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Prefacio

Este livro foi escrito para servir como material de apoio na disciplina Teoria dos
Numeros, do Curso de Licenciatura em Matematica da UFPA, que atende ao
alunos do PARFOR - Plano Nacional de Formagao de Professores da Educagao
Basica, projeto que visa consolidar a formagao académica dos professores que
ainda nao tem graduacao universitaria, ou sao graduados, mas atuam em areas
distintas de sua formacao académica.

O objetivo do livro é fornecer ao estudante as primeiras nogoes de Teoria dos
Ntumeros, area da Matematica que estuda as propriedades dos niimeros inteiros.
Sao apresentadas no texto as propriedades que decorrem da estrutura de anel
que Z possui, quando munido das operacoes de adicao e multiplicagao. Os
conceitos e propriedades apresentados sao, em sua grande maioria, 0s mesmos
que o aluno-professor ministra no ensino fundamental e médio. O diferencial
estd no nivel de abordagem e no rigor matematico, com as devidas justificativas
e demonstracoes de todas as afirmagoes feitas.

Na medida do possivel, procuramos usar uma linguagem menos formal.
Muitos teoremas sao enunciados e demonstrados, dialogando-se com o leitor,
de modo a conduzi-lo aos resultados desejados, sem menc¢ao das palavras Teo-
rema - Demonstracdo, por vezes tao temiveis. No final de cada capitulo, apre-
sentamos uma lista de exercicios. Optamos por exercicios com um baixo grau
de dificuldade, os quais tem como objetivo principal o entendimento dos con-
ceitos e resultados apresentados e, em algumas situacgoes, conduzir o estudante
a antecipar resultados em vém a frente.

A experiéncia tem mostrado, que a pouca habilidade que tem o estudante,
no inicio da graduacao, para entender e construir demonstracoes matematicas,
acaba por tornar extremamente confuso e improdutivo, o curso de Teoria dos
Numeros, quando este comega demonstrando as propriedades elementares de
7., as quais sao o alicerce de toda a teoria que segue. Assim, assumimos no
Capitulo 1, um conjunto de propriedades como verdadeiras (onze axiomas)
e, nos treze capitulos subsequentes, seguimos demonstrando as demais pro-
priedades dos inteiros. Levando dessa forma, o aluno a familiarizar-se grada-
tivamente com as demonstragoes matematicas. Nos dois capitulos finais, 15 e
16, retornamos para demonstrar as afirmagoes feitas inicialmente. No Capitulo
15, estudamos os Numeros Naturais, a partir da axiomatizacao de Peano. Por
fim, no Capitulo 16, fazemos a construgao de Z a partir de N, e demonstramos
todas as propriedades apresentadas como axiomas no Capitulo 1.



Capitulo 1

O Anel dos Inteiros

Ao longo de todo este texto denotaremos por Z o conjunto
Z:={.,-3,-2,-1,0,1,2,3, ...},

cujos elementos sao chamados ntimeros inteiros. Nesta disciplina estudare-
mos eminentemente propriedades dos ntimeros inteiros.

Em 7Z estao definidas duas operacoes:
(1) adigao: que associa a todo par (a,b) de nimeros inteiros, a soma a+b € Z;
(77) multiplicagao: que associa a todo par (a,b) de nimeros inteiros, o pro-
duto a.b € Z.

Em geral, representaremos o produto a.b apenas por ab.

O conjunto Z, juntamente com essas duas operacoes, tem algumas pro-
priedades, apresentadas aqui como axiomas, isto é, assumiremos tais pro-
priedades como verdadeiras, nao sendo necessario demonstra-las.

Axiomas da Adigao:
(A1) A adicao é comutativa, isto é, para quaisquer a,b € Z, tem-se:
a+b=>b+a.
(A2) A adicao é associativa, isto é, para quaisquer a,b, ¢ € Z, tem-se:
(a+b)+c=a+ (b+c).

(A3) Existéncia e unicidade do elemento neutro da adicao:
Para qualquer a € Z, tem-se:
a+0=a.

Em funcdo dessa propriedade, 0 (zero) é chamado o elemento neutro da
adicao e o tnico elemento em Z que tem essa propriedade.

Usaremos o
simbolo =
para indicar
que a identi-
dade define
o objeto.
Por exemplo,
a := b, indica
que a é igual
a b, por

definigao.



Ou equiva-
lentemente, se
a#0eb#0,
entao ab # 0.
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(A4) Existéncia e Unicidade do Oposto:
Para cada inteiro a, existe um tunico inteiro, denotado por —a, chamado o
oposto ou inverso aditivo de a, de modo que:

a+ (—a) =0.

Axiomas da Multiplicacgao:

(M1) A multiplicagdo é comutativa, isto é, para quaisquer a,b € Z:
ab = ba.

(M2) A multiplicagao ¢ associativa, isto é, para quaisquer a,b, ¢ € Z:

(ab)e = a(be).

(M3) Existéncia e unicidade do elemento unidade:
Para qualquer a € Z, tem-se que:

a.l = a.

1 (um) é chamado o elemento neutro da multiplicagdo ou elemento unidade,
sendo o Unico elemento em Z com essa caracteristica.

Dado a € Z, definimos

a a, para n=1,273, ..

{;

n fatores

O axioma (D1) abaixo, relaciona as duas operagoes.

(D1) Distributividade da multiplicacao com relagao a adigao:
Para quaisquer a, b, c € Z, tem-se:

a(b+ ¢) = ab+ ac.

Por possuir as oito propriedades acima, dizemos que o conjunto Z, junta-
mente com as operagoes de adi¢cdo e multiplicagao, isto é, o terno (Z,+,.) é
um anel comutativo e com elemento unidade - chamado Anel dos Inteiros.

O produto de dois inteiros somente é nulo quando pelo menos um dos fa-
tores é zero, conforme o axioma abaixo. Por esta razao, dizemos que o anel
dos inteiros é sem divisores de zero.

(D2) O conjunto Z é sem divisores de zero, isto é, para quaisquer
a,b € Z,seab=0, entao a =0 ou b= 0.
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Ordem em 7

Usaremos as seguintes notacoes para os subconjuntos de Z:

7 =7 —{0} (conjuntos dos inteiros nao nulos);
Z,=4{0,1,2,3,...}  (conjuntos os inteiros nao negativos)
7r ={1,2,3,..} (conjuntos os inteiros positivos).

Dados inteiros a e b, dizemos que a é menor do que b (ou que b é maior
do que a) e escrevemos a < b (resp. b > a) se existe um inteiro positivo c,
isto ¢, ¢ € Z, tal que:
b=a+c.

Escrevemos a < b (a é menor do que ou igual a b) se a < b ou a = b.

Assumiremos, ainda, que soma e produto de inteiros positivos sao sempre
inteiros positivos, isto ¢, Z% ¢ fechado sob as operacoes de adigao e multi-
plicacao, conforme axioma abaixo.

(F1) Para quaisquer a,b € Z* , tem-se:
(i) a+b e Z7%;
(i) a.b € Z7.

Dizemos que n € Z é uma cota inferior de um subconjunto A de 7Z, se
n < a, para todo a € A. E dizemos que A é limitado inferiormente, se A
possui cota inferior.

Um ndmero inteiro ag diz-se um elemento minimo de um subconjunto A
de Z (ap = minA), se ag < a, para todo a € A (isto é, ag é cota inferior de A)
e ag € A.

Em Z, temos ainda o Principio da Boa Ordem, também dado aqui como
axioma.

(BPO) Principio da Boa Ordem em Z:

Todo subconjunto nao vazio de Z, limitado inferiormente, tem elemento
minimo.

a < b, se existe
c € Z4, tal que
b=a+c.

@#ACZ+,

\’

Jag = minA.
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Lista de Exercicios 1.

(01) Compare os axiomas da adigdo e os da multiplicacao. Quais as seme-
lhancas e quais as diferencas entre eles?

(02) Usando o axioma (A3):

(a) Determine o oposto ou os opostos dos seguintes inteiros: 3, -7 e 0. Em
cada caso quantos opostos foram encontrados?

(b) Seja a € Z, mostre que o oposto de a é unico.

(03) Sejam b e ¢ dois inteiros.

(a) Sabendo-se que 5+b =5+ ¢, o que se pode concluir sobre b e ¢? Por qué?
(b) Sabendo-se que b+ (—3) = ¢+ (—3), o que se pode concluir sobre b e ¢?
Prove sua afirmacao.

(c) Mostre que para quaisquer a,b,c € Z, a+b =a+c = b = c. (Essa
propriedade é chamada cancelamento da adigao).

(04) Calcule 3.0, (—30).0, 27.0. Qual a conclusao tirada?
(05) Mostre a.0 = 0.a = 0, para todo a € Z.

(06) Usando apenas os axiomas dados no texto e resultados mostrados nas
questoes anteriores, mostre que para quaisquer a, b, c € Z, tem-se:

(a) —(—a) = a;

(b) (=a)b = a(=b) = —(ab);

(c) (—a)(—b) = ab.

(07) Responda e justifique: 2 < 57 —2 <27 7< 77 =7 < —107
(08) Sejam a,b € Z, = {0,1,2,3,...}. Mostre que se a+b = 0, entdao a = b = 0.

(09) Mostre que para quaisquer a, b, ¢ € Z sao validas as propriedades:
(a) reflexiva: a < a;

(b) antissimétrica: se a < be b < a, entdo a = b;

(c) transitiva: Se a <be b < ¢, entdo a < c.

(10) Sejam a, b, c € Z. Mostre que:
(a)a<b=a+c<b+g
(bya<bec>0= ac< b
(c)a<0= —a>0
(dya<bec<0=bc<ac.

(11) Dé exemplo de um nimero inteiro, cujo quadrado seja um nimero nega-
tivo. Prove sua afirmacao.

(12) Pela tricotomia em Z, uma e somente uma das condigdes a seguir se
verifica: 0 <1ou 0 =1oul < 0. Qual é a verdadeira? Prove sua afirmacao.
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(13) Mostre que se A C Z tem elemento minimo, entao ele é tnico.

(14) Usando o axioma (PBO), mostre que todo subconjunto nao vazio de Z,
tem elemento minimo.

(15) Considere o conjunto A = {n € Z | 0 < n < 1}. Quantos elementos
tem A? Prove sua afirmagao.



Um inteiro é
dito par, se é

divisivel por 2.

Capitulo 2

Inducao Matematica

1 Introducao

Usaremos a notagao P(n) para indicar uma propriedade associada a um inteiro
n. Vejamos alguns exemplos:

Exemplo 1: Seja P(n) a propriedade vélida para todo inteiro positivo n,
dada por:
P(n): (3" —1) é um numero par. (2.1)

A propriedade em questao diz que, se n é um inteiro positivo, entao o
nimero (3" — 1) é par. Nessa notagao, a variavel em questao é n, a qual deve
sempre ser substituida por um nimero inteiro positivo.

A pergunta que vocé deve estar fazendo é: - Isso é verdade, (3" — 1) é
sempre um numero par, qualquer que seja o inteiro positivo n?

e Como verificar se esta propriedade é verdadeira para n = 4, por exemplo?

- Basta substituir n por 4 na expressao (2.1) e conferir se a afirmagao
resultante é verdadeiro.

P(4): (3*—1) éum nimero par.

Como 3* —1 = 80, que ¢ um nimero par, a afirmacao é verdadeira para n = 4.
e A propriedade P(n) é verdadeira para n = 77

Fazendo n = 7 em (2.1) e conferindo o resultado:
P(7): (3" —=1) éum ntimero par.

Sendo 3”7 — 1 = 2186, que é um numero par, a afirmacdo é verdadeira para
n=".

Vocé entendeu a notacao? Para melhor fixar, verifique se sao verdadeiras
P(2),P(9) e P(16).

12
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Exemplo 2: Considere P(n) a propriedade associada ao inteiro positivo n,
dada abaixo:

Pn): 13425+ . 4+n3=(1+2+.. +n) (2.2)

Inicialmente, vamos entender o que diz a propriedade. No lado esquerdo
de (2.2) temos a soma dos cubos dos n primeiros inteiros positivos e no lado
direito, o quadrado da soma destes n inteiros. A propriedade diz que esses dois
valores sao iguais, qualquer que seja o inteiro positivo atribuido a variavel n.

Antes de questionarmos a validade da mesma, vamos treinar um pouco
mais o uso dessa notagao. Usando (2.2) escreva P(5), P(7), P(k), P(n+1) e
P(n+ 2). Depois confira suas respostas com as dadas abaixo.

Respostas:

P(B): 1P+224334+4°4+55=(14+2+3+4+5)

): P42 4334483452463+ =(1+2+3+44+5+6+7)°
Ey: 1B+2+  +kB=0+2+..+k)?

n+1): PB+24+ 40P+ m+1)P=014+2+..+n+(n+1))>
n—+

p(7
P
P(
Pn+2): P42+ . +n+1)P°+(n+2)°=14+2+..4(n+1)+(n+2))>%

e Como verificar se essa propriedade é verdadeira para n = 37

Inicialmente, reescrevemos a propriedade substituindo n por 3. Nesse caso,
nos dois lados teremos somas com 3 parcelas.

P(3): 1342243 =(1+2+3)%

Como os dois valores sao iguais a 36, temos uma identidade. Logo, a
afirmagao é verdadeira para n = 3.

e Como verificar se a propriedade é verdadeira para n = 57
Fazendo n = 5 em (2.2) temos:
PGB): P4+ 2243 +43 45 =(1+2+3+4+5)>2
Como ambas os valores sao iguais a 225, a afirmacao é verdadeira.

e Expresse a propriedade paran = 4 e n = 7 e verifique se sao verdadeiras.

Exemplo 3: Considere a propriedade valida para todo inteiro positivo impar
n, dada por:
P(n): (3n + 2) é um ndmero primo. (2.3)

e Vocé acha que esta afirmacao é verdadeira?

Vejamos como fica a propriedade para os primeiros cinco inteiros positivos
impares: 1, 3, 5, 7, 9:

Um inteiro
é primo se
possui exata-
mente dois
divisores
positivos

distintos.
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: (3.1 4 2) é um nidmero primo;
: (3.3 +2) é um numero primo;
: (3.5 +2) é um numero primo;
: (3.7 4 2) é um ndmero primo;
: (3.9 4 2) é um ndmero primo.

Como 5, 11, 17, 23 e 29 sao todos nimeros primos, P(n) vale para todos
esses inteiros. Isso ja é suficiente para garantir que a propriedade vale para
todo inteiro impar? Verifiquemos para n = 11:

P(11) : (3.11 + 2) é um nimero primo.

Como (3.11 + 2) = 35, que ndao é um numero primo, a afirmagao feita nao
vale para n = 11 e consequemente nao é verdadeira para todo inteiro positivo
impar, sendo portanto, uma afirmagao falsa.

2 Demonstracao por Inducao Matematica

No geral, se P(n) é uma propriedade em n e afirma-se que a mesma é valida
)

para todo inteiro positivo n, como verificar ou mostrar que tal afirmagao é de

fato verdadeira?

Como existem infinitos niimeros inteiros positivos, a rigor deveriamos ver-
ificar se sao verdadeiras as afirmagoes:

P(1), P(2), P(3), P(4), P(5), P(6), P(7), ...

ou seja, temos que verificar a validade de infinitas afirmagoes, sendo impossivel
tal fato. Nesta aula vocé vai aprender um método para mostrar que uma pro-
priedade P(n) é verdadeira para todo inteiro n > ng, para algum inteiro ng
fixado. O método usado para fazer essa prova é chamado Demonstracao por
Indugao Matematica, o qual consiste em dois passos:

Passo 1 : Base da Inducao:

Mostra-se que P(ng) é verdadeira, isto é, que a propriedade é vélida para
o primeiro inteiro ng;

Passo 2: Passo Indutivo:
Assume-se que P(n) é verdadeira para um inteiro arbitrdrio n > ng -
chamada a hipdtese de indugdo - e mostra-se que P(n + 1) é verdadeira.

Dai, conclui-se que P(n) é verdadeira para todo inteiro n > n.

Vejamos alguns exemplos de demonstracoes por indugao.



Teoria dos Numeros 15

v" Exercicios 1.

(01) Mostre que para todo inteiro n > 1, temos a identidade:

1
1+24+3+...+n= @
Solucao:
Queremos mostrar que a propriedade:
n(n+1)

Pn): 1+4+2+43+..+n= (2.4)

2
é verdadeira para todo inteiro n > 1. Como temos que provar a validade de
uma afirmacao para todo inteiro positivo, entao faremos a demonstragao por
inducao em n. Executaremos os dois passos da demonstracao:

(1) Base de Indugao: Mostrar que vale para o primeiro inteiro mencionado
na propriedade.

Como queremos mostrar que a propriedade é validade para todo inteiro
n > 1, o primeiro inteiro para o qual se deve verificar a validade é n = 1.
Assim, na base de indugao devemos mostrar que P(1) é verdadeira.

1(1+1)

P(1): 1= 5

Ficamos com a identidade 1 = 1. Logo, a afirmacao é verdadeira para n = 1.
No geral, a base de inducao é apenas uma verificacao da validade da pro-
priedade.

(77) Passo Indutivo: Assumir que P(n) é verdadeira e mostrar que P(n+ 1)
¢ também verdadeira.

Seja n > 1 um inteiro arbitrario e suponha que P(n) é verdadeira, isto é,

n(n+1)

Pn): 1+4+243+..+n= 5

(hipétese de indugao) (2.5)
Agora, devemos mostrar que P(n+1) é verdadeira. Para melhor visualizarmos
0 que precisamos mostrar, vamos escrever P(n + 1). Como vocé ja aprendeu,
isto é feito substituindo n por n + 1 em (2.4):

m+1)((n+1)+1)

Pn+1): 1+4+24+43+..+(n+1)= 5

(2.6)

Essa é portanto a identidade que precisa ser mostrada. E o que temos a nossa
disposi¢ao para mostrar tal igualdade? Temos a hipdtese de indugao dada em
(2.5). Pense um pouco, que manipulagoes algébricas podemos fazer em (2.5)
para obtermos (2.6)?

Somando (n + 1) em ambos os lados de (2.5):

n(n+1)

14243+ ... +n+(n+1)= 5

+ (n+1).
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No lado esquerdo, temos a mesma soma dada em (2.6), pois trata-se da soma
dos n+1 primeiros inteitos positivos. No lado direito, somando as duas parcelas

obtemos:
(n+1)(n+2)

2
que ¢é a identidade dada em (2.6), a qual querfamos mostrar. Provamos assim,
que se a propriedade vale para n, entao também vale para n + 1. Com esses

dois passos podemos concluir que a propriedade é verdadeira para todo inteiro
n>1. O

14243+...+n+(n+1) =

(02) Mostre que para todo inteiro positivo n, (3" — 1) é um numero
par.

Solugao:

Queremos mostrar que a propriedade:

P(n): (3" —1) é um ntmero par

¢ verdadeira para todo inteiro n > 1. Faremos a demonstracao por inducao
em n.

Base de Indugao: Mostrar que P(1) é verdadeira:

P(1): (3'—1) éum nimero par.
Como (3' — 1) = 2 é um ntmero par, P(1) é verdadeira.

Passo Indutivo: Vamos assumir que P(n) ¢ verdadeira e mostrar que P(n+1)
é também verdadeira.

Seja n > 1 um inteiro arbitrario e suponha que P(n) é verdadeira, isto é,
P(n): (3" —1) é um numero par (hipdtese de indugao)
Agora devemos mostrar que P(n + 1) é verdadeiro, isto é,
P(n+1): (3" —1) é um ntmero par.

O que precisamos fazer para provar que (3! —1) é um ntimero par? Lembre-
mos que um inteiro é dito par se é divisivel por 2, o que implica ser da forma
2k, para algum inteiro k. Da hipdtese de indugao, temos que (3" — 1) é um
nimero par, entao podemos escrever 3" — 1 = 2k, com k € Z. E portanto,
3" =2k 4+ 1. Assim,

(3" —1)=33"—1=302k+1) — 1 =2(3k + 1),

o qual é um nimero par. Logo, P(n + 1) é verdadeira.

Com esses dois passos, podemos concluir que a propriedade é verdadeira
para todo inteiro n > 1. O



Teoria dos Numeros 17

(03) Mostre que n! > n?, para todo inteiro n > 4. Lembrando:

{ o h

Solugao:
Considere a propriedade:
P(n): n!>n?

Usando demonstragao por indugao, mostraremos que P(n) é verdadeira para
todo inteiro n > 4.

(i) Base de Indugao:

- Qual o inteiro que devemos usar para a base de inducao? Observe que o
enunciado diz que a propriedade é valida para todo n > 4, entao devemos
tomar ng = 4:

P(4): 41 >4%
Como 4! =24 > 16 = 4%, P(4) é verdadeira.

(77) Passo Indutivo: Assumir que P(n) é verdadeira e como consequéncia,
provar que P(n + 1) é também verdadeira.

Seja n > 4 um inteiro e suponha que
P(n): n!>n? (hipétese de indugao)

- O que devemos mostrar? Que P(n + 1) é verdadeira, ou seja,
Pn+1): (n+1D!>(n+1)>°

Usando a definicao de fatorial e a hipétese de inducao temos:
(n+1)!'=(n+1).n! - definicao de fatorial

> (n+1)n* - pela hipétese de indugao n! > n?

> (n+1)(n+1) - pois n? > (n+ 1) para todo inteiro n > 2.

= (n+1)% Assim, (n+1)! > (n+ 1) De (i) e (i), conclui-se que a
propriedade é valida para todo inteiro n > 4. O

3 Principio da Inducao Finita

Vimos que a Demonstragao por Inducao, constituida de dois passos, é a técnica
usada para mostrar que certa propriedade P(n) é valida para todo nimero
inteiro n maior ou igual a um valor inicial ny. Voce deve estar se perguntando:
- Por que os dois passos da demonstragao garantem que as infinitas afirmacoes

P(ng), P(ng + 1), P(ng + 2), P(ng + 3), ...

sao todas validas? A resposta é dada no corolario a seguir, conhecido como
Principio da Inducdao Finita.
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Teorema 1. Sejam ng um inteiro e
S C {no, no+ 1,n9 + 2,n9 + 3, },

o qual tem as sequintes propriedades:
(i) no € S;
(12) Para todo inteiro n > ng, sen € S, entdo n+ 1 também pertence a S.

Nestas condicoes,

S ={ng,no+ 1,m0+ 2,10+ 3,...}.

Com isso podemos enunciar o seguinte corolario, o qual justifica a demons-
tragao por inducao.

Corolario 1. (Principio da Indu¢do Finita - 1* Forma)

Sejam ng um inteiro e P(n) uma propriedade associada ao inteiro n. Se
(1) P(ng) € verdadeira e

(13) Para todo inteiro n > ng, temos a implicagdo:

P(n) verdadeira = P(n + 1) verdadeira.
Nestas condigoes, P(n) € verdadeira para todo inteiro n > ny.

Para um melhor entendimento do Coloréario 10, retornemos a questao 01
dos exercicios resolvidos anteriormente. Usando a demonstragao por inducao

mostramos que:
1
P(n) : 1+2+3+...+n:@

é validada para todo inteiro n > 1.

No passo 1, mostramos que essa propriedade vale para n = 1. Mas, se
vale para n = 1, pelo passo 2, podemos concluir que a propriedade é também
valida para n = 2. E novamente pelo passo 2, se vale para 2, entao vale para
3. Aplicando repetidamente o passo de inducao, segue que se vale para 3, vale
para 4, se vale para 4, vale para 5 e assim sucessivamente. Sendo portanto
valida para todos os inteiros maiores do que ou iguais a 1. E isso que afirma
o Corolario 10.

Existe um variante do Principio da Inducgao Finita, conhecido como Principio
da Indugao Finita - 2* Forma ou Principio da Indugao Completa.

Corolério 2. (Principio da Indu¢do Finita - 2* Forma)

Sejam ng um inteiro e P(n) uma propriedade associada ao inteiro n. Se
(1) P(no) € verdadeira e;

(12) Para todo inteiro n > ng, temos a implicag¢ao:

P(ng), P(ng+1), P(ng+2),..., P(n) sio verdadeiras = P(n+1) € verdadeira.

Nestas condigoes, P(n) € verdadeira para todo inteiro n > ny.

e Explique a diferenga basica entre a 1 e a 2% Forma do Principio de
Inducao Finita.
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Lista de Exercicios 2.
(01) Dado um inteiro n > 1, seja P(n) a propriedade dada por:

Pn): 4410+16+..+(6n—2)=n(Bn+1)

(a) Expresse P(5) e verifique se a mesma ¢ verdadeira;
(b) Expresse P(7) e verifique se a mesma ¢é verdadeira;
(c) Expresse P(k), P(k + 1), P(k + 3), considerando k um inteiro.

(02) Dado um inteiro n > 1, seja P(n) a propriedade dada por:
P(n): n!>n?

(a) Expresse P(4) e verifique se a mesma é verdadeira;
(b) Expresse P(6) e verifique se a mesma é verdadeira;
(c) Expresse P(k), P(k+ 1) e P(k + 2), considerando k um inteiro.

Nas questoes de (03) a (12), use Demonstragao por Indugao para provar que
sao validas as afirmacoes feitas, onde n é um ntimero inteiro.

(03) 14+3+5+7+...4+(2n—1)=n? Vn > 1.

(04) 4410 4+ 16 + ... + (6n — 2) = n(3n + 1), Vn > 1.

(05) (=3) + (=2) + (=3) + (=1)... 4 256 = 21D "y >,

(06) 12 +22 + 32 4 ... + n? = 2HUEHD Ty >

2
(07) 134+ 2%+ ... +nf = [@] Wn > 1.
(08) 12 +3*+5°+ ...+ (2n— 1) = 2(4n* — 1), Vn > 1.
09 2 +i+t+.  +5=1—5,Vn>1

(10) 1.2+ 2.3+ 34+ 4.5 + ...+ n(n + 1) = 20O fgp >

(11) 15+ 55 + o+ 7y = ey Y0 > 1

(12) A+ Ha+Ha+..1+L) =n+1,Vn>1.
(13) Mostre que n? > (n + 1) para todo inteiro n > 2.
(14) Mostre que 3n* > 3n + 5, para todo inteiro n > 2.

(15) Mostre que n® > 3n(n + 1) + 1, para todo inteiro n > 4.

(16) Mostre que 2" > n?, para todo inteiro n > 10.
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(17) Mostre que n! > 3", para todo inteiro n > 7.
(18) Mostre que n! > n?, para todo inteiro n > 6.
(19) Mostre que para todo inteiro n > 1, o nimero (5" —5) é um multiplo de 4.

(20) (Somatério) Seja n > 1 um natural e ay, ag, ...a, nimeros reais. Es-
crevemos de modo abreviado a soma a; + as + ... + a, como Y ., a; (lé-se:
somatério de a; para i variando de 1 a n). Expresse cada uma das parcelas
ai, as, ..., a, dos somatorios abaixo e calcule o valor da soma:

(2) Yoy (20 +3);

(b) > (i + 1) + 2);

(c) Zj:l Z?:l 2.37.

(21) (Propriedades do Somatorio) Dadas as sequéncias de nimeros reais
ai,0as,...a, € by, bs,....b, e ¢ um nimero real, mostre que para todo inteiro
n > 1,tem-se:

(a) Doy (ai+0i) = >0 ai + D00 b

(b) >oim cai=cd L ai

(22) (Questao Desafio) As Torres de Handi é um jogo que consiste de
uma base de madeira onde estao firmadas trés hastes verticais (as torres) e um
certo numero de disco de madeira, de diametros diferentes, furados no centro.
No comeco do jogo os discos estao todos enfiados em uma das hastes, em or-
dem decrescente de tamanho, com o menor disco acima de todos. O objetivo
do jogo é mover todos os discos para uma outra haste, obedecendo as seguintes
regras:

(I) Somente um disco pode ser movido de cada vez;

(IT) Um disco maior nunca pode ser posto sobre um disco menor.

(a) Determine o nimero minimo de movimentos para se transferir 1 disco
de uma torre a outra;

(b) Determine o niimero minimo de movimentos para se transferir 2 discos de
uma torre a outra;

(¢) Determine o nimero minimo de movimentos para se transferir 3 discos de
uma torre a outra;

(d) Mostre que o nimero minimo de movimentos para se transferir n discos de
uma torre a outra é 2™ — 1, para todo inteiro n > 1.

(23) (ENADE-2008) Considere a sequéncia numérica definida por

a)p = \/a
Ant+1 = A/ + /an, para n=1,2,3,....

Usando o principio da inducao finita, mostre que a, < a para todon > 1 e
a > 2. Para isso, resolva o que se pede nos itens a seguir:

(a) Escreva a hipétese e a tese da propriedade a ser demonstrada,;

(b) Prove que a(a — 1) > 0 para a > 2;
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(c) Mostre que /a < a, para todo a > 2;

(d) Supondo que a,, < a, prove que a,;; < v2a;

(e) Mostre que a,11 < a;

(f) A partir dos passos anteriores, conclua a prova por indugao.

(24) (ENADE-2011) Considere a sequéncia nimerica definida por:

a = a
_ 4da
Api1 = ﬁ, para n > 1

Use o principio de inducéo finita e mostre que a, < v/2 para todo nimero
natural n > 1 e para 0 < a < /2, seguindo os passos indicados nos itens a
seguir:

(a) Escreva a hipdtese e a tese da propriedade a ser demonstrada,;

b) Mostre que s = %5 > 0 para a > 0;

( 2+a?
(c) prove que s> < 2, para todo 0 < a < v/2;

(d) Mostre que 0 < 5 < v/2

(e) Suponha que a, < v/2 e prove que a,s; < V2.
(f) Conclua a prova por indugao.
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Respostas da Lista de Exercicios 2

(01.a) Fazendo n = 5 na sentenca dada, temos:

P(5): 4410416+ ...+ (6.5 —2) = 5.(3.5+ 1). Isso indica que o somatério no lado
esquerdo tem o nimero 4 na primeira parcela e 28, na ultima parcela. Ficando entao:
P(5): 4410416+ 22+ 28 = 5.16. Como os valores resultantes em ambos os lados s@o
iguais a 80, verifica-se a identidade, logo P(5) é verdadeira;

(0L.b) P(7): 4+10+ 16+ 22 + 28 + 34 + 40 = 7.22. Ambos os resultante sao iguais a
154, logo P(7) é verdadeira;

(0l.c) P(k): 4+104+16+ ...+ (6k—2)=k(3k+1);

Plk+1): 4410416+ ..+ (6k—2)+ (6(k+1)—2) = (k+1)(3k+4);

Pk+2): 44+10+16+...+6(k+1)—2)+ (6(k+2)—2)=(k+2)3k+ 7).

2.a) P(4): 4!> 43 a qual é falsa, pois 4! = 24 < 43 = 64;

2.b) P(6): 6! > 63, a qual é verdadeira, pois 6! = 720 > 6> = 216;

2.¢) P(k): K!'>k5Pk+1): (k+1)!>(k+1)3%PE+2): (B+2)!>(k+2)3.
6) Fazendo a demonstragao por inducao em n:

) Base de Inducao:

(0
0
(0
(0
(i

Para n = 1, temos a igualdade: 12 = %

(#7) Passo Indutivo: P(n) = P(n+ 1):

. Logo P(1) é verdadeira;

ou seja,
1)(2 1 1 1 1)(2 1 1
LRI N (G )6( ntD g2y gm0 DS )J; )R+ 1) +1)
P(n)—Hipétese de Indugao P(n+1)

Suponha P(n) verdadeira. Somando (n + 1)? em ambos os lados em P(n) obtemos:
12422 4 40?4 (n+1)% = RedDCl) g )2,

Somando agora as parcelas no lado direito:

124+224+ .. +n2+(n+1)?2= %(n(?n—i—l)ﬁ—(ﬁ(n—i—l)) = w, a qual é a
identidade dada em P(n + 1). Com isto mostramos a implica¢do P(n) = P(n + 1).

De (i) e (ii), segue que P(n) é verdadeira para todo n > 1.

(16) Fazendo a demonstracao por inducdo em n:

(i) Base de Inducao:

Para n = 10, verifica-se a desigualdade, pois 2'° = 1024 > 103 = 1000.

(#7) Passo Indutivo: P(n) = P(n+ 1):

ou seja,
2n > n3 = 2n+1 > (n_|_ 1)3
N—— —_——
P(n)—Hipédtese de Indugao P(n+1)

Suponha P(n) verdadeira. Entao

2ntl = 297 > 2.n3 - pela hipétese de inducio
=n3+n®>n3+3n(n+ 1)+ 1 - pela questao (15)
=n3+3n?+3n+1=(n+1)3

Portanto 2"*! > (n + 1)3. Com isto mostramos a implicacio P(n) = P(n + 1).

De (i) e (ii) segue que P(n) é verdadeira para todo inteiro n > 10.

(20.a) zf 1(204+3) = (5+7+9+ 11+ 13) = 45;

(20.b) ZZ @G+ 1)(i4+2)=(2343.444.5+5.6) = 68;

(20. ¢) ijl S 203 =30 203450 2032 = (2444 8).3+ (2+4+8).9=168.
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Divisibilidade em 7

1 Divisor de um Inteiro

Definicao 1. Dizemos que um inteiro b divide outro inteiro a, se existe
c €7, tal que
a = bc.

Escreve-se b|a para simbolizar que b divide a e b1 a, para indicar que b ndo
divide a.

Se b divide a, dizemos também que b é um divisor de a ou que b é um fator
de a, ou ainda que a é um maultiplo de b.

Exemplos:

1) 3|21, pois 21 = 3.7 ¢ 7 € Z;

9) —4| — 24, pois —24 = (—4).6 ¢ 6 € Z;

3) —9|36, pois 36 = (—9).(—4) e —4 € Z;

4) 0|0, pois 0 = 0.2 e 2 € Z (mais geralmente, 0 = 0.k, Vk € Z);
5) 51 16, pois nao existe ¢ € Z, tal que 16 = 5.¢;

6) 012, pois nao existe ¢ € Z, tal que 2 = 0.c.

v' Exercicios 2.
(01) Responda e justifique:
(a) 2/187

(b) —3]187

(c) —15] — 1207

(d) 3|257

(e) 037

(f) 3|07

(02) Mostre que se a é um inteiro e 0O|a, entdo a = 0 (ou seja, o unico in-
teiro divisivel por zero é o préprio zero).

(03) Mostre que para qualquer a € Z, os inteiros 1 e a s@o divisores de a.

23

Nao confundir
as notacgoes
216 e 5. O
primeiro

caso € uma
afirmacgao, ela
diz que 2 ¢é
um divisor de

6. No segundo

caso, temos
uma fragao.
Podemos

escrever % = 3.



Lembrando:
la| =a, se a >0
la| = —a, se a <

0
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2 Propriedades da Divisibilidade

A proposicao a seguir da uma importante propriedade da divisibilidade.

Proposicao 1. Sejam a,b e c inteiros. Se a|b e alc, entao
al(bm 4+ cn)

quaisquer que sejam m,n € Z. Em particular, se a|b, entao albm, para qual-
quer mnteiro m.

Demonstracao:
Como alb e alc, pela Definig¢ao 1, isso implica que existem inteiros ¢; e co, tais
que

b=ac

Cc = acs.

Entao, dados inteiros quaisquer m e n, multiplicando a primeira identidade
por m e a segunda por n obtemos:

bm = a(cym)
cn = a(en).
Somando essas duas identidades:
bm + cn = a(cym + con) = al(bm + cn),
pois ¢cym + con € Z. Em particular, para ¢ = b e n = 0, temos que albm. O
Exemplos:
(01) Como 420 e 48, segue que 4|(20m + 8n), quaisquer que sejam os inteiros

m e n. Assim, podemos afirmar que 4[(20.(—3) + 8.5) e também 4((20.144 +
8.(—19)), por exemplo. O

A préxima proposicao fornece o intervalo no qual estao os possiveis divisores
positivos de um inteiro.

Proposicao 2. Sejam a e b inteiros, com a # 0. Se bla, entdo |b| < |al.
Demonstracao:
Suponha que bla e a # 0, entao existe 0 # ¢ € Z, tal que: a = b.c. Usando a
propriedade de médulo temos:

a=b.c=|a| = |b.c| = |b|.|c| > |b].1 = |b],

pois |¢| > 1, qualquer que seja o inteiro ¢ # 0. Assim, temos que [b| < |a|. O

Se b é um divisor positivo de um inteiro nao nulo a, pela proposicao anterior,
1<b<|al. Seb|ael<b<]al, diz-se que b é um divisor préprio de a.
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3 Divisao Euclidiana

Considere que vocé tem 20 moedas de R$1,00 e quer dividir esse valor por 5
pessoas, de modo que todas elas recebam o mesmo nimero de moedas, sendo
esse numero o maior possivel. Como

20=54

entao voceé devera dar 4 moedas a cada pessoa, ficando com zero moedas.

E se vocé tiver que dividir as mesmas 20 moedas por 6 pessoas? Como 6
nao ¢ um divisor de 20, a pergunta neste caso é: - qual a quantidade méxima
de moeda que pode ser dada a cada uma delas? Se voceé for distribuindo uma a
uma, descobrira que pode dar 3 moedas a cada uma delas e restarao 2 moedas.
Expressamos isso escrevendo:

20=06.3+2.

Dizemos que 3, a quantidade de moedas recebida por cada uma das 6 pessoas,
é o quociente dessa divisao e 2 é o resto. Este resultado, enunciado no préximo
teorema, conhecido como Algoritmo da Divisao ou Algoritmo de Euclides, é
de suma importancia na teoria dos nimeros inteiros.

Em preparagao ao teorema, facamos os exercicios a seguir.

v' Exercicios 3.

(01) Dados inteiros b > 0 e a qualquer, definamos o conjunto:
S={a—br|z€Z e a—bxr>0}.

Usando essa definicao, construa S para a e b abaixo e determine, caso exista,
o elemento minimo de S e o valor correspondente de x € Z, para o qual se
obtém esse elemento minimo:

(a) a =13, b= 4;

Solugao:

Usando a definicao, temos:

S:={13—4z|x€Z e 13-4z > 0}.

1B-dz>0=>2<B=S5={13-4dz|z€Z e x<3}={1,59,13,17,..}.
Logo, minS =1 =13 — 4.3 = o minimo de S é obtido para z = 3. OJ

(b) a =—13, b =4;

Solugao:

Pela definicao:

S={-13-4dzx|rxr€Ze—-13-4x >0} ={13—4x |z € Zex <-4} ={3,7,11,15, ...}

Assim, minS = 3 = —13 — 4.(—4), obtido para z = —4. O
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(¢) a =12, b = 20;
Solucgao:
Usando a definicao:
S:={12—-200 >0 |z € Z}.

12202 > 0= < 2 = 5={12-20z |z € Z e x < 0} = {12,32,52,72, ...}.
Logo, minS = 12 = 12 — 20.0, obtido quando z = 0. O

(d) a =—12, b = 20;

Solugao:

—12-200 > 0= 2 < £ =95 ={-12-200 |z € Zeax < -1}
{8,28,48,68,..}. Assim, minS =8 = —12 — 20.(—1), obtido para z = —1.

O

(f) a = —92, b =5.

(02) Dados inteiros b > 0 e a qualquer, considerando S o conjunto definido na
questao 01, mostre que:

(a) S # 0

Solugao:

Para garantir que S # (), precisamos mostrar que quaisquer que sejam a e
b > 0, sempre existe x € Z, tal que a — br > 0. Como b > 1, tomando
r = —|a|, segue que a — bx = a + bla] > a + |a] > 0. Assim, a + bla| € S,
quaisquer que sejam a e b, logo S # (). O

(b) Se r = minS, entao 0 < r < b.

Solucao:

Como r = minS = r € S = r > 0, pela definicao de S. Resta mostrar que
r < b. Suponhamos, que isso seja falso, isto é,r > b=1r—b>0. Comor € 5,
r = a — bx, para algum x € Z. Assim,

0<r—b=(a—br)—b=a—-blzx+1)=r—beS.

Um absurdo, pois » — b < r = minS. Portanto, 0 < r < b. O

Teorema 2. (Algoritmo da Divisao) Dados inteiros a e b, com b # 0,
existem unicos inteiros q e r, tais que

a=bq+r,

com 0 <r < [b].

Demonstracao:

(I) Existéncia de q e r:

Inicialmente, mostraremos a existéncia de ¢ e r. Como b # 0, temos dois casos
possiveis:
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Caso 1: b > 0:

Considere o conjunto S = {a —bx | x € Z ¢ ax —bx > 0}, como definido no
exercicio anterior. Conforme mostrado na questao 02, ) # S C Z., logo pelo
Principio da Boa Ordem (Axioma (PBO)), existe r = minS = r € S

= r =a—bg, para algum q € Z = a = bq + r, com ¢q,r € Z e como mostrado
na letra (b) da questao 02, 0 <r < b.

Caso 2: b< 0
Nesse caso, |b| = —b > 0 e pelo Caso 1, existem ¢’ e 1’ tais que:
a=1bl¢ +r" =b(—¢)+7r", com 0 <r" <|bl.
Assim, basta tomar ¢ = —¢' e r = 1. O

(II) Unicidade de ¢ e 7:

Suponha que existam ¢y, g2, 71,79 € Z, tais que:
a=bqg+r1 e a=bg+1ry

com 0 <ry,ry < |b|.

Se ry # ry, suponhamos 71 < 79, entao
0<7’2—T1 :b(q1_q2> :>b‘(7’2—7'1) = ’b‘ < |7“2—7’1’ :<7"2—7"1).

Um absurdo, pois 1o — 11 < 19 < |b|. Assim, r; = ry = b(q; — ¢2) = 0 e como

57&07411:(12- O

Os numeros ¢ e r do teorema anterior, chamam-se respectivamente, o quo-
ciente ¢ o resto da divisao de a por b. Costuma-se chamar divisao eu-
clidiana a divisao entre inteiros satisfazendo as condi¢oes dadas no Teorema
2.

Algoritmo da Divisao

Dados inteiros a e b # 0, para garantir a existéncia do quociente ¢ e do resto
r citados no Teorema 2, construimos o conjunto S = {a —bx >0 |z € Z} e
tomamos 7 = minS e g o inteiro para o qual temos r = a — bq (para b > 0)
our = a+ bq (para b < 0). Na pratica, veremos como encontar ¢ e r. Vamos
considerar dois casos, conforme o sinal do divisor b:

e Caso 1: b >0
Dependo do valor de a, temos os seguintes subcasos:

—Caso1l.1-a>0
Tomamos ¢ como a parte inteira da divisao de a por b e r = a — bq.
Vejamos os exemplos a seguir:

Dizemos
também que a
é o dividendo

e b, o divisor.
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Exemplos:

(01) Encontre o quociente e o resto da divisao de:

(a) 83 por 8

Tomando ¢ como a parte inteira da divisao de 83 por 8 e r = 83—8¢,
temos: ¢ = 10 e r = 3. Assim, 83 = 8.10 + 3. O

Observe que também temos as identidades:

83 =89+ 11
83 =88+19
83 =8.7T+ 27

83 =8.11 + (—5)

que correspondem aos demais elementos do conjunto S. Porém,
em todos esses casos, o resto r nao esta de acordo com a condicao
0 <r < 8, conforme enunciado no Teorema 2, portanto em nenhum

deles temos a divisao euclidiana. O]
(b) 36 por 9
Como 36 =94, entao g =4 er =36—94=0. U
(c) 9 por 36
Tomando g como a parte inteira da divisao de 9 por 36 e r = 9—36¢,
temos 9 = 36.0+ 9, ouseja,g=0er =9. 0

Caso 1.2: a <0
Nesse caso, efetuamos a divisao de |a| por b, conforme descrito no
Caso 1.1. Encontramos ¢’ e v/, com 0 < r’ < b, tais que:

la| = b.¢ + 1
Como a < 0, entao |a| = —a e essa identidade fica:
—a=bq +1

Multiplicando a identidade por -1:
a=b=q) + (=7

Se r’ =0, entdo ¢ = —¢' e r = ' = 0. Porém se 1’ # 0, entao
, - . .

—r" < 0, logo nao pode ser o resto da divisao euclidiana. Para en-

contrarmos o resto, adicionamos (b—b) no lado direito da identidade

e rearrumamos:

a="b(—¢)+(—r'")+(b—0)

4
a=b(=¢ —=1)+(b—1").
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Assim,g=—¢ —1ler=0b—7r". Como,0<r' <b=0<b—1r" <b.
Logo, r = b —r' é de fato o resto da divisao euclidiana.

Exemplos:

(01) Encontre o quociente e o resto da divisao de :

(a) -36 por 9

Solucao:

Fazemos a divisao de | — 36| por 9.

Como 36 =94+0= —36=9.(—4) +0,entdo g = —4der=0. O

(b) -83 por 8
Fazemos a divisao de | — 83| por 8. Ja vimos que:

83 =8.10+3

Assim, ¢’ =10 e ' = 3. Usando o que ja foi deduzido acima, temos
queg=—¢ —1=—1ler=b—r"=8—-3=5. Dai,

—83 =8.(—11) +5.

Lembramos que podemos deduzir os valores de ¢ e r, repetindo o
procedimento feito no Caso 1.2, nao sendo necessirio memorizar
tais valores. O

(c) -112 por 42
Fazemos a divisdo de | — 112| por 42:

112 = 42.2 4+ 28

Para um melhor entendimento do que foi feito no Caso 1.2, vamos
repetir novamente todo o procedimento, em vez de tomarmos dire-
tamente os valores de ¢ e r como feito no letra (b).
Multiplicando a identidade acima por por -1:
—112 = 42.(-2) + (—28)

Como —28 < 0, nao trata-se do resto da divisao euclidiana. Adicio-
nando (42 — 42) no lado direito e reescrevendo a expressao:

—112 =42.(-2) + (—28) + (42 — 42)

—112=42.(-2—-1)+ (42— 28) = —112=42.(-3) + 14

Assim, ¢ = —3 er = 14. OJ

e Caso 2: b<O0:
Como |b] > 0, pelo Caso 1, existem ¢’ e r/, tais que

a=|b.¢ +r
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com 0 <7’ < |b|. Como |[b] = —b, a identidade acima fica:
a=(=b).d +r=a=b(-¢)+7"
Assim, q=—¢ er =1".

Exemplos:

(01) Encontre o quociente e o resto da divisao:

(a) 36 por -9

Solucao:

Dividimos 36 por | — 9|:

36=94+0=36=(—9).(—4) + 0. Assim, ¢ = —4er=0. O

(b) 83 por -8

Solucao:

Dividimos 83 por | — §|:

83 =8.10+3 =83 =(—8).(—10) + 3. Assim, ¢ = —10 e r = 3. O

(c) -83 por -8
Solugao:

Dividimos | — 83| por | — §|:

83 =8.10+3

Usando o Caso 1.2, multiplicamos a identidade por -1:

—83 = 8.(—10) + (=3)

Somamos (8 — 8) no lado direito a fim de obtermos um resto positivo:

—83=8.(—10) 4 (—=3) + (8 — 8) = —83 = 8.(—10 — 1) + (8 — 3)

Assim,
—83=8.(-11)+5

Resta agora fazermos uma inversao de sinais entre divisor e quociente:
—83=(—8).11+5
Portanto, g = 11 e r = 5. 0

(d) -112 por -42

Solugao:

Dividindo | — 112| por | — 42|, obtemos:
112 =42.2 4 28

Multiplicando por -1:

—112 = 42.(=2) + (—28)
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Somando (42 — 42) no lado direito:
—112 = 42.(—=2) + (—28) + (42 — 42) = —112 = 42.(=2 — 1) + (42 — 28)
Assim,
—112 = 42.(=3) + 14 = —112 = (—42).3 + 14
Assim, g =3 e r = 14. O

4 Paridade de um Inteiro

Segue do algoritmo da divisao que todo inteiro n pode ser escrito na forma
n=23+r,com0<r <2 Ser =0, istoé, n = 2q, entdao diz-se que n é
um inteiro par, e se r = 1, n = 2¢g + 1 é dito um inteiro impar. Chama-se
paridade de um inteiro a sua propriedade de ser par ou fmpar.

Exemplos:

(01) 26 é um nimero par, pois deixa resto 0 na divisdo por 2, isto é, 26 =
2.13+0. J& —15 é um inteiro impar, pois deixa resto 1 na divisao por 2, uma
vez que

—15=2.(-8) + 1. i

(02) Qualquer que seja o inteiro n, segue que n e n+ 6 tém a mesma paridade.

De fato, sejam ¢ e r, respectivamente o quociente e o resto da divisao de n
por 2. Entao
n=2q+r,

com 0 < r < 2. Somando 6 a esta identidade obtemos:
n+6=2¢+r+6=2(q+3)+r.

Assim, ambos deixam o mesmo resto na divisao por 2, tendo portanto, a mesma
paridade.

(03) Para todo n € Z, os inteiros n e n + 5 tém paridades distintas. UJ

Considere g e r, respectivamente o quociente e o resto da divisao de n por
2. Entao
n=2q+r,

com 0 < r < 2. Somando 5 a essa identidade obtemos:

2(¢g+2)+1, se 7=0

n+5:2q+7“+5={ 2g+3)+0, se r—1

Portanto, n e n 4+ 5 tém restos diferentes na divisao por 2, logo suas paridades
sao distintas. O
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Lista de Exercicios 3.

(01) Responda e justifique:
(a) 14]168?

(b) —12|60?

(c) —9|287

(d) 7| — 357

(e) —11| — 1437

(02) Sejam a e b inteiros nao nulos. Mostre que se a|b, entao
(a) —alb;
(b) —a| —b.

(03) Sejam a, b inteiros. Mostre que:

(a) Se al3 e 3|b, entao alb;

(b) Se a] — 15 e —15|b, entao a|b;

c¢) Para qualquer inteiro ¢, se alc e ¢|b, entdo alb (dizemos que a divisibilidade
¢ transitiva).

(04) Seja a um inteiro. Mostre que:

(a) Se a2 e al3, entdo a|6;

(b) Se a| — 7 e a|9, entao a| — 63;

(c) Para quaisquer inteiros b e ¢, se alb e alc, entao albe.

(05) Sejam a e b inteiros. Mostre que:

(a) Se a5 e b|13, entao ab|65;

(b) Se a| — 11 e b|4, entao ab| — 44;

(c) Se m e n sdo inteiros quaisquer e alm e b|n, entdo ab|mn.

06) Sejam a e b inteiros. Mostre que:

( ] q

(a) Se alb, entao a?|b?;

(b) Se alb, entao a?®|b?;

(c) Se a|b, entao a™|b", para todo inteiro n > 2.( Sugestdo: use indugao em n).

(07) Faca o que se pede:
(a) Dé exemplo de dois inteiros distintos a e b, tais que alb e b|a;
(b) Mostre que se a e b sdo inteiros nao nulos e alb e bla, entdo a = b ou a = —b;

(08) Sejam a e b inteiros quaisquer. Mostre que:
(a) Se al5 e a|7, entdo al2;

(b) Se al5 e a7, entao al6;

(c) Se al5 e a|7, entao a|(bm + Tn), para quaisquer m,n € Z.

(09) Considere a, b e ¢ inteiros. Verifique se as afirmagoes abaixo sao ver-
dadeiras ou falsas. Sendo verdadeira, demonstre-a. Se for falsa, dé um con-
traexemplo.

(a) a|(b+ c), entao alb ou alc;

(b) Se albe, entdo alb ou alc.
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(10) Determine o quociente q e o resto r da divisao euclidiana de a por b,
onde

(a) a=144eb=T,;
(b)a=—-144eb =T,
(c)a=144eb=—T7
(d)a=—-144e b= —T;
() a=139 e b= 14;
(f)a=—-139eb=14
(g) a=139 ¢ b= —14;
(hya=-139eb=—14

(11) Na divisao de 477 por um inteiro positivo b o resto ¢ 12. Determine
os possiveis valores para o divisor b e o quociente q.

(12) Na divisdo de 632 por um inteiro positivo b, o quociente é 15. Deter-
mine os possiveis valores do divisor b e do resto r correspondente.

(13) Na divisao de a por b o quociente é 7 e o resto, o maior possivel. Sabendo
que a e b sao inteiros positivos cuja soma é 116, determine o valor de a e b.

(14) Na divisao de a por b, o resto é o maior possivel. Sabendo que a e b
sao inteiros positivos cuja soma é 181, determine os possiveis valores para a e

b.

(15) Sabendo que na divisdo do inteiro a por 12 o resto é 7, calcule o resto da
divisao de cada um dos inteiros abaixo por 12:

(a) 3a;

(b) ba + 7

(c) 4a —

(16) Mostre que o produto de dois inteiros consecutivos é sempre um nimero
par.

(17) Mostre que para quaisquer inteiros a e b, (a*> — b*) + (a — b) é sempre
um nimero par. (Sugestio: Use a questao anterior.)

(18) Mostre que se a e b sao dois inteiros fmpars, entdao a? — b? é divisivel
por 8. (Sugestdo: Use a questao anterior.)

(19) Mostre que o quadrado de um inteiro qualquer é da forma 3k ou 3k + 1,
para algum inteiro k. (Sugestdo: Divida o inteiro por 3.)

20) De exemplo, caso exista, de um inteiro a, tal que a?;
a) termina em 5;
b) termina em 9;
c)

(
(
(
(

termina em 2;
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(d) termina em 7.

(21) Mostre que se a é um inteiro, entdo a? termina em um dos algarismos
0,1,4,5 6 ou9.

(22) Mostre que dado trés inteiros consecutivos, um deles é divsivel por 3.
(23) Mostre que o produto de 3 inteiros consecutivos é sempre divisivel por 6.

(24) Seja a um inteiro qualquer. Mostre que exatamente um dos inteiros a,
a+ 2 ou a+ 4 é divisivel por 3.

(25) Mostre que todo nimero impar é da forma 4k + 1 ou 4k + 3, para al-
gum inteiro k.

(26) Mostre que para qualquer inteiro nao nulo n, 6|n(n + 1)(2n + 1).
(27) Mostre que se a é um nimero impar, entdo a(a® — 1) é divisivel por
24.

(Sugestao: Use a questao anterior.)

(28) Sejam a e b inteiros quaisquer. Mostre que a + b e a — b tem a mesma
paridade.

(29) Sendo a e b inteiros quaisquer, mostre que os inteiros a e 5a + 6b tem
sempre a mesma paridade.

(30) Mostre que para qualquer inteiro a, os nimeros a e (5a+1) tem paridades
distintas.
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Respostas da Lista de Exercicios 3

(01.b) Sim, pois 60 = (—12)(—5) (0l.c) Nao, pois nao existe ¢ € Z, tal que 28 = (—9).c
(02) alb = Jc € Z, tal que b = ac = b = (—a)(—c) = —alb e também —b = (—a)c = —a|—
(03.c) alceclb=Ax,y €Z, c=ax e b= cy = b= (ax)y = a(zy) = a|b, pois zy € Z.
(04.c) alb e alc = Fx,y € Z, b = ax e ¢ = ay = bc = (ax)(ay) = alazy) = albc, pois
axy € Z.

(07.c)albebla= Iz, y € Z, b=ax e a =by = ab= (ab)(xy) = ab(l —xy) =0, como a e b
sao nao nulos e Z é sem divisores de zero, segue que 1 —zy=0=2y=1=zc=y=1=
a=bouzr=y=-1=a=-b.

(10.a) 144 =720+4=g=20er =4 (10.b) =144 =7.(-21)+3=¢g=-2ler =3
(10.c) 144 = (=7).(=20) +4 = g = —20er =4 (10.d) —144 = (-7).21 + 3 = g =2l e
r=3;

(10.e) 139 =149+ 13 = g=9er =13 (10.f) —139 = 14.(-10)+ 1 = g=—10er =1
(10.g) 139 = (—14).(=9) + 13 = g = -9 e r = 13 (10.h) —139 = (—14).10 +1 = ¢ =
10,r = 1.

(11) Procuramos inteiros b e g, tais que 477 = b.q + 12, com 12 < b. Entao b.q = 465 =
bl465 = b € {15,31,93,155,465}. Logo os possiveis valores para o par (b, q) sdo:

(15,31), (31,15),(93,5), (155, 3), (465, 1).

(12) Procuramos inteiros b e r tais que 632 = b.15+r, com 0 < r < b. Dividindo 632 por 15
encontramos: 632 = 42.15 + 2. Atribuindo a b os valores inteiros mais préximos a 42, isto é,
be{..,39,40,41,42,43,44, ..} verifica-se que:

632 =39.15 4+ 47 = r =47 > b =39 (néo ¢ a divisdo euclidiana)

632 =40.15+ 32 = r = 32 < b = 40 (divisdo euclidiana)

632 =41.15+ 17 = r = 17 < b = 41 (divisdo euclidiana)

632 =42.15+2 = r =2 < b =42 (divisao euclidiana)

632 = 43.15 4 (—13) = r = —17 < 0 ( nao ¢ divisdo euclidiana)

Assim, os tinicos valores para o par (b, q) sdo (40,32), (41,17), (42, 2).

(13) O maior resto que se obtém na divisdo por b é (b—1), entdo a = 7b+(b—1) e a+b = 116.
Dessas duas equagoes obtemos a = 103 e b = 13.

(14) a=bg+(b—1)ea+b=181 = b(g+1) = 182 = b|182 = b € {1,2,7, 14,26, 91,182}
Como a e b sao positivos e a + b = 181 os possiveis valores para o par (a,b) sao:

(180, 1), (179, 2), (174, 7), (167, 14), (155, 26), (90, 91).

(15) Como a = 12¢q + 7, entao

(a) 3a=12(3¢) + 21 =12(3¢+ 1)+ 9 =71 =9;

(b) 5a+7=12(5¢) + 35+ 7 =12(5¢ + 3) + 6 = r = 6;

(c) da—4=12(4q) + 28 — 4 = 12(4g — 2) + 0 = r = 0.

(17) Pela questao (16), para qualquer inteiro a, a(a+1) é um nimero par. Entao (a? —b?) +
(a—b) = (a®>+a)— (B> +b) =ala+1) —b(b+1) = 2ny — 2ns = 2(ny — na), com ny, ns € Z.
(21) O dltimo algarismo de qualquer inteiro a é exatamente o resto da divisdo de a por 10.
Sejam q e r, respectivamente, o quociente e resto da divisao de a por 10, entao a = 10q +r,

com 0 < r < 10. Portanto,

se r=0

se r=1ou9
se r=2o0ul8
se r=25

se r=4oub
se r=3ou’

a? =100¢? + 20qr + r? = 10(10¢% + 2qr) +

O O U~ O
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(23) Mostraremos que 6|a(a + 1)(a + 2), qualquer que seja o inteiro a. Pelo algoritmo da
divisdo temos que a = 3¢ + 7, com r = 0,1 ou 2. Se a = 3¢, entdo a(a + 1)(a + 2) =
3¢(3¢+1)(3¢ + 2) = 3¢.2m = 6(gm), pois (3¢ + 1)(3¢ + 2) = 2m, m € Z, conforme questao
(16). Se a = 3qg+ 1, entdo a(a + 1)(a+2) = 3¢+ 1)(3¢ +2)(3¢ +3) = 2m3(¢ + 1) =
6(m(g+1)). Se a = 3¢ + 2, neste caso, sendo a par, entdo a = 3¢+ 2 = 2m, m € Z, dal,
ala+ 1)(a + 2) = 2m(3q + 3)(3¢ + 4) = 6(m(qg + 1)(3¢ + 4), que é um multiplo de 6. Se
a é impar, entdo necessariamente ¢ é também impar, isto é, ¢ = 2k + 1 (verifique). Assim,
a+1=3¢+2)+1=3(¢g+1) =3(2k+2) =6(k+1), assim, a(a+ 1)(a +2) é um miltiplo
de 6, pois (a+ 1) o é.

(29) Sejam a = 2¢q1 + 71 e b = 2g2 + ro dois inteiros quaisquer, com 0 < r1,79 < 2. Entéo
5a + 6b = 5(2¢q1 + 1) + 6(2q2 + r2) = 2(5q1 + 211 + 6¢2 + 3r3) + r1. Portanto a e 5a + 6b

tem o mesmo resto na divisao por 2, logo a mesma paridade.



Capitulo 4

Sistema de Numeracao

1 Introducao

Tomemos dois inteiros positivos, a = 1924 e b = 10. Pelo algoritmo da
divisao, podemos dividir @ por b, encontrando um quociente ¢ e um resto r,
com 0 < 7 < b. Nesse caso,

1924 = 192.10 + .
O

resto

Aplicando agora o algoritmo da divisao aos inteiros 192 e 10, obtemos:

192 = 19.10 + .
2

resto

Substituindo essa identidade na primeira:
1924 = 192.10 + 4 = (19.10 + 2).10 + 4 = 19.10* + 2.10 + 4.
Repetindo o processo, dessa vez para o quociente 19:

19=110+ ©
~—

resto

Dai,
1924 = (1.10 + 9).10* + 2.10 + 4 = 1.10° + 9.10* + 2.10 + 4.

Por fim, divindo 1 por 10, teremos o quociente nulo:

1=0.10 + .
o

resto

1924 = (0.10 4+ 1).10° 4+ 9.10* + 2.10 + 4 = 1.10° + 9.10% + 2.10 + 4.

Obtemos assim a identidade:

1924 = 1.10° + 9.10% + 2.10 + 4.10°.

37
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Ou seja, expressamos 1924 como uma soma de multiplos de poténcias de 10,
sendo os coeficientes das poténcias exatamente os restos obtidos nas divisoes
acima, os quais, nesse caso, coincidem com os digitos que aparecem na repre-
sentacao do nimero.

Nesse exemplo, como dividimos por 10, qualquer que fosse o valor atribuido
a a, em sua representacao sé poderiam constar os 10 restos possiveis: 0,1, 2, ...,8,9.

Vamos repetir o mesmo processo, tomando b = 7, em vez de 10.

1924 = 274.7 + .
O

resto

Dividindo agora o quociente 274 por 7:

274 = 39.7 + .
o

resto

Substituindo esse valor na primeira identidade:
1924 = (39.7+1).7+ 6 = 39.7° + 1.7 + 6.

Repetimos o processo, até que o quociente seja nulo:

39=57+ @ .
~~

resto
Dali,
1924 = (5.7+4). 7 +1.74+6 =57 +4.7 + 1.7 +6.
Por fim, dividindo 5 por 7:

5=0.7+ :
N
resto
\
1924 = (0.7 +5).7 +4.7 + 1.7+ 6 =57 + 4.7 + 1.7+ 6.

Portanto,
1924 =57+ 4.7+ 1.7+ 6.7°.

Dessa forma, também expressamos 1924 como uma soma de multiplos de
poténcias de 7. E com antes, os coeficientes das poténcias sao exatamente
os restos obtidos nas sucessivas divisoes.

Tal como fizemos para b = 10, podemos representar esse numero, usando
somente os restos obtidos nas divisoes, desde que fique indicado o inteiro b
usado como divisor. Nesse caso, escreve-se:

(5416)s,

e dizemos que essa é a expansao de 1924 na base 7.
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No segundo exemplo, como tomamos para o divisor b = 7, os restos
possiveis sao: 0, 1, 2, 3, 4, 5, 6. Assim, somente esses sete digitos apare-
cerao na representacao do inteiro a, qualquer que seja o valor atribuido a ele.

Podemos repetir esse processo, quaisquer que sejam os inteiros positivos a
e b. Isso é o que afirma o proximo teorema, o qual é uma aplicacao da divisao
euclidiana e a base para os sistemas de numeracao posicional.

2 Representacao de um inteiro em bases ar-
bitrarias
Teorema 3. Seja b > 2 um inteiro. Para todo inteiro a > 1, existem unicos
NLeIros ro, T, ..., Tn, 1 > 0, tais que:
a=r,b" + 71, 1"+ .. 4 ab+ ro.

com 0 <r; <b, para todo i e r, # 0.

Demonstracao:

Faremos a demonstracao por inducao em a.
(7) Base de Indugao: a = 1:

Como b > 2 > a, divindo a por b, obtemos:

a=0.b+a.

Assim, tomandon = 0ery = a < b, segue a existéncia dos r;. Para a unicidade,
suponhamos que também existam inteiros 0 < sg, S1, ..., Sp_1, Sm < b, para
algum m > 0, com s, # 0, tais que:

a = $,0™ + S 10"+ ..+ 510+ So.
Se m > 1, entao
(8b™ 4 5y b2 L+ 81)b+ 50 = 0.b+ a.

Da unicidade do quociente e resto na divisao euclidiana, segue que sy = a e
Smb™ 5 b2 451 =0= S, = Sp_1 = ... = 51 = 0, um absurdo,
pois s, # 0. Assim, m = 0 e sg = a, provando a unicidade.

(11) Passo Indutivo:

Usaremos a 2° Forma do Principio da Indugao Finita (Corolario 2). Para isso,
suponhamos o resultado valido para todo inteiro ¢, com 1 < ¢ < a. Pelo
algoritmo da divisao, existem tunicos inteiros qq e rog, com 0 < rg < b, tais que:

a = bqo + 71o. (4.1)

Se qo = 0, entao rg = a # 0. Se ¢o > 1, como b > 2, entao 1 < ¢o < a. Logo,
pela hipdtese de inducdo, existem tnicos inteiros 7, 1, ..., 71, tais que:

ey Fmyy

qo =71+l " b+



Se b =10 a ex-
pressdo (4.2)

é é chamada

expansao
decimal, e
se b = 2, é

dita expansao

binaria.
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com 0 < 7,7, ....,7h < ber # 0. Substituindo o valor de gy em (4.1)
obtemos:

a= b b r! BT e bl ) g = 1l B e BT A D2 b

Fazendon =m+1, r; = r;-_l, para j = 1,2,...,m, obtemos o resultado dese-

jado. A unicidade dos r;, segue da unicidade de 7y e dos r;-. 0

A representacao do inteiro a como no teorema, isto é,

a=71pb" + 110"+ . 4 Tb+ 1o, (4.2)
é chamada a expansao de a na base b, e utiliza-se a notacao
(PnTn—1.-.7170)p (4.3)

para representar esta expansao. Assim, temos:

a = (TaTp_1..7170)p & @ = rpb" 41, _1b" ...+ r1b+7g

No caso da base 10, que é a usual, omitem-se os parénteses e a indicagao
da base em (4.3).

Exemplos:
(01) Como
3427 = 2.6* + 3.6 + 5.6 + 1.6" + 1.6",

escrevenios
(23511)g

para representar a expansao do nimero 3427 na base 6.
(02) Como
3427 = 6.8° +5.8° + 4.8 + 3.8°,

entao,
(6543)s

representa a expansao de 3427 na base 8.
(03) Sendo
3427 = 1.5° 4 0.5* + 2.5 + 0.5 + 2.5°,

entao,
(102202)5
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representa a expansao, em base 5, de 3427.

(04) Como
3427 = 3.10% + 4.10* + 2.10 + 7,

a notacao
(3427)19

¢ a representacao da expansao de 3427 na base 10. Nesse caso, escrevemos
apenas 3427, como ¢ usual, omitindo-se os parénteses e a base.

(05) A notagao
(11000110),

indica a expansao em base 2 (ou expansdo bindria) de um certo inteiro N.
Para determinar N, basta lembrar o significado desta notagao. Assim,

N=12"4+1204+02°+02+0224+1.224+1.2+0.2° = 198.

Portanto, essa expressao representa a expansao binaria do nimero 198.

(06) A notagao (324); indica a expansao de um certo inteiro N em base 5.
Como
N = (324)5 = N = 3.5 + 2.5+ 4.5° = 89.

(324)5 representa a expansao em base 5 de 89.

(07) (1a7b6);5 é a representagdo de um certo inteiro N em base 12, onde esta-

mos usando os simbolos a e b para representar, respectivamente, os nimeros
10 e 11. Entao,

— _ 4 3 2 1 0_
N = (1a7b6)12 = N = 1.12° 4+ _(io 127 +7.127 + _Zil A2 +6.127 = 39162.

Portanto, N = 39162.

v' Exercicios 4.

(01) Determine o nimero N (em base 10) que na base dada, tem a expansao
abaixo:
(a) (2345)7

Solucao:

(2345)7 = 2.73 + 3.7 + 4.7 + 5.7° = 686 + 147 + 28 + 5 = 866. 0
(b) (2012001)5

Solugao:

(2012001)3 = 2.3 + 0.3° + 1.3* +2.3* + 0.3 + 0.3' + 1.3 = 1594. O
(¢) (100001),

Solugao:

(100000)y = 1.25 4+ 0.2* + 0.23 4+ 0.22 + 0.2' + 1.2 = 32. O
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(02) Escreva a expansao do inteiro a na base b, sendo:

(a) a = 2945 e b = 6;
Solugao:
Inicialmente, dividimos a pela base b:

2945 = 490.6 + 5.

A seguir, dividimos o quociente obtido nesssa divisao, novamente pela base b
e substituimos o resultado no valor do quociente acima (como no teorema):
Como

490 = 81.6 + 4,

entao
2945 = 490.6 + 5 = (81.6 + 4).6 +5=281.6>+4.6+5.6°.

Repetimos esse processo, sempre dividindo o quociente pela base, até obter
um quociente ¢, = 0:

2045 = 81.6% + 4.6 +5.6° = (13.6 + 3).6% + 4.6 + 4.6° = 13.6° + 3.6 + 4.6 + 5.6°
= (2.6 4+1).6> + 3.6 + 4.6 +5.6° = 2.6* + 1.6° + 3.6% + 4.6 + 4.6°
= (0.6 +2).6* + 1.6% + 3.6 + 4.6 + 5.6° = 2.6 + 1.6% + 3.6% + 4.6 + 4.6°

Assim, (21345)¢ ¢ a expansao de 2945 em base 6. O
(b) a =2945 e b = 5;
Solugao:

Vamos efetuar as sucessivas divisoes, até obter um quociente nulo, e depois
tomar os restos rg,rq, ..., 7, obtidos, conforme feito na introdugao:

2945 = 589.5 + (0

~—
To
580 = 1175+ @ .
~~

r1
117 =235+ @ .
—~—

23 =45+ .

P

T3
4=05+ @ .

T4

ASSiIl’l, 2945 = (T4T’37’2T17’0)5 = (43240)5

(c)a=2945eb=2;
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Solucao:
Efetuando as sucessivas divisoes:
2945 = 1472.2 + )
<
)
1472 =736.2+ © .
—~—

736 = 368.2+ ()

368 = 184.2 + (0

184 =922+ ©

~— '
T4
922=462+ © .
~—
rs
46=232+ © .
~—
r6
23=112+ D .
~—
r7
11=52+ O .
~—
T8
5=22+ .
2
9
2=12+ © .
~—
10
1=02+ .
2
e tomando os restos, temos 2945 = (101110000001 ). O

(d) a =563 e b =12, convencionando 10 = a e b = 11.
Solugao:
563 = 46.12 + 11 = (3.12 + 10).12 + 11.12° = 3.122 + 10.12 + 11.12° = (3ab)»
0
(03) Escreva (7645)s no sistema de base 12.
Solugao:
Inicialmente vamos converter para a base 10 e posteriormente para a base 12.
(7645)g = 7.8% + 6.8% + 4.8 + 5.8 = 4005
Agora,
4005 = 333.12+9 = (27.12 +9).12 + 9.12° = 27.122 + 9.12 + 9.12°
= (2.12+3).12%2 +9.12 4+ 9.12°
=212%43.12°4+9.1249.12°
Portanto (7645)s = (2399)12. O
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(04) Determine a base b de um sistema na qual (2006)g se escreve como (613),.
Solugao:
(613), = (2006)s.
U
6.6°+1.b+3.0° =2.8° +0.8° + 0.8+ 6.8°

N[}
60> +b—1027=0=b = 13.

(05) Efetue as somas:

(a) (1012)3 + (212)3.

Solugao 1:

Podemos determinar a expansao dos inteiros em base 10, efetuar a soma nessa

base e posteriormente converter o resultado para a base 3:
(1012)3 = 1.334+032+13"'+23"=32¢ (212)3 = 2.324+1.3+2=23.
Assim, (1012)3 + (212); = 32+ 23 = 55 = 2.33 + 0.3 + 0.3 + 1 = (2001)3.

Solucao 2:

Podemos efetuar a soma diretamente em base 3. Neste caso, lembrar que o
resultado da soma dos elementos de cada coluna deve ser convertida para base
3 e, como feito na base 10, coloca-se no resultado apenas o coeficiente rq, sendo
os demais coeficientes adicionados as colunas seguinte.

1012
0212
2001

(b) (2134)5 + (1143)5
Solugao:
Somando diretamente em base 5 temos:

2134

1143
3332
Assim, (2134)5 + (1143)5 = (3332)s. [
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Lista de Exercicios 4.
(01) Determine o nimero N (em base 10) que na base dada, tem a expansao

abaixo:

a) (110011)s;
b) (2013)s;

c) (20163)s;

d) (264102)-;
e) (22010011)s.

) 12;

o ®

Y

EOQ) Escreva a expansao de 34561 em base:

(@)
\9-‘/\—/\_/
ho 71 00

Escreva a expansao em base 8 de (110111)s.
Escreva a expansao em base 5 de (231330).
Escreva a expansao em base 3 de (237014)s.
Determine a base b de um sistema na qual (234)g se escreve como (28)y,.

Sabendo que (10001101)y = (215);, determine b.

o
(=
~— ~— ~— ~— ~—v

Efetue as somas, apresentando o resultado na base dada:
) (110101)5 + (11111)s

) (220121)3 + (2201)3

) (64587)9 + (22453)9 + (460113)9

) (a987a)15 + (56a3b)12, sendo a = 10 e b = 11.

Seja N = r,10"+7,_110" 1 4....r 1047y, com 0 < r; < 9, parai = 1,2, .n.
Mostre que:

a) 2|N < 2|rg;
b

c

—
]
=)

N ~—

3’N = 3’(7’0 +7r+ ... +7’n);
) 5IN < 5lro;
d) 11N < 11|(ro —r1 +re — .. + (—=1)"1);

Respostas da Lista de Exercicios 4
(0l.a) N =51 (0l.b) N =258 (0l.c) N =8307 (01.d) N =49443 (0l.e) N =5917
02.a) (18001);2 (02.b) (103401)s  (02.c) (2101221)5 (02.d) (1000011100000001)2

8

) (1010100);  (08.b) (1000022)5  (08.c) (557264)g  (08.d) (1446b9)15.
.b) Sugestao: Mostre e use que Vn > 1, 10" =9k + 1, k € Z;

.c) Sugestao: Mostre e use que Vn > 1, 10" = 11k + (-1)", k € Z.



Capitulo 5

Maximo Divisor Comum

1 Introducao

As duas oitavas séries de uma escola vao participar de uma gincana. Para
realizar as tarefas, a comissao organizadora decidiu dividir as duas turmas em
equipes, de modo que todas as equipes tenham o mesmo nimero de alunos e
em cada uma delas, os alunos sejam todos da mesma turma. Sabendo que a
8% A tem 40 alunos e a 8B 50, determine o niimero de alunos que devera ficar
em cada equipe, de modo que este niimero seja o maior possivel.

Solugao:

Vamos denotar por d o nimero de alunos em cada equipe. Pela natureza do
problema, obviamente d é um inteiro positivo. Os 40 alunos da 8*A serao
divididos em n; equipes com d alunos cada uma, ou seja,

40 = dnl.

Portanto, d é um divisor positivo de 40, logo d € {1,2,4,5,8,10,20,40}.
Analogamente, os 50 alunos da 8*B serao divididos em ns equipes com d
alunos cada uma, ou seja,

50 = dng.
Como d é também um divisor positivo de 50, entdao d € {1,2,5,10,25,50}.
Portanto, d é simultaneamente divisor de 40 e 50. Assim,

d e {1,2,4,5,8,10,20,40} N {1,2,5,10,25,50} = {1,2,5,10}.

Como queremos que o numero d seja o maior possivel, dentre os divisores
comuns, devemos tomar o maior deles, no caso 10.

Conlcuimos assim que a comissao devera dividir a 8*A em 4 equipes e a
8B em 5 equipes, cada uma delas com 10 alunos. O

46
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2 MDC

O numero d = 10, solugao do problema anterior, ¢ o maior dentre os divisores
comuns dos inteiros 40 e 50, é o que chamados de maximo divisor comum,
conforme definido abaixo.

Definigao 2. Sejam a e b dois inteiros ndo conjuntamente nulos (a # 0 e/ou
b#0). Diz-se que um inteiro positivo d é o mdximo divisor comum de a
e b, se d verifica as sequintes condicoes:

(1) dla e d|b;

(17) para todo d' € Z, se d' | a ed | b, entio d' | d.

Usaremos a notagao mdc(a,b) para indicar o méximo divisor comum de a e b.

A condigao (i) da Definigdo 2 diz que o mdc(a,b) é um divisor comum
de a e b e a condicao (i7), que ele é o maior dos divisores comuns, pois se
d" é qualquer outro divisor comum de a e b, entdo d'|mdc(a,b) e portanto,
d < |d'| < mdc(a,b).

Exemplos:
(01) mdc(4,6) = 2.

De fato, 2 satisfaz as condicoes (i) e (i) da defini¢ao acima, isto é,
(1) 2 é um divisor comum de 4 e 6, pois 2|4 e 2|6;
(#7) 2 é o maior dos divisores comuns de 4 e 6, pois se d' € Z é tal que d'|[4 e
d'|6, entao pela Proposicao 1, d'|(6 — 4), ou seja, d'|2. O
(02) mdc(3,-5) = 1.

De fato, 1 é um divisor comum de 3 e -5 e se d’ € Z é tal que
d'|3 e d'| — 5, entao pela Proposicao 1, d'|(3.2 4+ (—5)). Portanto, 1 satisfaz as
condigoes (i) e (i) da Definigao 2. O

(03) mdc(0,3) = 3.
Observe que 3|0 e 3|3 e se d’ € Z é um divisor comum de 0 e 3, entdo d'|3.0]

(04) mdc(8,20) = 4.
4 ¢ um divisor comum de 8 e 20, e se d’ é também um dividor comum de
8 e 20, entao d'|(8m + 20n), quaisquer que sejam m,n € Z. Em particular,

d'|(8.(—2) 4+ 20.1). Assim, 4 é um inteiro que estd de acordo com o exigido na
Definigao 2. OJ

v' Exercicios 5.

(01) Use a Defini¢ao 2 para justificar as afirmagoes abaixo:

() mde(6,9) = 3

(b) mdc(42 7)

(c) mde(—8 )

(d) mde(— 11 —35) 1.
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(02) Determine o mdc abaixo e mostre que o valor encontrado satisfaz as
condigoes (i) e (i) da Defini¢ao 2:

a) mdc(32,18);

b) mde(—12, 38);

¢) mdc(0,31);

d) mde(1,129);

e) mdc(14, 84).

03) Dé exemplo de dois inteiros nao nulos a e b, para os quais nao existe
mdc(a, b).

(04) Encontre, caso exista, um inteiro positivo d # 3, tal que d = mdc(6,9).
(05) Encontre, caso exista, um inteiro positivo d # 4, tal que d = mdc(—8, 28).

(
(
(
(
(
(

Segue claramente da Definicao 2, que para qualquer par de inteiros
(a,b) # (0,0), temos:

mdc(a,b) = mde(b,a) = mde(|al, |b]).

3 Calculo do MDC

Que conclusoes podemos tirar das questoes 03, 04 e 05 do exercicio anterior? O
que voce deve estar conjecturando é afirmado no Teorema 5, dado na préxima
secao, o qual garante a existéncia e unicidade do maximo divisor comum de dois
inteiros quaisquer a e b, nao simultaneamente nulos. Antes porém, daremos
um algoritmo, que usa a divisao euclidiana, para o célcular o maximo divisor
comum de dois inteiros. Vejamos primeiramente o caso em que um dos inteiros
é nulo, cujo cédlculo é imediato.

v Exercicios 6.

(01) Usando a Defini¢ao 2, determine:
(a) mdc(0,2)

(b) mdc(0,5)

(c) mde(0, —3)

(d) mde(3927,0)

Proposicao 3. Para todo inteiro nao nulo a, tem-se:

mdc(a,0) = |al.

Demonstracao:

Como, 0 = 0.]a|] e a = £1.]al|, segue que |a| ¢ um divisor comum de a e 0. Se
d € Z é um divisor comum de a e 0, entao d'|a = d'||a|]. Portanto, |a| estd de
acordo com a Definicao 2. O
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Teorema 4. Sejam a e b inteiros com b # 0, q e r respectivamente o quociente
e o resto da divisao de a por b, isto € ,

a=bg+r, com 0<r<|b.

Entao
mdc(a,b) = mde(b,r).

Demonstracao:
Suponha d = mdc(a,b). Vamos mostrar que d = mdc(b, 7). De fato,
(1) Como d = mdc(a,b) = d|a e d|b, entao pela Proposigao 1, d| (a — bq) = d|r.
~
Assim d é um divisor comum de b e 7;
(i7) Seja d’' um inteiro, tal que d'|b e d'|r = d'| (bq + 1) = d'|a. Como
~——

=a

d = mdc(a,b) e d' é divisor comum de a e b, segue da Definigao 2, que d'|d. O

Recapitulando, o Teorema 4 afirma que se

a, =_b . q +_r
~~ ~~ ~~
dividendo divisor quociente resto

entao

mdc(a,b) = mde(b, 1)

ou seja, na divisao euclidiana

mdc(dividendo, divisor) = mdc(divisor, resto)

Exemplos:

(01) Usando o Teorema 4 e a Proposicao 3, vamos calcular:
(a) mdc(398,12):

Solucao:

Dividindo 398 por 12 obtemos:

398 = 12.33 + 2.

Segue do teorema anterior que mde(398,12) = mdc(12,2). Dividindo 12 por
2:
12=2.6+0.

Entao, novamente pelo Teorema 4, temos que mdc(12,2) = mdc(2,0). Assim,
mde(398,12) = mdc(12,2) = mde(2,0) = 2.

Na tultima identidade usamos a Proposicao 3, pois um dos inteiros é nulo. [
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(b) mdc(138,24):
Solucgao:
Dividindo o ntimero maior pelo menor obtemos:

138 = 24.5 4 18.

Entao
mdec(138,24) = mdc(24, 18).

Por sua vez,
24 =18.1 + 6 = mdc(24, 18) = mdc(18,6).

E como 18 = 6.3 4+ 0, entao
mdc(138,24) = mdc(24, 18) = mdc(18,6) = mdc(6,0) = 6.

Algoritmo para o Calculo do MDC

Formalizaremos agora um algoritmo para calcular o maximo divisor comum
de dois inteiros a e b ndo conjuntamente nulos. Como mdc(a,b) = mdc(b, a) =
mdc(|al, |b|), assumiremos a e b positivos, com a > b. Temos dois casos:

Caso 1: b=0
Como os inteiros nao sao simultaneamente nulos, necessariamente a # 0. As-
sim,

mdc(a,b) = mde(a,0) = |al,

conforme Proposicao 3.

Caso 2: b#0

Neste caso, efetuando as sucessivas divisoes:
a = bqo + 11, 0<r <b
b=riq+ra, 0 <ry <y
1= T2q2 + T3, 0<rs<r

Ty = T3q3 + T4, 0<ry<rs

Tk = Th1Qe+1 + Tht2, 0 < rppo < rpgr;

obtemos a sequéncia decrescente de inteiros nao negativos

b>ri>re>r3> ... >rp > ... >0.

Como existe um ndmero finito de inteiros no intervalo [0, b), necessariamente
vai existir um indice s, tal que o resto ryy; = 0. Neste caso, as duas ultimas
divisoes da sequéncia acima serao:
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Ts—2 = Ts_1q¢s—1 + Ts, 0 < Ts < Ts_1;
Ts—1 = Tsqs + 0

Pelo Teorema 3, temos que:

mdec(a,b) = mde(b,r1) = mdc(ry,r2) = ... = mde(rs_q1,rs) = mdce(rs,0) = ;.

Resumindo:

ALGORITMO PARA O CALCULO DO MDC
SE a E b SAO INTEIROS NAO NULOS, PARA CALCULAR mdc(a,b), COMEGAMOS
DIVIDINDO O MAIOR PELO MENOR DENTRE OS INTEIROS |a| E |b| E, SEGUE-SE
EFETUANDO DIVISOES SUCESSIVAS ATE OBTER UM RESTO NULO, ONDE A DIVISAO
SEGUINTE E SEMPRE FEITA DIVIDINDO O DIVISOR PELO RESTO DA DIVISAO ANTE-
RIOR. DAT,
mdc(a,b) = A0 ULTIMO RESTO NAO NULO OBTIDO NAS SUCESSIVAS DIVISOES.

v_ Exercicios 7.

(01) Use o algoritmo acima para calcular:
(a) mdc(8,76);

(b) mdc(312,42);

(c) mde(—23,14);

(d) mde(—18, —52);

(e) mde(234, —415).

4 Existéncia e Unicidade do MDC

Teorema 5. Para quaisquer inteiros a e b nao conjuntamente nulos, sempre
existe um unico inteiro positivo d, tal que

d = mdc(a,b).

Demonstracao:

Pelo Teorema 4 e algoritmo acima, fica garantido que o resto r; = mdc(a, b),
logo sempre existe. Resta mostrar a unicidade. Suponha que d; e dy sejam
ambos mdc(a, b). Pela condigao (i) da Defini¢ao 2, ambos sao divisores comuns
de a e b. Mas pela condigao (ii), isto implica que d;|dy, pois dy = mdc(a,b)
e d; é um divisor comum. Analogamente, dy|d;, pois d; = mdc(a,b) e dy é
um divisor comum. Como ambos sao positivos, pela Proposicao 2, segue que
di < ds e dy < dy. Logo, di = dy. Assim, o maximo divisor de dois inteiros a
e b, existe e é tnico. O
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v" Exercicios 8.

(01) Use divisoes sucessivas para calcular mdc(a,b) e determine inteiros r e s,
tais que:
mdc(a,b) = ra + sb.

(a) a=24eb=14.
Solugao:
Comecamos dividindo o nimero maior pelo menor:

(1) 24 = 14, . 1 +_10
~ ~ ~ ~—~
dividento divisor quociente resto

Agora efetuamos divisoes sucessivas até obter um resto nulo, onde a divisao
seguinte é sempre feita dividindo o divisor da divisao anterior pelo resto.

2) 14 = 10.1 + 4
(3) 10 = 4.2 +@ < dltimo resto nao nulo.
(4) 4 = 2.2 40 <« resto nulo.

Pela Teorema 4,
mdc(24,14) = mdc(14,10) = mdc(10,4) = mdc(4,2) = mde(2,0) = 2.

ou seja, mdc(24,14) é o ultimo resto nao nulo obtido nas sucessivas divisoes.

Para encontrar r e s, isolaremos todos os restos nao nulos em cada uma
das divisoes obtidas acima, sem efetuar as multiplicacoes e as somas. Apenas
deixaremos indicadas as operagoes:

(1) 10 = 24+ (—1).14
(2) 4=14+(-1).10
(3) 2 =10+ (-2).4.

Tomamos agora a ultima dessas equacoes e vamos substituindo os valores dos
restos encontrados nas anteriores, até que a identidade fique s6 em funcao dos
inteiros 24 e 14:

2=10+(-2)4 - Tomando a equagao (3), onde o resto = mdc(24, 14)
=10+ (—2).(14 + (—=1).10) - substituindo o valor do resto 4 dado na equagao (2)
=(-2).14+3.10 - organizando a soma
=(—2).14+3.(24 4+ (—1).14) - substituindo o valor do resto 10 dado na equagao (1)
=3.24+(—5).14 - organizando a soma.

Portanto:

2 =324+ (—5).14

O
assimr =3 e s = —b.
(b) —124 e 52.
Solugao:

Como mde(—124,52) = mdc(| — 124/, |52|), calcularemos mdc(124, 52).
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Dividindo o maior valor pelo menor:

(1) 124 =522 420

Agora efetuamos divisoes sucessivas até obter um resto nulo:

(2) 52 =202+ 12

(3) 20=12.1+38

(4) 12 = 8.1 +@ <« ultimo resto nao nulo.
(5) 8 = 4.2 + 0 <« resto nulo.

Portanto,

mdc(124,52) = mdc(52,20) = mdc(20,12) = mde(12,8) = mdc(8,4) = mde(4,0) = 4.

Para encontrar r e s, isolaremos todos os restos nao nulos em cada uma
das divisoes obtidas:

(1) 20 = 124 + (—2).52
(2) 12 = 52 + (—2).20
(3) 8 =20+ (—1).12.
(4)

4 4=12+(-1).8.
Tomandos agora a ultima destas equacoes e substituindo os valores dos restos
encontrados nas anteriores:

4=12+(—1).8

=12+ (—1).(20 + (—1).12) - substituindo valor do resto 8 dado na equagao (3)
=(—1).20+2.12 - organizando a soma

=(—1).20+2.(52+ (—2).20) - substituindo o valor do resto 12 dado na equagao (2)
=252+ (—5).20 - organizando a soma

=252+ (=5).(124 4+ (—2).52) - substituindo o valor do resto 20 dado na equagao (1)
= (—5).124 + 12.52 - organizando a soma.

Portanto:

4 = (—5).124 + 12.52.

Mas, como queremos de fato calcular mde(—124, 52), basta alternamos o sinal
dos fatores na primeira parcela:

4=05(—124) +12.52.

Assimr =5e s = 12. O
Note que uma vez calculado o mde(a,b) usando o Algoritmo de Euclides,

é sempre possivel encontrar inteiros r e s, tais que mdc(a,b) = ra + sb. Esse
resultado, conhecido como Teorema de Bézout, é enunciado abaixo:

Teorema 6. (Teorema de Bézout) Sejam a e b inteiros nao conjuntamente
nulos, entao existem inteiros r e s, tais que:

mdec(a,b) = ra + sb.
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No letra (a) do exercicio anterior encontramos
2=3244(-5).14
Mas, observe que também podemos escrever:
2=10.24+ (—17).14

ou
2= (—4).24+7.14

O
dentre outras solugoes. Portanto, » e s mencionados no Teorema 6, nao sao
Unicos. O algoritmo dado acima é apenas um método de encontrar inteiros r
e s, tais que mdc(a,b) = ar + sb.

O Teorema 6 afirma que se d = mdc(a,b), entao entao existem r,s € Z,
tais que
d =ra+ sb. (5.1)

Uma pergunta natural é: - Vale a reciproca desse teorema, isto é, se d =
ra + sb, com r, s € Z, isso implica que d = mdc(a, b)?

Esse fato nem sempre é verdadeiro, por exemplo,
8 =(-7).6+5.10

porém mde(6,10) # 8. No caso particular, em que a soma dada em (5.1) é
igual a 1, fica garantida a reciproca do Teorema 6, conforme proposi¢ao abaixo.

Proposicao 4. Sejam a e b inteiros. Se existem inteiros r e s, tais que

ra+sb=1
entao
mdc(a,b) = 1.
Demonstracao:
Considere que existam inteiros r e s, tais que ra + sb = 1 e suponha

d = mdc(a,b). Vamos mostrar que d = 1. Como d = mdc(a,b), entao dl|a
e d|b, logo d|(ra + sb) = d|1 = d = +1. Mas, como d > 0, entao d = 1. O

Exemplos:

(01) Como 1 = 3.5+ (—2).7, segue da Proposi¢ao 4 que mdc(3,7) = 1;

(02) Da igualdade 1 = (—23).63 4 29.50, pode concluir que mdc(63,50) = 1;
(03) Da identidade 1 = (—1).n + 1.(n + 1), segue que mdc(n,n + 1) = 1,
qualquer que seja n € Z.



Teoria dos Niumeros 55
5 Inteiros Relativamente Primos

Inteiros para os quais o maximo divisor comum ¢ a unidade recebem deno-
minacao especial, conforme definicao abaixo.

Definicao 3. Dois inteiros a e b dizem-se relativamente primos ou pri-
mos entre si, se mdc(a,b) = 1.

Exemplos:

(01) 2 e 3 sa@o relativamente primos, pois mdc(2,3) = 1;

(02) 4 e 15 s@o primos entre si, pois mdc(4, 15) = 1;

(03) 4 e 10 nao sao relativamente primos, pois mdc(4, 10) = 2.

Proposicao 5. Se

mdc(a,b) = d,
entao ;
a
mdc(—,—) = 1.
(d7 d>
Demonstracao:
d = mdc(a,b) = existem inteiros r e s, tais que:
d=ra+ sb
\
1:7”.%4—8.%, com %,g ez
\
mdc(%,2) =1,
conforme Proposicao 4. 0

v' Exercicios 9.

(01) Determine todos os inteiros positivos a e b, para os quais 2a + b = 160 e
mdc(a, b) = 8.

Solucao:

Como mdc(a,b) = 8 = a = 8k; e b = 8ky, com ky, ky € Z* . Entao

20+ b = 160 = 2(8ky) + 8ky = 160 = ky = 20 — 2k,

4
(k1, ko) € {(1,18),(2,16), (3,14), (4,12), (5, 10), (6,8),(7,6), (8,4),(9,2) }.

Agora, como 8 = mdc(a,b) = mdec(8k1,8k2) = mdc(ky, ke) = 1, conforme
Proposicao 5. Assim, as tnicas solugoes possiveis sao:

ky =1,k =18 =a =8¢ b= 144;

ki =3, ko =14=a=24¢ b= 112

k1:7,k2:6:>a:56€b:48;

ki =9ky=2=a="72¢b=16. !
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Na questao 09 da Lista de Exercicio 3, vocé encontrou inteiros a, b e ¢, com
albe, porém a 1 b e afc. Por exemplo, 4/(2.6), porém 4 1 2 e 4 1 6. Também
temos, que 9((3.15), porém 9 1 3 € 9 1 15. O teorema a seguir, atribuido a
Euclides, da a condicao para que isso nao ocorra.

Teorema 7. (De Euclides) Sejam a, b e c inteiros, tais que albc. Se a e b sao
relativamente primos, entao alc.

Demonstracao:
Como, mdec(a,b) = 1, existem inteiros r e s, tais que 1 = ra + sb. Por outro
lado, como albe, existe k € Z, tal que be = ak. Multiplicando a equagao

1=ra-+ sb

por ¢ e usando o valor de bc acima:
l=ra+sb=c=a(rec)+ (bc)s = c = a(rs) + a(ks) = a(rs + ks) = alc. O

Exemplos:
(01) Se 3|(7.a), com a € Z, necessariamente 3|a, pois mdc(3,7) = 1;
(02) Para quaisquer inteiros n # 0 e a, se n|(an + a), entdo n|a. (Justifique).
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Lista de Exercicios 5.

(01) Usando a Defini¢ao 2, mostre que:
(a) mdc(80 30) = 10;

(b) mdc(0, —12) = 12;

(c) mdc(8,32) = 8;

(d) mde(—24, —148) = 4.

(02) Para cada par de inteiros a e b, determine mdc(a, b) e encontre inteiros r
e s, tais que mdc(a,b) = ra + sb:

(a) a =8, b="T6;

(b) a =312, b= 42
(¢) a=—23,b=14;
(d) a = —18, b = —52;
(e) a =234, b = —415;
(f) a = 392 ¢ b= 490

(03) Para cada uma das equagdes abaixo, determine um par de inteiros (z,y)
que seja solucao da mesma:
(a) 11z 4+ 9y = 1;

(b) 11z 4 9y = 60;
(c) bdx + 21y = 3;
(d) b4z + 21y = 15;
(e) 56x + T2y = 8§;
(f) 56z + 72y = —40.

(04) Determine todos os inteiros a, para os quais mdc(a,0) = 13.

(05) Determine todos os inteiros positivos a e b, com a < b, para os quais
a+b=96 e mdc(a,b) = 12.

(06) Determine todos os inteiros positivos a e b, com a < b, para os quais
a.b =294 e mdc(a,b) = T7.

07) Calcule:

) mdc(mdc(6,16), 1
)

)

(
(a );
(b

(c

(d

2)

mdc(6, mdc(16 12));
mdc(mdc(5,12), 16);
) mde(5, mdc(12 16)).

(08) Sejam a, b e ¢ inteiros nao nulos. Mostre que mdc(mdc(a,b), c) = mde(a, mde(b, c)).

(09) A Definigao 2 pode ser estendida para um quantidade finita n > 2 qual-
quer de inteiros, isto é, dados inteiros aq, as, ..., a,, nao simultamente nulos,
dizemos que o inteiro positivo d é o maximo divisor comum de aq, as, ..., a, €
escrevemos d = mdc(ay, as, .., ay,), se

(1) dlay, d|as, ..., d|ay;

(71) para todo d' € Z, se d'|a;, para todo i = 1,2, ..,n, entao d'|d.
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Usando esta definigao e a questao (08), calcule:
(a) mde(22, 16, 38)

(b) mdc(8,15,4,23)

(c) mdc(180 —90, 84, —294, 60).

(10) Sejam a e b inteiros nao nulos. Mostre que se bla, entdao mdc(a, b) = |b|.

11) Sejam a, b e ¢ inteiros nao nulos. Mostre que:

a) Se mdc(a, c) = mde(b, c) = 1, entdo mdc(ab, c) = 1;
)
)

(
(
(b) Se mdc(a,b) = 1, entdo mde(a + b, b) = 1;

(c) Se mdc(a,b) = 1, entdo mdc(a + b, ab) = 1.

(12) Sejam @ e b inteiros nao nulos e d = mdc(a,b). Mostre que para cada
par de inteiros (7, s), tais que d = ra + sb, tem-se que mde(r, s) = 1.

(13) Sejam a e b inteiros. Mostre que se mdc(a,b) = 1, entdo mdc(a™,b) = 1,
para todo inteiro n > 1. (Sugestao: use indu¢ao em n).

(14) Sejam 1, za, ..., T, n inteiros positivos. Mostre que se mdc(z;,n) = 1,
para todo i = 1,2, .., k, entao mdc(zyz3...x5,n) = 1.

(15) Mostre que quaisquer dois inteiros consecutivos sdo relativamente pri-
mos.

(16) Mostre que para todo n € Z, os inteiros 2n + 1 e 2n — 1 sdo relativa-
mente primos.

(17) Sejam a, b e ¢ inteiros. Mostre que se mdc(a,b) = 1 e ¢|[(a + b), entdo
mdc(a,c) = mde(b,c) = 1. (Sugestio: use a hipdtese para encontrar inteiros
x,Yy, z,w, tais que ar +cy =1 e bz + cw = 1).

(18) Sejam a, b e ¢ inteiros. Mostre que se 100a|bc e a e b sao relativamente
primos, entao alc.

(19) Sejam a, b e ¢ inteiros. Mostre que:

(a) se a é divisivel simultaneamente por 3 e 5, entao a é divisivel por 15;
(b) se a é divisivel simultameamente por 8 e 9, entao a é divisivel por 72;
(c) se a é divisivel simultaneamente por b e ¢ e mde(b, ¢) = 1, entao bca.

(20) Joao tem 864 bolinhas de gude, sendo 480 vermelhas e o restante, pre-
tas. Ele resolveu guardé-las em saquinhos, de modo que todos os saquinhos
tenham a mesma quantidade de bolinhas e que em cada um deles todas as
bolinhas sejam da mesma cor. Desejando colocar a maior quantidade possivel
de bolinhas em cada saquinho, quantos saquinhos de cada cor serao formados
e qual a quantidade de bolinhas em cada um deles?
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Respostas da Lista de Exercicios 5

(01.a) 80 = 8.10 e 30 = 3.10 = 10|80 e 10|30 = 10 é um divisor comum de 80 e 10. Se
d' € Z é tal que d'|80 e d'|30, entdo d'|(80.(—1) + 30.3) = d’'|10. Portanto mde(80,30) = 10.
(02.0) mdc(8,76) =4 = (—9).8 + 1.76  (02.b) mde(312,42) = 6 = (—2).312 + 15.42

(02.c) mde(—23,14) = 1 = 3.(=23) + 5.14  (02.d) mde(—18,-52) = 2 = (=3).(~18) +
1.(—52)

(02.¢) mdc(234, —415) = 1 = 94.234 + 53.(—415)  (02.£) mde(392, 490) = 98 = (—1).392 +
1.490

(03.2) (4,5) (03.b) (—240,300) (03.c) (2,—5) (03.d) (10,—25) (03.c) (4,—3) (03.f)
(—20,15)

(04) a = —13 ou a = 13.

(05) Os possiveis valores para o par (a,b) sdo (12,84) ou (36, 60).

(06) Os possiveis valores para o par (a,b) sao (7,42) ou (14, 21).

(09.a) mde(22,16,38) = 2 (09.b) mdc(8,15,4,23) =1 (09.c) mde(180, —90, 84, —294, 60) =
6.
(11.a) mdc(a,c) = mde(b,c) =1 = Fz,y,z,w € Z, taisque ax +cy =lebz+cw =1=
(az + cy)(bz + cw) = 1 = ab(xz) + c(azw + bzy + cyw) = 1 = mdc(ab,c) = 1, conforme
Proposigao 4, pois zz e (azw + bzy + cyw) € Z.

(11.b) mde(a,c¢) = 1 = Fz,y € Z, tais que ax + by = 1 = ax + bz +by —bx = 1 =
(a+b)x+bly—x)=1= mdc(a+b,b) =1, poisz e (x —y) € Z.

(19.¢) mde(b,c) = 1 = Jx,y € Z, tais que bz + cy = 1 = abx + acy = a. Como bla e
cla = k1, ks € Z, tais que a = bky = cky. Substituindo esses valores no lado esquerdo da
equacao anterior: (be)(zks) + (be)(yk1) = a = be(xks + yk1) = a = bela.

(20) 5 saquinhos com bolinhas vermelhas e 4 com bolinhas pretas, todos com 96 unidades.



Capitulo 6

Minimo Multiplo Comum

1 Introducao

Na gincana escolar, citada no capitulo anterior, a turma que obtiver o maior
nimero de pontos na realizacao das tarefas sera a vencedora e levara o prémio,
o qual consiste de N livros. A quantidade N de livros foi estabelecida de modo
que possa ser igualmente dividida entre todos os alunos da turma vencedora,
qualquer que seja ela. Determine o valor de N, sabendo que ele é o menor
inteiro possivel com essa propriedade.

Solugao:

Como N pode ser dividido de forma exata entre os alunos de quaisquer das

turmas, entao
40|[N e B50|N

isto é, N é um multiplo positivo comum de ambos os inteiros. Assim,
N € {40, 80, 120, 160, 200, ....}n{50, 100, 150, 200, 250, ...} = {200, 400, 600, ...}.

Sendo N o menor possivel, entao N = 200. 0

O inteiro N = 200, por ser o menor dentre os multiplos positivos comuns
dos inteiros 40 e 50, é chamado o minimo multiplo comum desses inteiros,
conforme definido a seguir.

2 Mhaltiplos de um Inteiro

Dado um inteiro n, usaremos a notagao nZ para representar o conjunto de
todos os inteiros que sao multiplos de n, isto é,

nZ ={nk| keZ}={..,-3n,—2n,—n,0,n,2n,3n,...}

Exemplos:
(01) 5Z = {5k | k € Z} = {...,—15,—-10,-5,0, 5,10, 15, ...};

60
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(02) —4Z = {—4k | k € Z} = {..., —12,—8,-4,0,4,8,12, ...} = 4Z;
(03) 10Z = {10k | k € Z} = {..., —40, —30, —20, —10, 0, 10, 20, 30, ...};
(04) —15Z = {—15k | k € Z} = {..., —45, 30, —15,0, 15, 30,45, ...} = 15Z.

Definigao 4. Sejam a e b inteiros nao nulos (a # 0 e b # 0). Um inteiro ¢
diz-se um maltiplo comum de a e b se ambos sao divisores de ¢, isto €, alc
e blc.

Observe que se ¢ é um multiplo comum de a e b, entao ¢ € aZ N bZ.

Exemplos:

(a) 15 é um multiplo comum de 3 e 5, pois 3|15 e 5|15;

(b) -30 é um multiplo comum de 10 e -15, pois 10| — 30 e —15| — 30;

(¢) 40 é um multiplo comum de 8 e 20, pois 40 € 8ZN20Z = {..., —40, 0,40, 80, ... }.

v' Exercicios 10.

(01) Determine:

(a) 2Z N 4Z;

Solugao:

Observe que se ¢ € 47, entao existe k € Z, tal que ¢ = 4k = 2(2k) € 2Z =
A7 C 27, = 27N 4AZ = 4AZ. O

(b) 2Z N 3Z;

Solugao:

c €2ZN3% = c € 22 = ¢ = 2k, com ky € Z e c € 3Z = ¢ = 3ky, com
ko € 7Z. Assim, temos:

¢ = 2ky = 3ky = 2|3ky = 2|ky, conforme Teorema 7, pois mdc(2,3) = 1.
Portanto, ky = 2k, k € Z. Dai,

¢ = 3ky = 3(2k) = 6k € 6Z = 2Z N 3Z C 6Z.

Por outro lado, para todo 6k € 6Z, temos 6k = 2(3k) = 3(2k) € 2Z N 3Z.

Portanto, também temos a inclusao no outro sentido. Logo, 2Z N 3Z = 6Z. [

(c) 47 N 10Z;

Solucao:

c€4ZN10Z = ¢ = 4k; = 10]{?2, ]{51, ko € 7. = 2k = bky = 2|5]€2 = 2|]{52, pOiS
mdc(2,5) = 1. Assim, ky = 2k = ¢ = 10ky = 20k € 20Z = 4Z N 10Z C 20Z e
obviamente, que 20Z C 47 N 10Z. Assim, 47 N 10Z = 20Z. 0

(02) Mostre que para quaisquer inteiros nao nulos a e b, aZ N bZ # {0}.
Solugao:

Como a e b sao nao nulos, entao 0 # ab € aZ N bZ, pois é um multiplo comum
de a e b. O
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3 Minimo Multiplo Comum

Definicao 5. Sejam a e b inteiros nao nulos. Diz-se que um inteiro positivo m
¢ o minimo multiplo comum de a e b, se m verifica as sequintes condi¢oes:
(1) alm e blm;

(17) Se m' é um inteiro tal que alm’ e blm', entdo m|m’.

Denotaremos o minimo multiplo comum de a e b por mmc(a, b).

A condigao (i) da defini¢ao acima, diz que o mmc(a,b) é um multiplo co-
mum de a e b e a condi¢ao (i7), que ele é o menor dos multiplos positivos
comuns de a e b, pois se m’ > 0 é qualquer outro multiplo comum de a e b,
entao mmc(a, b)|m’ e portanto, mmec(a,b) < m'.

Para o mmec, temos observagoes andlogas as feitas para o mdc, isto é,

mmc(a,b) = mme(b, a) = mmc(|al, |b]).

v' Exercicios 11.

(01) Use a Definigao 5 para justificar as afirmagoes abaixo:

(a) mme(2,5) = 10;

Solucao:

Temos que mostrar que 10 satistaz as condigoes (i) e (i7) da Definigdo 5. De
fato,

(7) 2|10 e 5|10, logo, 10 é um mltiplo positivo comum de 2 e 5;

(1) Se m' € Z é tal que 2|m’ e 5|m/, entdao m’' = 2k; = 5Sky, com ki, ks € Z.
Mas, como 2k; = bky = 2|5ky = 2|ko, pois mde(2,5) = 1. Assim, ky = 2k,
k € Z. Logo m' = 5ky = 5(2k) = 10k = 10|m’, sendo 10, portanto, o menor
dos multiplos positivos comuns de 2 e 5. 0

(b) mme(—5,25) = 25;

Solucao:

De fato, —5|25 e 25|25, logo 25 é um miiltiplo comum de -5 e 25. E se m' € Z
é tal que —5|m’ e 25/m’ = m’ = —bky = 25ky = —ky = bky = m/ = —bk; =
5(—k1) = 5(bks) = 25ky = 25|m/. Portanto, 25 = mde(—5, 25). O

(c) mmec(6,14) = 42.

Solucao:

Como 6]42 e 14|42, 42 é um multiplo comum dos dois inteiros. E se m’ € Z
é tal que 6|m’ e 14|m' = m/ = 6k = 14ky = 3k = Tky = 3|Tky = 3|k,
pois mdc(3,7) = 1. Assim, ky = 3k, k € Z. Portanto, m’ = 14k, = 14(3k) =

42k = 42|m/. Assim, 42 = mmc(6, 14). O
d) mmc(6,9) = 18;
mme(42,7) = 42;
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4 Relacao entre MDC e MMC

Nos exercicios resolvidos anteriormente, foi informado o valor do mmec de dois
inteiros e tivemos apenas que mostrar que aquele valor estava de acordo com
a definicao dada. Porém, ainda nao sabemos como encontrar tal inteiro. A
préxima proposigao estabelece uma relagao entre o mdc e mmec de dois inteiros
nao nulos, fornecendo assim, um algoritmo para o calculo do mmec.

Proposicao 6. Sejam a e b inteiros nao nulos, entao

mdc(a,b).mme(a, b) = |abl.

Demonstracao:
Seja d = mdc(a, b). Vamos mostrar que o inteiro m := % ¢ o minimo multiplo
comum de a e b, isto é, m = mmc(a,b). De fato, temos que:
(1) alm e blm.
b

Observe que sendo d = mdc(a,b), entdo § e & sao niimeros inteiros e como

1ol
d

lal

m=|a|= = |b|? = alm e bjm.

(74) m é menor dos miltiplos positivos comuns de a e b:
Seja m’ € Z tal que alm’ e b | m’. Entao existem inteiros ki, ks, tais que:
a b b, a
m' = aky = bk, = =k, = —ky = —=|(=.k1).
1 L= gk = ok dl(d 1)
Como mdc($, g) =1, segue do Teorema 7, que % | k1 =k = g.k, com k € Z.
Assim,

b b
m’:aklza—k::tla—|k::|:mk:>m|m’.
d d
De (i) e (i7) segue que:
|ad]
mme(a,b) = o= |ab] = mmc(a, b).d = mme(a,b).mdc(a,b).
0

v' Exercicios 12.
(01) Usando a Proposigao 6, calcule:
(a) mmc(24, 14);
Solucao:
J& vimos que mdec(24, 14) = 2, entao pela Proposigao 6:
mme(24,14) = S2ets = 2F = 168. O
(b) mme(—124, 52);
Solucao:
Pela Proposigiio 6, mme(—124,52) = 22, — 6408 — 1612, O
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(¢) mme(13,8);

Solugao:
Pela Proposicao 6:
mme(13,8) = Ltk = 100 — 104, O

(02) Determine todos os valores possiveis para o par de inteiros positivos (a, b),
com a < b, sabendo que ab = 6720 e mmc(a, b) = 1680.

Solugao 1:

Como mdc(a,b).mmc(a,b) = |ab] = mdc(a,b) = mm?:[za,b) =88 =4 Por-
tanto 4|a e 4|b = a = 4k, e b = 4ks, com ki, ko € Z. Entao,

Para determinarmos os possiveis valores para k; e ko, vejamos todas as decom-
posicao de 420 como o produto de dois inteiros positivos:
k1ko = 420 = 1.420 = 2.210 = 3.140 = 4.105 = 5.84 = 6.70
=7.60 =10.42 = 12.35 = 14.30 = 15.28 = 20.21.

Agora, como 4 = mdc(a,b) = mdc(4ky, 4ke) = mdc(ky, ko) = 1. Assim, para
a solucao do problema sé servem os produtos em que os fatores sao relativa-
mente primos. Tomando k; e ky com essa condicao e lembrando que a = 4k,
e b = 4ky, os pares (a,b) de inteiros positivos satisfazendo a condi¢ao dada sao:
(4,1680), (12,560), (16,420), (20, 336), (28, 240), (48, 140), (60, 112) e (80,84). [

Solucao 2:
Podemos também tomar todas as decomposigoes de 6720 como produto de dois
inteiros positivos, nesse caso, teremos 56 formas de fazer essa decomposicao:

ab = 6720 = 1.6720 = 2.3360 = 3.2240 = 4.1680 = .... = 80.84

e entao verificar em quais dessas decomposicoes temos mmec(a,b) = 1680. O
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Lista de Exercicios 6.

(02) Usando a Proposicao 6, calcule

(a) mme(1,12) (b) mme(—1,129); (c) mme(3,6);

(d) mme(—5,30); (e) mme(31, 31) (f) mme(3,5)

(g) mme(7,8); (h) mme(36,—27); (i) mmc(—6, —28);
(j) mme(11,24); (k) mme(32,18); (1) mme(—12, 38).

(03) Mostre que:

(a) 87 N 247 = 247
(b) 6Z N TZ = 42Z;
(¢) 12Z N 14Z = 84Z.

(04) Determine:
(a) 7Z N 35Z;
(b) 122 N 13Z;
(c) 8Z N 127Z.

(05) Determine o valor do inteiro positivo b, para o qual tem-se mdc(48,b) = 6
e mmc(48,b) = 432.

(06) Mostre que para todo inteiro nao nulo a, mmc(a, 1) = |al.

(07) Sejam a e b inteiros nao nulos. Mostre que se alb, entao mmc(a,b) = |b|.
(08) Mostre que se a e b sdo inteiros primos entre si, entdo mmec(a, b) = |ab].
(09) Sejam a e b inteiros nao nulos. Mostre que mdc(a,b) divide mmc(a, b).

(10) Sejam a e b inteiros positivos. Mostre que se mdc(a,b) = mmec(a,b),
entao a = b.

(11) Determine todos os possiveis valores para o par de inteiros positivos (a, b),
com a < b, sabendo que:

a) mmc(a,b) = 35 e a e b sdo relativamente primos;

b) mdc(a,b) = 2 e mmc(a,b) = 104;

c¢) ab = 408 e mmc(a, b) = 204;

d) mmec(a,b) = mdc(a,b) = 35;

e) mdc(a, b) + mmec(a,b) = 266 e mdc(a,b).mmc(a,b) = 528.

(12) Seja n € Z — {—1,0}. Calcule mme(n,n + 1).
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(13) Sejan € Z—{—1,0}. Mostre que mmec(2n—1,2n+1) = (2n—1)(2n+1).

(14) Um pais tem eleigoes para presidente de 5 em 5 anos e para governador,
de 4 em 4 anos. Em 2000, essas duas eleicoes coindidiram. Quando serao as
trés proximas vezes que elas voltarao a coincidir? Justifique sua resposta.

(15) Em uma estagao rodovidria os 6nibus com destino as cidades A, B e
C, partem em intervalos de 6, 8 e 5 horas, respectivamente. Em certo mo-
mento a partida dos onibus para essas trés cidades ocorreu exatamente no
mesmo instante. Quando tempo depois, isto ocorrerda novamente? Justifique
sua resposta.

Respostas da Lista de Exercicios 6

(01.c) Vamos mostrar que 210 satisfaz as condigdes (i) e (ii) da Definigdo 5. Como 21]210
e 30210, 210 ¢ um maltiplo comum dos dois inteiros. E se m’ € Z é tal que 21|m’ e
30|m’ = m' = 21k; = 30ky = Tky = 10ky = 7|10ky = T7|ks, pois mdc(7,10) = 1. Assim,
ks = Tk. Portanto, m’ = 30ks = 30(7k) = 210k = 210|m'.

02.a) mmc(1,12) =12 (02.b) mme(—1,129) = 129 (02.c) mmc(3,6) =6

02.d) mme(—5,30) =30 (02.e) mme(31,31) =31 (02.f) mme(3,5) =15

02.g) mme(7,8) =56 (02.h) mmc(36,—27) = 108 (02.i) mme(—6,—28) = 84

02.§) mme(11,24) = 264 (02.k) mme(32,18) = 288 (02.1) mme(—12,38) = 228.

04.a) 35Z  (04.b) 156Z (04.c) 24Z.

(
(
(
(
(
(05) b
(11.a) (1, 35) ou (5, 7)  (11.b) (2, 104) ou (8, 26)
(11.c) (2, 204), (4, 102), (6, 68) ou (12, 34)
(11.d) a=b=35 (1l.e) (2, 264), (6, 63), (8, 66) ou (24, 22)
(12) mme(n,n+ 1) =n(n+1)
(14) 2020, 2040 e 2060
(15) 120 horas depois
(14) 2.678
(15)

15) 120 minutos.



Capitulo 7

Numeros Primos

1 Definicao

Definicao 6. Um niumero inteiro p diz-se primo se ele tem exatamente dois
divisores positivos distintos, 1 e |p|.

Denotando por Dy (a) o conjunto dos divisores positivos de um inteiro a,
entdo p € Z é primo se D, (p) = {1, |p|} é um conjunto com exatamente dois
elementos distintos.

Um nimero a € Z — {—1,0,1} que nao é primo, diz-se composto.

Exemplos:

(a) 5 é um nimero primo, pois D, (5) = {1,5};

(b) -7 é um numero primo, pois D, (—7) = {1,7};
(¢) 1 ndo é um nimero primo, pois D, = {1}.

(d) 4 é um nimero composto, pois D (4) = {1,2,4}.

Observe que se a € Z — {—1,0,1} é um inteiro composto, entdo existe
b € Z, tal que bla e 1 < b < |a]. Como visto no Capitulo 3 , todo inteiro
com essa propriedade é chamado divisor préprio de a. Assim, todo inteiro
composto tem pelo menos um divisor proprio.

v' Exercicios 13.

(01) Determine D, (a) para cada inteiro a abaixo e classifique-o em primo ou
c

(a) a = 23;
(b) a = 26;
(¢) a=—11;
(d) a = —97.

67
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2 Propriedades dos Nimeros Primos

Vejamos a seguir algumas propriedades dos nimeros primos.

Proposicao 7. Sejam a e p nimeros inteiros. Se p € primo e p{a, entdo
mde(p,a) = 1.

Demonstracao:
Suponha d = mdc(p,a) = d|p. Como d > 0 e p é primo, entao ou d = 1 ou
d = |p|. Porém, como p 1 a, entao d # |p|, pois d|a. Logo, d = 1. O

J& vimos que se a,b e ¢ s@o inteiros e albc, ndo necessariamente a divide
algum dos fatores. Por exemplo, 6/(8.9), mas 6 1 8 e também 6 1 9. Porém, se a
é relativamente primo com um dos fatores, que nao é o caso desse exemplo, ai
a necessariamente devera dividir o outro fator, conforme Teorema 7. E o que
dizer se a for um nimero primo? Usando o Teorema 7 e a proposi¢ao acima,
a resposta, que voceé ja deve ter inferido, é dada na proposicao a seguir.

Proposicao 8. Sejam p, b e ¢ nimeros inteiros. Se p é primo e plbc, entdo
plb ou ple.

Demonstracao:

Suponha que p|bc. Se p|b, a demonstragao estd encerrada. Se p t b, pela
Proposigao 7, mde(p,b) = 1 e pelo Teorema 7, p|c. OJ
Exemplos:

(01) 5|60 e como 5 é primo, qualquer que seja a decomposigao de 60 como pro-
duto de dois inteiros, 5 necessariamente dividira pelo menos um dos fatores.
Veja:

5/(1.60)  5/(2.30)  5[(3.10)  5/(4.15)  5|(5.12)  5/(6.10)

(02) Como 7 é primo e 7|84, entdo qualquer que seja a decomposigao de 84
como o produdo de dois inteiros, necessariamente 7 dividira pelo menos um
dos fatores. Verifique.

A proposicao acima pode se estendida para um numero n > 2 qualquer de
fatores. Para a demonstracao, usa-se inducao no nimero n de fatores.

Corolario 3. Sejam aq, as, ..., a, e p numeros inteiros, comn > 2. Sep é um
nidmero primo e p|(aias....a,), entao plag, para algum 1 < k < n.

3 A Infinitude do Conjunto dos Primos

Repetindo, um nimero inteiro p > 1 é dito primo, se ele nao possui divisor
préprio, isto é, entre os inteiros dos conjunto A = {2,3,4,5, ....,p— 1} nenhum
deles o divide. Ora, quando maior o inteiro p, mais elementos tem o conjunto
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A e a intuicao nos leva a acreditar que a probabilidade de nao haver em A
nenhum divisor de p, torna-se muito baixa. Entao, os nimeros inteiros " muito
grandes” sao todos numeros compostos? KEsses eram questionamentos dos
matematicos da antiguidade: - Existe um nimero primo maior que todos os
outros? - Quantos nimeros primos existem? A Resposta é dada no préximo
teorema, cuja demonstragao foi feito por Euclides. Em preparacao ao teorema,
veremos antes um lema. E em preparacao ao lema, fagamos o exercicio a seguir.

v' Exercicios 14.

(01) Dé exemplo de um divisor primo p, para cada um dos inteiros abaixo:
(a) 10  (b) 2 (c) 1349 (d) 2847 (e) 13 (f) 317 (g) 913

(02) Dé exemplo de um interio a > 1, que ndo possui nenhum divisor primo.

O lema a seguir mostra porque vocé nao obteve sucesso na questao 02 do
exercicio acima.

Lema 1. Todo inteiro a > 1 tem um divisor primo.

Demonstracao:

Faremos a demonstracgao por inducao em a. Usaremos a 2% Forma do Principio
da Inducao Finita (Corolério 2).

(7) Base de Indugao: a = 2:

Nesse caso, o resultado é verdadeiro, pois 2 é primo e 2|2.

(77) Passo Indutivo: Seja a > 2 um inteiro e considere o resultado valido
para todo inteiro k£, com 1 < k < a.

Se a é primo o resultado é imediato. Se a é composto, entao existem in-
teiros d,q, com 1 < d,q < a, tais que a = dgq. Como 1 < d < a, segue da
hipétese de indugao que d tem um divisor primo p. E como p|d e d|a, segue
que pla. O

Suponha que vocé seleciona 5 nimeros primos pq, pa, ..., p5 € efetua o pro-
duto deles obtendo N = p1popspsps. O inteiro N tem divisor primo? Por que?
E N + 1 tem divisor primo? Por qué?

Por fim, vamos ao teorema.

Teorema 8. O conjunto dos niimeros primos € infinito.

Demonstracao:

i j u i itivos.
Considere P, o conjunto de todos os niimeros primos positivos. Suponhamos,
por absurdo, que este conjunto seja finito, digamos

P—i— = {plap27 7pn}
Usando os elementos de P, podemos construir o inteiro

N = pips..pn + 1.
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Como N > 1, pelo Lema 1, ele tem um divisor primo positivo, isto é, existe
pi € Py, tal que p;| N, entao existe k € Z, tal que N = p;k. Assim,

P1P2---Pic1PiDit1---Dn + 1 = pik = pi(k — p1ipa...Dic1Pit1---Pn) = 1 = pi|1,

um absurdo, pois p; é primo. Logo, o conjunto P, nao pode ser finito e obvi-
amente o conjunto de todos os primos é também infinito. 0

Por maior que seja um ntumero inteiro n, ja vimos que este pode ser primo
ou composto, ja que o conjunto dos nimeros primos ¢ infinito. Mas como
verificar se n é primo ou composto? A rigor, para afirmar que n é primo,
devemos garantir que ele nao tem nenhum divisor no conjunto:

A={23,...n—1}.

Se n é um inteiro muito grande, esta verificacao torna-se trabalhosa. Com
auxilio do Lema 1, podemos diminuir consideravelmente esse trabalho. E o
que veremos na préxima proposicao.

Proposicao 9. Se n > 2 é wm numero composto, entao n tem um divisor
primo p, com 1 < p < /n.

Demonstracao:
Como n é composto, ele tem divisor préprio, isto é, existem inteiros dy, ds, tais
que n = didy, com 1 < dq,ds < n. Suponhamos d; < dy. Entao,

d1§d2:>d%§d1d2:n:>d1§\/ﬁ

Agora, como d; > 1, pela Lema 1, existe p primo, tal que p|d; = p < d; < /n.
E como p|d; e dy|n, segue que p|n. O

v' Exercicios 15.

(01) Use a Proposicao 9 para verificar se os numeros abaixo sdo primos ou
compostos:

(a) 233;

Solugao:

Pela Proposicao 9, se 233 é um nimero composto, ele tera um divisor primo
p < V233 ~ 15,26, ou seja, existe p € {2,3,5,7,11,13}, tal que p|233.
Porém, como nenhum desses inteiros divide 233, podemos garantir que 233
¢ um numero primo. O
(b) 319;

(c) 1043;
(d) 5047;
(e) 33817.
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4 Decomposicao em Fatores Primos

Lema 2. Todo inteiro a > 1 pode ser escrito como um produto de niumeros
PTimos.

Demonstracao:

Faremos a demonstragao por indugao em a. Assumiremos também que o ”pro-
duto” possa ter um tnico fator.

(1) Base de Inducao: a = 2:

Isto é verdadeiro, pois a ja é primo.

(71) Passo Indutivo: Suponha por hipé6tese de indugao que a afirmagao é valida
para todo inteiro b, com 2 < b < a.

Se a é primo, a demonstracao estd encerrada. Se a nao é primo, existem in-
teiros b, ¢, tais que a = bc, com 1 < b, ¢ < a. Segue da hipdtese de indugao que

existem primos pi, pa, ..., Pr, Py, Dy, ---D,, tais que b = pips....p, € ¢ = piph...pl.
Assim,

a = bc = p1pa...pr-P1Py---Dlss

que é um produto de niimeros primos. O

Teorema 9. ( Teorema Fundamental da Aritmética) Para todo inteiro
a > 1, existem primos positivos p1 < pa < p3 < ... < py, tais que

a = P1P2P3...Pt

e essa decomposicao € unica.

Demonstracao:
Seja a > 1 um inteiro. A existéncia da decomposicao de a em fatores primos
ja foi provada no Lema 2. Mostraremos agora a unicidade. Suponha que:

& = P1P2-.-Pn = G1G2---Gs,

comp < pr < ...<ppeq < g < .. < g, primos positivos. Faremos a
demonstracao por indugao no nimero n de fatores primos na decomposicao.
(1) Sen =1

a=p = qq¢.-qs = q|p1-

Como p; e ¢ sao primos positivos, entao p; = ¢;. Fazendo p; = ¢; na identi-
dade acima e efetuando o cancelamento, obtemos:

1 = ¢2(gs---qs)-

Se s > 1, entdo ¢o|1, um absurdo, pois ¢ é primo. Logo s = 1 = n e
a = p; = ¢q,. Portanto, para n = 1 a decomposi¢ao é tnica.

(74) Suponha que o resultado é vélido para todo inteiro que se decompde em

Este teorema
foi demons-
trado por
Carl Friedrich
Gauss em

1796.
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k > 1 fatores primos. E considere

a = p1pP2.--PkPk+1 = q1492-..Gs.

duas decomposicoes de a em fatores primos positivos. Segue dai que

Q1|p1p2-- DrPry1 = ¢1|pi, para algum 1 <4 < k+ 1.

Como p; ¢ primo, entao ¢; = p; > p1. De modo andlogo, obtem-se p; = ¢; > qi,
para algum j. Logo p; = ¢;. Substituindo esses valores na identidade acima e
usando a lei do cancelamento obtemos:

DPa2p3..-PePk+1 = 4243---qs-

Como a direita temos uma decomposicao em k fatores primos, segue da hipétese
de inducao, segue que k =s—1=k+1=3s,p; =q;, parai=23,....k + 1.
O

Nessa decomposi¢ao, podemos agrupar os primos eventualmente repetidos
e enunciar o resultado acima, dizendo que todo inteiro a > 2 se escreve na
forma:

a=p'py?..p,
com 1 < p; < pg < ... < p; primos e n; > 1, para ¢ = 1,2,...,t - conhecida
como a Decomposicao de a em Fatores Primos.
v' Exercicios 16.

(01) Escreva a decomposicao de a em fatores primos, onde:

(a) a="7
Solugao:
Como 7 ja é um nimero primo, entao a decompoiscao fica:
T="T.
O
(b) a = 105
Solugao:

Inicialmente identificamos o menor primo que divide 105 e repetimos o pro-
cesso para os fatores que vao sendo encontrados, até obtermos somente fatores
primos:

106 =3 x35=3x5xT. O

(¢) a =352

Solugao:

352=2x 176 =2 X (2 x 88) = 2% x (2 x 44) =23 x (2 x 22) =2% x (2 x 11)
=25 x 11. 0
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Lista de Exercicios 7.

(01) Verifique se os inteiros abaixo sdo primos ou compostos:
(a) 607 (b) 943 (c) 2411 (d) 19769 (e) 50653

(02) Faga a decomposigao em fatores primos, de cada um dos inteiros abaixo:
(a) 13 (b) 286 (c) 3685 (d) 13800  (e) 50653

(03) Encontre todos os primos positivos p e g, tais que p — g = 3.
Um inteiro
(04) Determine todos os primos positivos que dividem 50!. N ¢ dito um
quadrado  per-
(05) Seja a = pi'py?...pi* a decomposicao de um inteiro @ > 1 em fatores  feito, se existe
primos. Mostre que a é um quadrado perfeito se, e somente se, n; é par para  acz, tal que
todoi=1,2,..,t. N = a2.

(06) Encontre todos os niimeros primos positivos que sao iguais a um quadrado
perfeito menos 1.

(07) Encontre todos os primos positivos que sao iguais a um cubo perfeito
menos 1.

(08) Mostre que trés impares positivos consecutivos nao podem ser todos pri-
mos, a excecao de 3, 5 e 7.

(09) Mostre que todo primo positivo, & excegao de 2 e 3, é da forma 6k + 1 ou
6k — 1, para algum inteiro k.

(10) Seja n > 2 um inteiro. Mostre que se n? + 2 é um ntimero primo, entao
3|n. (sugestdo: use redugdo ao absurdo).

(11) Dé exemplos, caso existam, de dois ntimeros primos da forma 2" — 1,
com n > 2 sendo:
(a) n primo; (b) n composto.
(12) Seja n > 2 um inteiro. Mostre que se (2" — 1) é primo, entdo n é primo.
(13) Seja a = py'py2...p* a decomposicao de um inteiro positivo a em fatores
primos. Mostre que se d = p"py2..p;", com 0 < m; < n;, parai = 1,2 ...,
entao d|a.

se o Teorema 9 para mostrar que:
(14) U T 9p trar q
(a) v/2 ndo é um niimero racional.
(b) Se p e ¢ s@o primos, entdo /pg ndo é um numero racional.

(15) Mostre que se p > 0 é primo, entdao mdc(p, (p — 1)!) = 1.

(16) Usando indugao em n, prove o Coroldrio 3.
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Respostas da Lista de Exercicios 7

(01.a) 607 é primo (01.b) 943 é composto (01.c) 2411 é primo

(01.d) 19769 é composto (01.e) 50653 é composto

(02.a) 13=13 (02.b) 286=2.11.13 (02.c) 3685=5.11.67

(02.d) 13800 = 23.3.5%.23 (02.e) 50653 = 373

(03) p=>beq=2

(

(06

(07

(08) Sejam Ny =2n+1,Ny = 2n+ 3 e N3 = 2n + 5 trés {mpares consecutivos. Se n = 1,

temos os primos 3, 5 e 7. Suponhamos N1, N e N3 todos primos, com n > 2. Dentre os

) p

04) Os primos positivos p < 50, ou seja, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
)3
)7

3 inteiros consecutivos 2n + 1,2n + 2 e 2n + 3, um deles é divisivel por 3 (questao 22 da
Lista de Exercicios 3). Como N7, N2 > 3 e ambos sdo primos, segue que o divisivel por 3 é
m+2=2n+2=3kke€Z= N3=2n+5=3k+3=3(k+1)= 3|N3, um absurdo, pois
N3 > 3 e é primo.

(09) Seja p > 5 um primo. Pelo algoritimo da divisdo existem inteiros k e r, tais que
p =6k +r, com 0 < r < 5. Porém, como p é primo, r & {0,2,3,4}, pois nesses casos, 2|p
ou 3|p, contrariando o fato de p ser um primo > 5. Assim, p =6k + 1 oup =6k+5 =
6k+(6—1)=6(k+1)—1=6K —1, com k' € Z.

(11.a) 7= 123 — 1; 127 = 27 — 1 sdo primos;  (11.b) Nio existe, conforme questio (12)
(12) Suponhamos, por absurdo que 2" — 1 é primo, com n composto. Como n é composto,
entdo n = nins, com 1 < ny,ne < n. Dali,

gn_1=2mn2_1 = (2m)n2_1 = (2M —1)((2m )2l (2m )2 =24 4]) = (2m —1)|(2"—1)
ecomol<n; <n=1<2™ —-1<2"—-1= 2" —1 ¢ um divisor préprio de 2” — 1. Um
absurdo.

(15) Seja d = mde(p, (p—1)!) = d|p e d|(p—1)!. Como p é primo, d=1oud=p. Sed = p,
temos p|(p — 1)! = p|((p — )(p — 2)(p — 3)..2.1) = pl(p — k) = p < (p — k), para algum
inteiro k, com 1 < k < p — 1, um absurdo. Assim, d = 1.



Capitulo 8

Aplicacoes da Decomposicao em
Fatores Primos

1 Calculo dos Divisores

Nesta secao veremos como determinar os divisores positivos de um nimero
inteiro, a partir de sua decomposicao em fatores primos.

Proposicao 10. Seja

ni,_no

a = py'pyipst..ppt

a decomposicao de um inteiro a > 1 em fatores primos positivos e distintos.
Um inteiro d € um divisor positivo de a se, e somente se,

d = py"'py 5" ..,
com0<m; <n;, parai=1,2,....¢t.

Demonstracao:
(=) d=p"py?..p/" com0<m; <n; = dla.

Suponha d = p" py...p", com 0 < m; < n;, para todo i. Como m; < n;,
entao n; — m; > 0. Assim, podemos escrever:

R T ne _ . mi+(ni—mi) mo+(n2—ma2) my+(ne—my)
a=p;py..pr=p P2 Py

1—my , N2—m2 nt*mt) — dC
. - 9

= (P py ) (PP T
onde ¢ = p* "M py?T ™2 L ptT™ € Z. Logo, d|a.

(<)dla = d=p"py?..p", com 0 <m; <n; parai=1,2 ..t
Suponha que d|a = existe um inteiro ¢, tal que
a = dc

75
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Como d e c¢ sao inteiros, esses também se decompoem em fatores primos.
Porém, a = dc, segue da unicidade da decomposicao em fatores primos que na
decomposi¢ao de d e ¢ s6 estarao presentes os primos que aparecem na decom-
posicao de a. Assim,

d=pi"py2pse. ppt e c=p'pypst..pyt

com m;,r; > 0. Entao

a=dc
ni, n2, n3 ng __ . Mi1+r1, ma+re _ms3+rs ri+m
PPy Ps Dt =P Dy Pyt

4

v' Exercicios 17.

(01) Usando a Proposigao 10, determine todos os divisores positivos de cada
um dos inteiros abaixo:

(a) 38

Solugao:

38 = 2.19 ¢é a decomposicao de 38 em fatores primos. Pela Proposigao 10, d|38
se, e s6 se, d = 2™.19™2 com my,mg € {0,1}. Fazendo m;, my assumirem
todos os valores possiveis, temos os seguintes divisores:

di =2°19° =1, dy =2°.19' =19, dy =2'.19° =2 e dy = 2'.19' = 38. 0

(b) 360

Solucao:

A decomposicao de 360 em fatores primos é 360 = 23.32.5. Entao os divisores
positivos de 360 sao os inteiros da forma

d=2™.3m.5m com m € {0,1,2,3}, ms € {0,1,2} e mg € {0,1}.

Atribuindo a mq, ms e mg os valores possiveis, encontramos os seguintes divi-

SOores:.
203050 =1, 20305l =5 203150 =3 2035l =15  203250=9  20325! =45,
213050 =2 213951 =10, 2'.31.59=6, 21.3'5'=30, 2'.325°=18, 21.325' =90,
223050 =4, 223051 =20, 22.3'5° =12, 223'5'=60, 22325°=38, 22.32.5! =180,
233050 =8, 233051 =40, 23.3'50=24, 233'5' =120, 23.3250=172 23.325! =360,

Logo, o conjunto dos divisores positivos de 360 é

{1,2,3,4,5,6,8,9,10,12, 15, 18, 20, 24, 30, 38, 40, 45, 60, 72, 90, 120, 180, 360},
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contendo um total de

4 X 3 X 2 =24 elementos.
—~— ~~ <~
opcoes de m;  opgoes de my,  opcoes de ms
OJ
(c) 54T,
Solugao:

Como 547 = 547 é a decomposicao de 547 em fatores primos, entao

d|547 < d = 547™, com 0 < m < 1 = 547° = 1 e 547! = 547 sao os tinicos
divisores positivos de 547. 0
(d) 105;

(e) 352

(f) p, com p primo.

(g) p", com n > 1 e p primo.

2 Numeros de Divisores

Em muitos casos, nao estamos interessados em encontrar os divisores de um
inteiro, mas apenas saber quantos sao eles. Essa quantidade é facilmente obtida
a partir da proposicao anterior.

Corolario 4. Seja

a = phphEpie. p
a decomposicao do inteiro a > 1 em fatores primos positivos. Entdo, o numero
de divisores positivos de a € dada pelo produto:

(n1 4+ 1)(ng + 1)(ng + 1)....(ne + 1).
Demonstracao:
Pela Proposicao 10, existem tantos divisores positivos de a quantos sao os
inteiros da forma
d = pi"py?ps. . pit, com 0 <m; <n;, para todoi=1,2,..,¢t
Para construir um inteiro desta forma efetuamos as seguintes passos:
(1) - Escolhemos um valor para m; - temos ni+1 opgoes, pois my € {0,1,2,...,n1};

(2) - Escolhemos um valor para mg - temos ng+1 opgoes, pois my € {0,1,2,...,n2};

(t) - Escolhemos um valor para m; - temos n;+1 opgoes, pois m; € {0,1,2,...,n;}.

Pelo Principio Multiplicativo, o total de modos de construir d é dado pelo
produto: (ny + 1)(ny + 1)(n3 + 1)....(ny + t). O
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v' Exercicios 18.

(01) Usando o Corolario 4, determine o niimero de divisores positivos de cada
um dos inteiros:

(a) 3920

Solucao:

3920 = 2%.5.72, entao o ntimero de divisores de 3920 é dado por:

4+1) x (1+1) x (2+1) =30
~—— —— ——
opgoes de m; opcoes de my  opgoes de mg

O
(b) 23
Solugao:
Como 23 = 23 ¢ a decomposicao de 23 em fatores primos, entao o nimero de
seus divisores positivos é dado por (1 + 1) = 2. O
(c) 72;
(d) 416;
(e) 815;
(f) p, com p primo;
(g) p", com n > 1 e p primo.

3 Soma dos Divisores

Vejamos agora, como obter a soma dos divisores positivos de um inteiro, sem
a necessidade de relacionar esses divisores. Para um melhor entendimento,
vejamos antes alguns exercicios resolvidos.

v' Exercicios 19.

(01) Determine a soma S dos divisores positivos de cada um dos inteiros abaixo:
(a) 7.

Solugao:

Como 7 ¢ primo, seus divisore sao: 7% e 7'. Portanto, S = (7 +7') =8. [

(b) p, com p primo.
Solugao:
J4 vimos que os divisores de p sdo p® e p', logo S= (p° +p')=(p+1). O

(c) 128

Solucao:

128 = 27 é a decomposicao de 128 em fatores primos, logo seus divisores sao
2% com 0 < k < 7. Assim,

S=2"+2'+...+27

S é portanto, a soma dos 8 primeiros termos da progressao geométrica (P.G.)
20 21 92 93 .. Como a soma dos n primeiros termos da P.G. a, aq, ag®, ag®, ...
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¢ dada por:
ataqg+a®+ ... +ag"t = %.
Entao,
S:(T+2%w“+f)=£%;}9=2%.

(d) p", com n > 1 e p primo.

Solucao:

Trata-se de uma generalizacdo do caso anterior. Como p°,p',...,p" sao os
divisores positivos de a, entao

0 n+1 n+1
ny_ P@"T 1) ptt -1
S = (0 49t 45+ ot p7) = 2 ) :

p—1 p—1
O
(e) 36
Solugao:
Como 36 = 22.32, os divisores positivos de 36 sdo:
d=2m23", com 0<m,n<2.
Assim,
2 2 m an 2 n 2 n 2 n
S = Zm:O z:n:()(2 ‘(23 ) = 20 Zn:O 3 + 21 Zn:() 3 + 22 Zn:O 3
=(2042'+22)> 3"
= (2°+ 2" +22)(3° + 3" +3%) = (F).(3=) =713 = 91. O

(f) p™.¢", com p, q primos.

Solucao:

Trata-se de uma generalizacao do caso anterior. Pela Proposicao 10, os divi-
sores positivos de p™.q" sao

d:paqﬁ, com 0<a<m e 0<f3<n.

Assim,

S=3 a0 Zgzo(pa-qﬁ) =" 50 ¢’ +p' > h=0 ¢+ .+ > 5=0 q°
=P+ P+ ) Y
=@ +p + ")+ )
_ (pm+1_1) (qn+1_1)

p—1 qg—1
Em cada um dos parénteses acima, temos a soma dos termos de uma P.G. [

Corolario 5. Seja

a = py'py?..pt
a decomposicao do inteiro a > 1 em fatores primos. FEntao a soma S dos
divisores positivos de a € dada pelo produto:

ni1+1 _ 1 no—+1 _ 1 ne—+1 - 1
g — (pl Do ...(pt )
pr—1 p2— 1 pr—1
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Demonstracao:
Como a = py*py>...p", pela Proposigao 10, os divisores se a sao:

d=pi"py*.p comcada 0<aq; <mn

Assim,
S = 20331:0 Zi:o ZZizo(pi”.pg‘Q...zl)?t)
ng n (6% (6% no n (0% (0%
— pl.(z%zo Zaizonpf'"ptt) +p1-(za2:0 Zai:opf‘“pt O+ .+
pl%‘(Z%z:O p?t Zai:()f?g"'p?t)n
=Py +p;+ .. +p11)(2a§:o Zai=0p22"'ptt)

= (P} +pi +pi+p1).(03 + 3+ D5+ P ) (D] Dy P )
Como cada um desses fatores é a soma dos termos de uma P.G., entao
aplicando a férmula citada acima obtemos:

o (pgqul —1 p1212+1 —1 p?t+1 _ 1)
pr—1 p2— 1 pe—1

4 Algoritmo II para o calculo do MDC e MMC

O proximo teorema diz como calcular o mdc e mme de dois inteiros a partir
de suas decomposigoes em fatores primos.

Teorema 10. Sejam
a=p'pyt.pt e b=p"pyt.p

inteiros positivos, com 1 < p; < ps < ... < p, primos e 0 < n;, m;, para todo
1=1,2,...,t. Entao
(I) mde(a,b) = p{*ps?..pi", onde a; = min{n;, m;}, para todo i = 1,2, ... t.

(IT) mme(a,b) = P po>..pP*, onde B; = max{n;, m;}, para todo i = 1,2, ..., t.

Demonstracao:
(I) mde(a, b) = p*ps?...pft, onde a; = min{n;, m;}
Vamos mostrar que d = pi*ps?..pft, com «; = min{n;, m;}, satisfaz as
condigoes (i) e (i7) da Defini¢ao 2. De fato,
(1) Como oy = min{n;,m;}, entao o; < n; e a; < my, para todo i. Logo, pelo
Proposigao 10, d|a e d|b.
(77) Seja d’ um inteiro tal que d'|a e d'|b. Entao, pela Proposicao 10,
d = pi'py..p;t, onde r; < n; e r; < m;, para todo i. Logo
r; < min{n;, m;} = a;, e novamente pelo Proposi¢ao 10, segue que d'|d.

De (i) e (i1) segue que d = mdc(a,b).

(IT) mme(a,b) = pi*pP . pP*, com B; = max{n;, m;}.
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Mostraremos que m = p’flp§2...pft, onde f; = max{n;,m;}, satisfaz as
condigoes (i) e (i7) da Definigdo 5. De fato,

(7) Como n; < fB; e m; < f3;, para todo i = 1,2,..., segue da Proposicao
10 que, a|lm e b|m.

(17) Seja m’ = pi'px?...p;* um inteiro tal que alm’ e blm’. Da Proposi¢ao
10, segue que n; < r; e m; < r;, para todo i. Assim, r; > max{n;,m;} = p; =
m/|m. Portanto, m = mmec(a,b) O

v' Exercicios 20.

(01) Usando a decomposi¢ao em fatores primos, calcule mdec(a, b) e mme(a,b),
onde:

(a) a = 360,b = 6804

Solugao:

Inicialmente, faremos a decomposicao de cada um dos inteiros em fatores pri-
mos:

360 = 23.3%2.5 e 6804 = 22.3°.7

Agora, reescrevemos essa decomposicao de modos que ambas tenha os mes-
mos numeros primos em suas decomposicoes. Para isso, consideramos decom-
posigoes da forma a = pi*.p"...p;"*, com n; > 0, ou seja, estamos admitindo a
possibilidade de expoentes nulos. Fazendo isso para as decomposicoes acima
obtemos:

360 = 23.35.7° e 6804 =22.3°5°.7

Comparamos agora os expoentes de cada niimero primo presente nas decom-
posicoes. Para o mdc tomamos o menor deles e para o mmc, o maior:

mdc(360, 6804) = 22.32.50.70 = 36

mme(360,6804) = 23.3°.5.7 = 68040. O
(b) a = 1352 e b = 4004
Solucao:
Como
1352 = 23.13% e 4004 = 2%.7.11.13,
eSCrevemeos:
1352 = 23.7°.11°.13% e 4004 = 22.7.11.13,
portanto:

mde(1352,4004) = 22.7°.11°.13 = 52
mme(1352,4004) = 23.7.11.132 = 104104, O
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Lista de Exercicios 8.
(01) Usando a decomposi¢ao em fatores primos, determine todos os divisores
positivos de cada um dos inteiros abaixo:

, com p, g primos.

(04) Determine a soma dos divisores positivos de cada um dos inteiros abaixo:
(a) 5 (b)91 (c)280 (d) 792

(05) Usando a decomposi¢ao em fatores primos, determine mdc(a, b) e mme(a, b):
(a) a =28, b =58;

(b) a = 108, b = 96;

(c) a =33, b= 24

(d) a = 139, b = 148;

(e) a = 286, b = 1058;

(f) a = 4612, b = 248;

(g) a = 3612, b = 108.

(06) (ENADE-2014) Os numeros perfeitos foram introduzidos na Grécia, antes
de Cristo. Um ntimero n é dito perfeito se ele for igual a soma de seus divisores
positivos e proprios, ou seja, dos divisores positivos menores que n.

(a) Verifique se 28 ¢ um nimero perfeito;

(b) Dado n = 2% x 42 x 127, determine o ntimero de divisores préprios de n
(menores que n) e verifique se n é um nimero perfeito;

(c) Mostre que se 28 —1 é primo, k > 1, entdo o inteiro positivo, n = 2F-1(2F—1)
é um numero perfeito;

(d) Seja n o ntimero obtido adicionando-se as poténcias 2°,2% 22 23 ...até que
a soma seja igual ao décimo primeiro ntimero primo, e, em seguinda, mul-
tiplicando a soma obtida pela tultima poténcia. Mostre que n é um ntmero
perfeito.
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Respostas da Lista de Exercicios 8

(0l.a) 1,2, 4, 79, 158, 316  (01.b) 1, 3, 307, 921

(0l.c) 1, 2, 4, 17, 34, 59, 68, 118, 236, 1003, 2006, 4012  (01.d) 1, 5, 4463, 22315
(01.€) 1,q,4% ....q", p,pq, PG>, ., 4", P*. 0?0, P>, .. D" D" D" DGR, D
(02 (02b) 16 (02.c) 24 (02.d) 12 (02.¢) (m+ 1)(n+ 1)

(03 a (03b) 4 (03.c) 18 (03.d)2 (03.e) (m+1)(n+1)—

(04.a (04.b) 112 (0d.c) 720  (04.d) 2340
(05.a) mde(28,58) = 2 e mmc(28,58) = 812
( (
(
(
(
(
(

)9
) 2
) 6

)
05.b) mdc(108,96) = 12 e mmc(108,96) = 864
05.c) mdc(33,24) = 3 e mmc(33,24) = 264
05.d) mde(139,148) = 1 e mme(139, 148) = 20572
05.e) mdc(286,1058) = 2 e mmc(286,1058) = 151294
05.f) mdc(4612,248) = 2 e mmc(4612,248) = 285944
05.g) mde(3612,108) = 12 e mme(3612, 108) = 32508.
(06.a) Pela definicio, n é perfeito se S = 2n. Como 28 = 22.7, a soma dos divisores de 28 é

dada por S = (%)(772:11) = 7.8 =56 = 2.28 = 28 é um numero perfeito;
(06.b) n = 22 x 42 x 127 = 8128 tem (2 + 1).(2 + 1).(1 + 1) = 18 divisores, entre eles o
préprio n. Logo, n tem 17 divisores préprios, conforme definido na questao e a soma de seus
divisores ¢ dada por S(% _1)(4::11)(1122772:11) = 7.21.128 = 18816 = 2 x 9408 # 2.n, logo n
nao é um nimero perfeito.

(06.c) Considere n = 2*~1.p, onde p = (2¥ — 1) é primo. Como 2 e p sdo primos, a

soma dos divisores positivos de n é dada por S = (2;:11)(’;;:11) = (2]6_1)(';{_1;)(”“) =

(2F —1)(2F =1+ 1) = 2¥(2F — 1) = 2.2""L.p = 2n = n é wm nimero perfeito.
(06.d) Seja p = 20 + 21 + ... +2F = (2¥*1 — 1) 0 11° niimero primo obtido somando-se
as parcelas como no comando da questao, com k o expoente para o qual isto acontece e

. _ , . ok+1_1y(p2—1
= 2¥p. Como os dois fatores sdao niimeros primos, segue que S = (p# =

ML —Dp+1) = 2FL —1)2F —1+1) =22k (2F1 - 1) = 2(2%p) = 2n = n é um
ndmero perfeito.




Capitulo 9

Congruéncia em 7%

1 Introducao

e Em uma festa infantil, um grupo de 7 criancas - Ana, Beatriz, Carlos, Davi,
Eduardo, Fernanda e Gabriela - reuniu-se préximo a uma mesa para brincar
de ’esconde-esconde’, um jogo no qual uma crianca é separada dos demais, que
procuram locais para se esconder, sem que a escolhida as veja, pois esta tentard
encontra-las apés um tempo estabelecido previamente. Assim, era necessario
escolher qual delas seria aquela que iria procurar todas as outras.

Para efetuar essa escolha, as criangas se dispuseram em um circulo, na
mesma ordem descrita anteriormente e, simultaneamente, mostraram um nu-
mero de dedos das maos. Os nimeros de dedos mostrados foram somados,
resultando em um quantidade que vamos chamar de TOTAL. Ana comecou
contar de 1 até TOTAL, e, a cada niumero dito, apontava para uma crianca da
seguinte forma: 1 - Ana, 2 - Beatriz, 3 - Carlos, 4 - Davi, e assim por diante.
Quanto chegasse ao nimero TOTAL, a crianca correspondente a esse nimero
seria aquela que iria procurar as demais. Se o nimero TOTAL é igual a 64,
qual a crianca designada para procurar as demais?

Solucao:

Pensemos em uma solucao para o problema acima, o qual trata-se de uma
questao do ENADE-2014. Observe que temos um grupo de 7 criancas, dis-
postas em um circulo e Ana atribui a cada uma delas um numero de 1 a
TOTAL, da seguinte forma:

Ana Beatriz Carlos Davi Eduardo Fernanda Gabriela

1 2 3 4 ) 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21

Como temos um circulo com 7 pessoas, a cada 7 unidades, retorna-se a
mesma crianca.

84
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A Beatriz ficam atribuidos os numeros:

2=70+2
9=71+2
16 =7242

ou seja, todos os nimeros da forma:
n="7kK-+2.

A Fernanda, por sua vez, recebe os nimeros:

6=70+6
13=71+46
20="72+46.

ou seja, todos os nimeros da forma:

n="T%k+6.

Portanto, o que identifica a crianga a qual sera atribuido um ntimero n
qualquer, é exatamente o resto da divisao de n por 7, segundo tabela abaixo:

Ana Beatriz Carlos Davi Eduardo Fernanda Gabriela
Resto: 1 2 3 4 5 6 0

Como

TOTAL=64=79+1=1r=1= acrianga é a Ana.

Em linguagem matematica, dizemos que estamos operando em mddulo 7 e
que os numeros atribuidos a uma mesma crianca sao todos congruentes modulo
7, conforme definiremos a seguir. Nesta unidade estudaremos a aritmética dos
restos obtidos na divisao euclidiana.

2 Inteiros Congruentes

Definicao 7. Dado um inteiro nao nulo m, dizemos que o0s inteiros a e b sao
congruentes modulo m, se eles deixam o mesmo resto na divisao euclidiana
por m.
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Exemplos:

(a) 7 e 4 sdo congruentes médulo 3, pois ambos deixam resto 1 na divisao por
3;

(b) 8 e —10 sao congruentes mddulo -6, ja que deixam resto 2 na divisdo por
-6;

(c) 25 e 9 sdo congruentes médulo 4, pois ambos deixam resto 1 na divisao por
4;

(d) 25 e 9 nao sao congruentes médulo 5, pois deixam restos distintos na di-
visao por 9.

Para indicar que a e b sao congruentes médulo m, escreve-se:
a = b(modm).

Quando a afirmacao a = b(modm) for falsa, diremos que a e b nao sdo congru-
entes (ou s@o incongruentes) médulo m e escreveremos a # b(modm).

Exemplos:

Com a notacao acima, os exemplos anteriores ficam:
(a) 7= 4(mod3);

(b) 8 = —10(mod(—6));

(c) 25 = 9(mod4);

(d) 25 # 9(mod>b).

v' Exercicios 21.

(01) Responda e justifique:
(a) 30 = 10(mod4)?

(b) 23 = 17(mod4)?

(c) =30 = —14(mod8)?
(d) 12 = 37(mod(—5))?
(e) 6 = 6(modT)?

(f) 1907 = 3917(modl)?

Propriedades Elementares da Congruéncia

Da Definigao 7, segue de forma imediata, que a congruéncia médulo m tem as
seguintes propriedades para quaisquer inteiros a, b e c:

(C1) Reflexiva: a = a(modm);

(C2) Simétrica: Se a = b(modm), entao b = a(modm);

(C3) Transitiva: Se a = b(modm) e b = ¢(modm), entdao a = c¢(modm).

Observe que:
(1) Como o resto da divisao de qualquer inteiro por 1 é sempre zero, entao
para quaisquer inteiros a e b, tem-se

a = b(modl).
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(02) Se a = b(modm), ambos deixam o mesmo resto na divisao por m, isto é,
existem inteiros g1, ¢z e r, com 0 < r < |m|, tais que:

a=mq +reb=mg +r.
Segue dai, que:
a=(—m)(—q)+reb=(-m)(—q)+r

ou seja, a e b também deixam o mesmo resto na divisao por —m, portanto
também temos a = b(mod(—m)).
Resumindo:

a = b(modm) < a = b(mod(—m)).

Em vista das observagoes (1) e (2) vamos nos restringir ao caso em que o
inteiro m > 1.

A préxima proposi¢gao da uma forma equivalente de definir a congruéncia
modulo m.

Proposicao 11. Seja m > 1 um inteiro. Para quaisquer inteiros a,b tem-se
que

a = b(modm) se, e somente se, m|(a —b).

Demonstracao:
(=) a = b(modm) = m|(a — b):

a = b(modm) = existem inteiros qi, qa € r, com 0 < r < m, tais que:

a=mqp+1r e b=mg@p+r=a—b=m(q —q)=m]| (a—>b).

(<) m|(a — b) = a = b(modm):

m|(a —b) = Ik € Z, tal que a — b = mk = a = b+ mk. Seja r o resto
da divisao de a por m, entao a = mq + r, com q € Z. Assim,

a=b+mk=mg+r=0b=m(qg—k)+r

Como 0 < r < m, da unicidade do resto, segue que r é também o resto da
divisao de b por m, logo a = b(modm). O

Resumindo, temos:

a = b(modm) < m|(a —b).
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Exemplos:

(a) 47 = 11(mod9), pois 9](47 — 11);

(b) 24 = 314(mod29), pois 29|(24 — 314);
(c) 8 = 8(modT), pois 7|(8 — 8);

(d) 16 # 5(mod4), pois 4 1 (16 — 5).

v' Exercicios 22.

(01) Usando agora a Proposigao 11, responda e justifique:
a) 30 = 10(mod4)?

b) 23 = 17(mod4)?

c) =30 = —14(mod8)?

d) 12 = 37(mod5)?

e) 6 = 6(mod7)?

£) 1907 = 3917(mod33)?

3 Congruéncia no Conjunto dos Restos

Ja vimos que na divisao euclidiana por um inteiro m > 1, os possiveis restos
pertencem ao conjunto:

R:={0,1,2,...m—1}

Vejamos algumas conclusoes relevantes, referentes a congruéncia, que podemos
tirar sobre o conjunto R.

e Sabemos que para qualquer inteiro a, existem unicos inteiros ¢ e r, com
r € R, tais que a = mq + r. Entao,

a=mqg+r=a—r=mq= m|(a—r)=a=r(modm).

Com isto podemos afirmar:

Todo inteiro é congruente modulo m ao seu resto r na divisao
por m, e como esse resto é unico, ele é congruente a um tinico
elemento do conjunto R = {0,1,2,...,m — 1}.

Exemplos:
(01) 23 é congruente ao seu resto na divisdo por 5. De fato,

23 = 5.4+ 3 = 5|(23 — 3) = 23 = 3(mod5).

E esse é o tnico inteiro no conjunto {0,1,2,3,4} ao qual 23 é congruente
modulo 5;
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(02) 249 é congruente médulo 12 a um tnico elemento do conjunto {0, 1,2, ..., 11},
sendo esse elemento o resto da divisao de 249 por 12, a saber 249 = 9(mod12);

(03) Quantos e quais elementos em {0,1,2,...,16} sdao congruentes médulo
17 ao inteiro 526267 Justifique.

(04) Quantos e quais elementos em {0,1,2,...,49} sdo congruentes médulo
50 ao inteiro 526267 Justifique.

e Existem elementos distintos b,c € R ={0,1,2,...,m — 1}, tais que
b = ¢(modm)?

Para responder a essa pergunta, suponhamos que existam b, c € R, distin-
tos, tais que b = c¢(modm). Sendo distintos, entdo b < ¢ ou ¢ < b. Vamos
considerar b < ¢. Como

0<b<ec<m—-1=0<c—b<m-1.
Porém, se

b=c(modm) = m|lc—b)=m<(c—b)<m—-1=m<m-1,

um absurdo. Portanto, podemos afirma:

Quaisquer dois elementos distintos em R = {0,1,2,...,m — 1} sdo
incongruentes moédulo m. Portanto, se r;,r; € R, sao tais que:

ri = rj(modm) = r; =r;.

4 Propriedades da Congruéncia

Ja vimos que a reflexividade, a simetria e a transitividade sao propriedades
elementares da congruéncia. Como a congruéncia esté estritamente relacionada
com a divisibilidade, podemos deduzir mais algumas propriedades que seguem
diretamente das propriedades de divisibilidade vistas no Capitulo 3.

Dado um inteiro m > 1, a relacao de congruéncia médulo m, definida em
Z., tem as seguintes propriedades, para quaisquer inteiros a, b, c e d:

a+c=0b+ c(modm)
ac = be(modm) '

(C4) Se a = b(modm), entdo {

Demonstracao:

a = b(modm) = m | (a — b). Das propriedades de divisibilidade, segue que:
(i)m|[(a=b)+(c—c))=m|[(a+c)—(b+c)] = a+c=b+ c(modm).
(17) m | (a — b)e = m | (ac — bc) = ac = be(modm). O
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(C5) Cancelamento da adigdo na congruéncia:

Se
a+ c=b+ c¢(mod.m),
entao,
a = b(modm).
Demonstracao:

a+c=b+c(modm)=m|[(a+c)—(b+c)]=m|a—b= a=blmodm). O

(C6) Cancelamento da multiplicagao na congruéncia:
Se

ac = be(modm) e mdc(c,m) = 1,

entao,
a = b(modm).
Demonstracao:
ac = be(modm) = m | (ac — be) = m | (a — b)c. Como mde(m,c) = 1, pelo
Teorema 7, m | (a — b) = a = b(modm). O]
@ = b(modm) . a+c = b+ d(modm)
(C7) Se e , entao = bd(modm) :
¢ = d(modm) ac = batmoan
Demonstracao:

a = b(modm) e ¢ = d(modm) = m | (a —b) e m | (¢ — d).

Segue das propriedades de divisibilidade que:

(i)m|[(a=b)+ (c—d)]=m]|[(a+¢c)— (b+d)] = a+ c=b+ d(modm);
(1) m| (a=bcem| (c—d)b=m|[(ac—bc)+ (bc— bd)]

= m | (ac — bd) = ac = bd(modm). O

(C8) Se

a = b(modm),

entao, para todo inteiro n > 0, tem-se também:

a" = b"(modm).

Demonstracao:
Faremos a demonstracao por inducao em n.
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(1) n=0:

a®="=1-1=0=0m= m|(a® —b°) = a® = b°(modm).

(i7) Seja n > 0 e suponha a™ = b"(modm):

Como a = b(modm) (hipdtese) e a™ = b"(modm) (hipdtese de indugao), segue
da propriedade (C7), segue que a".a = b™.b(modm) = o™ = 0" (modm). O

5 Aplicagao da Congruéncia no Calculo do Resto

Vejamos agora como usar a congruéncia para resolver o problema proposto no
inicio da aula, cujo objetivo é calcular o resto da divisao de 3%'2 por 40.
Solugao:
Ja sabemos que para todo inteiro n > 1, 3" = r(mod40), onde r é o resto
da divisao de 3™ por 40. Comecemos por calcular os restos da divisao das
primeiras poténcias positivas de 3 por 40:

3! = 3(mod40)

32 = 9(mod40)

3% = 27(mod40)

31 = 1(mod40)

3% = 3(mod40)

Para facilitar os cdlculos, escolhamos a congruéncia 3* = 1(mod40), por deixar
o menor resto. Dividindo o expoente 212 por 4, encontramos 212 = 53.4.
Entao, aplicando a propriedade (C8) a congruéncia escolhida:

3* = 1(mod4) = (31)% = 1°%(mod40) = 3*'? = 1(mod40).
Como 1 € {0,1,2,...,39}, ele é o resto da divisao de 322 por 40. O

v' Exercicios 23.
(01) Que nimero entre 0 e 6 ¢ congruente médulo 7 ao produto
11 x 22 x 2322 x 13 x 9?7
Solugao:
Seja P = 11 x 22 x 2322 x 13 x 9. Obviamente, que esta sendo pedido o
resto da divisao de P por 7. Como trata-se de um nimero nao muito grande,
podemos calcular diretamente P e efetuar a divisao. Porém, como processo
de aprendizagem, vamos determinar o resto usando as propriedades da con-
gruéncia. Inicialmente, calcularemos o resto na divisao por 7, de cada um dos
fatores de P:

11 = 4(modT)

22 = 1(mod7)

2322 = 5(mod7)

13 = 6(mod7)

9 = 2(mod7).
Aplicando repetidamente a propriedade (C7), temos:

11 x22x2322%x13x9=4x%x1x5x6Xx2(mod7) = P =240 = 2(modT7).
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Portanto, o niimero procurado é 2. 0

(02) Calcule o resto da divisao de 19" por 14, paran =1,2,3, ...., 20.
Solugao:
Como 19 = 14.1 + 5, entao

19 = 5(mod14).
Multiplicando ambos os lados desta congruéncia por 19 (propriedade (C4)) e
usando a transitividade (propriedade (C3)) temos:

192 = 5.19(mod14) e como 5.19 = 11(mod9) = 19* = 11(mod14)

Repetindo o processo:

192 = 11.19(mod14) = 19* = 13(mod14)

19* = 13.19(mod14) = 19* = 9(mod14)

19° = 9.19(mod14) = 19° = 3(mod14)

19% = 3.19(mod14) = 19° = 1(mod14)
Para o o expoente 6, obtivemos resto igual a 1, entao pela propriedades (C8),
para qualquer inteiro £ > 0, temos:

(19%)* = 1% (mod19)
e pela propriedade C4, para todo inteiro r =0,1,2, ..., 6:
195%.19" = 1.19"(mod9) = 197" = 19" (mod14).

Assim,
198 = 1961+2 = 19% = 11(mod14);
19% = 19913 = 193 = 13(mod14).

19%0 = 195312 = 19?2 = 11(mod14).
Logo, as poténcias 19,192,193,19%, ..., 19%° deixam respectivamente os restos
5,11,13,9,3,1,5, 11, 13,9, 3, 1, 5, 11, 13, 9, 3, 1, 5 e 11 na divisao por 14.[J

(03) Calcule o resto da divisdo de 18" por 7, para um inteiro n > 1, ar-
bitrario.
Solugao:

18 = 4(modT)

182 = 4.18 = 2(mod?)

18% = 2.18 = 1(mod7)
Para o expoente 3, obtivemos resto igual a 1. Logo, usando as propriedades
(C8) e (C4), dado um inteiro n > 1, se k e r sao, respectivamente, o quociente
e resto da divisao de n por 3, entao

18" = 183+ = (18%)%.18" = 1".18" = 18" (modT).

Portanto, o resto da divisao de 18™ por 7 é igual ao resto da divisao de 18" por
7, sendo r € o resto da divisao de n por 3. Por exemplo,

. Como 20 = 3.6 + 2, entao 18%° = 18% = 2(mod7);

. Como 3202 = 3.1067 + 1, entao 1832%? = 18 = 4(mod7). O
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(04) Determinar o resto da divisao de 7¢ por 15.
Solucgao:
Inicialmente vamos calcular os restos distintos que obtemos na divisao das
primeiras poténcias positivas de 7 por 15:
= 7(modl5)

72 = 4(mod15)

73 = 13(mod15)

7t = 1(mod15)
Dessa ultima congruéncia, usando a propriedade (C8) e (C4), para quaisquer
inteiros nao negativos k e r, temos:

7T — (YR T = 187 = T (mod1b).

Assim,
746 = 7112 = 72 = 4(mod15) e como 4 < 15, 4 ¢é o resto procurado. O

(05) Determine o algarismo das unidades de 8%.

Solucao:

Observe que o algarismo das unidades de qualquer inteiro é exatemento seu o
resto na divisao por 10. Portanto, o problema consiste em encontrar o resto
da divisao de 8% por 10. Vejamos quais os restos deixados pelas primeiras
poténcias positivas de 8 na divisao por 10:

8 = 8(mod10)

82 = 4(mod10)
83 = 2(mod10)
8% = 6(mod10)

8> = 8(mod10).
A partir desse expoente, os restos comecam a repetir, logo, qualquer que seja
a poténcia positiva de 8, s6 temos os restos 2, 4, 6 e 8. Aqui, ao contrario dos
exemplos anteriores, nenhuma poteéncia de 8 deixa resto 1 na divisao por 10.

Porém, como
8° = 8(mod10),

para quaisquer inteiros k > 0 e r € {0,1,2,3,4}:

g = (89)F 8" = 858" = 8"+ (mod10).

Portanto,
8%+ = 87 (mod10).

Assim,
8% = 871040 = 816+0(10410) = 8°* = 8% = 6(mod10).

Outra solucao, ¢ tomar a poténcia que deixa o menor resto, no caso 82, e
como 80 = 3.26 + 2, entao

80 = 832042 = (83)26 82 = 920 4 — 228 — (8%)3.2 = 2%.2 = 6(mod10).

Portanto, o algarismo das unidades de 8% ¢ 6. U
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(06) Determinar o resto da divisao de 273% por 15.
Calculando os resto das primeiras poténcias positivas de 27 na divisao por 15:
27 = 12(mod15)
272 = 27.12 = 9(mod15)
273 = 27.9 = 3(mod15)
271 = 27.3 = 6(mod15)
275 = 27.6 = 12(mod15).

Obtivemos aqui o mesmo resto da primeira poténcia. Segue entao, que para
qualquer inteiro n > 1, na divisao de 27" por 15 os Uinicos restos possiveis sao 3,
6, 9, 12. Portanto, nenhuma poténcia deixa resto 1. Como 27° = 27(mod15),
para quaisquer inteiros k > 0 e r € {0, 1, 3,4}, temos:

279MFT = (27°)F.27" = 2757 (mod15).
Assim,
27702 = 27°00%2 = 9792 — 97> 1242 = o7 — 9772 = 270 = 27714 = 27% = 9(mod15).

Portanto, o resto é 9.

Outra solucao é trabalhar com a poténcia que deixa o menor resto, no caso,
273. Assim,
27302 — (273)100‘272 = 3100‘9 = 3102 — (33)34 — 2734 = (273)10'274
= 310.6 = (27%).3.6 = 3.18 = 9(mod15). O

(07) Determine o resto da divisao de 5% por 127.
Solugao:
Na divisao de um inteiro qualquer por 127, podemos ter 127 restos distintos.
Entao, a tarefa de encontrar todos os restos distintos deixados pelas poténcias
de 5, como feito nas questoes anteriores, pode ser muito fatigante. Por outro
lado, observa-se facilmente, que:
127 =125 +2 = 53 — (=2) = 127|(5% — (=2)) = 5% = —2(mod127)

= ()" = (=2)" = 126(mod127).
Portanto, o resto é 126. 0
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Lista de Exercicios 9.

(01) Responda e justifique:

(a) 23 = 47(mod3)? (b) —145 = —12(mod7)?

(c) 34508 = 111(mod10) (d) 212 = (—1)?(mod3)?

(e) 32768 = 1906(mod13)? (f) 1234549 = 3333333(modl)?

(g) 423 = 326(mod(—6))?  (h) 22 + 32 + 42 + 5% = 16(mod4)?
)

02) Usando agora a Proposicao 11, mostre que para quaisquer inteiros a, b e
¢ sao verdadeiras as propriedades:

(a) (C1): a = a(modm) (reflexiva);

(b) (C2): Se a = b(modm), entdao b = a(modm) (simétrica);

(c) (C3): Se a = b(modm) e b = ¢(modm), entdo a = c(modm) (transitiva).

(03) Quantos e quais elementos em {0,1,2,...,11} sdo congruentes médulo
12 ao inteiro 80087 Justifique.

(04) Determine os elementos em {0,1,2,...,6} que sdo congruentes médulo
7 ao inteiro 12°?7 Justifique.

(05) Determine todos os possiveis valores para = € Z, que tornam verdadeira
a congruencia:

) 5 = x(mody);
) 2x = 8(modl2);
e) bx = 3x — 4(mod8);
f) 7x + 2 = 4z — 10(mod9);

a
b) z = 25(mod7);
c
d

) Determine todos os inteiros m > 1 para os quais temos:
a) 186 = 165(modm);

b) 8012 = 8056(modm);

c) 3456 = 2169(modm).

AN N N N
== S

(07) Explique, usando linguagem natural, o que diz a propriedade (C4).

(08) Sejam m e k inteiros, com m > 1. Mostre, indicando as propriedades
usadas, que se 3k + 5 = Tk + 20(modm), entdo:

(a) 3k + 25 = 7k 4+ 40(modm);

(b) 4k = —15(modm);

(c) 16k + 60 = 0(modm).

(09) Sejam m e k inteiros, com m > 1. Mostre que se 9k + 6 = k — 1(modm),
entao 3(3k* — k — 2) = (k — 1)*(modm).

(10) Mostre que se 40x = 50y(mod8), entao 120z = 150y(mod8).

(11) Explique, em lingaguem natural, o que diz a propriedade (C5).



96 Teoria dos Numeros

(12) Mostre que se bk + 8 = 6k + 18(modb), entdo 5k = 6k + 10(mod>).
(13) Mostre que 40z = 50y(mod8) se, e s6 se, 80x + 50y = 40x + 100y (mod8).

(14) Encontre 4 inteiros a, b, c e m > 1, para o quais temos ac = be(modm),
porém a # b(modm), mostrando assim que ac = be(modm) # a = b(modm).

(15) Encontre 4 inteiros a, b, ¢ e m > 1, para o quais temos ac = bc(modm)
e cancelando ¢ nessa congruéncia, vale a = b(modm). Compare esse exemplo
com o dado na questao anterior e diga que propriedade adicional ele tem, que
torna, nesse caso, a implicacao valida.

(16) Mostre que se 6z = 10y(mod7), entao 3z = Sy(modT).
(17) Mostre que se —3x = 6y(mod8), entao = + 2y = 0(mod8).

(18) Sejam a e p inteiros para os quais temos a + 4 = (a — 2)?(modp). Mostre
que se p é primo e p { a, entao a = 5(modp).

(19) Usando propriedades de congruéncia, mostre que se m|(a — b), entdo
m|(a™ — b™), qualquer que seja o inteiro n > 1.

(20) Mostre que para qualquer inteiro n > 1, na divisao de 15" por 8, os
unicos restos sao 1 e 7.

(21) Mostre que 21" = 6(mod15) para todo inteiro n > 1.

22) Determine o resto da divisao:
a) 2199 por 11;

b) 71 por 51;

c) 43! por 257;

d) (4'® 4+ 5 +62°) por 7;

) 14+5+5%+5%+51+ ... + 5% por 25;
) 3333333 por 26.

(
(
(
(
(
(e
(f

(23) Determine o algarismo das unidades do nimero 132!

(24) Mostre que para todo inteiro n > 1, 13" = (3r + 1)(mod9), onde r é
o resto da divisao de n por 3.

(25) Sejam a, b, m e n inteiros, com m,n > 1, sendo a = b(modm) e a =
b(modn). Mostre que m e n sao relativamente primos, entdo a = b(modmn).

(26) (ENADE-2005) O mandato do reitor de uma universidade comega no
dia 15 de novembro de 2005, uma segunda-feira, e terda a duracao de exata-
mente quatro anos, sendo um deles bissexto. Determine o dia da semana que
ocorrera o tultimo dia do mandato desse reitor.
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Respostas da Lista de Exercicios 9
(03) Como 8008 = 12.667 + 4, entdo 8008 = 4(modl2). Suponha agora que exista s €
{0,1,2,...11}, tal que 8008 = s(mod12). Pela propriedades (C2) e (C3), temos s = 4(mod12),
como s,4 € {0,1,...,11}, segue que s = 4. Portanto, 8008 é congruente médulo 12 a um
tnico elemento desse conjunto, no caso, 4
(04) 125 = 3(modT), pois 3 é o resto da divisdo de 12° por 7.
(05.a) =12k +8, k€ Z; (05.b)x=Tk+4, keZ; (05.c)xz=8k+5,keZ;
(05d) z=6k+4, kcZ;, (05.e)x=4k+2,keZ; (05.f)2z=3k+2kecZ.
(06.2) 3, Tou2l (06.b) 2,4, 11,22 ou 44 (06.c) 3, 9, 11, 13, 33, 39, 99, 117, 143, 429,
1287
(16) 62 = 10y(mod7) = 2.3z = 2.5y(mod7), como mdc(2,7) = 1, pela propriedade C6,
podemos cancelar 2 nos dois lados da congruéncia, obtendo 3z = 5y(modT).
(17) —3z = 6y(mod8) = 3.(—x) = 3.2y(mod8)
= —z = 2y(mod8) - propriedade (C6), uma vez que mdec(3,8) =1
= 0 =z + 2y(mod8) - propriedade (C4)
= x + 2y = 0(mod8) - propriedade (C2).
(18) a+ 4 = (a — 2)*(modp) = pl[(a+4) — (a = 2)*] = pla.(~a + 5) = p|(-a +5), j& que
mde(p,a) = 1. Entéo a = 5(modp).
(20) Temos que, 15 = 7(mod8) e 15° = 152 = 1(mod8). Dado n > 1, sejam k e r, respecti-
vamente, quociente e resto da divisao de n por 2, ou seja, n =2k +r, com r =0 ou r = 1.
Entao,
1(mod8), se r=20

15" = (152)F.15" = 1*.15" = 15" = { 7Em0d8§7 o 1
(21) Mostraremos por indugdo em n. Se n = 1, isso é verdadeiro, pois 15|(21 — 6). Suponha
o resultado verdadeiro para n > 1. Entdo, temos 21 = 6(modl5) (caso n = 1) e 21" =
6(mod15) (hipStese de indugao). Aplicando a propriedade (C4) a essas duas congruéncias e
posteriormente a transitividade obtemos: 21".21 = 62 = 6(mod15) = 21"T! = 6(mod15).
(22.a) 1 (22.b) 19 (sugestdo: 51 : 7> +2) (22.c) 193 (sugestdo: 257 : 4* +1))  (22.d) 0
(22.e) 6
(22.f) 25. Veja uma solucio: 23 = (—3)(mod26) = 233 = (—3)3 = —1(mod26)
= (233)11H = (1)1 (0426) = 23333333 = —1 = 25(mod26) = resto é 25.
(23) 7
(24) Para as primeiras 3 poténcias nao negativas de 13, temos as congruéncias, em médulo
9:

1=3r+1, se r=0
13" = 4=3r+4+1, se r=1 Dado um inteiro n > 1, sejam ¢ e r, respectivmente o

7=3r+1, se r=2
quociente e resto da divisao de n por 3. Entao n = 3¢ + r, com com r = 0,1 ou 2. Dai,
13" = (13%)9.13" = 19.13" (mod9). Usando o resultado acima, temos 13" = (3r + 1)(mod9).
(25) a = b(modm) e a = b(modn) = m|(a —b) e n|(a — b) = ki, ks € Z, tais que
a —b=mk; = nks = minks = m|ks, pois mdc(m,n) = 1. Assim, ko = mk, k € Z
= a — b = nky = nm.k = nm|(a — b) = a = b(modmn).
(26) sébado.



Capitulo 10

Aplicacoes da Congruéncia em Z

1 Introducao

Na resolucao de alguns exercicios no capitulo anterior, vimos que dados inteiros
a e m > 1, se existe um inteiro positivo k, tal que a® = 1(modm), entao para
todo inteiro n > 1, se n = kq +r, com 0 < r < k, segue das propriedades C8
e C4, que:

a” = """ = (aF)1.a" = 176" = a"(modm).

Resumindo,

Se existe um inteiro k£ > 1, tal
a® = 1(modm),
entao para todo inteiro n > 1, tem-se: (10.1)
a" = a"(modm),

onde 7 é o resto da divisao de n por k.

Esse resultado, simplifica grandemente o calculo do resto na divisao de
poténcias. Uma vez, que conhecendo o resto da divisao de a” por m, para
r =0,1,2,..(k — 1), podemos determinar o resto da divisao de a™ por m,
qualquer que seja o inteiro n > 1.

A questao é saber, se para quaisquer a e m > 1, sempre existe alguma
poténcia positiva de a que deixa resto 1 na divisao por m? Caso afirmativo,
como encontrar o expoente k7 Neste capitulo, veremos alguns resultados nesse
sentido, o Pequeno Teorema de Fermat e uma generalizacao desse, que ¢ o
Teorema de Euler. Veremos também o Teorema de Wilson, o qual nos fornece
o resto para um tipo particular de divisao.

Para inteiros a e m > 1 arbitrarios, comecemos supondo que exista um

98
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inteiro £ > 1, tal que
a® = 1(modm).

k

Isso implica que m|(a® — 1) = Is € Z; a* — 1 =ms e como k > 1, entdo

a* —1=ms = a.d"' +m(—s) = 1= mdc(a,m) = 1.

Portanto, mdc(a,m) = 1 é um condigdo necesséaria para a existéncia do
expoente k. Temos assim, o seguinte resultado:

Proposicao 12. Dados inteiros m > 1 e a. Se existe um inteiro k > 1, tal
que

a® = 1(modm),

entao mdc(a,m) = 1.

Exemplos:

(01) Como mdc(8,10) # 1, entdao 8% # 1(mod10), qualquer que seja o inteiro
k > 1, conforme ja tinhamos deduzido no capitulo anterior;

(02) Como mdc(27,15) # 1, nao existe k > 1, tal que 27% = 1(mod15).

O préximo passo é investigar se mdc(a,m) = 1 é também uma condigao
suficente para a existéncia do expoente k. Sabe-se que se p é um nimero
primo e p t a, entdo mdc(p,a) = 1. Iniciaremos nossa andlise para inteiros
relativamente primos, com essa particularidade.

Dados um inteiro a qualquer e um primo positivo p, denotaremos por
M (a,p) o conjunto dos primeiros (p — 1) multiplos positivos de a, isto é,

M(a,p):={na|necZ 1<n<p-1}={a,2a,3a,..,(p—1)a}.

Exemplos:
(01) M(2,11) ={2,4,6,8,10, 12,14, 16, 18, 20};
(02) M(25,7) = {25,50, 75,100,125, 150}.

Facamos agora, algumas andlises no conjunto M(a,p), para esses dois
exemplos particulares.

(01) M(2,11) ={2,4,6,8,10, 12,14, 16, 18, 20};
Dividindo cada elemento desse conjunto por p = 11, encontramos as seguintes
congrueéncias:
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N\

20 = 9(modl1)

Portanto, o conjunto dos restos das divisoes dos elementos de M (2,11) por 11
é {1,2,3,4,5,6,7,8,9,10}. Observe que, como os restos sao todos distintos,
segue da Definicao 7, que quaisquer dois elementos distintos de M (2,11) sao
incongruentes modulo 11. E observa-se também, que nenhum deles deixa resto
0 na divisao por 11. Aplicando agora repetidamente a propriedade C7 as
congruéncias acima obtemos:

(2.4.6.8.10.12.14.16.18.20) = (2.4.6.8.10.1.3.5.7.9) (mod11)
ou ainda,
(2.1).(2.2).(2.3).(2.4).(2.5).(2.6).(2.7).(2.8).(2.9).(2.10) = (1.2.3.4.5.6.7.8.9.10) (mod11)
J
(1.2.3.4.5.6.7.8.9.10).2'° = (1.2.3.4.5.6.7.8.9.10) (mod11)

\
10!.2'% = 10!(mod11)

Como mdc(10!,11) = 1, pelo cancelamento da multiplicagdo na congruéncia
(propriedade C6), obtemos a congruéncia:

2% = 1(modl11).

(02) M(25,7) = {25,50, 75,100,125, 150}:
Dividindo os elemento desse conjunto por p = 7, encontramos as seguintes
congrueéncias:

(25 = 4(modT)
50 = 1(mod?7)
75 = 5(mod7)

7

100 = 2(modT)
125 = 6(mod7)
| 150 = 3(modT)

Novamente, observa-se que os restos sao todos distintos e nenhum deles é nulo,

implicando que quaisquer dois elementos distintos de M (25,7) sdo incongru-
entes médulo 7 e nenhum deles é divisivel por 7. Como no exemplo anterior,
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multiplicando membro a membro todas as congruéncias acima (propriedade
CT7) obtemos:
25.50.75.100.125.150 = 4.1.5.2.6.3(mod5)

\
(1.2.3.4.5.6).25° = 1.2.3.4.5.6.(mod7)

U
6!.25% = 6!(mod7)
Como mdc(6!,7) = 1, pela propriedade C6, segue que:

25% = 1(mod7).

Nos dois exemplos, obtivemos como resultado a mesma congruéncia:

a’~' = 1(modp).

A questao é: - Esse é um resultado geral? Ele vale sempre?

Vamos tentar generalizar o que foi feito nos exemplos acima, para inteiros
arbitrarios a e p, com p > 1 primo e p { a, garantindo assim que mdc(p, a) = 1,
conforme Proposicao 7.

Tomando o conjunto dos primeiros (p — 1) multiplos positivos de a:
M(a,p) = {a,2a,3a,...,(p—1)a}
e dividindo cada um de seus elementos por p, obtemos as (p — 1) congruéncias:

a = r1(modp)
2a = ro(modp)
3a = r3(modp)

(p — 1)a = rp_1(modp)
onde 7y, 79,...7p_1 sa0 os restos obtidos nas divisdes. Aplicando agora repeti-
damente a propriedade C7 as congruéncias acima, segue que:

a.2a.3a...(p — 1)a = ry.ra.r3....15—1(modp).

¢
(p— )a’™ = ryrgrz...rp 1 (modp). (10.2)

No caso geral, nao podemos precisar exatamente o valor de cada resto r;.
Sabemos apenas que 71,79, ..7p—1 € R = {0,1,2,...p—1}. Como nos exemplos,
sao todos eles distintos?

Suponhamos que existam n;,n; € {1,2,..p — 1}, tais que r; = 7y,
entdo n;a = nja(modp). Como mdc(a,p) = 1, pela propriedade C6,
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n; = n;(modp) = n; = n;. Logo, r1,72,...,7p_1 s80 (p — 1) elementos dis-
tintos de R. Como R tem p elementos, a pergunta é: - que elemento de R nao
aparece entre os (p — 1) restos encontrados? Nos exemplos acima, vimos que
nenhuma das poténcias deixou resto zero. No geral, suponhamos que exista
1 <n; <(p—1), tal que:

nja = 0(modp) = pln;a

Com mdc(p,a) =1 = p|n; = p < n;, um absurdo. Entao, r; # 0, para todo ¢
e assim, r1,ro,...,7p—1 € {1,2,3,...,p — 1}, sendo todos distintos. Portanto,
rrars..mp—1 = 1.2.3...(p — 1) = (p — 1)! e a identidade (10.2) fica:

(p—Dla?! = (p— 1) (modp).

Como p é primo, mdc((p — 1)!,p) = 1 (questao 15 do Capitulo 6). Logo, pela
propriedade C6:
a’~' = 1(modp).

Com isso demonstramos o seguinte teorema:

Teorema 11. (Pequeno Teorema de Fermat) Sejam a e p inteiros, com p > 1
primo. Se p{a, entao
a’~' = 1(modp).

Exemplos:
(01) Como 13 é primo e 13 1 8, pelo Teorema de Fermat:

82 = 1(modl13).
Pela propriedade C8, para todo inteiro ¢ > 0:
(8'2)7 = 19 = 87 = 1(mod13).
Assim, 8840, 8636 86000 t5dos deixam resto 1 na divisao por 13.

(02) Como 23 é primo e 23 t 2, 222 = 1(mod23) = 2% = 1(mod23), para
todo inteiro ¢ > 0.

Tomando a congruéncia do Teorema de Fermat e multiplicando ambos os
lados por a (propriedade C4), obtemos:

a? = a(modp).

Essa congruéncia é também vélida, mesmo que nao tenhamos a condigao p 1 a,
exigida no teorema, pois, se pla, como p > 1, segue que (a’~' — 1) € Z, assim
pla(aP~! — 1), e portanto,

a? = a(modp).

Asim, se pla ou se p { a, sempre teremos a congruencia a? = a(modp), desde
que p seja primo. Enunciamos esse fato no corolario a seguir.
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Corolario 6. Sejam a e p inteiros, com p > 1 primo. Entdo
a? = a(modp).

Exemplos:

(01) Como 7 ¢ primo, pelo coroldrio acima, 7|(23" — 23);

(02) Pelo Corolério 6, podemos afirmar que 43! deixa resto 10 na divisao por
11. De fato, como 11 é primo, entao 11|(43" —43) = Jq € Z; 43" —43 = 11q
= 43" =11¢ +43 = 11(q + 3) + 10. Logo, 10 é o resto da divisao de 43! por
11;

(03) 347 deixa resto 0 na divisao por 17, pois 17](34'7 — 34) = Jq € Z;
34T =17¢ + 34 =17(q + 2) + 0.

v' Exercicios 24.

(01) Determinar o resto da divisao de 2°° por 7.

Solugao:

Como 7 ¢é primo e 712, segue do teorema de Fermat, que 2° = 1(modT7)

= (29)% = 18(mod7) = 2*® = 1(mod7) = 2°° = 22(mod7) = 2°° = 4(mod7).
E como 4 € {0,1,2,...,6}, ele é o resto procurado. O

(02) Calcular o resto da divisao de 82 por 19.
Solucao:
Como 19 é primo e 19 ¢ 8, pelo teorema de Fermat:

8'® = 1(modl19) = (8'%)° = 1°(mod7) = 8%.8? = 8% = 7(mod19).

Logo, 7 é o resto procurado. O

(03) Calcular o resto da divisdo de 3'% por 1033.
Solugao:
Como 1033 ¢ primo (verifique) e nao divide 3, pelo teorema de Fermat:

312 = 1(mod1033) = 3'%%%¢ = 1(mod1033),Vq € Z,.

Vejamos agora como relacionar o expoente 1034? dado na questdo, com o
expoente 1032 da congruéncia acima:

1034 = 2(mod1032) = 1034% = 2%(mod1032) = 1034* = 1032¢+4, com ¢ € Z.

Usando propriedades de poténcias, temos a igualdade:
310342 — 31032¢+4 _ 310329 34
Como
3* = 81(mod1033)

Entao,
310847 _ 31032 34 — 1 81 = 81(mod1033)

Portanto, o resto é 81. 0
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(04) Calcular o resto da divisdo de 4%*° por 59.
Solucgao:
59 ¢é primo e nao divide 4, logo, pelo teorema de Fermat:

4°% = 1(mod59) = 4°% = 1(mod59),Vq € Z,..

Dividindo a base do expoente dado na questao pelo expoente acima temos:
61 = 3(mod58) = 61° = 3° = 11(mod58) = 61° = 58¢ + 11, ¢ € Z.
Usando as propriedades de poténcias e a congruéncia 4! = 53(mod59), temos:
401 — 4580 411 = 1 53 = 53(mod159).

Portanto, o resto é 53. O]

2 Teorema de Euler

Na demonstracao do Teorema de Fermat, mostramos essencialmente, que se
m > 1 e a sao inteiros relativamente primos, entao temos a congruéncia:

(m —1).a™ ! = (m — 1)!.(modm).

Se m é primo, segue que mdc((m — 1)!,m) = 1, o que nos permite cancelar
o fator comum e obter a congruéncia ™' = 1(modm). Porém, se m é
composto, entdao mdc((m — 1)!,;m) # 1. Nesse caso, para a aplicacdo da
propriedade C6, precisamos eliminar do conjunto M (a, m) os multiplos na para
os quais mdc(n,m) # 1. Assim, dado um inteiro m > 1, vamos considerar o
conjunto:

Apn={neZ|1<n<m e mde{n,m} =1}

Suponhamos A,, com t elementos, digamos A,, = {ny,ns,...,n;}. No lugar de
M (a,m), consideraremos agora o conjunto:

{na|n € A,} = {nia,nsaq,...,ma}.
Denotando por r; o resto da divisao de n;a por m, temos as t congruéncias:
nia = ri(modm)
nsa = ro(modm)
nza = r3(modm)
nya = ri(modm)

E pela propriedade CT7:

ning...ng.a’ = rire..ri(modm). (10.3)
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Como ja mostrado anteriormente, se mdc(a, m) = 1, entdo os restos r; sao
todos distintos e nenhum deles é nulo. Assim, para todo 1,

ri €{1,2,...m—1} D {ny,ng,....ms }.

Para cada i = 1,2,...,t, seja d; = mde(r;,m). Entao d;|r; e d;jm =
d;|(mk + r;), qualquer que seja k € Z. Em particular, se n;a = mg; + 4,
entao d;|n;a. Assim, d; é também um divisor comum de m e n;a, consequente-
mente, d;|mdc(n;a,m). Agora, pela defini¢ao de A,, e a hipdtese, temos que:

mdc(n;,m) = 1 = mdc(a, m) = mde(na, m) = 1.

Assim, d;|1 = d; =1 = r; € A, para todo i. Portanto, ri7y...7y = nyng...ny €
assim, (12.2) fica:
niny...ng.a" = ning...ny(modn)

Como mdec(n;, m) = 1, paratodoi = 1,2, ..., t, segue que mde(ninsy...ng,, m) = 1
e pela propriedade C6, obtemos a congruéncia:

a' = 1(modm),

onde t é numero de elementos do conjunto A,,.

A funcao ¢ dada por:
¢ L — 1
m — ¢(m) = #An.
onde #A,, indica o nimero de elementos do conjunto A,,, é chamada Fun¢ao
¢ de Euler.

Exemplos:

(01) Como Ag = {ne€Z|1<n<6 emde{n,6} =1} = {1,5}, entao
¢(6) = #A4s = 2;

(02) ¢(9) = 6, neste caso, Ag ={1,2,4,5,7,8} e # A9 = 6;

(03) Se p é primo, entao todo inteiro positivo menor que p é relativo com p,
logo

A,=1{1,2,3,...p— 1} e portanto ¢(p) =p — 1.

Usando a funcao ¢ de Euler, vamos enunciar o que foi mostrado acima:

Teorema 12. (Teorema de Euler) Sejam m > 1 e a inteiros. Se mdc(a,m) =
1, entao
a®™ = 1(modm).

Exemplos:
(01) Como mdc(25,6) = 1, entdao 25%6) = 1(mod6), ou seja, 252 = 1(mod6);
(02) Sendo mdc(13,9) = 1, segue que, 13°(®) = 1(mod9) = 13° = 1(mod9).
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Se m = p é primo e p { a, entdo mdc(a,p) = 1, e pelo teorema de Euler,
a®®) = 1(modp) = a”~' = 1(modp).

Assim, o teorema de Fermat é um caso particular do teorema de Euler. O

v' Exercicios 25.

(01) Determine o resto da divisao de 4°° por 9.

Solucao:

Aqui nao podemos aplicar o Teorema de Fermat, pois 9 nao é primo. Porém,
como mdc(4,9) = 1, pelo Teorema de Euler,

420 = 1(mod9)

¢
45 = 1(mod9) = 4 = 18(mod9) = 4°° = 16 = 7(mod9).

Portanto, o resto é 7. 0

(02) Determine o resto da diviséao de 5%°" por 9.
Solucao:
Como mde(5,9) = 1, pelo Teorema de Euler:

5% = 1(mod9) = 5° = 1(mod9).
Relacionando 6 com o expoente 30153, temos:

3015 = 3(mod6) = 3015° = 3° = 3(mod6) = 3015°> = 6¢ +3,¢ € Z

Entéo, 30153 6g+3 6q =3
5 = 52T =575

Como 5° = 1(mod9) = 5% = 1(mod9) e 5% = 8(mod9), segue que:
515" = 5% 53 = 1.8 = 8(mod9).

Portanto, o resto é 8. 0J

O Teorema de Euler mostra que vale a reciproca da Proposicao 12. Jun-
tando esses dois resultados temos:

Sejam m > 1 e a sao inteiros arbitrarios. Existe um inteiro k£ > 1, tal que:

a* = 1(modm) & mde(a,m) = 1.

Com o Teorema de Fermat, podemos melhorar o resultado dado em (10.1):
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Se

mde(a,m) =1

entao para todo inteiro n > 1, tem-se:
a" = a"(modm),

onde r é o resto da divisdo de n por ¢(m).

Exemplos:
(01) Como mdc(9,8) = 1, entao

810° = 8% = 8(mod9),
ja que 465 = ¢(9).77 + 3.

(02) 14'9% deixa resto 4 na divisdo por 5, uma vez que mdc(14,5) = 1 e
1045 = ¢(5).261 + 1, segue que 149 = 14! = 4(mod5).

3 Teorema de Wilson

J& vimos que se p > 1 é um nimero primo, entao p { (p — 1)!. Logo, existem
unicos inteiros ¢ e r, tais que:

(p—1)!'=pg+r

com 1 <r < p—1. Vamos mostrar que nesse caso, qualquer que seja o primo
p, 0 resto r é sempre o maior possivel, isto é r = (p — 1).

Lema 3. Seja p > 1 um ndmero primo. Para todoa € A ={1,2,3,....p— 1},
existe r € A, tal que:
ar = 1(modp).

Demonstracao:
Como p é primo e p { a, pois a < p, segue que mdc(a,p) =1 = Jx,y € Z, tais
que

ar +py = 1.

Sejam ¢ e r, respectivamente, o quociente e o resto da divisao de x por p.
Entao,
r=pg+r, com 0<r<p-—1.

Portanto,
ar—1 = a(x—pq)—1 = (ax—1)—paq = p(—y—aq) = p|(ar—1) = ar = 1(modp).

Resta mostrar que r € A. Como azx + py = 1 = mdc(p,z) =1 = pt x, logo
1<r<p—-1=reA O
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Exemplos:
(01) Pelo lema acima, para todo a € A ={1,2,3,4,5,6} existe r € A, tal que
ar = 1(modT). De fato, temos as 4 congruéncias:

1.1 = 1(mod7), 2.4 =1(mod7), 3.5=1(mod7) e 6.6 = 1(mod7);

(02) Para todo a € A ={1,2,3,4,5,6,7,8,9,10} existe r € A, tal que
ar = 1(modl1). Para encontrar r € A, tal que ar = 1(modll), podemos
proceder como na demonstragao do lema. Vejamos como exemplo, tomando
a="T.

Como mde(7,11) = 1, usando o algoritmo de Euclides, encontramos inteiros
x ey, tais que 7Tx + 11y = 1. Posteriormente divimos x por 11, sendo r o resto
dessa divisao. Nesses caso, 7.(—=3) +11.2 =1 e como —3 = 11.(—1) + 8, segue
que r = 8. Portanto, 7.8 = 1(mod11). Procedendo dessa forma, encontramos

as 6 congruéncias:
1 = 1(modl1

2.6 = 1(modll
3.4 = 1(mod

—_
—_
~— ~— ~— ~— ~—

(

(

5.9 = 1(modll

7.8 = 1(modll
1

10.10 = 1(mod11).

Nos dois exemplos acima, para p = 7 e p = 11, encontramos r = a, ou
seja, ocorre a congruéncia a® = 1(modp), somente paraa =1 oua=p—1. O
préximo lema afirma que esse é o caso geral.

Lema 4. Sejam p > 1 um nidmero primo. Sea € A ={1,2,3,....p— 1} € tal
que:
a® = 1(modm),

enttoa=1oua=p—1.

Demonstracao:

Suponha 1 < a < p— 1, tal que a®> = 1(modp) = p|(a® — 1) e como p é primo,
segue que p|(a—1) ou p|(a+1). Agora, sep|(a—1)ea# 1,entaop <a—1<

p — 2, um absurdo. Assim, nesse caso, a = 1. E se, p|(a+ 1), entdo p < a+ 1.
Por outro lado, como 1 <a<p—-1=a+1<p=p=a+l=a=p—1 0

No geral, para um primo p > 2, temos as %(p — 3) congruéncias
ar = 1(modp)

coma,r € A'={2,3,...,p—2}ea#r.
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Teorema 13. (Teorema de Wilson) Se p > 1 € um nidmero primo, entao
p divide (p — 1)1 4+ 1.

Demonstracao:
O resultado é obviamente verdadeiro para p = 2. Supondo p > 3, entao pelos
Lemas 3 e 4, para cada a; € A" = {2,3,...,p — 2}, existe r; € A’, com r; # a;,
tal a;r; = 1(modp). Assim, temos as ;(p — 3) congruéncias:

a;ry = 1(mop)

asry = 1(mop)

a1(p-3)T1(p—3) = L(mop).

Multiplicando essas congruéncias obtemos:
2.34...(p — 2) = 1(modp).
Por outro lado, também temos a congruéncia elementar:
(p — 1) = (=1)(modp).
Multiplicando essas duas ultimas congruencia, obtem-se:
2.34...(p—2)(p—1) = (=1)(modp) = (p—1)! = —1(modp) = p| ((p — 1)! +1).
O

Corolario 7. Se p > 1 € um nimero primo, entdo (p—1)! deiza resto (p—1)
na divisao por p.

Demonstracao:
Pelo Teorema de Wilson, p|((p — 1)! + 1) = Jq € Z, tal que:

(p—D+1=phk=@p-1)=pk—14+@p-p) =pk-1)+(p—1).

Assim,

(p—D!=pg+r,
ondeq=k—1€Zer=p—1€{0,1,2,...,p—1}. Da unicidade do quociente
e resto, segue que r = (p — 1) é o resto da divisdo de (p — 1)! por p. O

Exemplo:

(01) Como 7 é primo, pelo Teorema de Wilson, sabemos que 7|(6! + 1);

(02) Como (11! + 1) = 39916801 = 3326400 x 12 + 1 = 12 { (11! + 1), logo
podemos usar o teorema anterior, para afirmar que 12 nao é um nimero primo;
(03) Pelo Corolério 7, podemos afirmar que 12! deixa resto 12 na divisao por
13;

(04) Como 29 é primo, entao 28! deixa resto 28 na divisdo por 29.



110 Teoria dos Numeros

Lista de Exercicios 10.

(01) Aplique o Teorema de Fermat para os pares de inteiros a e p abaixo:
(a) a=20,p=T;
(b) a =8, p=11,
(¢) a =16, p =47.

(03) Determine o resto da divisao de 5 por 11.
(04) Determine o resto da divisao de 13'! por 11.
(05) (ENADE-2008) Determine o resto da divisao de 2333 por 23.

8300

(06) Determine o resto da divisao de por 9.

(07) Determine o resto da divisao de 71%°

por 12.

(08) Determine o resto da divisao de 143 por 15.

(09) Determine o resto da divisio de 5% por 7.

(10) Determine o resto da divisao de 8% por 9.

(11) Determine o resto da divisao de 82°° por 15.

(12) Determine o resto da divisio de 92" por 25.

(13) Determine o resto da divisao de (17 + 27 + 3" + ... + 307) por 7.
(14) Determine o resto da divisao de (1° + 25 + 35 + ... + 30°) por 7.
(15) Determine o resto da divisao de (1'* + 2 + 31 + .+ 50!!) por 11.
(16) Determine o resto da divisao de (10 4 219 + 310+ ..+ 50') por 11.
(17) Determine o resto da divisao de (2222555 + 55552%22) por 7.

(18) Determine o algarismo das unidades do nimero 955"

(19) Mostre que se p > 1 ¢ primo, entdo (p — 1)! = (p — 1)(modp).

(20) Mostre que se p > 3 é um nimero primo, entao p|((p —2)! —1).
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Respostas da Lista de Exercicios 10
(01.a) 20° = 1(mod7)  (01.b) 8% = 1(modl11) (01.c) 16%° = 1(mod4T7).
02.2) ¢(12) =4 (02.b) ¢(15) =8  (02.c) ¢(p") =p"~'(p — 1).
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Capitulo 11

O Anel Z,,

1 Inteiros Mddulo m

Lembremos que dado um inteiro m > 1, definimos em Z a seguinte relagao:
a = b(modm) < m | (a — b),

a qual é chamada Relagao de Congruéncia Mdédulo m. Essa relacao,
conforme visto, tem as seguinte propriedades , para quaisquer a, b, ¢ € Z:
(1) Reflexiva:

a = a(modm);

(17) Simétrica:
Se a = b(modm), entao b = a(modm);
(7i) Transitiva:
Se a = b(modm) e b = c¢(modm), entdo a = c(modm).

Por possuir essas trés propriedades, diz-se que a relacao de congruéncia
modulo m é uma relacao de equivaléncia no conjunto Z.

2 Classes de Congruéncia

Para cada a € Z, o conjuntos dos inteiros congruentes a a médulo m, é chamado
a classe de equivaléncia de a pela relacao de congruéncia médulo m
e denotado por @. Assim, por definicao,

a:={beZ|b=a(modm)}.
Observe que:
b €a=b=a(modm)= m| (b—a) = b—a =mk,= b= mk+a, com k € Z.

112
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Reciprocamente, se existe k € Z, tal que:

b=mk+a=m]|(b—a)=b=a(modm) = b € a.

Desta forma, podemos descrever precisamente os elementos da classe a:

a={mk+alkez}

Cada elemento do conjunto @ é dito um representante da classe a.

Exemplos:

(01) Na relagao de congruéncia médulo 3, as classes 0, 1 e —5 sdo:
0={3k+0|keZ}=1{.,-6,-3,0,36,..}, que é o conjunto dos inteiros
que deixam resto 0 na divisiao por 3. Os numeros -6, 0, 21 sao alguns repre-
sentantes da classe 0;

1={3k+1|keZ}=1{.,-5-2,1,4,7,..}, que é o conjunto dos inteiros
que deixam resto 1 na divisao por 3. Os inteiros -11, 1, 22, 253, elementos
desse conjunto, sao alguns representantes dessa classe;
—5={3k+(-5)|keZ}={3(k—2)+1|keZ}={3k +1|k €Z}, que
também ¢é o conjunto dos inteiros que deixam resto 1 na divisao por 3, logo
—5 =1, em médulo 3.

(02) Na relagao = (mod5), as classes 0, 1 e —5 sdo:
0={pk+0|keZ}=1{.-10,-5,0,510,..}, o qual é o conjunto dos
inteiros que deixam resto 0 na divisiao por 5;

1={k+1|keZ} ={.,-9-4,1,6,11,...} é o conjunto inteiros que
deixam resto 1 na divisao por 5;

—5={bk+(-5) |keZ}={5(k-1)| ke Z}=1{bk,+0 |k €Z} =0.
Portanto, —5 = 0, em médulo 5.

3 Propriedades das Classes de Equivaléncia

Os exemplos acima, mostram que inteiros distintos podem produzir a mesma
classe de equivaléncia. A proxima proposicao dé a condicao para que ocorra a
igualdade das classes.

Proposicao 13. Seja m > 1 um inteiro. Para quaisquer inteiros a e b tem-se:

@ =b < a=b(modm).

Demonstracao:

(=)@ =>b= a=b(modm) :

Da reflexividade da relagao de congruéncia e da hipdtese, segue que:

a = a(modm) = a € @ = b. Da definicdo de b, segue que a = b(modm).
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(<) a = b(modm) = @ = b.

Seja x € @ = = = a(modm). Como por hipdtese a = b(modm), usando a
transitividade da relacdo, segue que x = b(modm) = x € b = @ C b.

De modo, analogo, mostra-se que b C @. Portanto, temos a igualdade @ = b. [J

Exemplos:

(01) Como 843 = 10(mod7), segue que 843 = 10, em médulo 7;

(02) Como 912 = 282 = 147 = 3 = (—6)(mod9), temos, em mdédulo 9, a igual-
dade das classes 912 = 282 = 147 = 3 = —6. Observe que os representantes
de todas essas classses deixam o mesmo resto na divisao por 9, uma vez que
estao relacionados pela relacao de congruéncia médulo 9;

(03) Na divisao por 2, s6 temos dois restos possiveis, entao para todo a € Z,
temos que a = 0(mod2) = @ = 0 ou a = 1(mod2) = @ = 1. Assim, em médulo
2, 56 temos duas classes distintas, 0 e 1.

Para as classes dadas no exemplos acima, nao encontramos nenhum inteiro
que pertenca simultaneamente a mais de uma classe. Vejamos se esse é o caso
geral.

Dadas @ e b, classes distintas em médulo m, suponha existir z € Z que
pertenca simultaneamente a @ e b. Se ¥ € aNb, entdo ¥ € @ = x = a(modm)
e pela Proposicio 13, T = a@. Analogamente, se © € b = T = b e portanto,
@ = b, contrariando a suposicdo das classes serem distintas. Assim, uma
consequencia da proposicao anterior é que classes distintas, nao tem elementos
comuns. Temos assim, o seguinte corolério:

Corolario 8. Sejam m > 1 um inteiro. Em mddulo m, para quaisquer a,b € Z,
tem-se que:

S]]
RN
SH
4
Q|
D
SN
I
=

Exemplos:

(01) Como 14 # 3(mod7), segue que, em moédulo 7, 14 # 3. Entao, pelo
corolario acima, essas duas classes sao disjuntas, isto é, 14N 3 = 0;

(02) Em médulo 5, 22 e 16 sdo classes distintas, uma vez que 22 # 16(mod5).
Assim, pelo Corolario 8, 22N 16 = (). De fato, se € 22, entao z deixa resto
2 na divisao por 5; se € 16, = deixa resto 1 na divisao por 5. Da unidade do
resto, segue que nao existe v € 22 N 16.

4 Conjunto das Classes Residuais
Dado um inteiro m > 1, denota-se por Z,, o conjunto das classes de equivaléncia
modulo m, isto é,

Ly ={a|a€l}.

O conjunto Z,, é chamado conjunto das Classes Residuais Mdédulo m.
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Por definicao,

L ={....,—3,-2,-1,0,1,2,..m—Lm,m+1,..}

Mas, ja vimos que inteiros distintos podem produzir a mesma classe, desde que
estejam relacionados. Portanto, nem todos os elementos do conjunto acima sao

distintos. A questao é: - Quantas sao as classes de equivaléncias distintas em
Loy

A resposta segue dos resultados abaixo, vistos Capitulo 9, sobre o conjunto
R={0,1,...m—1}:

(1) Todo inteiro é congruente a unico elemento de R, no caso, o seu resto
na divisao m, Assim, para todo a € Z, existe r € R, tal que a = r(modm)
=a=7= Zn C{0,1,...m—1};

(i7) Quaisquer dois elementos distintos de R sao incongruentes mdédulo m.
Entao, pela Proposicao 13, as classes do conjunto {0, 1,2,...,m — 1} sdo todas
distintas, ou seja, esse conjunto tem exatamente m elementos distintos.

Com esses dois resultados podemos descrever exatamente o conjunto Z,,,
conforme proposicao abaixo.

Proposicao 14. Para cada inteiro m > 1,
m=10,1,..m — 1},
o qual tem exatamente m elementos distintos.

Demonstracao:
Por definicao,

m={alacZ}y=1{.,-3,-2,-1,0,1,...m— L, m,m+1,..}

J& mostramos que Z,, C {0,1,...,m — 1}. A outra inclusao é imediata. Assim,
temos a igualdade:
m=10,1,..m —1},

e conforme item (7i) acima, Z,, tem exatamente m elementos distintos. 0J

Exemplos:

(01) Z> = {0,T};

(02) Zy = {0,1,2,3);

(03) Zus = {0,1,2, ..., 10, 1T}

Resumindo, dado m > 1, toda classe residual médulo m é um subconjunto
nao vazio de Z e para cada a € 7Z, existe um unico inteiro r, com 0 < r < m—1,
tal que a € 7. Dizemos assim, que Z,, é uma particao de Z, ou seja,

Z=0UlU..U(m—1)

sendo essa uniao disjunta, isto é, para quaisquer 0 < r; #r; <m, 7, N7; = 0.
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v' Exercicios 26.

(01) Determine Zg e descreva a classe 3.
Solugao:
Pela Proposicao 14,

sendo 3 ={6k+3|keZ}=1{.,-15-9,-3,3,9,15,...}. O
(02) Determine Z;; e descreva as classes 3 e 7.

(03) Encontre o tnico representante r da classe 36 € Zg, com 0 < r < 8.
Solucao:
Dividindo 36 por 9 obtemos 36 = 4.9 + 0 = 4/(36 — 0) = 36 = 0(mod9) =

36 = 0. Assim, » = 0 ¢ o representante da classe 36 no intervalo pedido. [

(04) Encontre o tnico representante r da classe —316 € Z;3, com 0 < r < 12.
Solucao:

Dividindo -316 por 13 obtemos —316 = —25.13 + 9 = 13|(—316 — 9)

= —316 = 9(mod13) = —316 = 9. Assim, r = 9 é o representante da classe
—316 no intervalo pedido. O

(05) Encontre o representante r da classe 29 € Zjo, com 0 < r < 9.

(06) Encontre o representante r da classe —414 € Zyg, com 0 < r < 15.

(07) Generalizando, dado a € Z arbitrario, descreva um procedimento para
encontrar o unico representante r de a € Z,,, com 0 <r < m — 1.

Solugao:

Dividindo a por m, encontramos q e r, tais que a = mqg+r,com 0 <r < m—1.
Dai, m|(a — r) = a = r(modm) = @ = F. Portanto, o representante no inter-
valo pedido, é exatamente o resto da divisao euclidiana de a por m. O

5 Operacoes em Z,,

Definiremos agora uma adicao e uma multiplicacdo em Z,,, dando assim,
ao conjunto das classes residuais uma estrutura de anel, com propriedades
analogas as do anel Z

Dadas @,b € Z,, definimos:

(I) Adigao:

f
+
<
I
IS
+
S8

(IT) Multiplicagao:

Sl
(ol
I

=



Teoria dos Numeros 117

v' Exercicios 27.

(01) Usando as definigdes acima, efetue as operagoes no conjunto indicado:
Em Zr = {0,1, ..., 6}:

(a) 2+ 3;

Solugao:

Pela definigao, 2 +3 =2+ 3 = 5. 0
(b) 2.3;

Solucao:

33—2.3—6

(c)3+5

(02) Em Zy, = {0,1,....,11}:

(a) 2 + 3;

Solugao:

24+3=2+3=5. O
(b) 2.3;

Solucao:

2.3=23=6. O
(c) 3+5;

Solugao:

3+5=3+5=38;

(d) 3.5;
Solucgao:

5=15=3. 0J

5:
) 17+ 18;
)

[S—
>—t|

(03) Descreva o procedimento usado para efetuarmos a soma @+0b e o produto
a.bem Z,,.

Para efetuarmos a soma de duas classes residuais, tomamos um represen-
tante de cada uma das parcelas (que sd@o numeros inteiros), somamos em 7Z
esses representantes e entao determinamos a classe residual do inteiro resul-
tante. Procedimento analégo ocorre com a multiplicagao. Cabe aqui uma
pergunta: - Como essas operacgoes sao feitas usando representantes das classes,
o resultado serd o mesmo quaisquer que sejam os representantes escolhidos
para as classes? Por exemplo, em Zj, 5 =17 ¢ 6 = 18. Daif, 546 = 17 4 187
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A préxima proposi¢ao mostra que as operagoes acima estao bem definidas,
isto ¢, independem do representante escolhido para a classe.

Proposicao 15. Sejam @7, by, @z, bs € Z,,. Se

(1_1:(1_2 e blzbg,

Demonstragao:
Como a; = a3 e by = by, pela Proposicao 13,

a; = az(modm) e by = by(modm).
Usando a propriedade C7 de congruéncias e a Proposicao 13, temos:

(Z) a1+bl Ea2+b2(m0dm) :>CL1+b1 :a2+bl:>a_1ib_1=a_2+ge
(’Ll) al.bl = aQ.bQ(modm) = a1.61 = ag.bg = a_1b1 = a_gbg O

Exemplos: Abaixo, as tabuas da adigao e multiplicacao de Zg:

+(0(1]2]3]4]5 (01123 4]5
0]0[1|2/3|4]5 0[{0[0][0[0|0]0O
1[1]2[3[4|5]0 110(/1[2[3[4]5
2 12(3[4(5|0](1 210(2(4(0[2]4
3 |13[4[5[(0|1]2 310/3[0(3[0]3
4 [4]5]0(1|2]3 410420 [4]2
515/0/1/2|3]4 510(5[4[3]2]1

6 Propriedades das Operacoes em 7Z,,

A adicao e a multiplicacao definidas em Z,, tem as seguintes propriedades
(compare com as propriedades das operagoes em Z, vistas no Capitulo 1):

Propriedades da Adicao

(A1) Associatividade:
para quaisquer a, b, ¢ € Z,,, tem-se:

@+b)+c=a+ (b+2).

Demonstragao:
Sejam a, b, ¢ € Z,,. Entao
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(@+b)+¢ =a+b+¢ - definicio da soma em Z,,
- defini¢ao da soma em Z,,;
=a+ (b+c¢) - pela associatividade da soma em Z;
- definicado da soma em Z,,;
b+¢) - definicio da soma em Z,,.

|
o
_|_
=
_l_
o

[
e 2l
+ o+
_
_|_
o

Portanto, (@ +b) +¢=a+ (b+¢). O

(A2) Comutatividade

para quaisquer @, b € Z,,.

(A3) Existéncia do elemento neutro:
A classe 0 é o elemento neutro da adicao, isto é, para todo @ € Z,,, tem-se:

a+0=a.

(A4) Existéncia do oposto:
Para todo @ € Z,, existe b € Z,,, tal que:

a+b=0.

O elemento b é chamado o oposto (ou inverso aditivo) de @ e serd denotado
por —a.

Propriedades da Multiplicacao:

(M1) Associatividade:

para quaisquer @, b, ¢ € Z,,;

(M2) Comutatividade: -
A multiplicacdo é comutativa, isto é, para quaisquer a, b € Z,, tem-se:

a.b = b.a.

(M2) Existéncia do elemento unidade:
A classe 1 é o elemento neutro da multiplicacao, - chamado elemento unidade
- isto é, para todo @ € Z,,:

al=a.

Além disso, vale a propriedade distributiva que relaciona as duas operagoes.
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(D1) Distributividade da multiplicacao em relacao a adigao:

a.(b+7¢) =a.b+ac,

para quaisquer @,b e ¢ € Z,,.

Por possuir essas oito propriedades dizemos que (Z,,,+,.) é um anel co-
mutativo com elemento unidade.

v' Exercicios 28.

(01) Faca a demonstragao de todas as propriedades acima.

(02) Determine o oposto de 3 em Zs;

Solucao:

Como 3+2 =5 =0, entdao —3 = 2. O

(03) Determine o oposto de 3 em Zsg.
Solucao:

Como3+5=8=0= —-3=5. O

(04) Determine um representate r do oposto de 16 € Zyg, com 0 < r < 9.
Solugao:

Como 16 + —16 = 0 = —(16) = (—16), ou seja, —16 é um representante
da classe oposta. Para encontrar um representante desta classe no inter-
valo pedido, basta dividir -16 por 10 e tomar o resto como representante:

—16 =10.(-2) +4 = —(16) = (—16) = 4. O

(05) Dado @ € Z,,, descreva um procedimento para encontrar o represen-
tante r classe oposta —a, com 0 <r < m — 1.

Solucgao:

Como @ + (—a) = a — a = 0, entdo dada @ € Z,,, —a é sempre um represen-
tante da classe oposta —a. Para encontrar um representante r desta classe, com
0 <r <m—1, procedemos como descrito no exercicio anterior, dividindo —a
por m e tomando a classe determinadada pelo resto. Por exemplo, claramente
temos que —20 é um representante da classe —20 € Zg. Para encontrar um re-
spresentante desta classe no intervalo pedido, dividindos -20 por 8 e tomamos
oresto: —20 = —3.844 = —20 = —20 = 4 e de fato, 20+4 = 24 = 0, em Zg.[J

(06) Resolva em Zs as equagoes:

(a) 2+ = 3.4;

Solugao:

24+2=34=24+2=12=2=3+2+2)=3+2=2=0. O
(b) 2.x =3 + 4.

Solucao:

20 =3+4=202=2=320=32=6r=6=1=a0=1. O
(07) Resolva em Z; as equagoes:

(a) 2+ =3.4;

(b) 2.2 =3 + 4.
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7 Elementos Inversiveis em 7,

Defini¢ao 8. Um elemento a € Z,, diz-se inversivel (para a multiplicagdo) se
existe b € L, tal que @.b = 1.

O elemento b, citado na definicio acima, é chamado o inverso (multiplica-
tivo) de @ e denotado por (@)~

Exemplos:

(01) 3 é inversivel em Zjs tendo como inverso 2, pois 3.2 = 1;
(02) 3 é inversivel em Zg, pois 3.3 = 1;

(03) 4 ndo é inversivel em Zg, pois 4.b # 1, qualquer que seja b € Zg.

A préxima proposicao identifica os elementos nao nulos que sao inversiveis
em Z,y,.

Proposigao 16. Um elemento 0 # a € Z,, € inversivel se, e somente se,
mdc(a, m) = 1.

Demonstracao:

(=) mdc(a,m) =1 = @ é inversivel:

mdc(a, m) = 1 = existem inteiros 7 e s, tais que:
ar+ms=1=ar+tms=1=ar+ms=1=ar+0s5=1=
= 7 é o inverso de @, o qual é portanto inversivel.

@I
5
I

=

(<) @ ¢é inversivel = mdc(a, m) = 1:

@ é inversivel = existe b € Z,, tal que:

a.b=1= ab=1= ab= 1(modm) = m | (ab— 1) = existe k € Z, tal que
ab—1=mk = ab+m(—k) =1= mdc(a,m) = 1. O

Se p é um primo positivo, para todo 0 < a < p, tem-se que mdc(a, p), entao
temos o corolario abaixo.

Corolario 9. Seja p um nimero primo positivo. Entao todos os elementos
nao nulos de Z, sdao inversiveis.

Exemplos:

(01) Em Zg = {0,1,...,7}, a classe 5 é inversivel, pois mdc(5,8) = 1. Para
encontrar o inverso de 5, determinamos inteiros r e s, tais que 5r + 8s = 1,
sendo entdo (5)7! = 7. Como

5(-3)+82=1=5(-3)+82=1=5(-3)=1 ecomo (—3) =5,

, em Zg o elemento 4 nao é inversivel, ou seja, nao

(02) Como mdc(4,8) = 2
e 4.b =1, como vocé pode verificar.

existe b € Zs, tal qu
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v' Exercicios 29.

(01) Determine o inverso de cada uma das classses abaixo, caso exista. Nao
existindo, justifique:

(a) B € Zyy;
Solucao:

Como mdc(5, 14)
=53=14.(-1) =
(b) 6 € Z4;
Solugao:

Como mdc(6,14) = 2, 6 nao é inversivel. O
(c) 8 € Zya;

(d) 8 € Zy;

(e) g S Zl7.

1, 5 é inversivel. Da identidade, 5.3 + 14.(=1) = 1
1=53=1. Assim, (5)"' =3. O

8 Divisores de Zero em Z,,

Definicao 9. Um elemento nao nulo a € Z,, diz-se um divisor nao nulo de
zero em Ly, se existe um b € Z,,, também nao nulo, tal que

a.b = 0.

Exemplos:

(01) 2 e 3 sdo divisores nao nulos de zero em Zg, pois ambos sao nao nulos e
23=06=0;

(02) 6 e 8 sao divisores nao nulos de zero em Zio, pois 6.8 = 48 = 0.

(03) 3 ndo é um divisor de zero em Zs, pois 3.b # 0, para qualquer 0 # b € Z,,.
(Verifique)

Vejamos como identificar se 0 # @ € Z,, é um divisor de zero.

Pela proposicao 16, se 0 # @ € Z,, nao é inversivel, mdc(a,m) = d > 1.
Como d|m e d|a, " e § sdo nimeros inteiro e 1 < % < m. Portanto, a classe

(%) € Zy, é nao nula e

a.(%) = m.(2) = 0.

Ul e

Logo, @ é um divisor de zero.

Exemplos:

(01) Como mdc(6,14) # 2, segue que 6 € Z14 nao é inversivel, logo serd um

divisor de zero, ou seja, existe 0 # b € Zy4, tal que 6.b = 0. Para encontrar

um respresentante para b, tomamos b = m = 7. Assim, 6.7 =42 = 0.

(02) Como mdc(12,18) = 6, entdao 12 € Z;g nao é inversivel, sendo portanto um
36=0

divisor de zero. De fato, tomando b = m = 3, temos que 12.3 = 36 =
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Por outro lado, suponha @ inversivel, entao existe (@)~ € Z,,, tal que
a.(a)”! = 1. Assim, se b € Z,, é tal que:

ab=0= (@) ‘(@)= (@) 0= (@ 'a)b=0=1b=0=b=0.

Portanto, a nao inversibilidade de @ ¢ uma condicao necessaria e suficiente
para que este seja um divisor de zero. Enunciamos esse resultado na proposicao
a seguir.

Proposicao 17. Seja 0 # a € Z,,. Entdo

a ¢ um divisor de zero << @ nao € inversivel.

Corolario 10. Z,, ¢ sem divisores nao nulos de zero se, e somente se, m €
um numero primo.

Demonstracao:

Se m é primo, pelo Corolério 9, todo 0 # @ € Z,, é inversivel e portanto nao
é divisor de zero. Se m é composto, entao existem inteiros 1 < r, s < m, tais
que r.s = m. Assim, 7 e 5 sdo nao nulos e 7.5 =m = 0. Logo T ( e também 3)
¢ um divisor nao nulo de zero. O

v' Exercicios 30.

(01) Determine todos os elementos inversiveis e todos os divisores nao nulos
de zero dos seguintes anéis:

(a) Zs;

Solucao:

@ € Zg 6 inversivel se, e s6 se, mdc(a,6) = 1. Assim sao inversiveis 1 e 5 e sdo
divisores nao nulos de zeros todas as demais classes nao nulas: 2,3 e 4. O
(b) Zy;

Solugao:

Inversiveis: {1,2,4,5,7,8} e os divisores nao nulos de zero sao {3,6}. O
() Zas;

(d) Zas;

(02) Dé exemplos, caso existam, de elementos ndo nulos @, b e ¢ € Zy, para
0s quais temos @.¢ = b.¢, porém @ # b.

Solucao: ~ ~
Tomando @ =7, b = 17 e ¢ = 6, temos que a.c = b.¢ = 2, embora 7 # 17, em
Zog. ]

(03) Dé exemplos, caso existam, de elementos ndo nulos @, b e ¢ € Zyg, para
0s quais temos @.¢ = b.¢, porém @ # b.

Solucao:

Suponha @, b,¢ € Zyg, para os quais temos a.¢ = b.¢ = (@ — b).¢ = 0. Como
todo elemento de Zyg é inversivel (Coroldrio 9), entdo ¢ ¢ inversivel, logo existe
(€)~' € Zyy, tal que €.(¢)~' = 1. Assim, (a—l_)) c@) =00 =a=0

Portanto, em Zig, tais elementos nao existem. [
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Lista de Exercicios 11.

(01) Determine as classes 0,1 e —5, em médulo m, para:

(a) m =4
(b) m = 6;
(¢) m = 10.
02) Responda e justifique:

3 = 77, em médulo 8?

23 = 77, em médulo 9?7

c) Para que valores de m > 1, temos —14 = —6, em médulo m?
) =

c) Para que valores de m > 1, temos 83 8, em modulo m?
(03) Determine Z,, e descreva as classes 0, 4 e 20 € Z,,, para:
(a) m = 87
(b) m = 10;

(¢c) m=13

o
IN

< m, sendo:

i1l
| o
&l o
o @
i1l
N
W N

o o o g ol 5
Il

NS

NN

o @

Il

— I

\-O_(\.

Il
=
@
3
Il
—_
Ne)

5) Efetue as operagoes abaixo:
a) Em Z;, 4+ 4 e 4.4;

) Em Zg, 5+ 8 e 5.8;

) Em Zlg, 7+§ (S 7@

(06) Construa as tabuas da adigdo e multiplicagdo para Z; e Zs.

(07) Determine um representate r do oposto de @ € Z,,, com 0 < r < m,
para a e m abaixo:

(b) a =12, m = 33;

(¢) a=—8,m=4;

(d) a =58 m=

(08) Resolva em Zg as equagoes:
(a) 2+ z = 4.5;

(b) 3.z =4+ —13

9
) =5+ 2.2 ="7-3;
) 2
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(10) Determine o inverso multiplicativo de cada uma das classes abaixo, caso
exista. Nao existindo, justifique:

(11) Em Zyg, determine:
(a) o menor representante positivo das classes 34 e —51
(b) Todos os divisores nao nulos de zero.

(12) Mostre que se @ € Z,, ¢ inversivel, entdo seu inverso ¢ tinico.

(13) Em Zg determine:

(a) o oposto de 4;

(b) o oposto de —13;

(c) o inverso multiplicativo de 13, caso exista;
(d) o inverso multiplicativo de 8, caso exista;
(e) um elemento ndo nulo b, tal que 14.b = 0.
(14) (ENADE-2008) Em Z,2, determine:

(a) todos divisores nao nulos de zero;

(b) todos os elementos inversiveis.

(15) Verifique se 3640 é inversivel em Zro97. Caso afirmativo, calcule seu in-
Verso.

(16) Determinar todos os divisores nao nulos de zero e os elementos inversiveis

de ZQG .

(17) Sejam @, b e © elementos de Z,, tals que a.c = b.e. Mostre que se
mdc(c,m) = 1, entdo a = b.

(18) Sejam p um primo positivo e @ um elemento de Z,. Mostre que a” = a.

(19) Seja p um numero primo positivo. Determine em Z, as solugoes da
equacao 2 = 1.

(20) Seja p > 5 um nimero primo. Resolver em Z, a equagio 27 = 4.
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Respostas da Lista de Exercicios 11

(01.a) 0= {4k + 0 |k € Z} = {..., 12,8, -4,0,4,8,12, ..};
T={4k+1|keZ}={.,~11,-7,-3,1,59,13,..};

5= {dk+(=5) | k€ Z} = {4k’ + 3 | K € Z} = {..,—9,—5,—1,3,7,11,..};
(01.b) 0= {6k +0| ke Z} ={...,—18,-12,—6,0,6,12,18, ...};
T={6k+1|keZ}={.,—17,—11,-51,7,13,..};

—5={6k+ (-5) |keZ}={6k +1|K €Z} =1,

0l.c) 0= {10k + 0 | k € Z} = {—30, 20, 10,0, 10,20, 30, ...};
T={10k+1|keZ}={-29,-19,-9,1,11,21,31,..};

Z5={10k+ (=5) | k€ Z} = {10k’ + 5 | k' € Z} = {—25,—15,-5,5,15,25,...};
(02.a) 81 (23 — 77) = 23 # 77(mod8) = 23 # 77 em mddulo 8.

(02.a) 9 | (23 — 77) = 23 = 77(mod9) = 23 = 77 em médulo 9.

(02.c) =14 = —6, em médulo m < —14 = (—6)(modm) < m|(—14 + 6) < m =2, 4 ou 8.
(

(

—~

02.d) 83 68, em moédulo m < 83 = 68(modm) < m|(83 — 68) < m = 3, 5 ou 15.

03.a) Zs = {0,1,2,...,7}, sendo

0= {8k+0 |k € Z} = {.., —16,—8,0,8,16,...}; T = {8k+4 | k € Z} = {..., =12, —4,4,12,20, ...}:
Como 20 = 4(mod8) = 20 =4

(03 b) ZlO = {6 T 5 9} sendo

0= {10k+0 |k € Z} = {..., —20,-10,0,10,20,...}; T = {10k+4 | k € Z} = {..., —16,—6,4,14,24,..};
Como 20 = 0(mod10) = % = 6;

(03.c) Z13 = {0,1,2,...,12}, sendo
0={13k+0 |k € Z} = {...,—26,-13,0,13,26,...}; 1 = {13k+4 | k € Z} = {..., —22,-9,4,17,30, ...};
Como 20 = 7(mod13) =20=7T={13k+7 | ke Z} ={...,—19,-6,7,20,33, ...}

(04.2) Como 33 =1224+9=1r=29;

04.b) 33 =23.1+ 10 = r = 10;

04.c) =22 =7.(—4) + 6 = r = 6;

04.d —22_15( )+8:»r_8;

. =2;

05.b) 5+8 = 1: 5.8 = 7

05.c)74+9=3;79=11

06) Tébuas de Z;
+[0[T]2[3[4]5][6 .01 [2[3[4[5]6
010|123 |4]|5|6 0j0j0]0|0O|0]0]O0
1 (11213415610 1101|1234 |5]|6
2 12|3(4]5|6|0]1 21012146 |1]3]|5
3 13|4(5]60]1]2 31013162512
4 141560123 410141151243
5 |5]|6]0]|12]3)|4 5101865131632
6 |6|0[1]2|3[4]|5 610624321

(07.a) —(5) = 8;

(07.b) —(T2) = 2T;

(07.c) —(=8) =8;

(07.d) —=(58) = —(2) = 5;

(08.a) x = 2; (8b)z=3

(09.a) x = 5; (09.b) z=T7

(102) (1)~ =3

(10.b) (7)1 =3;

(10.¢) (T2)~! = T3;

(10.d) como mdc(12,26) = 2, 12 nao ¢ inversivel em médulo 26

(11.a)34d=14e =51 =9

(11.b) divisores nao nulos de zero: {2,4,5,6,8,10,12,14,15, 16, 18}.
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13.a) —(4) = 14;

13.b) —13 =5;

13.c) (13)~t =T;

13.d) como mdc(8,18) = 2, 8 nao ¢ inversivel em médulo 18;

9
14.a) Os divisores nao nulos de zero sdo: 2,3,4,6,8,9 e 10;
14.b) os elementos inversiveis sao 1, 5, 7 e 11.

15) (3640)~! = 3863;

mdc(c,m) = 1, pela lei do cancelamento na congruéncia, a = b(modm) = @ = b.

(18) Como p é primo, pelo Corolério 6, para todo inteiro a, tem-se a? = a(modp) = a” = a.
(19) Seja @ € Z, solugio desta equagao, entdo @* = 1 = a? = 1(modp) = p|(a®*—1) = a =1
oua=p—1l=z=1louz=p-1.

(20) Seja @ € Z, uma solugao da equagao, entao @’ = 4 = a? = 4(modm). Por outro
lado, como p é primo, pelo Corolario 6, a? = a(modp), para todo a € Z. Pela simetria e

transsitividade, temos a = 4(modp) = @ = 4.



Tais equagoes re-
cebem este nome
em homenagem
a Diophanto
de Alexandria
(=~ 250 d.c.).

Capitulo 12

Equacoes Diofantinas Lineares

1 Introducao

Um jogo eletronico tem o seguinte funcionamento: A méquina exibe um
nimero inteiro positivo, que corresponde a pontuagao exata que o jogador
deverd marcar para vencer a partida. Os pontos sao marcados cada vez que
o jogador abate um invasor, que o fica desafiando na tela. Existem dois tipos
de invasores: os marcianos (na cor vermelha), valendo cada um 22 pontos e os
jupiterianos (na cor verde), com o valor individual de 18 pontos. Suponha que
voce vai participar deste jogo e a maquina lhe exibe o nimero 540. De quantas
maneiras vocé pode vencer o jogo? Quantos invasores de cada cor voce devera
abater?

Em busca da resposta, vamos formalizar o problema. O que queremos
saber?
- O nimero de marcianos e o nimero de jupiterianos que devem ser abatidos.
Denotaremos, respectivamente por x e y essas quantidades. Relacionando as
variaveis temos a equagao abaixo:

22x + 18y = 540.

A questao agora é saber se essa equacao tem solugao inteira, e se sim, como
encontra-la?

A técnica para encontrar o conjunto solucao de tais equagoes - chamadas
Equacgoes Diofantinas Lineares - é o que estudaremos nesta aula.

2 Definicao

Definicao 10. Chama-se Equag¢ao Diofantina Linear nas incognitas r e
Y, a toda equacao da forma
ar+by=c (12.1)

onde a, b e ¢ sao inteiros fixos, com ab # 0.

128
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v' Exercicios 31.

(01) Das equagoes abaixo, quais estao de acordo com a Definigao 10, ou seja,
sao equacoes diofantinas lineares com duas incognitas? Justifique.

(a) 6z + 8y = 76;

b) 4z + 10y = 16;

(

(c) 2z +4y =T,
(d) 32% + 5y = 10;
(e) bz + 1y = 14;
(f) 3z + 0y = 12;
(8) 4z +8y = £
(h) 2z + by = —A47.

(02) Dé exemplo de duas equagoes diofantinas lineares com duas incognitas.

3 Solucao da Equacgao Diofantina

Todo par de inteiros (z, yo) para o qual
axg + byy = ¢,

diz-se uma solugao da equagao (12.1).

Exemplos:

(a) O par (—38,38) é uma solucao da equagao diofantina linear
6z + 8y = 76,

pois

6.(—38) + 8.38 = 76.

(b) O par (9, —2) é um solucao da equagao
4z + 10y = 16,

pois

4.9 4+ 10.(—2) = 16.
(¢) A equagao diofantina linear

20 +4y =7

nao apresenta solugao inteira, pois para qualquer par de inteiros (zo, yo),

2560 +4y0 7£ 7

uma vez que a esquerda da equacao teremos um nimero par e a direita, um
nimero impar.

Obs: Doravante, sempre que falarmos de solucao de uma equagao diofantina,
fica subentendido que estamos falando de solugoes inteiras.
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v' Exercicios 32.

(01) Dé uma solugao, caso exista, para cada uma das equagoes abaixo:
(a) 22 +3y =T,

(b) 8z + 6y = 61;

(c) bz + Ty = 33;

(d) 12z + 16z = 30.

(02) Dé uma solugao para cada um dos exemplos dados por vocé na questao
02, do exercicio anterior.

4 Condicao de Existéncia da Solucao

As perguntas que queremos responder sao:
- Como saber se a equagao 22z + 18y = 540 tem solugao?
- Se sim, como encontra-las?

Relembrando, uma solugao da equacao diofantia
ar +by = c (12.2)
é qualquer par de inteiros (xg,yo), tal que
axg + byg = c.

No caso particular, em que o termo independente ¢ = d, onde d = mdc(a, b),
a equacao vai ter solugao, pois, como ja vimos, existem inteiros r e s, tais que

ar + bs = d. (12.3)

- B possivel a partir da solucao dada em (12.3) obter uma solugao da
equagao (12.2)7?

Vejamos. Se d|c, entao existe k € Z, tal que ¢ = dk. Neste caso, multipli-
cando a equagao (12.3) por k obtemos:

a(rk) 4+ b(sk) = c.

Logo, o par de inteiros (rk,sk) é uma solugdo da equacdo original (12.2).
Portanto, o mdc(a, b) ser um divisor do termo constante ¢ garante a existéncia
de pelo menos uma solugao para a equacao. Dizemos que essa é uma condi¢ao
suficiente para a existéncia de solucao. Sera ela também necessaria, isto é, se
mdc(a, b) 1 ¢, a equagdo nao terd solugao?

Vamos supor que d 1 ¢, porém a equagao (12.2) tem solugao. Entao existem

inteiros xg, Yo, tais que
axg+ byy = ¢

Colocando d em evidéncia nesta equagao:

a b
d(c—ixo + c_lyo) =c
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Como d ¢ um divisor comum de a e b, § e g sao numeros inteiros. Assim,

(%20 + %yg) € Z, e portanto, d|c, contrariando nossa suposicao inicial.

Podemos entao enunciar o seguinte resultado:

A equacao diofantina linear

ar +by =c

tem solucao se, e somente se, mdc(a, b) divide c.

v' Exercicios 33.

(01) Verifique se as equagoes diofantinas abaixo tem solu¢ao. Caso afirmativo,
encontre uma solucao particular da equacao.

(a) 22x + 18y = 540;

Solugao:

Como mdc(22,18) = 2 e 2|540, esta equagao tem solucao. Para encontrar uma
solucao particular, incialmente procuramos inteiros r e s, tais que 22r+18s = 2.
Usando o algoritmo dado no Capitulo 5, obtemos:

22(—4) 4+ 18.5 = 2.

540
2

= 270 (isto é, por ——):

Agora multiplicamos esta equagao por (@)

22.(—1080) + 18.(1350) = 540

Portanto, o par (—1080, 1350) é uma solugao da equacao dada. O

(02) 24z + 14y = 36;
Solugao:
Como mdc(24,14) = 2 e 2|36 a equagao tem solucao. No Capitulo 5, vimos
que
24.3 + 14.(=5) = 2.

Multiplicando esta equacao por % = 18 obtemos:
24.54 + 14.(—90) = 36.

Portanto, (54, —90) é uma solugao particular da equacao. [l

(03) —124z + 52y = —20

Solugao:

Como mdc(—124,52) = 4 e 4] — 20 a equagao tem solugao. Como ja calculado
anteriormente:

(—124).5 +52.12 = 4.

Multiplicando esta equagao por —5:

(—124).(—25) + 52.(—60) = —20.
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Portanto, (—25, —60) é uma solugao particular dessa equagao. 0

(04) 40z 4 56y = 34.
Solugao:
Como mdc(40,56) = 8 e 8 1 34, essa equagao nao tem solugao inteira. O

5 Conjunto Solucao da Equacao Diofantina

Na secao anterior, aprendemos a identificar quando uma equacao diofantina
linear tem solugao, e no caso da existéncia, como encontrar uma solucao partic-
ular. Veremos agora como encontrar o conjunto de todas as solucoes possiveis,
ou seja, o conjunto solugao da equacao.

Proposicao 18. Sejam
ar +by =c

uma equagao diofantina linear e d = mdc(a,b), com d | c. Se (zo,yo) € Z* €
uma solugao particular, entao o conjunto de todas as solucoes dessa equagao
¢ dado por:

b a

S = {($0+—t,y0 — —t) | t e Z}

d d
Demonstracao:
Por definicao, o conjunto solucao da equagao diofantina ax + by = ¢ é dado

por:
S = {(u,v) € Z* | au + bv = c}.

Considere o conjunto X := {(z¢ + %t,yo — 9t) | t € Z}. Vamos mostrar que
X = 5. De fato,

(i) X C S.
Seja (o + 2t,yo — &t) € X, entdo
b a ab ab
a(zo + at) + b(yo — ;lt) = (azo + byo) + (E — E)t =c+0=c

Logo, (zo + %t,yo— 4r) € S= X C S.

(17) S C X.
Seja (u,v) € S. Como (xg,yo) é uma solugao particular, entao

b
GU+bU:C:a9€o+b@/0=>a(U—xo):b(yo—v)é%(u—xo)za(yo—v).

Como % é um inteiro, isto implica que % | 2(yy — v). Porém, mdc(%,%) =1,
logo, segue do Teorema 7, que § | (yo — v), entao existe ¢ € Z, tal que:

at: = at
— v =1y — —t.
d Yo

d

Yo — V=



Teoria dos Numeros 133

Substituindo este valor na identidade a(u—=o) = b(yo—v) obtemos u = zo+ 3¢
Assim (u,v) € X = S C X.

De (i) e (i1) segue que S = {(zo + 2t,yo — %t) | t € Z}. O

v' Exercicios 34.

(01) Encontre o conjunto solugao de cada uma das equagoes diofantinas abaixo:
(a) 22z + 18y = 540;

Solucao:

J& vimos mdc(22,18) = 2 e que xy = —1080 e yp = 1350 é uma solucao

particular da equacao. Portanto, o conjunto solucao é dado por:

18 22

S = {(—1080 + ?t, 1350 — 71&) |teZ} ={(—1080+9¢t,1350 — 11¢t) | t € Z}.
OJ

(02) 24z + 14y = 36;

Solugao:

mdc(24,14) = 2 e g = 54 e yp = —90 é uma solugao particular da equagao.

Logo, o conjunto solugao é dado por:

S ={(b4+7t,—90 — 12t) | t € Z}.

O

(03) =124 + 52y = —20
Solugao:
Como mdc(—124,52) = 4, o par (—25,—60) é uma solu¢do particular da
equacao, entao
S = {(—25+ 13t,—60 — 31¢t) | t € Z}.

]
(04) 40z 4 56y = 34.
Solugao:
Como mdc(40,56) = 8 1 34 esta equagdo nao tem solucao alguma, logo seu
conjunto solucao é o conjunto vazio, isto é, S = (. O

(05) Encontre todas as solugoes para o problema proposto no inicio da aula.
Solugao:
O conjunto solugao da equacao 22z + 18y = 540 é dado por:

S = {(—1080 + 9¢, 1350 — 11t) | t € Z}.

Para o nosso problema particular, nem todas as solugoes sao validas, pois
como x e y representam as quantidades de invasores, servem somente solucoes
inteiras nao negativas. Assim, devemos impor a condi¢ao:

—10804+9t >0 e 1350 — 11t > 0
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Resolvendo essas inequagoes encontramos:
t>120 e t<122,72

Como t € Z, podemos ter ¢t = 120,121 ou 122. Substituindo esses valores em
(—1080+9¢, 1350 — 11¢) obtemos as seguintes solugoes: (0, 30), (9,19) e (18, 8).
Assim, para ganhar o jogo deve-se abater 30 jupiterianos e nenhum marciano;
ou 9 marcianos e 19 jupterianos ou ainda 18 marcianos e 8 jupterianos. U
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Lista de Exercicios 12.

(01) Verifique se as equagoes diofantinas abaixo tem soluc¢ao. Caso afirmativo,
use o algoritmo dado no Capitulo 5, para encontrar uma solucao particular da
equacao.

(a) 2z 4+ 3y = 9;

(b) 3x + by = 47;
(c) 12z + 45y = 18;
(d) 24z + 14y = 8;
(e) 56z + T2y = 40;
(f) 60z + T2y = 16;
(g) 47x — 29y = 15.

(02) Determine o conjunto solugao de cada uma das equagoes diofantinas dadas
na questao anterior.

(03) Determine todas as solugoes inteiras positivas das equagoes abaixo:
(a) b4z + 21y = 906;
(b) 182x — 86y = 166.

(04) Um caixa eletronico tem apenas notas de R$10,00 e R$ 50, 00.
(a) De quantas maneiras este caixa pode liberar um saque de R$ 530,007
(b) Que valores podem ser sacados neste caixa?

(05) De quantos modos podemos decompor o nimero primo 751 como uma
soma de dois inteiros positivos, sendo um deles multiplo de 5 e o outro multiplo
de 77

(06) Determine todos os multiplos negativos de 8 e 17, cuja soma é igual a
—300.

(07) Expresse o nimero 277 como soma de dois inteiros positivos, de modo
que o primeiro deixa resto 2 na divisao por 12 e o segundo, deixa resto 5 na
divisao por 18.

(08) Determinado produto é vendido em recipientes de 7 e 9 litros. De quantas
e quais maneiras se pode comprar 120 litros deste produto?

(09) Quanto um professor dividiu os n alunos de sua turma em grupos de
7, sobraram 3 alunos e quando os dividiu em grupos de 6, sobraram 5. Quan-
tos sao os alunos dessa turma, sabendo que 50 < n < 807

(10) Isabel devera tomar duas medicagoes A e B, no total de 60 comprimi-
dos. Na primeira dose, A e B foram tomados simultaneamnte. A partir dai, a
medi¢ao A devera ser tomada de 6 em 6 horas e B, a cada intervalo de 9 horas.
Quantos comprimidos de cada medicamento ela devera tomar, de modo que o
intervalo de tempo entre as doses finais dos dois remédios seja a menor possivel?
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Respostas da Lista de Exercicios 12
0l.a) xg = —36 e yo = 27
01l.b) g =94 e yo = —47
0l.c) zp =24 eyo = —6
01.d) xg =12 e yo = —20
0l.e) zp =20 e yo = —15
.f) A equagdo ndo tem solugdo
0l.g) xp = —120 e yo = —195

02.a) § = {(—36 + 3t,27 — 2t) | t € Z}
02.b) S = {(94 + 5t, —47 — 3t) | t € Z}

02.c) S = {(24 + 15, —6 — 4t) | t € Z}
02.d) S = {(12+ 7t, —20 — 12¢) | t € Z}
02.¢) S ={(20+9t, 15— 7t) | t € Z}
02.£) § =0

02.g) S = {(—120 — 29¢, —195 — 47¢) | t € Z}
03.a) {(2,38),(9,20), (16,2)}

04.a) Representando por o ntimero de notas de 10 reais e por y o nimero de notas de 50
reais, os valores possiveis para o par (z,y) sao: (3,10), (8,9), (13,8), (18,7), (23,6), (3, 10),
(28,5), (33,4), (38,3), (43,2), (48,1).

(04.b) Apenas valores que sao miltiplos de 10.

(05) Podemos decompor como 751 = (11265 + 35¢t) + (—10.514 — 35¢), —321 < ¢t < —301.
Portanto, existem 21 formas de escrever a soma pedida.

(06) (—232,—68) e (—96, —204).

(07) 277 = (—538 + 36t) + (815 — 36t), com 15 < ¢ < 22.

(08) De duas maneiras: 12 recipientes de 7 litros e 4 de 9 livros ou 3 recipientes de 7 litros
e 11 de 9.

(09) n =59

(10) 42 de A e 18 de B.

(
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(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

)
03.b) {(8,15), (51,106), (94,197)}
)



Capitulo 13

Congruéncia Linear

1 Introducao

- Certo dia um professor dividiu os n alunos da sua turma em grupos, ficando
exatamente 6 alunos em cada grupo. Na aula seguinte usou a mesma estratégia,
s6 que desta vez colocou 8 pessoas em cada grupo e sobraram 4. Sabendo que
o numero n de alunos dessa turma esta no intervalo, 50 < n < 100, quais os
valores possiveis para n?

Pensemos juntos na solugao desse problema. Seja n o nimero de alunos
da turma. Se ao dividir a turma em grupos de 6, a divisao foi exata, n é um
multiplo de 6, isto é,

n==6x, x€2Z.

Por outro lado, ao dividir n por 8 restaram 4, entao
n = 4(mod8).

Substituindo n por 6z na congruéncia acima obtemos 6x = 4(mod8). Portanto,
para encontrar os possiveis valores de n, devemos resolver em 7Z a equacao:

6z = 4(mods).

Definicao 11. Seja m > 1 um inteiro. Chamamos congruéncia linear a

todo equacao da forma:
ax = b(modm) (13.1)

onde a e b sao inteiros fixos.

Exemplos:
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2 Condicao de Existéncia da Solucao

Todo inteiro xg, tal que
axy = b(modm)

¢ chamado uma solugao da congruéncia linear ax = b(modm).

A questao imediata é saber se toda congruéncia linear tem solucao.

Se a congruéncia linear ax = b(modm) tem solugdo, entao existe xy € Z,
tal que
axg = b(modm)

\
m|(azxo — b)
Consequentemente, existe yy € Z, tal que:

axg — b= myg = axg+ (—m)yo = b.

Logo, (xo,70) é uma solugao da equagao diofantina linear ax + (—m)y = b.
Concluimos assim, que se a congruéncia linear ax = b(modm) tem solugao,
entdo a equacao diofantina ax + (—m)y = b também o tem.

Reciprocamente, se a equagao diofantina ax 4+ (—m)y = b tem solucao,
entao existe um par de inteiros (g, yo), tal que:

axg + (—m)yo = b = axy — b = myg = m|(axy — b) = axy = b(modm)

4

xo ¢ solucdo da congruéncia linear az = b(modm).

Portanto temos que:
ax = b(modm) tem solugao se, e somente se, ax + (—m)y = b tem solugao.
Por sua vez,
ax + (—m)y = b tem solugao se, e somente se, mdc(a, —m) divide b.

Juntando estes dois resultado e o fato de mdc(a, —m) = mdc(a, m), podemos
afirmar:

A congruéncia linear

ax = b(modm)

tem solucdo se, e somente se, mdc(a, m) divide b.

Dizemos que az + (—m)y = b é a equagao diofantina associada a con-
gruéncia linear ax = b(modm).
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v' Exercicios 35.

(01) Verifique quais das congruéncias abaixo tem solugao:
(a) 62 = 4(mod8);

Solucao:
Neste caso, a = 6, b =4 ¢ m = 8. Como mdc(a,m) = mdc(6,8) = 2 e 2|4, a
congruéncia tem solucao. 0

(b) 8z = 24(mod12);

Solucao:
Aqui, a = 8, b = 24 e m = 12. Como mdc(8,12) = 4 e 4|24, a congruéncia
tem solucgao. 0

(¢) 4z = 13(mod20).
Solucao:
Como mdc(4,20) =4 e 4413, a congruéncia nao tem solugao. O

3 Solucao da Congruéncia Linear

J& vimos que a congruéncia linear
ax = b(modm)
tem solucao se, e s6 se, a equacao diofantina
ar+ (—m)y =0b

o tiver. Para encontrar uma solucao particular xy da primeira, devemos entao
encontrar uma solucao da segunda. Relembremos como encontrar tal solucao.

Inicialmente escrevemos d = mdc(a,m) como soma de miultiplos inteiros
de a e m, isto é, encontramos inteiros r e s, tais que:

ar +ms = d.

Em seguida multiplicamos esta equacao pelo inteiro g:

a(r%) + m(sg) = dg
ou ainda,
b b
a(r3) + (—m)(—s2) = b
Logo, (r%, —s%) ¢ uma solugao da equagao diofantina linear ax + (—m)y =b e

consequentemente g = r2 é uma solugao da congruéncia az = b(modm).
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v' Exercicios 36.

(01) Encontre uma solugao particular para cada uma das congruéncias lineares:
(a) 62 = 4(mod8).

Solugao:

Para encontrar uma solugao da congruéncia linear 6x = 4(mod8), devemos
determinar uma solugdo da equagdo diofantina associada 6x + (—8)y = 4.
Inicialmente, escrevemos d = mdc(6,8) = 2 como soma de multiplos de 6 e 8,
o que pode ser feito usando o algoritmo de Euclides. Nesse caso temos que:

6.(—1) +81=2.

Pelo que vimos acima, uma equacao particular é dada por

Ty = 7’% = —1.% = —2. Porém, para uma melhor aprendizagem, vamos

encontrar tal valor repetindo todo o procedimento feito anteriormente.
Multiplicamos a equacao acima por s = ‘—21 =2
6.(—2) + 8.2 =4.

Como os coeficientes da equagao diofantina sao 6 e -8, rearrumamos a equacao
escrevendo:

6.(—2) + (=8).(—2) = 4.
Assim, (—2, —2) é uma solu¢ao da equagao 6z + (—8)y = 4 e consequentemente
ro = —2 é uma solucdo particular da congruéncia 6z = 4(mod8).
(b) 8x = 24(mod12);
Solugao:
Inicialmente vamos procurar uma solucao da equagao diofantina associada:
8z + (—12)y = 24. Como mdc(8,12) = 4 usando o algoritmo de Euclides
encontramos:

8.(—=1)+12.1 =4,

Multiplicamos essa equagao por % = 0:
8.(—6) + 12.6 = 24.
ou ainda,
8.(=6) + (—12).(—6) = 24.

Assim, (—6,—6) ¢ uma solugao da equagao 8z + (—12)y = 24 e consequente-
mente xo = —6 é uma solugao particular da congruéncia 8z = 24(modl12). O

(c) 18z = 30(mod42).

Solucao:

A equacao diofantina associada a essa congruéncia é 18z + (—42)y = 30 e como
mde(18,42) = 6 e 6|30, a equagao tem solugdo. Para uma solugao particular,

usamos a identidade:
18.(—2) +42.1 = 6.

e multiplicamos essa equacao por g = % = b
18.(—10) + 42.5 = 30 = 18.(—10) + (—42).(—5) = 30.

Assim, (—10, —5) é uma solucao da equagao 18z + (—42)y = 30 e consequente-
mente o = —10 é uma solugao particular da congruéncia 18z = 30(mod42).
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4 Conjunto Solucao da Congruéncia Linear

Ja sabemos calcular uma solugao particular da congruéncia linear ax = b(modm),
quando essa tem solucao. Vejamos agora como, a partir de uma solucao par-
ticular, encontrar o conjunto de todas as solucgoes.

Como ja visto na Proprosi¢ao 18, se (xg,y) é uma solugdo da equagao
diofantina ax + (—m)y = b e d = mdc(a, m), entdo o conjunto solugdo da
equacao ¢ dado por:

m

a
—t —=t)|teZ}.
d » Yo d )l € }

S = {(CEO —

Portanto, se o é uma solugao da congruéncia linear ax = b(modm), entao
ac = b(modm) = ml|(aa —b) = ac —b=mk, k € Z = aa+ (—m)k = b =
(o, k) € S = a = x— %t, para algum inteiro .

Reciprocamente, se « = xy — “t, para algum ¢ € Z, entao o par
(w0 — Zt,y0 — 5t) € 5, logo é solugao da equacao diofantina azx + (—m)y = b
e portanto,

m a
a(xg— —=t)+ (—m)(yo — =t) = b

d d
¢
alwo — 22t) b = m(yo — 5t) = m| (alao = ")t — b)
¢
alzy — %t) = b(modm)
¢

a = x¢ — "t é solugao da congruencia linear ax = b(modm).

Com isso, identificamos o conjunto solu¢ao da congruéncia ax = b(modm),
quando essa tem solucgao, dado a seguir:

O conjunto solugao da congruéncia linear ax = b(mod),
quando d = mdc(a, m) divide b é dado por:

S’:{xo—l—%HtEZ}.

Obs: §' ={zg— 4t |t € Z} = {xo+ 5t |t € Z}.
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v' Exercicios 37.

(01) Encontre o conjunto solu¢ao das congruéncias abaixo:

(a) 62 = 4(mod8).

Solugao:

Como xy = —2 é uma solugao particular da congruéncia, entao seu conjunto
solucao é dado por:

S={-2+4t|teZ}.

Assim, os inteiros -6, -2, 2, 6, 10, 18 sao algumas dessas solucoes. De posse do
conjunto solucao, podemos agora responder a questao proposta no inicio da
aula. Lembremos que o nimero n de alunos da turma é dado por n = 6x, onde
x € S5. Assim, n = —12 + 24t, com t € Z. Além disso , temos a informacao
adicional de que 50 < n < 100. Assim, 50 < —12 + 24t < 100 = % <t <
13—4 =t € {3,4}. Logo, os possiveis valores para o numero de alunos é 60 ou
84. O

(b) 8x = 24(mod12);
Solugao:
Tomando a solugao particular xg = —6 ja encontrada anteriormente, segue que

S={-6+3t|teZ}

O
(c) 18z = 30(mod42).
Solucao:
Usando a solucao particular g = —10 j& encontrada, segue que

S={-10+T7t|teZ}.

O
(d) 4x = 13(mod20);
Solugao:
Como a equacao nao tem solucao, entao seu conjunto solucao é S = (. ]

5 Congruéncia Lineares Equivalentes
Definicao 12. Dizemos que as congruéncias lineares
a1x = bi(modmy) e asx = by(modmsy)

sao equivalentes se elas tém o mesmo conjunto solucao.
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Exemplos:
(01) As congruéncias 3z = 9(mod6) e x = 9(mod2) sdo equivalentes, pois
ambas tem

S={1+2t|teZ}

como conjunto solugao. 0

(02) As congruéncias 8z = 20(modl2) e 4x = 100(mod3) sdo equivalentes,
tendo
S={1+3t|teZ}

como conjunto solugao. 0

Considere a congruéncia linear
ax = b(modm) (13.2)

com b sendo um miltiplo de mdc(a, m). Vejamos como obter uma congruéncia
linear equivalente a ela e em geral de mais facil resolugao.

Sejam d = mdc(a, m) e r e s inteiros, tais que:

d = ar +ms. (13.3)

Se xy é uma solugao qualquer de (13.2), entao
axy = b(modm) = m|(azy — b) = axrg —b=mk, kecZ.
Multiplicando a ultima identidade por r, obtemos:
(ar)xo — br = m(rk).
Substituindo nessa identidade o valor de ar dado em (13.3):

(d —ms)xg — br = m(rk)

4
b m
dxg — br = m(rk + szg) = xo — Elr = —(rk + szo)
U
b m
= - d—
Zo dr(mo y )
Portanto, zy ¢ também solucdo da congruéncia linear z = r(mod®).
Reciprocamente, se xy ¢ solugao da congruéncia linear x = gr(mod%),
entao b
m
= - d—).
xg dr(mo y )
De (13.3) obtemos a congruencia linear:
& = 1(modm)

d d
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Multiplicando membro a membro essas congruencias (propriedade C7):

b
27"% = Er(mod%) (13.4)
Como d = ar +ms = 1 = §r+ s = mdc(r, %) = 1. Assim, podemos usar a

d
lei do cancelamento em (13.4), obtendo:

a b m
0= E(mOdE)
J
b
EIO——:@/{Z, k€ Z = axy—b=mk = axy = b(modm).
d d d
U

xo é solugao da congruencia linear ax = b(modm).

Desta forma, provamos o que é enunciado na proposi¢ao abaixo.

Proposicao 19. Sejam a e m > 1 inteiros, com d = mdc(a, m). Para quais-
quer inteiros v e s, tais que
d = ar +ms,

e qualquer b € dZ, as congruéncias lineares:

r(mod?)

SIS

ax = b(modm) e xr =

sao equivalentes.

v' Exercicios 38.

(01) Encontre uma congruéncia linear equivalente a equagao dada e seu con-
junto solucao:

(a) 18z = 30(mod42).

Solugao:

Como mdc(18,42) = 6 e 30 é um multiplo de 6, entdao pela Proposigao 19, essa
congruéncia é equivalente a congruéncia linear

x = 5r(modT)

qualquer que seja o inteiro 7, para o qual existe s € Z, tal que 18r + 42s = 6.
Em particular, como 18.(—2) + 42.1 = 6, segue que

x = —10(mod7)

¢ equivalente a equacao dada. Facilmente, vemos que xo = —3 é uma solucao
particular dessa ultima, portanto seu conjunto solugao (o qual é também con-
gruéncia original) é dado por:

S={-3+Tt|teZ}.
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(b) 15z = 20(mod10);
Solugao:
Como mdc(15,10) = 5|20, essa congruencia ¢ equivalente a congruéncia linear:

x = 4r(mod2)

qualquer que seja o inteiro r € Z, para o qual existe s € Z, tal que 15r+10s = 5.
Como 15.1 + 10.(—1) = 5, entao

x = 4(mod2)

é equivalente a equacao dada. Claramente, ro = —2 é uma solucao particular
dessa ultima, portanto o conjunto solucao de ambas as congruéncias é dado
por:

S={-2+2t|teZ}.

Como também temos as identidades

15.3+10.(—=4) =5

15.(=7) +10.10 = 5

obtemos também as congruéncias equivalentes
x=12(mod2) e x=—28(mod2)

dentre outras.
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Lista de Exercicios 13.

01) Verifique quais das congruéncias abaixo tem solugao:
a) 3x = 5(mod8);

b) 3z = 6(modl8);

¢) —6x = 5(mod4);

d) 34z = 60(mod98);

4x = 13(mod20);

27x = 45(mod18).

(02) Encontre o conjunto de cada uma das congruéncias lineares da questao
(01).

(03) Encontre uma congruencia linear que seja equivalente a congruéncia abaixo:
(a) 3z = 5(modl).
(b) 18z = 30(mod42).
(¢) b = 20(modT).

(d) 252 = 15(mod29)

(e) bx = 2(mod26)

(04) Determine todos os multiplos de 5 que deixa resto 7 na divisao por 9.

(05) Determine todos os multiplos positivos de 11, que deixam resto 2 na
divisao por 5.

(06) Encontre todos os anos bissextos até 2016, que deixam resto 5 na di-
visao por 9.
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Respostas da Lista de Exercicios 13

01.a) mdc(3,8) = 1|5 = a congruéncia tem solugao.

01.b) mdc(3,18) = 3|6 = a congruéncia tem solugao.

01.c) mdc(—6,4) = 21 |5 = a congruéncia nao tem solucao.

01.d) mdec(34,98) = 2|60 = a congruéncia tem solugao.

01.e) mdc(4,20) =4 113 = a congruéncia nao tem solugao.

01.f) mdc(27,18) = 9|45 = a congruéncia tem solucao.

={15+8t|teZ}.

={2+6t|teZ}.
0
{

S
S
S
02.d) S = {—690 + 49t | ¢ € Z}.
s
s
X

0
{(5+2t|teZ})
15(mod8).

03.c) = 60(modT).

03.d) « = 105(mod29)
03.e) = = —10(mod26)

04) 45t + 25, t € Z

05) 22 + 55t, t > 0.

06) —40 + 36t, 2 <t < 57.

NN AN N N N N N N N N N N N N N S N S
O
N
@
~—
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Capitulo 14

Sistema de Congruéncias
Lineares

1 Introducao

- Quanto um professor dividiu os alunos de sua turma em equipes com sete
pessoas cada uma, sobrou um aluno. E quando dividiu em equipes com cinco
ou com oito pessoas, ai sobraram trés alunos. Qual o menor nimero possivel
de alunos nessa turma?

Solugao:

Vamos representar por x o numero de alunos na turma, o qual queremos de-
terminar. Do enunciando acima, conclui-se que = deixa resto 1 na divisao por
7 e resto igual 3 na divisao por 5 e também por 8. Usando linguagem de con-
gruencia, isso equivale a dizer que = deve verifica simultaneamente as seguintes
congruéncias lineares:

3(mod>5)
1(mod7)
3(mod8)

Temos assim um sistema de congruéncias lineares. Vejamos, uma maneira de
determinar o valor de x, usando propriedades da congruéncia ja estudadas.

T
i
T

(7) Resolvemos a primeira equacao x = 3(mod5):

z = 3(modb5) = 5|(z —3) = x =3+ 5y, com vy € Z;

i1) Substituindo o valor encontrado para x na segunda equagao:
z = 1(mod7) = (3 + by) = 1(mod7) = by = —2(modT7) < y = —6(modT7)
=y=—06+7z

i1i) Substituindo o valor encontrado para y na equagao = = 3 + 5y:
r=3+5y=3+5(—6+72) =2 =-27+35z

(7v) Substuindo o dltimo valor encontrado para z na terceira equagao: r =
3(mod8) = (—27 + 35z) = 3(mod8) = 35z = 30(mod8) < z = 90(mod8)

148
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= z =90 + 8t¢.

Assim,
r = —27+ 35z = —27 + 35(90 + 8t) = 3123 + 280¢.
Como z representa a quantidade de alunos na turma, entao = > 0. Assim,
x=280t+3123 >0=1¢t> —11.

Por fim, sendo x uma funcao crescente de ¢, entao o menor valor de x é assum-
ido quando ¢ é minimo, ou seja, quando t = —11. Portanto, o menor nimero
de alunos na turma é igual a 43. 0J

2 Definicao

O que fizemos no exemplo acima foi encontrar um valor para uma variavel x
que satisfaz simultaneamente a mais de uma congruéncia linear, ou seja, a um
Sistema de Congruéncias Lineares, conforme definido a seguir.

Definicao 13. Chamamos de Sistema de Congruéncias Lineares a todo
sistema da forma:

ax =by (modmy)

asx =by (modms)

agr =by (modmy)

onde ay,as, ..., ag, by, ba, ..., bp, My, Mo, ..., My, sao inteiros firados, com m; > 1,
para todo i = 1,2, .., k.

Exemplos:
x =2 (mod3)
(01) § = =3 (modb)
r =2 (modT)
6x =2 (modd)
(02) ¢ 2z =1 (mod3)
dr =2 (modT)
r =-—1 (mod4)
(03) { =2  (modb)

3 Solucao do Sistema

Vejamos agora um resultado - conhecido como Teorema Chinés do Resto - o
qual da uma condicao a para a existéncia de solucao de um sistema de con-
gruéncias lineares e fornece um algoritmo para calcular uma solugao particular
do mesmo.



Dizer que a
solugdo ¢é tnica
modulo m,
implica dizer
que se T1,T2 Sao
duas solugoes do
sistema, entao

x1 = z2(modm).
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Teorema 14. (Teorema Chinés do Resto) Se os inteiros my, ma, ..., my
sao dois a dois relativamente primos, entao o sistema de congruéncias lineares:

xr = by(modmy)
xr = by(modms)

x = bp(modmy,)

admite uma solucao, que € unica modulo m = mima...my,.

Algoritmo da Aplicacao do Teorema Chinés do Resto
Daremos a seguir os passos para encontrar uma solugao particular xg de um

sistema de congruéncia lineares, quando este verifica as hipéteses do Teorema
acima. De posse de xg, determinamos o conjunto solucao.

Passo 1: Construir inteiros m, My, M, ..., M}, onde
m = Mm1Mmy... M

m m m m
M, = —, My = —, .. M, , M, = —.
my mo m; my

Passo 2: Encontrar inteiros r; e s;:
Para cada i = 1,2, ..., k, mde(M;,m;) = 1, logo existe inteiros r; e s;, tais que:

Ml.’l“l +mq.81 = 1

MQ.TQ + Mo.S9g = 1

Mk.Tk + my.Sp = 1

Determina-se inteiros r; e s; que verifiquem essas condigoes;

Passo 3: Determinar a solugao particular:
A solucao particular zy é dada por:

To = blMlT'l + b2M27"2 + ...+ bkMka

Passo 4: Determinar o conjunto solucao:
Todas as demais solugoes do sistema sao congruentes a xy moédulo m, logo o
conjunto solucao é dado por:

S={zg+mt|teZ}.
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Exemplos:
(01) Usaremos o algoritmo acima para resolver novamente o sistema proposto
no inicio do capitulo:

z = 3(mod5)
x = 1(mod7)
x = 3(mods).
Solugao:
Como

mdc(5,7) = mdc(5,8) = mde(7,8) = 1,

os inteiros m; = 5, my = 7 ¢ m3 = 8 sao dois a dois relativamente primos, logo
o sistema tem uma unica solucao xy modulo miymsems = 280. Para determinar
xo seguiremos os passos dados no algoritmo acima:

Passo 1: Determinar m e My, My, Mj:

m = mimams = 280

My=2 =20 256 My=2=250240 o M=2==20_3;

Passo 2: Encontrar inteiros r; e s;:
Escrevendo 1 = mdc(56,5) = mdc(40,7) = mdc(35, 8) como soma de multiplos
desses inteiros temos:

1=56.1+5.(—11)
1=140.3 + 7.(-17)
1=35.3+8.(—13)

Passo 3: Determinar uma solugao particular:
Entao

o = blMlTl + bQMQT'Q + b3M3T‘3 = 3.56.1 + 1.40.3 + 3.35.3 = 603.

Passo 4: Determinar o conjunto solugao:
Como xy = 603 é uma solugao, entao

S = {603 + 280t | t € Z}.

(02) Usando o algoritmo do Teorema Chinés do Resto, resolveremos o sistema:
x = 2(mod3)
x = 3(mod>)
xr = 2(modT).

Solugao:

Como

mdc(3,5) = mdce(3,7) = mde(5,7) = 1,
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os inteiros my = 3, my = 5 e mg = 7 sao dois a dois relativamente primos, logo
o sistema tem uma unica solu¢ao xy modulo m;msoms = 105. Para determinar
xo seguiremos os passos dados acima:

Passo 1: Determinar m e My, My, Ms:

m = mimams = 105

My =2 =12=35 My=2=1=21 ¢ M=2=1%1"=15

Passo 2: Determinar os inteiros r; e s;:
Escrevendo 1 = mdc(35,3) = mdc(21,5) = mdc(15, 7) como soma de multiplos
destes inteiros temos:

1=135.(—-1)+3.12

1 =21.1+5.(-4)

1=15147.(-2)

Passo 3: Determinar uma solugao particular:
Entao

Ty — blerl -+ bQMQ’I"Q -+ b3M37"3 = 235(—1) +3.21.1 +2.15.1 = 23.

Passo 4: Determinar o conjunto solucao:
Como zg = 23 é uma solucao, entao

S = {23+ 105t | t € Z}.

O

Agora que voce ja entendeu e se familiarizou com o enunciado do Teorema
14, vamos demonstré-lo. Para tal, precisaremos de alguns resultados, dados
no Lema a seguir.

Lema 5. Dados inteiros my, ma, ...,my, para cada i = 1,2, ..., k, definamos

M — mimMmo.. My MMy 1-.. Mg B
P = m =mima....MG;—1Myj4-1... M.
)

Se o0s inteiros my, ma, ..., my sao dois a dois relativamente primos, entao
(1) M; e m; sao também relativamente primos, para todo i =1,2,..,n;
(17) Se a € um inteiro tal que, m;|a, para todoi = 1,2, ..., k, entdo myma...my|a.

Demonstracao:
(7) Como my, my, ..., my sao dois a dois relativamente primos, entao para cada
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i€ {1,2,...,k} arbitrario, temos:

mde(my, m;) = ... = mde(my_1,m;) = mde(myq,m;) = ...mde(my, m;) = 1,

logo,
mdc(mymeg...m;_1mipq...mg,m;) = 1 = mde(M;, m;) = 1.

(17) Faremos a demonstracao por indugao em k:
Base de Inducgao: k£ =2

mila e mgla = a = myky = maks, com ky, ky € Z.
Como mdc(my,ms) = 1 = Jx,y € Z, tais que:

mix + mey =1

§ (xa)

a(mix)+a(moy) = a = (Mmaoks)(myz)+(miks)(maey) = a = myma(kex+k1y) = a

4

mims|a.
Passo Indutivo: Vamos assumir, como hipdtese de inducao, a implicacao:
mila, mala, ..., mgla = myma...mya.
E suponha que, mq|a, msla, ..., my|a, mgi1|a. Entéo,

mims...mgla e Mmyi1|a,
——_— ——

hipotese de inducgao

Pelo item (i), segue que (mymay...myg)my41|a. O

Agora vamos a demonstracao do teorema.

Demonstracao do Teorema 14:

Seja m = mymsy...my, e considere os inteiros:

m m m m
M, = —, My =—, ... M, =—,..., M, = —.
my mo m; my

Pelo Lema 5,

mde(M;,m;) = 1,Vi=1,2,...,k

j& que mdc(m;,m;) = 1, para todo ¢ # j. Entao, existem inteiros r;, s;, tais
que:
Ml.Tl +my.51 = 1

MQ.T’Q + Mo.S9g = 1
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Mk.rk + Mmg.Sgp = 1

Mostraremos que
To = ClMlT‘l + CQMQT’Q + ...+ CkMk’I“k.

é uma solucao particular do sistema.

Observe inicialmente que para todo i # j, tem-se
M; = my..my..mj_1mjyq..my = m;|M; = M; = 0(modm;) = ¢;r;M; = 0(modm,),
Assim, temos as congruéncias:

c1 Myry = 0(modm;;)

caMyry = 0(modm;)

CiflMiflTifl = O(modmz)

Ci+1Mi+1ri+1 = O(modnl)

cxMyry = 0(modm;)

De onde obtemos:

61M1T1 + CQMQTQ + Ci—le'—lri—l + Ci+1Mi+1ri+1 + ...+ CkMkT’k = O(modmz)
Somando ¢; M;r; em ambos os lados da congruéncia:
ClM1T1+---+Ci—1Mi—lri—1+ciMiTi+Ci+1Mi+1ri+1+---"’CkMka = CiMi/ri (modm,)

U
zo = ¢;Miri(mdom;), Vi=1,2,....k

Por outro lado, multiplicando por ¢; a identidade M;r; + m;s; = 1, temos:
ciMir; + cmys; = ¢; = ¢;Myr; — ¢; = my(c;s;) = ¢ Mir; = ¢;(modm;)
Por transitividade, tem-se:
xg = ¢i(modm;), Yi=1,2,...k

Sendo portanto xy solugao de todas as congruéncias do sistema.

Resta mostrar a unicidade desta solucao moédulo m. Seja w outra solucao
do sistema. Entao para todo ¢ =1,2,..., k, temos

w = ¢;(modm;) e xg = ¢;(modm;) = m; | (w — )
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para todo ¢ = 1,2, ..., k. Comos os m; sao dois a dois relativamente primos,
segue do item (i) do Lema 5 que:

myma..mg|(w — x¢) = m|(w — xo)

e portanto w = zo(modm). O

v' Exercicios 39.

Resolva os sistemas lineares abaixo. Use o Teorema Chinés do Resto, quando
possivel.

x = 5(mod6)
(01) ¢ = = 4(modl1)

z = 3(modT)
Solucao:

Como
mdc(6,11) = mde(6,7) = mdc(11,7) = 1,

os inteiros m; = 6, my = 11 e mg = 7 sao dois a dois relativamente primos,
portanto o Teorema 14 garante a existéncia de uma tnica solucao xy modulo
mimems. Vamos determinar zg.

Passo 1: Determinar m e My, My, Mj:

m = mimoms = 6.11.7 = 462

Passo 2: Determine os inteiros r; e s;:
Temos:
1=77(-1)+6.13

1 =425+ 11.(-19)
1=066.(—2) + 7.(19)

Passo 3: Determinar uma solugao particular:
Entao

To = blerl + szzT’Q + b3M37’3 = 577(—1) —+ 4.42.5 + 366(—2) = 59.

Passo 4: Determinar o conjunto solugao:
Como xy = 59 é uma solucao e m = 462, entao

S = {59 + 462t | t € Z.}.
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9z = 4(mods)

3x = 6(mod21)

Solugao:

Observe que o sistema dado nao esta como apresentado no enunciado do Teo-
rema 14, pois a; = 9 e a; = 3, ao passo que no teorema os coeficientes das
variaveis sao todos iguais a 1. Logo, nao podemos aplicar o algoritmo dire-
tamente nesse sistema. Para encontrar o conjunto solucao, procuremos um
sistema equivalente que esteja naquela forma.

(02)

Como
mdc(9,8) =1 = 9.148.(—1), entdo 9z = 4(mod8) é equivalente a x = 4(mod8);
mdc(3,21) = 3 = 3.1+ 21.0, 3z = 6(mod21) é equivalente a x = 2(modT7).
Assim, o sistema a ser resolvido tem o mesmo conjunto solugao do sistema:

{ x = 4(mod8)
x = 2(modT7)

o qual podemos aplicar o Teorema 14.
Passo 1: Determinar m, M; e M:
my =8 mo=7=m=mimy =56 ¢

my Mo
Passo 2: Determinar os inteiros r; e s;:
1=7(-1)+8.1
1=81+7(-1)
Passo 3: Determinar uma solugao particular:
xog = by Myry + boMorg = 4.7.(—1) +2.8.1 = —12.

Passo 4: Determinar o conjunto solugao:
Como zy = —12, entao

S ={—12456t |t € Z}.

x = 4(modb
(03) { T = 1Z(’3(m0d)15)

Solucao:

Como mde(6,15) # 1, ndo estamos nas condigoes da hipétese do Teorema 14.
Vamos tentar resolve-lo diretamente.

(7) Resolvendo a primeira equagao encontramos:

r = 4(mod6) = x =4+ 6y, y € Z;

(1) Substituindo este valor na 2a. equagao:

xr = 13(modl5) = (4 + 6y) = 13(mod15) = 6y = 9(mod15)
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v

y = —6(modb) = y = —6+ 5t,t € Z;
Entao x =4+ 6y =4+ 6(—6 + 5t) = —32 4 30t,¢ € Z. Logo,

S ={-32430t |t cZ}

xr = 8(modl4)
(04) { x = 5(modT)
Solugao:
Como mde(7,14) = 7, o sistema nao esta de acordo com as hipéteses do Teo-
rema 14. Vamos resolve-lo diretamente.
(i) Resolvendo a 1% equagao encontramos:

r =8(modld) = x =8+ 14y, y € Z;
(1) Substituindo este valor na 2% equagao:

x = 5(mod7) = (8 + 14y) = 5(mod7) = 14y = —3(mod7);

Como mdc(14,7) = 7+ —3, essa equagao nao tem solugao, logo o sistema em
questao nao tem solugao. Assim, seu conjunto solugao é

S = 0.
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Lista de Exercicios 14.

(01) Encontre o conjunto solugao de cada um dos sistemas abaixo:

{ r = 1(mod3)

= 2(mod5)

z = 8(modb)
{ T = —4 mod?)
x = 3(mod9)
{ 62 = 4(mod8)
z = 1(mod3)

T = 2(m0d5)

= 3(mod7)
x = 5(mod6)
x = 4(modl1)
x = 3(mod7)

x = 4(mod6)
x = 13(mod15)
x = 8(modl4)

x = 1(modT)

) Determine o inteiro positivo, menor que 1000, que na divisdo por 13,
36 e 41, deixa como restos 8, 5 e 3, respectivamente.

(03) Determine o menor inteiro positivo, que tem como restos 6 e 5, na di-
visao por respectivamente 7 e 9.

(04) Determine o menor inteiro positivo, sabendo que seu quadruplo deixa
resto 1 na divisao por 13, seu quintuplo deixa resto 3 na divisao por 7 e seu
6ctuplo, deixa resto 4 na divisao por 5.

(05) Determinar o menor inteiro a > 10 tal que 3|(a+ 1), 4|(a +2) e 5|(a + 3).

Respostas da Lista de Exercicios 14
0l.a) S={7+ 15t |t € Z}.

01.b) S ={80+42t|t e Z}.

0l.c) S={66+36t|tecZ}.

01.d) S={52+ 105t |t € Z}.

(
(
(
(
(
(01.
(
(
(
(

0l.e) S = {59 + 462t | t € Z}.
f) S = {—3002 + 210t | t € Z}.
02) 905
03) 41
04) 23
05) 62.



Capitulo 15

Os Numeros Naturais

Ao longo de todo este texto, apresentamos diversas propriedades e aplicagoes
dos numeros inteiros. Tudo o que foi provado teve como alicerce as pro-
priedades apresentadas no Capitulo 1. Dessa forma, a validade de tudo que
voce aprendeu até entao, dependende grandemente da veracidade daquelas
afirmacoes, que foram apresentadas como axiomas, mas nao o sao. Todas sao
passiveis de demonstragoes. Visando eliminar desestimulos, que surgem em
geral, decorrentes da pouca habilidade que tem o aluno, no inicio do curso,
para trabalhar com desmonstragoes matematica, optamos por assumir as pro-
priedades como verdadeiras (axiomas) e seguir demonstrando as demais pro-
priedades em Z a partir daqueles axiomas. Estamos agora preparados para
retornar aquela propriedades e provar as afirmacoes feitas no Capitulo 1.

Como em qualquer teoria axiomatica, precisamos de um ponto de par-
tida. O alicerce sao os axiomas de Peano, formulados pelo matematico ita-
liano Guiseppe Peano, em 1879. Peano assume a existéncia de um conjunto
satisfazendo certos axiomas, os quais caracterizam de forma rigoroza e precisa,
a idéia intuitiva que temos do conjunto dos nimeros naturais. Todas as de-
mais propriedades seguem desses axiomas. A partir da existéncia do conjunto
dos Naturais faremos entao a construcao do conjunto dos ntimeros inteiros
para enfim, mostrar todas as propriedades. Neste capitulo, estudaremoss as
Propriedades do conjunto N dos niimeros naturais e no proximo, faremos a
construcao do conjunto Z dos nimeros inteiros.

1 Os Axiomas de Peano

Na axiomatizacao de Peano sao dados como objetos nao definidos:

. um conjunto N, cujos elementos sao chamados niimeros naturais;
. uma fungao s : N — N.

A imagem s(n), de cada n € N, pela funcdo s é chamada o sucessor de
ne s(N) = {s(n) | n € N} é o conjunto imagem dessa fungao. Com essas

159



160 Teoria dos Numeros

notagoes, apresentamos abaixo os trés axiomas de Peano:

(Axioma 1): A funcao s é injetora, isto é, para quaisquer m,n € N:
m #n = s(n) # s(m).

(Axioma 2): ’ Existe 0 € N — s(N).
Principio da Indugao: Se X C N verifica simultaneamente as
duas condigoes:

: ' (1) 0 € X;

(Axoma 3): (77) Para todo n € N, temos a implica¢do: n € X = s(n) € X;

entao,
X =N.

O Axioma 1, diz que ntimeros naturais distintos tem sucessores distintos.
J& o Axioma 2, afirma que existe um nimero natural que nao é sucessor de
nenhum outro. Esse ntmero é reprentado pelo simbolo 0 e chamado zero.
Assim, 0 # s(n), para todo n € N. Por sua vez, o Axioma 3, diz que o tinico
subconjunto de N que contém 0 (zero) e o sucessor de todos os seus elementos,
é o préprio N.

A primeira vista, parece ter-se afirmado a existéncia de um tnico elemento
em N (Axioma 2). Porém, como s(N) C N, entao:

X = {0,5(0),5(s(0)), s(s(s(0))), s(s(s(s(0)))), .- },

¢ um subconjunto de N, o qual contém 0 e o sucessor de todos os seus elementos,
logo pelo Axioma 3, X = N. Assim,

N = {0,5(0), 5(s(0)), s(s(s(0))), s(s(s(s(0)))), .-}
Dos Axiomas 1 e 2, segue que esses elementos sao todos distintos.(Veja questao
01)

Denotaremos por N* o conjunto dos niimeros naturais sem 0, isto é,

N* =N — {0}.

Claramente, temos que N = s(N) U {0} e como 0 ¢ s(N), entao,
s(N) = N*,

Assim, para todo n € N*| existe n’ € N, tal que n = s(n').

2 Operacoes em N

Usando a funcao s, definem-se duas operagoes em N, chamadas de adi¢ao (+)
e multiplicacao (.).
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Adicao em N

Definicao 14. A adicao de m,n € N, denotada por m + n, € definida como
seque:

{ fnmzj:g(n) z Z(L;nJrn).

Como N* = s(N), dado m € N, a soma m + n, estd perfeitamente definida,
qualquer que seja n € N.

Antes de vermos alguns exemplos de uso da definida acima, definiremos o
sucessor de 0.

Definicao 15. O sucessor de 0 é chamado de um e denotado por 1, isto é€,
s(0) := 1.

Definem-se também:

s(1) :=2 (dois);
s(2) :=3 (trés);
s(3) :==4 (quatro);
s(4) :=5 (cinco);

e assim, sucessivamente. Dessa forma, temos agora,
N = {0, 5(0), 5(s(0), s(s(s(0))), 5(s(s(s(0)))), ...} = {0,1,2,3,4, ...}

Exemplos:
Usando a Definicao 14, temos:
(01)14+0=1,;

(02) 1+ 1 =1+ s(0) - pela Definicao 15
= s(1+0) - pela Defini¢ao 14
= 5(1) := 2 - pela Definigao 14.

(03) 2+1=2+s(0) = s(2+0) = 5(2) := 3.

(04) 344 =3+s(3) =
= s(s(s(3+1
)

sY = Iy (fungao indentidade de N)
Definindo ¢ s"=soso..os, paran=1,2,3,.. ,
e

nx
entao para quaisquer m,n € N, tem-se:

m+n=s"(m).
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Observe, que para todo m € N, tem-se:
m+1=m+s(0) =s(m+0) =s(m).
Assim,

s(m) =m+ L.

Propriedades da Adigao

A adicao definida em N tem as seguintes propriedades:

(A}]) Associativa:

(m4+n)+p=m+(n+p), Vm,npeN.

Demonstracao:
Sejam m,n € N fixados. Vamos mostrar a propriedade usando inducao em p.
Considere o conjunto:

X={peN|(m+n)+p=m+(n+p}

Para mostrar que X = N, portanto que a propriedade vale para quaisquer
m,n,p € N, é necessario mostrar que 0 € X e que temos a implicagao
pe X =s(p eX.

Pela Definicao 14, segue que:
(m+n)+0=m+n=m+(n+0)=0¢ecX.

Suponha agora p € X. Entao
m+ (n+s(p)) =m+s(n+p) - pela Definicao 14
= s(m+ (n+p)) - pela Definicao 14
= s((m +n) + p) - pela hipétese de indugao
= (m +n) + s(p) - pela Definigao 14.
Assim,
m+ (n+s(p)) = (m +n) + s(p) = s(p) € X.

Pelo Axioma 3, temos que X = N, conforme queriamos demonstrar. O

(A,) Existéncia de Elemento Neutro para Adigao:
Zero ¢ o elemento neutro da adigao, isto é, para todo natural m, tem-se:

m+0=m=0+m.

Demonstracao:



Teoria dos Numeros 163

A primeira identidade ja foi dada na Defini¢ao 14. Resta mostrar que
04+ m =m,VYm € N. Para tanto, considere o conjunto:

X={meN|0+m=m}
Como 0+0=0=0€ X. Por outro lado, se m € X, isto é, 0+m = m, entao
0+s(m)=s0+m)=s(m)=s(m)eX=X=N.

O

Obviamente, que 0 é o tnico elemento em N com essa propriedade, pois se
u € N, é tal que
u+m=m=m+u, VmeN,

entao teremos:
O=u+0=u.

Mostrando assim, que o elemento neutro da adicao é tnico.
(A}) Para qualquer m € N, tem-se:

m+1=1+m.

Demonstracao:
Considere o conjunto:

X={meN|m+1=1+m}.

Pela propriedade (A4), 0+1 =1=140= 0 € X. Se m € X, entao
m+1 =1+ m. Logo,

I4+s(m) = s(1+m) = s(m+1) = s(m+s(0)) = s(s(m+0)) = s(s(m)) = s(m)+1

= s(m) € X. Pelo Axioma 3, X =N, ouseja, m+1=14+m,VmeN. [O

Assim, para qualquer m € N, tem-se:

| s(m)=m+1=1+m. |

Na verdade, podemos estender a comutatividade dada em (Aj), para quais-
quer m,n € N.

(A}): Comutatividade:

m+n=n+m, Vm,néeN.

Demonstracao:

na identidade
u—+ 0 = u, us-
amos que u €
N e 0 é o el-
emento neutro
e u+0 = 0,
segue de 0 € N
e u ser o ele-

mento neutro.
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Sejam m € N fixadoe X ={n e N|m+n=n-+m}.
Suponha n € N, tal que m +n = n + m. Entéao,
m+s(n) =m+ (14+n) - pois, s(n) =n+1=1+n
— (m+1)+n - por (4)
— (1+m)+n - por (43)
=14 (m+n) - por (4))
=14 (n+ m) - pela hipétese de indugao
= (14 n) 4+ m - pela propriedade (A})
= s(n) +m. - pois 1 +n = s(n)
Assim, n € X = s(n) € X e pela Propriedade (A45), 0 € X. Consequente-
mente, X = N. 0

(AL) Cancelamento da Adigao:
Dados m,n,p € N, temos a implicacgao:

m+p=n-+p=m=n.

Demonstracao:
Dados m,n € N, considere:

X={peN|m+p=n+p=>m=n}.

Obviamente, 0 € X. E se p € X, entao,
m+s(p)=n+s(p)=m+(p+1)=n+(p+1)-poiss(p)=p+1

= (m+p)+1=(n+p)+1-por(A)

= s(m+p) = s(n+p) - por (4j)

= m+p=mn-+p- pois s é injetiva

= m = n - pela hipdtese de inducao.
Logo, s(p) € X. Portanto, X = N. O

v' Exercicios 40.

(01) Sejam m,n € N. Mostre que se m +n = 0, entdo m = n = 0.

Solugao:

Suponha, por absurdo, que m +n = 0, porém n # 0, isto é, n € N* = s(N) =
dn' € N, tal que n = s(n') = 0 = m+n =m+ s(n') = s(m+ n'), con-
trariando o Axioma 2. Assim, n = 0 e pela hipdtese e Definicao 14, temos
0=m+n=m+0=m. Portanto, m =n = 0. O

Multiplicacao em N

Definicao 16. A multiplicagao de m,n € N, denotada por m.n, € definida
como seque:

m.0 = 0
m.s(n) = mn+m.
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Quando necessario, usaremos apenas mn para o produto m.n.

Como N* = s(N), segue que estd operagao estd definida para quaisquer
m,n € N.

Exemplos:
Usando as Definicoes 16 e 14, temos:
(01) 2.0 = 0;

(02) 21 =2.5(0)=2.04+2=0+2=2;
(03)3.2=13.5(1) =3.1+3=3.5(0)+3 = (3.0+3)+3 = (0+3)+3 =3+3 = 6.

(04) 23=2.5(2)=22+2=25(1)+2=(214+2)+2=(2.5(0)+2)+2
=(204+2)+2)+2=(0+2)+2)+2)=(2+2)+2=4+2=6.

Propriedades da Multiplicacao

A Multiplicagao definida em N tem as seguintes propriedades:

(M]) Para m € N:
m.0=0.m =0.

Demonstracao:

Considere X = {m € N | m.0 = 0.m = 0}. Pela Definicao 16, ji temos que
m.0 = 0. Resta mostrar que 0.m = 0. Como, 0.0 =0=0¢€ X. Esem € X,
pela Definicao 16 e a hipdtese de inducao, temos:
0.s(m)=0m+0=04+0=0=s(m)e X =X =N O

(M}) Distributividade (a direita):

(m+n)p=mp+np, Vm,n,peN.

Demonstracao:
Sejam m,n € N fixados e considere X = {p € N | (m + n)p = mp + np}.
Como (m +n).0 =0 =m.0 + n.0, segue que 0 € X. Por outro lado, se p € N
é tal que (m + n)p = mp + np, entdo
(m+n)s(p) = (m+n)p+ (m+ n) - Defini¢ao 16

= (mp + np) + (m + n) - hipétese de indugao

= (mp +m) + (np + n) - propriedades (A}) e (A})

= m.s(p) + n.s(p) - Defini¢ao 16.
Portanto, p € X = s(p) € X. Assim, X = N. O
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(M3) Existéncia e Unicidade do Elemento Unidade:

ml=1m=m, VmeN.

Sendo 1 o unico elemento em N com esta propriedade.

Demonstracao:
Por (M), essa propriedade é vélida para m = 0. Além disso, pela Definigao
16 e (M7), para todo m € N, tem-se:

m.1 =m.s(0) =m.0+m=0+m=m.
Em particular, para m = 1, temos 1.1 = 1. Agora, se m € N é tal que
m.l=1m=m

entao,
Ls(m)=1m+1=ml+11=(m+1).1=s(m).l.

Portanto, essa propriedade vale para todo natural m.

Resta mostrar a unicidade. Se existe 1’ € N, tal que 1'.m = m.1" = m,
para todo m € N. Como 1,1’ € N, segue que 1 = 1.1 = 1'. O

(M}) Comutatividade:

mn=n.m, V,m,n¢&N.

Demonstracao:
Fixado m € N, seja n € N, tal que m.n = n.m. Usando (M}) e (M)) e a
hipétese de inducao:

m.s(n) =m.n+m=nm+ L.m=(n+1).m=s(n).m.

Assim, temos a implicacdo m.n = n.m = m.s(n) = s(n).m e como m.0 = 0.m,
segue a validade da propriedade para quaisquer m,n € N. O

Usando a comutivativa, podemos estender a distributividade para também
a esquerda, isto é, para todo m,n,p € N:

p(m +n) = pm + pn.

(M}) Associatividade:
(mn)p =m(np), Vm,n,p€N.

Demonstracao:
Sejam m,n € N fixados e considere o conjunto:

X ={peN|(mn)p=m(np)}



Teoria dos Numeros 167

Pela Definigao 16, temos:

(mn).0 =0=m.(n.0) =0 € X.

Além disso, por (Mj), temos que (mn).1 =mn =m(n.1) =1¢€ X.
Assim, se p € X, entdo (mn)p = m(np). Dai,
(mn).s(p) = (mn)p + mn - Definigao 16
= (mn)p+ (mn).1 - por (M})
m(np) + (mn).1 - hipétese de indugao
(np) +m(n.1)-1e X
(np + n.1) - pela distributividade
(n(p + 1)) -pela distributividade
(.

s(p)).

(mn).s(p) = m(n.s(p)) = s(p) e X = X =N.

I
3333

Assim,

3 Ordem em N

Definiremos agora uma relacao em N, que nos permite colocar os ntmeros
naturais em uma sequéncia, formalizando assim a idéia intuitiva que temos de
ordem nesse conjunto.

Definicao 17. Dados m,n € N, dizemos que m é menor do que ou igual a n,
simbolicamente escrevemos m < n, se existe p € N, tal que

n=m-+p.

Dizemos que m é (estritamente) menor do que n, e escrevemos m < n, se
m < n, porém m # n, isto é, existe p € N* tal que n = m + p.

Exemplos:

(01) 4 <6, pois 6 =4+ 2;

(02) 4 <4, pois 4 =4+ 0;
(03) 4 < 6, poisd=6+2e2#0.

v' Exercicios 41.

(01) Sejam m,n € N. Mostre que se m < n, entao m + 1 < n.
Solucao:
m<n=n=m+p,comp€N"=p=s(p)=p + 1. Assim,

n=m+@P+1)=m+1)+p =m+1<n.

Se m < n, diz-
se também que
n é maior do
que ou igual a

me.
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Propriedades da Relacao de Ordem em N

Vejamos algumas propridades que tem a relagao de ordem, definida acima.
A relacao <, definida em N, tem as seguintes propriedades:

(R]) Reflexiva:
Para qualquer m € N, tem-se

Demonstracao:
Comom=m+0=m<m. O

(R,) Antissimétrica:
Para quaisquer m,n € N tem-se:

m<n e n<m=m=n.

Demonstracao:

Sem<n=n=m-+p, p1 €N,

e

n<m=m=n+py ps €N.

Usando a propriedade (Af) e Exercicio 40, segue que: m = m + (p1 + p2) =
ptpe=0=pr=p=>m=n. O

(R}) Transistiva:
Para quaisquer m, n, p € N, tem-se:

m<n en<p=m<<p.

Demonstracao:

m<n=n=m+q, qg €N

e

n<p=p=n+q, ¢ €N.

Dai,

p=n+q@=mMm+q)+tae=m+(g+q)p<m O

Por possuir as propriedades (R}), (R}) e (R}), dizemos que < é uma relagao
de ordem em N e que N é um conjunto ordenado. Veremos que esta ordem com-
pativel com as operagoes definidas em N, conforme propriedade (R)) abaixo.

(R}) Monotonicidade:
Sejam m,n € N. Se
m<n,

entao, para qualquer nimero natural p, também temos:
(i) m+p<n+p;
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(17) mp < np.

Demonstracao:

Suponha m < n, entao existe h € N, tal que n = m + h. Segue dai que:
(i) (n+p)=m+p +h=>m+p<m+p

e

(17) np = (m + h)p = mp + hp = mp < np.

(R%) Tricotomia em N:

Para quaisquer m e n € N, verifica-se uma, e somente uma, das condigoes:
(i) m <m;

(17) m = n;

(i7i) n < m.

Demonstracao:

Inicialmente, vamos mostrar que quaisquer duas delas nao podem ocorrer si-
multaneamente. Por definigao, (i7) é incompativel com (i) e com (ii). Supon-
hamos que tenhamos as condigoes (i) e (7i7) simultaneamente, isto é, m < n e
n < m. Entao, existem p,p’ € N* tais que:

n=m+pem=n+p=m+0=m+(p+p)=0=p+p

Pelo Exercicio 40 acima, segue que p = p’ = 0, uma contradicdo. Assim,
quaisquer duas delas nao podem ocorrer simultaneamente. Resta mostrar que
uma delas sempre ocorre.

Considere m € N fixado e n arbitrario. Mostraremos, usando inducao em
n. Seja
X={neN|m<noum=noun<n}.

Como m € N ¢ arbitrario, entao
m=0 ou m#0=m=s(m')>0.

Logo, 0 € X.

Suponha agora, n € X = m < noum =mnoun < m. Vejamos o que pode-se
deduzir sobre s(n) em cada uma dessas situagoes:

(i) m <mn:

=3JpeN talquen=m+p=sn)=n+l=m+ (p+1)=s(n) >m;
(1) m = n:

= s(n) =s(m)=m+1=s(n) >m;

(1ii) n < m:

=dpeN. talquem=n+p. Comop#0=p=p +1
=m=Mn+1)+p =m=sn)+p = s(n)=m,sep =0ous(n) <m,se
P #0.

Assim, n € X = s(n) € X. Portanto, X = N. O
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Com uso da tricotomia, podemos também enunciar a propriedade do can-
celamento para a multiplicacao em N.

(Rf;) Cancelamento na Multiplicagao:
Sejam m,n,p € N. Se

mp =np, com p#0, entdo m = n.

Demonstracao:

Suponhamos que temos a identidade mp = np, porém m # n. Pela Tricoto-
mia, segue que m < noun < m. Como p # 0, segue que mp < np ounp < mp
(veja questao 16), contrariando a hipdtese. Assim, necessariamente, m = n.[]

4 Principio da Boa Ordem em N

Lembremos que sy é o elemento minimo de um subconjunto S C N, isto é,
so = minsS, se sg € S e sg < x, para todo x € S.

Exemplos:
(01) Considere S = {7,14,23,28,29,30,31...} C N.
Tomemos agora o conjunto:

X={neN|n<z VreS}={0,1,2,3,4,5,6,7}

X é um subconjunto préprio de N (isto é, X C N, porém X # N) que contém
0. Pelo Axioma 3, isso implica existir z € X, tal que s(z) ¢ X. No caso, esse
elemento é 7 e observe que 7 = minS.

(02) Seja S = {23,45,60,80,203} C N.

Tomemos agora o conjunto
X={neN|n<z VreS}={0,1,2,3,4,....,23}

Como 0 € X e X & N, entdo existe z € X, tal que s(z) € X. No caso,
x =23 =minS.

Vamos generalizar o que foi feito acima, para mostrar o Principio da Boa

Ordem em N.

Teorema 15. (Principio da Boa Ordem em N)
Todo subconjunto nao vazio de N tem elemento minimo.

Demonstracao:
Seja S um subconjnto nao vazio de N. Vamos mostrar que existe sg = min.S.
Como nos exemplos acima, vamos considerar o conjunto:

X={neN|n<z VreSs}
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S # (), logo existe s € S e como s < s+ 1= s+1¢ X. Por outro lado,
0 < x,Vxr € N, logo 0 € X. Assim, X é um subconjunto préprio de N
que contém 0. Pelo Axioma 3, deve necessariamente exitir so € X, porém
s(sp) = so + 1 ¢ X. Vamos mostrar que so = minS. De fato, com sy € X,
entao sg < z,Vx € S. Resta mostrar que sqg € S. Suponha, por absurdo,
que isso nao ocorra, isto é, sg € S. Neste caso, temos a desigualdade estrita
so < x,Vx € S. Pelo Exercicio 41, temos s + 1 < z,Vx € S = s(sg) € X,
uma contradicao. Assim, sy € S, sendo portanto so = minS. 0
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Lista de Exercicios 15.

(01) Moste que se os elementos do conjunto {0, s(0), s(s(0)), s(s(s(0))), ....} sao
todos distintos.

(02) Mostre que s(N) = N*.

(03) Mostre que para quaisquer m,n € N, a soma m + n estd perfeitamente
definida.

(04) Usando a Definigao 14, calcule:
)2+ 5;
)4+ 9;

(05) Mostre que para quaisquer m,n € N, tem-se, m + n = s"(m), onde
s¥ é a funcao identidade em N e paran =1,2,3,..., s" =so0s50...0s.
—

nx

(09) Mostre que para quaisquer nimeros naturais m e n > 1, tem-se m.n =
m4+m+...+m.

nx

(11) Mostre que para todo n € N, s(n) > 0.
(12) Sejam m,n € N. Mostre que m.n =0 = m =0 oun = 0.

(13) Mostre que para todo n € N, n > 0. Em particular, 1 > 0.
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(14) Mostre que s(n) > n, para todo n € N.

(15) Sejam m,n,p € N. Mostre que m < n, entdo m +p < n + p.

(16) Sejam m,n,p € N. Mostre que m < n e p # 0, entdo mp < np.

(17) Sejam m,n,p € N. Mostre que m +p < n + p, entao m < n.

(18) Sejam m,n,p € N. Mostre que mp < np e p # 0, entao m < n.

(19) Sejam m,n naturais. Mostre que m+n=1=m=1oun = 1.

(20) Sejam a € N e X C N. Mostre que se X satisfaz simultanecamente as

condicoes:
aceXexeX=s(x)e X, entdo X = {a,s(a),s(s(a)),...}.



Capitulo 16

A Construcao de Z

1 Introducao

Neste Capitulo faremos a construcao tedrica do conjunto Z dos numeros in-
teiros e entao provaremos as propriedades apresentadas, como axiomas, no
Capitulo 1.

A equacao
r+2=7

tem uma unica solucao no conjunto dos ntimeros naturais. Embora, a ”sub-
tragao” nao esteja definida em N, sabemos que a solucao é obtida, efetuando
a diferenca 7 — 2.

Por outro, a equacao
r+7=2

nao tem solugao em N. Nesse caso, a solugao (2 —7) ndo pertence ao conjunto
dos naturais. Nosso objetivo, é entao "ampliar”’o conjunto dos naturais, us-
ando tao somente o recurso teérico desenvolvido no capitulo anterior, para um
conjunto que contenha também as solugoes de equacoes desse tipo.

Generealizando, para cada par de ntimeros naturais (a,b), sabemos que a
solucao da equagao
r+b=a

é dada pelo "ntimero”a — b. Assim, para cada par de nimeros naturais (a, b),
podemos definir o niimero inteiro z(a,b) := a — b e o conjunto Z, dos nimeros
inteiros, por:

Z = {z(a,b) | a,b € N}

Essa estratégia apresenta dois inconvenientes a serem contornados:
(1) Existem infinitos pares de naturais (a, by ), (az, b2), (as, bs), ...., cuja diferenga
geram o mesmo inteiro z. Por exemplo, (7,2), (22,17), (5,0) representam o
mesmo inteiro. Logo, os elementos em Z nao sao todos distintos;
(77) A diferenga a — b nao foi definida em N;

174
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Para contornar o primeiro problema, podemos definir uma relacao de equiva-
léncia, de modo que todos os pares de nimeros naturais que gerem o mesmo
inteiro, pertencam a mesma classe de equivaléncia. E definimos o inteiro, nao
como a diferenca, e sim como a classe de equivaléncia, a qual conterd todos
os pares relacionados entre si. Desses modo, pares que geram o mesmo inteiro
serao visto como um tunico objeto. Assim, se a — b = ¢ — d, entao diremos
que (a,b) e (¢, d) estao relacionados pela relagdo em questao. Representando
a relacao por ~, podemos definir:

(a,b) ~ (¢,d) & a—b=c—d.
Por fim, precisamos eliminar dessa definicao a "diferenca”, por nao ser uma

operagao definida em N. Comoa —b=c—d < a+d = b+ c. Entao, diremos
que (a,b) ~ (¢,d) < a+ d = b+ c. Formalizaremos tudo a seguir.

2 A Relacao de Equivalencia em N x N

Definamos no conjunto N x N = {(a,b) | a,b € N} a seguinte relacao:

| (ab)~(cd)eat+d=b+c. |

Exemplos:
(01) (11,6) ~ (8,3), pois 11 +3 =6+ 8;
(02) (0,7) ~ (2,9), pois 0 +9 =7+ 2;
(03) (1,4) % (4,1), pois 1 +1 # 4+ 4.
A relagao definida acima tem as seguintes propriedades para quaisquer

(a,b), (c,d), (e, f) € Nx N:

(1) Reflexiva: (a,b) ~ (a,b).
Demonstracao:
Pela comutativade da adi¢do em N, temos a +b =0+ a = (a,b) ~ (a,b). O

(2) Simétrica: Se (a,b) ~ (¢,d) = (¢, d) ~ (a,b).
Demonstracao:
Se (a,b) ~ (¢e,d) = a+d=b+c=c+b=d+a= (c,d) ~ (a,b). O

(3) Transitiva: Se (a,b) ~ (c,d) e (¢,d) ~ (e, f), entao (a,b) ~ (e, f).
Demonstracao:

(a,b) ~ (c,d)=a+d=b+c

e

(c,d)~ (e, f) = c+ f=d+e.

Pela comutatividade e associativade em N, segue entao que

(a+d)+(c+f)=0b+c)+(d+e)=(a+[f)+(d+c)=(b+e)+ (d+c).
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Pelo cancelamento da adicao em N, obtemos:
a+ f=b+e= (a,b) ~ (e, f).

OJ

Fica dessa forma provada que ~ é uma relacao de quivaléncia em N x N.

3 Classes de Equivaléncia

Para cada (a,b) € N x N, denotaremos por (a,b), o conjunto de todos os
elementos de N x N, que estao relacionados com (a,b) pela relacao ~:

(a,b) :=={(c,d) e Nx N | (a,b) ~ (¢c,d)}.

(a,b) é chamado a classe de equivaléncia de (a, b) pela relagao de equivaléncia
~. Cada elemento desse conjunto é chamado um representante da classe.

Exemplos:

(01) (3,1)

(z,y) €N [ (3,1) ~ (2,9)} = {(z,y) EN* [ 34+ y =x+1}
(y+2, y)|y€N}—{( ,0),(3,1),(4,2),(5,3), . };

(z,y) € N*(2,7) ~ (z,y)}

{

{
(02) (2,7) = { =
{(z.5+1) | = € N} = {(0,5),(1,6),
{
{

(r,y) eN? |24y =T+ 2z}
(2

,7),(3,8),...}.

(z,y) eN?| (4,4) ~ (z,9)} = {(z,y) €N* [ 4 +y =4+ x}
(z,2) | € N} = {(0,0), (1,1),(2,2), (3,3), .. }.

(03) (4,4)

Como ~ é uma relagao reflexiva, entao para todo par (a,b) € N x N|
tem-se que (a,b) € (a,b). Assim, se (a,b) = (¢,d), entdo (a,b) ~ (c,d).
Reciprocamente, se (a,b) ~ (¢, d), entdo dado (x,y) € (a,b) = (z,y) ~ (a,b)
e como temos (a,b) ~ (¢, d), por transitividade, tem-se que (z,y) ~ (¢,d) =
(z,y) € (¢,d) = (a,b) C (¢,d). De modo andlogo, obtemos a inclusdo no
outro sentido. Portanto, temos um resultado analogo ao que foi obtido para a
relacao de congruéncia definida em Z, estuda no Capitulo 9:

(a,b) = (¢,d) < (a,b) ~ (c,d).

Na verdade, esse é um resulto valida em qualquer relacao de equivalencia:

] Classes de equivaléncia iguais <> seus representantes estao relacionados. ‘

Exemplos: Usando os exemplos anteriores, da observacao acima, temos que:
(01) (2.0) = (3. 1) = (4,2) = (200, 198);
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(02) (0,5) = (2,7) = (1,6) = ... = (314, 319);

(03) (0,0) = (1,1) = (4,4) = ... = (415, 415).

4 O Conjunto dos Numeros Inteiros

O Conjunto de todas as classes de equivaléncia, pela relacao ~, é denotado
por Z e chamado o conjunto dos niimeros inteiros. Entao, por definicao,

7 :={(a,b) | a,b € N}.

Dessa forma, cada numero inteiro o € Z é na verdade uma classe de
equivaléncia, isto €,

a:=(a,b) = {(r,y) ENxN|a+z=b+y}

sendo portando, um conjuto de pares ordenados de niimeros naturais.

A construcao de Z foi pensado como uma extensao de N. Porém, esses con-
juntos tem objetos de naturezas distintas. A préxima proposicao mostra como
podemos associar a cada nimero natural m uma tnica classe de equivaléncia
em Z, e assim "enxergar” N como subconjunto de Z.

Proposicao 20. A funcao f: N — Z, definida por:

é injetora.

Demonstracao:
Sejam mq, my € N, tais que:

f(my) = f(mg) = (my,0) = (m2,0) = (mq,0) ~ (Mg, 0) = my+0 = 0+my = my

Logo, f é injetora. O

A imagem de f é o conjunto:

f(N) ={(m,0) | meN} CZ.

E como f é injetora, entao a restricao f : N — f(N) é uma bijecao, logo temos
que N ~ f(N) C Z. Assim, por meio da identificao

m <> (m,0)

podemos pensar N como um subconjunto de Z. A funcao f, definida na
proposicao acima, é chamada imersao de N em Z.

o Simbolo
Z vem da
palavra alema
Zahl, que
significa

numero.

= M.
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Exemplos:

Com a identicacao acima tem-se que:

. 0 corresponde ao inteiro (0,0) = {(m,m) | m € N};

. 1 corresponde ao inteiro (1,0) = {(m + 1,m) | m € N};

. 7 corresponde ao inteiro (7,0) = {(m + 7, m) | m € N}.

No geral, para a € N, usaremos
a para representar o inteiro (a,0) = {(m + a,m) | m € N}.

5 Operacoes em 7

Definiremos agora duas operagoes Z, uma adigao (+) e uma multiplicacao (.).

Adicao em Z

Definigao 18. Dados (a,b), (¢,d) € Z, definimos a soma (a,b) + (b,¢) como
abaizo:

(a,b) + (¢,d) = (a + ¢, b+ d).

Exemplos:
(01) (3,4) +(9,2) = (12,6);
(02) (10,11) 4+ (15,8) (25,19);
(03) (3,3) + (14,3) = (17, 6);
(04) (5,2) +(2,5) = (7,7).
Uma vez que a classe representante da soma é obtida operando-se com os

representes tomados para as classes, precisamos garantir que essa operacao
estd bem definido, isto é, independe do representante escolhido para a classe.

Proposicao 21. Sejam a,a’,b,V,c,d,d,d € N. Se
(a,b) = (a/,b) e (¢,d)=(c,d),

entao
(a,0) + (c,d) = (o', V) + (¢, d).
Demonstracao:
(a,b) = (a',b') = (a,b) ~ (d/, V) =a+b =b+d
e

(c,d) = (c,d') = (¢,d) ~ (d,d)=c+d =d+ .
Segue dai, que:

(a+V)+(c+d)=(b+d)+ (d+).
Pela comutatividade e associatividade da adigao em N, tem-se:

(a+c)+ (W +d)=(b+d)+ (d+)
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I (pela definigao de ~)

(a+c,b+d)~(a+,0+d)

Il (elementos relacionados, classes iguais)

(a+c,b+d)=(a+,0V+d)
J  (Defini¢ao 18)

(a,b) + (¢, d) = (a',0) + (¢, d").
O

Veremos que a funcao imersao definida na Proprosicao 20 preserva a soma,
conforme dado na proposicao a seguir.

Proposicao 22. Considerando a funcdao imersao f : N — Z, definida na
Proposicao 20, para quaisquer mq, ms € N, tem-se:

f(my +my) = f(my) + f(my)

Demonstracao:
De fato, dados my, ms € N, entao

f(my +mgy) = (my1 +my,0) = (my1,0) + (m2,0) = f(m1) + f(ma2).

Propriedades da Adicao em Z

A adicao definida em Z tem as seguintes propriedades:

(A1) Comutativa:
Para quaisquer a e 8 € Z, tem-se:

a+pB=0+a.

Demonstracao:
Sejam « = (a,b), = (¢,d) € Z. Usando a a comutatividade da adigao em N,

temos:

a+p=(a,b)+ (c,d)
a+c,b+d
c+a,d+0b
c,d) + (a,b)

+ «.

I
|~ | —
N— [—

I
\QA
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(A2) Associativa:
Para quaisquer «a, e v € Z, tem-se:

(a+B)+y=a+(B+7).

Demonstracao:

Sejam a = (a,b), 8 = (c,d) e v = (e, f) € Z. Usando a associativada e a
comutatividade da adi¢ao em N, temos:

(a+p)+~=((ab)+(cd)+(ef)

=(a+c,b+d)+ (e, f)

= ((a+c¢) +e, (b+d)+f)

(a+ (c+e),b+ (d+ f))

(aa b) + ((c+e),(d+ [))

a,b) + ((c,d) + (e, f))

a+(8+7). O

(A3) Existencia e Unicidade do Elemento Neutro da Adigao:
A classe 0 = (0,0) € Z é elemento neutro da adigao, isto é, para qualquer
a € 7, tem-se:

a+0=oqa.

Demonstracao:
De fato, como 0 é o elemento neutro da adi¢ao em N, entao dado a = (a,b) € Z:

a+0=(a,b)+(0,0)=(a+0,b+0) = (a,b) =

O

A demonstracao da unicidade é analoga aquela feita para a adi¢cao em N. [

(A4) Existéncia e unicidade do oposto:
Para todo a € Z, existe um unico § € Z, tal que

a+ 3 =0.

Demonstracao:
Dado a = (a,b) € Z, tomando § = (b,a) € Z, temos:

a+p=(a,b)+ (bya) = (a+b,b+a)=(0,0) =0.

Se B e [/ € Z sao tais que a + § = o+ [/ = 0, segue das propriedades
(A1), (A2) e (A3) acima que:

B=B+0=F+(+p)=(B+a)+f =0+5 =7
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Assim, dado a € Z, existe um tnico 3 € Z, tal que a+ = 0. O inteiro
é chamado o oposto, (simétrico ou inverso aditivo) de a e denotado por —a.
Assim, para qualquer a € Z, tem-se:

a+(—a)=0.

(A5) Cancelamento da adigao em Z:
Para quaisquer «, 3,7 € Z, temos a implicacao:

a+y=0+v=a=00.

Demonstracao:
Sejam « = (a,b), f = (¢,d) e v = (e, f) € Z. Entao:
a4y 5+7$(a,b) (e, f; ¢,d) + (e, f)

d) +
c+e,d+ f) - Defini¢ao 18
c+e,d+ f) - classes iguais, representantes
relacionados
= (a+e)+(d+ f) = (b+ f)+ (c+e) - definicao da relagao ~
=(a+d)+(e+f)=(b+c)+(e+ f)-por (M'1)e (M5) em N
= a+d = Db+ c - cancelamento da adicao em N
= (a,b) ~ (¢, d) - defini¢ao de ~
= (a,b) = (c,d) - elementos relacionaos, classes iguais
=a=0. O

++

Multiplicacao em 7

Defini¢ao 19. Dados (a,b),(c,d) € Z definimos o produto (a,b).(b,c) como
abaizo:

(a,b).(c,d) = (ac + bd, ad + bc).

Exemplos:

(01) (3,4).(9,2) = (3.9+4.2,3.2+4.9) = (35, 42);

(02) (10,11).(15,8) = (10.15 4 11.8,10.8 + 11.15) = (238, 245);
(03) (3,3).(14,3) = (3.14 + 3.3,3.3 + 3.14) = (51, 51);

(04) (5,2).(4,3) = (5.4 +2.3,5.3+2.4) = (26,23).

Mostraremos agora que a multiplicagao definida acima, independe do rep-
resentante escolhido para a classe.

Proposicao 23. Sejam a,a’,b,V,c,d,d,d € N. Se

(a,b) = (a/,b) e (¢,d)=(c,d),

entao

(a,b).(c,d) = (a',0).(c, d").
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Demonstracao:
Da hipétese (a,b) = (a/, V) e (¢,d) = (¢, d’), obtemos as identidades

a+b =b+d (16.1)
e

c+d =d+¢ (16.2)

Multiplicando (16.1) por ¢ e por d obtemos as equagoes:
ac+bc=bc+dc e ad+bd=>bd+dd
De onde segue, que:
(ac+b'c)+ (bd+ d'd) = (be+ d'c) + (ad + b'd)

ou ainda,

(ac+bd) + (b'c+d'd) = (ad + be) + (a'c + V' d) (16.3)
Multiplicando agora (16.2) por ¥’ e depois por a’, obtemos as equagdes:
Ve+Vd =Vd+UVd e dce+dd =dd+dd
E dai, segue:
(be+Vd)+ (dd+dd)y=Wd+b)+ (de+dd)
ou ainda,
(Ve+dd)+ (dd +0d) = (de+Vd)+ (b'd + dd) (16.4)
Somando as equagoes (16.3) e (16.4) obtemos:
[(act+bd)+(b' cta'd)|+[(d' c+V' d)+(V ' +d'd')| = [(ad+be)+(a'c4+b'd)|+[(V e+d'd)+(a' +b'd')]
usando a comutatividade e associatividade em N:
(ac+be)+(d'd+b' ) +[(d c4+b'd)+(V etd'd)] = (ad+be)+(a'd+V'd')+[(a' c+b d)+(V e+d'd)]
Pelo cancelamento da adicao em N, obtem-se:
(ac+be) + (d'd + ') = (ad + be) + (a'd +b'd)
¢

(ac+ be,ad + be) ~ (a'd +0'd d'd + V')

<:/-\

(ac+ bd, ad + bc) =

—~

alcl _|_ b/d/’ a/d/ + b/cl)

=

(a,b).(c,d) = (a',0).(c, d).
0J

A proxima proposicao mostra que a fungao imersao f : N — Z também
preserva o produto.
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Proposicao 24. Considerando a funcdao imersao f : N — Z, definida na
Proposicao 20, para quaisquer my, mo € N tem-se:

f(mimg) = f(m).f(ma)

Demonstracao:
Se mq, mo € N, entao
f(my.msg) = (mymso,0) = (myms + 0,0 + 0)
= (mlmg -+ OO, m1.0 + Omg) = (ml, O).(mg, O) = f(ml)f(mg) ]

Propriedades da Multiplicagcao em Z

A Multiplicacao, definida em Z, tem as seguintes propriedades:

(M1) Associativa:
Para quaisquer «, 8 e v € Z, tem-se:

(aB)y = a(B).

Demonstracao:
Sejam o = (a,b), B = (¢,d) e v = (e, f) € Z. Usando a associativada ¢ a
comutatividade da adicao em N, temos:
(aB)y = ((a,0) (¢, d)).(e, [)

= (ac+ bd,ad + bc).(e, f)
(ac + bd)e + (ad + be) f, (ac + bd) f + (ad + be)e
(ace + (bd)e + (ad)] + () (@) + () +

—

)

= ( d)e + (be)e)

— ((alce) T aldf)) + (blde + bleh), (a(ch) + alde)) + (B(df) + b(ee))

= (a(ce + df ) + b(cf + de),a(cf + de) + b(ce + df))

= (a,b).(ce + df), (cf + de)

= \a, b)((cv d)'<€a f))

= a(f7). O

(M2) Comutativa:
Para quaisquer «, § € Z tem-se:

af = Ba.

Demonstracao:

Sejam a = (a,b) e 8 = (¢,d) € Z. Entao

af = ((a,b).(c,d)) = (ac+ bd,ad + bc) = (ca + db,cb+ da) = (¢,d).(a,b) =
Ba. O

(M3) Existéncia e Unicidade do Elemento Unidade:
A classe 1 = (1,0) é o elemento neutro da multiplicagao, isto é, para todo
a € 7, tem-se:

a.l = a.
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Demonstracao:

Para o = (a,b) € Z, temos:

a.l=(a,b).(1,0) = (a.1 +b.0,a.0+b.1) = (a,b) = .

Mostra-se também que 1 = (1,0) é o tnico elemento em 7Z com esta pro-
priedade, sendo chamado o elemento unidade de Z. 0

(M4) Cancelamento da Multiplicagao em Z:
Sejam «, 3,7 € Z.

Se ay=pve~y#0,entao o= 0.

Demonstracao:

Sejam o = (a,b), B = (c,d) e vy = (e, f) € Z, comy # 0. Se
ay = py = (ae +bf,af + be) = (ce + df,cf + de)
= (ae +bf,af + be) ~ (ce + df,cf + de)
= (ae+bf) + (cf + de) = (af + be) + (ce + df)
= (a+de+(b+c)f=0b+cle+ (a+d)f.

Como v = (e, f) # (0,0) = e # f. Logo, pela Tricotomia em N, e < f ou
f < e. Suponhamos e < f = f = e+ h, para algum h € N*. Dai, temos:
af=ay= (a+de+ (b+c)le+h)=(b+cle+ (a+d)(e+h)
= (a+de+ (b+cle+(b+c)h=((b+c)e+ (a+de+ (a+d)h
= (b+c)h=(a+d)h
= (b+c)=(a+d) = (a,b) ~ (c,d) = (a,b) = (¢,d) = a=p. O

(M5) Distributividade:
Para quaisquer «, 8,7 € Z, tem-se:

a(f+7) =ab +ay.

Demonstracao:

= (a,b).(c+ e,d+ f) - Defini¢ao 19
= (alc+e)+bld+ f),a(d+ f) + b(c+ e)) - Defincao 19
= (ac+bd) + (ae + bf), (ad + bc) + (af + be)) - Por (M1),(M2) e

= (ac + bd,ad + bc) + (ae + bf,af + be) - Definicao 18
= (a,b).(c,d) + (a,b).(e, f) - Definigao 19
=af + ay. O
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6 Relacao de Ordem em Z

Analogo ao que fizemos no conjunto dos naturais, definiremos uma relacao em
7., a qual permite comparar dois inteiros o e  quaisquer.

Definigao 20. Dados inteiros a = (a,b) e = (¢, d), dizemos que a € menor
do que (3, indicado por a < 8, se a+d < b+ ¢, isto €,

(a,b) < (c,d) ©a+d<b+ec.

E dizemos que « é (estritramente) menor do que f3, indicado por o < 3, se
a < (B, porém « # 3, isto é,

(a,b) < (c,d) e a+d<b+ec

Exemplos:
(01) (5,2) < (10,
() (I5.10)< 9
(03) (5,10) < (3

3), pois 5 + 3 < 2+ 10;
,1), pois 18 +1 =10+ 9;
(3,3), pois 5+ 3 < 10 + 3.

A proxima proposicao mostra que a relacao <, definida acima, independe
do representante escolhido para a classe, portanto, esta bem definida.

Proposicao 25. Sejam a,a’,b,V,c,d,d,d € N. Se

(a,b) = (a',b) e (c,d)=(c,d),

entao
(a,0) < (c,d) = (V) < (¢, ).
Demonstracao:
(a,b) = (a',b) = (a,b) ~ (d', V) =a+b =b+d
e

(c,d) = (c,d") = (¢,d) ~ (d,d)=c+d =d+ .

E dai, obtemos (a+d) + (' +) = (b+c¢)+ (d' + d').

Entao se, (a,b) < (¢,d) = a+d<b+c= (b+c¢)=(a+d)+ h, para algum
h € N. Dali,

(a+d)+ ' +) = (b+c)+(d+d) = (a+d)+ (V' +) = (a+d)+ (d'+d)+h
e pelo cancelamento em N, obtemos:
O+d)=(+d)+h=d+d<V+= (V) <(d). O
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Propriedades da Relacao de Ordem em 7Z

A relagao <, definida em Z, tem as seguintes propriedades:

(R1) Reflexiva:
Para qualquer a € Z, tem-se

Demonstracao:
Seja a = (a,b) € Z. Comoa+b=b+a= a < a. O

(R2) Antissimétrica:
Para quaisquer «, 8 € Z tem-se:

a<p e f<a=a=0.

Demonstracao:

Sejam a = (a,b) e B = (c,d) € Z. Se,
a<f=a+d<b+c=(b+c)=(a+d)+hy, h €N;

e

f<a=b+c<a+d= (a+d)=(b+c)+ ha, hy €N.

Segue dai, que
(b—|—0):(b+0)+(h1+h2):h1+h2:Oihlzhgz()#a—f—d:b—f—cﬁ
(a,b) ~ (¢,d) = (a,b) = (¢,d) = a = 0. O

(R3) Transistiva:
Para quaisquer «, (3, v € Z, tem-se:

alp ef<y=>a<ly.

Demonstracao:

a<p=((b+c)=(a+d)+h,heN

(&

f<~v=(d+e)=(c+ f)+ hs, hy €N.

Dali,

(b+c)+(d+e)=(a+d)+(c+ f)+ (hy+ ho)

= (b+e)+(c+d)=(a+ f)+ (c+d)+ (hy + hy)

= (b+e)=(a+ f)+ (h1 + he)

=a+f<bt+e=a<n. O

De (R1), (R2) e (R3), segue que < é uma relagao de ordem em Z, logo Z é
um conjunto ordenado. Esta ordem é compativel com as operacoes definidas
em Z, conforme propriedade (R4) e (R5) abaixo.

(R4) Monotonicidade da Adigao:
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Sejam «, f € Z. Se

para qualquer v € Z, temos

Demonstracao:

Sejam « = (a,b), f = (¢,d) ey = (e, f) € Z, com o < 5. Entao

(a,0) < (c,d)=a+d<b+c=(a+d)+(e+[f)<(b+c)+(e+ )

= (ate)+(d+f)<(b+f)+(c+e)

= (at+e,b+ f)<(c+ed+ f)

= (a,b) + (e, f) < (e;d) + (e, [) = a+y < B+1. O

a
a

(R4) Monotonicidade Multiplicagao:
Sejam «, 3,7 € Z. Se

a < f,

para qualquer v > (0,0) em Z, tem-se:
ay < .
Demonstracao:

Sejam «a = (a,b), f = (c,d) ey = (e, f) € Z, com a < [evy>(0,0). Entao
(a,b) < (c,d) =a+d<b+c= 3peN, tal que:

(b+c¢) = (a+d)+p. (16.5)
Multiplicando (16.5) por e, e posteriormente por f, obtemos as equagoes:
(a+de+pe=(b+cle e (b+c)f =(a+d)f +pf.
Somando essas duas equacoes obtem-se:

(a+d)e+ (b+c)f +pe=(a+d)f+(b+c)e+pf (16.6)

Agora, como (0,0) < (e, f) = f <e=e= f+q, ¢ € N. Multiplicando essa
equagao por p, tem-se:
pe =pf+pq

Substituindo esse valor em(16.6):
(a+de+(b+c)f+pf+pg) =(a+d)f+ (b+cle+pf
Pelo cancelamento da adicao em N, ficamos com:

(a+d)f+(b+ce=(a+de+ (b+c)f +pg
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(a+de+(b+eo)f <(a+d)f+ (b+c)e

4
(ae+bf)+(cf+de) < (af+be)+(ce+df) = (ae+bf,af + be) < (ce + df,cf + de)
\

(a,0).(e, f) < (¢, d).(e, [) = ay < Br.
UJ

Por fim, veremos que a fun¢ao imersao f : N — 7Z também preserva a
ordem definida em Z.

Proposicao 26. Considerando a funcdao tmersao definida na Proposicao 20,
para quaisquer my, mo € N tem-se a implica¢ao:

my < mg = f(my) < f(my).

Demonstracao:
Semy <mg=m;+0<0+my= (my,0) < (mg,0) = f(my) < f(mg). O

7 Inteiros Positivos e Negativos

Proposicao 27. Para todo o € Z, temos uma, e somente uma, das afirmacoes:
(1) a < 0

(17) a =0;

(13i) a > 0.

Demonstracao:

Segue diretamente da Tricotomia em N, pois, se @ = (a,b) € Z, pela tricotomia
em N, ocorre uma e somente uma, das condigoes:
(iJ)a<b=>a+0<b+0= (a,b) <(0,0) = a <0;

(i) a=b=>a+0=0b+0= (a,b) =(0,0) = a=0;

(i) b<a=b+0<a+0=(0,0) < (a,b) = a>0. O

Como consequéncia da proposiao acima e da Tricotomia em N, segue a
tricotomia em Z.

Corolario 11. (Tricotomia em Z)

Dados o, B € Z ocorre uma, e somente uma, das afirmacoes:
(i) o < B

(i) o = B;

(iii) o > B.
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Demonstracao:

Considere v = a + (—f) € Z. Com o uso das propriedades (R3) e (R4), segue
que ocorre uma e somente uma das condicoes:
()y<0=>a+(-p)<0=>a<p;

(i) y=0=a—-F=0=>a=70;

(iii) y<0=>a—-F>0=[0<a. O

Definicao 21. Diz-se que um inteiro o € 7 é:
(1) positivo, se a > 0;

(i1) nao negativo, se a > 0;

(1ii) negativo, se o < 0

(1v) ndo positivo, se a < 0.

Denotaremos por:
Z - o conjunto dos inteiros nao negativos;
Z_ - o conjuntos dos inteiros nao positivos;
7% - o conjunto dos inteiros positivos;
Z* - o conjunto dos inteiros negativos;

Vamos agora caracterizar os inteiros positivos, isto é, descrever o conjunto
7. Se a = (a,b) € Z* , entdo o > 0. Assim, temos:
(0,0) < (a,b) =0+b<0+a=a=b+m, meN

=a+0=b+m= (a,b) ~(m,0) = (a,b) = (m,0), com m € N*.

Reciprocamente, para cada m € N*, temos:
0+0<m+0=(0,0) < (m,0) = (m,0) € Z.
Assim,

7' = {(m,0) | m € N*}.

Analogamente, se « = (a,b) € Z* , entao a < 0. Dai,

(a,b) < (0,0) =>a<b=b=a+m, me N

=a+m=b+0= (a,b) ~ (0,m) = (a,b) = (0,m), com m € N*.
De modo reciproco, para cada m € N*, tem-se,

0+0<m+0= (0,m) < (0,0) = (0,m) € Z*.

Portanto, o conjunto dos inteiros negativos ¢ dado por:

z* = {{(0,m) | m € N*}.

Da Proposicao 27, segue que:
Z=7" U{0}UZ

ou seja,

Z = {(0,m) | me NYU{{0,0)} U{(m,0) | me N}, (16.7)

sendo essa uniao disjunta.

Podemos agora demonstrar que o conjunto Z, ¢é fechado com relacao as
operacoes definidas em Z.
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Proposicao 28. Para quaisquer o, 8 € Z7, temos:
(i) a+ B eZ;
(it) .8 € L7 ;

Demonstracao:
Pelo exposto acima, se o, 3 € Z7, entao existem my,my € N*, tais que

a = (my,0) e 8= (my,0). Dai,
(’L) Oé+5:<m1+m2,0) EZ: (§]
(i) a.p = (my.mo,0) € Z7.. O

Proposicao 29. Z ¢ sem divisores de zero, isto €, para quaisquer o, 3 € 7,
se a.p =0,e ntao a =0 ou B =0.

Demonstracao:

Sejam «, 8 = (a,b) € Z, para os quais temos .5 = 0. Se a = 0, nada ha a
demonstrar. Suponha « # 0. Pela Proposigao 27, temos dois casos possiveis:

(i) « < 0= a=(0,m), para algum m € N*. Assim,

a.f =0 = (0,m).(a,b) = (mb,ma) = (0,0) = ma = mb = a = b, pois
m # 0. Assim, f = (a,a) = 0;

(171) @ > 0 = a = (m,0), para algum m € N*. Assim,

a.f =0 = (m,0).(a,b) = (ma,mb) = (0,0) = ma = mb = a = b, pois
m # 0. Assim, = (a,a) = 0. O

Dado m € N, ja vimos que o oposto do inteiro o = (m,0) € Z é a classe
—a = (0,m). Usando a identificagdo dada pela fungao de imersao:

m < (m,0)

obtemos:

—m= _<m7 0) = (O7m)
Com esta identificagao, (16.7) fica:

Z={-m|meN}u{otu{m|meN}={. -3-2-1,0123, ...}

coincidindo com a notagao usual. Além disso, dados a,b € N, temos:

a—b=a+(-b) =(a,0)+ —(b,0) = (a,0) + (0,b) = (a,b).

Dessa forma, identitificamos a classe (a,b) com o inteiro obtido pela diferenca
a — b, conforme usado para na definicao da equivaléncia ~ .

8 Principio da Boa Ordem em 7Z

Dizemos que X C Z é limitado inferiormente, se existe n € Z, tal que

n <z, paratodo =€ X.
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Todo n € Z que satisfaz a condicao acima é dito uma cota inferior de X.

Exemplos:

(01) X = {4,8,12,16,20, ...} é um subconjunto nao vazio de Z, limitando in-
feriormente. Claramamente vemos que 4 = minX. Vejamos, um algoritmo
que nos permite determinar esse elemento minimo, usando o Principio da Boa

Ordem em N.

Comecemos tomando uma cota inferior qualquer de X. Observe que tal
cota existe, pois X ¢ limitado inferiormente. Por exemplo, n = 1 é um cota
inferior de X, pois 1 < z, para todo z € X. Agora, consideremos o conjunto
X', abaixo definido:

X ={e—nlreX}={r-1|zeX}={3,711,1519,...}

Como X # 0 e 1 < x para todo z € X, X’ é um subconjunto nao vazio de
N, logo, pelo Principio da Boa Ordem, X’ tem elemento minimo, isto é, existe
m’ = minX. Neste caso, m’ = 3. E observe que, 4 = minX =m' + n.

(02) X ={-7,-1,0,1,21,22,23,...} é um subconjunto nao vazio de Z, limi-
tando inferiormente. Claramamente, vemos que —7 = minX. Vamos usar o
mesmo processo acima, para chegar a esse elemento minimo.

Tomemos uma cota inferior qualquer de X, por n = —10 e construamos o
conjunto:

X' ={zx—n|lrzeX}={r+10]|z€ X} ={3,9,10,11,31,32,33, ...}

X’ é um subconjunto nao vazio de N, logo, existe m’ = minX = 3. E também
temos que, —7 = minX =m' +n

Vejamos a generalizacao desse processo na demonstracao do préximo teo-
rema.

Teorema 16. (Principio da Boa Ordem em Z)
Todo subconjunto nao vazio de Z, limitado inferiomente, tem elemento minimo.

Demonstracao:
Seja () # X C Z, limitado inferiormente. Entao, existe n € X, tal que n < x,
para todo x € X. Consideremos o conjunto:

X' ={x—nl|zeX}

Claramente, () # X’ C N e pelo Principio da Boa Ordem em N, existe

m =minX' =m'e X em <2,Vi’' € X'. Comom’ € X' = m' =z —n,
para algum z € X. Vamos mostrar que m := m’ 4+ n é o elemento minimo de
X. De fato,

m=m'+nem'=r—n=m=(r—-—n)+n=x¢€ X;

.m/ < 2, paratodo '’ € X = m' <z —-—nVere X = m+n <z,
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Vee X =>=m<x, Vre X;
Portanto, m = manX. (]

Corolario 12. Nao existe x € Z, tal que 0 < x < 1.

Demonstracao:

Seja X = {zr € Z | 0 < z < 1}. Claramente, X é um subconjunto de Z,
limitado inferior. Se X # (), entao pelo principio da Boa Ordem em Z, existe
ro = min X. Entao,

ToEX=0<mp<1 = 039 <070 <z0.1=0<ai<m9<1=2]€X.

Xxo

Uma contradigao, pois x5 < zo = min X. Logo X = .
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