar raízes 

quadradas módulo n  de um número inteiro positivo a . Pelo 

que sabemos sobre sistemas completos de resíduos, as soluções da equação dada só 

precisam ser procuradas no conjunto {0,1,2,..., 1}n- .

EXEMPLO 1:

Encontre todas as soluções da equação 2 1(mod5)x º .

Solução:

Analisemos os casos:

→→ se 0(mod5)x º , então 2 0(mod5)x º  e, assim, 2x º1(mod5)

→→ se 1(mod5)x º , então 2 1(mod5)x º  e, assim, os números da forma 

5 1x kº + , com k  inteiro são soluções para o problema

→→ se 2(mod5)x º , então 2 4(mod5)x º  e, assim, 2x º1(mod5)

→→ se 3(mod5)x º , então 2 4(mod5)x º  e, assim, 2x º1(mod5)

→→ se 4(mod5)x º , então 2 1(mod5)x º  e, assim, os números da forma 

5 4x kº + , com k  inteiro são soluções para o problema.
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Portanto, as soluções para a equação dada são os números da forma 5 1x kº +  

ou 5 4x kº + , com k  inteiro. Uma vez que 4 1(mod5)º- , podemos escrever a 

solução geral 5 1x k= ± .

Pelo que foi visto no exemplo anterior, para qualquer número inteiro n , 

vale 2 0(mod5)n º , 2 1(mod5)n º  ou 2 4(mod5)n º  e as equações 2 2(mod5)x º  

e 2 3(mod5)x º  não possuem soluções. Motivados por essa situação, daremos, em 

relação ao conjunto dos possíveis restos na divisão por 5, um destaque aos números 

1 e 4, que serão chamados de resíduos quadráticos módulo 5.

Definição 1: Dados os números inteiros positivos a  e n , relativamente primos, 

dizemos que a  é um resíduo quadrático módulo n  se a equação 2 (mod )x a nº  

possuir soluções.

EXEMPLO 2A:

Os números 1 e 4 são resíduos quadráticos módulo 5. Também 21 é resíduo 

quadrático módulo 5.

EXEMPLO 2B:

Veja inicialmente que

	 20(mod6) 0(mod6)x xº Þ º

	 21(mod6) 1(mod6)x xº Þ º

	 22(mod6) 4(mod6)x xº Þ º

	 23(mod6) 3(mod6)x xº Þ º

	 24(mod6) 4(mod6)x xº Þ º

	 25(mod6) 1(mod6)x xº Þ º

Assim, somente para 0,1,3,4a =  a equação 2 (mod6)x aº  possui solução 

inteira, mas 3 e 4 não são relativamente primos com 6, e 0 não é positivo, de modo 

que 1 é o único resíduo quadrático módulo 6 (a menos de congruência módulo 6).

Proposição 1: Se a  é um resíduo quadrático módulo m , e b  é um resíduo 

quadrático módulo n , com ,m n  relativamente primos, então a equação 
2 (mod )z ab mnº  possui solução.
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Demonstração: Pela definição, temos que existem inteiros ,x y  tais que

	 2 (mod )x a mº  e 2 (mod )y b nº

Uma vez que ( , ) 1m n = , vale 2 2 (mod )x y ab mnº , ou seja, a equação 
2 (mod )z ab mnº  possui, pelo menos, a solução xy .

Pelo exposto na proposição acima, podemos procurar os resíduos quadráticos 

módulo n , procurando os resíduos quadráticos referentes aos divisores de n . 

Assim, se n  for composto, podemos reduzir o problema para os seus divisores 

primos. Portanto, a partir de agora, consideraremos apenas as equações 
2 (mod )x a pº , com p  primo, caso em que também não nos ateremos à condição 

de serem relativamente primos, pois todos os números inteiros positivos menores 

que p , primo, são-lhe relativamente primos.

Além disso, o caso 2p =  é resolvido diretamente, com todo número ímpar 

sendo um resíduo quadrático módulo 2. Então, por toda esta aula, p  denotará um 

primo ímpar.

EXEMPLO 3:

Encontre todos os resíduos quadráticos módulo 7.

Solução:

Um sistema completo de resíduos módulo 7 é {0, 1, 2, 3, 4, 5, 6} e 

podemos analisar os valores dos restos da divisão de 2x  por 7 em cada caso. Mais 

simplesmente, podemos considerar o sistema completo {0, ±1, ± 2, ±3}. 

→→ se 1(mod7)x º± , então 2 1(mod7)x º , ou seja, 1 é um resíduo quadrático 

módulo 7

→→ se 2(mod7)x º± , então 2 4(mod7)x º , ou seja, 4 é um resíduo quadrático 

módulo 7

→→ se 3(mod7)x º± , então 2 2(mod7)x º , ou seja, 2 é um resíduo quadrático 

módulo 7

Logo, os resíduos quadráticos módulo 7 (menores que 7) são 1, 2 e 4, e os 

resíduos não quadráticos são 3, 5 e 6.

Para finalizar o tópico, vamos a duas proposições que levam à determinação da 

quantidade de resíduos quadráticos de um determinado número primo, motivado 

pelo que se pode observar nos exemplos dados e no fato de que 
1

{0, 1, 2, }
2

p-
± ± ±  

é um sistema completo de resíduos módulo p , quando p  é ímpar.
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Lema: Se p  é primo ímpar e a  é um inteiro positivo tal que a  é um resíduo 

quadrático módulo p , então a equação 2 (mod )x a pº  possui exatamente duas 

soluções incongruentes módulo p .

Demonstração: Primeiramente, veja que se x  é solução para a equação 

dada, então p x-  também é solução, pois 2 2 2( ) 2p x p px x- = - +  e como 
2 2p px-  é um múltiplo de p , temos 2 2( ) (mod )p x x a- º . Além disso, x  e p x-  

são incongruentes módulo p , porque, se valesse (mod )x p x pº - , teríamos 

2 (mod )x p pº , ou seja, |2p x , o que levaria a |p x  e, consequentemente, 
2 0(mod )x pº , o que não acontece. Com isso, obtemos que a equação possui 

pelo menos duas soluções incongruentes módulo p . Devemos mostrar também 

que qualquer outra solução para o problema é congruente a x  ou a p x- . Seja 

então y  tal que 2 (mod )y a pº , isto é, 2 2 (mod )y x pº . Daqui concluímos que 
2 2 0(mod )y x p- º , isto é, ( )( ) 0(mod )x y x y p+ - º . Como p  é primo, temos que 

0(mod )y x p+ º  ou 0(mod )y x p- º , o que é equivalente a (mod )y x pº-  ou 

(mod )y x pº , mas como (mod )x p x p- º - , obtemos que ou (mod )y p x pº -  ou 

(mod )y x pº , e terminamos a demonstração.

EXEMPLO 4A:

Uma vez que 25 3(mod11)º , temos que 3 é um resíduo quadrático módulo 

11 e as únicas soluções (a menos de congruência módulo 11) para a equação 
2 3(mod11)x º  são 5 e 6 (pois 6 = 11 – 5 )

Demonstração: Como {0,1,..., 1}p-  é um sistema completo de resíduos 

módulo p , os resíduos quadráticos módulo p  são gerados se obtivermos os restos 

de 2x  por p , para 1,2,..., 1x p= - . Observe, porém, como visto no lema, que 
2x  e 2( )p x-  deixam o mesmo resto na divisão por p , logo todos os resíduos 

quadráticos módulo de p  são os restos na divisão de 
2

2 2 1
1 ,2 ,...,

2

pæ ö- ÷ç ÷ç ÷çè ø
. Assim há, 

no máximo, 1

2

p-  resíduos quadráticos módulo p  incongruentes módulo p .  

Resta ser mostrado que os números 
2

2 2 1
1 ,2 ,...,

2

pæ ö- ÷ç ÷ç ÷çè ø
 são incongruentes módulo p .  

Se 
1

, {1,2,..., }
2

p
m n

-
Î  são tais que 2 2 (mod )m n pº , então 2 2 0(mod )m n p- º ,  

assim temos ( )( ) 0(mod )m n m n p- + º , de onde concluímos 0(mod )m n p+ º  

ou 0(mod )m n p- º . Uma vez que 1
0

2

p
m

-
< £  e 

1
0

2

p
n

-
< £ , vale 

2 2
0 1

2

p
m n p

-
< + £ = - , isto é, não há como m n+  ser um múltiplo de p . 
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Logo obtemos 0(mod )m n p- º  e assim (mod )m n pº . Porém, como m  e n  fazem 

parte de um sistema completo de resíduos módulo p , concluímos que m n= .  

Assim, 
2

2 2 1
1 ,2 ,...,

2

pæ ö- ÷ç ÷ç ÷çè ø
 são números incongruentes módulo p , de onde obtemos 

o resultado desejado.

EXEMPLO 4B:

Para p  primo ímpar, as únicas soluções para a equação 2 1(mod )p pº  são 

1 e 1p- .

EXEMPLO 5A:

A menos de congruência módulo 11, há exatamente 5 resíduos quadráticos 

módulo 11.

EXEMPLO 5B:

A menos de congruência módulo 47, há exatamente 23 resíduos quadráticos 

módulo 47.

No tópico seguinte, continuaremos analisando as equações do tipo 
2 (mod )x a pº , para p  primo e veremos como determinar se um número é resíduo 

quadrático módulo p .
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TÓPICO 2 O Símbolo de legendre
Objetivos

•	 Apresentar o símbolo de Legendre

•	 Relacionar o símbolo de Legendre com resíduos 

simples

O matemático francês Adrien-Marie Legendre (1752 - 1833) 

contribuiu com estudos significativos na Estatística, na Álgebra 

Abstrata, na solução de Equações Diferenciais e na Teoria dos 

Números. A seguir, definiremos o símbolo de Legendre, uma maneira simplificada 

de dizer se um número é resíduo quadrático módulo p .

Definição 1: Dado o primo ímpar p  e o inteiro positivo a , não 

múltiplo de p . O símbolo de Legendre de a  por p , denotado 

por 
a
p

æ ö÷ç ÷ç ÷ç ÷çè ø
 é igual a 1, se a equação 2 (mod )x a pº  possui solução, 

e vale –1, caso contrário. Ou seja:

         

1,  se  é um resíduo quadrático módulo 

1,  se  não é um resíduo quadrático módulo 

a pa
a pp

æ ö ìï÷ ïç ÷=ç í÷ç ÷ ïç -è ø ïî
.

Figura 1: Adrien-Marie Legendre
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EXEMPLO 1A:

Como visto no tópico anterior, 1 e 4 são resíduos quadráticos módulo 5, 

então 
1

1
5

æ ö÷ç =÷ç ÷çè ø
 e 

4
1

5

æ ö÷ç =÷ç ÷çè ø . Uma vez que 2 e 3 não são resíduos quadráticos módulo 

5, tem-se 
2

1
5

æ ö÷ç =-÷ç ÷çè ø
 e 

3
1

5

æ ö÷ç =-÷ç ÷çè ø
.

EXEMPLO 1B:

Vale dizer que 1 2 4
1

7 7 7

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
 e 

3 5 6
1

7 7 7

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= = =-÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

EXEMPLO 1C:

Para qualquer primo ímpar p , vale 
1

1
p

æ ö÷ç ÷=ç ÷ç ÷çè ø
.

	

A seguir, veremos algumas propriedades 

do símbolo de Legendre.

Proposição 1: Para qualquer primo ímpar 

p , vale 
1

1

0
p

a

a
p

-

=

æ ö÷ç ÷=ç ÷ç ÷çè ø
å . 

Demonstração: Pelo que vimos no tópico 

anterior, metade dos números do conjunto 

{1,2,..., 1}p-  são resíduos quadráticos módulo 

p , de modo que na soma 

1

1

p

a

a
p

-

=

æ ö÷ç ÷ç ÷ç ÷çè ø
å  há 1

2

p-  

parcelas iguais a 1. Também sabemos que os 

demais números, em igual quantidade, não são resíduos quadrático módulo p , por 

isso há também 1

2

p-  parcelas iguais a –1. Somando todas as parcelas, obteremos 

soma zero, como desejado.

Adiante, provaremos um resultado também conhecido como critério de 

Euler, que determina se um número é resíduo quadrático apenas pela determinação 

do resto de uma divisão.

at e n ç ã o !

Apesar da semelhança, não devemos confundir 

o símbolo de Legendre com uma fração 

simplesmente nem com o número binomial. 

g u a r d e  b e m  i s s o !

O símbolo de Legendre a
p

æ ö÷ç ÷ç ÷ç ÷çè ø
 não é definido se 

|p a , entretanto alguns autores estendem a 

definição acima para 0
a
p

æ ö÷ç ÷=ç ÷ç ÷çè ø
 se |p a . Assim, 

por exemplo, podemos considerar 
30

0
5

æ ö÷ç =÷ç ÷çè ø
.



99AULA  7 TÓPICO 2

Proposição 2: Se p  é um primo ímpar e a  é um inteiro positivo não divisível 

por p , então 
1

2 (mod )
pa

a p
p

-æ ö÷ç ÷ºç ÷ç ÷çè ø
.

Demonstração: Se 1
a
p

æ ö÷ç ÷=ç ÷ç ÷çè ø
, então existe um número inteiro x  tal que 

2 (mod )x a pº  e como 0a ¹ , é claro que x  não é múltiplo de p , de onde obtemos 

que ( , ) 1x p = . Usando o pequeno teorema de Fermat, sabemos que 1 1(mod )px p- º . 

Nestes termos, fazemos:

( )
1

2
1

2 2 (mod )
p p

a x p
- -

º , que equivale a 
1

2 1(mod )
p

pa x p
-

-º .

Juntando os fatos, concluímos que 
1

2

1(mod )
p

a p
-

º , ou seja, 
1

2

(mod )
pa

a p
p

-æ ö÷ç ÷ºç ÷ç ÷çè ø
 

e o primeiro caso fica provado. O segundo caso é análogo e vem do fato de que a 

quantidade de resíduos quadráticos módulo p  é 1

2

p- .

EXEMPLO 2A:

Vale 
11 1

22
2 (mod11)

11

-æ ö÷ç º÷ç ÷çè ø
, ou seja, 52

2 (mod11)
11

æ ö÷ç º÷ç ÷çè ø
. Como 52 32= , vale 

52 1(mod11)º- . Assim, 
2

1
11

æ ö÷ç =-÷ç ÷çè ø
 e, logo, 2 não é um resíduo quadrático módulo 

11.

EXEMPLO 2B:

Temos 63
3 (mod13)

13

æ ö÷ç º÷ç ÷çè ø
 e, como 63 1(mod13)º , vale que 3 é um resíduo 

quadrático módulo 13.

Neste tópico, definimos o símbolo de Legendre, que é uma maneira simplificada 

de afirmar quando um número é resíduo quadrático módulo p  e apresentamos o 

critério de Euler, que transfere o problema de decidir se um número é resíduo 

quadrático para a determinação do resto da divisão entre dois inteiros. No tópico a 

seguir, veremos outras propriedades do símbolo de Legendre.
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TÓPICO 3 Lei da reciprocidade 
quadrática
Objetivo
•	 Continuar o estudo dos resíduos quadráticos, analisando 

métodos de simplificação do cálculo do símbolo de 

Legendre

Continuamos o estudo do símbolo de Legendre a
p

æ ö÷ç ÷ç ÷ç ÷çè ø
, analisaremos a 

existência de soluções para equações do tipo 2 (mod )x a pº . Para 

começar, veremos que o símbolo de Legendre, visto como função 

de a , ou seja, com denominador fixo, é completamente multiplicativa.

Proposição 3: Se a  e b  são inteiros positivos não divisíveis pelo primo p , 

então .
ab a b
p p p

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷=ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
.

Demonstração: Inicialmente, vemos que ( )
1

2
1 1

2 2.
p p p

ab a b
- - -

= . Pelo critério 

de Euler (final do tópico 2), temos 
1

2 (mod )
pa

a p
p

-æ ö÷ç ÷ºç ÷ç ÷çè ø
 e 

1

2 (mod )
pb

b p
p

-æ ö÷ç ÷ºç ÷ç ÷çè ø
. 

Assim, 
1 1

2 2. . (mod )
p pa b

a b p
p p

- -æ ö æ ö÷ ÷ç ç÷ ÷ºç ç÷ ÷ç ç÷ ÷ç çè ø è ø
, isto é, . (mod )

ab a b
p

p p p

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ºç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
. Uma vez 

que o símbolo de Legendre assume apenas os valores 1 e –1, a congruência 

acima implica a igualdade desejada.

EXEMPLO 1A:

Usando o critério de Euler, podemos concluir que 
11 1

23
3 (mod11)

11

-æ ö÷ç º÷ç ÷çè ø
,  

ou seja, 53
3 (mod11)

11

æ ö÷ç º÷ç ÷çè ø
. Mas, como 53 243=  deixa resto 1 na divisão por 

11, temos que 
3

1
11

æ ö÷ç =÷ç ÷çè ø
. Pelo visto no exemplo 2a do tópico 2, vale 

2
1

11

æ ö÷ç =-÷ç ÷çè ø
.  
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Usando a multiplicabilidade do símbolo de Legendre, concluímos que 
6 2 3

. ( 1).1 1
11 11 11

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= º - =-÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
, logo 6 não é um resíduo quadrático módulo 11.

EXEMPLO 1B:

Para qualquer inteiro positivo a  não divisível por p , vale 
nna a

p p

æ ö æ ö÷ ÷ç ç÷ ÷=ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
.  

Dessa forma, como os possíveis valores de a
p

æ ö÷ç ÷ç ÷ç ÷çè ø
 são 1 e –1, vale 1

na
p

æ ö÷ç ÷=ç ÷ç ÷çè ø
 para 

qualquer n  par.

EXEMPLO 1C:

Vale que 52 32 1(mod31)= º . Assim 
52 1

1
31 31

æ ö æ ö÷ç ÷ç÷= =ç ÷ç÷ ÷çç ÷ è øè ø
, ou seja, 32 é um 

resíduo quadrático módulo 31. Além disso, 
52 32

1
31 31

æ ö æ ö÷ ÷ç ç= =÷ ÷ç ç÷ ÷ç çè ø è ø
, de onde podemos 

concluir que 
2

1
31

æ ö÷ç =÷ç ÷çè ø
, isto é, 2 é um resíduo quadrático módulo 31.

 	

Como consequência da multiplicabilidade do símbolo de Legendre, reduzimos 

o trabalho de procurar resíduos quadráticos a números primos. Para começar, um 

critério segundo os quais saberemos se 2 é resíduo quadrático.

Proposição 4: Se p  é um primo ímpar, então 
1,  se 1(mod8)2
1,  se 3(mod8)

p

pp

æ ö ì º±ï÷ ïç ÷=ç í÷ç ÷ ïç - º±è ø ïî
.

EXEMPLO 2A:

Como 17 1(mod8)º , então 
2

1
17

æ ö÷ç =÷ç ÷çè ø
, ou seja, 2 é um resíduo quadrático 

módulo 17. Exemplo 2b: 

Como 43 3(mod8)º , então 
2

1
43

æ ö÷ç =-÷ç ÷çè ø
, ou seja, 2 não é um resíduo quadrático 

módulo 43.

A seguir, enunciaremos um resultado que simplifica o cálculo do símbolo de 

Legendre, conhecido como a Lei da Reciprocidade Quadrática.  

Teorema: Se p  e q  são primos ímpares distintos, então 
1 1
.

2 2. ( 1)
p qp q

q p

- -æ ö æ ö÷ ÷ç ç÷ ÷= -ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
. 
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EXEMPLO 3A:

Calcule 41
43

æ ö÷ç ÷ç ÷çè ø
.

Solução:

Pela lei da reciprocidade quadrática, temos 
43 1 41 1

. 21.202 241 43
. ( 1) ( 1) 1

43 41

- -æ ö æ ö÷ ÷ç ç = - = - =÷ ÷ç ç÷ ÷ç çè ø è ø
. A partir daí, percebemos que 41

43

æ ö÷ç ÷ç ÷çè ø
 e 43

41

æ ö÷ç ÷ç ÷çè ø
 

têm o mesmo sinal. Mas, se 43 2(mod41)º , logo 43 2
41 41

æ ö æ ö÷ ÷ç ç=÷ ÷ç ç÷ ÷ç çè ø è ø
. Por fim, já que 

41 1(mod8)º , vale 
2

1
41

æ ö÷ç =÷ç ÷çè ø
. Assim, 41 43 2

1
43 41 43

æ ö æ ö æ ö÷ ÷ ÷ç ç ç= = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø
, de onde obtemos 

que 41 é um resíduo quadrático módulo 43.

EXEMPLO 3B:

Calcule 48
97

æ ö÷ç ÷ç ÷çè ø
.

Solução:

Como 48 não é primo, começamos pela fatoração 
448 2 .3= . Usando a 

multiplicabilidade do símbolo de Legendre, 
4448 2 3 2 3

. .
97 97 97 97 97

æ öæ ö æ ö æ ö æ ö÷ç÷ ÷ ÷ ÷ç ç ç ç÷= =ç÷ ÷ ÷ ÷ç ç ç ç÷÷ ÷ ÷ ÷ç ç ç çç ÷è ø è ø è ø è øè ø
. Como 

o símbolo de Legendre assume apenas os valores 1 e –1, necessariamente teremos 
42

1
97

æ ö÷ç =÷ç ÷çè ø
 e o teste do resto na divisão por 8 é desnecessário. Passemos, então, 

à determinação de 3
97

æ ö÷ç ÷ç ÷çè ø
. Para tanto, usemos a lei da reciprocidade quadrática 

3 1 97 1
. 1.482 23 97

. ( 1) ( 1) 1
97 3

- -æ ö æ ö÷ ÷ç ç = - = - =÷ ÷ç ç÷ ÷ç çè ø è ø
. Assim, 3

97

æ ö÷ç ÷ç ÷çè ø
 e 97

3

æ ö÷ç ÷ç ÷çè ø
 têm o mesmo sinal. 

Uma vez que 97 1(mod3)º , temos que 97 é um resíduo quadrático módulo 3, logo 
97

1
3

æ ö÷ç =÷ç ÷çè ø
. Concluindo: a partir daí, obtemos que 41

43

æ ö÷ç ÷ç ÷çè ø
 e 43

41

æ ö÷ç ÷ç ÷çè ø
 têm o mesmo sinal. 

Mas 43 2(mod41)º , logo 48
97

æ ö÷ç ÷ç ÷çè ø
 = 1. 

EXEMPLO 4:

Mostre que não existe inteiro n  tal que 27|4 3n - .

Solução:

Observe que 27|4 3n -  equivale a 24 3(mod7)n º , ou seja, 2(2 ) 3(mod7)n º  

e, se fizermos 2x n= , teremos 2 3(mod7)x º . Podemos aqui usar o que foi feito 

no tópico 1, no qual obtemos que 3 não é um resíduo quadrático módulo 7, para 

afirmar que a equação não possui solução. Alternativamente, usando a lei da 

reciprocidade quadrática, podemos ver que 
3 1 7 1

. 1.32 23 7
. ( 1) ( 1) 1

7 3

- -æ ö æ ö÷ ÷ç ç = - = - =-÷ ÷ç ç÷ ÷ç çè ø è ø , 
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isto é, 3
7

æ ö÷ç ÷ç ÷çè ø
 e 7

3

æ ö÷ç ÷ç ÷çè ø
 têm sinais contrários. Mas, como 7 1(mod3)º , temos 7

1
3

æ ö÷ç =÷ç ÷çè ø
,  

de onde obtemos que 
3

1
7

æ ö÷ç =-÷ç ÷çè ø
 e, da mesma forma, concluímos que 3 não é um 

resíduo quadrático módulo 7.

 

Com estes dois testes simples, encerramos nossa aula sobre resíduos 

quadráticos. Vimos como a investigação sobre existência de soluções para equações 

do tipo 2 (mod )x a pº  pode ser bem simplificada.
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AULA 8 Problemas diversos

Caro(a) aluno(a),

Chegamos à nossa última aula de Teoria dos Números. Aqui revisitaremos os 

principais resultados apresentados no decorrer do curso, através de problema 

resolvidos de diversos níveis de dificuldade. Não hesite em procurar nas aulas 

passadas as definições pertinentes a cada situação. Fique atento também às 

hipóteses de cada enunciado e aos momentos nos quais elas são usadas.

Objetivo

•	 Apresentar problemas resolvidos sobre a teoria desenvolvida nas aulas 
anteriores e discutir a aplicação das técnicas apresentadas em suas soluções
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TÓPICO 1 Miscelânea de 
exercícios

PROBLEMA 1:

Mostre que a soma de dois números inteiros é ímpar se, e somente se, um 

deles for par e outro for ímpar.

Solução:

Inicialmente, verifique que, se a  for par e b  for ímpar, podemos 

escrever 2a m=  e 2 1b n= +  para certos inteiros m  e n . Daí teremos 

2 2 1 2( ) 1a b m n m n+ = + + = + + , que é um número ímpar, isto é, a soma de um  

número par com um número ímpar resulta em um número ímpar. Se considerarmos  

a  e b  ambos pares, podemos escrever 2a m=  e 2b n=  para certos inteiros m  e  

n . Assim encontraremos 2 2 2( )a b m n m n+ = + = + , que é um número par. Se a  

e b  forem ambos ímpares, podemos escrever 2 1a m= +  e 2 1b n= +  para certos 

inteiros m  e n . Daí teremos 2 1 2 1 2 2 2 2( 1)a b m n m n m n+ = + + + = + + = + + ,  

que é um número par. Dessa forma, a soma de dois números pares é sempre par 

e a soma de dois números ímpares também é par. O mesmo resultado vale para a 

diferença de dois números. 

PROBLEMA 2:

Mostre que se a  e b  são números ímpares, então 2 2a b+  não pode ser um 

quadrado perfeito. 

Solução:

Comecemos observando que, se a  e b  são ímpares, o mesmo ocorre com 2a

e 2b , logo 2 2a b+  é um número par. Para que um número par seja um quadrado 
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perfeito, é necessário que ele seja um múltiplo de 4, pois 2 22| 2| 4|n n nÞ Þ . 

Mas, como a  é ímpar, vale 1(mod4)a º  ou 3(mod4)a º  e, em ambos os casos, 

tem-se 2 1(mod4)a º , o mesmo ocorrendo para b , isto é, vale 2 1(mod4)b º . 

Somando as duas congruências, obtemos 2 2 2(mod4)a b+ º , de onde concluímos 

que 2 2a b+  não é um múltiplo de 4 e, assim, não pode ser um quadrado perfeito 

(como consequência deste resultado, um triângulo retângulo com lados de medidas 

inteiras tem pelo menos um dos catetos de medida par).

PROBLEMA 3:

Prove que 2 1 23 2n nM + += +  é um múltiplo de 7 para qualquer inteiro 

positivo n .

Solução:

Observe inicialmente que 23 2(mod7)º , logo ( )23 2 (mod7)
n nº  e, assim, 

2 13 2 .3(mod7)n n+ º . Da segunda parcela da soma que define M , podemos afirmar 
2 22 2 .2 2 .4n n n+ = =  que gera a congruência imediata 22 2 .4(mod7)n n+ º . Somando 

então as duas últimas congruências, obtemos 2 1 23 2 2 .3 2 .4(mod7)n n n n+ ++ º + , mas 

2 .3 2 .4 2 .(3 4) 2 .7n n n n+ = + = , que é, claramente, um múltiplo de 7.

PROBLEMA 4:

Mostre que a representação decimal de um número quadrado perfeito não 

pode ter algarismo das unidades terminando em 2, 3, 7 ou 8. 

Solução:

O algarismo das unidades na representação decimal é o resto da divisão do 

número por 10. Considere, então, os possíveis restos e observe o que acontece com 

o quadrado:

	 20(mod10) 0(mod10)n nº Þ º

	 21(mod10) 1(mod10)n nº Þ º

	 22(mod10) 4(mod10)n nº Þ º 	

	 23(mod10) 9(mod10)n nº Þ º

	 24(mod10) 6(mod10)n nº Þ º

	 25(mod10) 5(mod10)n nº Þ º

	 26(mod10) 6(mod10)n nº Þ º

	 27(mod10) 9(mod10)n nº Þ º

	 28(mod10) 4(mod10)n nº Þ º

	 29(mod10) 1(mod10)n nº Þ º
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Assim, os possíveis algarismos das unidades de um quadrado perfeito são 

apenas 0, 1, 4, 5, 6 e 9. De modo que, se um número terminar em algarismo diferente 

destes, quando escrito na base 10, ele certamente não será um quadrado perfeito. 

Como consequência deste critério, podemos, sem nenhum cálculo, auxiliar, dizer 

que os números 10253443 , 3278812  e 20003417 são irracionais, pois os 

radicandos não são quadrados perfeitos.

PROBLEMA 5:

Prove que o produto de três números inteiros consecutivos é sempre divisível 

por 6.

Solução:

Em uma sequência de três inteiros consecutivos, há necessariamente um 

múltiplo de 3, de modo que o produto de três inteiros consecutivos é um múltiplo 

de 3. De maneira análoga, certamente um dos fatores será um número par e, assim, 

múltiplo de 2. Assim, o número obtido é divisível por 2 e por 3 ao mesmo tempo, 

sendo portanto, múltiplo de 6.

PROBLEMA 6:

Usando o algoritmo de Euclides, determine o máximo divisor comum entre 

432 e 28, em seguida determine o mínimo múltiplo comum entre 432 e 28.

Solução:

Começando pela divisão de 432 por 28, obtemos

432 28.15 12= +

Assim, o problema é transferido para a determinação do máximo divisor 

comum entre 28 e 12. Dividindo 28 por 12, obtemos

28 12.2 4= +

Desse modo, temos que o máximo divisor comum entre 28 e 12 é o mesmo 

que entre 12 e 4, mas, como 4 é um divisor de 12, temos (28,12)=4. Logo, o máximo 

divisor comum entre 432 e 28 é 4. Usando a identidade [ , ].( , ) .a b a b a b= , ganhamos 

que 
432.28 432.28

[432,28] 432.7 3024
(432,28) 4

= = = = , ou seja, o mínimo múltiplo 

comum entre 432 e 28 é 3024.

PROBLEMA 7:

Mostre que a equação 42 180 14x y+ =  não possui soluções inteiras.
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Solução:

Do estudo de equações diofantinas, sabemos que ax by c+ =  possui solução 

( , )x y Î ´ 

 se, e somente se, ( , )|a b c . Para a equação dada, basta ver que 

(42,180) 6= , mas 6 não divide 14. 

PROBLEMA 8:

Determine o resto na divisão de 22.33.44.55 por 7.

Solução:

Como 22 1(mod7)º , 33 5(mod7)º , 44 2(mod7)º  e 55 6(mod7)º , temos, 

pela multiplicação das congruências, que 22.33.44.55 1.5.2.6(mod7)º . Como 

1.5.2.6=50 deixa resto 4 na divisão por 7, temos que 22.33.44.55 deixa resto 4 na 

divisão por 7.

PROBLEMA 9:

Determine o número inteiro positivo n  que satisfaz 12|n  e ( ) 14nt = .

Solução:

Seja 1 2
1 2. ..... k

kn p p paa a=  a fatoração em primos de n , temos que 

1 2( ) ( 1)( 1)...( 1)knt a a a= + + + . Assim, devemos procurar as formas segundo as 

quais 14 pode ser escrito como produto de números inteiros positivos. São elas 

14 14.1= , e neste caso, teremos 13n p= , para algum primo p , ou 14 7.2= , caso 

no qual vale 6n p q=  para primos p  e q . Como 12|n  e 212 2 .3= , necessariamente 

os primos 2 e 3 devem aparecer na fatoração de n , de modo que a primeira opção 

não ocorre. Então temos 62 .3n =  ou 63 .2n = . Mas a segunda opção não ocorre, 

pois o expoente do 2 deve ser no mínimo 2 para que se tenha 12|n . Assim, a única 

possibilidade é 62 .3 192n = = .

PROBLEMA 10:

Encontre todos os restos possíveis na divisão de um quadrado perfeito por 8.

Solução:

Uma vez que os possíveis restos na divisão por 8 são apenas 0, 1, 2, ..., 7, 

avaliaremos apenas os possíveis restos na divisão de 2n  por 8 nos seguintes casos:

se 0(mod8)n º , temos 2 0(mod8)n º  e o resto é, portanto, 0

se 1(mod8)n º± , temos 2 1(mod8)n º  e o resto é, portanto, 1

se 2(mod8)n º± , temos 2 4(mod8)n º  e o resto é, portanto, 4

se 3(mod8)n º± , temos 2 9(mod8)n º  e o resto é, portanto, 1

se 4(mod8)n º , temos 2 16(mod8)n º  e o resto é, portanto, 0
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Esgotadas todas as possibilidades, concluímos que um quadrado perfeito 

deixa resto 0, 1 ou 4 na divisão por 8.

PROBLEMA 11:

Mostre que, se 7(mod8)k º , então k não pode ser escrito como soma de três 

quadrados perfeitos.

Solução:

Pelo problema anterior, um quadrado perfeito deixa resto 0, 1 ou 4 na divisão 

por 8, logo a soma de três quadrados será congruente à soma de três números do 

conjunto {0,1,4} . Porém 7 não pode ser escrito como soma de três dos números 

dados, por isso é impossível que um número que deixa resto 7 na divisão por 8 

possa ser escrito como soma de três quadrados perfeitos.

PROBLEMA 12:

Determine o resto da divisão de 6 2419 44+  por 7.

Solução:

Como 19 não é divisível por 7, temos, pelo Teorema de Fermat, que 
7 119 1(mod7)- º , ou seja, 619 1(mod7)º . Usando argumento semelhante, 

concluímos que 644 1(mod7)º , de onde obtemos ( )46 444 1 (mod7)º , isto é, 
2444 1(mod7)º . Por fim, temos 6 2419 44 1 1(mod7)+ º +  e o resto procurado é, 

portanto, 2.

PROBLEMA 13:

Encontre a quantidade de números inteiros positivos menores que 3600 que 

são múltiplos de 2, 3 ou 5.

Solução:

Observe que a fatoração de 3600 em primos é 4 2 23600 2 .3 .5= . Assim os 

fatores primos de 3600 são exatamente 2, 3 e 5, de modo que os múltiplos de 2, 3 

ou 5 são aqueles que não são relativamente primos com 3600. Podemos encontrar 

a quantidade dos que são relativamente primos com 3600 pela função de Euler 
1 1 1 1 2 4

(3600) 3600. 1 . 1 . 1 3600. . . 960
2 3 5 2 3 5

f
æ ö æ ö æ ö÷ ÷ ÷ç ç ç= - - - = =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

. Assim, se retirarmos 

esses 960 números dos 3599 inteiros positivos menores que 3600, obteremos os 

2639 que são múltiplos de 2, 3 ou 5. 

PROBLEMA 14:

Encontre o menor inteiro positivo n  para o qual ( ) 13nt = .



Teoria dos Números110

Solução:

Seja 1 2
1 2. ..... k

kn p p paa a=  a fatoração em primos de n , temos que 

1 2( ) ( 1)( 1)...( 1) 13knt a a a= + + + = , porém, como 13 é um número primo, não 

poderá ser escrito como produto de dois números menores que ele. Logo os 

números que possuem exatamente 13 divisores positivos são da forma 12n p= , 

com p  primo. De modo a minimizar o valor de n , consideramos o menor primo e 

obtemos 122 4096n = = .

PROBLEMA 15:

Prove que se n  não é um quadrado perfeito, então ( )nt  é par.

Solução:

Se n  não é um quadrado perfeito, então pelo menos um dos expoentes de 

sua fatoração em primos é ímpar, de modo que pelo menos um dos consecutivos 

destes expoentes é par. Mas, quando um dos fatores é par, o produto é par, logo a 

quantidade de divisores de n  que é calculada pelo produto dos consecutivos dos 

expoentes de sua fatoração em primo será par.

PROBLEMA 16:

Determine todos os números inteiros positivos menores que 12 que possuem 

inverso módulo 12.

Solução:

Um número n  possui inverso módulo 12 quando existe um inteiro k  tal que 

1(mod12)nk º  e isso ocorre se, e somente se, ( ,12) 1n = . Investigando quais dos 

inteiros positivos menores que 12 lhe são relativamente primos, obtemos a lista 1, 

5, 7, 11. Mais ainda, cada um dos números listados é seu próprio inverso módulo 

12.

PROBLEMA 17:

Mostre que a equação 3 5 27 0n n+ - =  não possui solução inteira.

Solução:

Veja que a equação é equivalente a 3 5 27n n+ = , ou seja, 2( 5) 27n n + = .  

Observe que 2 5n +  é um número necessariamente positivo e maior que n , de 

modo que escrevemos 27 como produto de dois números inteiros positivos, mas só 

há duas maneiras de fazer isso: 27 1.27= , caso em que 1n =  e 2 5 27n + = , o que 

não se verifica; e 27 3.9= , caso em que 3n =  e 2 5 9n + = , o que é igualmente 

falso. Assim concluímos que a equação dada não possui raízes inteiras.
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PROBLEMA 18:

Dado o número inteiro 3B> , mostre que o número ( )1331 B  é um cubo 

perfeito.

Solução:

Aqui basta ver que ( ) 3 2 31331 3 3 1 ( 1)B B B B B= + + + = + , que é o cubo do 

inteiro 1B+ . 

PROBLEMA 19:

Mostre que existem infinitos números inteiros n  para os quais 10| ( )nf .

Solução:

Observe que (11) 10f = , logo, se m  for relativamente primo com 11, teremos 

(11 ) (11) ( ) 10 ( )m m mf f f f= = , assim 10| (11 )mf , isto é, 10| ( )nf  para todo inteiro 

positivo da forma 11n m= , com (11, ) 1m = . Mas há infinitos números que podem 

ocupar o lugar de m , por exemplo todos os outros primos.

PROBLEMA 20:

Mostre que, para qualquer inteiro positivo 1n> , existem infinitos números 

inteiros m  para os quais ( )m nt = .

Solução:

Observe que ( )m nt =  ocorre para qualquer número da forma 1nm p -= , 

onde p  é primo. O resultado segue do fato de que há infinitos números primos.

PROBLEMA 21:

Determine o algarismo das unidades de 2027 , quando expresso em base 

decimal.

Solução:

O algarismo das unidades de um número é o resto da divisão pela base. Assim, 

devemos determinar o resto da divisão de 2027  por 10. Sabemos pelo teorema de 

Euler, que ( ) 1(mod )na nf º , para quaisquer inteiros positivos ,a n  relativamente 

primos. Assim, temos (10)7 1(mod10)f º . Mas (10) 4f = , daí vale 47 1(mod10)º . 

Dividindo 202 por 4, obtemos quociente 50 e resto 2, de onde concluímos 

( )50202 50.4 2 4 2 50 27 7 7 .7 1 .7 (mod10)+= = º . Por fim, como 27 49 9(mod10)= º , o 

algarismo procurado é 9.
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