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Apresentação

O Matem@tica na Pr@tica é um Curso de Especialização para Professores do Ensino Mé-

dio de Matemática na modalidade de Educação a Distância, que está inserido no Plano de 

Ações Articuladas do Ministério da Educação. Esse plano tem como um de seus objetivos 

promover uma importante atividade de formação continuada dirigida a você, professor do 

ensino básico, incentivando a renovação de sua prática pedagógica e propondo caminhos 

para que você possa criar, organizar e compartilhar novos conhecimentos com seus alunos 

e colegas de trabalho.

Esse segundo módulo consiste em quatro disciplinas e caracteriza-se pela apresentação 

de conteúdos importantes para o Ensino Médio, de uma forma conectada com o trabalho 

do professor.

Neste fascículo apresentamos a disciplina denominada “Matemática Discreta”, que tem 

por objetivo refletir sobre a importância dos métodos de contagem no Ensino Médio, ex-

plorar as técnicas de combinatória e desenvolver o conceito de probabilidade. 

Desejamos a todos bons estudos.

Equipe do Matem@tica na Pr@tica

Março, 2013
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▹▹ Você sabia que muitos sistemas 
de envio de mensagens secretas 
envolvem conhecimentos 
matemáticos do Ensino Médio?

▹▹ Você sabia que esses sistemas 
podem ser usados para ensinar 
Análise Combinatória de uma forma 
diferente?

▹▹ Será que é necessário usar fórmulas 
para resolver qualquer problema de 
Análise Combinatória?

Etapa I 

Criptografia

Criptografia de substituição e o princípio fundamental 
da contagem: envio e espionagem de mensagens secretas
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1. Introdução

Se você encontrasse um velho pergaminho com a seguinte mensagem, 

o que você faria? ▶

Suspeitaria ser uma mensagem secreta para encontrar um tesouro? 

Tentaria desvendá-la? E se quisesse desvendá-la, você recorreria aos seus 

conhecimentos matemáticos? Quais conhecimentos?

No conto do escritor Edgar Allan Poe (1809-1849), intitulado “O Esca-

ravelho de Ouro”, o personagem principal da 

obra encontra um velho pergaminho com a 

mensagem ao lado que acredita ser o mapa de 

um tesouro.

Nessa história, após uma análise feita pelo 

protagonista, baseada na frequência com que as 

letras apareciam nos textos escritos em língua in-

glesa, a mensagem é decifrada e o personagem 

principal encontra um tesouro há muito tempo 

enterrado por um pirata que passou pelo lugar 

descrito na mensagem. 

Histórias como essas revelam que cifrar e decifrar mensagens são práticas que já acom-

panham a humanidade há um bom tempo. 

Você suspeitaria que essa técnica pode ser utilizada para o ensino de Matemática no En-

sino Médio? Esperamos que ao final dessa disciplina você possa responder positivamente!
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2. A matemática das mensagens secretas

Enviar mensagens secretas é uma tarefa muito 

antiga. Ao longo da história, ela se intensificou princi-

palmente pelas necessidades diplomáticas e militares 

de trocar informações que não podiam ser descobertas. 

A técnica de enviar e receber mensagens secretas 

chama-se criptografia. Simplificadamente, uma mensa-

gem é enviada de forma secreta, por um sistema cripto-

gráfico, da seguinte maneira:

Hoje em dia, principalmente com o advento da comunicação eletrônica, muitas ati-

vidades essenciais dependem do sigilo na troca de mensagens, em especial aquelas que 

envolvem transações financeiras (senhas de banco, senha de cartão de crédito etc.) e o 

uso seguro da internet.

A Criptografia é a ciência que 
estuda os meios e métodos 
de se enviar mensagens com 
segurança. É uma área de 
grande interesse atualmente, 
principalmente devido ao 
extenso uso dos meios eletrô-
nicos de comunicação.

Mensagem

Codificação
(modificação da mensagem original)

ESPIONAGEM

Decifração
(recuperação da mensagem original)

Mensagem

Secreta = mensagem

Mensagem secreta 
enviada

Mensagem original 
recuperada
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Mas qual é a relação entre a Criptografia e o ensino de Matemática? Você 

consegue imaginar? Você consegue vislumbrar o estudo da criptografia 

como uma estratégia para abordar conceitos matemáticos?

Nosso objetivo, com a disciplina Matemática Discreta, é que você possa responder a 

essas perguntas. Essa disciplina, que tem a Criptografia como ponto de partida, tratará de 

conteúdos ligados à Análise Combinatória e à Teoria das Probabilidades, que são apresen-

tados usualmente no Ensino Médio.

A proposta é que a disciplina enfoque conteúdos por meio da resolução de problemas, 

já que a Análise Combinatória – como você mesmo vai perceber – não envolve muita te-

oria. Buscaremos contemplar um universo expressivo de aplicações e casos particulares: 

tanto os que podem aprofundar seus conhecimentos quanto os que podem ser utilizados 

em sala de aula.

Nessa primeira etapa da disciplina, especialmente, apresentaremos algumas ativi-

dades que utilizam a Criptografia. Além disso, exploraremos os aspectos matemáticos 

dessas atividades a fim de introduzir alguns conceitos básicos da análise Combinatória. 

Nessas atividades, você perceberá que não é necessário o uso indiscriminado de fórmu-

las para resolver problemas de Análise Combinatória, as quais tanto assustam nossos 

alunos.

Ao longo dessa etapa, por meio de exemplos simples, você vai perceber que Cripto-

grafia e Análise Combinatória têm muito em comum!

3. Criptografia de Júlio César
No Império Romano, o imperador Júlio César (100 a.C - 44 a.C.) criou um dos primeiros 

sistemas de criptografia conhecido. Para enviar suas mensagens, Júlio César substituía cada 

letra do alfabeto pela terceira letra que a seguia, da seguinte forma:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Segundo esse sistema, a palavra FELICIDADE passa a ser IHOLFLGDGH. 

Agora, decifre a mensagem abaixo, usando a criptografia de Júlio César:

OHJDO FRQVHJXl

A Análise Combinatória, con-
forme o próprio nome diz, 
analisa e conta o número de 
possibilidades de como os 
elementos de um conjunto po-
dem ser agrupados conforme 
regras estabelecidas.
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Se você encontrou a mensagem leGal CONSeGUI, acertou. Para decodificar uma 

mensagem usando a criptografia de Júlio César, precisamos fazer o caminho inverso da 

codificação: substituir cada letra do alfabeto pela terceira letra que a antecede.

A criptografia de Júlio César é um sistema bem simples de codificar/de-

codificar mensagens secretas, que pode ter diversas variações. Por exemplo, 

em vez de caminhar 3 letras para frente, como no exemplo anterior, podemos 

andar um outro número de letras para frente ou para trás e, assim, criar um 

novo método de cifrar mensagens.

Esse número é chamado chave ou senha do sistema criptográfico. Ele 

deve ser usado para codificar e decodificar a mensagem e deve ser conhecido 

apenas por quem a envia e por quem a recebe. No exemplo anterior, a chave 

foi 3 (se quisermos enfatizar a ordem crescente das letras, +3). 

Se um espião conhecer a chave, que é o nú-

mero de letras que andamos (no nosso exemplo a 

chave é igual a 3), poderá facilmente decifrar uma 

mensagem interceptada, trocando cada letra pela 

terceira letra anterior. 

Não se conhecendo a chave, como será possível decifrar mensagens 

criptografadas? Pense um pouco a respeito disso.

Nos sistemas criptográficos que seguem o princípio da criptografia de Júlio César e 

conservam a ordem das letras, considerando o nosso alfabeto, podemos usar 26 chaves 

diferentes que geram 26 sistemas criptográficos. Ora, sabemos que o sistema com chave 0 

(ou 26) não codifica nada, já que nesse caso cada letra é substituída por ela mesma. Mas, 

diante da técnica de contagem que vamos apresentar, é importante incluí-lo.
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 Curiosidade  

A máquina ao lado chama-se Enigma. Foi largamente utilizada pelo exército alemão durante 

a Segunda Guerra Mundial (1939-1945) para enviar mensagens secretas. A máquina é um 

dispositivo eletromecânico que utilizava rotores para criar sistemas criptográficos, tidos como 

indecifráveis e altamente seguros. Entretanto, os sistemas criptográficos foram quebrados pelas 

Forças Aliadas, que puderam conhecer várias informações secretas importantes. Isso fez com 

que a Guerra terminasse pelo menos um ano antes do previsto. Sobre essa máquina, assista 

ao filme Enigma, dirigido por Michael Apted e produzido por Mick Jagger e Lorne Michaels.

 Curiosidade 

E se pudermos mudar a ordem das letras? 

No sistema criptográfico de Júlio César, o alfabeto é codificado seguindo sua ordem 

usual, apenas iniciando em um lugar diferente. Vejamos dois exemplos de sistemas crip-

tográficos em que a ordem das letras não é preservada.

 ▹ a) Alfabeto quebrado ao meio:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

 ▹ b) Troca de dois vizinhos:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B A D C F E H G J I L K N M P O R Q T S V U X W Z Y

Observe nos exemplos anteriores que nenhuma letra ficou no seu lugar original.

Quantos sistemas criptográficos podemos formar mudando as letras sem respeitar a 

ordem com que aparecem no alfabeto? Você tem algum palpite?

3. Criptografia de Júlio César 17
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4. Princípios de contagem em criptografia

Para ensinarmos um método de resposta à pergunta da seção anterior, vamos trabalhar 

casos mais simples envolvendo alfabetos com menos letras.

Digamos que no planeta Plunct os alfabetos fossem formados por apenas três sím-

bolos: ♥, ♣  e  ♦. Nesse caso, poderíamos criptografar mensagens das seguintes formas:

1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
1

♥
2

♣
3

♦
3

♦
1

♥
2

♣
2

♣
3

♦
1

♥
1

♥
3

♦
2

♣
3

♦
2

♣
1

♥
2

♣
1

♥
3

♦

Nas primeiras linhas dessas tabelas aparecem as “letras” do alfabeto em sua “ordem 

natural” e nas segundas linhas, as letras que devem substituir as da primeira linha, res-

pectivamente, quando efetuarmos uma codificação.

Olhando as tabelas, apesar de a primeira delas ser a “trivial” e não servir para codificar 

nada, poderíamos concluir que há exatamente seis maneiras de permutar as letras desse 

alfabeto?

É claro que sim: para a primeira letra, existem três possibilidades de codificação: 

♥ ♣ ♦
ou

♥ ♣ ♦
ou

♥ ♣ ♦

♥ ♥ ♥

Escolhida uma delas, restam apenas duas possibilidades para a segunda letra:

♥ ♣ ♦ ♥ ♣ ♦ ♥ ♣ ♦

♥ ♣ ♣ ♥ ♣ ♥

ou                       ou                       ou

♥ ♣ ♦ ♥ ♣ ♦ ♥ ♣ ♦

♥ ♣ ♥ ♣ ♣ ♥

18  Módulo II  –  Matemática Discreta  ▷  Etapa I
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e, uma vez escolhido um desses casos, resta somente uma possibilidade para a terceira 

letra:

♥ ♣ ♦ ♥ ♣ ♦ ♥ ♣ ♦

♥ ♣ ♦ ♣ ♥ ♦ ♣ ♦ ♥

♥ ♣ ♦ ♥ ♣ ♦ ♥ ♣ ♦

♥ ♦ ♣ ♦ ♥ ♣ ♦ ♣ ♥

Dessa forma, tem-se: 

3 2 1 6⋅ ⋅ =

possibilidades para fazermos uma codificação para o alfabeto utilizado no planeta Plunct. 

Um esquema prático para resolver esses problemas é dispor as possibilidades da se-

guinte forma:

3 possibilidades (locais) 

para se colocar a primeira 

letra.

Restam 2 possibilidades 

(locais) para se colocar a 

segunda letra.

Resta 1 possibilidade 

(local) para se colocar a 

terceira letra.

Depois que o esquema estiver pronto, devemos multiplicar os números de possibili-

dades em cada caso. 

Observe que nesses problemas não há repetição de elementos. O elemento que apa-

rece na primeira etapa não entra na segunda nem na terceira etapa. O que aparece na 

segunda etapa não entra na terceira etapa, e assim por diante. As decisões das escolhas 

são independentes.

Podemos fazer, ainda, outro esquema de representação das possibilidades, pensando 

simetricamente na posição e não na letra. Na primeira posição, podemos colocar qualquer 

uma das três letras, na segunda posição apenas duas delas e na terceira a letra remanes-

cente.

4. Princípios de contagem em criptografia  19
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Independentemente da maneira de representação escolhida, calculamos o número de 

possibilidades do problema anterior, usando o Princípio Multiplicativo da Contagem, que 

é muito simples de ser entendido:

O Princípio Multiplicativo é também chamado Princípio Fundamental da Contagem.

Diante do Princípio Multiplicativo, no último exemplo, temos 3 2 1⋅ ⋅  possibilidades de 

codificação, usando o alfabeto do Planeta Plunct. 

Há uma notação muito útil para trabalhar com produtos do tipo acima, essa notação 

é chamada de fatorial. Por exemplo, o fatorial do número 3 é 3! 3 2 1= ⋅ ⋅ ; o fatorial do 

número 7 é 7! 7 6 5 4 3 2 1= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . No caso geral, o fatorial de um número inteiro positivo 

n  é definido por ! ( 1)( 2) 3 2 1n n n n= − − ⋅⋅⋅ ⋅ ⋅  e, por convenção, 0! 1= . 

Vamos agora pensar outro exemplo em que se aplica o Princípio Multiplicativo da 

Contagem. 

Em outro planeta imaginário, denominado Plact, o alfabeto possui quatro “letras”: 

♥, ►, ☼ e ○. Seguindo da mesma forma que fizemos no exemplo anterior, pelo Princí-

pio Multiplicativo da Contagem, há, neste caso, 4 3 2 1 4! 24⋅ ⋅ ⋅ = =  maneiras diferentes de 

permutar as letras.

Princípio Multiplicativo da 
Contagem:
Se uma decisão puder ser 
tomada de m  maneiras dife-
rentes, e se uma vez tomada 
esta primeira decisão, outra 
decisão, independente da 
primeira, puder ser tomada de 
n  maneiras diferentes, então 

no total serão tomadas m n×  
decisões.

3 x 2 x 1 = 6

20 Módulo II  –  Matemática Discreta ▷ Etapa I
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Vamos comprovar nosso cálculo?

Vejamos:

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

♥ ► ☼ ○ ♥ ► ○ ☼ ♥ ○ ☼ ► ♥ ○ ► ☼

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

► ☼ ♥ ○ ► ☼ ○ ♥ ► ○ ☼ ♥ ► ○ ♥ ☼

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

☼ ♥ ► ○ ☼ ♥ ○ ► ☼ ► ♥ ○ ☼ ► ○ ♥

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

☼ ○ ♥ ► ☼ ○ ► ♥ ○ ♥ ► ☼ ○ ♥ ☼ ►

♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○ ♥ ► ☼ ○

○ ► ♥ ☼ ○ ► ☼ ♥ ○ ☼ ♥ ► ○ ☼ ► ♥

Voltemos agora ao nosso mundo, mais precisamente voltemos à pergunta que fize-

mos no final da última seção. O que ocorre se usarmos as 26 letras de nosso alfabeto, em 

qualquer ordem, para criarmos mensagens criptografadas? 

Como fizemos com os alfabetos dos planetas Plunct e Plact, se agora usarmos nosso 

alfabeto, conseguiremos 26!  maneiras diferentes de criptografar uma mensagem, isto dá 

26!  26 25 24 3 2 1  403 291 461 126 605 635 584 000 000= ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ =

possibilidades. 
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Veja o esquema:

26 possibilidades 

para se colocar a 

primeira letra

Restam 25 

possibilidades 

para se colocar a 

segunda letra

Restam 24 

possibilidades 

para se colocar a 

terceira letra

(...) Restam 3 

possibilidades 

para se colocar a 

vigésima quarta 

letra

Restam 2 

possibilidades 

para se colocar a 

vigésima quinta 

letra

Resta 1 

possibilidade 

para se colocar 

a vigésima sexta 

letra

Note que com o Princípio Multiplicativo da Contagem conseguimos verificar uma quan-

tidade enorme de possibilidades de criar sistemas criptográficos a partir do nosso alfabeto. 

O número 26!  é muito grande e pode ser desanimador, pois parece ser impossível 

descobrir a chave para quebrar um código feito no estilo de Júlio César, caso desconheça-

mos qual foi a maneira com que as letras foram inicialmente codificadas, não é mesmo?

Não há esperança alguma de se testar todas as possibilidades. Apesar disso, o código 

de Júlio César e suas variações podem ser quebrados sem muita dificuldade, como você 

pode ver na seção a seguir.

4.1. Mapas de tesouros 

Vamos voltar agora à mensagem secreta do texto que abriu essa aula:

(53±±+305) )6*; 4826) 

4±.)4±);806*;48+8

60))85;1±(;:±*8+83(88)5*+;46(;88 

*96*?;8)*±(;485);5*+2:*±(;4956* 

2 (5*-4)8 8* ; 

4069285);)6+8)4±±;1(±9;48081; 

8:8±1;48+85;4) 485 + 528806* 

81(±9;48; (88;4 (± ? 34;48) 4 ±; 

161;: 188; ±?;
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O conto “O Escaravelho de ouro”, de Edgar Allan Poe, ilustra muito bem um exemplo 

da teoria da decifração. Após uma análise baseada na frequência das letras do alfabeto 

inglês, feita pelo protagonista, a mensagem toma a seguinte forma:

Como você imagina que o texto foi decifrado?

Para começar, é importante perceber que a letra que aparece com mais frequência 

na língua inglesa é a letra “e”. Muitas vezes essa letra aparece dobrada: “ee”. Veja que 

na mensagem secreta acima o símbolo 8 aparece 33 vezes, muito mais do que as outras 

letras. Portanto, é plausível que 8 signifique a letra “e”. Substituindo 8 por “e” e repetindo 

o mesmo esquema com outras letras, foi possível decifrar a mensagem. Sua tradução para 

o português é:

A good glass in the 

bishop’s hostel in the 

devil’s seat forty-one 

degrees and thirteen 

minutes north-east and 

by north main branch 

seventh limb east side 

shoot from the left eye 

of the death’s-head a 

bee line form the tree 

through the shot fifty 

feet out.

Um bom vidro na 

hospedaria do bispo na 

cadeira do diabo quarenta 

e um graus e treze 

minutos nordeste e quarta 

de norte ramo principal 

sétimo galho do lado 

leste a bala através do 

olho esquerdo da cabeça 

do morto uma linha de 

abelha da árvore através 

da bala cinquenta pés 

para fora.
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 Desafio  Decodificando uma mensagem

Observe a frequência aproximada das letras em português:

Frequência aproximada das letras em português

	
  

	
  

Agora, utilize esse estudo de frequência das letras para decodificar a mensagem a seguir:

Dica: essa mensagem é uma rima feita a partir de um conhecido poema da literatura brasileira, e tem por finalidade 

ensinar os alunos a decorar quanto vale ( )sen a b+ .

Para economizar seu tempo, as letras H, P, L e D não foram codificadas.

 Desafio 

A
da

m
 C

ie
si

el
sk

i  
/  

SX
C 

Como você viu no início dessa aula, o conto revela, de uma maneira fantástica, como, 

a partir dessas informações, o personagem principal encontra um tesouro há muito tempo 

enterrado por um pirata que havia passado pelo lugar descrito na mensagem.

A Análise Combinatória foi usada para calcularmos a quantidade de sistemas criptográ-

ficos que podemos criar, e apesar de essa quantidade ser enorme, vimos que é possível 

decodificá-las através do estudo da frequência das letras.

JUXHG

FYEEG FYJ

PGLJYUEGW

RXDY AGXFG R

WGIUG,

WYXR(G),

ARWWYXR(I),

WYXR(I),

ARWWYXR(G)
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 Saiba Mais  Atitudes para resolver problemas de contagem

a) Leia o problema a ser resolvido com bastante atenção. Detalhes como “os elementos são distintos” ou “os ele-

mentos podem se repetir” fazem a diferença;

b) Verifique se o problema fica mais simples dividindo-o em casos;

c) Isole as possibilidades mais “problemáticas” ou que oferecem mais dificuldades e comece 

resolvendo-as por ordem de dificuldade;

d) Para resolver o problema, use diagramas, setas, os esquemas que vimos fazendo, casos 

particulares etc. Crie sua maneira pessoal de resolver os problemas de contagem;

e) Evite usar indiscriminadamente fórmulas. Esse procedimento não funciona em geral, pois 

há casos que não se enquadram na aplicação de qualquer fórmula. Enfim, é necessário 

saber usar o Princípio Multiplicativo com bastante atenção. Só isso.

 Saiba Mais 

A
rju

n 
K

ar
th

a 
 / 

 S
XC

 

5. Permutações simples

Nos exemplos da seção anterior, as mensagens foram criptografadas mudando a ordem 

das letras de um alfabeto, ou melhor, permutando-se essa ordem. Em um alfabeto com 3 

letras {♥, ♣, ♦}, vimos que existem 3! permutações:

{♥, ♣, ♦}, {♣, ♥, ♦}, {♣, ♦, ♥}, {♥, ♦, ♣}, {♦, ♥, ♣}, {♦, ♣, ♥}

Cada conjunto acima, distintamente ordenado, é chamado de permutação simples do 

conjunto {♥, ♣, ♦}. 

Uma permutação simples de um conjunto com n  elementos é o agrupamento orde-

nado de n  elementos desse conjunto. O termo simples significa que não há repetição dos 

elementos em cada ordenamento.

Com um alfabeto de 26 letras, vimos que existem 26! permutações simples dessas 

letras. 

Em geral, para um conjunto com n  elementos, existem ( ) !P n n=  permutações sim-

ples possíveis.

Muitos problemas interessantes são resolvidos, quando se percebe que sua solução 

recai em uma simples aplicação do Princípio Multiplicativo ou sobre o cálculo do número 

de permutações dos elementos de um conjunto (que ainda é uma simples aplicação do 

Princípio Multiplicativo).

Veremos mais alguns problemas relacionados à Criptografia. Para resolvê-los com su-

cesso, veja algumas sugestões no boxe a seguir.
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 Atividade 1  Sistemas criptográficos

Um viajante, conhecedor dos alfabetos dos planetas Plunct e Plact, usa os dois alfabetos para 

criar um sistema para criptografar mensagens. Sua ideia é usar as permutações das letras do alfa-

beto do planeta Plact para escolher um sistema criptográfico e, após cada palavra criptografada, 

escrever uma mesma letra do alfabeto do planeta Plunct para confundir os leitores. De quantas 

maneiras ele pode fazer isso?

Resposta comentada

Como o alfabeto do planeta Plact possui 4 letras, é possível formar, com apenas essas letras, 4! 4 3 2 1 24= ⋅ ⋅ ⋅ =  sistemas 

criptográficos. Ora, o alfabeto do Planeta Plunct possui 3 letras e, portanto, podemos usar cada uma e escrevê-la após cada 

palavra. Assim, pelo Princípio Fundamental da Contagem, o viajante pode formar 3 4! 3 24 72× = × =  sistemas criptográficos.

 Atividade 2  

Um agente secreto descobriu que na decodificação de uma palavra com cinco letras as vogais a e 

e aparecem uma única vez. Quantas possíveis sequências de letras existem com essas características?

Resposta Comentada

A solução do problema consiste em determinarmos as possibilidades das posições que as letras a e e podem ocupar em 

uma sequência de letras com cinco letras. Convém fazermos um diagrama:

1ª posição 2ª posição 3ª posição 4ª posição 5ª posição

Uma das duas letras pode ocupar qualquer das 5 posições. Restarão apenas 4 posições para a outra letra ocupar. Note que 

restarão três posições para serem preenchidas com as 24 letras restantes do alfabeto (observe que as letras a e e aparecem 

apenas uma única vez na palavra). 

 Atividade 1 

 Atividade 2 
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 Atividade 3  

Considere o mesmo problema anterior, mas, agora, analisando um caso no qual as letras a, e e c 

aparecem em uma palavra decodificada com cinco letras que não termina em c. Quantas sequências 

de letras têm essas características? 

Resposta comentada

Comecemos fazendo um diagrama, que nos ajudará na resolução do problema:

1ª posição 2ª posição 3ª posição 4ª posição 5ª posição

Como a sequência de letras não termina em c, temos uma restrição a ser considerada: a letra c só pode ocupar as 4 pri-

meiras posições. Nesse caso, comecemos com a letra “problemática”, a letra c. 

Nesse tipo de problema, aconselhamos sempre começar com a possibilidade que ofereça maior dificuldade. Ora, há 4 

posições (as quatro primeiras) que a letra c pode ocupar. A letra c, ao ocupar sua posição, deixa quatro posições que as letras 

a e e podem ocupar. Uma dessas letras (a ou e) pode ocupar 4 posições, deixando 3 posições para a outra. Ocupadas as 

posições das letras c, a e e, restam duas posições a serem ocupadas. 

Qualquer uma dessas posições pode ser ocupada por qualquer uma das 26 letras do nosso alfabeto, pois não fize-

mos nenhuma restrição ao fato de as letras c, a e e poderem se repetir. Dessa forma, pelo Princípio Multiplicativo, temos 

4 4 3 26 26 32448⋅ ⋅ ⋅ ⋅ =  sequências de letras com essas características.

 Atividade 3 

Uma das letras a ou e 
ocupa 5 posições

5

Uma das letras a ou e 
ocupa 4 posições

4

Uma posição pode ser 
ocupada por

qualquer das 24 letras 
restantes 

24

Uma posição pode ser 
ocupada por

qualquer das 24 letras 
restantes 

24

Uma posição pode ser 
ocupada por

qualquer das 24 letras 
restantes 

24

Pelo Princípio Multiplicativo, teremos 5 4 24 24 276480⋅ ⋅ ⋅ =  sequências de letras com essa característica (na realidade 

teremos muitas combinações de letras que não formam palavra alguma na Língua Portuguesa). Note que as demais letras, 

diferentes de a e e, podem se repetir.

O agente secreto deve ter tido muito trabalho para decodificar a palavra, não é mesmo? Ainda bem que nem todas essas 

sequências de letras formam realmente uma palavra com significado em nossa Língua!
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 Atividade 4  

Uma senha de banco é formada por seis algarismos. Analisemos as diferentes 

quantidades de senha formadas ao usar somente os algarismos 3, 5, 7 e 9. 

a▹ Quantas senhas podemos formar com esses algarismos?

b▹ Quantas senhas contêm apenas dois desses algarismos?

c▹ Em quantas senhas todos esses algarismos aparecem?

Resposta Comentada

4a) O problema resume-se em saber as posições que os algarismos 3, 5, 7 e 9 podem ocupar na senha. Note que não há 

restrição ao fato de um algarismo poder se repetir.

1a posição 2a posição 3a posição 4a posição 5a posição 6a posição

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Os quatro algarismos 
podem assumir essa 

posição. Temos 4 
possibilidades.

Logo, pelo Princípio Multiplicativo, a resposta é 64 4 4 4 4 4 4⋅ ⋅ ⋅ ⋅ ⋅ =  senhas.

4b) Nesse caso, a palavra “apenas” tem um papel decisivo na resolução do problema. 

Para a senha ser formada por dois desses algarismos, precisamos dividir o problema em casos. Aconselhamos sempre 

proceder dessa maneira, quando pertinente. Uma senha pode ser formada por dois desses algarismos, no caso deles serem: 

{ }3,5 , { }3,7 , { }3,9 , { }5,7 , { }5,9  ou { }7,9 . Tomemos o par { }3,5 , por exemplo, para formarmos a senha. Nesse 

caso, temos as seguintes possibilidades:

1a posição 2a posição 3a posição 4a posição 5a posição 6a posição

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

Os algarismos 3 ou 5 
podem assumir essa 

posição. Temos 2 
possibilidades.

 Atividade 4 

 Atenção  

Observe que para resolvermos as questões propostas nas atividades 1 e 2, não utilizamos fórmula alguma, apenas 

o Princípio Multiplicativo.

 Atenção 
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Para o par { }3,5 , pelo Princípio Multiplicativo, podemos formar 62 2 2 2 2 2 2⋅ ⋅ ⋅ ⋅ ⋅ =  senhas. Como podemos proceder 

dessa forma para os 6 pares, podemos formar 66 2⋅  senhas que contenham apenas dois algarismos.

4c) Para resolver esse item do problema, precisamos fazer uma pequena conta de subtração. Essa é mais uma estratégia 

para resolvermos problemas de contagem e que pode ser muito útil em certos tipos de problema. Para encontrarmos o 

número de casos que satisfazem uma propriedade, devemos contar o número de casos geral e subtraímos desse número o 

número de casos particulares que não satisfazem tal propriedade.

Raciocinemos um pouco: se da quantidade de todas as senhas possíveis formadas pelos algarismos 3, 5, 7 ou 9 retirarmos 

as formadas apenas por um dos algarismos 3, 5, 7 ou 9, e depois retirarmos as formadas por dois dos algarismos 3, 5, 7, ou 

9, e, finalmente, retirarmos as formadas por três dos algarismos 3, 5, 7 ou 9, restarão as formadas pelos quatro algarismos 

3, 5, 7 e 9. 

Sabemos do item anterior o número de senhas formadas por apenas dois dos algarismos 3, 5, 7 ou 9. 

É fácil ver que o número de senhas formadas por apenas um desses algarismos é 4, pois nesse caso temos as senhas 

333333, 555555, 777777 e 999999.

Para seguirmos o raciocínio proposto, resta-nos, agora, calcular o número de senhas formadas por três dos algarismos 3, 5, 

7 ou 9. Para isso, raciocinemos analogamente sobre as hipóteses em que as senhas são formadas por dois desses algarismos.

As senhas em que aparecem apenas três algarismos podem ser construídas, caso os algarismos formem os ternos 

{ }3,5,7
 
, { }3,5,9 , { }3,7,9 , { }5,7,9 . Tomemos um desses ternos de algarismos, por exemplo, { }3,5,9 . Logo, temos:

1a posição 2a posição 3a posição 4a posição 5a posição 6a posição

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

Os algarismos 3, 5 
ou 9 podem assumir 

essa posição. Temos 3 
possibilidades.

A partir desse raciocínio, pelo Princípio Multiplicativo, concluímos que existem 63 3 3 3 3 3 3⋅ ⋅ ⋅ ⋅ ⋅ =  senhas. Como temos 

quatro ternos de algarismos, tem-se 64 3⋅  senhas formadas por apenas 3 dos algarismos 3, 5, 7 e 9.

Assim:

 � Número de senhas formadas por um algarismo do conjunto { }3,  5,  7,  9  4= .

 � Número de senhas formadas por dois algarismos do conjunto { } 6 33,  5,  7,  9 6 2 = 6 4= ⋅ ⋅ .

 � Número de senhas formadas por três dos algarismos do conjunto { } 63,  5,  7,  9 4 3= ⋅ .

 � Número total de senhas 64 .

 � Número de senhas em que aparecem os quatro algarismos = número total de senhas - senhas for-

madas com 1 algarismo - senhas formadas com 2 algarismos - senhas formadas com 3 algarismos: 

( ) ( )6 6 34 4 3 6 4 4 4096 2916 384 4 792− ⋅ + ⋅ + = − + + = .

Assim, temos 792 senhas em que aparecem todos os algarismos 3, 5, 7 e 9.
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 Atividade 5  

De quantas formas distintas 5 pessoas podem sentar em 7 cadeiras, cada pessoa ocupando uma cadeira? 

Antes de ver a resposta dessa pergunta, tente resolvê-la sozinho.

Resposta Comentada

Um esquema de resolução como os usados anteriormente pode ser bastante útil. Chamemos as pessoas de P
1
, P

2, 
P

3
, P

4
 

e P
5
. Agora, basta preencher a tabela abaixo:

Pessoa P
1

Pessoa P
2

Pessoa P
3

Pessoa P
4

Pessoa P
5

Tem 7 escolhas de cadeiras 
para ocupar.

Tem 6 escolhas de cadeiras. 
Note que uma cadeira já foi 

ocupada pela pessoa P
1.

Tem 5 escolhas de cadeiras. 
Note que duas cadeiras 
já foram ocupadas pelas 

pessoas P
1
 e P

2.

Tem 4 escolhas de cadeiras. 
Note que três cadeiras já fo-
ram ocupadas pelas pessoas 

P
1
, P

2 
e P

3.

Tem 3 escolhas de cadeiras. 
Note que quatro cadeiras 
já foram ocupadas pelas 

pessoas P
1
, P

2,
 P

3 
e P

4.

Pelo Princípio Multiplicativo, chegamos a 7 6 5 4 3 2520⋅ ⋅ ⋅ ⋅ =  formas distintas das 5 pessoas sentarem nas 7 cadeiras.

 Atividade 5 

A seguir, você pode encontrar outros problemas de Análise Combinatória que reque-

rem a aplicação do Princípio Multiplicativo de Contagem para a sua resolução, mas que 

não estão relacionados à Criptografia.

 Atenção  

Nos livros didáticos, a resolução da atividade anterior é feita através do conceito de arranjo. O número de arranjos 

simples de n  elementos tomados p  a p  é por definição ( )
n!

A
n p !

p
n =

−
. Por exemplo, na resolução da atividade 

5, temos um arranjo de 7 elementos tomados 5 a 5: 
( )

7!
5: A 7 6 5 4 3

7 5 !
n
p = = ⋅ ⋅ ⋅ ⋅

−
.

 Atenção 

30 Módulo II  –  Matemática Discreta ▷ Etapa I

Matematica_Discreta.indd   30 15/08/13   17:45



 Atividade 6  

João vai participar de um sorteio, cujas cartelas são formadas por todos os números de três algarismos, dentre os números 

de 100 a 999, incluindo-os. João prefere comprar cartelas terminadas em 2, em 4, ou em 8, pois diz ter muita sorte com elas. 

Quantas das cartelas do sorteio foram as preferidas por João?

Resposta Comentada

Devemos analisar como preencher com os números disponíveis uma cartela do tipo:

Primeiro algarismo Segundo algarismo Terceiro algarismo

Número de possibilidades dos 
algarismos

Número de possibilidades dos 
algarismos

Número de possibilidades dos 
algarismos

Conforme nossas sugestões dadas no Boxe Saiba Mais, comecemos pelos casos que apresentam mais dificuldades ou 

que sejam mais restritivos. Sempre proceda dessa forma. Nesse caso, precisamos formar números pares que terminam em 

2, 4 ou 8. Logo, temos 3 possibilidades para o terceiro algarismo. O segundo algarismo pode ser qualquer um do conjunto 

{ }0,1,2,3,4,5,6,7,8,9 , não há restrição alguma para ele. Assim, podemos ter 10 possibilidades para o segundo algarismo. 

Como o número zero deve ser evitado como primeiro algarismo, temos 9 possibilidades para o primeiro algarismo. Daí a 

tabela anterior fica da seguinte forma:

Primeiro algarismo Segundo algarismo Terceiro algarismo

9 10 3

Pelo Princípio Multiplicativo, temos 9 10 3 270⋅ ⋅ =  cartelas preferidas por João. 

 Atividade 6 

Para não assustar os alunos, ressaltamos a importância de escolher exercícios simples 

ao iniciar os estudos de Análise Combinatória, assim como foi feito ao longo de toda essa 

Etapa 1. Você deve ter percebido que todos os exercícios podem ser feitos unicamente 

através do Princípio Multiplicativo, sem que precisássemos recorrer insistentemente ao uso 

de fórmulas. Esperamos que você aproveite!
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6. Conclusão

No ensino de Matemática, a Análise Combinatória muitas vezes é relegada ao es-

quecimento ou, então, é trabalhada apenas por meio do uso de fórmulas. Na disciplina 

Matemática Discreta, que começou com esta Etapa 1, queremos mostrar que o ensino 

desse conteúdo é importante e pode ser muito interessante e estimulante tanto para você, 

professor, quanto para seus alunos.

Acreditamos que uma abordagem interessante parte do pressuposto de que é possível 

resolver vários problemas (do cotidiano ou não) usando um recurso bastante simples: o 

Princípio Multiplicativo. Como você observou ao longo dessa etapa, não foi necessária 

a utilização de fórmulas e, muitas vezes, esses problemas não podem ser resolvidos por 

uma aplicação direta delas.

Portanto, esperamos que você se convença de que a maioria dos problemas de conta-

gem pode ser um rico instrumento para ensinar os alunos do Ensino Médio a organizar 

ideias e contar possibilidades de agrupamentos, utilizando, na maioria das vezes, apenas 

o Princípio Multiplicativo.

7. Resumo 
▹▹ A Criptografia pode ser um interessante ponto de partida para abordar conteúdos 

ligados à Análise Combinatória e à Teoria das Probabilidades no Ensino Médio.

▹▹ A Criptografia é a ciência que trabalha com meios e métodos capazes de enviar 

mensagens com segurança. 

▹▹ A Análise Combinatória analisa e conta o número de possibilidades de como os ele-

mentos de um conjunto podem ser agrupados de acordo com regras estabelecidas.

▹▹ Para resolver problemas de Análise Combinatória, não precisamos recorrer indiscri-

minadamente ao uso de fórmulas.

▹▹ A criptografia de Júlio César foi um dos primeiros sistemas criptográficos conhecido. 

É um sistema bem simples e que pode sofrer diversas variações. Esse sistema conta 

com uma chave ou senha estipulada previamente.

▹▹ No sistema criptográfico de Júlio César, o alfabeto é codificado seguindo sua ordem 

usual, iniciando, apenas, em um lugar diferente.

▹▹ De acordo com o Princípio Multiplicativo de Contagem, se uma decisão puder ser 

tomada de m  maneiras diferentes e, se uma vez tomada essa primeira decisão, ou-

tra decisão, independente da primeira, puder ser tomada de n  maneiras diferentes, 

então, no total, serão tomadas m n×  decisões.

▹▹ Por meio do Princípio Multiplicativo de Contagem, podemos calcular quantos siste-

mas criptográficos podem ser formados, alterando as letras sem respeitar a ordem 

em que aparecem em um alfabeto.

▹▹ Fatorial é uma notação muito útil para trabalhar com problemas de Conta-

gem. No caso geral, o fatorial de um número inteiro positivo n  é definido por 

! ( 1)( 2) 3 2 1n n n n= − − ⋅⋅⋅ ⋅ ⋅  e, por convenção, 0! 1= .
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▹▹ A decodificação de sistemas criptográficos simples pode ser feita por meio do estudo 

da frequência das letras.

▹▹ Quando mensagens são criptografadas mudando a ordem das letras de um alfabeto, 

dizemos que ocorreu uma permutação simples.

▹▹ Uma permutação simples de um conjunto com n  elementos é um agrupamento 

ordenado de n  elementos desse conjunto. O termo simples significa que não há 

repetição dos elementos em cada ordenamento.

▹▹ Para um conjunto com n  elementos, existem ( ) !P n n=  permutações (simples) 

possíveis.

▹▹ Muitos problemas interessantes podem ser resolvidos quando percebemos que a 

solução recai em uma simples aplicação do Princípio Multiplicativo ou alguma de 

suas variações, como é o caso do cálculo do número de permutações dos elementos 

de um conjunto.

▹▹ Há uma lista de procedimentos para enfrentar problemas de contagem: ler o pro-

blema com bastante atenção; verificar se o problema fica mais simples dividindo-o 

em casos; isolar as possibilidades mais “problemáticas” e resolvê-las por ordem de 

dificuldade; usar diagramas, criando uma maneira pessoal de solucionar os proble-

mas e evitar o uso indiscriminado de fórmulas.

Resposta do Desafio [p. 24]

“Minha terra tem palmeiras

Onde canta o sabiá,

Seno(a), cosseno(b), seno(b), cosseno(a)”

JUXHG 

FYEEG FYJ 

PGLJYUEGW

RXDY AGXFG R 

WGIUG,

WYXR(G), 

ARWWYXR(I), 

WYXR(I), 

ARWWYXR(G)
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▹▹ Você conhece o sistema de comunicação 
Braille, utilizado pelos deficientes visuais?

▹▹ Sabia que esse sistema pode ser utilizado 
em sala de aula para estudar Análise 
Combinatória?

▹▹ Sabia que usando o Princípio 
Multiplicativo podemos desenvolver 
outras técnicas de contagem?

▹▹ O que há em comum entre o sistema 
Braille, saladas de frutas e o sistema 
binário de representação numérica usado 
nos computadores?

Etapa II 

Código Braille

Sv
ile

n 
M

ile
v 

 / 
 S

XC

O código Braille e as combinações simples
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1. Introdução 
Você consegue ler a seguinte mensagem?

Acreditamos que muitos não conseguem entender a mensagem 

acima. Provavelmente, você também não... Mas não desanime!

Essa mensagem está escrita em Braille, um método de escrita 

desenvolvido para que pessoas cegas possam ler usando o tato. Seu 

criador, Louis Braille (1809-1852), ficou cego aos três anos de idade 

em razão de um ferimento no olho causado por um objeto pontia-

gudo que seu pai usava para fabricar selas de animais. O ferimento 

infeccionou e provocou também a perda da visão do outro olho, 

deixando-o com deficiência visual total.

Ao inventar seu método de escrita, Braille fez um grande bene-

fício a todos os deficientes visuais e à humanidade. Atualmente, em 

elevadores, caixas eletrônicos etc., há várias informações escritas 

em Braille, o que propicia aos deficientes visuais uma inserção social 

mais efetiva.

Mas por que falar de código braille no contexto da 

disciplina Matemática Discreta, em um curso de 

especialização para professores de Matemática do 

ensino Médio? Você vai perceber essa relação ao 

longo dessa etapa!
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2. O código Braille

O código Braille é baseado em uma disposição 3 2×  de pontos, dispostos como numa 

pedra de dominó:

Para registrar uma letra do alfabeto, alguns desses 6 pontos são 

marcados ou perfurados, para que fiquem sobressalentes e possam 

ser sentidos com as pontas dos dedos das mãos. E é assim que os 

deficientes visuais conseguem ler: usando as mãos.

Nos símbolos escritos em Braille a seguir, um círculo negro 

(preenchido) indica que o ponto está marcado, e um círculo branco 

indica que o ponto não está marcado. Veja os exemplos:

Somente a primeira casa foi 
marcada: o ponto que está na 
primeira linha e na primeira coluna 
aparece em negro.

A letra k tem dois pontos marcados: 
o ponto da primeira linha e da 
primeira coluna e o ponto da terceira 
linha e da primeira coluna.
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 Atividade 1  

Mesmo que você esteja tendo contato com o código Braille somente agora, com os 

conhecimentos e discussões que desenvolvemos na Etapa 1, já é possível responder a 

algumas questões:

a▹ Usando as possibilidades de marcar seis pontos em um cartão, quantos padrões 

(disposições de pontos) diferentes podemos formar usando o código Braille?

b▹ Quantos padrões podemos formar se dispusermos os pontos em um quadrado 

2 2× ? E em um retângulo 1 4× ? Por que será que eles não são usados para comunicação de deficientes visuais?

Resposta comentada

a▹ O código Braille usa um sistema com seis pontos. Para cada ponto, temos duas possibilidades: marcado ou não-mar-

cado. Como temos seis pontos no sistema 3 2× , pelo Princípio Multiplicativo, a quantidade de padrões diferentes 

que pode ser formada é 62 2 2 2 2 2 2 = 64× × × × × = . Na seção 3, você encontrará outra maneira de calcular esse valor.

b▹ Tanto no sistema 2 2× , quanto no sistema 1  4× , temos quatro pontos. Então, da mesma forma que no item (a), 

pelo Princípio Multiplicativo, calculamos que o número de padrões diferentes será 42 2 2 2 2 16× × × = = . Como essa 

quantidade de configurações possíveis é muito pequena diante da quantidade de símbolos que utilizamos para nos 

comunicar, sistemas desses tamanhos não atenderiam a nossa necessidade. Eis a principal razão de não utilizá-los.

 Atividade 1 

O número de padrões formados no item (a) da atividade anterior é 

suficiente para codificar todas as letras minúsculas do nosso alfabeto?

além das letras minúsculas, com o número de padrões encontrados, é 

possível codificar todas as letras maiúsculas?

lembre-se que ainda temos os números! além de todas as letras 

minúsculas e maiúsculas, é possível codificar também os algarismos: 0, 

1, 2, 3, 4, 5, 6, 7, 8 e 9?

Usando o código braille, como os deficientes visuais podem saber se 

está sendo feita uma pergunta, uma exclamação ou uma pausa? Como 

os sinais de pontuação podem ser representados?

e os sinais de operações matemáticas: + , × , −  e ÷ ? M
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Pensando nessas questões, você já deve ter se convencido de que devem ser necessá-

rios certos artifícios adicionais para que seja possível representar todos os símbolos que 

aparecem nas perguntas anteriores, usando a linguagem Braille.

A seguir, apresentamos a maneira usual de codificar as letras minúsculas e os algaris-

mos na linguagem Braille:

a
1

b
2

c
3

d
4

e
5

f
6

g
7

h
8

i
9

j
0

k l m n o p q r

s t u v w x y z

Para codificar letras maiúsculas, usamos o símbolo: 

       

antes da letra que desejamos que seja maiúscula. 

Por exemplo, a letra A (maiúscula) se escreve assim:
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Observe também que as mesmas configurações de pontos que são usadas para denotar 

as letras de a até j, são também usadas para denotar os algarismos 1, 2, 3, 4, 5, 6, 7, 8, 9 e 0.

Como distinguir se uma configuração está representando uma letra ou 

um algarismo?

Para utilizarmos uma configuração como um número, devemos antecedê-la com um 

símbolo que indique esse fato. Existe também outro símbolo chamado restaurador, usado 

quando há risco de se confundir letras com 

números. Para indicar que um símbolo deve 

voltar a indicar uma letra, logo após um nú-

mero, devemos antecedê-lo com o símbolo 

restaurador.

Veja como são as representações dos dez algarismos:

Este conjunto representa 
o número 1. 

símbolo para  
número 

letra a
minúscula 

Este conjunto representa 
o número 2. 

símbolo para  
número 

letra b
minúscula 

Este conjunto representa 
o número 3. 

símbolo para  
número 

letra c
minúscula 

Este conjunto representa 
o número 4. 

símbolo para  
número 

letra d
minúscula 

Este conjunto representa 
o número 5. 

símbolo para  
número 

letra e
minúscula 

Este conjunto representa 
o número 7. 

símbolo para  
número 

letra  g
minúscula 

Este conjunto representa 
o número 8. 

símbolo para  
número 

letra h
minúscula 

Este conjunto representa 
o número 9. 

símbolo para  
número 

letra i
minúscula 

Este conjunto representa 
o número 0. 

símbolo para  
número 

letra  j
minúscula 

Este conjunto representa 
o número 6. 

Símbolo para  
número 

Letra  f
minúscula 

Veja alguns exemplos de expressões matemáticas em Braille:
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 Atividade 2  

Agora que você já aprendeu o caminho das pedras, tente decifrar a mensagem da introdução:

Resposta comentada

A mensagem é:  louis braille  /  1809-1852  /  nasceu na França.

 Atividade 2 

+7 2 ÷8 4 n + 1

a + b = b + a n2 expoente 

n2

Que relações podemos estabelecer entre o código braille e o ensino de 

Matemática?
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3. Explorando conceitos matemáticos
com a linguagem Braille

Na atividade 1 da seção anterior, vimos que existem 62 64=  configurações que podem 

ser obtidas no código de Braille, usual 3 2× . Esse cálculo foi obtido usando o Princípio 

Multiplicativo da Contagem:

 ▹ Só há duas possibilidades para a primeira casa: ou ela é marcada ou não é (ou pin-

tamos de preto ou de branco);

 ▹ Do mesmo modo, só há duas possibilidades para cada uma das outras casas, o que 

resulta em 62 2 2 2 2 2=2× × × × ×  possibilidades.

Vamos ver agora dois outros métodos de fazer o 

cálculo anterior para descobrirmos quantas configura-

ções podemos formar com uma disposição de 3 2×  

pontos usada na linguagem Braille. Afinal, explorando 

diferentes formas de resolver um mesmo problema, 

ampliamos nosso leque de opções para quando for-

mos resolver um problema semelhante.

Método 1: Focando na quantidade de pontos, independente de 
estarem pintados ou não

Se o cartão tivesse apenas um ponto, teríamos somente 2 possibilidades:

Princípio Multiplicativo da 
Contagem:
Se uma decisão puder ser 
tomada de m  maneiras dife-
rentes, e se uma vez tomada 
esta primeira decisão, outra 
decisão, independente da 
primeira, puder ser tomada de 
n  maneiras diferentes, então 
no total serão tomadas m n×  
decisões.
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Caso o cartão tivesse dois pontos, haveria 4 possibilidades, pois há duas escolhas para 

cada uma das configurações já vistas acima (com um ponto apenas):

Já no caso de o cartão ter três pontos, haveria 8 possibilidades (duas para cada uma 

das configurações com dois pontos vistas acima).

Continuando assim, dobrando a quantidade de possibilidades a cada ponto adicionado, 

com quatro pontos teríamos 16 configurações distintas, com cinco pontos, 32 configura-

ções e, é claro, com 6 pontos, que é o caso do código Braille, chegaríamos a 64 padrões 

diferentes de pontos. 

Dentre as 64 possibilidades, temos dois casos extremos: aquele em que nenhum dos 

pontos é marcado e outro em que todos os seis pontos são marcados:

Método 2: Focando na quantidade de pontos pintados

Com nenhum ponto marcado, temos apenas uma configuração:
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Com apenas um ponto marcado, temos 6 possibilidades:

As configurações com dois pontos marcados totalizam 15. Veja:

Todas estas configurações têm a 
primeira casa da primeira linha 
marcada em preto

Todas estas configurações têm a 
segunda casa da primeira linha 
marcada em preto. Só está faltando 
uma configuração desse tipo, que 
já foi contada, pois ela é a primeira 
configuração do grupo anterior.

Todas estas configurações têm a 
primeira casa da segunda linha 
marcada em preto. Só estão faltando 
duas configurações desse tipo, que 
já foram contadas, uma em cada das 
duas configurações anteriores.

Todas estas configurações têm a 
segunda casa da segunda linha 
marcada em preto. Só estão faltando 
três configurações desse tipo, que já 
foram contadas, uma em cada uma 
das três configurações anteriores. 

Resta somente esta última 
configuração que não apareceu 
em nenhuma das configurações 
anteriores.
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Deste modo, com dois pontos pretos, há 1 2 3 4 5 15+ + + + =  possibilidades.

Com três pontos pretos, há 20 possibilidades. Veja:

Poderíamos agora exibir todas as configurações com 4 pontos pretos (são 15 ao todo), 

com 5 pontos pretos (são 6 no total) e com 6 pontos pretos (apenas 1), mas não faremos 

isso porque há um belo argumento de simetria neste raciocínio:

▹▹ Note que escolher 4 pontos para pintar de preto, dentre 6 pontos brancos, é o mes-

mo que escolher 2 pontos para pintar de branco dentre 6 pontos pretos! Mas isso é 

ainda o mesmo que escolher 2 pontos entre 6 pontos brancos para pintar de preto, 

e já fizemos essa contagem, obtendo 15 possibilidades! 

▹▹ Da mesma forma, o número de escolhas de 5 pontos para pintar de preto dentre 

6 pontos brancos é o mesmo número de escolhas de 1 único ponto para pintar de 

branco dentre 6 pontos pretos. Ou o mesmo de escolher um ponto dentre 6 pontos 

brancos para pintar de preto, e já fizemos essa contagem, obtendo 6 possibilidades.

▹▹ Simetricamente, só há uma possibilidade em que todos os pontos estão marcados 

e só há uma possibilidade em que todos os pontos não estão marcados. Em ambos 

os casos, temos apenas 1 possibilidade.
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As simetrias às quais acabamos de nos referir são mais fáceis de serem percebidas 

observando a tabela abaixo: 

Tabela 1

Número de pontos pretos Número de possíveis configurações

0 1

1 6

2 15

3 20

4 15

5 6

6 1

Total 64

Nos cálculos da tabela anterior, contamos o número de possibilidades de como es-

colher uma quantidade de elementos dentre os elementos de um conjunto (escolher 2 

pontos para pintar de preto dentre 6 pontos brancos; escolher 5 pontos para pintar de 

preto dentre 6 pontos brancos, etc.).

A contagem da quantidade dessas possibilidades de escolha fundamenta um conceito 

muito importante, o de combinação simples. Esse tipo de contagem não pode ser feito 

como na Etapa 1 (por meio de permutação simples), pois, ao escolhermos um agrupamen-

to, a ordem de seus elementos não deve ser levada em conta. Por exemplo, no alfabeto 

Braille, ao escolher para pintar de preto o agrupamento composto pelos dois pontos da 

primeira linha, poderíamos escolher o primeiro ponto para pintar e depois o segundo, ou 

escolher o segundo ponto para pintar e depois o primeiro. A ordem dessa escolha não 

altera o agrupamento.

4. Combinações matemáticas
Na Etapa 1 deste curso, já trabalhamos com contagem. Existem situações envolvendo 

contagem em que a ordem dos elementos é importante; e outras, em que a ordem não 

é importante. Para entendermos melhor este fato, vamos comparar as respostas das duas 

perguntas feitas nos exemplos a seguir:

Exemplo 1

▹▹ De quantas maneiras diferentes podemos estacionar 3 carros em 2 vagas de 

garagem?

A resposta é muito simples, se pensarmos da seguinte maneira:

Existem 3 possibilidades para preencher a primeira vaga, mas apenas duas possibilida-

des para preenchermos a segunda.
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Pelo Princípio Multiplicativo, o número total de maneiras é 3 2 6× =  possibilidades. Se 

A, B e C são os carros, essas 6 maneiras são as seguintes: AB, BA, AC, CA, BC e CB. 

Observe que, neste caso, a ordem é muito importante, pois a maneira AB de estacionar 

os carros é distinta da maneira BA.

Exemplo 2 

 ▹ Quantas saladas de frutas diferentes podemos fazer usando duas das seguintes 

frutas: abacaxi, banana ou caqui?

Será que o mesmo método usado na resposta do Exemplo 1 funciona para 

respondermos o Exemplo 2? Vamos ver:

Primeiramente, temos 3 possibilidades para escolher a primeira das 3 frutas, 

depois restam 2 possibilidades para escolhermos a segunda. Com isto, teremos 

3 2 6× =  possibilidades para fazermos nossa salada.

Essa resposta está correta? Será que não fomos enganados por nosso procedimento? 

Pense um pouco...

De fato, o raciocínio está errado. O número de saladas de frutas não é 6, e sim 3. O 

que houve de errado no nosso raciocínio?

Vejamos: se a, b e c são as frutas, essas 6 escolhas são as seguintes: ab, ba, ac, ca, bc e 

cb; mas uma salada de frutas feita com abacaxi e banana é a mesma que uma salada feita 

com banana e abacaxi, ou seja ab = ba.

De modo semelhante, ac = ca e bc = cb.

É importante observar aqui que, quando duas frutas são permutadas, elas produzem 

a mesma salada. Neste caso, a ordem de escolha das frutas não é importante, tanto faz 

escolher abacaxi e banana como banana e abacaxi ou escolher abacaxi e caqui ou caqui 

e abacaxi etc. Logo, o número correto de saladas que podemos formar escolhendo duas 

das três frutas é:

3 2
3

2

× =

Observe ainda que o número 2 no denominador corresponde justamente à permutação 

de duas frutas. Ou seja, usando esse procedimento, contamos o número de saladas como 

se a ordem fosse importante e dividimos o resultado pelo número de permutações de 2 

elementos.
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Nesse último exemplo, aparece o conceito de combinação simples. 

O primeiro exemplo não é uma combinação e sim uma permutação, pois a ordem 

em que os carros são estacionados nas vagas é importante. Já o segundo exemplo é uma 

combinação simples, pois não importa a ordem de escolha das frutas.

Observe bem o que fizemos na resposta do Exemplo 2:

 ▹ Aplicamos o Princípio Multiplicativo para obter todas as possibilidades, consideran-

do que a ordem é importante, e encontramos 3 2 1 3!× × =  possibilidades.

 ▹ Dividimos o resultado obtido acima pelo número de permutações dos elementos 

do agrupamento que precisamos escolher. Como intencionamos fazer saladas com 2 

frutas, dividimos o número de possibilidades encontradas por 2! 2= , obtendo 3!

2!
.

Como estamos buscando um procedimento geral para resolver problemas como esse, 

vamos reescrever a resposta usando a notação fatorial, e nossa resposta ficará denotada 

da seguinte maneira:

2
3

3!
3

2!(3 2)!
C = =

−

Vamos apresentar outro exemplo, com um conjunto um pouco maior, onde você vai 

perceber que o uso da notação fatorial acima é bastante conveniente.

Exemplo 3 

 ▹ Quantos subconjuntos do conjunto { },  ,  ,  ,  a b c d e  possuem exatamente três 

elementos?

Primeiramente, observe que, nesse caso, duas escolhas, como { }, ,b c e  e { , , }e b c , 

geram um mesmo subconjunto com 3 elementos. Logo, a ordem nesse caso não é impor-

tante, mas vamos agir da mesma maneira que fizemos no caso anterior.

Aplicamos o Princípio Multiplicativo para obter todas as possibilidades de escolher 3 

elementos dentre os 5 elementos do conjunto, considerando que é importante a ordem 

desses elementos. Logo, teremos 5 maneiras de escolher o primeiro elemento, 4 maneiras 

de escolher o segundo elemento e 3 maneiras de escolher o terceiro elemento. Pelo Princí-

pio Multiplicativo, teremos 5 4 3× ×  maneiras de escolher os três elementos. Em notação 

fatorial, teremos 
5!

5 4 3
2!

× × = , ou melhor, 
5! 5!

2! (5 3)!
=

−
 maneiras.

Uma combinação simples é 
um agrupamento de alguns 
objetos de um dado conjunto 
em que os objetos não po-
dem ser escolhidos de forma 
repetida e a ordem de seus 
elementos não é importante. 
Ou seja, agrupamentos com 
os mesmos elementos são 
considerados iguais, indepen-
dentemente da ordem em que 
são agrupados.
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Entretanto, como já sabemos, procedendo assim estamos contando, por exemplo, 

conjuntos de três elementos do tipo { }a, b,e , { }a,e, b , { }b,a,e , { }b,e,a , { }e,a, b  e 

{ }e, b,a  como se fossem conjuntos distintos. Logo, devemos retirar dessa nossa contagem 

esses subconjuntos contados mais de uma vez.

Como certos conjuntos foram contados mais de uma vez, dividimos o resultado obtido 

acima pelo número de permutações dos elementos do agrupamento que precisamos esco-

lher. Nesse caso, como estamos escolhendo 3 elementos, precisamos dividir a quantidade 

de maneiras encontrada no passo anterior, que foi 5!

(5 3)!−
, pelo número de permutações 

de 3 elementos, que é 3!  A resposta, portanto, será:

3
5

5!

3!(5 3)!
C =

−

Um agrupamento desse tipo é chamado: uma combinação simples de 5 elementos 

tomados 3 a 3. 

Desenvolvendo o fatorial que aparece na expressão acima, encontramos:

3
5

5! 5 4 3!
10

3!(5 3)! 3!2!
C

× ×= = =
−

Como nesse exemplo trabalhamos com quantidades pequenas de elementos, é fácil 

verificar que os dez conjuntos procurados, de fato, são os seguintes: { }a, b,c , { }a, b,d , 

{ }a, b,e , { }a,c,d , { }a,c,e , { }a,d,e , { }b,c,d , { }b,c,e , { }b,d,e , { }c,d,e .

Uma grande preocupação ao resolver problemas deve ser a investigação e a busca de 

métodos que possam resolver problemas gerais. Vamos, então, resolver o caso geral dos 

problemas anteriores? 

Exemplo 4 (à procura da solução do caso geral)

Vamos supor que temos n  objetos distintos e precisamos escolher, não importando 

a ordem, p  objetos distintos dentre esses (com n p≤ ) objetos. De quantas maneiras 

podemos fazer isso? Esse problema reduz-se a calcular o número de combinações simples 

de n  elementos tomados p  a p. Para fazermos esse cálculo, vamos proceder como nos 

casos anteriores:

▹▹ Aplicamos o Princípio Multiplicativo para obter todas as maneiras de escolher um 

agrupamento de p  elementos dentre os n  elementos em questão, primeiramente 

considerando que a ordem desses elementos é importante. Veja a tabela a seguir.
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Escolha do 1º 
elemento

Escolha do 2º 
elemento

Escolha do 3º 
elemento

...
Escolha do 
(p-1)-ésimo 
elemento

Escolha do
p-ésimo elemento

n possibilidades
n – 1=n-(2-1)

possibilidades
n – 2=n-(3-1) 

possibilidades
...

n – (p – 1-1) 
possibilidades

n – (p – 1-1) 
possibilidades

Pelo Princípio Multiplicativo, obtemos ( 1) ( 2) ... ( ( 1))n n n n p× − × − × × − −  maneiras 

de escolher p  elementos dentre n  elementos, considerando, primeiramente, que a or-

dem deles é importante. 

Como ! ( 1) ( 2) ... ( ( 1)) ( )!n n n n n p n p= × − × − × × − − × −  em notação fatorial, escreve-

mos 
!

( 1) ( 2) ... ( ( 1))
( )!

n
n n n n p

n p
× − × − × × − − =

−
 maneiras.

Entretanto, note que, procedendo assim, estamos contando certos conjuntos mais 

de uma vez. Logo, precisamos retirar dessa nossa contagem os conjuntos repetidos. Vale 

lembrar aqui que a divisão nada mais é do que uma subtração sucessiva de parcelas iguais.

▹▹ Dividimos o resultado obtido acima pelo número de permutações dos elementos do 

subconjunto que escolhemos. Nesse caso, como estamos escolhendo p  elementos, 

dividimos o número !

( )!

n

n p−
 encontrado no passo anterior pelo número de permu-

tações de p  elementos, que é !p  A resposta, portanto, será:

!

!( )!
p

n

n
C

p n p
=

−

O símbolo 
!

!( )!
p

n

n
C

p n p
=

−
 é lido como: combinação simples de n  elementos tomados 

p  a p .

A resolução de vários problemas de contagem reduz-se em saber calcular o número 

de possibilidades de formar agrupamentos de p  elementos de um conjunto com n  ele-

mentos. Como já fizemos esse cálculo, de agora em diante, para resolver esses tipos de 

problema, basta calcular o:

Número de combinações simples de n elementos tomados p a p:

!

!( )!
p

n

n
C

p n p
=

−

Como exemplo, na próxima seção, iremos relacionar as combinações com a linguagem 

Braille.
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5. As combinações e a linguagem Braille

Podemos analisar agora todas as possibilidades da escrita Braille em uma célula 3 2×  , 

usando a noção de combinação simples que aprendemos nas seções anteriores:

Esse problema se reduz em saber de quantas maneiras podemos pintar de preto a 

quantidade p  desses pontos brancos, nos casos em que 0p = , 1, 2, 3, 4, 5 e 6. Ou ainda, 

podemos pensar em quantos conjuntos (agrupamentos) com  ( 6)p p ≤  elementos pode-

mos formar a partir de um conjunto com 6 elementos. Neste caso, o número de pontos que 

podemos combinar entre si é 6n = , e queremos encontrar a quantidade de combinações 

de 6 elementos tomados p  a p , fazendo 0p = , 1p = , 2p = , ..., 6p = .

Vamos colocar os resultados que buscamos na tabela abaixo, isso nos permite visualizar 

certos comportamentos do número de contagens.

Tabela 2

Número de pontos 
em preto

Quantidade de combinações distintas

0p =

Não pintamos nenhum ponto dentre os seis pontos:

0
6

6!
1

0!(6 0)!
C = =

−

1p =

Número de maneiras de pintar um ponto de preto dentre seis pontos 
brancos, ou quantos conjuntos distintos de um elemento podemos 
formar com um conjunto com 6 elementos:

2p =

Número de maneiras de pintar dois pontos de preto dentre seis pontos 
brancos, ou quantos conjuntos distintos de dois elementos podemos 
formar com um conjunto com 6 elementos:

2
6

6!
15

2!(6 2)!
C = =

−

continua...
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Número de pontos 
em preto

Quantidade de combinações distintas

3p =

Número de maneiras de pintar três pontos de preto dentre seis pontos 
brancos, ou quantos conjuntos distintos de três elementos podemos 
formar com um conjunto com 6 elementos:

3
6

6!
20

3!(6 3)!
C = =

−

4p =

Número de maneiras de pintar quatro pontos de preto dentre seis 
pontos brancos, ou quantos conjuntos distintos de quatro elementos 
podemos formar com um conjunto com 6 elementos (nesse caso, 
podemos também usar a simetria, e o problema é o mesmo de pintar 
dois pontos de preto dentre seis pontos brancos (vide Tabela 1)).

4
6

6!
15

4!(6 4)!
C = =

−

5p =

Número de maneiras de pintar cinco pontos de preto dentre seis pontos 
brancos, ou quantos conjuntos distintos de cinco elementos podemos 
formar com um conjunto com 6 elementos. (nesse caso também 
podemos usar a simetria, e o problema é o mesmo de pintar um ponto 
de preto dentre seis pontos brancos (vide Tabela 1)).

5
6

6!
6

5!(6 1)!
C = =

−

6p =

Número de maneiras de pintar seis pontos de preto dentre seis pontos 
brancos, ou quantos conjuntos distintos de seis elementos podemos 
formar com um conjunto com 6 elementos (o argumento de simetria 
também se aplica aqui (vide Tabela 1)).

6
6

6!
1

6!(6 6)!
C = =

−

A partir deste exemplo, podemos chegar a uma importante conclusão:

▹▹ A simetria dos resultados acima sugere que p n p
n nC C −= . De fato,

! !

!( )! ( )!( ( ))!
p n p

n n

n n
C C

p n p n p n n p
−= = =

− − − −

Existem outras igualdades muito curiosas que podem ser provadas a partir da obser-

vação dessas simetrias. Deixamos algumas, anexadas a esta seção, para que você possa 

melhor conhecê-las.
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 Atividade 3  

a▹ Procedendo como na linguagem Braille, se, em vez de uma célula 3 2× , tivermos uma célula 3 4× , como a da figura 

a seguir, quantas configurações diferentes teremos no total?

b▹ Em uma célula 3 4× , quantas são as configurações que possuem exatamente 5 pontos marcados?

c▹ Em uma célula n m× , quantas configurações diferentes podemos formar?

d▹ Em uma célula n m× , quantas configurações têm exatamente p  pontos marcados?

Resposta comentada

a▹ Nesse caso, formaremos um sistema com 3 4 12× =  pontos. Para cada ponto, temos duas possibilidades: marcado 

ou não-marcado. Pelo Princípio Multiplicativo, a quantidade de configurações diferentes que pode ser formada é:

122 2 2 2 2 2 2 2 2 2 2 2 2 = 4096× × × × × × × × × × × =

b▹ Nesse caso, formaremos um sistema com 3 4 12× =  pontos. Temos um conjunto com 12 pontos, dos quais precisamos 

escolher 5 deles para pintar. A ordem em que esses 5 pontos são escolhidos importa? Certamente não. Dessa forma, 

o problema se reduz a calcular o número de subconjuntos de 5 elementos que pode ser formado de um conjunto 

com 12 elementos. Isso é calcular o número de combinações de 12 elementos tomados 5 a 5:

5
12

12!
792

5!(12 5)!
C = =

−

c▹ Nesse caso, formaremos um sistema com n m⋅  pontos. Para cada ponto, temos duas possibilidades: marcado ou 

não-marcado. Pelo Princípio Multiplicativo, a quantidade de configurações diferentes que pode ser formada é 2n m⋅ .

d▹ Temos, nesse exemplo, um conjunto com n m⋅  pontos, dos quais precisamos escolher p  pontos para pintar. A ordem 

dessa escolha importa? Não. Logo, o problema reduz-se a contarmos o número de subconjuntos com p  elementos 

que podemos formar de um conjunto com n m⋅  elementos. Isso é o mesmo que calcular o número de combinações 

de n m⋅  elementos tomados p  a p  ( )p
n mC ⋅ .
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As mesmas ideias de contar certos tipos de agrupamentos que usamos no sistema 

Braille podem também ser aplicadas para resolver outros tipos de problema de contagem. 

Essas ideias seguem um mesmo padrão, como você verá a seguir no caso particular do 

sistema binário de numeração.

6. O sistema Binário 
Vamos estudar agora um sistema de repre-

sentação de objetos em que as configurações 

possuem somente uma linha e 6 colunas. Ele 

será muito semelhante ao sistema usual da lin-

guagem Braille 3 2× . De fato, observe que no 

sistema Braille temos 6 pontos para marcar e, 

nas configurações de uma linha e seis colunas, 

também temos 6 pontos. Cada um dos pontos 

do sistema Braille pode ser associado a um 

único ponto de uma configuração 1 6× . Veja:

O sistema usual em que escrevemos os números é o decimal, de base 10, mas há ou-

tros sistemas em que os números são escritos em outras bases, que são também muito 

importantes. 

Analisemos o sistema em base 2. Sistemas como os anteriores, do tipo 1 n× , podem 

servir para escrever números na base 2 e têm muitas aplicações na Matemática, na Infor-

mática e nas Engenharias. Podemos representar qualquer número natural na base 2, utili-

zando apenas os dígitos 0 e 1, que são os únicos algarismos que fazem parte do sistema 

binário de representação.
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 Atenção  

Dado um número qualquer, podemos formar diferentes agrupamentos para representá-lo. Nosso objetivo 

é ensinar como encontrar agrupamentos adequados que nos permitam escrever esse número na base 2. 

Vejamos:

41 20 2 1= × + 41 10  4 1= × + 41 5 8 1= × +

41 2 16 1 8 1= × + × + 41 1 32 1 8 1= × + × +

Formamos 20 pares, observe 
que sobra uma unidade. 

Usamos os 5 grupos de oito elemen-
tos obtidos anteriormente para 
agrupá-los em dois grupos maiores 
com dezesseis elementos cada. Note 
que sobra um grupo de oito elemen-
tos e também uma unidade. 

Finalmente usamos os 2 grupos de 
dezesseis elementos que surgiram no 
estágio anterior para agrupá-los em um 
único grupo maior com trinta e dois 
elementos. Além desses, restam um 
grupo de oito e uma unidade simples. 

Usamos os 10 grupos de quatro 
elementos obtidos anteriormente 
para agrupá-los em cinco grupos 
maiores com oito elementos cada. 

Usamos os 20 pares anteriores 
para formar 10 grupos de 
quatro elementos cada um. 

Do último agrupamento, conseguimos escrever 41 como soma de potências de 2:

41 = 1 X 25 + 0 X 24 + 1 X 23 + 0 X 22 + 0 X 21 + 1 X 20

Essa expressão é escrita abreviadamente da seguinte forma: 41 = (1 0 1 0 0 1)
2 
(lê-se: 41 é um, zero, um, zero, zero, 

um, na base 2). 

Veja outra forma de representar o número 41:

                                            

Pintamos o ponto de preto quando ele representar o 1 e deixamos em branco quando ele representar o 0.

 Atenção 

Vamos ver uma maneira simples de encontrar representações binárias? Para exem-

plificar, escolhemos trabalhar com os números que vão de 0 a 63. Dessa maneira, que 

é muito prática, é possível ver mais efetivamente a relação entre o sistema binário e as 

combinações simples. Usando apenas o 0 e o 1 do sistema binário, construamos a seguinte 

árvore de possibilidades:
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0 000000

000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
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011011
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011101
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Essa árvore de possibilidades esconde várias informações e tem uma ligação muito 

grande com problemas de contagem, combinatória e sistema decimal binário. Vamos ver?

Para começar, pense nas seguintes questões:

1) De quantas maneiras posso dispor quatro 1’s em uma configuração 

1 6× ? (as outras casas serão completadas com 0’s).

Para respondermos a essa pergunta, devemos primeiro responder outra: a ordem de 

disposição dos 1’s é importante? Não! 

Agora, recorra à árvore, olhe o “galho” final (as representações por pontos à direita), 

encontre e conte essas configurações.

Você encontrou a resposta 15? Confira, calculando 4
6C  ou 2

6C  e contando o resultado 

na árvore de possibilidades (em vermelho).

2) Na árvore, também podemos encontrar todas as possíveis 

configurações de permutações do tipo 6
pC , para p  variando de 0 a 6. 

O caso anterior foi um caso particular, em que 4p =  (ou, 2p =  se 

simetricamente escolhermos pintar 2 pontos de branco entre 6 pontos 

pretos). Onde encontramos configurações do tipo 
3
6C , por exemplo?

444
666CCC6C666C6C6C666C6

222
666CCC6C666C6C6C666C6
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Se você recorrer à árvore, vai perceber que o número total de configurações em que 

aparecem 3 uns e 3 zeros é 3
6 20C = .

3) Nesta árvore, podemos obter a representação binária

de qualquer número entre 0 e 63. Duvida?

Basta analisar de cima para baixo os agrupamentos de zeros e de uns que encontramos:

(0,0,0,0,0,0)
2
→ 0   25 + 0   24 + 0   23 + 0   22 + 0   21 + 0   20 = 0+0+0+0+0+0  = 0,

(0,0,0,0,0,1)
2
→ 0   25 + 0   24 + 0   23 + 0   22 + 0   21 + 1   20 = 0+0+0+0+0+1  = 1,

(0,0,0,0,1,0)
2
→ 0   25 + 0   24 + 0   23 + 0   22 + 1   21 + 0   20 = 0+0+0+0+2+0  = 2,

(0,0,0,0,1,1)
2
→ 0   25 + 0   24 + 0   23 + 0   22 + 1   21 + 1   20 = 0+0+0+0+2+1  = 3,

(0,0,0,1,0,0)
2
→ 0   25 + 0   24 + 0   23 + 1   22 + 0   21 + 0   20 = 0+0+0+22+0+0 = 4,

(0,0,0,1,0,1)
2
→ 0   25 + 0   24 + 0   23 + 1   22 + 0   21 + 1   20 = 0+0+0+22+0+1 = 5,

e assim por diante.

4) Você consegue determinar qual a representação

binária do número 63?

Se respondeu (111111)
2
, que é o último da lista, acertou.

As ideias de representação binária de números podem ser usadas para resolver diversos 

problemas, como você pode ver no boxe a seguir.

M
aa

rt
en

 U
ile

nb
ro

ek
  /

  S
XC

 
M

aa
rt

en
 U

ile
nb

ro
ek

  /
  S

XC
 

6. O sistema Binário  59

Matematica_Discreta.indd   59 15/08/13   17:45



 Atividade 4  

Uma professora colocou no quadro a seguinte pergunta:

a▹ Quantas configurações podemos formar com sete lâmpadas: 

três apagadas e quatro acesas?

A professora recomendou que uma lâmpada acesa fosse represen-

tada pelo dígito 1 e uma lâmpada apagada, pelo dígito 0, associando a 

resolução do problema ao sistema binário. 

Três alunas e dois alunos deram suas respostas, que reproduzimos a seguir. Diga qual, ou quais, dessa(s) resposta(s) 

está(ão) correta(s) e por quê.

 Atividade 4 

 Saiba Mais  Problemas diferentes podem ter uma mesma resolução?

Leia atentamente as seguintes perguntas:

a) De quantas maneiras quatro homens e três mulheres podem sentar em sete cadeiras? (Cada pessoa em uma 

cadeira).

b) Uma equipe de quatro alunos será escolhida de um grupo de sete alunos. De quantas maneiras isso pode ser feito?

c) Em um jantar, há sete opções de pratos distintos. Você deve escolher três deles, sem repeti-los. De quantas formas 

você pode fazer essas três escolhas?

d) Quantas configurações podemos formar com sete lâmpadas: três apagadas e quatro acesas?

e) Existem quantos subconjuntos com 3 elementos em um conjunto com sete elementos? 

f) De quantas maneiras podemos colocar quatro 1’s e três 0’s em uma configuração 1 7× ?

O que há em comum entre essas seis perguntas?

Para respondê-las, podemos aplicar um mesmo raciocínio, baseado em escolhas. Estamos chamando de uma 

escolha o processo de decisão em que podemos associar o número 1 a um tipo de escolha e o número 0 ao outro 

tipo. Por exemplo, na primeira pergunta, podemos associar o número 1 aos homens e 0 às mulheres. No segundo 

exemplo, os alunos escolhidos podem ser representados por 1 e os não escolhidos por 0. A mesma ideia pode ser 

aplicada para o terceiro exemplo. Finalmente, no exemplo das lâmpadas, as acesas podem ser representadas por 

1 e as apagadas por 0. 

Para resolver qualquer dos problemas anteriores, cujas resoluções seguem o mesmo padrão, o importante é ter 

um modelo em mente e saber aplicá-lo. Podemos utilizar, por exemplo, o sistema binário para resolver qualquer 

um deles.

 Saiba Mais 

Vamos explorar os conceitos de combinação simples, que estávamos estudando, usan-

do a ideia de sistema binário, por meio de um problema envolvendo uma situação de 

sala de aula.
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Resposta do aluno 1:

“Basta que eu me preocupe sobre a posição em que posso colocar os três zeros, pois o restante será mesmo completado 

com 1. Ora, o problema se reduz a saber como posso dispor três zeros em uma tabela do tipo a seguir:

posição 1 posição 2 posição 3 posição 4 posição 5 posição 6 posição 7

Há 7 possibilidades para o primeiro zero, 6 para o segundo e 5 para o terceiro, resultando em 7 6 5 210× × =  possibilidades. 

Logo, há 210 configurações de 7 lâmpadas com 3 acesas e 4 apagadas.”

Resposta da aluna 2:

“Basta que eu me preocupe sobre a disposição dos quatro 1’s em uma tabela como a que segue:

posição 1 posição 2 posição 3 posição 4 posição 5 posição 6 posição 7

pois o restante dos dígitos serão completados com zeros. Observe que a ordem em que posso dispor esses 1’s não importa. 

Assim, o problema fica reduzido a saber em quais dessas posições posso colocar os quatro 1’s, ou melhor, a tarefa é a mesma 

de contar o número de maneiras que posso escolher 4 dentre essas 7 posições. Basta, portanto, calcular:

4
7

7!
35

4!(7 4)!
C = =

−

 � Resposta: há 35 configurações de 7 lâmpadas com 3 acesas e 4 apagadas.”

Resposta da aluna 3:

“Basta que eu me preocupe sobre a forma de dispor os três zeros em uma tabela como a que segue:

posição 1 posição 2 posição 3 posição 4 posição 5 posição 6 posição 7

pois o restante dos dígitos serão completados com 1’s. Isso é o mesmo de saber em quais dessas posições posso colocar os 

três zeros, ou melhor, a tarefa é a mesma de contar o número de maneiras que posso escolher 3 dentre essas 7 posições. 

Basta, portanto, calcular:

4
7

7!
35

4!(7 4)!
C = =

−

 � Resposta: há 35 configurações de 7 lâmpadas com 3 acesas e 4 apagadas.”
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Resposta da aluna 4:

“O raciocínio do aluno 1 está quase correto, mas ele 

esqueceu de contar as posições que os 1’s podem assumir. 

Além de 7 6 5× ×  maneiras, ele ainda tem 4 maneiras de 

dispor o primeiro 1, 3 maneiras de dispor o segundo 1, 2 

maneiras de dispor o terceiro 1 e 1 maneira de dispor o 

quarto 1. Portanto, temos

7 6 5 4 3 2 1 7! 5040× × × × × × = =

configurações de 7 lâmpadas com 3 acesas e 4 apagadas.

Resposta do aluno 5:

“É muito fácil perceber que já que nós temos quatro 1’s 

e três zeros e eles são iguais, basta contar todas as possi-

bilidades de permutá-los, ou seja, 7!, e depois dividir pelo 

número de permutações dos agrupamentos iguais entre si. 

Logo, teremos:

7! 7 6 5 4!
35

3!4! 3!4!

× × ×= =

números de tamanho 7 em representação binária que têm 

três zeros e quatro 1’s.

Resposta comentada

Comentemos a seguir a resposta de cada aluno:

Resposta do aluno 1: Essa resposta está errada. Proce-

dendo dessa forma, o aluno está considerando que a ordem 

em que os 1’s são escolhidos é importante. Desse jeito, se 

representamos os 1’s por cores diferentes, o primeiro por 1, o 

segundo por 1 e o terceiro por 1, o aluno está contando, por 

exemplo, uma configuração do tipo 1,0,0,0,1,0,1 como se fos-

se diferente das configurações 1,0,0,0,1,0,1 ou 1,0,0,0,1,0,1. 

Ou seja, a quantidade que ele encontrou, 210 possibilidades, 

levou em consideração a ordem, uma dessas configurações 

era diferente da outra. Logo, esse número deve ser dividido 

pelo número de permutações de um conjunto com três 1’s, 

que é 3!=6. A resposta correta é:

210 210
35

3! 6
= =

Resposta da aluna 2: A resposta da aluna está correta. 

A ordem em que se escolhe os 1’s não importa. O problema 

é de combinação mesmo e reduz-se em contar a quantidade 

de subconjuntos com 4 elementos que pode ser formada 

com um conjunto com 7 elementos. 

A quantidade de combinações de 7 elementos tomados 

4 a 4 é:
4
7

7!
35

4!(7 4)!
C = =

−

Resposta da aluna 3: A resposta também está correta. 

Ela procedeu como a aluna 2, só que se preocupou onde co-

locar os 0’s e a aluna 2 onde colocar os 1’s. O problema mais 

uma vez reduz-se em calcular a quantidade de combinações. 

A quantidade de combinações de 7 elementos tomados 

3 a 3 é:
3
7

7!
35

3!(7 3)!
C = =

−

O resultado foi o mesmo do encontrado pela aluna 3. Isso 

não é novidade alguma, pois antes da Atividade 3 vimos que: 

p n p
n nC C −=

expressão que neste caso toma a forma:

3 7 3 4
7 7 7C C C−= =

Resposta da aluna 4: A resposta está errada. Ela cal-

culou as permutações de 7 elementos. Dessa maneira, ela 

considerou que a ordem importava e permutações do tipo 

1,0,0,0,1,0,1 e 1,0,0,0,1,0,1 etc. foram contadas mais de uma 

vez, apesar de serem iguais. Por isso, ela obteve uma quan-

tidade tão grande de possibilidades.

Resposta do aluno 5: A resposta do aluno está correta. 

Ao considerar todas as permutações possíveis dos 1’s e 0’s, 

encontramos 7!  possibilidades. Note que há 4 uns e 3 zeros 

e estamos com um conjunto com 3 4 7+ =  elementos. Mas, 

com esse cálculo, estamos contando várias configurações 
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mais de uma vez. Já explicamos isso nos comentários anterio-

res das respostas dos alunos. Para compensar as contagens, 

foram feitas mais de uma vez certas configurações (por 

exemplo, 1,0,0,0,1,0,1 e 1,0,0,0,1,0,1 etc.), dividimos 7!  pelo 

número de permutações de agrupamentos com os 3 zeros, 

que é 3! , obtendo:

          

7!

3!

Depois, dividimos esse número pelo número de permuta-

ções de agrupamentos com os 4 uns, que é 4! , encontrando:

7!
7! 7 6 5 4!3! 35

 4! 3!4! 3!4!

× × ×= = =

Esta seção nos deixa uma bela lição: que uma mesma ideia matemática – a maneira 

de contar o número de agrupamentos possíveis de uma quantidade de elementos de um 

conjunto – pode ser usada para resolver problemas aparentemente bem distintos. Note 

que a resolução de problemas de contagem, envolvendo a linguagem Braille, o sistema 

binário de representação numérica e o problema das lâmpadas foram resolvidos com a 

mesma técnica de contagem, calculando o número de combinações simples.

A seguir, apresentaremos outros problemas interessantes que podem ser resolvidos 

usando técnicas de contagem, alguns em que a ordem é importante e outros não.

7. Exercícios resolvidos
1. Um grupo de cinco professores comporá uma comissão para falar com o Secretário 

de Educação do Estado. Os cinco professores serão escolhidos dentre nove professo-

res indicados por seus pares. Quantas comissões poderão ser formadas?

 ▹ Resolução: Primeiramente, devemos responder à seguinte pergunta: “A ordem da 

escolha dos professores é importante?”. Nesse caso, escolher {João, José, Maria, Rita, 

Pedro} é o mesmo que escolher {José, Maria, João, Rita, Pedro}. Logo, a ordem não 

importa, e o problema resume-se a um problema de combinação simples: contar 

quantos conjuntos com cinco elementos podemos formar, usando os elementos de 

um conjunto com nove elementos. A resposta é:

5
9

9! 9 8 7 6 5!
126

5!(9 5)! 5!4!
C

× × × ×= = =
−

2. Um grupo de cinco professores comporá uma comissão para falar com o Secretário 

de Educação do Estado. Três desses professores serão escolhidos dentre sete profes-

sores de Matemática e os outros dois serão escolhidos dentre cinco professores de 

Português (supomos, é claro, que um mesmo professor não ministre duas discipli-

nas). Neste caso, quantas comissões serão possíveis de ser formadas?
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▹▹ Resolução: A resolução segue o mesmo raciocínio do exercício anterior. Podemos 

escolher 3
7 35C =  professores de Matemática e 2

5 10C =  professores de Português 

para compor a comissão. Como, para cada professor de Matemática, podemos es-

colher uma dentre 10 combinações de professores de Português, e temos 3
7 35C =  

professores de Matemática, teremos 3 2
7 5 10 35 350C C× = × =  comissões possíveis.

Observação importante: devemos ter muito cuidado ao trabalhar com a divisão de um 

conjunto em grupos, pois podemos erroneamente contar em demasia. Como exemplo, 

considere o seguinte problema análogo ao problema que estamos estudando:

3.	Queremos dividir um grupo de 8 pessoas em dois grupos de 4 pessoas cada. De 

quantos modos isto pode ser feito?

▹▹ Resolução: Isto não pode ser feito colocando simplesmente as pessoas em fila (neste 

caso a resposta seria 8!). Dentro de cada grupo de 4 pessoas a ordem não é im-

portante e mesmo os dois grupos podem ser permutados sem que se obtenha uma 

maneira diferente de divisão (por exemplo, a separação 1234|5678 é a mesma que 

5678|1234). Para obter a resposta correta, observamos que em 8! cada grupo foi 

contado 4! 4! 2⋅ ⋅  vezes e a resposta correta é 
8!

35
4! 4! 2

=
⋅ ⋅  

maneiras.

4.	Dado um pentágono, quantos triângulos são possíveis de serem construídos com 

segmentos de retas cujas extremidades são os vértices desse pentágono?

▹▹ Resolução: Antes de ver a resolução desse problema, tente resolvê-lo, treinando sua 

maneira pessoal de enfrentar problemas desse tipo. Vale a pena tentar.

	 Agora vamos resolver o problema. Ora, na verdade, os objetos em questão são os 

vértices do pentágono que geram os triângulos. Devemos escolher três desses vérti-

ces. Mais uma vez, a perguntinha de sempre: “a ordem importa?” Note que não. Por 

exemplo, um triângulo gerado pelos vértices A, B e C é o mesmo do gerado pelos 

vértices B, A e C. 

	 Logo, o problema é de combinação simples e reduz-se a contar de quantas maneiras 

podemos escolher três elementos em um conjunto com cinco elementos. A resposta, 

como já sabemos, é .
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5.	Um anagrama é uma combinação de letras formada pela permutação das letras de 

outra palavra. Por exemplo: roma, omar, ramo são anagramas da palavra amor que 

são palavras (isto é, têm significado em português). Já maor, orma etc. também serão 

consideradas como anagramas, apesar de não serem propriamente palavras. Uma 

questão bastante interessante é contar a quantidade de anagramas de uma palavra. 

Vamos aprender a fazer isso nesse exercício.

a) Quantos anagramas tem a palavra amor?

b) Quantos anagramas da palavra amor começam com r?

c) Quantos anagramas da palavra amor começam com r e terminam com a?

d) Quantos anagramas da palavra amor terminam com vogal?

e) Quantos anagramas tem a palavra amava?

f ) Quantos anagramas tem a palavra amasse?

▹▹ Resolução: 

a) Mais uma vez, primeiramente, devemos responder à seguinte pergunta: “A ordem 

das letras é importante?”. A resposta é sim, pois amor e maor, por exemplo, são anagra-

mas distintos, gerados quando permutamos apenas as duas primeiras letras. Observe que 

qualquer permutação das letras gera um anagrama distinto, pois a palavra amor é formada 

por letras distintas! Dessa forma, a questão é um problema de permutação simples. Como 

a palavra amor tem quatro letras, a resposta é 4! . Como já fizemos anteriormente, utiliza-

remos uma tabela para facilitar a visualização do que está acontecendo:

4 possibilidades 
para a 1ª letra

3 possibilidades 
para a 2ª letra

2 possibilidades 
para a 2ª letra

1 possibilidade 
para a 4ª letra

b) Ora, a primeira letra do anagrama deve ser R. Logo, temos uma tabela do tipo abaixo 

para ser preenchida:

R

Como a primeira casa ficará sempre ocupada pela letra R, permutaremos apenas três 

letras em três casas. Portanto, a resposta será 3! .

c) Da mesma forma que no item anterior, fixamos agora as letras R e A nas primeira e 

quarta casas, respectivamente:

R A

Como a primeira casa e a última casa ficarão sempre ocupadas pelas letras R e A res-

pectivamente, permutaremos apenas as duas letras restantes nas duas casas restantes. 

Portanto, a resposta será 2! .

7. Exercícios resolvidos  65

Matematica_Discreta.indd   65 15/08/13   17:45



d) Desta vez, a restrição no enunciado não prende uma letra numa casa, mas deixa a 

possibilidade de que apenas uma das duas vogais ocupe a quarta casa.

A ou O

Então, trabalharemos primeiro com as três casas restantes como no item b), quando 

tínhamos uma letra presa à primeira casa. Neste caso, teremos a permutação de três letras 

em três casas: 3! . Como a última casa possui duas possibilidades, basta multiplicarmos 

esse resultado por dois, ou seja, a resposta será 2 3! 12× = .

Repare que a diferença entre os itens (b) e (d) está na restrição feita a uma determinada 

casa: no item (b), uma letra; no item (d), duas letras. Portanto, nada mais natural que o 

número de permutações do item (d) seja o dobro do item (b).

e) A palavra, aqui, tem algo diferente da que estávamos trabalhando: a palavra 

amava tem uma letra que se repete três vezes, a letra a. O problema assemelha-se 

ao que tínhamos no problema 2. Consideramos a palavra como se tivesse todas as letras 

diferentes. Daí, teríamos 5!  anagramas. Mas, assim, estamos contando alguns anagramas 

mais de uma vez, devido às permutações da letra a, que se repete 3 vezes e acaba gerando 

o mesmo anagrama. Veja:

amava, amava, amava, amava, amava, amava.

As permutações das três letras geraram 3! 6=  palavras iguais. Assim, para descontar-

mos esses anagramas contados em demasia, dividimos 5! por 3! obtendo

       
5!

20
3!

=    anagramas.

f) A palavra amasse tem 6 letras, sendo que duas delas se repetem duas vezes. Logo, 

raciocinando da mesma forma que no item anterior, dividimos o número de permutações 

das 6 letras pelos números de vezes que cada letra se repete, eliminando, assim, os ana-

gramas contados mais de uma vez.

6!
180

2!2!
=    anagramas.
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 Atenção  

A resolução dos itens e e f do Exercício 4, bem como a resolução da aluna 5 da Atividade 4, usaram um mesmo 

procedimento. Nessas resoluções, calculou-se o número total de permutação dos elementos do conjunto e depois 

se dividiu esse número pelo produto das quantidades das permutações dos elementos que se repetiam. Esse tipo 

de permutação merece um nome, definido a seguir. 

Permutação com repetição – Permutações dos elementos de um conjunto em que certo número de elementos 

são iguais geram as chamadas permutações com repetição. É fácil verificar que o número de permutações de um 

conjunto com n  elementos em que um elemento se repete 1n  vezes, outro se repete 2n  vezes,..., e um outro se 

repete kn  vezes (para 1 2 ... kn n n+ + +  
menor ou igual a n ) é dada por:

1 2( , ,..., )

1 2

!

! !... !
kn n n

n
k

n
P

n n n
=

As respostas dos exercícios anteriores, por exemplo, podem ser escritas da seguinte maneira:

(2,2)
6

6!
180

2!2!
P = =    e   

(3,4)
6

7! 7 6 5 4!
35

3!4! 3!4!
P

× × ×= = =

 Atenção 

6. O RG (Registro Geral) é ainda hoje, no Brasil, um dos principais documen-

tos de identificação, sendo conhecido como documento de identidade. 

Vários institutos e empresas têm autonomia para emitir esse documento 

pelo Brasil, que é único para cada indivíduo.

 Por esses fatores, seria inevitável encontrar números de RG parecidos, 

ou ainda números que fossem compostos pelos mesmos algarismos. Por 

exemplo, quantos números de RG distintos podemos obter permutando-

-se os algarismos do número 95.557.729??

 ▹ Resolução: Esse é um típico problema de permutação com repetição, em que se 

repetem dois algarismos 9, três algarismos 5 e dois algarismos 7. A resposta, por-

tanto, será:
(2,3,2)

6

8!
1680

2!3!2!
P = =

Iv
an

 B
al

di
vi

es
o 

 / 
 A

ge
co

m
 B

ah
ia

7. Exercícios resolvidos 67

Matematica_Discreta.indd   67 15/08/13   17:45



8. Conclusão
Nesta etapa, aprofundamos nossa abordagem acerca de como a Análise Combinatória 

pode ser trabalhada de uma forma interessante no Ensino Médio. 

Esperamos que você tenha percebido que o Princípio Multiplicativo da Contagem deve 

ser aplicado observando-se dois fatos importantes: o primeiro é a ordem dos elementos 

e o segundo é a repetição. Quando a ordem é importante, os problemas envolvem os 

conceitos de permutação. Quando a ordem não é importante, pois não altera o resultado 

da contagem, os problemas se resolvem usando o conceito de combinação. Quando não 

há repetições, essas permutações e combinações são chamadas simples. Quando há repe-

tições são chamadas permutações e combinações com repetições.

E mais... Como é comum na Matemática estabelecermos padrões, esperamos que esta 

etapa o estimule a trabalhar junto a seus alunos o fato de que uma mesma ideia matemá-

tica pode ser usada para resolver problemas aparentemente bem distintos. Esse procedi-

mento ajuda a simplificar a resolução de problemas que envolvem Análise Combinatória.

9. Resumo 
▹▹ O código Braille pode ser um interessante ponto de partida para abordar conteúdos 

ligados à Análise Combinatória no Ensino Médio.

▹▹ O código Braille é baseado em uma disposição 3 2×  de pontos. Para registrar uma 

letra do alfabeto, alguns desses 6 pontos são marcados ou perfurados, para que 

fiquem sobressalentes e possam ser sentidos com a ponta dos dedos das mãos.

▹▹ Como temos seis pontos no sistema 3 2× , pelo Princípio Multiplicativo, a quantidade 

de padrões diferentes que pode ser formada é 62 2 2 2 2 2 2 = 64× × × × × = .

▹▹ Há artifícios adicionais para que seja possível representar números, letras maiúsculas 

e minúsculas, sinais de pontuação e de operações matemáticas, usando a linguagem 

Braille.

▹▹ Há outros métodos, todos baseados no Princípio Multiplicativo de Contagem, para 

calcular quantas configurações podemos formar usando a linguagem Braille: o mé-

todo que foca na quantidade de pontos, independente de estarem pintados ou não 

e o método que foca na quantidade de pontos pintados.

▹▹ A linguagem Braille permite a abordagem do conteúdo de combinações simples, já 

que, ao escolhermos um agrupamento para representar um símbolo nessa lingua-

gem, a ordem de seus elementos não deve ser levada em conta. 

▹▹ Uma combinação simples é um agrupamento de alguns objetos de um dado conjun-

to em que a ordem de seus elementos não é importante e em que não há repetição 

de elementos dentro do mesmo agrupamento. 

▹▹ Usando o Princípio Multiplicativo para resolver um problema que envolve uma 

combinação simples, podemos usar a notação fatorial: 
!

!( )!
p

n

n
C

p n p
=

−
  (combinação 

simples de n  elementos tomados p  a p ).
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▹▹ No caso da linguagem Braille, o problema se reduz em saber de quantas maneiras 

podemos pintar de preto a quantidade p  desses pontos brancos, nos casos em que 

0p = , 1, 2, 3, 4, 5 e 6. Podemos também pensar em quantos agrupamentos com 

 ( 6)p p ≤  elementos podemos formar a partir de um conjunto com 6 elementos. 

Neste caso, o número de pontos que podemos combinar entre si é 6n =  e queremos 

encontrar as combinações de 6 elementos tomados p  a p .

▹▹ Uma mesma ideia matemática – a maneira de contar o número de subconjuntos 

possíveis de uma quantidade de elementos de um conjunto – pode ser usada para 

resolver problemas aparentemente bem distintos.

▹▹ O sistema binário de representação também constitui uma interessante ferramenta 

para trabalhar Análise Combinatória no Ensino Médio.

▹▹ A ideia de representação binária de números pode ser usada para resolver diversos 

problemas, permitindo a elaboração de um modelo que pode ser aplicado para 

resolver problemas diversos mas que sigam um mesmo padrão.

▹▹ O uso do sistema binário é uma alternativa que permite a exploração do conceito 

de combinação simples junto aos alunos do Ensino Médio.
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10. Anexo

Abaixo citamos alguns resultados provenientes da simetria que está presente nas 

combinações.

▹▹ 2
nC  é igual à soma dos 1n −  primeiros números naturais. De fato,

2 ! .( 1)
1 2 ... ( 1)

2!( 2)! 2n

n n n
C n

n

−= = = + + + −
−

essa última igualdade é bastante conhecida e pode ser provada, por exemplo, através do 

Princípio de Indução.

▹▹ 0 1 2 ... 2n n
n n n nC C C C+ + + + =

Para concluirmos porque isto é válido, observe que p
nC é o número de subconjuntos 

do conjunto { }1,2,..., n  com exatamente p  elementos e portanto 0 1 2 ... n
n n n nC C C C+ + + +  

é o número total de subconjuntos de { }1,2,..., n . Devemos responder, então, à seguinte 

pergunta: quantos são os subconjuntos de { }1,2,..., n ??

Para determinar um desses subconjuntos, olhamos para o número 1 e perguntamos: 

ele está ou não no subconjunto? Existem apenas duas respostas: sim ou não. Olhamos 

para o número 2 e repetimos a pergunta: 2 está ou não no subconjunto em consideração? 

Mais uma vez, temos duas respostas e continuamos assim até o número n . No total, 

teremos que tomar n decisões, admitindo cada uma delas apenas duas possibilidades. 

Pelo Princípio Multiplicativo, existirão então 2 2 ... 2 2n× × × =  decisões, e, como cada 

decisão determina um e um só subconjunto, teremos que o número total de subconjuntos 

de { }1,2,..., n  é 2n .
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Estamos chegando a mais uma etapa da disciplina de Matemática 
Discreta do Matem@tica na Pr@tica. Nesta terceira etapa, vamos 
conhecer um sistema criptográfico moderno e perceber como vários 
problemas de contagem podem ser reduzidos ao cômputo do número 
de certos tipos de função entre conjuntos finitos. Para começar, pense 
nas seguintes questões:

▹▹ Você conhece os sistemas usados na internet para o envio seguro 
de mensagens?

▹▹ Você já ouviu falar do sistema RSA, que permite a utilização de 
chaves públicas e privadas para uma comunicação mais segura?

▹▹ Sabia que o sistema RSA é baseado na escolha adequada de 
funções bijetoras?

▹▹ Sabia que problemas envolvendo permutações, arranjos e 
combinações podem ser vistos como problemas de contagem de 
funções entre conjuntos finitos?

Etapa III 

Aritmética modular 
e criptografia RSA
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1. Criptografia  x  Hackers

“Em Campinas, maio de 1995, um hacker apagou diversos arquivos da 

Empresa Brasileira de Pesquisas Agropecuárias. Em agosto de 1996, outro 

hacker, em São Petersburgo, Rússia, roubou US$ 400 mil do Citibank. No início 

de 1995, um adolescente britânico conseguiu acessar arquivos sigilosos da 

Força Aérea Norte-Americana sobre inspeções nucleares da Coreia do Norte. 

Somente em 1993, os computadores do Departamento de Defesa dos EUA 

foram invadidos 134 vezes.” (Fonte: amora.cap.ufrgs.br/2000/projetos/proj1/

hac/historias.htm)

Nos dias de hoje, relatos como esses ainda são fre-

quentes. Mas poderiam ser mais comuns, caso os siste-

mas de envio de mensagens não tivessem evoluído. Os 

meios criptográficos para enviar mensagens secretas são 

baseados em chaves, distribuídas entre os participantes 

envolvidos no envio da mensagem. Caso os hackers (es-

piões da era da informática) possuam essas chaves, eles 

podem ameaçar o sigilo das mensagens, “quebrando o 

código” e decifrando o arquivo enviado.

Mas como podemos tornar uma chave mais segura e distribuir 

mensagens com segurança? Haveria outra forma para codificar 

mensagens, além da criptografia de Júlio César, que foi estudada na 

etapa 1?

2. Criptografia RSA: um sistema de duas chaves

Por volta do ano de 1977, a fragilidade dos sistemas criptográficos diminuiu muito. 

Nessa época Ronald Rivest, Adi Shamir e Leonard adleman criaram a Criptografia RSA 

(iniciais dos sobrenomes dos três autores), que consistia em um sistema com duas chaves 

baseado em teoremas clássicos, como o da Teoria dos Números. Esse sistema é bastante 

usado nos dias de hoje. 

A ideia do sistema é a seguinte: uma das chaves serve para cifrar men-

sagens e pode ser divulgada livremente – todos têm acesso a ela – por isso 

é conhecida como chave pública. Por outro lado, para decifrar a mensagem 

cifrada, há a necessidade de uma chave secreta, conhecida apenas pela pessoa para a qual 

a mensagem foi enviada, por isto essa chave é conhecida como chave secreta. 

Nos dias de hoje, relatos como esses ainda são fre-

quentes. Mas poderiam ser mais comuns, caso os siste-

mas de envio de mensagens não tivessem evoluído. Os 

meios criptográficos para enviar mensagens secretas são 

baseados em chaves, distribuídas entre os participantes 

envolvidos no envio da mensagem.

piões da era da informática) possuam essas chaves, eles 
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A eficácia desse sistema de chaves duplas está na “impossibilidade prática” de se obter 

a chave secreta a partir da chave pública. Isto porque o sistema utiliza números muito 

grandes, formados por muitos algarismos. Atualmente, não são conhecidos algoritmos 

capazes de decompor números muito grandes em fatores primos em um tempo razoável. 

Essa é uma impossibilidade técnica, ou seja, ainda não pode ser resolvida, mesmo com os 

avanços da Matemática e da Informática. 

Para que você possa entender o funcionamento do sistema de chaves duplas, vamos 

simular, de modo bem simplificado, uma situação de envio/recepção de uma mensagem. 

3. Como funciona um sistema com chave pública?
Vamos mandar uma mensagem para uma pessoa P, representando a ideia de como 

funciona o método RSA. 

Assim como nós, P deve possuir duas 

chaves, uma pública e outra secreta. 

Vamos denotar por C
P
 o procedimento 

que devemos usar para cifrar mensa-

gens dirigidas a P e por D
P
 o procedi-

mento que P deve usar para decifrar 

as mensagens que recebe, ou seja, D
P
 

desfaz a codificação C
P
.

Considere M a mensagem que desejamos enviar a P, mas sem nenhuma codificação. 

Transformamos as letras da mensagem M em números. Para enviar M secretamente, usa-

mos uma função C
P
 (chave pública) que codifica os números associados à mensagem M, 

transformado-a na mensagem codificada que representaremos por C
P
(M). 

Quando P recebe a mensagem codificada C
P
(M), é necessário que ela conheça outra 

função D
P 
(chave secreta), que inverta a codificação, ou seja, que decodifique os números 

da mensagem C
P
(M). Para isso, a função D

P
 é aplicada aos números associados à mensa-

gem codificada C
P
(M), obtendo-se D

P 
(C

P
(M)) = M. Assim é possível recuperar a mensagem 

original e o envio secreto da mensagem é feito com sucesso.

Para compreender melhor todo o processo que acabamos de descrever, observe o 

esquema a seguir: 
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Para este processo funcionar, é necessário, então, construir funções C
P
 e D

P
 de forma 

que valha a igualdade D
P 
(C

P 
(M)) = M para qualquer mensagem M. 

Note no processo anterior que a função D
P
 é a função inversa de C

P
, pois a função D

P
 

inverte o que foi feito pela função C
P
. As chamadas funções bijetoras são precisamente as 

que admitem função inversa.

Assim, as funções C
P
 e D

P
 devem ser funções bijetoras, definidas entre conjuntos finitos. 

Na verdade, observamos que se existir uma função bijetora entre dois conjuntos finitos, 

estes devem necessariamente ter o mesmo número de elementos. 

Uma função de um conjunto A 
em um conjunto B é bijetora 
quando é, ao mesmo tempo, 
injetora (quando elementos 
distintos do domínio de A 
têm imagens distintas em B) 
e sobrejetora (quando cada 
elemento de B está associado 
a pelo menos um elemento de 
A, pela função).

Mensagem 

M
As letras e demais 
símbolos do texto 
da mensagem são 
transformados 
em números, 
numa fase de 
précodificação.

Por fim, basta à 
pessoa P desfazer 
a pré-codificação, 
transformando 
novamente os números 
nas letras e demais 
símbolos do texto. Agora 
é só ler a mensagem.

O texto da mensagem 
já transformada em 
números é então 
codificado pela chave 
pública C

P
, dando 

origem à mensagem 
C

P
(M), também em 

números.

Por sua vez, a 
pessoa P, utiliza 
a chave secreta 
D

P
 para desfazer 

a codificação, 
obtendo assim 
D

P
(C

P
(M)) = M 

(em números).

Após a codificação, a 
mensagem codificada é enviada 
à pessoa P, que ainda não será 
capaz de interpretála

Mensagem 

M

Mensagem 

M

[em números]

Mensagem 

M

[em números]

Mensagem 

C
p
(M)

[em números]

Mensagem 

C
p
(M)
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Diante do que explicamos, surgem algumas perguntas:

 ▹ Será que esse sistema de envio de mensagens é seguro? Como veremos, isso vai 

depender muito da escolha das chaves usadas.

 ▹ Quantas chaves diferentes podemos ter à disposição para codificar mensagens usan-

do nosso alfabeto de 26 letras? Veremos que a resposta a essa pergunta pode ser 

dada com métodos de contagem.

4. As chaves usadas no método RSA
Entendido o funcionamento de chaves públicas para enviar 

mensagens, vejamos como a Criptografia RSA se relaciona com 

esse procedimento. 

Qualquer função bijetora C serve para codificar mensagens. 

Entretanto, se for fácil obter a função inversa D a partir de C, 

será também fácil “quebrar o código”, o que 

torna o sistema frágil. 

O que o método RSA faz é fornecer uma 

maneira de obter as funções C e D, de modo que esse processo seja 

bastante seguro e dificulte a quebra de sigilo da mensagem.

Vejamos como o sistema RSA funciona por meio de um exemplo simples:

4.1. Exemplo de codificação com funções invertíveis

Simplificadamente, codificaremos mensagens com palavras que usam as nove letras 

mais frequentes do nosso idioma: A, E, O, S, R, I, N, D, M.

Como uma pré-codificação, associamos cada letra a um número:

Tabela 1

A E O S R I N D M

1 2 3 4 5 6 7 8 9

A seguir, vamos montar funções bijetoras C e D, uma inversa da outra. Isso será feito 

de acordo com regras de criptografia do sistema RSA.
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Para este fim, tomemos como exemplo as seguintes funções bijetoras

C: {1,2,3,4,5,6,7,8,9}  →  {1,2,3,4,5,6,7,8,9}

    n            �         C(n)

em que C(n) é definida pela tabela:

Tabela 2

as 9 letras mais usadas 
em Português

A E O S R I N D M

Número n associado 
à letra

1 2 3 4 5 6 7 8 9

Número C(n) 
correspondente à letra 

codificada 
1 8 7 4 5 6 3 2 9

Vamos definir a função D como:

D: {1,2,3,4,5,6,7,8,9}  →  {1,2,3,4,5,6,7,8,9}

        n            �            D(n)  

em que o número D(n) está definido por:

Tabela 3

as 9 letras mais usadas 
em Português

A E O S R I N D M

Número n associado 
à letra

1 2 3 4 5 6 7 8 9

Número D(n) 
correspondente à letra 

decodificada 
1 8 7 4 5 6 3 2 9

Constate nas funções acima que C(D(M)) = D(C(M)) = M, para qualquer mensagem M, 

comprovando que as funções C e D são uma a inversa da outra. 

 Atenção  

Na verdade as funções C e D de nosso exemplo são iguais, mas isto é apenas uma coincidência. Em sistemas com 

alto grau de segurança é praticamente impossível estabelecer uma correlação prática entre tais funções.

 Atenção 

4. As chaves usadas no método RSA 77
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Agora que já temos as funções C e D, vejamos como codificar e decodificar uma palavra. 

Vamos codificar a palavra M = SOMaNDO, usando as chaves do nosso exemplo.

A maneira que escolhemos as funções C e D foi baseada no método RSA, que por sua 

vez usa a Teoria dos Números para criar essas funções. 
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Matematica_Discreta.indd   78 15/08/13   17:45



A
da

m
 C

ie
si

el
sk

i  
/  

SX
C 

 Atenção  

Nossa intenção aqui nesta etapa não é estudar como descrever essas funções, pois isso requer uma teoria bem 

sofisticada. Apenas queremos ressaltar que o método RSA é pensado de tal forma que fica muito difícil encontrar a 

função D, mesmo conhecendo-se a função C. Maiores detalhes sobre esse método podem ser encontrados no livro 

Números inteiros e Criptografia RSA de Severino Collier, ou no site: http://www.obmep.org.br/export/sites/default/

arquivos/apostilas_pic2008/Apostila7-Criptografia.pdf.

 Atenção 

5. Cada chave, uma função... mas quantas?

Como vimos, as chaves são fundamentais para que se possa cifrar e decifrar mensagens 

no sistema RSA. Essas chaves são funções de um subconjunto finito dos números naturais 

em outro subconjunto finito dos números naturais. 

Como precisamos que o processo de codificação seja desfeito pela decifração, preci-

samos trabalhar com funções invertíveis, ou seja, com funções bijetoras entre conjuntos 

numéricos finitos.

Uma pergunta natural que aparece nesse contexto é: no caso de 

codificações de mensagens, quantas chaves diferentes podemos 

fabricar? 

Ou ainda, dados dois conjuntos finitos de números naturais, quantas 

funções bijetoras existem entre esses conjuntos?

Vamos responder a essas perguntas ao longo desta etapa e, ao conhecer as respostas, 

você vai perceber que é possível fazer um curso completo de Análise Combinatória, apenas 

contando o número de determinadas classes de funções entre conjuntos finitos. 

5.1. Contagem de funções quaisquer entre conjuntos finitos

Primeiramente, comecemos contando quantas funções existem entre dois conjuntos 

finitos quaisquer.

Se A e B são conjuntos finitos e f é uma função definida em A com valores em B. Lem-

bremos que cada elemento do conjunto A deve estar associado a um único elemento do 

conjunto B.

5. Cada chave, uma função... mas quantas? 79
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 Atividade 1  

a▹ Quantas funções f: A → B e tem do conjunto A={a
1
,a

2
,a

3
} no conjunto B={b

1
,b

2
}?

b▹ Quantas funções f: B → A existem do conjunto B={b
1
,b

2
} no conjunto A={a

1
,a

2
,a

3
}?

Resposta Comentada

Como estamos trabalhando com conjuntos que possuem poucos elementos, podemos enumerar efetivamente todas as 

possibilidades:

 � No item (a), podemos construir as seguintes funções:

No total são 23 = 8 funções diferentes. 

 � No item (b), podemos construir as seguintes funções: 

1

2

No total são 32 = 9 funções diferentes. 

 Atividade 1 

A atividade anterior nos fornece um indício de como contar quaisquer tipos de funções 

entre dois conjuntos finitos. Vamos agora estudar o caso geral.

 ▹Caso geral: Se o conjunto A tem n 

elementos e o conjunto B tem k elementos, 

quantas funções existem de A em B?

x

A

A = domínio da função f
B = contradomínio da função f

B

f

y=f(x)

y
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Ora, ao primeiro elemento do domínio A, podemos associar qualquer um dos ele-

mentos de B. Como B tem k elementos, essa primeira decisão admite k possibilidades. Ao 

segundo elemento do domínio, também podemos associar qualquer um dos k elementos 

de B, pois podemos repetir a escolha já realizada de um elemento da imagem. Assim, 

na segunda decisão também temos k possibilidades. Continuando dessa maneira, após a 

n-ésima decisão, teremos contado todas as funções de A em B. 

Pelo Princípio Multiplicativo, existem:

k. k. ... . k = kn  funções de A em B.

Outra maneira de responder a essa pergunta é utilizando o esquema abaixo:

 

Vamos representar os conjuntos A e B na forma A={a
1
, a

2
,..., a

n
} e B={b

1
, b

2
,..., b

k
}.

a
1

a
2

... a
n

Escrever o número de 
opções de elementos 

de B que podem 
ser associados ao 

elemento a1

Escrever o número de opções 
de elementos de B que podem 
ser associados ao elemento a2 
(nesse caso é possível que um 
elemento associado a a1 possa, 

em outra possibilidade, ser 
também associado a a2)

...

Escrever o número de opões de 
elementos de B que podem ser 

associados ao elemento a3 (nesse 
caso é possível que um elemento 

associado a a1 ou a a2,...,an-1 

possa, em outra possibilidade, 
ser também associado a an)

k k ... k

Nesse caso, pode haver repetições, pois um elemento associado ao elemento a
1
 pode, 

em outra possibilidade, ser associado também ao elemento a
2
, ao elemento a

3
, ..., ao 

elemento a
n
. Note que isso não contraria a definição de função. 

Pelo Princípio Fundamental da Contagem, existem:

k. k. ... . k = kn  funções do conjunto A no conjunto B.

n vezes

n vezes
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 Atividade 2  

Focalizando na ideia de contar funções, e não fazendo uma mera aplicação de fórmulas, resolva os dois problemas a 

seguir. Fazer diagramas e desenhos ajuda muito a resolver esse tipo de questão.

a▹ De quantas maneiras distintas podemos colocar 7 cartas em 

5 caixas de coleta do correio?

b▹ Jorge tem 4 camisas para serem guardadas em 6 gavetas de seu guarda-roupa. De quantas 

maneiras ele pode guardar essas camisas? 

Resposta comentada

a▹ Para simplificar, vamos representar o conjunto de cartas por: 

A={a
1
, a

2
,..., a

7
} e o conjunto de caixas do correio por B={b

1
, b

2
, b

3
}. Seguiremos os passos anteriores:

a
1

a
2

... a
7

Escrever o número 
de caixas do correio 

que podem receber a 
carta a

1.

Escrever o número caixas do correio que podem 
receber a carta a

2. 
Nesse caso, é possível que uma 

caixa que tenha recebido a carta a
1
 possa, em 

outra possibilidade, também receber a carta a
2
.

...

Escrever o número caixas do correio que podem receber 
a carta a

7. 
Nesse caso, é possível que uma caixa que tenha 

recebido a carta a
1
, ou a carta a

2
, ..., ou a carta a

6
, possa, 

em outra possibilidade, também receber a carta a
7
.

3 3 ... 3

Nesse caso, pode haver repetições, pois uma caixa que recebe a carta a
1 
pode, em outra possibilidade, receber a carta a

2
, 

receber a carta a
3
, ..., e receber a carta a

7
. 

Pelo Princípio Multiplicativo, existem 3.3.3....3 = 37 = 2187 maneiras

de colocar 7 cartas em três caixas distintas do correio. 

A situação pode ser vista do seguinte modo: tenho três cartas em minhas mãos e coloquei-as em uma determinada ordem. 

Seleciono a primeira delas e decido em qual caixa de correio vou colocá-la (7 possibilidades). A seguir, seleciono a segunda 

carta e procedo da mesma forma. Existem 7 possibilidades, pois uma mesma caixa de coleta pode receber mais de uma carta. 

Finalmente, repito o procedimento com a última carta (outras 7 possibilidades). É cabível que as três cartas ocupem a mesma 

caixa e que as outras duas fiquem vazias. No total, há 7.7.7 = 2187 possibilidades.

 Atividade 2 
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7 vezes

82 Módulo II  –  Matemática Discreta ▷ Etapa III

Matematica_Discreta.indd   82 15/08/13   17:45



b▹ Para simplificar, vamos representar o conjunto de camisas por: 

C={c
1
, c

2
, c

3, 
c

4
} e o conjunto de gavetas do guarda-roupa por G={g

1
, g

2
,..., g

6
}. Seguiremos os passos anteriores:

c
1

c
2

... c
4

Escrever o número 
de gavetas em que 
podemos guardar a 

camisa c
1
.

Escrever o número de gavetas em que podemos 
guardar a camisa c

2
. Nesse caso, é possível que 

uma gaveta em que se guardou a camisa c
1
 possa, 

em outra possibilidade, também ser usada para 
guardar a camisa c

2
.

...

Escrever o número gavetas em que podemos guardar a 
camisa c

4
.
 
Nesse caso, é possível que uma gaveta na qual 

tenha sido guardada a camisa c
1
, ou a camisa c

2
, ou a 

camisa c
3
 possa, em outra possibilidade, ser usada para 

guardar a camisa c
4
.

6 6 ... 6

Nesse caso, pode haver repetições, pois uma gaveta na qual guardamos a camisa c
1 
pode, em outra possibilidade, ser 

usada para guardar a camisa c
2
, guardar a camisa c

3
 ou, ainda, para guardar a camisa c

4
. 

Pelo Princípio Multiplicativo, existem 6.6.6.6 = 64 = 1.296 maneiras

diferentes de guardar 4 camisas em 6 gavetas.
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Agora que já temos uma noção do que é a contagem de funções, passemos a contar 

o número de certos tipos de funções especiais entre dois conjuntos. 

5.2. Contando funções bijetoras entre conjuntos finitos 

Na seção anterior, contamos o número total de funções entre dois conjuntos finitos 

com quaisquer números de elementos. Mas, agora, queremos contar funções bijetoras. 

Como vimos, essas funções podem ser usadas em codificações de mensagens e são muito 

importantes.

No caso de funções bijetoras, lembre-se que o domínio e o contradomínio devem ter 

o mesmo número de elementos. 

assim, quantas funções bijetoras existem entre dois conjuntos A e B?
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 Atividade 3  

a▹ Conte quantas funções bijetoras f: A → B existem do conjunto A = {a
1
, a

2
} no conjunto B = {b

1
, b

2
}.

b▹ Conte quantas funções bijetoras f: B → A existem do conjunto A = {a
1
, a

2
, a

3
} no conjunto B = {b

1
, b

2
, b

3
 }.

Resposta comentada

Proceda como antes, listando as funções e não se esquecendo que numa bijeção f entre dois conjuntos A e B não sobram 

elementos em B que não estejam associados a algum elemento de A. Além disso, cada elemento de B fica associado a apenas 

um elemento de A. 

Assim, no item (a), temos apenas duas possibilidades de funções:

a
1
 �  b

1

a
2
 �  b

2

a
1
 �  b

2

a
2
 �  b

1

Já no item (b), temos seis possibilidades de funções:

a
1
 �  b

1

a
2
 �  b

2

a
3
 �  b

3

a
1
 �  b

2

a
2
 �  b

1

a
3
 �  b

3

a
1
 �  b

1

a
2
 �  b

3

a
3
 �  b

2

a
1
 �  b

3

a
2
 �  b

1

a
3
 �  b

2

a
1
 �  b

2

a
2
 �  b

3

a
3
 �  b

1

a
1
 �  b

3

a
2
 �  b

2

a
3
 �  b

1

 Atividade 3 

Após essa atividade, podemos responder o caso geral de contagem de funções bijetoras.

Caso geral: Se A tem n  elementos e B também 

tem n  elementos, quantas funções bijetoras existem 

de A em B?

Ao primeiro elemento do domínio A, podemos associar qualquer um dos n  elementos de B. 

Feito isto, a escolha para a imagem do segundo elemento de A só pode ser feita de 1n −  ma-

neiras diferentes, já que todo elemento de B é associado apenas a um elemento de A e a escolha 

da imagem do primeiro elemento já foi feita. O terceiro elemento de A só pode ser associado 

a um dos 2n −  elementos restantes de B e assim sucessivamente, até o último elemento de A. 

A B

f
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 Atividade 4  

Resolva os problemas abaixo, utilizando duas aborda-

gens: primeiro, a ideia de permutação e, depois, a ideia de 

contagem de funções.

a▹ De quantos modos 7 pessoas podem sentar em uma 

fila de 7 cadeiras? 

b▹ Em uma festa, com 10 homens e 10 mulheres, de 

quantas maneiras podemos formar dez casais distin-

tos de um homem e uma mulher? 

Resposta comentada

a▹ Primeira abordagem: contar como 7 pessoas senta-

rão em 7 cadeiras é o mesmo que saber de quantas 

maneiras podemos permutar essas pessoas quando 

sentadas. O problema, portanto, reduz-se a contar 

o número de permutações de um conjunto com 7 

elementos, cuja resposta, como já sabemos, é 7!.

 Segunda abordagem: chamemos o conjunto de 

pessoas de P={p
1
, p

2
, p

3
, p

4
, p

5
 p

6
, p

7
} e o conjunto de 

cadeiras de C={c
1
, c

2
, c

3
, c

4
, c

5
 c

6
, c

7
}. Associando cada 

pessoa à cadeira em que ela se sentará, produzimos 

 Atividade 4 

Quando alcançarmos o último elemento de A, só resta uma última opção entre os elementos de 

B, já que A e B têm o mesmo número de elementos. Esses procedimentos podem ser resumidos 

na tabela a seguir:

a
1

a
2

a
3

... a
n

Escrever o número 
de opções dos 

elementos de B que 
podem ser associados 

ao elemento a1

Escrever o número restante 
de opções dos elementos de 
B que, após associarmos um 

elemento a a1, podem ser 
associados ao elemento a2 

Escrever o número restante de 
opções dos elementos de B que, 
após associarmos um elemento 

a a1 e outro a a2, 
podem ser 

associados ao elemento a3 
....

Escrever o número restante de 
opções dos elementos de B que, após 
associarmos um elemento a a1, outro 
a a2, outro a a3, ..., outro a an-1 podem 

ser associados ao elemento an

n elementos n-1= n-(2-1) elementos n-2 = n-(3-1) elementos ... 1= n-(n-1)

Como não há repetições, ao associarmos um elemento a outro, esse elemento não 

pode mais ser associado a nenhum dos demais. 

Pelo Princípio Multiplicativo, há

P(n) = n.(n − 1).(n − 2)...3.2.1 = n!

funções bijetoras entre dois conjuntos com n elementos.

Observe que esse é o número de permutações, sem repetição, de um conjunto com  

elementos! Esse fato simplesmente nos diz que uma função bijetora entre conjuntos finitos 

nada mais faz do que permutar os elementos do conjunto imagem.

É importante ressaltar que existem vários problemas que podem ter apresentações 

diferentes, mas com soluções absolutamente iguais, que recaem simplesmente em contar 

o número de funções bijetoras entre conjuntos.
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uma função entre os conjuntos P e C. Como duas pes-

soas distintas irão sentar em cadeiras distintas e como 

nenhuma cadeira sobrará sem que uma pessoa esteja 

sentada nela, essa função deve ser bijetora. Mudando 

a posição das pessoas sentadas, mudamos a função 

bijetora, e vice-versa. Daí, saber de quantas maneiras 

sete pessoas se sentarão em sete cadeiras é contar o 

número de funções bijetoras entre os conjuntos P e 

C. Vimos anteriormente que este número é 7!.

b▹ Proceda como no item (a), associando agora homens 

com mulheres. 

 A resposta é 10!

 Atividade 5  

Utilizando seus conhecimentos de contagem de funções adquiridos até aqui e a definição de função injetora, responda 

às questões a seguir:

a▹ Quantas funções injetoras f: A → B existem do conjunto A={a
1
, a

2
} no conjunto B={b

1
, b

2
, b

3
}?

b▹ Quantas funções f: C → D existem do conjunto C = {c
1
, c

2
} no D={d

1
, d

2
, d

3
, d

4
}? 

Resposta comentada 

Proceda novamente listando todas as funções injetoras e não se esqueça que em uma função injetora f entre dois con-

juntos A e B, um elemento de B, quando está associado a um elemento de A, deve estar associado apenas àquele elemento. 

Lembre-se ainda que nas funções injetoras podem sobrar elementos no conjunto B que não estejam associados a qualquer 

elemento do conjunto A.

 Atividade 5 
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5.3. Contando funções injetoras entre conjuntos finitos f: A  B

Lembremos que, em uma função injetora, elementos distintos do conjunto A são 

levados em imagens distintas no conjunto B. Devido a esse fato, se os conjuntos A e B 

forem finitos, o número de elementos de A não pode exceder o número de elementos 

de B. Ou seja, o número de elementos de A é menor do que ou igual ao número de 

elementos de B.

assim, quantas funções injetoras existem entre dois conjuntos A e B?
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Item (a): Como estamos trabalhando com conjuntos que possuem poucos elementos, é possível descrever todas as funções:

a
1
 �  b

1

a
2
 �  b

2

a
1
 �  b

2

a
2
 �  b

1

a
1
 �  b

1

a
2
 �  b

3

a
1
 �  b

3

a
2
 �  b

1

a
1
 �  b

2

a
2
 �  b

3

a
1
 �  b

3

a
2
 �  b

2

Portanto, no item (a) teremos 6 possibilidades de funções.

A maneira mais eficaz de responder a essa resposta, todavia, é preenchendo a tabela a seguir:

a
1

a
2

Escrever o número de opções dos elementos de B que 
podem ser associados ao elemento a

1

Escrever o número restante de opções dos elementos de 
B que, após associarmos um elemento a a

1
, podem ser 

associados ao elemento a
2

3 elementos 2 elementos

Pelo Princípio Multiplicativo, temos 3.2 = 6 funções.

Item (b): Seguiremos o mesmo procedimento do item (a):

c
1
 �  d

1

c
2
 �  d

2

c
1
 �  d

1

c
2
 �  d

3

c
1
 �  d

1

c
2
 �  d

4

c
1
 �  d

2

c
2
 �  d

3

c
1
 �  d

2

c
2
 �  d

4

c
1
 �  d

3

c
2
 �  d

4

c
1
 �  d

2

c
2
 �  d

1

c
1
 �  d

3

c
2
 �  d

1

c
1
 �  d

4

c
2
 �  d

1

c
1
 �  d

3

c
2
 �  d

2

c
1
 �  d

4

c
2
 �  d

2

c
1
 �  d

4

c
2
 �  d

3

Portanto, no item (b) teremos 12 possibilidades de funções.

Ou, ainda, podemos usar tabelas, que funcionam no caso geral:

c
1

c
2

Escrever o número de opções dos elementos de D que 
podem ser associados ao elemento c

1

Escrever o número restante de opções dos elementos de 
D que, após associarmos um elemento a c

1
, podem ser 

associados ao elemento c
2
 

4 elementos 3 elementos

Pelo Princípio Multiplicativo, teremos 4.3 = 12 funções.
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 Atividade 6  

Mais uma vez, ressaltamos: há também vários problemas que podem ter apresentações diferentes, mas 

com a mesma solução, que recai simplesmente em contar o número de funções injetoras entre conjuntos. 

Resolva dois deles a seguir, associando sua resolução à contagem de funções injetoras.

a▹ De quantas maneiras podemos estacionar 4 carros em 7 garagens, se em cada garagem 

pode ficar apenas um carro?

b▹ Compare o problema anterior com o problema de se colocar 4 cartas em 7 caixas de coleta 

do correio. Qual a diferença?

 Atividade 6 

Mais uma vez, ressaltamos: há também vários problemas que podem ter apresentações diferentes, mas 

com a mesma solução, que recai simplesmente em contar o número de funções injetoras entre conjuntos. 
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Agora, passemos ao caso geral.

Caso Geral: Se A tem n  elementos e B tem 

k elementos e n k≤ , quantas funções injetoras 

existem de A em B?

Vamos considerar os conjuntos A = {a
1
, a

2
..., a

n
} e B = {b

1
, b

2
..., b

k
}, em que n k≤ .

a
1

a
2

a
3

... a
n

Escrever o número de 
opções dos elementos 

de B que podem 
ser associados ao 

elemento a
1 
.

Escrever o número restante 
de opções dos elementos de 
B que, após associarmos um 

elemento a a
1
, podem ser 

associados ao elemento a
2 
. 

Escrever o número restante de 
opções dos elementos de B que, 
após associarmos um elemento 

a a
1
 e outro a a

2
,
 
podem ser 

associados ao elemento a
3 
. 

....

Escrever o número restante de 
opções dos elementos de B que, após 
associarmos um elemento a a

1
, outro 

a a
2
, outro a a

3
, ..., outro a a

n-1
 podem 

ser associados ao elemento a
n 
.

k elementos k-1=k-(2-1) elementos k-2=k-(3-1) elementos ... k-(n-1)

Como não há repetições, ao associarmos um elemento de A a um elemento de B, esse 

elemento de B não pode mais ser associado a nenhum dos demais. 

Pelo Princípio Multiplicativo, há  

funções injetoras entre um conjunto com n  elementos noutro conjunto com k

elementos, em que n  ≤ k .

Observe que esse é o número de arranjos de n  elementos, tomados em um conjunto 

de k  elementos, sem repetições.

A B

f
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Resposta comentada

a▹ Faça uma tabela como fizemos no caso geral. Nesse 

momento, as perguntas a serem feitas são: “Em 

quantas garagens podemos estacionar o primeiro 

carro?”, “Em quantas garagens podemos estacionar 

o segundo carro?” e assim por diante. Lembre-se que 

uma garagem só pode ser ocupada por um carro, 

podendo ficar vazia.

A resposta será 4
7

7!
7.6.5.4 840

(7 4)!
A = = =

−
.

b▹ No problema dos carros que devem ser estacionados, 

uma garagem só pode ser ocupada por um carro ou 

ficar vazia, o que não ocorre com as caixas do correio. 

 No caso de cartas e caixas de coleta, mais de uma 

carta pode ser colocada em uma mesma caixa e cai-

xas podem ficar vazias. Nesse caso, se procedêssemos 

como na Atividade 2a), encontraríamos 74 = 2401 

possibilidades, que é o número de funções entre o 

conjunto das cartas e das caixas de coleta, um com 4 

elementos (cartas) e outro com 7 elementos (caixas 

de coleta). Observe que nesse caso, como esperado, 

o número de possibilidades é bem maior que no caso 

anterior. A possibilidade de repetição torna este item 

b) essencialmente diferente do item a).

A seguir, apresentaremos dois tipos de funções bem especiais, cuja contagem nos 

levará a resolver alguns problemas bem interessantes. Dessa vez, abordaremos outra ca-

racterística das funções: o crescimento. 

5.4. Contando funções que crescem 

Dado um conjunto finito qualquer, podemos fixar uma ordem entre seus elementos e, 

neste caso, dizemos que o conjunto ficou ordenado. Um mesmo conjunto pode ter muitas 

ordens, mas, uma vez fixada uma delas, esta deve ser mantida durante toda a argumenta-

ção. Por exemplo, se A for o conjunto das cinco primeiras letras do alfabeto, o conjunto A 

pode ser representado, por exemplo, por A={b,d,a,e,c}, ou por A={c,a,e,d,b}. Vamos adotar 

uma ordem nos elementos desse conjunto e preservá-la. Na verdade, nesse caso, por con-

veniência, adotaremos a ordem mais natural: A={a,b,c,d,e} e vamos preservá-la. A partir 

desse momento, ao falarmos do conjunto A, teremos em mente que seus elementos têm 

a ordem que acabamos de estabelecer. É comum escrevermos a<b, b<e etc. para informar, 

na ordem adotada, que um elemento vem antes do outro.

Quando um conjunto A é ordenado, podemos saber exatamente qual é o primeiro, 

o segundo, o terceiro, o quarto etc. elemento desse conjunto. Conjuntos finitos podem 

facilmente ser ordenados segundo uma ordem escolhida.

Vamos estudar agora as funções entre dois conjuntos ordenados que preservam a 

ordem desses conjuntos. Funções desse tipo são ditas estritamente crescentes.

Uma função f: A → B entre 
dois conjuntos ordenados A e 
B é estritamente crescente se 
x < y acarretar que f(x) < f(y), 
para todos x, y  A.
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Para que a noção de função estritamente crescente fique mais clara, acompanhe os 

exemplos a seguir.

 

 ▹ Ordenando as letras pela ordem alfabética e os números pela ordem natural, as 

funções abaixo são crescentes:

f: {a, b, c, d} → {1,2,3,4,5}

x f(x)

a 1

b 2

c 4

d 5

g: {1,2,3,4} → {a, b, c, d,e,f}

x g(x)

1 a

2 c

3 e

4 f

h: {a, b, c, d} → {1,2,3,4,5}

x h(x)

a 1

b 3

c 4

d 5

Para nos ambientarmos com a contagem de funções crescentes entre 

dois conjuntos finitos, veremos mais um exemplo.

Qual será o conceito de análise Combinatória que aparecerá ao 

entendermos estes exemplos?

 ▹ Vamos considerar novamente funções quaisquer do conjunto A = {1, 2, 3} (com a 

ordem numérica natural) no conjunto B ={a, b, c, d} (com a ordem alfabética).
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Pelo que aprendemos na subseção 5.1, existe um total de 43 = 64 funções de A em B. 

Mas, dentre essas funções, apenas 4 são estritamente crescentes. São elas:

Como o domínio dessas funções é sempre o mesmo, elas podem ser caracterizadas 

pelos seus conjuntos imagens: {a, b, c}, {a, b, d}, {a, c, d} e {b, c, d}. Esse procedimento vai 

ser usado mais adiante.

Isso, a princípio, corresponde a escolher 3 dos quatro elementos do conjunto B, sem 

respeitar a ordem e sem repetir elementos, ou seja, escolher 3 elementos de um conjunto 

com 4 elementos. 

Observe que após escolhermos esses elementos podemos ordená-los. 

Como a ordem em B já está estabelecida, só existe uma maneira de ordenar uma 

determinada escolha de seus elementos, segundo essa ordem. Não importa se dentro de 

uma escolha os elementos são permutados. Quando eles forem ordenados, somente uma 

ordenação correta aparecerá. Deste modo, muitas escolhas desordenadas produzirão uma 

única ordenação correta.

Mas, no caso de nosso exemplo, isso é o mesmo que calcular a combinação simples de 

4 elementos tomados 3 a 3. Portanto, teremos exatamente 3
4

4!
4

3!1!
C = =  funções estrita-

mente crescentes e o conceito de combinação simples aparece naturalmente na contagem 

desse tipo de função!

Caso geral: Se A é um conjunto ordenado com 

n  elementos, B é um conjunto ordenado com k
elementos e n k≤ , quantas funções estritamente 

crescentes existem de A em B?

Como visto anteriormente, é sempre verdadeiro que podemos identificar cada função 

estritamente crescente com seu conjunto imagem. 

Logo, se A tem n  elementos e B tem k  elementos, com n k≤ , contar o número de 

funções estritamente crescentes entre os conjuntos A e B é a mesma coisa que contar de 

quantos modos podemos escolher n  elementos de um conjunto com k  elementos, sem 

que a ordem seja importante e sem repetições. 

Sabemos que essa contagem é igual ao número de combinações de k  elementos, 

tomados n  a n  sem repetição. Ou seja, é igual a: 

n
kC  = !

!( )!

k

n n k−

A B

f
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 Atividade 7  

Na Etapa 2, resolvemos os seguintes exercícios usando combinação:

a▹ Um grupo de cinco professores comporá uma comissão para falar com o 

Secretário de Educação do Estado. Os cinco professores serão escolhidos 

dentre nove professores indicados por seus pares. Quantas comissões 

poderão ser formadas?

Agora, resolva esse exercício usando a ideia de contar funções estri-

tamente crescentes.

b▹ Quantas saladas de frutas diferentes podemos fazer usando três das 

quatro frutas: abacaxi, banana, caqui e damasco?

Resolva usando a contagem de funções. Para isto, você deve ordenar 

o conjunto das frutas.

Resposta comentada

a▹ Chamemos o conjunto dos professores de P={p
1
, p

2
, ..., p

9
} e o conjunto dos professores escolhidos de E={e

1
, e

2
,...,e

5
}. 

Escritos dessa forma, os conjuntos estão ordenados. O problema agora pode ser visto da seguinte forma: como contar 

o número de funções estritamente crescentes entre os conjuntos E e P? 

 A partir desse ponto, use a ideia de combinação para fazer essa contagem de funções e você verá que a resposta é 

126. Note que, nesse caso, descrever todas essas funções é muito trabalhoso.

b▹ Chamemos o conjunto de frutas de F = {a,b,c,d} (a de abacaxi, b de banana, c de caqui e d de damasco) e o conjunto 

das frutas a serem escolhidas para a salada de S = {1,2, 3} (1 para a primeira escolha, 2 para a segunda e 3 para a 

terceira). Esses conjuntos agora estão ordenados. O problema agora pode ser visto da seguinte forma: como contar 

o número de funções estritamente crescente entre os conjuntos S e F ? 

Como estamos trabalhando com conjuntos que possuem poucos elementos, use diagramas de setas e tabelas para fazer 

essa contagem e você verá que a resposta é 4. Note que esse número é o número de combinações de um conjunto de 4 

elementos tomados 3 a 3.
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Portanto, contar o número de funções estritamente crescentes entre um conjunto orde-

nado A com n  elementos e um conjunto ordenado B com k  elementos ( )n k≤  é o mesmo 

que contar o número de combinações tomadas n  a n  de um conjunto com n  elementos. 
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6. Combinações com repetição e contagem de funções 
que nunca decrescem

A seguir, vamos apresentar um fato muito interessante. Formularemos dois problemas 

distintos e veremos que é possível aplicar o mesmo procedimento para resolvê-los.

1. Como calcular a quantidade de maneiras de escolher 3 refrigerantes, se temos à 

nossa disposição 4 marcas diferentes? Nesse caso, podemos escolher mais de um 

refrigerante de uma mesma marca.

2. Como você calcularia a quantidade de soluções positivas ou nulas da equação 

1 2 3 4 3?x x x x+ + + =  Uma solução para essa equação é uma quádrupla de núme-

ros inteiros positivos ou nulos, ordenados da forma 1 2 3 4( , , , )x x x x , cuja soma é igual 

a 3. A ordem dos números nessas soluções é importante. Por exemplo, (1,0,2,0) é 

uma solução distinta da solução (0,1,2,0) .

Na seção anterior, contamos as funções que crescem sempre, chamadas funções estri-

tamente crescentes. Nesta seção, contaremos funções que nunca diminuem, ou seja, as 

funções não-decrescentes.

Os exemplos a seguir ajudam no entendimento do conceito de função não-decrescente.

Com as letras em ordem alfabética e os números na ordem natural, as funções abaixo 

são não-decrescentes:

f: {1,2,3,4} → {a, b, c, d,e,f}

x g(x)

1 a

2 c

3 c

4 f

g: {a, b, c, d} → {1,2,3,4,5}

x f(x)

a 1

b 2

c 3

d 5

h: {a, b, c, d} → {1,2,3,4,5}

x h(x)

a 2

b 2

c 5

d 5

A contagem desse tipo de função é bem mais delicada que as anteriores e merece 

uma explicação mais detalhada.

Uma função f: A → B entre 
dois conjuntos ordenados A 
e B é não-decrescente se x < 
y então f(x) ≤ f(y), para todos 
x, y  A.

x

f(x)
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Comecemos com um exemplo simples.

Quantas funções não-decrescentes existem entre os conjuntos

A = {1, 2, 3} e B = {b1, b2, b3, b4}, ordenados como se apresentam?

Neste caso, como estamos trabalhando com conjuntos que possuem pequenas quan-

tidades de elementos, vamos descrever todas essas funções. 

Temos, portanto, 20 funções não-decrescentes entre os conjuntos A e B. Como obter 

esse número sem fazer listagens?

6.1. As soluções de uma equação e a contagem de certas escolhas

Você seria capaz de relacionar a contagem de funções não-decrescentes com o número 

de soluções da equação 1 2 3 4 3?x x x x+ + + =  Vejamos como fazer isso.

Cada uma dessas funções é caracterizada pelas setas que chegam aos elementos do 

conjunto B. Por exemplo, a primeira função do exemplo anterior tem três setas que chegam 

ao elemento b
1 
e nenhuma seta chega aos demais elementos de B. Já a segunda função 

da primeira linha tem duas setas chegando em b
1,
 uma seta chegando em b

2 
e nenhuma 

seta chegando em b
3
 ou em b

4
, e assim sucessivamente. 

Se denotarmos por x
i
 o número de setas que chegam a b

i
, (i = 1,2,3,4), teremos asso-

ciados os seguintes números às 20 funções descritas acima:

Observe que, em cada caso, a soma 1 2 3 4x x x x+ + +
 
é igual a 3. 
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Isto se deve ao fato de o domínio da função ter 3 elementos (pois cada função é caracte-

rizada por 3 setas partindo dos elementos de seu domínio). Assim, contar quantas funções 

não-decrescentes há entre os conjuntos A = {1, 2, 3} e B = {b
1,
 b

2,
 b

3
, b

4
} é o mesmo que 

contar quantas são as soluções inteiras positivas ou nulas da equação 1 2 3 4 3x x x x+ + + =
 
, 

pois cada função produz uma solução da equação e cada solução permite definir uma 

única função não-decrescente.

Temos, portanto, 20 soluções positivas ou nulas para a equação 1 2 3 4 3x x x x+ + + = .

O fato de que o número de soluções de uma equação e a contagem de funções não-

-decrescentes terem uma ligação tão estreita é surpreendente, não? Mas não é só isso. 

Outro problema, também aparentemente distinto, pode ser resolvido com essas mes-

mas ideias: o número de escolhas que podemos fazer quando selecionamos n  objetos de 

um conjunto de k  objetos, sem que a ordem dos elementos seja relevante e podendo-se 

repetir a escolha de elementos (combinações com repetição). 

Um problema desse tipo é o que aparece na primeira pergunta no início desta seção: 

Quantas são as maneiras de se escolher 3 refrigerantes, se temos à 

nossa disposição 4 marcas diferentes?

Note que alguém pode escolher mais de um refrigerante de uma mesma marca.

Um bom esquema da resposta seria:

Fazendo a identificação de b1 com , de b2 com , de b3 com  e de b4 com , 

o problema de contagem das escolhas de refrigerantes com repetição é essencialmente o 

mesmo que o da contagem de funções não-decrescentes entre A = {1, 2, 3} e B = {b1, b2, 

b3, b4}. Como já fizemos esses cálculos, temos 20 maneiras distintas para escolhermos os 

três refrigerantes e, assim, respondemos à pergunta.
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 Atividade 8  

Vamos resolver mais um problema que pode ser solucio-

nado através de uma das três maneiras anteriores. 

No laboratório de Biologia da professora Regina, nas-

ceram 6 ratinhos brancos idênticos. Para estudá-los, ela 

resolveu separá-los em dois grupos, colocando-os em duas 

gaiolas diferentes. De quantas maneiras diferentes isso pode 

ser feito?

Resposta comentada

A maneira mais natural de atacar esse problema é contar 

o número de ratinhos que podem participar de cada grupo.

Grupo 1 Grupo 2

1 5

2 4

3 3

4 2

5 1

Logo, teremos 5 maneiras de dividir os ratinhos. Porém, 

essa enumeração não levou em conta duas possibilidades: 

1▹ a primeira gaiola fica vazia e a segunda com 6 rati-

nhos;

2▹ a segunda gaiola fica vazia e a primeira com 6 rati-

nhos.

Levando em conta essas possibilidades, o número de 

maneiras de dividir os ratinhos cresce para 7.

 Atividade 8 

ser feito?

essa enumeração não levou em conta duas possibilidades: 

maneiras de dividir os ratinhos cresce para 7.
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Diante do que acabamos de ver, temos três problemas aparentemente bem distintos, 

que podem ser abordados por meio de uma mesma ideia:

Resolvendo um desses problemas, resolvemos todos eles. 
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Uma maneira matemática de encarar esse problema é contar o número de soluções 

da equação 1 2 6x x+ = . No caso 1), descrito antes, procuraríamos soluções positivas da 

equação; já no caso 2), nosso interesse incluiria, além das soluções positivas, a possibili-

dade de alguma das variáveis ser igual a zero. Como seria isso?

▹▹ Primeira solução:

Esse problema é tão simples que podemos enumerar todas as possibilidades. São elas:

1x 2x

1 5

2 4

3 3

4 2

5 1

Não consideramos aqui a possibilidade de um dos termos 1x ou 2x
 
ser zero. Por isso, 

obtivemos somente 5 soluções. Se algum dos termos pudesse ser zero, obteríamos mais 

duas soluções 1 0x =  e, 2 6x =  e 1 6x =  e, 2 0x = . 

Da forma que resolvemos o problema, dificilmente a enumeração de todas as solu-

ções pode ser usada em casos mais gerais, em que apareça um número muito grande de 

elementos. 

▹▹ Segunda solução (essa sim é a solução mais inteligente): 

Vamos desenvolver uma abordagem mais inteligente para darmos uma outra solução 

ao problema. Essa abordagem utiliza nossos conhecimentos anteriores sobre combinações 

(sem repetições) e a solução vai poder ser usada no caso geral.

Vamos a ela!

Desenhamos seis barras para representar o número 6:

|   |   |   |   |   |

Com essa representação, as possibilidades para colocar o sinal “+” entre essas barras 

são:

| + |   |   |   |   |

|   | + |   |   |   |

|   |   | + |   |   |

|   |   |   | + |   |

|   |   |   |   | + |
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Vamos agora extrair as informações dessa representação, encontrando as soluções 

numéricas da equação 1 2 6x x+ = .

▹▹ Primeira possibilidade:

 | + |    |    |    |    |  corresponde à solução  1 1x =  e 2 5x =

Note que 1 1x =  é o número de barras à esquerda do sinal +, e que 2 5x =  é o número 

de barras à direita do sinal +.

▹▹ Segunda possibilidade:

 |    | + |    |    |    |  corresponde à solução  1 2x =  e 2 4x = .

▹▹ Terceira possibilidade:

 |    |    | + |    |    |  corresponde à solução  1 3x =  e 2 3x = .

▹▹ Quarta possibilidade:

 |    |    |    | + |    |  corresponde à solução  1 4x =  e 2 2x = .

▹▹ Quinta possibilidade:

|    |    |    |    | + |  corresponde à solução  1 5x =  e 2 1x = .

Juntando essas possibilidades, encontramos todas as soluções inteiras positivas da 

equação.

Para usarmos a mesma ideia no caso geral, é importante observar que usamos ape-

nas um sinal + para separar as barras em dois grupos, pois procuramos dois números 

1x  e 2x  para solução da equação. Se estivéssemos procurando resolver a equação 

1 2 ... kx x x n+ + + = , com k  números, usamos 1k −  sinais + para separar n  barras. Por 

exemplo, se a equação envolvesse três números 1x , 2x  e 3x , usaríamos 2 sinais +, se a 

equação envolvesse quatro números, usaríamos 3 sinais +, e assim por diante. 

No caso anterior, como procuramos dois números 1x e 2x , usamos apenas 2 – 1 = 1 

sinal + e, como temos 6 barras, teremos 6 – 1 = 5 lugares disponíveis para colocar esse sinal. 

Ora, dentre os 5 lugares disponíveis, devemos escolher um deles para colocar o sinal +. 

Logo, o problema recai em um problema de combinação simples: “De quantas manei-

ras podemos escolher um elemento de um conjunto com 5 elementos?” Como já sabemos, 

tal tarefa pode ser feita de 1
5 5C =  maneiras diferentes. 

Será que esta técnica também funciona em outros casos? Vejamos. 

Quantas soluções positivas têm a equação 1 2 3 4 5 9?x x x x x+ + + + =
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Vamos dispor nove barras:

9 barras		   |     |     |     |     |     |     |     |     |

8 lugares		

Repetindo as ideias do caso anterior, como procuramos cinco números positivos 

1 2 3 4, , ,x x x x  e 5x , devemos usar 5 – 1 = 4 sinais + para colocarmos em 9 – 1 = 8 lugares 

entre as barras. 

▹▹ Uma possibilidade: 

|  +  |     |  +  |  +  |     |     |     |  +  |

			    1          2          1                4                 1

Corresponde à solução 1 1x = , 2 2x = , 3 1x = , 4 4x = , 5 1x = .

▹▹ Outra possibilidade:

|     |     |  +  |  +  |     |  +  |     |  +  |

			          3             1         2             2         1

Corresponde à solução 1 3x = , 2 1x = , 3 2x = , 4 2x = , 5 1x = .

Note que há muitas outras possibilidades, o que torna muito trabalhoso listarmos 

todas elas. 

Vamos pensar mais um pouco para darmos uma solução inteligente ao problema, que 

servirá para o caso geral:

▹▹ Temos 8 lugares para colocarmos 4 sinais de +, o que é o mesmo que escolher 4 

lugares dentre 8 lugares, ou ainda escolhermos 4 elementos de um conjunto com 

8 elementos. 

▹▹ Já que os sinais de + são todos iguais, podemos fazer isso sem nos preocuparmos 

com a ordem desses sinais. 

▹▹ Agora, é fácil ver que esse é um problema de combinação. Assim, o número total 

de soluções da equação é 4
8

8!
70

(8 4)!4!
C = =

−
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6.2. Resolvendo o caso geral
Pelo que acabamos de estudar, a solução do caso geral do problema anterior é:

Resultado Geral:

O número de soluções positivas da equação x
1
 + x

2
 + ... + x

k
 = n, n ≥ k  é

Como resolver o mesmo problema anterior, agora considerando as 

possibilidades em que os números ’s possam ser inteiros, positivos 

ou nulos?

 ▹ Problema geral: Qual é o número de soluções inteiras positivas ou nulas da 

equação 1 2 ... ?kx x x n+ + + =

 ▹ Solução: Façamos um pequeno truque, introduzindo a mudança 

1, 1,2,3,...,i iy x i k= + = . Recairemos, com isso, no caso anterior, o qual já 

resolvemos. Como 1 2 ... kx x x n+ + + = , somando 1 a cada ix , obteremos

1 2 1 2( 1) ( 1) ... ( 1) ...k kx x x x x x k n k+ + + + + + = + + + + = + ,

ou seja,

1 2 ... ky y y n k+ + + = + .

O número de soluções positivas da última equação é igual ao número de soluções 

positivas ou nulas de 1 2 ... kx x x n+ + + = . Pelo resultado geral obtido anteriormente, 

esse número é 1
1

k
n kC −

+ −

Resultado Geral:

O número de soluções positivas ou nulas da equação x
1
 + x

2
 + ... + x

k
 = n  é
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 Atividade 9  

Considere a seguinte pergunta: “Quantas 

são as maneiras de se escolher 2 calças, se te-

mos a nossa disposição 3 marcas diferentes?”

Dê uma resposta para essa pergunta: 

a▹ enumerando os casos; 

b▹ relacionando o problema com uma 

equação; 

c▹ contando o número de funções.

Resposta comentada

a▹ Chame o conjunto das marcas das calças de 

M={A,B,C}. Basta agora contar os casos dessa esco-

lha: (A,A), (A,B), (A,C), (B,B), (B,C) e (C,C). Note que 

(A,B)=(B,A), (A,C)=(C,A). 

 � Resposta: 6 maneiras.

b▹ Se o número de calças da marca A é 1x , o da 

marca B é 2x
 
e o da marca C é 3x

 
, o problema 

pode ser resolvido contando-se o número de 

soluções inteiras positi    vas ou nulas da equação 

1 2 3 2x x x+ + = . As soluções da equação são: 

(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,0,1).

 � Resposta: 6 maneiras. 

Compare ainda o resultado com a fórmula dada nesta 

seção, que conta o número de soluções positivas ou 

nulas dessa equação, no caso em que 3k =  e 2n = . A 

resposta é 3 1 2
3 2 1 4 6.C C−

+ − = =
 
maneiras. 

c▹ Chame o conjunto das marcas das calças de M = {A, 

B, C} e o conjunto das calças de K={c
1
, c

2
} (ou seja, c

1
 

é a calça escolhida em primeiro lugar e c
2 
a escolhida 

em segundo lugar) e os ordenemos conforme essa 

descrição. O problema reduz-se a contar o número 

de funções não-decrescentes entre K e M. Enumere-

mos essas funções por seus pares ordenados:

{(c
1
, A), (c

2
, A)},

{(c
1
, A), (c

2
, B)},

{(c
1
, A), (c

2
, C)},

{(c
1
, B), (c

2
, B)},

  {(c
1
, B), (c

2
, C)} e

{(c
1
, C), (c

2
, C)}.

 � Resposta: 6 funções não-decrescentes entre K e M.
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da equação 1 2 3 4 3?x x x x+ + + =  ?

Diante do que já vimos, a resposta é:

4 1 3
3 4 1 6 20.C C−

+ − = =  

que é precisamente o número de funções não-decrescentes de um conjunto com 3n =
elementos em um conjunto com 4k =  elementos. 

Nesse momento, é possível comparar essa solução com o número de escolhas de 3 refri-

gerantes dentre 4 disponíveis, você se lembra desse problema? As soluções são idênticas!
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6.3. Três aplicações interessantes do caso geral

A) O problema do parque de diversões

Um menino está em um parque de diver-

sões e resolve comprar dois bilhetes. No parque 

há 4 tipos de brinquedos:

  C  –  chapéu mexicano

  F  –  trem fantasma

M  –  montanha russa 

 R  –  roda gigante

O menino pode comprar dois bilhetes do 

mesmo tipo, se ele quiser utilizar o mesmo brinquedo duas vezes. Nessas condições, qual 

é o número total de possibilidades de compra dos bilhetes?

▹▹ Primeira solução:

É possível resolver esse problema simples enumerando todas as possibilidades. São 

elas: CC CF CM CR FF FM FR MM MR RR.

Observe que aí estão listadas todas as possibilidades e que CF é igual a FC, não impor-

tando a ordem do primeiro e do segundo bilhete, mas incluindo repetições. Se não fossem 

permitidas repetições, o resultado seria 2
4 6.C =  Entretanto, nesse cálculo não se incluiu a 

hipótese de o menino comprar dois bilhetes repetidos e, como listamos, o número correto 

de possibilidades é 10 = 6 + 4 (quatro repetições foram adicionadas).

▹▹ Segunda solução:

Esta é uma resolução sem que listemos as possibilidades. Sejam:

1x = o número de bilhetes de C – chapéu mexicano

2x = o número de bilhetes de F – trem fantasma

3x = o número de bilhetes de M – montanha russa

4x = o número de bilhetes de R – roda gigante

Como o número total de bilhetes que o menino quer comprar é 2, temos 

1 2 3 4 2x x x x+ + + = . Note que, como ele pode escolher o mesmo brinquedo duas vezes, 

devemos considerar a possibilidade de alguns dos números 1 2 3 4, , ,x x x x
 
serem nulos. 

Dessa forma, recaímos no problema geral, já estudado, de contar o número de solu-

ções positivas ou nulas de uma equação. Logo, devemos encontrar o número de soluções 

inteiras e não-negativas da equação 1 2 3 4 2x x x x+ + + = . Mas, pelo o que vimos acima, 

este número é precisamente 4 1 3
4 2 1 5 10C C−

+ − = = , como já esperávamos. 
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Observe como foi importante anteriormente resolvermos um problema um pouco mais 

teórico. Basta comparar agora as duas soluções apresentadas e observar que este segundo 

método de resolução pode ser generalizado, enquanto que a simples listagem pode tornar 

um problema praticamente impossível de ser resolvido, se o número de possibilidades for 

grande. 

B) O PROBLEMA DO MENINO GULOSO

Um menino muito guloso encontra-se no 

balcão de uma sorveteria que vende 7 opções 

diferentes de sabores. Ele tem dinheiro para 

comprar 4 sorvetes e pode escolher sabores 

repetidos. Nessas condições, quantos pedidos 

diferentes ele pode fazer?

Não basta apenas calcularmos o número 

de combinações de 7 sabores tomados 4 a 

4, pois o menino pode repetir os sabores. Usando a mesma técnica usada no problema 

anterior, considere:

1x  = o número de solicitações de sorvetes do 1º sabor;

2x  = o número de solicitações de sorvetes do 2º sabor;

3x  = o número de solicitações de sorvetes do 3º sabor;

4x  = o número de solicitações de sorvetes do 4º sabor;

5x  = o número de solicitações de sorvetes do 5º sabor;

6x  = o número de solicitações de sorvetes do 6º sabor; e

7x  = o número de solicitações de sorvetes do 7º sabor.

O número de soluções positivas ou nulas desta última equação é:

7 1 6
7 4 1 10 210.C C−

+ − = =

Se, em cada dia, ele escolher uma combinação diferente de sabores, demorará 210 

dias para saborear todas as combinações possíveis. Note que se ele não repetisse sabores, 

demoraria apenas 4
7 35.C =  dias para saborear todas as combinações sem repeti-las!

C) A PINTURA DOS VASOS

Com 2 cores diferentes, de quantas maneiras distintas podemos pintar 3 vasos, 

pintando cada vaso de uma única cor? E como seria resolver o mesmo problema com 

4 cores e 5 vasos?

Observe que mais de um vaso pode ser pintado de uma mesma cor. Estamos nova-

mente com um problema de combinações com repetição. Digamos que uma tinta seja 

da cor verde e a outra da cor vermelha. 
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x
1
 + x

2
 + x

3
 + x

4
 + x

5
 + x

6
 + x

7
 = 4
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 Atividade 10  

Nesta atividade final, preparamos um quadro-resumo dos vários tipos especiais de contagem que estudamos durante 

nossas primeiras três etapas. Sua tarefa é ajudar-nos a preenchê-lo, respondendo às perguntas em alguns quadros.

Obs.: Princípio Multiplicativo – Se uma decisão d
1
 puder ser tomada de m maneiras e se, uma vez tomada a decisão d

1
, 

outra decisão d
2
 puder ser tomada de n maneiras diferentes, então o número total de se tomarem as decisões é o produto 

de m por n.

ANÁLISE COMBINATÓRIA – QUADRO-RESUMO 

Respeitando a ordem

Simples Fórmula Com repetição Fórmula

Pe
rm

ut
aç

õe
s Ex.: De quantas maneiras 

diferentes podemos estacionar 6 
carros em 6 garagens?

Resp.:

O número de permutações de n  
elementos é:

Resp.:

Ex.: Quantos são os anagramas de 
URUGUAI que começam com I?

Resp.: 

O número de permutações de n
objetos, dos quais 1p  é igual a 

1a  , 

2p  é igual a 2a , ..., kp  é igual a 

ka  é:

Resp.:

 Atividade 10 

continua...

Se 1x  é o número de vasos pintados na cor vermelha e 2x
 
é o número de vasos pinta-

dos de verde, então 1 2 3x x+ = . O número de soluções positivas ou nulas dessa equação 

é 2 1 1
3 2 1 4 4.C C−

+ − = =

No caso de 4 cores e 5 vasos, o número de combinações possíveis é igual ao nú-

mero de soluções positivas ou nulas da equação 1 2 3 4 5x x x x+ + + = , que é dado por 
4 1 3
4 5 1 8 56.C C−

+ − = =
Esses exemplos mostram a aplicabilidade das combinações com repetição e ilustram, 

mais uma vez, como uma mesma ideia matemática pode ser abordada de várias manei-

ras. Dessa forma, pudemos analisar melhor a contagem do número de combinações com 

repetição, que é um assunto pouco abordado em sala de aula. 

A seguir, você poderá fazer uma atividade que resume todo o conteúdo de Combi-

natória que estudamos nas Etapas 1, 2 e 3. Como a Etapa 4 abordará, principalmente, o 

conceito de Probabilidade, essa atividade também servirá como um bom fechamento de 

todo o estudo de Análise Combinatória feito até aqui em nossa disciplina. 
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Respeitando a ordem

Simples Fórmula Com repetição Fórmula

Ar
ra

nj
os

Ex.: De quantas maneiras 
diferentes podemos estacionar 6 
carros em 3 garagens?

Resp.:

O número de arranjos simples de
n  elementos, tomados p  a p  é 
dado por:

Resp.:

Ex.: Qual é o número de placas 
de carro com 3 letras e 4 dígitos, 
supondo que o alfabeto tenha 26 
letras?

Resp.:

O número de arranjos com 
repetição de n  elementos, 
tomados p  a p  é:

Resp.:

Quando a ordem não é importante

Simples Fórmula Com repetição Fórmula

Co
m

bi
na

çõ
es

Ex.: Quantas saladas de frutas 
(com frutas diferentes) podemos 
fazer utilizando 3 frutas se 
dispomos de 5 tipos diferentes de 
frutas?
Resp.:

O número de combinações de n  
elementos, tomados p  a p , é 
dado por:

Resp.:

Ex.: De quantos modos diferentes 
podemos comprar 4 refrigerantes 
em um bar que vende 2 tipos de 
refrigerantes?

Resp.:

O número de combinações com 
repetição de n  elementos, 
tomados p  a p  é:

Resp.:

Procure completar o quadro sem ver as soluções. Vale a pena tentar!

Resposta comentada

ANÁLISE COMBINATÓRIA – QUADRO-RESUMO 

Respeitando a ordem

Simples Fórmula Com repetição Fórmula

Pe
rm

ut
aç

õe
s

Ex.: De quantas maneiras 
diferentes podemos estacionar 6 
carros em 6 garagens?

Resp.: 6!

O número de permutações de n  
elementos é

( )
( )

! . 1 .

2 ...3.2.1

n n n

n

= −

−

Ex.: Quantos são os anagramas de 
URUGUAI que começam com I?

Resp.: 120

O número de permutações de n  
objetos, dos quais 1p  é igual a 1a  , 

2p  é igual a 2a , ..., kp  é igual a 

ka  é:

[ ]1 2 3/ ! ! !... !kn p p p p

Ar
ra

nj
os

Ex.: De quantas maneiras 
diferentes podemos estacionar 6 
carros em 3 garagens?

Resp.: 6.5.4 = 120

O número de arranjos simples de
n  elementos, tomados p  a p  é:

 !

( )!
p

n

n
A

n p
=

−

Ex.: Qual é o número de placas 
de carro com 3 letras e 4 dígitos, 
supondo que o alfabeto tenha 26 
letras?
Resp.: 26.26.26.10.10.10.10 = 
175.760.000

O número de arranjos com 
repetição de n  elementos, 
tomados p a p é: pn

Quando a ordem não é importante

Simples Fórmula Com repetição Fórmula

Co
m

bi
na

çõ
es

Ex.: Quantas saladas de frutas 
(com frutas diferentes) pode-
mos fazer utilizando 3 frutas se 
dispomos de 5 tipos diferentes de 
frutas?
Resp.: 10

O número de combinações de n  
elementos, tomados p  a p , é 
dado por:

!

( )! !
n
p

n
C

n p p
=

−

Ex.: De quantos modos diferentes 
podemos comprar 4 refrigerantes 
em um bar que vende 2 tipos de 
refrigerantes?

Resp.: 5

O número de combinações com re-
petição de n  elementos, tomados
p a p  é:

1
1

( 1)!

( 1)! !
n
n p

n p
C

n p
−
+ −

+ −=
−
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7. Conclusão
A Análise Combinatória envolve raciocínios presentes em vários conteúdos da Mate-

mática. Nesta etapa, pudemos comprovar esse fato por meio da contagem de funções. 

Contar funções ou contar escolhas? Dependendo do problema e do contexto, vimos 

que tanto faz optar por qualquer dessas contagens, o resultado será o mesmo. Essa opção 

depende de como alguém se sente mais seguro para enfrentar um problema. 

Esperamos que, a partir dessas ideias, você explore mais as relações existentes entre a 

contagem de funções e a Análise Combinatória. Mais ainda, esperamos que você se divirta, 

identificando relações entre a Análise Combinatória e outros conteúdos matemáticos, e 

possa se beneficiar muito de tudo que foi estudado até agora. 

8. Resumo
▹▹ Antigamente, os meios criptográficos utilizados para o envio de mensagens secretas 

eram baseados apenas em chaves secretas. 

▹▹ O Sistema RSA trouxe uma grande inovação ao utilizar duas chaves: uma pública, 

usada para codificar, e outra secreta, usada para decodificar. A chave pública pode 

ser conhecida por qualquer pessoa, mas a secreta só é conhecida por aqueles que 

participam do processo de recepção da mensagem. 

▹▹ A segurança do sistema RSA está baseada no fato de ser muito difícil alguém desco-

brir a chave decodificadora, mesmo que conheça a chave codificadora. Isso está ga-

rantido pela maneira que as chaves são formadas, utilizando números muito grandes 

que são tecnicamente quase impossíveis de serem decompostos em fatores primos. 

▹▹ No Sistema RSA, uma chave é uma função bijetora de um conjunto finito em outro 

conjunto finito. Como toda função bijetora possui uma função inversa, toda chave 

codificadora possui uma chave decodificadora. 

▹▹ O número de funções de um conjunto A com n  elementos em um conjunto B com 

k  elementos é nk . 

▹▹ O número de funções bijetoras de um conjunto A com n  elementos em um con-

junto B também com n  elementos é !n . Esse também é o número de permutações 

simples de n  elementos.

▹▹ O número de funções injetoras de um conjunto A com n  elementos em um conjunto 

B com k  elementos, em que n k≤ , é 
!

( )!
n
k

k
A

k n
=

−
. Esse também é o número de 

arranjos de k  elementos tomados n  a n , sem repetição.
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▹▹  O número de funções estritamente crescentes de um conjunto ordenado A com

n elementos em um conjunto ordenado B com k  elementos, em que n k≤ , é 

!

!( )!

k

n n k−
. Esse também é o número de combinações de k  elementos tomados 

n  a n , sem repetição.

▹▹ O número de funções não decrescentes de um conjunto ordenado A com n

elementos em um conjunto ordenado B com k  elementos (em que n k≤ ) é 
( 1)!

( 1)! !

n k

k n

+ −
−

. Esse também é o número de soluções positivas ou nulas da equação 

1 2 ... kx x x n+ + + = . Esse é ainda o número de combinações com repetição de k  

elementos tomados n  a n .
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9. Anexo

Contagem do número de funções sobrejetoras

Durante essa Etapa, dedicamos uma seção para contar funções bijetoras e outra para 

contar funções injetoras. Talvez você tenha se perguntado: e as funções sobrejetoras? Não 

vamos contá-las também?

A título de curiosidade, vamos mostrar como contar funções sobrejetoras:

Se A tem n  elementos e B tem k elementos, e n k≥ , quantas funções sobreje-

toras existem de A em B?

Vamos subtrair do total de funções aquelas que não são sobrejetoras. O número 

total de funções de A em B é nk .

Sejam b
1
, b

2
, b

3
, ..., b

n
 os elementos de B e seja iC  = { funções f: A  B tais que f-1({b

i
}) 

= Ø}. Note que se f está em iC , então o ponto b
i
 não está na sua imagem.

Assim, o conjunto das funções que não são injetoras é 1 2 ... kC C C∪ ∪ ∪ . 

Pelo princípio da inclusão e exclusão, o número de elementos deste conjunto é:

1 2( ... )kn C C C∪ ∪ ∪ =

1 1 1

( ) ( ) ( ) ...
k k k

i i j i j l
i i j i j l

n C n C C n C C C
= ≤ < ≤ < <

− ∩ + ∩ ∩ −∑ ∑ ∑

Mas,

( ) ( 1) , ( ) ( 2) , ...n n
i i jn C k n C C k= − ∩ = −

E, portanto, denotando k
iC  por 

n

i

 
  

, temos:

1 2( ... ) ( 1) ( 2) ( 3) ... ( )
1 2 3

n n n n
k

k k k k
n C C C k k k k k

k

       
∪ ∪ ∪ = − − − + − −              

Ou seja,

1
1 2

1

( ... ) ( 1) ( )
k

i n
k

i

k
n C C C k i

i
−

=

 
∪ ∪ ∪ = − −  ∑

Logo, o número total de funções sobrejetoras é:

1

1 0

( 1) ( ) ( 1) ( )
k k

n i n i n

i i

k k
k k i k i

i i
−

= =

   
− − − = − −      ∑ ∑

A B

f

Esse princípio generaliza, para muitos 
conjuntos, a contagem do número 
de elementos da união de dois con-
juntos quaisquer (disjuntos ou não): 
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Nas etapas anteriores da disciplina Matemática Discreta, 
você estudou os fundamentos da Análise Combinatória 
e estabeleceu relações entre esse conteúdo matemático 
e a Criptografia. Nesta etapa, iremos desenvolver outro 
conteúdo matemático – a Teoria de Probabilidades – que 
pode ser usada na decifração de sistemas criptográficos 
mais elaborados que os já analisados. 

Para iniciar, gostaríamos que você refletisse sobre as 
seguintes questões:

▹▹ Você sabia que a Teoria das Probabilidades forneceu 
o arcabouço teórico para a quebra de muitos códigos 
secretos alemães na época da Segunda Guerra Mundial?

▹▹ Sabia também que os computadores surgiram para 
auxiliar a quebra dos sistemas criptográficos gerados 
por máquinas nazistas?

▹▹ Você saberia explicar para seus alunos do Ensino Médio 
como isso foi feito?

Etapa IV 

Combinatória e probabilidade

Sv
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Atividades e problemas envolvendo 
combinatória e probabilidade

Matematica_Discreta.indd   109 15/08/13   17:46



Matematica_Discreta.indd   110 15/08/13   17:46



ht
tp

://
es

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/A

rc
hi

vo
:L

or
en

z-
SZ

42
-2

.jp
g

ht
tp

://
es

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/C

%
C3

%
B3

di
go

_L
or

en
z

1. Máquinas que criptografam 
A criptografia sempre esteve presente nas guerras, infelizmente. Du-

rante a Segunda Guerra Mundial, por exemplo, proliferaram máquinas 

especialmente construídas para uma comunicação mais rápida e segura 

entre as tropas. Os alemães construíram várias delas, dentre as quais se 

destaca a máquina Lorenz, usada por membros de alta patente do exército 

nazista.

Essa máquina gerava mensagens com um código diferente dos já utili-

zados até a época da Segunda Guerra. Entretanto, com o auxílio da Teoria 

das Probabilidades, os ingleses conseguiram decifrar os códigos gerados, 

analisando as mensagens codificadas que conseguiam interceptar. E é 

incrível como conseguiram fazer isso sem nunca ter acesso a nenhuma dessas máquinas! 

Como fizeram tal façanha? Bem, devido à complexidade dos mecanismos internos des-

sas máquinas, a simples análise da frequência das letras não se mostrou uma ferramenta 

eficaz para a decifração de mensagens.

O código gerado não se assemelhava mais ao modelo criptográfico de Júlio César, que 

vimos na Etapa 1 de nossa disciplina. Nem mesmo técnicas mais sofisticadas de Análise 

Combinatória se mostraram adequadas a esse propósito. Foi preciso empregar outro co-

nhecimento: a Teoria da Probabilidade.

Nesta última etapa da disciplina Matemática Discreta, veremos como essa teoria foi 

importante para abreviar a duração da Segunda Grande Guerra, pois permitiu a quebra 

dos códigos alemães gerados por máquinas criptográficas. 

Para começar, vamos conhecer um pouco sobre as máquinas de Lorenz.

2. A máquina dos generais nazistas
Durante a Primeira e a Segunda Guerras Mundiais 

foram construídos muitos artefatos mecânicos para 

o envio de mensagens secretas. Vamos estudar uma 

simplificação de uma dessas máquinas utilizada pelos 

alemães, a fim de entender a matemática subjacente 

a ela. 

A máquina de Lorenz (modelo SZ 42) possuía 12 

rotores que eram usados para embaralhar as letras 

de uma mensagem. Para criptografar mensagens, a 

máquina operava da seguinte maneira:

▹▹ As letras da mensagem eram transformadas em números binários;

▹▹ Esses números eram somados, por meio da aritmética binária, a outros números 

produzidos pela máquina, obtidos pela rotação de suas engrenagens;

▹▹ A mensagem criptografada era transformada em pulsos elétricos, enviada como uma 

mensagem telegráfica e impressa em uma fita perfurada.
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Vejamos isto com mais detalhes:

Inicialmente as letras eram transformadas em números: cada letra era codificada por 

um número binário de cinco algarismos, totalizando 25 = 32 caracteres diferentes, de 

acordo com a seguinte tabela:

TABELA 1

a 11000 b 10011 C 01110 D 10010 e 10000 F 10110 G 01011

H 00101 I 01100 J 11010 K 11110 l 01001 M 00111 N 00110

O 00011 P 01101 Q 11101 R 01010 S 10100 T 00001 U 11100

V 01111 W 11001 X 10111 Y 10101 Z 10001

9 00100 8 11111 + 11011 4 01000 3 00010 / 00000

Observe que, além das 26 letras usuais, seis outros símbolos eram utilizados, ou como 

sinais de pontuação ou para controlar a impressão. O significado desses últimos seis sím-

bolos não é o usual. Por exemplo, o símbolo + não denota a adição e o algarismo 9 na 

verdade era usado para separar palavras (espaço em branco).

Se apenas esta codificação fosse feita, o código seria facilmente quebrado pelo método 

do estudo da frequência das letras, como vimos na Etapa 1 desta disciplina.

Para evitar isto, quando uma letra era introduzida na máquina 

apertando-se uma tecla correspondente, os rotores giravam e doze 

novos números eram produzidos.

Esses números somados produziam outro número que correspondia a uma letra, de 

acordo com a Tabela 1. Chamaremos essa letra produzida internamente pela máquina 

de “letra-chave”. A aritmética das adições feitas pela máquina, entretanto, não é a usual. 

Trata-se da adição binária:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

Em seguida, a máquina efetuava automaticamente a soma da letra digitada com a 

letra-chave e fornecia como saída uma nova letra (correspondente a um novo número). 

Essa letra final é o resultado criptografado da letra inicialmente digitada.
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Para criptografarmos, por exemplo, a letra P, apertamos a tecla 

correspondente a ela. Quando esta tecla é acionada, as engrenagens 

da máquina giram.

Suponhamos que a letra-chave M é gerada internamente na máquina. Os números 

binários correspondentes a essas duas letras (a letra original P e a letra-chave M) são 

somados por adição binária, gerando outro número que corresponde à letra R, que será 

transmitida na mensagem secreta. 

Nesse caso, poderíamos esquematizar o processo de codificação da seguinte forma:

Como consequência, a letra P fica codificada como R. 

Da próxima vez que necessitarmos criptografar P, apertamos 

novamente a tecla correspondente a ela. as engrenagens giram e uma 

nova letra (talvez diferente de M) é gerada internamente.

Logo, P talvez não seja mais criptografada como R, mas sim como uma nova letra ou 

símbolo. Isto faz com que o código fique imune à análise de frequência de letras. 

As somas binárias de todos os símbolos estão descritas na tabela abaixo. A leitura da 

tabela deve ser feita da seguinte maneira: a soma de uma letra da primeira coluna (1ª 

parcela) com outra da primeira linha (2ª parcela) está no encontro da linha com a coluna 

correspondente.
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Tabela 2

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 8 + 4 3 /
A / G F R 4 C B Q S 3 N Z 8 K + Y H D I W 9 X T V P L U M O E J A
B G / Q T O H A F 8 L P J S Y E K C W M D V U R 9 N 3 X I 4 + Z B
C F Q / U K A H G 3 S E M L 4 P O B 9 J V D T X W + 8 R Z Y N I C
D R T U / 3 9 W X K 4 I + Y S Z 8 V A N B C Q G H M O F P L J E D
E 4 O K 3 / N + Y U R C W X F B Q P J 9 Z I 8 L M H T S V G A D E
F C H A 9 N / Q B J I 4 8 Z E Y + G U 3 X R W V T O M D L P K S F
G B A H W + Q / C M Z Y 3 I P 4 N F T 8 R X 9 D U K J V S E O L G
H Q F G X Y B C / L 8 + I 3 O N 4 A V Z 9 W R U D E S T J K P M H
I S 8 3 K U J M L / F D H G R V T Z N A P E O Y + W Q 4 B X 9 C I
J 3 L S 4 R I Z 8 F / 9 B Q U W X M E C + N Y O P V G K H T D A J
K N P E I C 4 Y + D 9 / X W A Q B O S R 8 3 Z M L G V J T H F U K
L Z J M + W 8 3 I H B X / C V R 9 S O Q 4 Y N E K U A P F D T G L
M 8 S L Y X Z I 3 G Q W C / T 9 R J P B N + 4 K E D F O A U V H M
N K Y 4 S F E P O R U A V T / H G + I D M J L 8 Z B X 3 W Q C 9 N
O + E P Z B Y 4 N V W Q R 9 H / C K L X 3 8 I J S F D M U A G T O
P Y K O 8 Q + N 4 T X B 9 R G C / E M W I Z 3 S J A U L D F H V P
Q H C B V P G F A Z M O S J + K E / X L U T D 9 R 4 I W 3 N Y 8 Q
R D W 9 A J U T V N E S O P I L M X / K G F H B Q 8 + C Y Z 3 4 R
S I M J N 9 3 8 Z A C R Q B D X W L K / Y 4 + P O T H E G V U F S
T W D V B Z X R 9 P + 8 4 N M 3 I U G Y / Q C A F S E H K J L O T
U 9 V D C I R X W E N 3 Y + J 8 Z T F 4 Q / B H G L P A O M S K U
V X U T Q 8 W 9 R O Y Z N 4 L I 3 D H + C B / F A J K G E S M P V
W T R X G L V D U Y O M E K 8 J S 9 B P A H F / C I 4 Q N 3 Z + W
X V 9 W H M T U D + P L K E Z S J R Q O F G A C / 3 N B 4 I 8 Y X
Y P N + M H O K E W V G U D B F A 4 8 T S L J I 3 / 9 Z R C Q X Y
Z L 3 8 O T M J S Q G V A F X D U I + H E P K 4 N 9 / Y C R W B Z
9 U X R F S D V T 4 K J P O 3 M L W C E H A G Q B Z Y / + 8 I N 9
8 M I Z P V L S J B H T F A W U D 3 Y G K O E N 4 R C + / 9 X Q 8
+ O 4 Y L G P E K X T H D U Q A F N Z V J M S 3 I C R 8 9 / B W +
4 E + N J A K O P 9 D F T V C G H Y 3 U L S M Z 8 Q W I X B / R 4
3 J Z I E D S L M C A U G H 9 T V 8 4 F O K P + Y X B N Q W R / 3
/ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 9 8 + 4 3 /

Observe que a diagonal principal desta tabela é formada apenas pelo símbolo /. Isto 

se deve ao fato de que a soma binária de parcelas iguais sempre resulta em 00000, o qual 

é codificado pelo símbolo /. Vejamos um exemplo:

Qual é o resultado da soma binária de R com R? Como R é representado pelo número 

01010 e

0 1 0 1 0

+ 0 1 0 1 0

0 0 0 0 0

então, R + R = /. Não há nada de especial com a letra R, qualquer símbolo somado com 

ele mesmo resultará em /.

Isto, como veremos, será importante na quebra do código da máquina, através da 

análise das mensagens por ela geradas. 
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Os alemães, por sorte dos aliados, cometiam descuidos ao cifrar suas mensagens. 

Eles usavam várias palavras com letras repetidas e costumavam usar espaços duplos entre 

frases e palavras. Por conta disso, muitos símbolos / estavam, de algum modo, presentes 

nas mensagens criptografadas. 

Os aliados perceberam que, se soubessem como as engrenagens estavam dispostas no 

início do processo, conseguiriam prever qual seria seu comportamento futuro, devido ao 

funcionamento automático das engrenagens. Não havia, assim, o fator sorte ou escolhas 

arbitrárias. A máquina não fazia escolhas, apenas realizava movimentos de rotação previ-

síveis e completamente determinados. Basta conhecer qual é a posição inicial dos rotores 

para conhecer todas as suas posições futuras.

Nesse ponto é que a Teoria da Probabilidade entra em cena, buscando prever qual a 

posição inicial dos rotores. Mais adiante explicaremos isso detalhadamente.

 Saiba Mais  Uma simulação simplificada da máquina de Lorentz

Veja na figura o esquema de uma simulação simplificada da máquina de Lorenz: ela é formada por apenas duas 

engrenagens, uma grande (Γ) com 14 primeiras letras do alfabeto e outra pequena (Π) com quatro letras: dois 

A’s e dois B’s. Na posição inicial, duas engrenagens (no caso Γ = 1 e Π = 4) determinam a codificação de todas as 

demais letras.

B

A

A

B

B
A

C

D

E

F

G
H

I

J

K

L

M

N

1
2

3

4

5

6

79

10

11 

12 

13

14 

1

2

3

4

     + A + B
Saída: letra codificada =  

letra a ser codificada + chave 

Máquina na posição inicial 

Γ  = 1, Π  = 4 

Engrenagem Γ

Engrenagem Π

8

Entrada: letra a 

ser codificada 

Os números marcam a posição das engrenagens; a maior tem 14 posições possíveis e a menor somente 4. Veja 

também na primeira foto da máquina de Lorentz, apresentada anteriormente, os números que determinam as 

posições dos rotores.

 Saiba Mais 

Uma vez determinado como as engrenagens estão dispostas inicialmente, toda a men-

sagem pode ser lida sem problemas. 

Os ingleses encontraram uma maneira de descobrir a posição inicial das engrenagens 

a partir de uma mensagem criptografada. Fizeram isso analisando mensagens longas, pois 

assim podiam usar a Teoria da Probabilidade. 
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do descuido que os alemães tinham 

em criptografar textos com muitos 

símbolos repetidos. Eles tiveram que 

testar todas as possibilidades para as 

posições iniciais das 12 engrenagens 

e, para auxiliá-los, desenvolveram os 

primeiros computadores com dispo-

sitivos eletromecânicos.

A fim de avançar na decifração 

do código da máquina de Lorenz, 

passaremos agora ao estudo da Teoria Básica das Probabilidades.

3. A matemática do acaso
Em nosso dia a dia, é comum tentarmos adivinhar qual a melhor alternativa diante de 

mais de uma opção que tenhamos de escolher.

É natural perguntas como:

Quais as chances de meu time ser campeão? Quais as possibilidades de 

alguém ganhar no próximo sorteio da Mega Sena? e meu candidato, 

quais as chances de ele ser eleito na próxima eleição? 

Basta uma olhada nas revistas, jornais e telejornais que diariamente acessamos, para 

encontrarmos números que tentam responder a essas perguntas, dando-nos um indício 

das chances que temos em acertar ou errar nas nossas escolhas. Esses fatos fazem parte 

do nosso cotidiano.

Nesta seção, aprenderemos uma maneira de medir matematicamente as possibilida-

des de certos fatos virem a acontecer. Assim você vai entender como foi possível quebrar 

o código da máquina Lorenz e também como são calculados os números associados a 

incertezas que são divulgadas pela mídia. 

A parte da Matemática que tenta responder a todas essas perguntas chama-se Teoria 

das Probabilidades. Essa teoria estuda modelos que descrevem fenômenos aleatórios (que 

ocorrem ao acaso) e serve para medir a chance de ocorrência desses fenômenos. 
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 Janela Pedagógica  Probabilidade e Análise Combinatória na escola

Buscando estabelecer uma relação entre esta etapa da nossa disciplina com as etapas anteriores, convém ressaltar 

que os textos didáticos, em geral, trazem os estudos sobre probabilidade após o desenvolvimento de técnicas de 

contagem oriundas da Análise Combinatória. Quanto a isso, não faremos exceção em nossa disciplina. Embora se-

jam áreas distintas, elas estão intimamente ligadas, como veremos no decorrer das próximas seções. Essa relação 

se dá, sobretudo, quando estudamos fenômenos discretos provenientes de situações em que o espaço amostral (o 

conjunto de todas as possibilidades de um estudo) é finito e os fenômenos envolvidos são equiprováveis.

A Teoria das Probabilidades é, entretanto, mais abrangente e se aplica 

também em situações descritas por variáveis contínuas (que variam 

no conjunto dos números reais) como, por exemplo, no problema dos 

jogos dos discos desenvolvido no Módulo 1, em que foram realizadas 

experiências envolvendo probabilidade geométrica.

Nesta etapa de nossa disciplina, entretanto, usaremos a Teoria das 

Probabilidades em situações discretas onde são necessários métodos de contagem, 

já estudados nas etapas anteriores em Análise Combinatória.

 Janela Pedagógica 
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A origem da Teoria das Probabilidades é relativamente recente e esteve ligada, desde 

o início, aos jogos de azar. Por isso, os primeiros estudos probabilísticos descreviam situa-

ções em que os eventos eram igualmente prováveis (equiprováveis), ou seja, a chance de 

qualquer um deles ocorrer seria a mesma. Por exemplo, a chance de sair cara ou coroa no 

lançamento de uma moeda é a mesma se a moeda for honesta; a chance de sair qualquer 

número da Mega Sena é a mesma etc.

A seguir, vamos apresentar alguns experimentos, na intenção de introduzir a Teoria 

das Probabilidades.

3.1. O acaso em toda parte

Ao iniciar esta apresentação, é importante ressaltar que, quando realizamos um expe-

rimento, constituído de eventos elementares, devemos selecionar com precisão o conjunto 

de todos os casos possíveis desses eventos. Esse conjunto é chamado espaço amostral e é 

usualmente denotado pela letra grega Ω  (ômega maiúsculo). 

A menos que explicitemos o contrário, todos os eventos a seguir são considerados 

aleatórios e os objetos presentes nesses eventos são honestos. Ou seja, os dados não são 

viciados, nem as moedas têm apenas cara em ambos os lados ou apenas coroa em ambos 

os lados, por exemplo. 
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No jogo do par ou ímpar, se x  for o número escolhido por uma pessoa e y  o número 

escolhido por outra pessoa, representaremos por ( , )x y  os números escolhidos em uma 

jogada. Em nosso caso, não consideraremos que se possa escolher o zero. Nesse caso o 

espaço amostral é:

1

(1,1) (1,2) ... (1,5)

(2,1) (2,2) ... (2,5)

(3,1) (3,2) ... (3,5)

(4,1) (4,2) ... (4,5)

(5,1) (5,2) ... (5,5)

 
 
  Ω =  
 
 
  

No lançamento de uma moeda, se C=cara e K=coroa, temos 

como espaço amostral 2Ω
 
= {C, K}.

No lançamento simultâneo de duas moedas, o espaço amostral é:

3Ω
 
= {(K, K), (K, C), (C, K), (C, C)}.

Na Mega Sena, devemos escolher 6 dentre 60 dezenas. O espaço amostral será o nú-

mero de subconjuntos possíveis de 6 elementos que podemos formar de um conjunto de 

60 elementos. Observe que, embora seja inviável listar todas as possibilidades, a Análise 

Combinatória nos permite responder a seguinte pergunta:

 ▹ “Quantos subconjuntos de 6 elementos podemos formar de um conjunto com 60 

elementos?”

Basta calcularmos a combinação:

6
60

60! 60 59 58 57 56 55
50.063.860

54!6! 720
C

× × × × ×= = =

Esse é o número de elementos do espaço amostral da Mega Sena, que chamaremos 

de 4Ω .

 ▹ Ao selecionarmos dois símbolos para serem adicionados segundo a soma binária na 

máquina de Lorenz, quantas são as possibilidades de escolha?

Como os dois símbolos podem ser repetidos, há 32. 32 = 1024 possibilidades (permuta-

ção com repetição). Ou seja, em experimentos que envolvem a soma binária de símbolos 

da máquina de Lorenz, o espaço amostral que denotaremos por 5Ω  tem 1024 elementos. 

Isso quer dizer que 1024 eventos são possíveis, como podemos observar na Tabela 2, da 

Seção 2. 
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3.2. Voltando aos exemplos: os casos favoráveis
Dentre os casos possíveis de um espaço amostral Ω , estão aqueles que escolhemos ou 

que desejamos que ocorram. Estes são chamados casos favoráveis. Vejamos nos exemplos 

já apresentados algumas situações favoráveis.

▹▹ Se alguém diz que vai dar 7 à soma dos números do jogo do par e ímpar, os casos 

favoráveis do espaço amostral 1Ω  para ocorrência desse evento estão no conjunto: 

A
1
={(2,5),(3,4), (4,3),(5,2)}.

▹▹ Se no espaço amostral 2Ω , escolhemos cara, o caso favorável é apenas A
2 
= {C}. 

▹▹ Se jogarmos duas moedas e esperarmos que ocorram duas coroas, os casos favorá-

veis no espaço amostral 3Ω  estão no conjunto A
3 
= {(K,K)}.

▹▹ Se na Mega Sena acumulada do dia 27 de janeiro de 2010, você tivesse jogado os 

números 48 – 32 – 29 – 55 – 27 – 28, o seu caso favorável no enorme espaço amostral 

4Ω
 
seria o conjunto A

4 
= {48, 32, 29, 55, 27, 28}. 

Você bem que deveria ter jogado esses números, pois foram os sorteados e ninguém ga-

nhou naquele sorteio, acumulando o prêmio em 9 milhões de reais para o sorteio seguinte. 

▹▹ Se quisermos encontrar pares de símbolos repetidos na máquina de Lorenz, basta 

verificar se sua soma resulta no símbolo /. Verificando a Tabela 2, pode-se constatar 

que o conjunto desses pares, que denotaremos por A
5
,
 
tem 32 elementos.

Diante dos conceitos de espaço amostral, casos possíveis e casos favoráveis, chegou o 

momento de estabelecermos um conceito que possibilite medir as chances de acertarmos 

em uma escolha: o conceito de probabilidade. 

Faremos isto em duas etapas. Em um primeiro momento, considerando o estudo de 

fenômenos equiprováveis e, posteriormente, considerando o caso geral.

4. Quais são as chances?
Para definir o conceito de probabilidade, vamos denotar o número de elementos de 

um conjunto B  pelo símbolo # B . 

Quando um espaço amostral é formado por eventos elementares, cada um com a 

mesma chance de ocorrer, esses eventos são chamados equiprováveis.

No caso de eventos equiprováveis, a probabilidade de ocorrer um caso favorável no 

conjunto de casos favoráveis A, dentre os casos possíveis de um espaço amostral Ω , é 

definida por:
número de casos favoráveis #

( )
número de casos possíveis #

A
P A = =

Ω A
ut

or
 d
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Tendo isso em mente, vejamos o que ocorre com os exemplos da seção anterior. Con-

siderando que todos eles envolvem eventos equiprováveis, podemos aplicar a definição 

de probabilidade que acabamos de apresentar.

 ▹ Qual a probabilidade de o resultado do jogo do par e ímpar dar 7?

Nesse caso, os casos prováveis são 1A ={(2,5),(3,4),(4,3),(5,2)} e os casos possíveis do 

espaço amostral 1Ω , já descrito, têm 25 (= 5x5) casos possíveis. 

A partir dessas informações, a probabilidade do resultado do jogo ser 7 é:

1

1

# 4
( 7) 0,16

# 25

A
P soma ser = = =

Ω

É comum a probabilidade ser expressa em porcentagem. Logo, a probabilidade de o 

resultado no jogo do par ou ímpar sair 7 é 16%.

 ▹ Ao jogar uma moeda, qual a probabilidade de sair cara?

Nesse caso:
2

2

# 1
( ) 0,5

# 2

A
P cara = = =

Ω

Logo, a probabilidade de sair cara é 50%. Com cálculo análogo, vê-se que a probabi-

lidade de dar coroa é também de 50%. Assim, comprovamos que as chances de sair cara 

ou coroa são iguais.

 ▹ Ao jogar duas moedas simultaneamente, qual a probabilidade de dar duas caras?

Nesse caso, o conjunto dos casos favoráveis é A
3
={(K,K)}. Logo,

3

3

# 1
( ) 0,25

# 4

A
P duas caras = = =

Ω

e a probabilidade de dar duas caras é 25%.

 ▹ Qual a probabilidade de ganhar na Mega Sena com um jogo simples de 6 números?

Nesse caso, #A
4 
= 1, pois dentre as # 3Ω

3 
= 50.063.860 possibilidades do espaço amostral, 

escolhemos apenas uma.

Daí:

4

4

# 1
( ) 0,00000002

# 50.063.860

A
P ganhar na MegaSena = = =

Ω

Ou seja, a chance de ganhar na Mega Sena com a aposta mais simples é de 0,000002%. 

Realmente, muito baixa. Não é à toa que é difícil ganhar nesse jogo! 

A
nd

re
w

 C
.  

/  
SX

C 
M

ar
ia

 L
i  

/  
SX

C 
M

ar
ia

 L
i  

/  
SX

C 

D
im

itr
is

 P
et

rid
is

  /
  S

XC
 

120 Módulo II  –  Matemática Discreta ▷ Etapa IV

Matematica_Discreta.indd   120 15/08/13   17:46



 ▹ Qual é a probabilidade de, ao alimentarmos a máquina de Lorenz com um símbolo 

qualquer, sair o símbolo / ? (desconhecendo-se, é claro, o funcionamento interno 

da máquina). 

Como vimos, nesse caso, #A
5 
= 32 e # 5Ω5 

= 1024=32x32 e a probabilidade de encontrá-lo 

em uma mensagem criptografada é:

5

5

# 32 1
( /) 0,03

# 32 32 32

A
P x y+ = = = = ≈

Ω ×

ou seja, aproximadamente 3%.

5. E os ingleses nessa história de probabilidade e guerra?
Com base no que você viu até aqui, já é possível desvendar como os ingleses conse-

guiram decifrar as mensagens criptografadas pela máquina Lorenz. Eles simplesmente 

testaram todas as possibilidades para as posições iniciais da máquina. Vejamos como isso 

foi feito.

Em cada teste realizado, há dois casos a analisar:

1. ou as engrenagens estão na posição inicial correta;

2. ou as engrenagens estão na posição inicial incorreta. 

 ▹ Mas o que seria uma posição inicial correta? Você consegue imaginar?

Conforme dissemos anteriormente, os alemães usavam descuidadamente repetições 

de símbolos. Como vimos na Tabela 2, símbolos repetidos, quando somados, resultam no 

símbolo /. Logo, se a posição inicial das engrenagens estiver correta, esperamos encontrar 

uma porcentagem grande do símbolo /. 

Os decifradores perceberam esse fato e conseguiam afirmar se a posição inicial estava 

correta ou não. 

 ▹ e a posição inicial incorreta? 

 Seguindo o mesmo raciocínio, se a posição inicial das engrenagens estiver incorreta, 

a probabilidade de encontrar o símbolo / será muito baixa, aproximadamente de 3%, 

conforme calculamos na seção anterior.

Por exemplo, em um texto com 50 caracteres, pode-se mostrar que a probabilidade 

de se encontrar o símbolo / passa de 3% para aproximadamente 20%, se as engrenagens 

estiverem na posição inicial correta.

Basta, então, testar todas as possíveis combinações de engrenagens e verificar aquela 

que produz o maior número possível de símbolos /. Muito provavelmente esta será a 

posição inicial correta das engrenagens. Quanto mais longa a mensagem, mais a proba-

bilidade aumenta.
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 Atenção  

A probabilidade está relacionada à frequência com que um evento se repete, quando um experimento é realizado um 

número muito grande de vezes (tendendo ao infinito). Esse princípio é conhecido como a Lei dos Grandes Números 

e estabelece a conexão fundamental entre a Probabilidade e a Estatística.

 Atenção 

É aqui que entram os computadores, pois o número de testes que devem ser realizados 

é enorme. 

O esforço para os aliados compensou, pois, uma vez descoberta a posição inicial mais 

provável das engrenagens, toda a mensagem pôde ser automaticamente decifrada. Com 

certeza isso ajudou a antecipar o final da Segunda Guerra Mundial e é neste sentido que 

a Matemática foi usada para vencer a guerra!

Na próxima seção, vamos generalizar os estudos desenvolvidos até agora, para com-

preender fenômenos probabilísticos mais complexos e fundamentar a teoria desenvolvida.

6. A definição geral de probabilidade
Como já dissemos anteriormente, os primeiros estudos probabilísticos descreviam 

situações em que os eventos eram igualmente prováveis.

Podemos, entretanto, generalizar a definição de probabilidade de modo a incluir 

também situações em que os eventos não são equiprováveis. Isso é feito por meio dos 

seguintes axiomas:

 ▹ Definição: Em um espaço amostral Ω, consideremos o conjunto ℘(Ω) das partes de 

Ω (seus elementos são os subconjuntos de Ω ). Dizemos que uma função P definida 

de℘(Ω) com valores no conjunto dos números reais é uma probabilidade se:

 a) 0 ≤ P(A) ≤ 1, para todo A ∈℘(Ω) .

 b) P(Ω) =1 e P(∅) = 0 .

 c) P(A ∪ B) = P(A) + P(B) , se A ∩ B = ∅ .

Caso o espaço amostral seja finito e formado por eventos elementares equiprováveis, a 

definição 
número de casos favoráveis #

( )
número de casos possíveis #

A
P A = =

Ω
 fornece uma função que claramente satisfaz 

a definição acima, nos mostrando que a definição dada inclui o caso equiprovável.

Existem, entretanto, muitos outros casos em que os eventos não são equiprováveis e 

mesmo assim as propriedades a), b) e c) da definição anterior são válidas. Pode ocorrer 

também que, no mesmo espaço amostral, possamos definir mais de uma função proba-

bilidade.

Vamos explorar algumas consequências da definição apresentada.
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A condição c), na definição de probabilidade, nos diz que ( ) ( ) ( )P A B P A P B∪ = +  , desde 

que A  e B  sejam subconjuntos disjuntos do espaço amostral. O que ocorre se ?A B∩ ≠ ∅? 

No caso de eventos elementares equiprováveis, como #( ) #( ) #( ) #( )A B A B A B∪ = + − ∩  , 

então:

#( ) #( ) #( ) #( )
( )

#( ) #( ) #( ) #( )

A B A B A B
P A B

∪ ∩∪ = = + −
Ω Ω Ω Ω

e daí:

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩

Mas isto também é válido no caso geral. De fato, como cada uma das decomposições 

a seguir é uma união disjunta:

( ) ( ) ( )A B A B A B B A∪ = − ∪ ∩ ∪ −

( ) ( )A A B A B= − ∪ ∩

( ) ( )B B A A B= − ∪ ∩

então:

( ) ( ) ( ) ( )P A B P A B P A B P B A∪ = − + ∩ + −

( ) ( ) ( ) ( ) ( )P A P A B P A B P B P A B= − ∩ + ∩ + − ∩

( ) ( ) ( )P A P B P A B= + − ∩

Note que, quando A B φ∩ = , temos ( ) ( ) ( )P A B P A P B∪ = +  e, nesse caso, os even-

tos A  e B  chamam-se excludentes. Por exemplo, ao jogar um dado e uma moeda, sair 

cara na moeda e 5 no dado são eventos excludentes. 

Antes de prosseguirmos, precisamos estabelecer uma definição muito importante, a 

definição de eventos independentes.

6.1. Eventos independentes

Considere duas pequenas roletas como as da figura:
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▹▹ Em cada círculo, a parte preta ocupa 2/3 de sua área. Qual é a probabilidade de, ao 

girarmos as duas roletas, os dois ponteiros pararem na área branca?

Como as áreas pretas e brancas são diferentes, este experimento não é, a priori, 

constituído por eventos equiprováveis elementares. Mas, se dividirmos a região preta em 

duas partes iguais, como nas figuras a seguir, podemos trabalhar com outro experimento 

análogo e equiprovável:

O espaço amostral, nesse caso, é formado pelos seguintes eventos:

Ω  = { (B
1
, B

2
), (B

1
, P

21
), (B

1
, P

22
), (P

11
, B

2
), (P

11
, P

21
), (P

11
, P

22
),

(P
12

, B2), (P
12

, P
21

), (P
12

, P
22

)}

 

e o único evento favorável é (B
1
, B

2
), cuja probabilidade é P ((B

1
, B

2
)) = 1/9. 

Existe, ainda, outra maneira de resolver esse problema.

Pensando somente no primeiro disco, a probabilidade de que a roleta pare na área 

branca é 1/3 e, pensando somente no segundo disco, a probabilidade de parar na região 

branca é, analogamente, igual a 1/3. Note que a ocorrência de um desses eventos não 

interfere na ocorrência do outro. A probabilidade de se obter branco nas duas roletas pode 

ser obtida como o produto dessas probabilidades:

P ((B
1
, B

2
)) = (1/3). (1/3) = 1/9

▹▹ Será que isso funciona sempre ou foi apenas uma coincidência? 

Na verdade funciona sempre que os eventos forem independentes, como é o caso 

em estudo. O resultado obtido na primeira roleta não influencia o resultado na segunda. 

Matematicamente, temos a seguinte definição:

Definição: Dizemos que dois eventos A e B são independentes se P(A ∩ B) = P(A).P(B) .

Como veremos nos exercícios posteriores, ao lançarmos duas vezes uma moeda e 

sair cara em ambos os lançamentos são também eventos independentes. Nos exercícios, 

disponibilizaremos mais exemplos de eventos independentes. 
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Para entendermos melhor a definição de eventos independentes, devemos considerar 

dois eventos e estudar o que acontece com a probabilidade de um deles ocorrer, na certeza 

de que o outro já ocorreu. Se a ocorrência do primeiro evento não interferir na ocorrência 

do segundo, os eventos serão independentes, como definido antes. Mas, e se a ocorrência 

do primeiro evento influenciar na ocorrência do segundo evento? Isto nos leva ao estudo 

de probabilidades condicionais que desenvolveremos na próxima seção. 

7. Probabilidades condicionais
Em um dado espaço amostral, a informação sobre a ocorrência de um evento B  pode 

mudar, ou não, a probabilidade de ocorrência de um evento A . A probabilidade condi-

cional de um evento A, na certeza absoluta de que ocorreu B  é denotada por ( | )P A B

e definida por:

( )
( | )

( )

P A B
P A B

P B

∩=

Ora, caso os eventos sejam independentes, então  e, por-

tanto, ( | ) ( )P A B P A= . Isto nos diz que, de fato, a ocorrência de B  em nada influencia a 

probabilidade de ocorrer ou não A.

Exemplo 1

Um dado é jogado duas vezes. Qual é a probabilidade de se obter 

o número 1 na primeira jogada, sabendo-se que a soma dos pontos 

obtidos foi 2?

O espaço amostral é formado pelas 6 x 6 = 36 possibilidades que são obtidas quando 

se jogam os dois dados. Se F  é o evento “resultado do primeiro lançamento” e G  é 

“resultado do segundo lançamento”:

( 1 2) ( 1 1) (1/ 6).(1/ 6)
( 1| 2) 1

( 2) ( 2) 1/ 36

P F e F G P F eG
P F F G

P F G P F G

= + = = == + = = = = =
+ = + =

Isto confirma algo evidente: se a soma dos pontos foi 2, então, no primeiro dado, saiu 

certamente o número 1 (e é claro que no segundo dado também saiu 1).
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Exemplo 2
Em um colégio, o número de docentes de Geografia e Português é disposto conforme 

a seguinte tabela: 

Tabela 3

M = Mulheres H = Homens

g = docentes de Geografia 7 8

p = docentes de Português 9 3

TOTAL 16 11

Suponha que um mesmo professor não ministra as duas disciplinas e seja selecionado 

aleatoriamente um dos docentes acima. 

Caso saibamos que o evento “ser homem” ( )H  ocorre, qual a 

probabilidade de o docente escolhido “ser professor de Geografia”? Ou 

melhor, qual a probabilidade de o evento “ser professor de geografia 

( )g ” ocorrer, na condição de que o evento “ser homem ( )H ” ocorra?

Denotemos essa probabilidade por ( | )P g H  (o docente é profes-

sor de Geografia na condição de ser um homem). Chamemos #T  o 

número total de docentes da escola. A partir dos números da tabela 

anterior, temos:

#( ) 8 8 / 27 ( )
( | ) .

#( ) 11 11/ 27 ( )

g H P g
P g H

H P H

∩= = = =

Veja que, no cálculo da probabilidade acima, a probabilidade de 

um primeiro evento (ser homem) influencia no cálculo da probabi-

lidade de um segundo evento (ser homem e docente de Geografia). 

Note que as probabilidades ( )P H  e ( )P g  condicionam o que ocorre 

com a probabilidade ( | )P g H . Por isto, o nome probabilidade condicional.

A seguir, iniciaremos uma seção de resolução de problemas envolvendo os estudos 

teóricos apresentados nesta etapa. A maioria dos problemas envolve jogos de azar.

8. Resolução de problemas envolvendo probabilidade
Como toda teoria matemática, a Teoria das Probabilidades só revela sua importância 

quando resolvemos problemas nos quais ela se aplica. Nesta seção, apontaremos alguns 

problemas interessantes que podem ser apresentados e comentados com seus alunos do 

Ensino Médio.
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 Atividade 1  

Um dado é lançado em cima de uma mesa. Encontre a 

probabilidade do número com a face voltada para cima ser:

a▹ par;

b▹ estritamente maior que 4; 

c▹ estritamente menor que 4;

d▹ maior que 8;

e▹ menor que 7.

Resposta comentada

a▹ Para o evento do item (a), representemos ( )# 6aΩ =  

e ( ) {2, 4,6}aA = . Logo, a probabilidade do item (a) é: 
( )

( )
( )

# 3 1
0,5

# 6 2
a

a
a

A
P = = = =

Ω
, ou seja, 50% .

b▹ ( )
( )

( )

# 2 1
0,33

# 6 3
b

b
b

A
P = = = ≈

Ω
, ou seja, aproximadamente 33%.

c▹ ( )
( )

( )

# 3 1
0,5

# 6 2
c

c
c

A
P = = = =

Ω
, ou seja, 50% .

d▹ Nesse caso, ( )dA = ∅ . Resposta: ( )
( )

( )

# 0
0

# 6
d

d
d

A
P = = =

Ω
, ou 

seja, 0%, o que era de se esperar.

e▹ Nesse caso, ( ) {1,2,3, 4,5,6}eA = . Resposta: ( )
( )

( )

# 6
1

# 6
e

e
e

A
P = = =

Ω
 , 

ou seja, 100%, probabilidade que era esperada.

 Atividade 2  

No jogo do par ou ímpar, como 

apresentamos, é melhor escolher par, 

ímpar ou tanto faz? Observação: nesse 

jogo não consideramos o número zero.

Resposta comentada

Chamemos {( , ) = }A x y tais que x y número par= + . Uma 

simples listagem mostra que # 13A =  e daí a probabilidade é 

1

# 13
0,52

# 25

A
P = = =

Ω
, ou seja, 52% . 

Se a escolha for um número ímpar, a probabilidade será 
12

0,48
25

P == = , ou seja, 48%. Logo, é melhor escolher um 

número par. 

Desdobramento da Atividade 2

Ainda no jogo do par ou ímpar, qual o número (soma 

dos dois números escolhidos pelos participantes) que tem a 

maior probabilidade de ocorrer? 

Sugestão: conte quais eventos ( , )x y  de 1Ω  são tais que 

x y+  é um número par.

Resposta comentada

Resposta: Vê-se que 6 é o número que tem a maior 

quantidade de pares ( , )x y , tais que 6x y+ = . Há exatamen-

te 5 pares desses números. Logo, 6 é o número com maior 

probabilidade de ocorrer: 
5

0.2
25

P = = , ou seja, 20%.

 Atividade 1 

 Atividade 2 

8.1. Problemas introdutórios
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 Atividade 3  

Uma caixa contém 4 bolas vermelhas e 3 bolas amarelas 

de mesmo peso e tamanho.

a▹ Uma bola é escolhida ao acaso. Qual a probabilidade 

de ela ser vermelha? E de ser amarela?

b▹ Agora, se duas bolas são retiradas da caixa ao mes-

mo tempo, qual a probabilidade de elas terem cores 

diferentes? E qual é a probabilidade de elas terem a 

mesma cor?

 Sugestão para o item b): veja sempre esse tipo de es-

paço amostral Ω  como composto por elementos da 

forma ( , )x y , onde x  e y  são as bolas escolhidas. 

Para calcular # Ω , quantos elementos ( , )x y  pode-

mos formar com os dados do problema? A ordem 

de x  e y  importa?

c▹ Suponha, agora, que tiramos uma bola e que, sem 

reposição, tiramos novamente outra bola da caixa. 

Qual a probabilidade de nas duas vezes em que 

tiramos as bolas terem cor diferente? E qual é a pro-

babilidade de terem a mesma cor?

d▹ Compare os resultados dos itens b) e c).

Resposta comentada

 � A probabilidade de a bola ser vermelha é 
4

0,57.
7VP = ≈  

Ou seja, aproximadamente de 57%.

 A probabilidade de a bola ser amarela é 
3

0,43.
7BP = ≈  

Aproximadamente 43%. 

 � Vamos escolher 2 elementos a partir de um conjun-

to com 7 elementos. A ordem não importa. Logo, 

( )
2
7

7!
# 21

2! 7 2 !
CΩ = = =

−
. Como temos 4 bolas verme-

lhas e 3 amarelas, se A  é o conjunto dos pares de 

bolas diferentes, temos, pelo Princípio Multiplicativo, 

que # 12A = . Logo 
# 12 4

0,57
# 21 7cores

A
P ≠ = = = ≈

Ω
. Ou seja, 

aproximadamente 57%. 

 O número dos elementos do conjunto B  dos pares 

serem de bolas de cores iguais é # 21 12 9B = − = . Logo 
# 9 3

0,43
# 21 7mesma cor

B
P = = = ≈

Ω
. Ou seja, aproximada-

mente 43%.

 

 Para escolhas de cores diferentes, podemos retirar 

bolas com a primeira de cor vermelha e a segunda 

de cor amarela ou a primeira de cor amarela e a 

segunda de cor vermelha. 

 Estudemos cada caso. 

 Primeiro caso: calculemos a probabilidade de a pri-

meira bola ser vermelha e de a segunda ser amarela. 

Esse é um caso de probabilidade condicional, como 

se poderá perceber.

 � Probabilidade de a primeira bola ser vermelha =
4

(1 )
7VP = .

 Probabilidade de a segunda bola ser amarela, visto 

que a primeira foi vermelha =
3

(2 |1 )
6A VP = . Note que, 

após retirarmos a primeira bola, sobraram apenas 6 

bolas.

 Chamemos a probabilidade de a primeira bola ser 

vermelha e de a segunda ser amarela de (1 2 )V AP ∩ .

 Ora, sabemos, do cálculo de probabilidade 

condicional, que (1 2 )
(2 |1 )

(1 )
V A

A V
V

P
P

P

∩= , donde 

(1 2 ) (1 ). (2 |1 )V A V A VP P P∩ = . Assim:

 A probabilidade de a primeira bola ser 

vermelha e de a segunda ser amarela é 
4 3

(1 2 ) (1 ). (2 |1 )
7 6V A V A VP P P∩ = = × .

 

 Atividade 3 

A
ut

or
 d

es
co

nh
ec

id
o 

 / 
 S

XC
 

128 Módulo II  –  Matemática Discreta ▷ Etapa IV

Matematica_Discreta.indd   128 15/08/13   17:47



 Segundo caso: calculemos a probabilidade de a pri-

meira bola ser amarela e de a segunda ser vermelha. 

 Probabilidade de a primeira bola ser amarela 
3

(1 )
7AP= = .

 Probabilidade de a segunda bola ser vermelha, visto 

que a primeira foi amarela 
4

(2 |1 )
6V AP= = . Note que, 

após retirarmos a primeira bola, sobraram apenas 6 

bolas.

 Chamemos a probabilidade de a primeira bola ser 

amarela e de a segunda ser vermelha de (1 2 )A VP ∩ .

 Ora, sabemos, do cálculo de probabilidade 

condicional, que (1 2 )
(2 |1 )

(1 )
A V

V A
A

P
P

P

∩= , donde 

(2 1 ) (1 ). (2 |1 )V A a V AP P P∩ = . Assim:

 A probabilidade de a primeira bola ser 

vermelha e de a segunda ser amarela é
3 4

(1 2 ) (1 ). (2 |1 )
7 6A V A V AP P P∩ = = × .

 

 Note que os eventos primeira bola de cor vermelha 

e segunda bola amarela e primeira bola amarela e 

segunda vermelha são excludentes. Logo, devemos 

somar as probabilidades desses eventos para calcu-

larmos a probabilidade do evento que queremos: as 

bolas terem cores diferentes:

 � Probabilidade de as bolas terem cores diferentes =

   

4 3 3 4 12 12 4
(1 2 ) (1 2 ) 2 =

7 6 7 6 42 21 7A V V AP P∩ + ∩ = × + × = × =
,

 que, no item a), vimos ser aproximadamente 0,57. 

 Ou seja, a probabilidade de tirarmos bolas de cores 

diferentes é 57%, aproximadamente.

  O mesmo procedimento segue para cores iguais. A 

probabilidade neste caso é 43%, aproximadamente.

 

 d) Os resultados são os mesmos.

 Atividade 4  

Em uma prateleira, há exatamente 3 CD’s de música 

clássica e 8 CD’s de música popular. Uma pessoa retira alea-

toriamente 5 CD’s dessa prateleira.

a▹ Quantos elementos têm o espaço amostral dos CD’s 

para essa escolha aleatória?

 Sugestão: Quantos subconjuntos de 5 elementos 

podemos formar com um conjunto de 11 elementos? 

Isso lembra algum tópico estudado nos módulos 

anteriores?

b▹ Qual a probabilidade de nessa escolha terem sido 

escolhidos 2 CD’s de música clássica e 3 de música 

popular?

 Sugestão: Tente resolver sozinho o problema. Só 

recorra a nossa sugestão em último caso. Aqui vai ela:

 Primeiro passo: De quantas 

maneiras posso escolher 2 

CD’s dentre 3 CD’s de música 

clássica, ou melhor, quantos sub-

conjuntos de 2 elementos podemos 

formar a partir de um conjunto com 3 elementos?

 Segundo passo: De quantas maneiras posso escolher 

3 CD’s dentre 8 CD’s de música popular, ou melhor, 

quantos subconjuntos de 3 elementos podemos for-

mar a partir de um conjunto com 8 elementos?

 Terceiro passo: De quantas formas posso escolher 2 

CD’s de música clássica e 3 de música popular, dentre 

3 CD’s de música clássica e 8 CD’s de música popular? 

Lembre-se do Princípio Multiplicativo da Contagem!

 Quarto passo: Agora é só calcular a probabilidade.

 Atividade 4  De quantas 

maneiras posso escolher 2 

CD’s dentre 3 CD’s de música 

clássica, ou melhor, quantos sub-

conjuntos de 2 elementos podemos 
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Resposta comentada

a▹ ( )
5
11

11!
# 462

5! 11 5 !
CΩ = = =

−
.

b▹ ( )
2
3

3!
3

2! 3 2 !
C = =

−

    ( )
3
8

8!
56

3! 8 3 !
C = =

−

   
2 3
3 8# 168.A C C= × =

    
# 168

0,36
# 462

A
P = = ≈

Ω

 A probabilidade será de aproximadamente 36%.

 Desafio 1  

Dado um subconjunto de casos favoráveis A  de um espaço amostral Ω , denotemos por 
CA  os eventos complementares 

de A  em relação a Ω . Verifique que vale a seguinte probabilidade:

( ) 1 ( )CP A P A= −

Sugestão: CA AΩ = ∪ , CA A∩ = ∅  e use as propriedades da definição geral de probabilidade.

Logo, se já tiver sido calculada a probabilidade de um evento ocorrer, essa fórmula nos fornece prontamente a probabi-

lidade de ocorrer os eventos complementares. 

Em quais exercícios anteriores poderíamos ter diretamente usado esse cálculo?

Resposta comentada

Pelas propriedades da probabilidade:

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) 1 ( ).C C C CP P A A P A P A P A P A P A P AΩ = ∪ = + ⇒ = + ⇒ = −

esse cálculo pode ser usado diretamente nos Exercícios 2a e 3a.

 Desafio 1 

8.2. Desafios
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 Desafio 2  

No sorteio de uma rifa, o ganhador será a pessoa que 

comprar um dos bilhetes que tiver o número sorteado entre 

1 e 500, incluindo-os. Qual a probabilidade de o número 

sorteado ser maior que 350 ou múltiplo de 10? (note, nesse 

caso, que o “ou” não é exclusivo!)

Resposta comentada

Nesse caso, Ω = {1, 2, 3,..., 500} e consideramos os even-

tos A= {351, 352,..., 499, 500} (número maior que 350) e B = 

{10, 20, 30,..., 480, 500} (número sorteado ser múltiplo de 10). 

Queremos calcular ( )P A B∪ . Note que A B φ∩ ≠ , ou seja, 

os eventos A e B não são mutuamente excludentes. Como 

fazer para calcular esse tipo de probabilidade?

( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩

(já provada anteriormente)

Agora, usemos essa fórmula para resolvermos o proble-

ma inicial: 

Como:

# 500Ω =
# 150A =

# 50B =

# 15A B∩ = , pois A B∩ = {360, 370,..., 480, 500}

#
( )

#

A
P A = =

Ω
150/500 = 3/10 = 0,3

#
( )

#

B
P B = =

Ω
 50/500 = 1/10 = 0,1

#( )
( )

#

A B
P A B

∩∩ = =
Ω

15/500 = 3/100 = 0,01

Temos ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ = 0,3 + 0,1 - 

0,01 = 0,39. Ou seja, a probabilidade de o número escolhido 

ser maior que 350 ou par é de 39%.

 Desafio 3  

Um aluno, bastante aplicado e dedicado, fez a seguinte 

observação:

Professor, vimos que a probabilidade de obter duas 

caras ao jogarmos duas moedas simultaneamente era ¼. 

Ora, a probabilidade de dar cara em um só lançamento 

é ½. Como um lançamento é um evento independente 

do outro, ao lançar uma moeda duas vezes consecutivas, 

a probabilidade de dar cara nesses dois lançamentos é 

1/2x1/2=1/4. Essa é justamente a probabilidade de dar 

duas caras em dois lançamentos simultâneos. Logo, a 

probabilidade de dar duas caras em lançamentos simul-

tâneos de duas moedas é a mesma de dar cara em dois 

lançamentos consecutivos.

O mesmo ocorre com a probabilidade calculada ao 

retiramos duas bolas ao mesmo tempo de uma urna ou 

retirar uma bola e depois outra, sem repor. A mesma coi-

sa acontece, ainda, com o cálculo das probabilidades ao 

lançarmos dois dados simultaneamente ou lançarmos um 

dado e depois outro.

O aluno tem razão? Justifique sua resposta. 

Resposta comentada

Sim, o aluno tem toda razão. No caso das moedas, 

já vimos que o espaço amostral, ao lançarmos duas 

moedas, é 3Ω  
= {(K, K), (K, C), (C, K), (C, C)}. Logo, a 

probabilidade de dar duas caras é ¼, que é o produto da 

probabilidade de em dois lançamentos obtermos duas 

caras 1/4 = 1/2 x 1/2.

No caso das bolas, ver o Exercício 3, que comprova a 

afirmação do aluno. 

 Desafio 2 

 Desafio 3 
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 Desafio 4  

Verifique que a probabilidade de jogarmos uma moeda 

25 vezes e nessas jogadas obtermos 25 caras consecutivas é 

uma vez e meia maior do que a probabilidade de acertar na 

Mega Sena com uma aposta simples de 6 números. Compare 

os casos. 

Sugestão: Em cada jogada, qual a probabilidade de 

dar cara? Cada jogada é um evento independente da outra 

jogada? Veja o que ocorre no exercício anterior no caso de 

jogarmos a moeda duas vezes.

Resposta comentada

A comparação dessas probabilidades é incrível, não? Se 

não achar, tente obter 25 caras consecutivas ao lançar uma 

moeda 25 vezes consecutivas!

Como no exercício anterior, ao jogarmos uma moeda 

25 vezes, a probabilidade de dar 25 caras consecutivas é 

25

25

1 1 1 1
... 0,00000003

2 2 2 2
vezes

× × = ≈
�����

, que é maior do que a probabi-

lidade de acertar na Mega Sena, que vimos ser 0,00000002 .

 Desafio 4 
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9. Conclusão 
Nesta etapa, mais uma vez, você pode perceber que a Criptografia é um tema bastante 

fértil para introduzir conteúdos matemáticos no Ensino Médio. Além de servir de ponto 

de partida para a abordagem de conteúdos relacionados à Análise Combinatória de forma 

interessante e envolvente, esse tema pode também ser um fio condutor para a abordagem 

da Teoria das Probabilidades.

Você já deve ter percebido que nas escolas os textos didáticos costumam trazer os 

estudos sobre probabilidade após o desenvolvimento de técnicas de contagem oriundas 

da Análise Combinatória. Por isso, optamos por trilhar esse mesmo caminho na disciplina 

Matemática Discreta, considerando que esta pudesse ser bastante proveitosa para você 

refletir sobre sua sala de aula e sobre o trabalho que desenvolve junto aos seus alunos.

10. Resumo
▹▹ A máquina de Lorenz foi construída pelos alemães na época da Segunda Guerra 

Mundial para criar mensagens secretas. Essa máquina gerava um código diferente 

dos utilizados até então.

▹▹ A análise da frequência das letras não era suficiente para quebrar o código da má-

quina de Lorenz.

▹▹ Os ingleses conseguiram decifrar os códigos gerados pela máquina de Lorenz com 

o auxílio da Teoria das Probabilidades.

▹▹ A operação da máquina se dava por meio de 3 passos fundamentais: transformar 

letras originais em números binários; criar uma letra-chave que também é transfor-

mada em um número binário; somar os números binários (aritmética binária) dando 

origem a um terceiro número, que corresponde à letra codificada.

▹▹ Qualquer símbolo somado com ele mesmo resultava em /.

▹▹ Os ingleses perceberam que, se soubessem como as engrenagens estavam dispostas 

no início do processo, conseguiriam prever qual seria seu comportamento futuro, 

devido ao funcionamento automático das engrenagens.

▹▹ A Teoria da Probabilidade entra em cena na medida em que busca prever qual a 

posição inicial dos rotores. 

▹▹ A Teoria da Probabilidade estuda modelos que descrevem fenômenos aleatórios (que 

ocorrem ao acaso) e serve para medir a chance de ocorrência desses fenômenos.

▹▹ Quando realizamos um experimento constituído de eventos elementares, selecio-

namos com precisão o conjunto de todos os casos possíveis desses eventos. Esse 

conjunto é chamado espaço amostral e é usualmente denotado pela letra grega Ω . 

▹▹ Dentre os casos possíveis de um espaço amostral Ω , estão aqueles que escolhemos 

ou desejamos que ocorram. Estes são chamados casos favoráveis.

▹▹ Quando um espaço amostral é formado por eventos elementares, cada um com a 

mesma chance de ocorrer, esses eventos são chamados equiprováveis.
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▹▹ No caso de eventos equiprováveis, a probabilidade de ocorrer um caso favorável no 

conjunto de casos favoráveis A, dentre os casos possíveis de um espaço amostral Ω , 

é definida por 
número de casos favoráveis #

( )
número de casos possíveis #

A
P A = =

Ω
, sendo #A o número de elementos 

do conjunto A.

▹▹ Podemos generalizar a definição de probabilidade, incluindo eventos não equiprová-

veis da seguinte forma: em um espaço amostral Ω, consideramos o conjunto ( )℘ Ω  

das partes de Ω  (seus elementos são os subconjuntos de Ω ). Dizemos que uma 

função P  definida nas partes de Ω  com valores no conjunto dos números reais é 

uma probabilidade se (a) 0 ( ) 1P A≤ ≤ , para todo ( )A ∈℘ Ω ; (b) ( ) 1P Ω =  e ( ) 0P ∅ = ; (c) 

( ) ( ) ( )P A B P A P B∪ = + , se A B∩ = ∅.

▹▹ Podemos dizer que dois eventos A  e B  são independentes se .

▹▹ Em um dado espaço amostral, a informação sobre a ocorrência de um evento B

pode mudar ou não a probabilidade de ocorrência de um evento A. A probabilidade 

condicional de um evento A, na certeza absoluta de que ocorreu B , é denotada por 

( | )P A B e definida por 
( )

( | )
( )

P A B
P A B

P B

∩= .

▹▹ Os eventos são independentes, quando  e daí ( | ) ( )P A B P A= . 

Assim, a ocorrência de B  em nada influencia a probabilidade de ocorrer ou não A .
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Encerramento
Chegamos ao final da disciplina Matemática Discreta. Esperamos que você tenha apro-

veitado todo o conhecimento desenvolvido para refletir sobre o ensino de Matemática, 

bem como sobre seu trabalho cotidiano em sala de aula. 

Ao longo deste estudo abordamos importantes conceitos da Matemática, com o obje-

tivo de mostrar que podemos contextualizar e repensar seu ensino na escola. Desejamos 

que o curso tenha sido mais uma oportunidade de proporcionar reflexões e experimen-

tações pedagógicas e que você possa continuar o seu trabalho como professor criando e 

incorporando novas propostas.

Mas nossos trabalhos não param por aqui! Continuaremos caminhando juntos e refle-

tindo sobre a melhoria do ensino de Matemática em nossas escolas.
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