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APRESENTACAO

Caro (a) aluno (a), no texto que segue temos a apresentacdo de algumas propriedades
aritméticas dos numeros inteiros, especialmente aquelas referentes ao algoritmo da divisao.

Como pré-requisito para a sua leitura, recomenda-se alguma familiaridade com as operacdes
aritméticas fundamentais - adicao e multiplicacéo.

Os dois primeiros capitulos tratam dos divisores e dos multiplos de um numero inteiro, com
enfoque nos NUMeros primos, e apresentamos a Nnog¢do de congruéncia, aprofundada no

terceiro capitulo.

As funcdes aritméticas m, s, t e f séo estudadas nos dois capitulos seguintes, nos quais ha
exemplos computacionais e relacdes entre elas.

O principio de Dirichlet (ou das gavetas) € abordado no sexto capitulo.

No penultimo capitulo, estudamos os residuos quadraticos, com énfase no uso do simbolo
de Legendre e da lei da reciprocidade quadratica, com a qual encerramos a teoria contida
neste material.

O Ultimo capitulo apresenta uma miscelanea de exercicios sobre os diversos assuntos
abordados. De posse deste livro, este Ultimo capitulo pode (e deve) ser consultado a qualquer

momento, para melhor fixacao da teoria.

Desejando a todos um bom proveito na leitura € um bom aprendizado, s resta comecar o
trabalho.

Janio Kléo

APRESENTACAO




AUL A ‘l Divisores de um
nUMmero

QOla, a todos.

Em nossa primeira aula de Teoria dos Numeros, estudaremos o processo de
divisdo de numeros inteiros, detalhando e justificando suas principais propriedades.
Alguns dos assuntos sao nossos conhecidos de longa data, pois trataremos do
conjunto Z e das operacdes de soma e multiplicagao. Além de acompanhar os
exemplos fornecidos neste texto, ndo hesite em fazer testes para a verificagéo
das propriedades e melhor assimilacao das definicdes.

Objetivos

e Definir os principais termos da Teoria dos Numeros
e Analisar a divisdo de numeros inteiros e 0s algoritmos correlatos

‘ Teoria dos NUmeros




TOPICO 1 =

OBJETIVOS
. Identificar as principais defini¢des sobre os niimeros inteiros e

suas consequéncias
. Estabelecer o conceito de divisibilidade e as relagdes entre os

divisores de um numero inteiro

Teoria dos Numeros, do ponto de vista cladssico, trata
principalmente do conjunto dos numeros inteiros, denotado por
Z, que compreende todos os nliimeros naturais positivos, o zero
e seus simétricos.
Z={.,-2,-10,1,23,.}
Para dois numeros inteiros a e b, sdo definidas as operagdes de soma,
representada infixamente por a+ b, e de multiplica¢ao (ou produto), representada

por a.b ou simplesmente ab, que satisfazem as seguintes propriedades:

1. VYa,b€Z,valea+b=>b+a (a soma é comutativa)

2. Va,b,c€Z, vale (a+b)+c=a+(b+c) (a soma ¢ associativa)

(existe um elemento

3.Va€Z,valeat+0=a
neutro para a soma)

(todo elemento possui

4. Va € Z,3(—a)€Z, tal que a +(—a)=0 )
inverso para a soma)

(a multiplicagao
5. Va,b € Z, vale ab = ba . .
¢ comutativa)

(a multiplicagao
6. Va,b,c € Z, vale (ab)c = a(bc)

¢ associativa)

(existe um elemento neutro

7. Va€Z,valeal=a .
para a multiplicagdo)

(a multiplicagio ¢ distributiva
8. Va,b,c € Z, vale a(b+ c)=ab + ac

em relacdo a soma)

‘ TOPICO 1
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Por causa da associatividade, podemos
fazer a soma de qualquer quantidade finita de
inteiros agrupando-os em qualquer ordem e,
assim, os parénteses serdo opcionais nesse caso,
bem como no produto de uma sequéncia finita
de inteiros.

Aqui temos a relagao de ordem:

W <—2<-1<0<1<2<3<..., na qual entre
dois numeros listados consecutivamente nao ha
nenhum ndmero inteiro.

E relevante observar que Z nio ¢é
limitado superiormente, ou seja, Z nio possui
um elemento mdximo, bem como nao ¢ limitado
inferiormente, pois ndo possui um elemento

minimo.

ATENCAD!

4

Observagao: A um conjunto com operacdes
de soma e multiplicagdo que satisfazem as
propriedades (1), (2), (3), (4), (6) e (8) damos o nome
de anel; caso a propriedade (5) seja satisfeita, o
anel ¢ dito comutativo. Se (7) ¢ satisfeita, dizemos
que o anel possui identidade. O conjunto dos
numeros inteiros ¢, portanto, um anel comutativo

com identidade.

Além disso, se a<b,entdo a+c<b-+c,Vc€Z e ac<bc,Vc>0.

EXEMPLO 1

Mostre que ndo existe o inverso multiplicativo do ntimero 2.

Solucao:

Suponha que exista @ €Z tal que 2.a=1. Por um lado, este niimero deve

ser maior que 0, pois, se a <0, teriamos 1=2a<2.0=0, ou seja, 1<0, que é

falso. Da mesma forma, se a>1, teriamos 1=2a>2.1=2, ou seja, 1>2, que é

falso, de onde concluimos que a <1. Assim, deveriamos ter a@> 0 e a<l, mas

sabemos que tal inteiro ndo existe. Logo 2 ndo possui inverso multiplicativo.

O mesmo raciocinio do exemplo acima pode ser aplicado para mostrar que

os unicos ntiimeros inteiros que possuem inverso multiplicativo em Z sdo 1 e —1.

A estes numeros damos o nome de unidades e denotaremos por U(Z). Assim

definimos U(Z)={n € Z;3m € Z,mn =1} e vale U(Z)={—11}.

Passemos a defini¢do central desta aula.

Definicao 1: Dados os nimeros inteiros a e b, dizemos que a divide b (repre-

sentamos por a|b) se existir um inteiro n tal que b=a.n . Ou seja:

alb<3dneZ;b=an.

Quando a|b, dizemos também que a é um divisor de b ou, equivalentemente,

que b é um multiplo de a.

‘ Teoria dos Numeros




EXEMPLO 2A

Como 30 = 5.6, podemos dizer que 5|30 e 6|30, ou seja, 5 e 6 sdo divisores
de 30.
EXEMPLO 2B

Podemos usar uma ideia semelhante
a do exemplo 1 para mostrar que ndo existe

ATENG[\U! nenhum inteiro n para o qual 5n=12 (tente

repetir o processo de modo a demonstrar isso).

Embora saibamos de antemdo que o inverso do

ntimero 2 ¢ o ntmero 1/2, que nio ¢é inteiro, Assim sendo, 5 ndo divide 12, o que pode ser

esse conhecimento prévio ndo deve ser tomado representado por 5/./ 12, isto ¢, 12 nao ¢ um
como imediato, pois envolve, na maioria dos multiplo de 5.
casos, teorias mais elaboradas, como o estudo
) o ) Proposicao 1: A divisibilidade ¢ uma re-
dos numeros racionais. Devemos, assim, tomar
lagdo transitiva, ou seja, se a|b e b|c,

cuidado com o que parecer 6bvio e tentar provar

_ , entdo alc.
usando apenas as propriedades de cada objeto

i ) Demonstragio: Se a|b, entdo b=an,. Se
que estivermos analisando.

b|c, entdo ¢ =bn, =anyn,, logo a|c.
S

Proposicdo 2: Se a|b e b|a, entdio a=b ou a=—b.
Demonstracgdo: Se a|b, entdo b=an,. Se b|a, entdo a=bn, =ann,, logo
mn, =1,0quesomenteocorrese n, =n, =1,casoemquea=>,oun =n, =—1,

caso em que temos a=—b .

Proposicdo 3: Se a|b e c€Z, com ¢=0, entdo ac|bc.
Demonstragio: Se a|b, entdo b = an . Multiplicando esta igualdade por c € Z,

temos bc =acn , logo ac|bc.

Proposicdo 4: Se a|b e a|c, entdo a|b+c.

Demonstragdo: Se a|b e alc, entdo existem inteiros m e n para os quais

b=am e c=an. Assim, b+c=am+an=a(m+n), logo a|b+c.

Observacdo 1: Como recurso extra para o entendimento da expressiao

a|b+c, poderiamos usar parénteses e escrever a|(b+c), entretanto a auséncia

‘TC’)PICO1 \ 11




deles ndo gera nenhuma ambiguidade, pois a expressdo (a|b)+c¢ ndo tem sentido
definido.

Observagdo 2: Como consequéncia direta das duas ultimas proposigoes, se
alb e a|c, entdo a|mb+nc para quaisquer inteiros m e n.

A respeito dos divisores de um numero, valem também as seguintes
propriedades, que sdo consequéncias diretas da defini¢do e cujas demonstragdes
sdo sugeridas como exercicio.

1)1|a, ala e a|0, para qualquer inteiro a;
2)se ablac e a=0, entdo b|c;

3
4

se a|b, entio a|—b, —a|b e —a|—b;

se a|lb e b=0, entio |a| <|b

’

)
)
)
5)se a|b, entdo ¢ =— éinteiroe c|b.
a

Uma das implicagdes da propriedade 4 ¢ que o conjunto de divisores inteiros
de um numero nao nulo ¢ limitado e, por isso, finito. Como resultado da propriedade
3, a quantidade de divisores inteiros de um numero nao nulo é sempre par, ja que
sempre virdo aos pares cada divisor e seu simétrico. Assim, basta conhecermos
apenas os divisores inteiros positivos de um numero, pois os negativos estardo

automaticamente determinados. Denotaremos, entdo, por D(n) o conjunto de

divisores inteiros positivos do numero n, ou seja, D(n)={m €Z  ;m|n}.

EXEMPLO 3

Fazendo testes com os inteiros positivos

de 1 a 8, vemos que D(8)={1,2,4,8} . Assim, os

" ATENCAD!

Pela transitividade da relagdo de divisibilidade,

divisores inteiros de 8 sdo £1, 2, +4 e *+8.

Defini¢do 2: O numero inteiro n ¢ par se verifica-se  facilmente que se a|b, entdo

2|n e é impar, caso contrario. D(a)Cc D(b).

Durante nossa primeira aula, estudaremos métodos que, entre outras coisas,
nos fornecerdo a quantidade de divisores positivos de um ntuimero inteiro. Antes
disso, observe o seguinte exemplo prédtico de como construir o conjunto D(n),

usando principalmente a propriedade 5, indicada acima.

EXEMPLO 4A

Escreva o conjunto de divisores positivos do niimero 60.

Teoria dos Numeros




Solugao:

De principio, sabemos que 1 e 60 devem entrar na lista, pois cada ntiimero
inteiro tem pelo menos dois divisores positivos. Uma vez que podemos escrever 60
= 2.30, podemos afirmar que 2|60 (60 é par) e, pelo mesmo motivo, 30|60 . Como
nado hd nenhum inteiro entre 1 e 2, ndo ha nenhum divisor inteiro de 60 entre 30 e
60. Assim, os demais divisores estdo entre 2 e 30. Fazendo testes semelhantes aos do
primeiro exemplo, concluimos que 60 = 3.20. Assim, 3 € D(60) e 20 € D(60), e ndo
hd ndmeros entre 20 e 30 a serem considerados. Continuando assim entre 3 e 20, o
proximo divisor de 60 é o numero 4, pois 60 =4.15. Entre 4 e 15, o préximo divisor de
60¢éonumero5, pois60=>5.12. Entre 5¢e 12, o proximo divisor de 60 ¢é 6, pois 60 =6.10.
Por fim, testando os numeros entre 6 ¢ 10, ndo encontramos nenhum divisor de 60

e encerramos a lista. D(60)=1{1,2,3,4,5,6,10,12,15,20,30,60} .

EXEMPLO 4B

Realizando processo semelhante, podemos concluir que
D(28)={1,2,4,7,14,28} ¢ D(11)={1,11}.

Observagdo 3: Se os numeros inteiros positivos a e b sdo tais que a|b,
com a=1 e a=b, dizemos que a ¢ um divisor préprio de b. Assim, no exemplo
anterior, os divisores proprios de 60s3o 2, 3, 4,5, 6,10, 12, 15, 20 e 30, e 0 numero
11 nao tem divisores proprios.

Observacgdo 4: Para qualquer inteiro positivo 7, o teste com os divisores s6
€ necessdrio para os numeros menores ou iguais a Jn por causa da propriedade 5.

Uma vez que sabemos construir o conjunto dos divisores inteiros positivos
de um numero, ¢ ainda mais simples construir o conjunto dos divisores de um dos
seus divisores. Do que obtivemos no exemplo 4a, ficaria bem simples encontrar os
divisores de 30 ou de 15. Pelo resto de nossa aula, teremos a relagdo de divisibilidade
como objeto relevante, acrescentando novas ferramentas e aprofundando com

consequéncias interessantes.

TOPICO 1




TOPICU 9 | Nameros primos

OBJETIVOS
. Definir niimero primo e estudar suas propriedades

. Descrever o crivo de Erastotenes

uando analisamos os divisores de um ntmero, encontramos
maneiras de fatora-los, ou seja, de escrevé-los como produto
de outros numeros, por exemplo escrevemos 60 da forma 2.30.
Obviamente, podemos também fazer 60 = 1.60, que pode ser chamada de fatoragao
trivial. Neste topico, estudaremos especificamente os nimeros que ndo podem ser
fatorados de maneira nao trivial que ndo podem ser escritos como produtos de

fatores menores. Comegaremos com a defini¢do central a seguir:

Definigdo 3: Um ndmero inteiro p>1 é dito primo se sempre que p|ab

obtivermos p|a ou p|b.

Guarde bem esta definigao, pois ela serd revisitada em outros cursos, como o
de Estruturas Algébricas, nos quais se estudam outros conjuntos dentro dos quais
a ideia de elemento primo também ¢ relevante. Para ntmeros inteiros, podemos
trabalhar com uma defini¢do equivalente, como a que segue.

Suponha que o nimero inteiro positivo d seja um divisor do nimero primo
p>1, ou seja, que p=gdn, para algum inteiro positivo n. Assim, os numeros
a=d’ e b=n" sdo tais que ab=d’n* =(dn)’ =(dn)(dn)=p.p, logo p|ab . Pela

definigdo de nimero primo, temos p|a ou p|b. Uma vez que p|a equivale a

Teoria dos NUmeros




pl|d®, significa que p|d, mas, como d|p e sdo ambos positivos, concluimos que
d=p e n=1. A outra alternativa seria p|b, que equivale a p|n’, logo p|n,
mas, como n|p, concluimos que n=p e d=1. Aqui demonstramos que, se é
primo, um numero possui exatamente dois divisores positivos. A reciproca dessa
afirmacao é verdadeira e sua demonstragdo ¢
deixada como exercicio.

Assim, obtemos que p>1 ¢é primo se, e
GUARDE BEM ISSO! somente se D(p)=1{l,p}, ou seja, um ntimero

maior que 1 é primo quando nado possui divisores

1. Se o numero inteiro positivo #>1 ndo ¢é

proprios ou ainda quando possui exatamente
primo, dizemos que ele é composto, pois ele o o

dois divisores positivos.
pode ser escrito como produto de dois ntimeros
menores que ele.

EXEMPLO 5
2. Todo numero composto tem pelo menos

Analisando os dados do exemplo 4, vemos

um numero primo como divisor (veremos a o ) )

que 60 ndo é primo, pois o conjunto de seus

demonstragao ainda nesta aula).
divisores préprios é nao vazio. O numero 28 é

3. Os numeros 0 e 1 nao sdo primos nem Lo L

multiplo de 2, logo nao ¢ primo, enquanto 11
compostos, por definigao. ] o o

possui exatamente 2 divisores positivos, sendo,

e .
portanto, primo.

Osnumeros primos funcionam como os d&tomos dos numeros inteiros positivos,
pois, como veremos adiante, todo ntimero inteiro positivo pode ser escrito como
produto de niimeros primos e, igualmente importante, essa decomposi¢do ¢ feita de
maneira unica.

Como a quantidade de divisores de um numero inteiro positivo ¢é finita,
poderiamos nos perguntar qual o maior nimero primo que existe. Uma
investiga¢do mais apurada nos levaria a uma resposta interessante: nao ha um
maior nimero primo! Acompanhe o seguinte raciocinio: se houvesse um maior
numero primo, isso significaria que a quantidade deles ¢é finita. Seja, entdo, o
conjunto P ={p,, p,,..., p,} de “todos” os numeros primos. Dessa forma, considere
0 numero inteiro n=p p,...p, +1, que € maior que qualquer elemento de P,
logo n ¢ P . Além disso, vemos que pi/l/n, para todo i=1,...,k, de onde obtemos
que n ndo possuiria nenhum divisor primo, o que ¢ uma contradigdo, visto que
n>1. Assim, a suposi¢do de que ha uma quantidade finita de nimeros primos é

incorreta. Podemos, entdo, enunciar o resultado:

Proposigdo 5: Existem infinitos niimeros primos.

TOPICO 2
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Se testarmos alguns dos numeros inteiros positivos maiores que 1 para
sabermos seus divisores e determinarmos se eles sio primos, podemos concluir
que os primeiros cinco nimeros primos sdo 2, 3, 5, 7 e 11. Ja que a quantidade de
numeros primos ¢ infinita, poderiamos investigar como eles estdo distribuidos ou
quantos deles sdo menores que um numero fixado.

H4 um algoritmo, conhecido como crivo de Eratdstenes (matemdtico e
gedgrafo grego nascido no século IIT a.C.), que lista os nimeros primos menores
que n . Pelo observado anteriormente, os divisores devem ser procurados apenas
até (no maximo) Jn .

Observe como funciona o crivo de Erastotenes para n =60 . Inicialmente,
vejamos que J60 7,7 . Assim, o processo de busca de divisores proprios dos
numeros da lista sera encerrado no 7. Comecemos listando os nimeros inteiros
positivos de 1 a 60, e “riscamos” o 1, que ndo é primo. O primeiro nimero nao

marcado ¢ o 2, que ¢ primo, destaquemos por colchetes.

X 2 3.4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60

Em seguida, eliminamos todos os multiplos seguintes de 2, pois eles nao sao

prlmos.
X 2 3 X 5 X 7 X 9 X
11 » 13 » 15 ¥ 17 X 19 24
21 2 23 24 25 > 27 2 29 3
31 3¢ 33 34 35 3¢ 37 3K 39 24
41 2 43 24 45 26 47 28 49 >4
51 54 53 3 55 3 57 5§ 59 e

O primeiro niimero nao marcado foi o 3 e como ele ndo tem divisores primos
menores que ele, ele é primo. Em seguida, eliminamos os multiplos de 3 (basta
contar “de trés em trés”).

X 2 B X 5 X 7 X X X

1 X 13 XM X » 17 X 19
20 28 23 24 25 2 2 2 29
31 3 3 3 35 36 37 XK

41 2 43 24 2 26 47 28 49
SC 3 53 3 55 3 X XK

X
BE K KX

‘ Teoria dos Numeros




O primeiro niimero ndo marcado foi o 5 e como ele nao tem divisores primos

menores que ele, ele é primo. Em seguida, eliminamos os multiplos de 5.

X 2 B X 5] XK 7 X X X
11 2 13 X XX X 17 2 19 2
2 2 23 2 2 2K 29 3¢
31 3 XK 3 37 3 34 2
a1 2 43 2 47 2 49 3]
3 53 3 3 3 3 3 59

O primeiro ntimero nao marcado foi o 7 e como ele ndo tem divisores primos

KX X
K KX

menores que ele, ele é primo. Em seguida, eliminamos os multiplos de 7. E como ¢

o ultimo do teste, os que sobrarem sem marcagdo, sao nimeros primos.

X [ B X [ X 7] X X X
] » 3] x X 6 [17] X [19] 2
20 20 (23] 20 K XK 2 [29] 34
B1] 3¢ X 3 3 3€ [37] X 34 2
[a1] 28 [43] 24 28 2 [47] 2& 24 4
>C 3 53] 3 3 36 3 € [59] B4

Assim, os numeros primos menores que 60 s3o 2, 3,5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53 € 59.

O crivo de Eratéstenes pode ser usado para qualquer valor de n, obviamente
exigindo trabalho crescente. Muitos trabalhos atuais sido feitos com testes de
primalidade, alguns demandando esforgos computacionais muito grandes.

Miéquinas modernas trabalham neste intuito e

. , . . , 43112698
o maior numero primo conhecido ¢é 2 -1,

/
St decimal I
ue em notagdo decimal tem quase treze mi
SAIBA MAIS! d
algarismos e foi descoberto em 2008.

No site http://www.ahistoria.com.br/eratostenes/

. . EXEMPLO 6
vocé pode conhecer um pouco mais sobre

Erat6stenes e algumas de suas obras. Mostre que a equagao n 4n?—59=0

nao possui raizes inteiras.
N

Solucao:

A equagdo dada é equivalente a n’ —4n2 =59, ou ainda n’*(n —4) =59 . Assim
n’|59. Como 59 é primo, seus tnicos divisores positivos sio 1 e 59. Como n? =59,
para todo 7 inteiro, a alternativa seria n* =1, que resulta em n==+1. Entretanto,
por substitui¢do direta, vemos que nenhum desses valores é raiz da equagao dada.

Assim, ela ndao possui raizes inteiras.
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Vale ressaltar que 2 é o Unico numero primo par, pois todos os demais
numeros pares tém pelo menos o 2 como divisor proprio. Assim, todo ntimero
primo maior que 2 é impar, mas nem todo ntimero impar ¢ primo, como bem ilustra
0 numero 9.

Conhecer os numeros primos e suas propriedades é, de certa forma,
conhecer todos os numeros inteiros. Dessa forma, é razodvel que conhegamos
pelo menos os primeiros numeros primos de cor. A tabela obtida no exemplo do
crivo de Eratostenes ¢ um bom modo de fixar essas ideias. Entretanto, como parte
fundamental da teoria dos ntiimeros inteiros, ha muito ainda o que se ver sobre os

numeros primos, e isso se dard nos préoximos tépicos.
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A Divisao de inteiros e o
TUPI cu 3 algoritmo de Euclides

OBJETIVOS

. Definir quociente e resto na divisao de inteiros

. Destacar as propriedades do maximo divisor comum

. Estudar métodos de inferéncia sobre o conjunto solugao das

equagoes diofantinas

os topicos anteriores, vimos como determinar se a|b, ou seja,

se existe ¢€7Z tal que b=ac. Nesse caso dizemos que b ¢

um multiplo de a. Agora veremos o algoritmo da divisao, suas

consequéncias e principais propriedades. Inicialmente, veja que, da mesma forma

que definimos o conjunto dos divisores positivos de um numero, podemos definir

o conjunto dos miltiplos positivos de um numero, o qual denotaremos por M(n),
ouseja, M(n)={meZ" ;n|m}.

De imediato verificamos que os multiplos positivos do nimero inteiro positivo

n sao ln, 2.n, 3.n, 4n, ... Logo, concluimos simplesmente que sao infinitos.

Entretanto, fixado o ntmero inteiro a>0, o conjunto {m € M(n);m <a}U{0},

dos multiplos nao-negativos de n que sdo menores ou iguais a a, é limitado

superiormente e ndo-vazio, e assume, portanto, um maximo. Seja m, este

maximo. Como m, é um multiplo de n, podemos escrever m, =gn, para algum

inteiro positivo g . Necessariamente ¢ valido que a—m, <n, pois, do contrério,

perderiamos a maximalidade de m,. Se escrevermos r =a —gn, podemos, entao,

enunciar o seguinte resultado:
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Dados os niimeros inteiros positivos a e n, existem numeros inteiros g e r,
chamados respectivamente de quociente e resto da divisao, tais que

a=qn+r e 0<r<n.

Assim, dividir a (chamado de dividendo) por n (o divisor) consiste em
encontrar o quociente e o resto que satisfazem a propriedade desejada. Aqui
usamos o artigo definido porque tanto quociente quanto resto sio unicamente

determinados, como provado a seguir.

Proposigdo 6: O quociente e o resto da divisao entre os inteiros positivos

a e n siao unicos.

Demonstragdo: Suponha que haja inteiros ¢q,,q, € r,r, tais que
a=qn+n e a=qn+r, ¢ 0<r,,<n. Dessa dultima desigualdade,
fazemos r,<n=r—rn<n—r<n, ou sea, r,—n<n. Analogamente,
pode-se demonstrar que —n<r, —r,. Das igualdades acima, podemos inferir
gn+n=g,n+r=(q —q)r=r,—nr, com base na qual podemos afirmar que
n|r,—r,. Mas como —n<r,—r, <n, a Unica possibilidade é r,—r, =0, isto &,
o resto ¢ Unico e, assim, o quociente também ¢ tnico, como se pode verificar da
igualdade (ql —q, )n =r,—1=0.

EXEMPLO 1A

Uma vez que podemos escrever 13 = 5.2 + 3 e 3 < 5, podemos dizer que a

divisdo de 13 por 5 apresenta quociente 2 e resto 3.

EXEMPLO 1B

E verdade que 27 = 4.5 + 7, mas nio podemos dizer que a divisio de 27
por 4 gera quociente 5 e resto 7, pois 7 ndo é menor que 4. Da mesma maneira,
embora 27 = 4.7 + (1), o resto ndo pode por ser negativo. Na divisao de 27 por 4,

o quociente vale 6 e o resto vale 3.

EXEMPLO 1C
Como 30 = 6.5, o quociente e o resto da divisao de 30 por 6 valem 5 e 0,

respectivamente.
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Observagao: Embora a defini¢ao acima tenha sido estabelecida para numeros
inteiros positivos, o processo pode ser, com pequenas adaptagdes, estendido para
numeros inteiros quaisquer desde que o divisor seja diferente de zero. Quando
o divisor for negativo, exigiremos para o resto que ele seja menor que o valor
absoluto do divisor. Assim, fazendo a divisdo de 33 por —5, o quociente é -7 e o
resto é 2, pois 33 = (-5).(-7) + 2 e 0<2<|-5|.

Pelo que definimos anteriormente, ¢ imediato que, quando a | b, o resto da

divisdo de b por a ¢ 0, caso em que dizemos que a divisdo ¢ exata.

Definigdo 4: Dados os nimeros inteiros positivos g e b, dizemos que o nimero
d € Z . é o mdximo divisor comum entre a e b, e escrevemos d = (a,b), quando:

(i) d|a e d|b,ouseja, d € D(a)N D(b);

(ii)se d, |a e d, | b, entdo d, |d , ouseja, d éo maior niimero com a propriedade (i).

Quando (a,b)=1, dizemos que a e b sdo relativamente primos ou primos entre si.

EXEMPLO 2A
Como D(60)={L2,3,4,5,6,10,12,15,20,30,60} e D(28)={1,2,4,7,14,28},
temos D(60)N D(28)={1,2,4} e, assim, (60,28)=4 .

EXEMPLO 2B
Como D(16)={1,2,4,8,16} e D(27)={1,3,9,27}, temos (16,27)=1 e, assim,

16 e 27 sdo relativamente primos, embora nenhum deles seja um nimero primo.

Vale ressaltar que, como o numero 1 é divisor de qualquer inteiro, o conjunto
dos divisores comuns a dois inteiros positivos nunca ¢ vazio e ¢ limitado por a e
b, logo possui um elemento maximo. Podemos, assim, concluir que sempre existe
(a,b) . Vejamos, entdo, como determinar o maximo divisor comum entre dois
numeros inteiros sem ter que listar todos os divisores de ambos.

Decorre diretamente da defini¢do que se a|b, entdo (a,b)=a e nio hd o
que fazer. Caso isso ndo acontega, considere a > b, divida a por b e obtenha um

resto r.
Proposicao 7: Se r é o resto da divisdo de a por b, entdo (a,b)=(b,r).

Demonstracdo: Fazendo d =(aq,b), temos que d ¢ divisor de a e de b,
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logo podemos escrever a =dgq, e b=dgq,.Como r ¢ oresto da divisdo de @ por b,
podemos escrever a =bq +r, ou seja, r =a—bg=dq, —dq,q =d(q, —qq,) . Desse
modo, temos que d é um divisor de r.

Agora considere d, =(b,r). Como d ¢ divisor de b e de r, temos, pela
condigdo (ii) da defini¢do, que d ¢é divisor de d,. Se mostrarmos que que d, ¢
divisor de d , teremos a igualdade que completa a prova.

Como d, ¢ divisor de b e de r, podemos escrever b=d g, e r=dq, e,
fazendo as devidas substitui¢des, temos: a=bqg+r =d,q,q +d,q, =d,(9:9 +q.) -
Assim, d, € divisor de a e, como ja era divisor de b, temos que d,, € divisor de d .
Dessa forma, d ¢ divisorde d,, e d, é divisor de d . Chegamos, entdo, a conclusao
de que sdo iguais, ou seja (a,b)=(b,r).

A proposicao anterior apenas transfere o problema de determinar o maximo
divisor comum entre os nimeros a e b para encontrar o maximo divisor comum
entre b e r, oresto da divisdo de a por b, mas com a vantagem de que os nimeros
envolvidos sdo menores. Se r|b, vale dizer que (b,r)=r, e o processo, entdo, se
encerra. Caso contrario, repetimos este passo: se t, for o resto da divisdo de b por
r, temos (b,r)=((r,r,), € assim sucessivamente até que encontremos uma divisdo
exata, caso em que o divisor serd o maximo divisor comum entre os numeros
iniciais.

O processo descrito é conhecido como Algoritmo de Euclides.

EXEMPLO 3A

Determine o maximo divisor entre 60 e 28.

Solugio:
Comecemos dividindo 60 por 28; obtemos quociente 2 e resto 4. Assim

(60,28) =(28,4) e como 428, vale (28,4)=4, ou seja (60,28)=4 .

EXEMPLO 3B

Determine o maximo divisor comum entre 129 e 45.

Solug¢io:

Observe que 129 = 45.2 + 39, assim transferimos o problema para os ntiimeros
45 e 39. Mas 45 = 39.1 + 6, e o problema passa para 39 e 6. Temos 39 = 6.6 + 3.
Por fim, o problema de encontrar o maximo divisor comum entre 3 e 6 resolve-se

diretamente do fato de 3 ser um divisor de 6, de modo que 3 ¢ o maximo divisor

‘ Teoria dos Numeros




comum entre 3 e 6 e, logo, entre 129 e 45.

EXEMPLO 3C

Determine o maximo divisor comum entre 400 e 148.

Solucio:

400 = 2.148 + 104 400, 148) = (148, 104)
148, 104) = (104, 44)
104, 44) = (44, 16)
44, 16) = (16, 12)
16, 12) = uz@

12,4) =

(

148 = 1.104 + 44 (

104 = 2.44 + 16 (

44 = 2.16 + 12 (

16 =1.12 + 4 (

12=3.4+0. (
Assim, (400, 148) = 4.

Decorre também do algoritmo de Euclides que, se d =(a,b), entdo existem

m,n €24, tais que d =ma+nb. Adiante sera provado que d ¢ o menor inteiro

positivo que pode ser escrito dessa forma. Assim, por exemplo, a equagado

30m +15n =1 nio tem raizes inteiras porque 30 e 15 nao sao relativamente primos.

Podemos dizer que 1 ndo pode ser escrito como combinagdo linear de 30 e 15.

EXEMPLO 4A
Encontre m,n € Z tais que 129m +45n=3.

Solucio:

Uma vez que (129, 45) = 3, o problema ¢é possivel. Pelo algoritmo de Euclides,
podemos proceder:

129 = 2.45 + 39, daqui podemos dizer que 39 = 129 — 2.45

45 =1.39 + 6, assim 6 = 45 — 39 = 45 — (129 — 2.45) = 3.45 — 129

39 =6.6 + 3.

Logo

3=39-6.6=(129-2.45)-6.(3.45-129)=129-2.45-18.45 +6.129 = 7.129

—20.45. Assim, os valores m =7 e n=—20 satisfazem a relagdo 129m +45n=3.

Observe que podemos encontrar solugdes inteiras para 129m + 45n =d para
qualquer inteiro d multiplo de 3, bastando para isso multiplicar as solugdes da

equagdo original.

EXEMPLO 4B
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Encontre dois numeros inteiros a,b tais que 60a + 25b = 30.

Solugio:

Para que o algoritmo de Euclides fornega uma solugdo para o problema,
€ necessario que 30 seja multiplo do méximo divisor comum entre 60 e 25.
Comecemos determinando (60, 25).

60 =2.25 + 10

25=2.10+5

20 = 4.5.

Assim, encontramos (60, 25) = 5 e, aplicando o método descrito no exemplo
anterior, podemos encontrar 5 como combinagao linear de 60 e 25. O processo leva
aigualdade

5=(-2).60 + 5.25

Como 30 = 6.5, basta multiplicar a ultima igualdade por 6 para obter:

6.5 = 6.(-2).60 + 6.5.25

E assim concluimos que 30 = (—12).60 + 30.25, ou seja, os valores a =—12
e b=30 satisfazem a relacio 60a 4 25b=30.

Definicao 5: Dados os numeros inteiros a,b,c, a equagdo ax +by=c com
incoégnitas x e y ¢ chamada de equagdo diofantina linear (em referéncia a Diofante,
matematico e gedgrafo considerado por muitos o maior algebrista grego, o qual tem

para a Aritmética a importancia que Euclides tem para a Geometria).

Proposicao 8: A equacdo diofantina linear de duas incégnitas x e y dada

por ax + by =c admite solucao se, e somente se, (a,b) | C.

Demonstragdo: Suponha que a equagdo ax+by=c tenha uma solucao,
ou seja, que existam inteiros x, e y, tais que ax, +by, =c. Sendo d =(a,b),
podemos escrever g— dql e p= qu , para inteiros apropriados. Assim
c=dq,x, +dq,y, =d(q,x, +9,%) . Concluimos, entdo, que d |c.

Pelo algoritmo de Euclides, podemos escrever d =ax, + by, para inteiros
apropriados, mas, se supusermos que d |c, poderemos escrever ¢ =dq, onde q ¢
seria um inteiro. Assim ¢ =dq = q(ax, + by,)=(gx,)a +(qy,)b . Logo, obtemos que
os inteiros x =gx, e y=qy, satisfazem a relacdo ax +by=c e, assim, a equagao

tem solugdo inteira, o que completa a prova.

O algoritmo de Euclides para a determinagdo do mdximo divisor comum
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entre dois numeros fornece, como visto, uma maneira de resolver as equagdes
diofantinas. Verifique nos exemplos que antecedem a definicio de equagdo
diofantina que poderiamos ter feito um teste com o maximo divisor comum entre
os coeficientes para determinar se a equagdo era possivel. Revise os conceitos
da aula e faga testes com dois numeros a quaisquer para treinar a técnica. Em
seguida, podemos passar ao préximo tépico, que trata do Teorema Fundamental da

Aritmética e de suas implicagdes.
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= O Teorema Fundamental
T PI 4 da Aritmética

OBJETIVOS
*  Enunciar e demonstrar um teorema central para o curso
*  Observar as principais consequéncias do teorema e suas

aplicacdes

imos que um numero primo possui exatamente dois divisores

positivos e, portanto, ndo pode ser escrito como produto de dois

numeros menores que ele. Assim, como 29 é um numero primo,
a unica forma de escrevé-lo como produto de dois numeros inteiros positivos é
29 = 1.29.

Os numeros compostos possuem divisores triviais, podendo ser fatorados
como produto de numeros menores. Por exemplo, 30 ¢ composto e pode ser escrito
como 30 = 6.5 = 2.15 = 3.10. Algo a se observar aqui é que nenhuma dessas
maneiras de escrever o numero 30 envolve apenas primos. De fato, a inica maneira
(a menos da ordem dos numeros) de escrever 30 como produto de niimeros primos
¢ 30 = 2.3.5. A seguir, veremos que podemos fazer isso com qualquer numero
inteiro maior que 1.

Comecemos por um resultado simples que servira para, de certa forma,
tornar a demonstragido do teorema mais clara.

Lema: Se a é um niimero composto, entdo o menor divisor préprio de n é
primo.

Demonstracado: Seja d o menor divisor proprio de 7. Por definigao, d =1.
Se d fosse composto, ele possuiria um divisor proprio, digamos d, . Mas d, |d e
d|n implicam que d, |n €, como d, <d , haveria um divisor préprio de n menor

que d, contrariando a sua minimalidade.



Teorema (Fundamental da Aritmética): Todo nimero inteiro maior que
1 pode ser escrito como produto de nuimeros primos. Em outros termos: dado
qualquer numero inteiro a>1, existem primos p,,...,p, distintos, e inteiros
positivos ..., tais que n=p"..p;* . Além disso, a menos da ordem dos

numeros, essa decomposi¢do é feita de maneira unica.

Demonstragdo: Se n € primo, o resultado vale imediatamente. Seja, entao,
n composto. Pelo lema anterior, o menor divisor préprio de n é primo. Vamos
chamaé-lo de p,. Podemos, entdo, escrever n= pn, . Se n, é primo, o resultado vale
imediatamente. Caso contrario, seja, entdo, n, composto. Da mesma forma, o menor
divisor préprio de n, ¢ primo. Vamos chama-lo de p,. Assim, podemos escrever
n=pn, = p,p,n,. O processo pode ser repetido, e como, a cada passo, n, <n,_,,
ou seja, forma-se uma sequéncia decrescente de inteiros positivos e maiores que 1,
haverd um momento no qual teremos #,, = p,, primo e, assim, n= p,...p, . Como os
primos obtidos ndo sao necessariamente distintos, podemos contar a quantidade de
vezes que cada primo p, aparece. Vamos chamar essa quantidade de «; e concluir

— Q Qe
que n=p"...p." .

Quanto a unicidade, suponha que n=p*..p* e n=q’.q" sejam duas
decomposi¢des em numeros primos do numero n. Como p, ¢ primo e divide
n=gql..q", pela definigio de ntmero primo, temos p, |q, para algum i e,
como eles sdo primos, devem ser iguais, assim, podemos reordenar os primos
da segunda decomposigdo para que p, =¢q,. Usando um argumento semelhante,
podemos concluir que os expoentes devem ser iguais também. Da igualdade
plpt=qh..q", e uma vez que p,=¢q, e o, =0, podemos concluir que
peplt =4 g

que p,=q, e o, =f3,. O raciocinio é repetido k vezes, quando se esgotam os

Dai, basta repetir a ideia de reordenamento para provar

primos p, o mesmo tendo que acontecer com os ¢g,. Dessa forma, a quantidade
de primos distintos nas duas decomposi¢des ¢ a mesma e, a menos de ordem dos
numeros, elas possuem os mesmos fatores com os mesmos expoentes, o que conclui
a demonstragao.

Nio é sem motivo que o teorema acima recebe o nome de fundamental, pois
muitos outros resultados seguem diretamente dele, além da simplificagdo de uma

série de outros problemas.

EXEMPLO 1A
A decomposicao em fatores primos do numero 72 ¢é 2°.3* . Dessa maneira,

se d]72 , nenhum primo diferente de 2 e 3 pode dividir d, ou seja, podemos
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escrever d =2"3", com a€{0,1,2,3} e B €{0,1,2} . Assim, temos 4 possibilidades
para o valor de o e 3 para 3 . Pelo Principio Fundamental da Contagem, podemos

concluir, entdo, que 72 possui 4.3 = 12 divisores inteiros positivos.

EXEMPLO 1B
Como 100 = 2%.5%, os divisores positivos de 100 sio da forma d =25, com
o, €{0,1,2}. Assim, 100 possui 3.3 = 9 divisores positivos.

O numero 3°.5%7 possui 3.5.2 = 30 divisores positivos.

EXEMPLO 1C

Para  determinar a quantidade de divisores positivos do
nimero m=4"12°.15>, devemos obter sua fatoragio em primos:
4°12°.15° =(2)’.(2°3)°.(3.5)’ =2°.2".3°.3°.5° =2°.3°.5°. Dessa forma, m possui
11.6.4 = 264 divisores positivos.

Como visto nos exemplos, podemos

determinar a quantidade de divisores positivos

de um numero inteiro de maneira pratica a partir

ATENCAO!

da sua decomposi¢cdo em ntiimeros primos. Outra

-

Se n<-1, entdo -n é um inteiro maior que 1 e,

utilidade dessa maneira de escrever os inteiros
positivos é a determinagdo do mdximo divisor

assim, possui decomposi¢cao em nimeros primos,

comum. )
de modo que npode ser escrito como produto de

Se a e b sdointeiros positivose d = (a,b), ) .
Numeros primos vezes —1.

é claro que d|a. Assim a decomposicdo de d

possui apenas primos constantes na fatoragio de ==,
a, nado podendo exceder os expoentes dessa fatoragdo. O mesmo deve acontecer

em relagdo a b, de modo que a fatoragdo de d em primos contém exatamente os

primos comuns as fatoragdes de a e de b com o menor expoente que aparecer.

EXEMPLO 2A

Como 108 =2%.3% e 120 =2".3.5, 0 maximo divisor comum entre 108 e 120
tem em sua fatoragdo apenas os primos 2 e 3, que sdo os fatores comuns a ambos.
Além disso, se o expoente do 2 fosse maior que 2, o resultado nao seria divisor do
108. O expoente para 3 sera 1, que é o maximo possivel para ser divisor de 120.

Dessa forma, temos (108,120)=2°3=12.

EXEMPLO 2B
Como 72=2’3% e 35="7.5, temos (72,35)=1.
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Se pusermos os niimeros primos em ordem crescente e escrevermos p, =2,
p, =3, p, =5 e assim sucessivamente, podemos dizer que todo ntimero possui
o0
uma decomposigdo tnica da forma n= p;"p;*...= Hp,fk , onde ¢ ¢ diferente de
k=1
Ose p,|n, eigual a0, caso contrario.
00 o0 o0
— Qe — 3 3 — G
Dessa forma, se a—Hpk e b—Hpk , vale dizer que (a,b)—Hpk ,
k=1 k=1 k=1
onde V¢ é o minimo entre o, e G,.
E claro que muito mais se pode extrair da relacdo de divisibilidade e da
decomposi¢do em numeros primos. Continuaremos com esse assunto, dando-
lhe mais profundidade, vendo novos conceitos e revisitando outros. Por ora,

encerramos essa primeira aula. Até breve.
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AULA2  wa

Ola a todos,

Continuamos nosso estudo de Teoria dos Numeros. Na aula 1, demos énfase
aos divisores de um nUmero inteiro. Nesta aula 2, continuamos com o assunto,
abordando também os seus multiplos. Veremos alguns critérios de divisibilidade e
como representar nimeros em bases diferentes da base 10.

Objetivos

e Dar prosseguimento ao estudo da divisibilidade
e Relacionar propriedades de divisibilidade e sistema decimal
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TGPICU -l Minimo Mdiltiplo Comum

OBJETIVOS

e Definir e verificar as principais propriedades do
minimo multiplo comum entre dois numeros

. Relacionar Minimo Multiplo Comum e Maximo Divisor

Comum

ara os numeros inteiros positivos a e b, vimos que a|b quando

b=aq para algum inteiro g, caso em que dizemos que a é um

divisor de b, e b ¢ um multiplo de a. O conjunto de multiplos

inteiros positivos do nimero a ¢é denotado por M(a) e é sempre ilimitado
superiormente.

Consequentemente podemos verificar, pela transitividade da relagdo de

divisibilidade, que a|b se, e somente se, M(b)C M(a). Dessa relagdo, obtemos

que se ¢ € M(a)N M(D), entdo M(c) C M(a)N M(b) -

Definic¢do 1: Dados os numeros inteiros positivos a e b, dizemos que o ntime-
* 7 s ’ .

ro m €Z", é o minimo milltiplo comum e escrevemos m = [a,b] quando:

(i) a|m e b|m, ouseja, m € M(a)N M(b);

(ii) se a|m, e b|m,, entdo m|m,, ou seja, m é o menor nuimero positivo com

a propriedade (i).

EXEMPLO 1A:
Como M(2)=1{2,4,6,8,10,...} e M(5)={510,15,20,25,....}, vale |2, 5] = 10.

EXEMPLO 1B:
Observando que 7 | 721, podemos dizer que [721, 7] = 721.

Uma vez que para os inteiros positivos a e b ¢é sempre verdade que

ab € M(a)N M(b), o conjunto dos multiplos comuns a dois inteiros positivos nunca
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¢ vazio e, como possui apenas numeros positivos, possui sempre um elemento
minimo, de onde podemos concluir que sempre existe [a,b].
Considerando os primos listados em ordem crescente (como no final da aula
o] ] o0
. o~ _ [ _ . _ w ,
1) e as decomposigdes a —I_Ip,C e b= l_[p,C , vale [a,b]_Hpkk , onde w, ¢é
k=1 k=1 k=1

00

o maximo entre @, e B3,. De fato, se m = Hp,f“ , vale a|m e b|m. Além disso,
k=1

qualquer multiplo simultdneo de @ e b deve conter todos os fatores primos das

suas decomposigdes, fazendo com que o valor de m se€ja 0 menor possivel.

EXEMPLO 2A:
Como 36=2°3" e 40 =275, vale [36,40] =2’3’5=1360.

EXEMPLO 2B:
Quando dois ntimeros sao primos entre si, eles ndo possuem fatores primos
em comum. Assim sendo, seu minimo multiplo comum ¢ igual ao produto dos dois.

Por exemplo, [16,27]=16.27 =432.

Uma vez que para quaisquer numeros reais o e (3 vale min{a, 3} + max
{a, B8} = a+ (3, é simples verificar que (a,b).[a,b]=a.b, para quaisquer inteiros
positivos a e b. Assim, o algoritmo de Euclides fornece, também, uma maneira

de encontrar o minimo multiplo comum entre dois niimeros, como vemos a seguir.

EXEMPLO 3:
Podemos determinar (60, 36) de acordo com o esquema:
60 = 36 + 24 (60, 36) = (36, 24)
36 =24 + 12 (36, 24) = (24, 12)
24 =2.12 (24,12) = 12

Assim, (60, 36) = 12, mas como (60,36).[60,36] = 60.36, podemos escrever

60.36
[60,36] = —— =180
12
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TGPICU 2 Outras bases

OBJETIVO

. Escrever nameros inteiros em diversas bases

bserve que, ao escrevermos, por exemplo, o numero 3272, estamos
usando a base 10, o que significa que podemos representa-lo da
seguinte forma:
3272=3.10"42.10° +7.10' 4+-2.10° .
Desde cedo aprendemos esse tipo de notagao. Uma das consequéncias dessa
notagao ¢ a propriedade que assegura que, para se multiplicar um numero inteiro
por 10, basta acresentar um O a direita do nimero. Neste topico, veremos que é

possivel fazer o mesmo para qualquer base.

Teorema: Seja B>1 um numero inteiro. Todo numero inteiro positivo ¢
pode ser expresso, de maneira unica, na forma a=r,B" +...+rB+r,, com
0<r, <B, para qualquer 0<k<n.
Demonstragao: Comecemos dividindo a por B, obtendo quociente g, e
resto 1. Assim, vale dizer que:

a=Bq,+r,, com 0<r, <B.

Dividindo, entdo, g, por B, obtemos quociente ¢, e resto r,. Assim,
vale dizer também que:

9o =Bg, +1r,com 0<r, <B.

Note que g, > ¢q,. Repetindo o processo, podemos dividir g, por B,
obtendo quociente g, eresto r,, onde g, >q,.

q,=Bq,+r,com 0<r,<B.

Repetimos o processo até que g, =0, o que fatalmente acontecera,

LA 2 ‘TC’)PICOZ \ 33




34

uma vez que a sequéncia de quocientes é decrescente e formada apenas por nu-
meros nao negativos.

Neste caso, teremos os dois tltimos passos:

9y =Bq,, +1,_,, com 0 < r_, <B.

q4,.,=Bq,+1rn=BO0+r,=r,com 0<r, <B.

Por retrossubstitui¢do, podemos fazer:

qn—Z = Bqn—l + rﬂ—l = Brn + rﬂ—l

qn73 = Bqan + rnfl = B(Brn + rnfl) + ran = Bzrn + Brnfl + rn72

Qs =Bq,, +1,,=B(B'r, +Br,_ +1,,)+1,, =B, + B, +Br,, +1,,
e assim sucessivamente até
9o =Bq, +1,=B(B"r, + B" 1, +.. 4 Bry + 1) 41,
=B""'r,+B"’r, +..+Br,+Br,+r,

E, por fim:

a=Bq,+1,=BB"'r,+B"’r,_, +..+Br,+r)+r1,
=B"r,+B"'r,  +..+Br,+Br, +1,

Assim, demonstramos a existéncia de tais coeficientes.

Observe agora que r, é o resto da divisdo de a por B, sendo, portanto,
unicamente determinado. Além disso, Br; +1, é o resto da divisdo de @ por B,
fazendo com que r; seja unicamente determinado. Uma repeti¢do desse argumen-
to nos levard a unicidade da representagao.

Por simplicidade, escrevemos @ =r,B" +...+ 1B+, =(1,..1i1,)5 e, como

de costume, quando a base é omitida, é porque estamos usando 10.

EXEMPLO 1A:

Escreva 185 na base 7.

Solugao:
Fazendo divisdes sucessivas:
185 =7.26 +3
26 = 7.3 + 5.
Assim, temos 187 = 7.(7.3 + 5) + 3 = 3.7° +5.7+3=(353),

EXEMPLO 1B:
Escreva 2185 na base 5.
2185 =437.5+0
437 = 87.5 + 2
87 =175+ 2
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17 = 3.5+ 2
3=0.5+3
Por substituicdo, temos:
87=17.5+2=(3.5+2).5+2=3.5" +2.5+2
437=875+2=(3.54+2.5+2).5+2=3.5 +2.5 +2.5+2
2185=1437.5+0=(3.5 +2.5 +2.5+2).5+0=3.5" +2.5" +2.5" +2.54 0 = (32220),

EXEMPLO 1C:
Passe 217 para a base 6
217 =6.36 + 1

ATENGAO! 36=6.6+0
6=16+0
Em outras palavras, o teorema acima pode ser
1=06+1

€Xpresso por:
Logo 217 =(1001), -

Para cada par de numeros a, B € Z ,com B>1,
existe um unico polindomio Zx], com ,
P pE x| Também podemos fazer o processo

coeficientes menores que B e nao negativos tais inverso, ou seja, transformar um numero em

que a = p(B). uma base qualquer para a decimal, processo este
U ¢ feito de maneira ainda mais simples.

EXEMPLO 2:

Passe o numero (432), para a base 10.

Solug¢io:
Vemos, pela definigdo, que
(432), =4.8° +3.84+2=4.64+24+2=292.

EXEMPLO 3:
Independentemente da base B> 2, o numero (121), é um quadrado perfeito,
pois (121), = 1.BB4+2B+1=B>+2B1+1°= (B+ 1)2 , ou seja, o quadrado de um

inteiro.
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TOPICU 3 Congruéncia

OBJETIVOS
. Estabalecer a notagado de congruéncia

e Verificar as principais propriedades de congruéncia

este topico, veremos uma maneira interessante de escrever o resto
da divisdo entre dois numeros. A notagdo que estabeleceremos

sera muito util.

Definigdo 2: Dado o ntimero inteiro positivo 7, dizemos que os inteiros a e b

sdo congruentes modulo n e representamos por a = b(modn) , quando a—b ¢
7

um multiplo de 7, ou seja:

a=b(modn) < n|a—b

EXEMPLO 1:

Uma vez que 47 — 3 = 44, que ¢ um multiplo de 4, podemos escrever
44 = 3(mod4). Podemos verificar também que 25=10(mod5), 49=0(mod7) e
50 = 2(mod6) .

Proposi¢do 1: Se a=b(modn), entdo a e b deixam o mesmo resto na
divisdo por n.

Demonstraciao: Escrevendo a=ng, +nrn e b=nq,+r,, com 0<r,r,<n
e usando a definicdo, temos a=b(modn)<n|la—b< Iqga—b=nq.
Assim, por substitui¢do, obtemos (nq, +1n)—(nq, +r,)=nq, ou seja,
n —r, =nq—nq, +nq, =n(q—q, +9,), de onde concluimos que n|r, —r,, e,
como 0<r,r, <n, obtemos r, —r, =0, isto ¢, os restos sdo iguais. Ressalta-se

aqui que a reciproca dessa proposi¢ao também ¢é valida.



Relembramos que a divisdo do inteiro a pelo inteiro positivo n deixa
resto nao negativo e sempre menor que n. Dessa forma, se r ¢ tal resto,
necessariamente 0 <r <n. Podemos, entdo, resumir essa informag¢ao em notagao:

Va € Z,3m€{0,1,...,n—1};a = m(modn).

Teorema: Dado o inteiro positivo 7, a relagdo de congruéncia médulo 7 satis-
faz as seguintes propriedades:

(i) @ =a(modn), para qualquer inteiro a, ou seja, é uma relagao reflexiva;

(ii) se a =b(modn), entdo b= a(modn), para quaisquer inteiros a e b, ou
seja, ¢ uma relagao simétrica;

(iii) se a=b(modn) e b=c(modn), entdo a=c(modn), para quaisquer in-

teiros a, b e c, ou seja, € uma relagdo transitiva;

A demonstragao deste teorema ¢é imediata,
uma vez que, como provado anteriormente, dois

GUARDE BEM 1SS0! numeros sdo congruentes modulo n quando

deixam o mesmo resto na divisao por 7.

Uma relagao reflexiva, simétrica e transitiva é

dhamada de rela(;éo dle equivaléncia. Vejamos agoraquea rela(;ao de congruencia

¢ preservada por somas e produtos.

Proposicgdo 2: Se a=b(modn) e c =d(modn), entdo a+c=b+d(modn) e
ac = bd(modn).

Demonstragio: Por definigio a=b(modn)=n|a—>b. Analogamente
¢ =d(modn)=>n|c—d . Sabemos que a soma de dois multiplos de n é também
um multiplo de n, ou seja, a—b+c—d ¢é um mdltiplo de 7, isto &,
n|(a+c)—(b+d) e, assim, a+c=b+d(modn).

Se n|la—b, ocorre também que n|(a—b)c. Da mesma forma, se n|c—d,
n|(c—d)b. Usando argumento semelhante, concluimos que, se n|a—b,
vale dizer também que (a—b)c+(c—d)b é um multiplo de n, mas
(a—b)c+(c—d)b=ac—bc+bc—bd =ac—bd, ou seja, n|ac—bd, de onde

obtemos ac = bd(modn).

Como conclusido da proposi¢ao acima, podemos afirmar que a congruéncia
nao apenas é uma maneira simplificada de dizer que dois niumeros possuem o mesmo

resto na divisdo por outro (e assim também uma maneira alernativa de dizer que
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um numero ¢ multiplo do outro), mas também que ¢ uma relagdo compativel com

as operagdes de adigdo e de multiplicagdo. Obviamente, como a—b=a+(—1)b,

concluimos que, também com a subtracdo, podemos operar com numeros

congruentes sem alterar essa propriedade. Além disso, como a poténcia com

expoente natural consiste de produto com fatores repetidos, podemos afirmar que
— 5 k _— 1k :

se a=b(modn), entdo g" =b"(modn). Vejamos agora alguns exemplos de como

essa propriedade pode ser aplicada para simplificar védrios problemas.

EXEMPLO 2A:
Se o resto da divisdo do numero k por 5 ¢ 2, qual o resto da divisao de

4k 413 por 5?

Solugio:

Observe que a condigdo inicial € equivalente a k=2(mod5) e, como
4 =4(mod5), podemos, pela conservagdo do resto na multiplicagdo, afirmar
que 4k=8(mod5). Por fim, como 13=3(mod5), somamos para obter
4k +13=11(mod5) . Assim, o resto da divisdo de 4k +13 por 5 é o mesmo que o
de 11 por 5. A resposta é, portanto, 1.

EXEMPLO 2B:

Mostre que ndo existe inteiro a tal que a = 2(mod3).

Solucao:

Em relagdo a congruéncia médulo 3, temos trés possibilidades:

*se a=0(mod3), entio a’ =0’(mod3), ou seja, a’ =0(mod3) e, claro,
a,E/Z(rnod 3);

*se a=1(mod3), entio @*=1°(mod3), ou seja, a’ =1(mod3) e, claro,
a,éz(mod 3);

* por fim, se a=2(mod3), entdo a’ =2*(mod3), ou seja, a’ =1(mod3) e,
claro, aZ 2(mod3);

Assim, esgotam-se todas as possibilidade, e podemos afirmar que a equagao

a’ =2(mod3) nao possui solugdes em Z .

EXEMPLO 2C:
Uma vez que 6 =1(mod5), podemos dizer que 6" =1(mod5). Geralmente,

6" =1(mod5), para qualquer inteiro positivo k.

EXEMPLO 3:

Determine o algarismo das unidades de 14" .
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Solucao:

Podemos perceber diretamente que o algarismo das unidades de um ntmero,
na representagao decimal, é o resto da divisdo deste numero por 10. Inicialmente,
observamosque 14 = 4(mod10) . Assim, 14" = 4" (mod10) ,mas 4’ =16 = 6(mod 10)
e 4’ =4%4=6.4(mod10), ou seja, 4’ = 4(mod10). Geramos, entdo, uma sequéncia
periddica, sendo 4" =4(mod10) se n ¢é impar, e 4" =6(mod10) se n é par. Desta
feita, obtemos 4" =6(mod10) e, consequentemente, o algarismo das unidades de
14" é6.

Outras informagdes a respeito de congruéncia serdo discutidas nas proximas

aulas, nas quais enunciaremos resultados importantes e suas respectivas aplicagoes.
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TOPICO4  Siicegs.

OBJETIVO

Analisar critérios segundo os quais um numero divide

o outro, sem apelar para a divisdo direta

sando a base 10, agora veremos como reconhecer multiplos de
alguns numeros sem ter que recorrer a divisdo. Revisitaremos,

entdo, algumas regras, justificando-as.

Divisibilidade por 2: Um numero ¢ divisivel por 2 se, e somente se, quando
escrito na base 10, terminar em um algarismo par, ou seja, em O, 2, 4, 6 ou 8.
Demonstra¢ao: Dado o numero a, podemos escrevé-lo na base 10 da forma
a=r,..nt,, significando a=r,.10" +...+ .10+, =10(r,.10" " +...4+ 1) +1,.
Fazendo k=r,.10"" +...4r,, temos, entdo a =10k +r, =2.5k +1,. Assim, a

e , deixam o mesmo resto na divisdo por 2.

EXEMPLO 1:

Os numeros 23472 e 8008 sio divisiveis por 2, enquanto 98221 e 507 ndo sao.
Observacio:

E importante ressaltar que os critérios descritos neste tépico estao sendo
enunciados tomando a representagao do numero na base 10; quando a base for
diferente, devem-se fazer os devidos ajustes. O numero (324);, por exemplo, é

impar, enquanto o numero (11), é par. (Verifique).
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Divisibilidade por 3: Um ntimero ¢ divisivel por 3 se, e somente se, a soma dos
seus algarismos na representagdo em base 10 for divisivel por 3.

Demonstracao: Observe inicialmente que 10=1(mod3), de onde podemos
concluir que 10" =1(mod3) para qualquer natural k, de onde também obte-
mos r.10 = r(mod3) . Dado o nimero a, podemos escrevé-lo na base 10 da for-
ma a=t,...nt,, significando a=r,.10" +...41.10 41, . Pelas propriedades da
congruéncia, temos a =r, +...+1, +1,(mod3). Assim, a e r, +...+ 1, +r, dei-

xam o mesmo resto na divisdo por 3.

ATENCAO!
EXEMPLO 2:

Como 10 = 1(mod9), o critério de divisibilidade Para saber se o numero 276534 ¢é divisivel
por 3, descrito acima, também ¢ valido para por 3, podemos somar os algarismos que o
divisibilidade por 9, ou seja, para verificarmos se compdem: 2+ 7+ 6+ 5+ 3+ 4 =27. Como 27
um nuimero € multiplo de 9, testamos a soma dos ¢ multiplo de 3, concluimos que 276543 também
seus algarismos. Assim, por exemplo, podemos ¢ multiplo de 3. Realizando teste semelhante,
afirmar que 61758423 ¢ multiplo de 9, porque a podemos afirmar que 89332 ndo é multiplo de 3.

soma de seus algarismos ¢ um multiplo de 9.

Divisibilidade por 4: Um numero ¢ divisivel por 4 se, e somente se, os dois
ultimos algarismos da sua representagio na base 10 formarem, na ordem em que
aparecerem, um numero divisivel por 4.

Demonstracio: Dado 0 namero a, podemos escreveé-
lo na base 10 da forma a=r,.nt,, significando
a=r.10"+...+1.10+r, =100(r,.10" > + ...+ 1,) +10r, + 1.

Como 100 ¢ divisivel por 4, e fazendo k=r.10""+...4+r,, temos
a =100k + 1, = 4.25k +10r, +r, . Assim, a e 10r, +1r, deixam o mesmo resto

na divisao por 4.

EXEMPLO 3:
Uma vez que 32 é multiplo de 4, podemos dizer que 399287532 ¢ multiplo
de 4.
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Observacgao:
Como 1000 = 8.125, podemos proceder de maneira andloga ao visto acima
para afirmar que um nimero ¢ divisivel por 8 quando o numero formado pelos trés

ultimos algarismos de sua representagdo decimal for um multiplo de 8.

Divisibilidade por 5: Um numero ¢ divisivel por 5 se, e somente se, quando
escrito na base 10 terminar em O ou 5.

Demonstra¢ao: Dado o numero a, podemos escrevé-lo na base 10 da forma
a=r,..nt,, significando a=r,.10" +...4+1.10+r, =10(r,.10" " + ...+ 1)+ 1, .
Fazendo k=r,.10"" +...+r,, temos, entdo, a =10k +r, =5.2k +r,. Assim, a

e 1, deixam o mesmo resto na divisao por 5.

EXEMPLO 4:
Os ntmeros 9355 e 7530 sdo multiplos de 5, enquanto 49873 e 541 nao sdo.

Observacao:

Os critérios acima podem ser combinados para se verificar se um numero
¢ multiplo de 6, de 10 ou de 15. Por exemplo, como 15 = 3.5, um nimero sera
divisivel por 15 se, e somente se, for divisivel por 3 e por 5. Além disso, verifica-se

facilmente que 660 ¢ divisivel por 2, por 3 e por 5, sendo, portanto, um multiplo

de 30.
]

Ha critérios semelhantes aos apresentados _
até aqui que podem ser aplicados para se testar .
se um numero é multiplo de 7, de 11 ou de No site  http://www.somatematica.com.br/
outros primos. Em seguida, apresentaremos fundam/critdiv.php, vocé podera rever os
um exemplo de como podemos verificar se um critérios de divisibilidade apontados e conhecer
numero é mﬁltiplo de 7, entretanto, como se ainda outros, sobre os quais falaremos a seguir.
verd, a divisao direta pode ser meio mais pratico Bom estudo!
para essa verificagao. |
EXEMPLO 5:

Como 10 = 3(mod7), podemos, multiplicando por 3 e observando o resto na
divisdo por 7, escrever a sequéncia:
10* = 2(mod7) ;
10’ = 6(mod7) ;
10" = 4(mod7);
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10’ =5(mod7), e assim sucessivamente. Usando esses resultados, podemos
verificar se 3801 ¢ divisivel por 7. Fagamos 3801=3.10" +8.10° +1. Assim,
3801=3.6+8.2+1(mod7), e como 3.6 + 8.2 + 1 = 35, que € um multiplo de 7,
podemos dizer que 3801 também ¢ um multiplo de 7. Pode-se repetir o processo e

verificar que o resto da divisao de 4986 por 7 ¢é 2.

EXEMPLO 6:

Observando inicialmente que 1001 = 7.11.13, temos 1001=0(mod7), ou
seja, 1000 = —1(mod 7). Podemos verificar se um numero ¢ divisivel por 7, 11 ou
13 através de um teste que serd descrito aqui com o numero 124397. Uma vez que
124397 =124.1000 + 397, temos 124397 =124.(—1)+397(mod7). Agora, como
397 — 124 = 273, que é um multiplo de 7, afirmamos que 124397 ¢ multiplo de 7.
Como 11/(273 , podemos dizer, pela mesma ideia, que 124397 nao ¢ multiplo de 11.
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AU L A 3 Alguns teoremas
sobre congruéncia

Ola aluno(a),

Nestanossaterceira aula, estudaremos detalhadamente a congruéncia de niumeros
inteiros, tratando, por meio de enunciado, demonstracdo e consequéncias, de
trés importantes resultados, os conhecidos teoremas de Wilson, Fermat e Euler.

Objetivo

e Complementar o estudo de congruéncia, dando-lhe mais aprofundamento
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TGPICU -l Teorema de Wilson

OBJETIVOS
. Apreender os conceitos de cultura nacional e cultura
organizacional

. Entender os planos ou niveis da cultura organizacional

. Conhecer técnicas de desenvolvimento organizacional

a ultima aula, estabelecemos que a notagdo a = b(modn) para
os inteiros a, b e n indica que a e b deixam o mesmo resto
na divisdo por n. Por exemplo, é verdade que 25=1(mod4) e
19 =4(mod5), enquanto a =0(modn) é equivalente a n|a.
Neste primeiro tépico, discutiremos algumas propriedades sobre congruéncia
e enunciaremos alguns resultados relevantes.

Comecemos com algumas defini¢des simples.

Definigdo 1: O conjunto S ={r,,1,...,n.} é um sistema completo de residuos
modulo 7 se

(i) r, =r,(modn) < i=j, ou seja, dois elementos distintos de S deixam res-
tos distintos na divisao por n;

(ii) para todo inteiro a, tivermos a =r,(modn) para algum r, €S .

EXEMPLO 1A:

O conjunto {5, 11, 22, 33, 44} é um sistema completo de residuos médulo 5.

EXEMPLOI1B:

Para qualquer inteiro 7>1, o conjunto {0,1,...,n—1} é um sistema completo

de residuos médulo n .
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Algo que podemos verificar ¢ que qualquer sistema completo de residuos

moédulo n possui exatamente n elementos. De fato, se S={r,,r;,...,r,} é um sistema

completo de residuos modulo 7, cada um dos numeros do conjunto {0,1,...,n —1}

¢é congruente a um dos r, €S . Logo, k <n.Reciprocamente, cada elemento de S

¢ congruente a um numero de {0,1,...,n —1}, que ¢, também, um sistema completo

de residuos médulo n, de onde obtemos que n <k, o que resultaem k=n.

o~ , . . . -1 , .
Definig¢do 2: Dado o ntmero inteiro a, dizemos que a~ € Z é um inverso de

a médulo n se a.a ' =1(modn).

EXEMPLO 2A:

Como 7.3 = 21 e 21 deixa resto
1 na divisdio por 5, vale 7.3=I(mod5),
e podemos dizer que 3 é um inverso de 7 médulo

5.

EXEMPLO 2A:

Como 40 ¢ multiplo de 8, wvale
40.b =0(mod8), para qualquer inteiro b, de
onde concluimos que 40 ndo possui inverso
moédulo 8. Mais geralmente, nenhum multiplo

de n possui inverso médulo 7.

ATENGAD!

Na defini¢do 2, usamos o artigo indefinido, pois,

caso exista, o inverso médulo # de um nuimero
ndo é unico, por exemplo, 7.3=1(mod5) e
7.8 =1(mod5), de onde podemos dizer que 8
também é um inverso de 7 médulo 5. Entretanto,
como veremos adiante, os inversos médulo 7 de

um mesmo nuimero sao congruentes moédulo 72 .

Podemos investigar a existéncia e

inversos modulo n de acordo com o que segue.

Proposi¢do 1: O numero a possui inverso médulo n se, e somente se,

(a,n)=1.

Demonstracdo: O inverso moédulo n ¢é uma solu¢do para a equagdo

ax =1(modn) . Supondo que exista tal solugdo, deve haver um inteiro y tal

que ax —1=ny, ou seja, ax —ny=1, que é uma equacao diofantina linear nas

varidveis x e y, que, de acordo com o exposto na aula 1 (tépico 3), possui

solugdo se, e somente se, (a,n)|1, o que vale apenas quando (a,n)=1.
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EXEMPLO 3A:

Os numeros 2, 4, 5, 6, 8 e 10 ndo possuem inverso moédulo 10.

EXEMPLO 3B:

Os numeros 1, 3, 7 e 9 sdo inversos modulo 10 de 1, 7, 3 e 9, respectivamente.

Exemplo 3c:
Para o numero primo p, todos os numeros 1, 2, 3, p—1 possuem inverso

modulo p.

Proposicdo 2: Se b e ¢ sdo inversos de a mddulo 7, entdo b = c(modn).

Demonstracdo: Pela definicdo, a hipdtese diz que ab=Il(modn) e
ac = 1(modn) . Subtraindo essas duas congruéncias, obtemos a(b — c) = 0(modn),
ou seja, n|a(b—c), mas, como (a,n)=1 é condigdo necessdria para existir o in-

verso de a modulo n, obtemos n|b—c, que conclui a demonstragao.

Assim, quando um nimero a possuir inverso médulo n, a quantidade de
inversos ¢ infinita, contudo, dentro de um sistema completo de residuos médulo n,
esse inverso ¢ nico.

Especificamente, se p é um numero primo, entao a sera seu proprio inverso
moédulo p se, e somente se, a =1(mod p) ou a =—1(mod p), pois, se a* =1(mod p),
entio vale pla’—1=(a+1).(a—1), ou seja, pla+1l ou pla—1, casos que

implicam a = —1(mod p) e a =1(mod p), respectivamente. A reciproca é imediata.

EXEMPLO 4:

Sabemos que o conjunto S ={0,1,...,10} é um sistema completo de residuos
modulo 11. O nimero 0, obviamente, ndo possui inverso médulo 11. Como 11 ¢é primo,
todos os outros possuem inverso médulo 11, Gnico no conjunto, e apenas 1 e 10 sdo

seus proprios inversos. Assim, 2 e 6 sdo inversos

modulo 11, o mesmo acontecendo com os pares 3

]
N—A e4;5e9;,e7e8.
SAIBA MAIS!

No site http://www.dec.ufcg.edu.br/biografias/ Podemos, agora, enunciar e ter uma
JohnWiso.html, vocé pode obter maisinformagoes demonstragio Simples de um teorema que leva o
sobre o matematico John Wilson. Confira! nome do matematico inglés John Wilson (1741 —

e 1 793).
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Teorema de Wilson 1: Se p ¢ primo, entdo (p —1)!=—1(mod p).

Demonstragao: O caso p=2 ¢é de imediata verificagdo. Entre os numeros
1,2,...,p—1,apenas 1 e p—1 sdo seus proprios inversos médulo p.Os demais,
2,...,p—2, podem ser agrupados em pares cujo produto é congruente a 1 mo-
dulo p. Isso se deve ao fato de que eles possuem inverso médulo p, diferen-
te de si mesmo e pertencente ao conjunto, ou seja, se a €{2,...,p —2}, existe
bc{2,..,p—2},com b=a,tal que ab=1(mod p) . Se multiplicarmos todas es-
sas congruéncias sem repetir os niumeros, obteremos 2.3.....(p —2) = 1(mod p) .
Se multiplicarmos esta ultima congruéncia pela imediata p —1= —1(mod p), ob-

teremos 2.3.....(p —2).(p —1)= —1(mod p), isto ¢, (p —1)!=—1(mod p).

Teorema de Wilson 2: Se (n—1)!=—1(modn), entdo n é primo.

Demonstragao: Vamos supor que (n—1)!=—1(modn). Se a<n, aparece
a no calculo de (n—1)!, de onde concluimos que (n—1)!=0(moda). Se ti-
vermos a|n, da hipdtese n|(n—1)!+1 e da transitividade da divisibilidade,
a|(n—1)+1, ouseja, (n—1)!+1=0(moda) . Subtraindo (n—1)!+1= 0(moda)
e (n—1)!=0(moda), obtemos 1=0(moda), mas isso somente ¢ possivel se
a=1. Assim, 1 ¢ o unico inteiro positivo menor que n que ¢é divisor de n, de

onde concluimos que 7 ¢é primo.

Poderiamos ter enunciado que “(n—1)!=—1(modn) se, e somente se, n €
primo”. A fragmentagao foi feita apenas por carater didatico. Com isso, obtemos um

nao muito objetivo teste de primalidade.

EXEMPLO 5A:
Mostre que, se 7 ¢ um multiplo de 5, o resto da divisio de

(n+1)(n+2)(n+3)(n+4) por5 é 4.

Solugao:

Como n = 0(mod5), entao n-+1=1(mod5), n—+2=2(mod5),
n+ 3= 3(mod5) e n+4 = 4(mod5) . Multiplicando as quatro
congruéncias, obtemos (n+1)(n+2)(n+3)(n+4)=1.2.3.4mod5), isto ¢,
(n+1)(n+2)(n+3)(n +4)=4!(mod5), mas, como 5 ¢ primo, temos, pelo teorema
de Wilson, (5—1)!=-—1(mod5). Como o resto deve ser um nimero positivo e
—1=4(mod5), obtemos que o resto da divisdo de (n+1)(n+ 2)(n+3)(n+4) por 5
é4.
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EXEMPLO 5B:

O produto de uma sequéncia de 16 numeros inteiros consecutivos pode ou nao
possuir um multiplo de 17. Caso possua, o produto de todos eles deixara resto 0 na
divisdo por 17. Do contrario, teremos um sistema completo de residuos médulo 17, e, se
multiplicarmos todos eles, obteremos um numero que, quando dividido por 17, deixa
0 mesmo resto que 16! = (17 — 1)!, mas, pelo teorema de Wilson, esse resto é congruente
a —1. Assim, o produto de dezesseis niimeros inteiros consecutivos deixa resto 0 ou
16 na divisao por 17, de modo que a equagao n(n +1)(n+2)...(n +15) =10(mod17)

nao possui solugao.

EXEMPLO 6:

Como resultado embutido na demonstragdo do teorema de Wilson, podemos
afirmar que, se P ¢ primo, entdo (p —2)!=1(mod p), de modo que (11—2)!=09!
deixa resto 1 na divisdo por 11. Nesses termos, concluimos que 9!—1 ¢ um multiplo

de 11. Analogamente 23|21!—1.
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TOPIC 2  Teorema e Fermat

OBJETIVOS
*  Complementar o estudo sobre residuos
*  Enunciar e estudar as consequéncias do Pequeno

Teorema de Fermat

amos aqui nos aproveitar dos resultados obtidos no tépico anterior
para provar um resultado que leva o nome do matematico francés
Pierre de Fermat (1601 — 1665). Um resultado forte que Fermat

)

Teorema de Fermat: Se p ¢é um primo que nao divide a, entdo
a” =1(mod p) .

Demonstragdo: Para comegar, S={0,a,2a,3q,...,(p—1)a} é um sistema
completo de residuos médulo p . De fato, ab = ac(mod p) e (a, p) =1 conduzem
a b=c(modp), mas b,c€{0,1,2,...,(p—1)}, que é um sistema completo de
residuos moédulo p, logo b= c. Assim, os nimeros a,24,3aq,...,(p —1)a deixam
restos 1,2,...,(p —1) nadivisdo por p, nionecessariamente nessa ordem. Temos,
entdo, a congruéncia:

a.2a.3a....(p—1)a=1.2....(p —1)(mod p), que pode ser simplificada por
a” ' (p—1)!=(p—1)!(mod p).

Mas p ndo divide (p —1)!, de onde concluimos que (p,(p —1)!)=1 e os fatores

(p —1)! podem ser “cancelados” da tltima congruéncia, de onde obtemos a conclusao:

a” =1(mod p) .

Coma hipétese de que p ndoéumdivisor de a, temos, entdo, a’~' =1(mod p) .
Se multiplicarmos a congruéncia pela imediata a=g(modp), obteremos
a” =a(mod p) . Agora, se p|a, entdo pla.(a’' —1), ouseja, p|a”’ —a, e obtemos

o mesmo resultado a” = a(mod p) . Assim, podemos enunciar o seguinte resultado,
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sem hipoteses de divisibilidade:

Proposicdo: Se p ¢é primo e a é um inteiro positivo qualquer, entdo

a’ =a(mod p) .

EXEMPLO 1A:

Encontre o resto da divisio de 2'*° por 13.

Solug¢io:
Ja que 13 é primo e ndo ¢ um divisor de 2, podemos usar o Teorema de

=1(mod13). Dai obtemos

Fermat para concluir que 2" =1(mod13), ou seja, 2

(212 )10 =1"(mod13), isto ¢, 2'* =1(mod13) e, assim, o resto procurado ¢ 1.

EXEMPLO 1B:

110

Encontre o resto da divisdo de 5 por 19.

Soluc¢io:

Observe que nido podemos usar exatamente o mesmo raciocinio do exemplo
la, pois 18 ndo ¢ um divisor de 110, mas podemos escrever 110 = 18.6 + 2 e, assim,
510 = (518 )6 .5*. J4 que 19 ¢ primo e ndo é um divisor de 5, podemos usar o Teorema
de Fermat para concluir que 5~ =1(mod19), ou seja, 5° =1(mod19) . Dai obtemos
(518 )6 =1°(mod19), isto ¢, 5'® =1(mod19). Alie-se a isso a congruéncia facilmente

110

verificivel 5° =6(mod19) e concluimos 5'"° =6(mod19). O resto procurado ¢,

portanto, 6.
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TOPICU 3 Teorema de Euler

OBJETIVOS
*  Definir a fungdo totiente de Euler e estudar suas
caracteristicas

. Generalizar o teorema de Fermat para todos os inteiros

objeto principal deste topico ¢ um resultado devido ao matematico
sui¢o Leonhard Euler (1707 — 1783) e trata de uma generalizagao
do teorema de Fermat apresentado anteriormente. Antes de
enuncid-lo, definiremos uma fungdo especial. A primeira de uma série de fungdes

— as fungdes aritméticas — que serdo estudadas em uma aula posterior

Defini¢do 2: A fungio ¢, chamada de totiente de Euler, associa a cada
numero inteiro positivo n a quantidade de inteiros positivos relativamente pri-
mos com 7. Mais precisamente, ¢:{1,2,...} —{1,2,...}, definida por ¢(n), é a

quantidade de elementos do conjunto {m € Z;0<m <n e (m,n)=1}.

EXEMPLO 1A:

Como os numeros inteiros positivos que sdo menores que 12 e relativamente
primos com 12530 1, 5, 7e 11, vale (;5(12) =4 . Analogamente, os numeros inteiros
positivos que sao relativamente primos com 15sao 1, 2,4, 6,7, 8,11, 13 ¢ 14, de

modo que ¢(15)=9.
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EXEMPLO 1B:
Para qualquer primo p, todos os inteiros positivos menores que p sao

relativamente primos com p. Assim, vale ¢(p)=p—1.

EXEMPLO 1C:
A equacdo ¢(n)=n possui apenas a solugdo n=1, pois, do contrario,

p(n)<n.

EXEMPLO 1D:

Podemos determinar ¢(100) por meio de um crivo semelhante ao de
Erastétenes. Para tanto, da lista dos nuimeros menores que 100, riscamos todos
aqueles que sejam multiplos dos mesmos divisores primos de 100, a saber: 2 e 5. Se
listarmos os inteiros positivos de 1 a 100 e eliminarmos os multiplos de 2, sobram
apenas 50 nimeros. Nesse primeiro passo, ja foram eliminados os multiplos de 5
que terminam em 0, ficando para serem eliminados, no segundo passo, apenas os
que terminam em 5. Sdo eles: 5, 15, 25, ..., 95, num total de 10. Assim, riscando
esses 10 numeros dos 50 que haviam restado ao
final do primeiro passo, sobram 40, que é o valor

de $(100).

ATENGAD! o

Vimos, no tépico 1, que um ndmero possui Um raciocinio semelhante ao empregado
inverso médulo 7 se, e somente se, ele e n no exemplo 1d pode ser usado para determinar
forem relativamente primos. Podemos usar essa o valor de ¢(n), entretanto esse procedimento
propriedade para definir, de forma equivalente, pode ser bem trabalhoso. Quando estudarmos as
que ¢(n) ¢ a quantidade de inteiros positivos fungdes aritméticas, aprenderemos um método
menores que 7 que possuem inverso médulo 7. mais rapido para essa determinagdo. Por ora,

e {icamos com o que pode ser obtido diretamente

da definicao.

Defini¢do 3: Dado o inteiro positivo 7, o conjunto S ={r,...,r,,} ¢ um
sistema reduzido de residuos médulo n se os elementos forem dois a dois incon-
gruentes moédulo 7 e forem todos relativamente primos a com 7 . Mais formal-
mente, S={r,,...,7;, } ¢ um sistema reduzido de residuos modulo n quando:

(i) (r,m)=1Vi;
(ii) r, =r(modn)=i=j.

i
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Assim, uma maneira de obter um sistema reduzido de residuos moédulo
n ¢ retirar de um sistema completo de residuos todos aqueles que nido forem
relativamente primos com n. De modo a abranger todas as possibilidades, da
maneira como foi definido, um sistema reduzido de residuos médulo " deve ter

@(n) elementos.

EXEMPLO 2A:

O conjunto S ={1,5,7,11} é um sistema reduzido de residuos modulo 12.

EXEMPLO 2B:
Para qualquer primo p, o conjunto {1,2,...,p—1} € um sistema reduzido de
residuos médulo p.

Agora vamos ao objetivo principal do tépico.

Teorema de Euler: Para os inteiros relativamente primos a e n, vale
a”" =1(modn).

Demonstragdo: Essencialmente, a prova é a mesma que a feita do Teorema
de Fermat. Aqui apenas ajustaremos para um sistema reduzido de residuos. Com-
ecemos verificando que, se S={r,...,1;,,} € um sistema reduzido de residuos
moédulo n, o conjunto S':{a.q,...,a.r¢(n)} também o é. Para tal, basta obser-
var que, sendo todos os r; relativamente primos com 7 e o mesmo acontecendo
com a, entdo (a.r;,n)=1. Além disso, se a.r, = a.r,(modn), mais uma vez ape-
lando para (a,n) =1, obtemos r, =r,(modn). Entretanto, dentro de um sistema
de residuos, isso somente ocorre quando 1, =r;. Observado isso, fica claro que o
produto dos elementos de S deixa o mesmo resto da divisao por n que o produto
dos elementos de S', ou seja, a.r,.af,..... aty, =n r¢(n)(mod n), que ¢ 0 mesmo
que:

a"" iy ) S 1ty (modn)

‘4

E como (m,1....1,, ) =1, o fator r....r,,, pode ser “cancelado” na con-

gruéncia para obtermos a”"”’ =1(modn), que é o resultado desejado.

Bastar fazer n primo e observar o exemplo 1b para obter o Teorema de

Fermat como um coroldrio do Teorema de Euler.

EXEMPLO 3A:

Encontre o algarismo das unidades de 7', quando representado na base 10.
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Solugao:

O algarismo das unidades, no sistema decimal, nada mais é que o resto da
divisio do ntimero por 10. Observe que #(10)=4 e (7,10)=1, dai, pelo Teorema
de Euler, 7' =1(modl0), de onde concluimos que 7'° = (74 )25 =1”(mod10).

. ~ . 100 .
Assim, a representacao decimal de 7 termina em 1.

EXEMPLO 3B

Podemos, também usando o Teorema de Euler, determinar o algarismo
das dezenas de 21*, ja que os dois algarismos mais a direita na representagio
decimal de um numero formam o resto da divisdo do numero por 100. Vimos que
$(100)=40 e, além disso, (100,21)=1. Logo 21" =1(mod100). Multiplicando
essa congruéncia por 212, obtemos 21 = 212(m0d100), Mas 21> =441. Assim,

21" =41(mod100) e o algarismo das dezenas é 4.
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AU L A 4 Funcodes aritméticas
- parte |

Caro(a) aluno(a),

Nesta nossa quarta aula, daremos continuidade ao estudo de funcdes especiais
que expressam alguma propriedade aritmética do nimero e cujo dominio é o
conjunto dos inteiros positivos. De destaque, temos a fungéo ¢ de Euler, a qual
ja comecamos a estudar na aula 3, a fungao p de Mobius, e as fungdes 7 € o.

No decorrer desta aula, apresentaremos as funcdes e algumas de suas principais
propriedades, ilustraremos com exemplos e estabeleceremos relagdes entre elas.
Na aula 5, daremos continuidade a esse estudo.

Objetivos

e (Conhecer as fungdes aritméticas mais importantes
e (Obter meios diretos de determinacéo de imagem por essas funcoes
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As fungcbes 7 e o

TOPICO 1

OBJETIVOS
. Reconhecer as fungoes aritméticas 7 e O

. Definir fun¢do multiplicativa

omecaremos o nosso estudo de
fungdes aritméticas apresentando
a funcdo que associa a cada
numero inteiro positivo a quantidade dos seus

divisores inteiros positivos. Uma maneira de

ATENGAD! o

De acordo com o que estudamos no comego da

contar elementos de um conjunto é somar 1 para

cada vez que esse elemento aparecer. Assim,

primeira aula, os divisores inteiros de um niimeros podemos enunciar:

sempre vém aos pares. Desse modo, basta estudar

os divisores positivos, pois, se 3 é divisor de um
numero, ‘“ganhamos” automaticamente o —3.
Uma formulagdo mais precisa da defini¢ao ao lado
seria T(n) = E 1. Por simplicidade (para evitar
d|n
d>0
excesso de notagao), consideraremos a partir

daqui apenas os divisores positivos.

EXEMPLO 1A:

Definigdo 1: Denotaremos pela letra grega
T (tau) a fungdo que, para cada inteiro posi-

tivo n, associa o valor 7(n)= E 1. Equiva-
din

lentemente, podemos colocar T7(n)=#D(n),

onde # representa a quantidade de elementos

do conjunto.

Como os divisores de 20 sdo 1, 2, 4, 5, 10 e 20, vale que 7(20)=6.

EXEMPLO 1B:

Decorre diretamente da definicdo de numero primo que 7(p)=2, para

qualquer primo p.
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EXEMPLO 1C:

A tabela abaixo lista os valores de 7(n) para os 12 primeiros inteiros positivos.

Do Teorema Fundamental da Aritmética, todo numero inteiro positivo
maior que 1 pode ser escrito de forma tinica como produto de primos. Seja, entao,
n=pl.p;*....pe*. Pela transitividade da
divisibilidade, um divisor de n tem fatoragao
em primos que aparecem na fatoragdo de n, de

modo que podemos listar todos os divisores de

um numero pela escolha dos expoentes. Para cada Como os divisores de um numero nunca sio
p,, 0 expoente pode variar de 0 até a, sendo, maiores que o proprio numero, a quantidade de

ao todo, a, +1 possibilidades. Pelo Principio divisores também nao passa desse niimero. Assim,

Fundamental da Contagem (conforme estudado em valle TS i ea gulldads sorsnite gsoms |

" .- . . ] le2.
Matematica Bésica II), a quantidade de divisores 08 HUmEros £ €

de n sera, entio, T(n) — (041 + 1)(@2 + 1)---(% + 1) . e

EXEMPLO 2A:

Se p é primo, vale T(p")=k+1, para qualquer inteiro positivo k.

EXEMPLO 2B:

Determine o menor numero inteiro positivo n para o qual se tenha 7(n)=>5.

Solugio:

Se n=pl.p...pt, a equagdo T(n)=5 ¢é equivalente a
(¢, +1)(, +1)...(cy, +1)=5. Mas como 5 é primo, o produto do primeiro membro
tem um fator igual a 5 e os outros iguais a 1, de modo que, assim, o, =4 e todos
os outros expoentes sao nulos, ou seja, n= pf para algum primo p. De modo a
minimizar o valor de n, consideramos o menor primo. Dessa forma, o menor

numero inteiro positivo n para o qual se tenha 7(n)=5 é n=2"=16.

Outra fungao aritmética interessante que estd relacionada com os divisores de

um numero ¢ aquela que associa a cada inteiro positivo a soma dos seus divisores.
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Definigdo 2: Denotaremos pela letra grega o (sigma) a fungdo que, para

cada inteiro positivo n, associa o valor o(n)= E d.
d|n

EXEMPLO 3A:
Como os divisores positivos de 10 sdo 1, 2, 5 e 10, ¢ verdadeiro que

o(10)=18 .

EXEMPLO 3B:
Se p é um numero primo, seus Unicos divisores positivos sdo 1 e p. Dessa

forma, para qualquer nimero primo p vale o(p)=p-+1.

EXEMPLO 3C:

A tabela abaixo lista os valores de o(n) para os 12 primeiros inteiros positivos.

n 1 2 3 4 5 6 7 8 9 10 | 11 12

o(n) 1 3 4 7 6 12 8 15 |1 13 | 18 | 12 | 28

Se um numero ¢ da forma p°, com p primo e k inteiro positivo, seus unicos

i . ~ 2 k . k 2 k :
divisores sao 1,p,p°,...,p". Assim, o(p")=1+p+p +..+p . Temos aqui
a soma dos k+1 primeiros termos de uma progressao geométrica de razao p e

primeiro termo igual a 1. Considerando que a soma dos n primeiros termos de uma

a(qg" —1
progressdo geométrica com primeiro termo g, e razdao g=1 vale S, L v S (g ; ) ,
k+1 —
—1 q
podemos concluir que O'(pk) _r
p—1
EXEMPLO 4:

—_— 9 .
Uma vez que °12=2" ¢ com base no exposto acima, podemos calcular

2 —1
o(512)=0(2")= - =1023 .

Antes de tratarmos de outras propriedades interessantes das fungdes o e T,

vejamos o caso geral das fungdes multiplicativas.

Definicao 3: A fungio f, cujo dominio ¢ o conjunto dos inteiros positivos, é
dita multiplicativa quando f(m.n)= f(m).f(n) sempre que (m,n)=1, ou seja,
m e n sdo relativamente primos. Quando a propriedade f(m.n)= f(m).f(n)

for valida sempre, a fungdo ¢ dita completamente multiplicativa.
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EXEMPLO 5A:
Como 1 ¢ o elemento neutro para o produto, a fungao (constante) f(n)=1

para qualquer n é completamente multiplicativa.

EXEMPLO 5B:

A fungio identidade f(n)=n é completamente multiplicativa.

Proposicao 1: A fungao 7 é multiplicativa.

Demonstra¢do: Considere os numeros inteiros positivos m e n, com fatoragoes
em primos m=pl.py*....p" e n= qlﬁl .qu ..... qrﬁ' . Nessas condigdes, temos
T(m)=(oy, + 1), +1)...(, +1) e T(n)= (6, +1)(B,+1)...(0, +1). Se m e n
forem relativamente primos, os primos de uma e de outra decomposicao sao distintos, de
modo que m.n= p;*.py*....pe" .qlﬂ ! .qf SR q;g " e ndo ha simplificagdes nessa fatoragao.
Assim, temos:

T(mn) = (a, +1)(a, +1)...( +1)(B +1)(B, +1)...(0, + 1) =
= 7(m)7(n).

Uma maneira alternativa de obter esse mesmo resultado é pela verificagao de
que, quando numeros sdo relativamente primos, os divisores do produto podem
ser obtidos pela multiplicagdo dos divisores dos dois numeros, e, novamente
pelo Principio Fundamental da Contagem, a quantidade de divisores de mn sera
T(m)T(n).

Observagao: Como 7(1)=1, o caso em que um dos numeros envolvidos
no produto é 1, ndo analisado na demonstragdo acima, se torna 6bvio, pois
T(L.m)=7(m)=1.7(m) = 7(1)7(m) . Dessa forma, omitiremos este caso também nas

demonstragdes sobre a multiplicabilidade das demais fung¢des estudadas nesta aula.

Proposigao 2: A fungdo o ¢ multiplicativa.
Demonstragao: Consideremos m e n numeros inteiros relativamente pri-

mos. Pela definigdo, temos o(mn)= E d . Entretanto, uma vez que 0s nUmeros
d|mn

sao relativamente primos, cada divisor de mn pode ser escrito como produto de

um divisor de m por um divisor de n . Assim, podemos escrever:

omn)=> d=> dd,=» > dd,=>» d.y d,=o(m)o(n).

d|mn dy|m d\lm dyln d,|m dy|n
dy|n

Assim, obtemos que o ¢é multiplicativa.
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EXEMPLO 6:
Como (9,10)=1, valem
7(90) = 7(9.10) = 7(9)7(10) = 3.4 =12
e 0(90)=0(9.10)=0(9)0(10)=13.18 =234 .

Observacdo: As fungdes 7 e o sdo multiplicativas, mas nio sdo
completamente multiplicativas. Veja, por exemplo, que 7(12)=6, enquanto
T(2).7(6)=2.4=8.

Como consequéncia da multiplicatividade da fungdo o, se n= PPy P

¢ a decomposi¢do em primos do inteiro positivo 7, temos

on)  =o(p.pyepit)=

=o(p")o(py’)-0(pi’)
|
Em seguida, pela expressio (f(pk)zp—1 obtida antes do exemplo 4,
p—

conseguimos uma formula para calcular o valor de 0(n). Temos, entdo:

_ plal-l-l -1 p;z-%—l -1 pla'k-%—l -1 .

n—1 p—-1 pe—1

o(n)

EXEMPLO 7:

Determine o valor de 0(72) .
Solucao:
Pelo uso da fatoragao 72 = 2°.3%. De acordo com a férmula anterior, obtemos:

0(72) =o0(2’.3*)=0(2")0(3%)=
23+1_1 32+I_1 24_1 33_1_

2—-1 3—-1 1 2

27—1
=1l6—1. =15.13=195.
2

Outra maneira, talvez mais trabalhosa, seria listar todos os divisores de 72

e fazer sua soma, ou seja, 1 +2+34+4+6+8+9+12+18+24+36+72=195.

Com esse estudo das fungdes 7 e o0, encerramos o tépico. No proximo,

voltaremos a estudar a funcio ¢ definida na aula 3.

AULA 4 \TOPlcow \ 61




TOP'CU 2 A funcéo ¢ de Euler

OBJETIVOS

*  Definir a fungdo totiente de Euler e estudar suas
caracteristicas

Generalizar o teorema de Fermat para todos os inteiros

a aula 3, apresentamos a func¢do que associa a cada numero
inteiro positivo a quantidade de inteiros positivos menores

ou iguais a ele com os quais ele ¢ relativamente primo.

Recapitulando esta definigao:

Definicdo: Denotaremos pela letra grega ¢ (phi) a fungdo que, para cada

inteiro positivo 7, associa o valor ¢(n) =#{k€Z;0<k<ne (k,n)=1}.

EXEMPLO 1A:

A tabela abaixo lista os valores de ¢(n) para os 12 primeiros inteiros

positivos.

) 1 1 2 2 4 2 6 4 6 4 110 | 4
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EXEMPLO 1B:

Para qualquer numero primo p, vale ¢(p)=p—1.

Pelo que vimos no tépico anterior, se uma fungado aritmética é multiplicativa,
basta que saibamos como ela age nos niimeros primos e nas poténcias de primos.
Antes de verificar que ¢ ¢ uma fun¢do multiplicativa, vejamos como encontrar o

A~ . . . k
valor de ¢(n), no caso de n ser poténcia de um primo, digamos n= p". Como o
- . . ko ~ .
Unico divisor primo de p~ é p, para que (m,n)=1, nao deve aparecer o primo p
na fatoragao de m, ou seja, ndo pode ser um multiplo de p, mas os multiplos de
- . . ko~ K k-1
p que sdo menores ou iguaisa p° sao p,2p,3p,...,p" =p" p, no total, portanto,

de p*'. Assim, concluimos que ¢(p*)=p* —p*".

Proposicdo 3: A fungdo ¢ ¢ multiplicativa.

Demonstragdo: Considere os inteiros positivos m e n, relativamente primos.
Por definigdo, ¢(mn) é a quantidade de nimeros menores que mn e que lhe sio
relativamente primos. Comecemos por separar os elementos de A ={1,2,...,mn}
em suas classes de congruéncia moédulo m , isto é, agruparemos em

A ={a;0<a<mnea=I](modm)};
A, ={a;,0<a<mnea=2modm)};

A, =1{a;0<a<mnea=m(modm)}.

Uma vez que {L,2,...,m} é um sistema completo de residuos moédulo m, to-
dos os conjuntos descritos acima sao disjuntos e a unido de todos eles é o pro-
prio A={1,2,...,mn}. Para cada r=1,2,...m, veja que, se m e r nao forem
relativamente primos, nenhum dos elementos de A, serd relativamente primo
com mn, pois se m e r possuirem um divisor comum diferente de 1, entao os
numeros da forma km +r, que sao os elementos de A _, serdo divisiveis por es-
se divisor comum, logo serdo divisiveis por m e, pela transitividade da divisi-
bilidade, serdo também divisiveis por mn. Assim, A, s6 conterd algum ntme-
ro relativamente primo com mn se (m,r)=1. Mas de 1 a m, sabemos que ha
@(m) destes numeros, pela defini¢ao da fungéo totiente.

Estudemos agora dentro de cada um dos ¢(m) conjuntos A, destacados na
primeira etapa quantos elementos sio relativamente primos com mn . Observe
que os elementos de cada A, sao da forma km +r. Como m e n sdo relativa-

mente primos, cada conjunto A € um sistema completo de residuos médulo 7,
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havendo, portanto, ¢(n) elementos que sdo relativamente primos com n
e, assim, com mn .

Dessa forma, temos ¢(m) conjuntos e em cada um deles hd ¢(n) elementos
relativamente primos com mn . Assim, no total, temos ¢(m)p(n) elementos do
conjunto A={1,2,...,mn}, que sdo relativamente primos com mn. Mas esta é

exatamente a defini¢do de ¢(mn) e por ela concluimos que ¢(mn)= p(m)p(n) .

EXEMPLO 2:
Como 81=3", podemos escrever ¢(81)=¢(3")=3"—3"=81—-27=54.

EXEMPLO 3:
Como (9,10)=1, vale $(90) = $(9.10) = ¢(9).(10) = 6.4 =24 .

Agora que sabemos que a fungdo ¢ ¢ multiplicativa e sabemos calcular os seus
valores para qualquer poténcia de primo, podemos usar o Teorema Fundamental
da Aritmética para estabelecer uma foérmula geral para ¢(n).

Observe, inicialmente, que, para p primo, obtivemos anteriormente
1
MY=p* — p*", que pode ser reescrito como ¢pk =pk 1——|. Considere,
p p—p que p
p

entdo, a fatoragdo em primos n= p;".p;*.....p;* . Usando a multiplicabilidade da

fungdo ¢, podemos fazer:

B(n)  =P(ppy Pt )=

1| ., | 1
=p|l=—|p |1 =P |1 |=
p j2 Pi

Assim, para encontrarmos o valor de ¢(n), basta que multipliquemos 7

1
pela expressao [1 — —] para cada um dos fatores primos p, de sua decomposigao.
k
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EXEMPLO 4A:

Como 2 e 5 sdo os unicos primos na fatoracdo de 100, podemos fazer

1 1 14
®(100) = 100.[1 ——][l ——] =100.—.—=40.
2 5 25

EXEMPLO 4B:
1
Pela fatoragdo 72 =2’.3?, obtemos: ¢(72) = 72.[1 - —][1 - —] =72.

2
—=24.
3 3

N |~

Asinformacgdes contidas neste topico sdo, obviamente, apenas uma introdugao

as principais propriedades da fungdo ¢ . No préximo tépico, estudaremos a fungdo

1 de Mobius.
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TOP'CU q  pingao p de

OBJETIVOS
*  Reconhecer a fungdo W e algumas de suas propriedades

. Definir quando um numero ¢ livre de quadrados

matemdtico e astronomo alemdo August Ferdinand Mobius

(1790 — 1868) desenvolveu um trabalho de grande relevancia

na Matemadtica, especialmente no campo da Geometria, com a

famosa faixa (ou fita) de Mobius, e nas Varidveis Complexas, com as transformagdes

de Mobius. Na Teoria dos Numeros, deve-se a ele o estudo sobre a fungdo que
recebeu o seu nome e que apresentamos a seguir.

A funcdo de Mobius (1é-se, aproximadamente, Mébius) é alterada pela

quantidade de primos que aparecem na fatoragdo de um numero, mas, ao

Defini¢ao 5: Denotaremos pela letra grega p (mi) a fungdo que, para cada
numero inteiro positivo n>1, com fatoragdo em primos n = p*.py*.....p.* , as-

socia o numero

—lk, seq, =, =...=q, =1
um= Yo =a, k
0, caso contrario

De modo a tornar g definida para todos os inteiros positivos e ndo alterar a sua

multiplicabilidade (ainda a ser demonstrada), definimos convenientemente p(1)=1.

Assim, a fungdo p(n) vale 0 sempre que n possuir, em sua fatoragdo em
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primos, um expoente maior ou igual a 2. Neste caso, n ¢é divisivel pelo quadrado
de algum primo. Mas para que seja divisivel pelo quadrado de um inteiro maior
que 1, um numero deve também ser divisivel pelo quadrado de um primo. Assim,

quando p(n)= 0, dizemos que o inteiro n € livre de quadrados.

EXEMPLO 1A:
Como 30=2.3.5, vale p(30)=(—1)’ =—1, pois 30 tem 3 primos distintos
em sua fatoragdo e nenhum dos expoentes é maior que 1. Analogamente, a

fatoragdo 10=2.5 leva a p(10)=(—1)"=1.

EXEMPLO 1B:

Para qualquer primo p, tem-se p(p)=-—1.

EXEMPLO 1C:

A tabela abaixo lista os valores de [(n) para os 12 primeiros inteiros

positivos.
n 1 2 3 4 5 6 7 8 9 10 | 11 12
1u(n) 1 ~1 =1 0 =1 1 = 0 0 1 =1 0

Proposicao 4: A fungdo p é multiplicativa.

Demonstragdo: Para os numeros inteiros positivos e relativamente pri-
mos m e n, temos duas possibilidades a considerar. Se m e n forem livres de
quadrados, podemos escrever m = p,p,...p, € n=4q,q,...q,, onde os primos en-
volvidos sdo todos distintos, de modo que mn também serd livre de quadrados.
Dai, temos mn = p,p,...p,q,9,---9, € portanto,

p(mn) = (—1)"" = (~ 1 (=1 = p(m)p(n)
Se para algum primo p, tivermos p’|mn, isto é, mn nio for livre de quadra-
dos, 0 mesmo deve acontecer com m ou n, ja que eles sdo relativamente pri-
mos. Assim, py(m)=0 ou p(n)=0, dai p(mn)=0= p(m)u(n) e obtemos o

mesmo resultado.

Nos topicos anteriores, verificamos a multiplicabilidade de algumas fungdes
de modo a obter uma expressao simplificada para o calculo das imagens dessas
fun¢des quando sabemos a fatoragdo em primos do numero. Com tal fatoragao, o

valor obtido na fungido Kt é encontrado diretamente, de modo que a proposigao
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acima ndo serd usada para a determinagdo de p, mas como resultado auxiliar

para outros fatos, como o que segue.

Proposicao 5: Para qualquer ntimero inteiro positivo n >1, vale Z wd)=0.
d|n
Demonstracao: Comecemos com 0 caso 1 = pk para algum primo p. Os di-

visores de p* sio 1,p,p’,...,p*, logo:

> o u(d) = pQ) + pp) + (p’) + A (p*) =

dlp*
=14+(-1)+0+...+0=0.
Observe agora que, para m e n relativamente primos, procedemos de manei-
ra semelhante ao que fizemos para provar que ¢ ¢é multiplicativa. Acompanhe o
raciocinio, no qual empregamos o fato de u ser multiplicativa.

> u(d)= ;u(dldz) = uld)(dy) =Y p(d,).y | pud,):

d|mn d\|m d,|n d\m d,|n
d,|n

a,

Dessa feita, para n= p/".p;*.....pe* , vale
Z,u(d)z Z M(dl)-z wd,)..... Z (d,). Mas cada um destes fatores é
djn dilp™ d,|p™ dlp™

nulo, de onde temos o resultado valido para qualquer n>1.

Com esta propriedade, encerramos o estudo inicial das propriedades
da fungao f. Além de outros fatos interessantes sobre cada uma das funcgoes
estudadas nesta aula, ha uma série de relagdes relevantes entre elas. Tais relagées

serdo o foco de nossa proxima aula.
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AUI_A 5 -F%r;grt%eﬁ aritméticas

Caro(a) aluno(a),

Na quinta aula de nosso curso de Teoria dos NUmeros, daremos prosseguimento
ao estudo das funcdes aritméticas, apresentando outras propriedades e,
especialmente, algumas relacdes entre as funcdes aritméticas estudadas na
aula 4, além de apresentar uma funcéo especial, com dominio real, mas que
desempenha papel relevante na andlise dos numeros inteiros, tanto no estudo das
funcdes aritméticas quanto no principio das gavetas de Dirichlet, que sera tema
da aula 6.

Objetivos

e Prosseguir com o estudo das fungdes aritméticas
e Apresentar a fungao maior inteiro e algumas de suas propriedades
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& Qutras propriedades das
TU PICO 1 funcoes aritméticas

*  Apresentar algumas propriedades sobre as fungoes

aritméticas

este tépico, continuaremos o

estudo iniciado na aula 4, na

ATENCAO!

qual associamos, para cada

-

Observagao 1: Na fatoragdo do nimero 1 nao

inteiro positivo 7, os seguintes valores:

* 7(n), que é a quantidade de divisores ] :
aparece nenhum primo. Assim, podemos usar

positivos de n, por exemplo, 7(15)=4 . Assim, a definicdo ao lado também para o ntimero 1,

T(n)=#{d€Z, ;d|n}= E 1 fazendo, portanto, k=0.
d|n
Observacgiao 2: A quantidade de elementos do

° o(n), que é a soma dos divisores .
conjunto A pode ser representada por # A, mas

positivos de n, por exemplo, o(15)=24. Assim, Al ou card(A).

também ha as notagoes n(A4),

o(n)= Xl:d I —

* #(n), que é a quantidade de inteiros positivos menores que n e

relativamente primos com 7, por exemplo, ¢(15)=8. Assim,

pm)y=#H{meZL m<ne(mn)=1}

* (), que é 0, se n nio for livre de quadrados, e (—1), se k for a
quantidade de primos distintos que aparecem na fatoragdo de n, por exemplo,
w(15)=1. Assim:

p(n) = {(—1)", Sen=P\Ps---Pr

0, caso contrario
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Vimos que todas essas fungdes sdo multiplicativas, em particular
T(1)=0()=¢(1)=p(l)=1. Vejamos agora outras propriedades interessantes
sobre as fungdes aritméticas, que serdo demonstradas tomando em conta o fato de

~ no .. .
que se d |n, entdo a== é inteiroe a|n.

. o . [Ja=n""
Pr0p051gao 1: Para qualquer inteiro pOSlthO n, vale |
d|n

Demonstragdo: Aqui basta verificar que sempre que d |n, entdo a=— ¢é

n
d

inteiro e a|n. Assim, se

. Dai, multiplicando as duas igualdades,

Q= E[d , vale, igualmente, Q— H%
n |n

temos Q* = Hdﬁz Hn . No segudndo membro, temos fatores todos iguaisa n e
tantos quant%"é forem glg divisores de n, ou seja, ha 7(n) fatores. Assim, Q= nT("],
e como Q>0, basta extrair a raiz quadrada nos dois membros da igualdade para
obter o resultado.

Na expressdo acima, poderiamos pensar que o resultado do segundo membro
resultaria em um nimero nio inteiro, caso 7(1) fosse impar. Mas 7(n) é obtido pelo
produto dos consecutivos dos expoentes da fatoragdo em primos de n, de modo
que somente resultard 7(n) impar se todos os expoentes da fatoragdo forem pares
(n)/2

. ’ . T . .
e, assim, n ¢ quadrado perfeito e 7 ¢é inteiro.

Proposicao 2: Para todo inteiro positivo 7, vale Z¢(d )=n
d|n

Demonstracio: Comecemos separando os nameros do conjunto
A={1,2,...,n} em subconjuntos de acordo com o segue:
A ={meA;(mn)=1};
A, ={me€ A;(m,n)=2};

A, ={me€ A;(m,n)=n}.
Observe que no conjunto A, ={m € A;(m,n)=k} sera vazio se k ndo
for um divisor de n. Assim, teremos T7(n) conjuntos ndo vazios e A, ={n}.

Agora analisemos a quantidade de elementos de A, para cada divisor de 7. Ora,

. ‘s . Lo m no .
para que m € A, ¢ necessario que (m,n)=d , mas isto significa que — e — sdo
’ d d
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inteiros sem divisores proprios comuns, ou seja, (—,—)=1. Dessa forma, cada

m
conjunto A, possui (]5[;] elementos. Como os subconjuntos A, assim formados sao

disjuntos, a quantidade de elementos da unido de todos vale #UAd = Z(;S(n/ d).

din dn

Mas UAd = A, quepossui n elementos, demodoquetemosaigualdade Z(;S(n /d)=n.

din dln

Mas, de novo usando o argumento de que quando d percorre os divisores de 7, os

valores de n /d também percorrem esses mesmos divisores, sem repeti¢ao, de modo que

S/ d)=>"¢(d), dai vale > _¢(d)=n.

dln d|n d|n

Antes de prosseguir com outras propriedades das fungdes aritméticas, vamos
estudar a fungdo maior inteiro, que, embora nao seja uma fun¢do com dominio
no conjunto dos nuimeros inteiros, tem significativa importancia na Teoria dos

Numeros, como veremos a seguir.
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TO PI CU 2 A funcao maior inteiro

OBJETIVO

. Apresentar a fungao maior inteiro

o estudo das fungdes aritméticas, uma nova fungio surge para
desempenhar papel relevante, ainda que nao seja, ela propria,
aritmética no sentido de ter dominio no conjunto dos inteiros
positivos. Com os conhecimentos elementares sobre o conjunto dos nimeros reais,
podemos trabalhar com a seguinte defini¢do, que sera fundamentada no seguinte

argumento

Definigdo 1: Dado o ntimero real x, representamos por |x| o maior inteiro que
¢ menor ou igual a x, equivalentemente, escrevemos: |x|=max{n € Z;n <x} .

A fungio f:R —Z dada por f(x)=|*| é chamada de funcio maior inteiro.

O valor |x| também pode ser chamado de parte inteira de x.

EXEMPLO 1A:
Para qualquer ntmero inteiro n, vale diretamente da definigdo que |n|=n,

de modo que podemos concluir daqui que a fung¢ao maior inteiro é sobrejetiva.
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EXEMPLO 1B:
Valem as igualdades [\/E} =1, |7|=3, [e]=2 ¢ |-2,34]=-3.
EXEMPLO 1C:
A solugdo (real) da equagdo |x| =4 é o intervalo [4;5), de modo que podemos

concluir daqui que a fungdo maior inteiro nio é injetiva, pois [4|=|4,1].

EXEMPLO 1D:

Suponha que o numero inteiro positivo M, quando escrito na base decimal,
tenha a forma M =(a,...a,a,), =a,.10" +...4+a,.10+a,, com a, =0, ou seja,
tenha k+1 algarismos. Temos aqui as desigualdades 10° <M <10*"'. Aplicando
o logaritmo decimal, obtemos k<logM <k+1, dai {log M} =k e, assim, a
quantidade de algarismos de M na base decimal é {log M}—i—l . Mais geralmente,
podemos verificar que a quantidade de algarismos usados para representar o

numero inteiro positivo M na base B>1 serd igual a [logB MJ +1.

EXEMPLO 1E:
Dados os inteiros positivos a e b, podemos, pelo algoritmo da divisao,
encontrar inteiros g e r tais que a=>bq+r, com 0<r <b. Assim, temos:
a_ ﬂ r_ q +1 , de concluimos

b b b

a_l+£
b 1 b

r
=g, pois 0§Z<1.

Veja que para cada numero inteiro 7, a fun¢do maior inteiro € constante e
vale n dentro do intervalo [n;n+1). Assim, o grafico da fun¢do maior inteiro é
formado de segmentos de reta horizontais, de comprimento 1, de acordo com o que

segue:

YA

Figura 1: Representacdo da funcao maior inteiro
A respeito da fung¢do maior inteiro, valem as seguintes propriedades, cujas

demonstrag¢des sdo deixadas como exercicio.
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(1) |*+n|=|x|+n, para qualquer real x e qualquer inteiro positivo 7.
(2) x—1<|x|<x, para qualquer real x.

(3) Se x ndo é um numero inteiro, entdo |—x|=—[x|—1.

(4) Hx“ =|x|, para qualquer real x .

(5)Se ¥ <y, entio |¥|<[y].

(6) [x]+[yJ < {x —l—yJ <l|«| +{yJ+l, para quaisquer reais x e y.

Observagao 1: A propriedade (4) pode ser reescrita nos seguintes termos:
se f(x)=|x|, entio f(f(x))=f(x). Uma funcio que satisfaz a propriedade
f(f(x))= f(x) para qualquer elemento do dominio ¢ dita idempotente.

Observagao 2: A propriedade (5) pode ser reescrita nos seguintes termos:
se f(x)=|x], entdo x < y= f(x) < f(y). Uma fungio que satisfaz a propriedade
x<y= f(x)< f(y) para quaisquer elementos do dominio ¢ dita mondtona ndo

decrescente. Se x < y = f(x) > f(y), entdo f é mondtona ndo crescente.

EXEMPLO 2A:

Sabendo que |x|=4, determine os possiveis valores de 3] .
Solucio:

Observe que |x|=4 se verifica para todos os valores x €[4;5), isto &,

|x|=4©4<x<5, de onde obtemos que 12<3x <15, dai os possiveis valores

para |3x| sdo 12, 13 e 14.

EXEMPLO 2B:

Se a e b sdo numeros reais tais que |a] =6

e |b]=—3, encontre o menor valor possivel para
2a+3b)|.
GUARDE BEM ISS0! |2+ 38)
~ . Solugao:
Podemos usar a fungao maior inteiro para
Inicialmente temos que

estender as fungdes aritméticas estudadas na aula

4 para todos os numeros reais, definindo, por [aJ =6&6<a<7 e [bJ =-3&-3<b<-2.

exemplo, ¢(x):¢(lxj) para qualquer nimero Dai, multiplicando por 2 e 3, respectivamente,

real, embora esta extensdo nao acrescente fatos obtemos 12<2a<14 e —-9<3b<—-6 ¢

significativos a nossa teoria. somando estes resultados, concluimos que

NN J<2a+3b<8. Assim, o menor valor possivel

para |2a +3b| é 3 e o maior valor possivel é 7.
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Também ¢ interessante perceber que, dados os inteiros positivos a e b, a

. . oo TR . |a
quantidade de niimeros menores ou iguais a a que sao divisiveis por b ¢é |—|.

Vistas as propriedades iniciais a respeito da fun¢do maior inteiro, vamos

voltar as fungdes aritméticas e mais algumas relagdes entre elas.
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TOPICU 3 Outras relacdes

OBJETIVOS
. Estudar outras relagdes entre as func¢des aritméticas
. Relacionar as fung¢des aritméticas e a fung¢io maior

inteiro

ejamos agora algumas outras relagdes entre a Teoria dos Numeros

e a fung¢do maior inteiro.

Proposicdo 3: Se n é um numero inteiro positivo e p ¢ primo, entdo p* |n!

se, e somente se, o <|—|+ — +...+ — onde k é o maior inteiro pa-
p] |p p
ra o qual p* <n. Alternativamente, a maior poténcia de p que divide n! é
n n n
py |p p
Demonstragdo: Observe inicialmente que poderiamos ter acrescentado
P N n n . k
qualquer poténcia de p a soma |—|+|—|+...+|—|, pois se p° >n, vale
p
—|=0. Denote por a, a quantidade de nimeros menores ou iguais a n que
p

sdo divisiveis por p'.

Como n!=1.2.....n, entdo teremos que & =gq, +d, +...+ad,, mas os numeros

naturais que sdo divisiveis por p' sdo p’,2.p’,3.p’,...,‘—i‘.pl. Assim, g, =|—
p p
n n .
e = —‘—i— — |+ +|—|, como desejado.
p p
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EXEMPLO 1A:
Se quisermos saber qual a maior poténcia
de 2 que divide 21! fazemos ‘
21| [21] |21] |21 & ATENCAD!
o ==+ ||t |=|Ft|=|=
2 4 8 16 A proposi¢ao 3 apenas conta quantos numeros de
=10+5+2+1=18.

1 a n sao divisiveis por p, depois conta quantos
Assim, 2'°|21! e, logo, 2* |21!, para sao divisiveis por p2 e assim sucessivamente.
qualquer k=0,1,...,18.

|
EXEMPLO 1B:

A maior poténcia de 5 que divide 19! ¢é

?‘:3. De fato, dos nuimeros

inteiros de 1 a 19, apenas 5, 10 e 15 sao multiplos de 5, e nenhum deles ¢ multiplo

de 25.

Adiante, veremos uma relagdo entre as fungdes ¢ e .

Proposicdo 4: Para qualquer inteiro positivo n, vale ¢(n)= Z 'u(d),ﬁ .
d
dln

Demonstracdo: Veja que para m €{1,2,...,n} , temos =1,se m e n fo-

()
rem relativamente primos e () =0, caso contrdrio. Assim, obtemos uma
m,n
~ 1
nova maneira de obter o valor ¢(n), através da igualdade ¢(n)= Z (o) .
k=1 (K, 72
Vimos no final da aula 4 que Z 1#(d)=0 para qualquer inteiro positivo n>1.

dln

Uma vez que Z #(d)=1, podemos sintetizar as duas informagdes com a
df

1
igualdade Z,u(d)zl—J, valida para qualquer inteiro positivo 7. Logo
n

dln
> ud)=

d|(k.n)

(k.n)

n

Fazendo uso dessa ultima igualdade em ¢(n) =

o =353 u(d).

k=1 d(k,n)

, obtemos:

| (k.n)

Agora, se d|(n,k), é verdade também que d|n e d |k, de modo que podemos

ainda escrever:
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A= DD ).
k=1 d|k
d|n
Sabemos que d|k equivale a existir um inteiro ¢ tal que k=gqd , mas para

n
1<k<n, temos 1<q<—. Dai, obtemos:

n/d n/d
¢(n)=221u(d):2 M(d).Zl]: Z[,u(d)g], o que completa a demons-
dln gq=1 d|n q=1 djn
tragao.
EXEMPLO 2:

Com a expressdo obtida anteriormente, podemos encontrar ¢(n) de outra
20
maneira. Veja que ¢(20)= Zu(d); Como os divisores inteiros positivos de 20
saol, 2,4,5, 10 ¢ 20, poderdrlxnos fazer:
20 20 20 20 20 20
20) = p().— + p(2).— + w(4).— + p(5)-— + p(10).— =+ p(20).—
$(20) = p(1) [T (@A) ). p(10) T (20)- 2
Mas 4 e 20ndosaolivres de quadrados, logo 14(4) = ©(20)=0. Alémdisso, 2e5
sdo primos, deonde temos ((2) = p(5) = —1 e, pela definicao, temos (1) = p(10)=1.
Assim:

20 20 20 20 20 20
$20) =1 =4(-1) =40 =+ (-1 =+1.=40.—=—=
1 2 4 510 20

=20—-10+0—4+2+0=38.

Com este topico, encerramos nossa aula. Para melhor compreensdo das
ideias sobre as fungdes aritméticas e da fung¢ido maior inteiro, recomenda-se uma
recapitulagdo dos exemplos, com a troca dos numeros para melhor fixa¢do dos
conceitos e relagdes.

Como pegas fundamentais da nossa teoria, vez por outra, revisitaremos as
fungdes aritméticas, nesta ou em outras disciplinas. Na proxima aula, também

voltaremos a aplicar a fun¢ao maior inteiro.
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AU I_A 6 O principio das gavetas

Caro(a) aluno(a),

Em nossa quarta aula, estudaremos o principio das gavetas, o qual afirma que,
se vocé tiver n+1 objetos em n gavetas, pelo menos uma dela contera mais de
um objeto. E uma afirmacao simples e pode até ser considerada ébvia, mas traz
consequéncias de grande relevancia.

Objetivos

e Apresentar o Principio de Dirichlet e problemas nos quais o principio pode
ser aplicado
e Destacar resultados do Principio de Dirichlet na Teoria dos NUmeros
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TOPICO 1 "=

OBJETIVOS
. Apresentar exemplos iniciais

*  Enunciar formalmente o principio

matematico Johann Dirichlet (1805 - 1859) provou um caso
particular (7 =5) do teorema de Fermat (veja comentario no inicio
do tépico 2 da aula 3). Com seus estudos, ele proporcionou outras
intimeras contribui¢des para a Matematica e a Estatistica, dentre elas o principio
que norteara nossa aula — o qual pode ser colocado nos seguintes termos: se 7 +1
pombos forem colocados em n gaiolas, pelo menos uma das gaiolas contera pelo
menos dois pombos. Obviamente o resultado continua valendo para qualquer
quantidade de pombos que seja superior a quantidade de gaiolas. Descrevendo

mais tecnicamente, podemos enunciar da seguinte forma:

Principio de Dirichlet: Se A e B sdo conjuntos finitos e A tem mais
elementos que B, entdo ndo pode haver uma funcao injetiva f:A—B, isto é,

havera elementos distintos x, y € A tais que f(x)= f(y).

Observe que, se P for o conjunto de n+1 pombos e G o conjunto de n
gaiolas, a funcdo que associa cada pombo a sua gaiola nao pode ser injetiva, de
onde obtemos, naturalmente, o mesmo resultado, isto é, que dois pombos (pelo

menos) devem ocupar a mesma gaiola.
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EXEMPLO 1A:

Em uma turma de 13 pessoas, necessariamente duas delas fazem aniversario
no mesmo meés. Para verificar isso, podemos pensar nas pessoas como os “objetos”
e os meses como as “gavetas”. Ao distribuir 13 pessoas nos doze meses do ano,

necessariamente um dos meses deveria “conter” pelo menos duas pessoas.

EXEMPLO 1B:

Em uma lista de 6 niimeros inteiros quaisquer, pelo menos dois deles deixam
0 mesmo resto na divisao por 5, pois os restos possiveis sdo 0, 1, 2, 3 ou 4. Nesse
caso, temos seis numeros para “distribuir” em 5 possiveis restos. Usando a notagao
de fungdo, basta considerar a fun¢do que associa cada um dos seis numeros dados

ao seu resto na divisdo por 5.

EXEMPLO 1C:
Em um pardgrafo com 27 palavras, pelo menos duas delas comegaram com a

mesma letra.

EXEMPLO 1D:

No interior de um quadrado de lado 2m, sdo marcados cinco pontos.
Se dividirmos o quadrado em quatro quadrados menores de lado 1m — e
consequentemente de diagonal V2~1,41m - podemos associar cada ponto ao
quadrado menor que o contém. Pelo principio de Dirichlet, havera pelo menos
dois pontos no mesmo quadrado, mas a distancia maxima entre dois pontos de um
quadrado é a medida da sua diagonal, assim havera pelo menos dois pontos que

estardo a uma distancia inferior a JE m.

E com a ideia do principio de Dirichlet e com algumas generalizagdes
que vamos trabalhar do decorrer desta aula. A obviedade do principio indica a
simplicidade das demonstragdes, sendo que a parte dificil (que deixa de ser dificil
com um pouco de prdtica) é identificar, dentro do problema dado, o que sdo os
“objetos” e as “gavetas” ou, equivalentemente, entre quais conjuntos vamos

definir a fungdo que nao sera injetiva.

EXEMPLO 2A:
Mostre que hd um multiplo de 19 cuja representagdo decimal contenha

apenas algarismos Oel.
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Solugao:
Considere a sequéncia dos niimeros formados apenas por algarismos 1:
1,11, 111, ....

Se da lista considerarmos os 20 primeiros nimeros, necessariamente dois
deles deverao deixar o mesmo resto na divisdo por 19. Para tanto, basta considerar
a fungdo que associa cada nimero ao resto da sua divisdo por 19, que sdo apenas
19 possibilidades. Sabemos que, se dois niimeros deixam o mesmo resto na divisao
por 19, entdo a subtragao entre eles deixa resto 0, ou seja, ¢ multiplo de 19 (lembre
que a=b(mod19) equivale a 19|a—b). Mas a subtragio de dois dos numeros
considerados gera um numero formado apenas pelos algarismos 1 e 0, como

desejado.

EXEMPLO 2B:

Mais geralmente, dado o inteiro positivo n e um algarismo a €{1,2,...,9},
podemos encontrar um multiplo de n cuja representagao decimal contenha apenas
os algarismos O e «. Para tanto, basta considerar os n+1 primeiros termos
da sequéncia dos numeros formados pela justaposi¢do de algarismos «, isto ¢,
o,aq,...,a...c, com o ultimo nimero tendo n+1 algarismos todos iguais a a e

aplicar o raciocinio descrito anteriormente.

Alternativamente, podemos exprimir a ideia contida no principio das gavetas
também dizendo que, se tivermos n gavetas, a quantidade minima de objetos a
serem postos nas gavetas de modo a assegurar que haja pelo menos uma gaveta com

pelo menos dois objetos é n+1.

EXEMPLO 3A:
Em uma urna, ha 7 bolas pretas, 5 bolas brancas e 10 bolas azuis. Qual a
quantidade minima de bolas que devem ser retiradas as cegas para se garantir que

ha duas bolas da mesma cor?

Solugio:

Aqui temos o conjunto das bolas retiradas e para cada uma delas podemos
associar uma cor. Como ha trés cores possiveis, devemos tirar 4 bolas para garantir
que essa fungdo ndo seja injetiva, ou seja, para termos certeza de que duas bolas

tenham a mesma cor.
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EXEMPLO 3B:
O conjunto S ¢ formado por todos os inteiros que sao relativamente primos
com 18. Determine a quantidade minima de elementos de S que devem ser tomados

para que haja dois deles cuja diferenca ¢é divisivel por 18.

Solugéo:

Para que a diferenca entre dois numeros seja um multiplo de 18, eles devem
deixar o mesmo resto na divisao por 18 e os restos possiveis nessa divisaosao 0, 1,
2, ..., 17, de onde poderiamos pensar que a resposta seria “no minimo 19 numeros”.
Entretanto devemos atentar para o fato de que nao estamos considerando ntimeros
inteiros quaisquer, mas apenas aqueles que sdo relativamente primos com 18, de
modo que o conjunto de “gavetas” nao contém todos os residuos possiveis (nao
¢ um sistema completo), mas apenas aqueles que sdo primos com 18 (um sistema
reduzido). Assim, temos ¢(18) possibilidades para esses residuos. Como ?(18)=6,
a quantidade minima de elementos de S que devem ser tomados para que se tenha
a certeza de haver dois cuja diferenca seja um multiplo de 18 € 7.

Seguindo as ideias contidas nos exemplos deste topico, podemos construir
uma série de outros. Um exercicio interessante é colecionar esses exemplos e
discutir como o principio de Dirichlet pode ser aplicado. Adiante, discutiremos

como podemos generalizar os raciocinios envolvidos.
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3 Generalizacao do
principio das gavetas

OBJETIVOS
*  Estudar situagdes generalizadas do problema das
gavetas

. Aplicar a fung¢do maior inteiro nas solugdes

ontinuando com o principio discutido no tépico anterior, podemos
pensar que se nk +1 objetos forem colocados em n gavetas, entao
pelo menos uma das gavetas contera k-1 objetos. Esse fato pode
ser demonstrado se agruparmos os nk+1 em n grupos de k objetos e mais um
objeto avulso. Temos ai 7 +1 grupos de objetos para serem colocados em n gavetas,
de onde pelo menos uma gaveta devera conter pelo menos dois desses grupos, ou

seja, no minimo k+1 objetos.

Principio de Dirichlet (generalizagdo) Se A e B sdo conjuntos com nk +1
(ou qualquer quantidade superior a nk) e n elementos, respectivamente, e
f:A— B € uma funcdo, entdo haverd um elemento de B que ¢ imagem de

pelo menos k+1 elementos de A .

EXEMPLO 1A:

Em um grupo de 36 pessoas, hd pelo menos seis delas que fazem aniversario
no mesmo dia da semana em 2010. Para tanto, basta verificar que os dias da semana
(as gavetas) sdo 7 e as pessoas (objetos) sdo 36 = 5.7 + 1, de modo que o principio

pode ser aplicado e havera pelo menos um dia correspondente a 6 pessoas.

EXEMPLO 1B:
Mostre que de um conjunto de 41 numeros distintos, podemos escolher

cinco cuja soma é um multiplo de 5.
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Solucao:

Se somarmos cinco nimeros congruentes moédulo 5, teremos necessariamente
um mdltiplo de 5 como resultado. Observe que, se a,=k(mod5) para
qualquer elemento do conjunto {a,,q,,...a;}, entdo a soma das congruéncias
levara a g +a, +...4a, =5k(mod5), mas 5k ¢ um multiplo de 5, dai
a, +a, +...+a; =0(mod5), sendo a soma também um multiplo de 5. Agora temos
que garantir a existéncia de pelo menos cinco nimeros que deixam o mesmo resto
na divisdo por 5. Os restos possiveis sao 5 (as gavetas) e os numeros (objetos) sao 21
=4.5 + 1. Usando o principio para n=5 e k=4, garantimos que ha pelo menos
5 numeros que deixam o mesmo resto na divisdo por 5. Analogamente, podemos
estabelecer a fungdo que associa cada nimero ao resto na divisdo por 5 e usar a
formulagdao em termos de fun¢do para o principio de Dirichlet e obter o mesmo
resultado.

Assim como feito no tépico anterior, também podemos obter a quantidade
minima de objetos a serem considerados para que tenhamos pelo menos uma gaveta

com uma quantidade pré-estabelecida de objetos, depois da distribuicao.

EXEMPLO 2A:

Cada um dos dez alunos de uma turma recebe uma cartela com quatro
numeros inteiros positivos, distintos e menores ou iguais a 40, de modo que
cada niimero aparece em apenas uma cartela. Serdo sorteados sucessivamente os
numeros de uma urna, um por um, até que um dos alunos preencha sua cartela,
caso em que serd determinado vencedor. Qual a quantidade méxima de nimeros

sorteados nessa atividade?

Solucao:

Obviamente, pode acontecer de os quatro primeiros numeros sorteados
estarem na cartela de apenas um aluno, mas o sorteio pode continuar. Aqui
queremos saber a quantidade minima de nimeros que devem ser sorteados para
que se tenha certeza de que pelo menos um deles tenha 4 numeros. Se pensarmos
nos nimeros como os objetos e nas cartelas como as gavetas, queremos que cada
uma delas tenha 4, ou seja, 3 + 1 objetos. Como sdo 10 cartelas ao todo, podemos
fazer n=10e k=3, assim com a quantidade de nk +1=31 numeros sorteados,
teremos certeza de ter um aluno vencedor, entdo nao chegaremos a sortear o 32°

numero.
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EXEMPLO 2B:
Determine a quantidade minima de pessoas que devem ser tomadas para que

se possa formar um grupo de cinco pessoas com aniversario no mesmo mes.

Solugio:

Aqui podemos pensar em n=12 (os meses como as gavetas) e k+1=7
(@ quantidade minima de objetos que queremos garantir em pelo menos uma
das gavetas). Assim, para k=6,n=12, temos que em um grupo de nk+1=73
pessoas, hé necessariamente um grupo de cinco com aniversario no mesmo mes.

Para o que segue da nossa teoria, faremos uso da fungio maior inteiro e de
suas propriedades estudadas na aula 5. Lembremos que, dado o nimero real x,
representamos por li 0 maior inteiro que é menor ou igual a x. Por exemplo:
13,78/ =3.

A proposigdo a seguir é uma reformulacio do principio de Dirichlet, versao

generalizada, acompanhada de uma demonstragao.

Proposigao 1: Se colocarmos k objetos em n gavetas, entdo pelo menos uma
k—1

gaveta contera pelo menos

)—Fl objetos.

Demonstragdo: Da defini¢io da fun¢do maior inteiro, vale [xJSx, para

qualquer x real, logo

k—1| k—1
<
n n
Supondo que cada gaveta contenha no méaximo E objetos. Assim,
k—1 n
teremos, no maximo, n. objetos. Entao:
n
k—1 k—1
. <n. =k—1<k
n n

Assim, a quantidade de objetos nunca chegariaa k, o que ¢ uma contradigao.

EXEMPLO 3A:
Se observarmos os meses de nascimento de um grupo de 50 pessoas, temos

k=50 e n=12, assim podemos garantir que havera pelo menos um més com
FO—I
12

‘—i—lz 4+41=5 pessoas, ou seja, podemos concluir que, de um grupo de
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50 pessoas, poderemos certamente escolher cinco que fazem aniversario no mesmo

mes.

EXEMPLO 3B:

De um conjunto de 100 numeros, podemos garantir que ha pelo menos 8
numeros que deixam o mesmo resto na divisdo por 13. Basta usar aqui k=100 e
n=13.

Com essa formulagdo geral do principio de Dirichlet, encerramos este tépico.

No préximo, veremos como aplicd-lo de outras maneiras também interessantes.
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TOPICO 3 ©emoe o

OBJETIVOS
*  Estudar situagdes generalizadas do problema das
gavetas

. Aplicar a fung¢do maior inteiro nas solugdes

ara finalizar nossa aula, vejamos como principio de Dirichlet pode

ser aplicado em outras situagodes.

EXEMPLO 1:
Se o plano for pintado de verde e azul, prove que haverd dois pontos de

mesma cor cuja distancia é exatamente 1 metro.

Solucio:
Basta construir um triangulo equilatero de lado 1 m. Os vértices do tridngulo
(3) sdo em quantidade maior que o de cores possiveis (2), logo havera dois vértices

de mesma cor.

EXEMPLO 2:
Os numeros inteiros de 1 a 10 sdo escritos em um circulo, em qualquer ordem.

Mostre que ha trés nimeros adjacentes cuja soma é maior ou igual a 17.

Solugao:

Podemos formar 10 sequéncias diferentes de trés numeros adjacentes, de
modo que, se somarmos todas as sequéncias possiveis, cada numeros aparecera 3
vezes. A soma total sera, portanto, 3.(1 + 2 + ... + 10) = 3.55 = 165. Se todas as
somas de trés numeros adjacentes forem menores que 17, a soma total seria, no
maximo, 10.16 = 160, o que nao é verdade. Logo uma das sequéncias, pelo menos,

deve ter soma maior ou igual a 17.
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EXEMPLO 3:
Prove que ha duas poténcias de 3, distintas, cuja diferenga é divisivel por

2011.

Solugio:
Considere o conjunto formado pelas 2012 primeiras poténcias de 3, isto é:
31,32,33,‘”,32012 .
Como o numero de elementos do conjunto ¢ maior que a quantidade de
possiveis restos na divisdo por 2011, havera dois deles congruentes médulo 2011,
ou seja, dois deles deixam mesmo resto na divisdo por 2011. Isto ¢, ha inteiros

positivos m,n distintos tais que 3" =3"(mod2011), ou seja, 2011|3" —3".

EXEMPLO 4:
Qual a quantidade minima de brasileiros que devemos escolher para garantir
que se possa formar um grupo com 6 pessoas que nasceram na mesma unidade da

federagao (total de 27)?

Solugao:

Aqui usamos a formulagdo geral do principio de Dirichlet, para n=27 e
k=5, de modo que o minimo de pessoas a serem selecionada para se ter certeza
da propriedade desejada ¢ 27.5+1=136.

Com essas ideias, encerramos a nossa aula. A sugestao ¢ sempre buscar novos
exemplos para complementar a teoria, bem como novos problemas que possam ser
resolvidos como principio apresentado aqui, sempre com o cuidado de identificar

os “objetos” (ou pombos) e as “gavetas” (ou casas).
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AULA 7 Residuos quadraticos

Caro(a) aluno(a),

Dando prosseguimento ao estudo da Teoria dos Numeros, em nossa sétima
aula, continuaremos analisando as propriedades das congruéncias e verificando
as condicdes que assegurem a existéncia de solucdes para equacdes de tipo
especifico.

Objetivos

e Estudar os residuos quadraticos e o simbolo de Legendre
e Apresentar a lei da reciprocidade quadratica




TOPICO 1 Goacréveos

OBJETIVOS
*  Definir os residuos quadraticos

. Obter a quantidade de residuos quadraticos

qui serdo estudadas as equagdes do tipo x° =a(modn), o que
pode ser interpretado como o problema de encontrar raizes
quadradas médulo n de um numero inteiro positivo a. Pelo
que sabemos sobre sistemas completos de residuos, as solugdes da equagdo dada s

precisam ser procuradas no conjunto {0,1,2,...,n—1}.

EXEMPLO 1:

Encontre todas as solugdes da equagdo x”* =1(mod5).

Solugio:

Analisemos os casos:

— se x =0(mod5), entdo x* =0(mod5) e, assim, xz,él(modS)

—se x=I](mod5), entdo X' = I(mod5) e, assim, os numeros da forma
x=5k+1, com k inteiro sdo solugdes para o problema

— se x =2(mod5), entdo x* =4(mod5) e, assim, xz,él(modS)

— se x =3(mod5), entdo x* =4(mod5) e, assim, xz,él(modS)

—>se x=4(mod5), entio x’=1(mod5) e, assim, os nimeros da forma

x=5k+4, com k inteiro sdo solugdes para o problema.
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Portanto, as solugdes para a equagdo dada sao os numeros da forma x = 5k +1
ou x=5k+4, com k inteiro. Uma vez que 4 =—1(mod5), podemos escrever a

solugao geral x =5k +1.

Pelo que foi visto no exemplo anterior, para qualquer ntimero inteiro n,
vale n’ =0(mod5), n’ =1(mod5) ou n° =4(mod5) e as equagdes x” = 2(mod5)
e x' = 3(mod5) ndo possuem solugdes. Motivados por essa situagdo, daremos, em
relagdo ao conjunto dos possiveis restos na divisao por 5, um destaque aos nimeros

1 e 4, que serdo chamados de residuos quadraticos moédulo 5.

Definic¢do 1: Dados os nimeros inteiros positivos a e n, relativamente primos,
. , , sy , ~ 2
dizemos que a é um residuo quadrdtico médulo n se a equagdo x~ = a(modn)

possuir solugdes.

EXEMPLO 2A:
Os numeros 1 e 4 sao residuos quadraticos médulo 5. Também 21 ¢ residuo

quadratico médulo 5.

EXEMPLO 2B:
Veja inicialmente que
x = 0(mod 6) = x* = 0(mod 6)
x =1(mod6) = x* =1(mod6)
x =2(mod6) = x* = 4(mod 6)
x =3(mod6) = x* = 3(mod6)
x = 4(mod 6) = x° = 4(mod6)
x =5(mod6) = x* =1(mod 6)
Assim, somente para a=0,1,3,4 a equagdo x° =a(mod6) possui solucio
inteira, mas 3 e 4 ndo sdo relativamente primos com 6, e 0 ndo é positivo, de modo

que 1 é o tnico residuo quadratico médulo 6 (a menos de congruéncia médulo 6).

Proposicao 1: Se a ¢ um residuo quadratico médulo m, e b é um residuo
quadrdtico médulo n, com m,n relativamente primos, entdo a equagdo

z* = ab(modmn) possui solugao.
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Demonstragao: Pela definigdo, temos que existem inteiros x, y tais que

¥’ =a(modm) e y* = b(modn)

Uma vez que (m,n)=1, vale x’y*=ab(modmn), ou seja, a equagdo
z? = ab(modmn) possui, pelo menos, a solugao xy .

Pelo exposto na proposi¢ao acima, podemos procurar os residuos quadraticos
moédulo 7, procurando os residuos quadraticos referentes aos divisores de 7.
Assim, se n for composto, podemos reduzir o problema para os seus divisores
primos. Portanto, a partir de agora, consideraremos apenas as equagdes
x* =a(mod p), com p primo, caso em que também ndo nos ateremos a condicao
de serem relativamente primos, pois todos os numeros inteiros positivos menores
que p, primo, sdo-lhe relativamente primos.

Além disso, o caso p =2 ¢é resolvido diretamente, com todo numero impar
sendo um residuo quadrético médulo 2. Entdo, por toda esta aula, p denotara um

primo impar.

EXEMPLO 3:

Encontre todos os residuos quadraticos médulo 7.

Solucao:

Um sistema completo de residuos médulo 7 é {0, 1, 2, 3, 4, 5, 6} ¢
podemos analisar os valores dos restos da divisio de x° por 7 em cada caso. Mais
simplesmente, podemos considerar o sistema completo {0, *1, = 2, £3}.

—se x ==£1(mod7), entdo x° =1(mod7), ou seja, 1 é um residuo quadratico

modulo 7

—>se x= :I:2(m0d7) ,entdo x° = 4(mod7), ou seja, 4 ¢ um residuo quadratico

modulo 7

— se x =+3(mod7), entdo x* =2(mod7), ou seja, 2 ¢ um residuo quadratico

modulo 7

Logo, os residuos quadraticos médulo 7 (menores que 7) sdo 1, 2 e 4, e os
residuos nao quadraticos sdo 3, 5 e 6.

Para finalizar o topico, vamos a duas proposigoes que levam a determinagao da
quantidade de residuos quadraticos de um determinado niimero primo, motivado
pelo que se pode observar nos exemplos dados e no fato de que {0,%£1, :|:2,:|:‘DT_1}

¢ um sistema completo de residuos médulo p, quando p ¢é impar.
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Lema: Se p ¢é primo impar e a é um inteiro positivo tal que a é um residuo
s 7 ~ ~ pA— s
quadratico médulo p, entdo a equagdo x°~ = a(mod p) possui exatamente duas

solugdes incongruentes moédulo p .

Demonstracdo: Primeiramente, veja que se x ¢é solugdo para a equagao
dada, entio p—x também é solugdo, pois (p— x)z = pz —2px +x* e como
p’ —2px é um multiplo de p . temos (p —x)’ = x*(moda) . Além disso, x e p—x
sdo incongruentes modulo p, porque, se valesse x= p—x(modp), teriamos
2x=p(modp), ou seja, p|2x, o que levaria a p|x e, consequentemente,
x° =0(mod p), o que ndo acontece. Com isso, obtemos que a equagao possui
pelo menos duas solugdes incongruentes médulo p. Devemos mostrar também
que qualquer outra solugdo para o problema é congruente a x oua p—x. Seja
entao y tal que y* =a(mod p), isto ¢, y° =x’(modp). Daqui concluimos que
y* —x* =0(mod p) , isto &, (¥ + y)(x — y)=0(mod p). Como p ¢ primo, temos que
y+x=0(modp) ou y—x=0(modp), o que é equivalente a y=—x(modp) ou
Yy =x(mod p), mas como —x = p —x(mod p) , obtemos que ou y = p — x(mod p) ou

y = x(mod p), e terminamos a demonstragao.

EXEMPLO 4A:
Uma vez que 52 = 3(mod11), temos que 3 é um residuo quadratico médulo
11 e as Unicas solugdes (a menos de congruéncia moédulo 11) para a equagao

x* =3(mod11) sdo 5e 6 (pois 6 =11—5)

Demonstracao: Como {0,1,...,p—1} é um sistema completo de residuos
moédulo p, os residuos quadraticos médulo p sdo gerados se obtivermos os restos
de »? por p, para x=12,..,p—1. Observe, porém, como visto no lema, que
x> e (p—x)" deixam o mesmo resto na divisio por p, logo todos os residuos

2
—1
quadraticos médulo de p sdo os restos na divisado de 12,22,...,[p—] . Assim h3a,

—1 residuos quadraticos médulo p incongruentes modulo p.

2 [p—l

2
” 2 2 ~ 7
Resta ser mostrado que os numeros 1°,2%,...,|——| sdo incongruentes médulo p .
2

no maximo, P

Se m,n€ {1,2,...,7} sio tais que m’ =n’(mod p), entio m’ —n’ =0(mod p),

assim temos (m —n)(m+n)=0(modp), de onde concluimos m +n=0(mod p)

— -1
ou m—n=0modp). Uma vez que 0<m§p—1 € 0<n§pT, vale
2

2p—2
o<m+n<

=p—1, isto € nido ha como m-+n ser um multiplo de p.
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Logo obtemos m —n = 0(mod p) e assim m = n(mod p) . Porém, como m e n fazem

parte de um sistema completo de residuos médulo p, concluimos que m=mn.

2

. -1y . . .

Assim, 12,22,___,[‘0—J sdo numeros incongruentes médulo p, de onde obtemos
2

o resultado desejado.
EXEMPLO 4B:
Para p primo impar, as unicas solu¢des para a equagdo p? =1(mod p) sio

le p—l.

EXEMPLO 5A:
A menos de congruéncia médulo 11, ha exatamente 5 residuos quadraticos

modulo 11.

EXEMPLO 5B:
A menos de congruéncia moédulo 47, ha exatamente 23 residuos quadraticos

modulo 47.

No tépico seguinte, continuaremos analisando as equagdes do tipo

2 . . ’ ’ ;
x” =a(mod p), para p primo e veremos como determinar se um numero ¢é residuo

quadratico médulo p.
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TGPICU 2 O Simbolo de legendre

http://en.wikipedia.org/wiki/File:Legendre.jpg

OBJETIVOS
. Apresentar o simbolo de Legendre
. Relacionar o simbolo de Legendre com residuos

simples

matemdtico francés Adrien-Marie Legendre (1752 - 1833)
contribuiu com estudos significativos na Estatistica, na Algebra

Abstrata, na solugdo de Equagdes Diferenciais e na Teoria dos

Numeros. A seguir, definiremos o simbolo de Legendre, uma maneira simplificada

de dizer se um numero ¢ residuo quadratico médulo p.

Figura 1: Adrien-Marie Legendre

Definigao 1: Dado o primo impar p e o inteiro positivo a, nao
multiplo de p. O simbolo de Legendre de a por p, denotado

al . < 2 . ~
por |—| éigualal, se a equacdo x° = g(mod p) possui solugdo,
e vale —1, caso contrario. Ou seja:

[a ] B { 1, se a é um residuo quadratico médulo p

—1, se a ndo é um residuo quadratico médulo p

p
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EXEMPLO 1A:

Como visto no tépico anterior, 1 e 4 sdo residuos quadraticos médulo 5,

entiao [—] =1le [—] =1. Uma vez que 2 e 3 ndo sdo residuos quadraticos médulo

5 5
2 3
5, tem-se [—|=—1e|—|=—1.
5 5

EXEMPLO 1B:

Vale dizer que [l]:[E = ATENGAD!
7

3) (5) (6) 7
; - ; - ; =-1 Apesar da semelhanga, ndo devemos confundir

o simbolo de Legendre com uma fragao

EXEMPLO 1C: . . . .
simplesmente nem com o numero binomial.

Para qualquer primo impar p, vale
1
[_]:1‘
p

A seguir, veremos algumas propriedades

do simbolo de Legendre.

Proposicao 1: Para qualquer primo impar GUARDE BEM I1SSO!
p—1
p, vale Z[E]ZO.
a=l O simbolo de Legendre [i] nio é definido se
p

pla, entretanto alguns autores estendem a
Demonstragao: Pelo que vimos no tépico

defini¢ao acima para a —0Q se p|a. Assim,
anterior, metade dos numeros do conjunto P 30
{1,2,...,p—1} sdo residuos quadriticos médulo ST @Il [E0E SIEE CUr RIS [_]:O
a
~| na 21
. . 7 2
parcelas iguais a 1. Também sabemos que os

p—1
p, de modo que na soma Z
a=1

demais ntimeros, em igual quantidade, ndo sio residuos quadratico médulo p, por

isso hé também P —1 parcelas iguais a —1. Somando todas as parcelas, obteremos

2
soma zero, como desejado.

Adiante, provaremos um resultado também conhecido como critério de
Euler, que determina se um numero ¢ residuo quadratico apenas pela determinagao

do resto de uma divisao.
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Proposicao 2: Se p ¢ um primo impar e a ¢ um inteiro positivo nao divisivel

pl
por p, entdo [i] =a ? (modp).
p

a - . , . .
Demonstracao: Se [—]=1, entdo existe um numero inteiro x tal que

p

x* =a(mod p) e como a=0, é claro que x nao é multiplo de p, de onde obtemos
que (x, p) =1. Usando o pequeno teorema de Fermat, sabemos que #” ' = I(mod p) .

Nestes termos, fazemos:

pl -1 ]
P 2

a’l = (xz )T (mod p), que equivalea a = ="' (mod p) .
Juntando os fatos, concluimos que a’ = I(mod p), ou seja, [i] =a (modp)

p-1
2

e o primeiro caso fica provado. O segundo caso é andlogo e vem do fato de que a

quantidade de residuos quadraticos médulo p é p—1 .
2

EXEMPLO 2A:

2 11-1
Vale [—]52 > (mod1l1), ou seja, [i]zzs(modll). Como 2’ =32, vale

2> =—1(mod11). Assim, [H] =—1 e, logo, 2 ndo é um residuo quadratico médulo
11.
EXEMPLO 2B:

Temos [1]536(1110(113) e, como 3° =1(mod13), vale que 3 é um residuo

quadrético médulo 13.

Neste topico, definimos o simbolo de Legendre, que é uma maneira simplificada
de afirmar quando um numero ¢ residuo quadratico médulo P e apresentamos o
critério de Euler, que transfere o problema de decidir se um nuimero é residuo
quadrdtico para a determinacgao do resto da divisao entre dois inteiros. No tépico a

seguir, veremos outras propriedades do simbolo de Legendre.
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TOPICO 3  cluchasrocosee

OBJETIVO
. Continuar o estudo dos residuos quadraticos, analisando

métodos de simplificagdo do cdlculo do simbolo de

Legendre

. , a .
ontinuamos o estudo do simbolo de Legendre [—] , analisaremos a

p

existéncia de solugdes para equagdes do tipo x* = a(mod p) . Para
comegar, veremos que o simbolo de Legendre, visto como fungio

de a, ou seja, com denominador fixo, ¢ completamente multiplicativa.

Proposicdo 3: Se a e b sdo inteiros positivos nao divisiveis pelo primo p,

entdo [—|=|—|.|—].
p p)\p - 1 p1
Demonstragio: Inicialmente, vemos que (ab) =a 2 .b ? . Pelo critério

1 Pt
de Euler (final do topico 2), temos [i] =a ’ (modp) e 2] =bH ? (modp).
p

pt pt
Assim, [i][é] =a ’ .b? (modp),istoé, [a_b] = [i].[é](mod p) - Uma vez
p)\p p p)\p

que o simbolo de Legendre assume apenas os valores 1 e —1, a congruéncia

acima implica a igualdade desejada.

EXEMPLO 1A:

11-1
Usando o critério de Euler, podemos concluir que [1—31]53 > (modll),

3
ou seja, [—]=3S(modll). Mas, como 3’ =243 deixa resto 1 na divisio por

2
11, temos que [—]:1. Pelo visto no exemplo 2a do tépico 2, vale [1—]: -1.
11 1
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Usando a multiplicabilidade do simbolo de Legendre, concluimos que

[i] = [i][i] =(—1).1=—1, logo 6 ndo € um residuo quadratico modulo 11.
11 11) (11

EXEMPLO 1B:

Para qualquer inteiro positivo a nao divisivel por p, vale [a_ 4]
p

p

Dessa forma, como os possiveis valores de i] sao 1 e —1, vale [a_ —1 para
qualquer n par. P p
EXEMPLO 1C:
5
Vale que 2’ =32=1(mod31). Assim [Z—]Z[L]zl, ou seja, 32 é um
31 31

5
residuo quadratico moédulo 31. Além disso, [i] — [2]: 1, de onde podemos
31 31
concluir que [i] =1, isto ¢, 2 ¢ um residuo quadratico médulo 31.

Como consequéncia da multiplicabilidade do simbolo de Legendre, reduzimos
o trabalho de procurar residuos quadrdticos a nimeros primos. Para comegar, um

critério segundo os quais saberemos se 2 é residuo quadratico.

- . o ) 1, se p=41(mod8)
Proposigao 4: Se p € um primo impar, entao | = |=
—1, se p=+£3(mod8)

p

EXEMPLO 2A:
- 2 . , , ‘.
Como 17 =1(mod8), entdo |—|=1, ou seja, 2 é um residuo quadratico
7
moédulo 17. Exemplo 2b:
2
Como 43 = 3(mod8), entdo [—3] =—1, ouseja, 2 ndo é umresiduo quadratico
4

modulo 43.

A seguir, enunciaremos um resultado que simplifica o calculo do simbolo de

Legendre, conhecido como a Lei da Reciprocidade Quadratica.

plgl
Teorema: Se p e g sdo primos impares distintos, entdo [ﬁ][i] =12 ?

q
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EXEMPLO 3A:

Calcule [4_1] .
43
Solucao:
Pela lei da reciprocidade quadridtica, temos

43—1 41-1
[4—1][4—3] =(=1) 2 2 — (— 1)21'20 =1. A partir dai, percebemos que 4_1 e 4_3
43) \ 41 43 41

tém o mesmo sinal. Mas, se 43=2(mod41l), logo [E]:[i] Por fim, ja que
41 41
2
41=1(mod8), vale [—]zl. Assim, [4—1]=[4_3):[i]=1, de onde obtemos
41 43 41 43

que 41 ¢ um residuo quadratico médulo 43.

EXEMPLO 3B:

Calcule [ﬁ] .
97
Solugao:

4
Como 48 ndo ¢ primo, comegamos pela fatoragio 48=2".3 Usando a

4 4
multiplicabilidade do simbolo de Legendre, [4—8] _|Z [i] = [i] [i] Como
97 97)\97 97 97
o simbolo de Legendre assume apenas os valores 1 e —1, necessariamente teremos

4

2 . .

[— =1 e o teste do resto na divisdo por 8 ¢ desnecessario. Passemos, entdo,
97

a determinagdo de [i] Para tanto, usemos a lei da reciprocidade quadratica
97

3)(97 S
[— .[—]:(—1) 22 :(—1)1'48 =1. Assim, i e 9_7 tém o mesmo sinal.
97)\ 3 97 3

Uma vez que 97 =1(mod3), temos que 97 ¢ um residuo quadratico médulo 3, logo

97
[? =1. Concluindo: a partir dai, obtemos que [ﬂ] e [4—3] tém o mesmo sinal.
43 41

Mas 43 = 2(mod4l), logo [4_8] = 1.
97
EXEMPLO 4:

Mostre que nio existe inteiro n tal que 7|4n° —3.

Solucao:

Observe que 7|4n* —3 equivale a 4n”* =3(mod7), ou seja, (2n)* = 3(mod7)
e, se fizermos x=2n, teremos x> =3(mod7). Podemos aqui usar o que foi feito
no tépico 1, no qual obtemos que 3 nao é um residuo quadratico médulo 7, para

afirmar que a equagdo nao possui solugdo. Alternativamente, usando a lei da
3) (7 =
reciprocidade quadradtica, podemos ver que [7][5]:(_1) 22 =(=1)"=-1,
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. , 7] . .. , . 7
isto ¢, [E] e [—] tém sinais contrarios. Mas, como 7El(mod3), temos [—]:1,
7 3 3

de onde obtemos que |—[=—1 e, da mesma forma, concluimos que 3 nio é um
7

residuo quadratico médulo 7.

Com estes dois testes simples, encerramos nossa aula sobre residuos
quadraticos. Vimos como a investigagdo sobre existéncia de solugdes para equagdes

do tipo x° =a(mod p) pode ser bem simplificada.
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AU I_ A 8 Problemas diversos

Caro(a) aluno(a),

Chegamos a nossa ultima aula de Teoria dos Numeros. Aqui revisitaremos 0s
principais resultados apresentados no decorrer do curso, através de problema
resolvidos de diversos niveis de dificuldade. Nao hesite em procurar nas aulas
passadas as definicoes pertinentes a cada situacao. Fique atento também as
hipdteses de cada enunciado e aos momentos nos quais elas sao usadas.

Objetivo

e Apresentar problemas resolvidos sobre a teoria desenvolvida nas aulas
anteriores e discutir a aplicacao das técnicas apresentadas em suas solucdes
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TOPICO 1 Scicos™ ™

PROBLEMA 1:
Mostre que a soma de dois numeros inteiros é impar se, e somente se, um

deles for par e outro for impar.

Solucao:

Inicialmente, verifique que, se a for par e b for impar, podemos
escrever a=2m e b=2n+1 para certos inteiros m e n. Dai teremos
a+b=2m+2n+1=2(m-+n)+1, que é um nimero impar, isto ¢, a soma de um
nimero par com um nimero impar resulta em um nimero impar. Se considerarmos
a e b ambos pares, podemos escrever a=2m e b= 2n para certos inteiros m e
n . Assim encontraremos a +b=2m+2n=2(m+n), que é um numero par. Se a
e b forem ambos impares, podemos escrever a=2m +1 e b=2n+1 para certos
inteiros m e n. Dai teremos a+b=2m+1+2n+1=2m+2n+2=2m+n+1),
que é um numero par. Dessa forma, a soma de dois nimeros pares é sempre par
e a soma de dois numeros impares também ¢é par. O mesmo resultado vale para a

diferenca de dois numeros.

PROBLEMA 2:
Mostre que se a e b sdo nimeros impares, entdo a’ + b’ nio pode ser um

quadrado perfeito.

Solucao:
~ , 2
Comecemos observando que, se a e b sdo impares, o mesmo ocorre com a

2 . ’ , .
e b, logo g* +b* é um niimero par. Para que um numero par seja um quadrado
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perfeito, é necessario que ele seja um multiplo de 4, pois 2|n* =2|n=-4|n’.
Mas, como a ¢ impar, vale a =1(mod4) ou a=3(mod4) e, em ambos os casos,
tem-se a’ =1(mod4), o mesmo ocorrendo para b, isto ¢, vale b’ =1(mod4).
Somando as duas congruéncias, obtemos a’ + b* =2(mod4), de onde concluimos
que @’ +b* nio é um multiplo de 4 e, assim, nao pode ser um quadrado perfeito
(como consequéncia deste resultado, um tridngulo retangulo com lados de medidas

inteiras tem pelo menos um dos catetos de medida par).

PROBLEMA 3:
Prove que M =3"" 42" ¢ um multiplo de 7 para qualquer inteiro

positivo 7.

Solucao:

Observe inicialmente que 3° =2(mod7), logo <32 )n =2"(mod7) e, assim,
3*"*1 =2".3(mod7) . Da segunda parcela da soma que define M, podemos afirmar
2"? =2"2* =2".4 que gera a congruéncia imediata 2""* =2".4(mod7). Somando
entdo as duas ultimas congruéncias, obtemos 3*"*' 42" =2".34 2".4(mod7), mas

2".342"4=2"(34+4)=2"7, que ¢, claramente, um multiplo de 7.

PROBLEMA 4:
Mostre que a representacao decimal de um numero quadrado perfeito nao

pode ter algarismo das unidades terminando em 2, 3, 7 ou 8.

Solucao:
O algarismo das unidades na representacdo decimal é o resto da divisao do
numero por 10. Considere, entdo, os possiveis restos e observe o que acontece com

o quadrado:
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Assim, os possiveis algarismos das unidades de um quadrado perfeito sao
apenas0, 1,4, 5, 6 ¢ 9. De modo que, se um numero terminar em algarismo diferente
destes, quando escrito na base 10, ele certamente ndo serd um quadrado perfeito.

Como consequéncia deste critério, podemos, sem nenhum célculo, auxiliar, dizer

que 0s numeros V10253443, /3278812 e /20003417 sdo irracionais, pois os

radicandos ndo sdo quadrados perfeitos.

PROBLEMA 5:
Prove que o produto de trés nimeros inteiros consecutivos ¢ sempre divisivel

por 6.

Solugao:

Em uma sequéncia de trés inteiros consecutivos, hd necessariamente um
multiplo de 3, de modo que o produto de trés inteiros consecutivos é um multiplo
de 3. De maneira andloga, certamente um dos fatores serd um nimero par e, assim,
multiplo de 2. Assim, o numero obtido ¢ divisivel por 2 e por 3 ao mesmo tempo,

sendo portanto, multiplo de 6.

PROBLEMA 6:
Usando o algoritmo de Euclides, determine o maximo divisor comum entre

432 e 28, em seguida determine o minimo multiplo comum entre 432 e 28.

Solugao:

Comegando pela divisdo de 432 por 28, obtemos

432=28.15+12

Assim, o problema ¢ transferido para a determinagdo do maximo divisor

comum entre 28 e 12. Dividindo 28 por 12, obtemos
28=12.2+4

Desse modo, temos que o maximo divisor comum entre 28 e 12 ¢ o mesmo

que entre 12 e 4, mas, como 4 é um divisor de 12, temos (28,12)=4. Logo, o maximo

divisor comum entre 432 e 28 ¢ 4. Usando a identidade [a,b].(a,b) = a.b, ganhamos

432.28  432.28 , o .
que [432,28]= = =432.7=3024, ou seja, o minimo multiplo
(432,28) 4

comum entre 432 e 28 é 3024.

PROBLEMA 7:

Mostre que a equacao 42x +180y =14 nao possui solu¢des inteiras.
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Solucao:
Do estudo de equagdes diofantinas, sabemos que ax + by = ¢ possui solugao
(x,y) €Zx7 se, e somente se, (a,b) | c. Para a equagdo dada, basta ver que

(42,180) = 6, mas 6 nao divide 14.

PROBLEMA 8:

Determine o resto na divisao de 22.33.44.55 por 7.

Solugio:

Como 22=1(mod7), 33=5(mod7), 44=2(mod7) ¢ 55=6(mod?7), temos,
pela multiplicagao das congruéncias, que 22.33.44.55= 1.5.2.6(mod7). Como
1.5.2.6=50 deixa resto 4 na divisdo por 7, temos que 22.33.44.55 deixa resto 4 na

divisado por 7.

PROBLEMA 9:

Determine o numero inteiro positivo n que satisfaz 12|n e 7(n)=14.

Solugao:

Seja n=p".p,*....p,* a fatoragio em primos de 7, temos que
T(n) = (o, +1)(, +1)...(, +1). Assim, devemos procurar as formas segundo as
quais 14 pode ser escrito como produto de numeros inteiros positivos. Sado elas
14=14.1, e neste caso, teremos n = p”, para algum primo p, ou 14=7.2, caso
no qual vale n= p°q para primos p e q.Como 12|n e 12=2°3, necessariamente
os primos 2 e 3 devem aparecer na fatoracao de n, de modo que a primeira opgao
nio ocorre. Entdo temos n=2°3 ou n=3%2. Mas a segunda 0pg¢ao ndo ocorre,
pois o expoente do 2 deve ser no minimo 2 para que se tenha 12|n . Assim, a tnica

possibilidade é n=2°3=192.

PROBLEMA 10:

Encontre todos os restos possiveis na divisao de um quadrado perfeito por 8.

Solugao:
Uma vez que os possiveis restos na divisao por 8 sdo apenas O, 1, 2, ..., 7,
avaliaremos apenas os possiveis restos na divisao de n’ por 8 nos seguintes casos:
se n=0(mod8), temos n’ = 0(mod8) e o resto ¢, portanto, O
se n==%1(mod8), temos n’ = I(mod8) e o resto ¢, portanto, 1
se n==+2(mod8), temos n= 4(mod8) e o resto ¢, portanto, 4
se n=+3(mod8), temos n= 9(mod8) e o resto ¢, portanto, 1

se n=4(mod8), temos n’ = 16(mod8) e o resto ¢, portanto, 0
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Esgotadas todas as possibilidades, concluimos que um quadrado perfeito

deixa resto 0, 1 ou 4 na divisdo por 8.

PROBLEMA 11:
Mostre que, se kK =7(mod8), entdo kndo pode ser escrito como soma de trés

quadrados perfeitos.

Solucao:

Pelo problema anterior, um quadrado perfeito deixa resto 0, 1 ou 4 na divisao
por 8, logo a soma de trés quadrados serd congruente a soma de trés nimeros do
conjunto {0,1,4}. Porém 7 ndo pode ser escrito como soma de trés dos numeros
dados, por isso é impossivel que um numero que deixa resto 7 na divisdo por 8

possa ser escrito como soma de trés quadrados perfeitos.

PROBLEMA 12:

Determine o resto da divisio de 19° + 44* por 7.

Solucao:

Como 19 ndo ¢é divisivel por 7, temos, pelo Teorema de Fermat, que
19 =1(mod7), ou seja, 19° =1(mod7). Usando argumento semelhante,
concluimos que 44° =1(mod7), de onde obtemos (446)4 514(mod7), isto é,
44* =1(mod7). Por fim, temos 19° 4+ 44 =141(mod7) e o resto procurado ¢,

portanto, 2.

PROBLEMA 13:
Encontre a quantidade de numeros inteiros positivos menores que 3600 que

sdo multiplos de 2, 3 ou 5.

Solucao:

Observe que a fatoragdo de 3600 em primos é 3600 =2".3%.5". Assim os
fatores primos de 3600 sdo exatamente 2, 3 e 5, de modo que os multiplos de 2, 3
ou 5 sdo aqueles que ndo sdo relativamente primos com 3600. Podemos encontrar

a quantidade dos que sdo relativamente primos com 3600 pela fungdo de Euler

1 1 1 124 . .

$(3600) = 3600.[1——].[1——].[1——] =3600.—.—.— =960 . Assim, se retirarmos
2 3 5 235

esses 960 numeros dos 3599 inteiros positivos menores que 3600, obteremos os

2639 que sdo multiplos de 2, 3 ou 5.

PROBLEMA 14:

Encontre o menor inteiro positivo n para o qual 7(n)=13.
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Solucao:

Seja n=p".p,*....p;* a fatoragio em primos de n, temos que
T(n) = (o, +1)(, +1)...(, +1)=13, porém, como 13 é um numero primo, ndo
poderd ser escrito como produto de dois numeros menores que ele. Logo os

, L. .. - 12
numeros que possuem exatamente 13 divisores positivos sao da forma n=p™~,

com p primo. De modo a minimizar o valor de n, consideramos o menor primo e

obtemos 1= 2" = 4096 .

PROBLEMA 15:

Prove que se n ndo é um quadrado perfeito, entdo 7(n) é par.

Solucao:

Se n nao é um quadrado perfeito, entdo pelo menos um dos expoentes de
sua fatoracdo em primos é impar, de modo que pelo menos um dos consecutivos
destes expoentes é par. Mas, quando um dos fatores ¢ par, o produto é par, logo a
quantidade de divisores de n que é calculada pelo produto dos consecutivos dos

expoentes de sua fatoragdo em primo serd par.

PROBLEMA 16:
Determine todos os niimeros inteiros positivos menores que 12 que possuem

inverso modulo 12.

Solucao:

Um nimero 7 possui inverso médulo 12 quando existe um inteiro k tal que
nk =1(mod12) e isso ocorre se, e somente se, (n,12)=1. Investigando quais dos
inteiros positivos menores que 12 lhe sdo relativamente primos, obtemos a lista 1,
5, 7, 11. Mais ainda, cada um dos nimeros listados ¢ seu préprio inverso médulo

12.

PROBLEMA 17:

Mostre que a equagdo n’ + 57 —27 =0 nio possui solugdo inteira.

Solugio:

Veja que a equagdo é equivalente a n’ +5n=27, ou seja, n(n’ +5)=27.
Observe que n’ +5 ¢ um numero necessariamente positivo e maior que 7, de
modo que escrevemos 27 como produto de dois niimeros inteiros positivos, mas s
ha duas maneiras de fazer isso: 27=1.27, caso em que n=1 e n’ +5=27 , 0 que
nao se verifica; e 27=3.9, caso em que n=3 € n’+5= 9,0 que é igualmente

falso. Assim concluimos que a equagdo dada nao possui raizes inteiras.

‘ Teoria dos Numeros




PROBLEMA 18:
Dado o numero inteiro B>3, mostre que o nimero (1331), é um cubo

perfeito.

Solugio:
Aqui basta ver que (1331), =B’ + 3B’ +3B+1=(B+1)’, que ¢ o cubo do
inteiro B+1.

PROBLEMA 19:

Mostre que existem infinitos numeros inteiros n para os quais 10| @(n).

Solugao:

Observe que qzﬁ(l 1)=10, logo, se m for relativamente primo com 11, teremos
$(11m) = ¢(11)p(m) =10¢(m) , assim 10| P(11m), isto &, 10| P(n) para todo inteiro
positivo da forma n=11m, com (11,m)=1. Mas ha infinitos numeros que podem

ocupar o lugar de m , por exemplo todos os outros primos.

PROBLEMA 20:
Mostre que, para qualquer inteiro positivo n>1, existem infinitos numeros
inteiros m para os quais 7(m)=n.
Solugao:
1

Observe que T(m)=mn ocorre para qualquer ntimero da forma m=p"",

onde p ¢ primo. O resultado segue do fato de que ha infinitos ntiimeros primos.

PROBLEMA 21:

202

Determine o algarismo das unidades de 77, quando expresso em base

decimal.

Solugio:
O algarismo das unidades de um nimero é o resto da divisao pela base. Assim,

. o e~ 202
devemos determinar o resto da divisdo de 7

por 10. Sabemos pelo teorema de
Euler, que a’®” =1(modn), para quaisquer inteiros positivos a,n relativamente
primos. Assim, temos 7709 = 1(mod10). Mas ¢(10)=4, dai vale 7' = 1(mod10).
Dividindo 202 por 4, obtemos quociente 50 e resto 2, de onde concluimos
70 =70 = (74 )50 77 =1".7°(mod10) . Por fim, como 7*=49=9(mod10), o

algarismo procurado é 9.
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