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2 Demonstração por Indução Matemática . . . . . . . . . . . . . . 14
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Prefácio

Este livro foi escrito para servir como material de apoio na disciplina Teoria dos
Números, do Curso de Licenciatura em Matemática da UFPA, que atende ao
alunos do PARFOR - Plano Nacional de Formação de Professores da Educação
Básica, projeto que visa consolidar a formação acadêmica dos professores que
ainda não tem graduação universitária, ou são graduados, mas atuam em áreas
distintas de sua formação acadêmica.

O objetivo do livro é fornecer ao estudante as primeiras noções de Teoria dos
Números, área da Matemática que estuda as propriedades dos números inteiros.
São apresentadas no texto as propriedades que decorrem da estrutura de anel
que Z possui, quando munido das operações de adição e multiplicação. Os
conceitos e propriedades apresentados são, em sua grande maioria, os mesmos
que o aluno-professor ministra no ensino fundamental e médio. O diferencial
está no ńıvel de abordagem e no rigor matemático, com as devidas justificativas
e demonstrações de todas as afirmações feitas.

Na medida do posśıvel, procuramos usar uma linguagem menos formal.
Muitos teoremas são enunciados e demonstrados, dialogando-se com o leitor,
de modo a conduzi-lo aos resultados desejados, sem menção das palavras Teo-
rema - Demonstração, por vezes tão temı́veis. No final de cada caṕıtulo, apre-
sentamos uma lista de exerćıcios. Optamos por exerćıcios com um baixo grau
de dificuldade, os quais tem como objetivo principal o entendimento dos con-
ceitos e resultados apresentados e, em algumas situações, conduzir o estudante
a antecipar resultados em vêm à frente.

A experiência tem mostrado, que a pouca habilidade que tem o estudante,
no ińıcio da graduação, para entender e construir demonstrações matemáticas,
acaba por tornar extremamente confuso e improdutivo, o curso de Teoria dos
Números, quando este começa demonstrando as propriedades elementares de
Z, as quais são o alicerce de toda a teoria que segue. Assim, assumimos no
Caṕıtulo 1, um conjunto de propriedades como verdadeiras (onze axiomas)
e, nos treze caṕıtulos subsequentes, seguimos demonstrando as demais pro-
priedades dos inteiros. Levando dessa forma, o aluno a familiarizar-se grada-
tivamente com as demonstrações matemáticas. Nos dois caṕıtulos finais, 15 e
16, retornamos para demonstrar as afirmações feitas inicialmente. No Caṕıtulo
15, estudamos os Números Naturais, a partir da axiomatização de Peano. Por
fim, no Caṕıtulo 16, fazemos a construção de Z a partir de N, e demonstramos
todas as propriedades apresentadas como axiomas no Caṕıtulo 1.



Caṕıtulo 1

O Anel dos Inteiros

Ao longo de todo este texto denotaremos por Z o conjunto Usaremos o

śımbolo :=

para indicar

que a identi-

dade define

o objeto.

Por exemplo,

a := b, indica

que a é igual

a b, por

definição.

Z := {...,−3,−2,−1, 0, 1, 2, 3, ...},

cujos elementos são chamados números inteiros. Nesta disciplina estudare-
mos eminentemente propriedades dos números inteiros.

Em Z estão definidas duas operações:
(i) adição: que associa a todo par (a, b) de números inteiros, a soma a+b ∈ Z;
(ii) multiplicação: que associa a todo par (a, b) de números inteiros, o pro-
duto a.b ∈ Z.

Em geral, representaremos o produto a.b apenas por ab.

O conjunto Z, juntamente com essas duas operações, tem algumas pro-
priedades, apresentadas aqui como axiomas, isto é, assumiremos tais pro-
priedades como verdadeiras, não sendo necessário demonstrá-las.

Axiomas da Adição:

(A1) A adiçao é comutativa, isto é, para quaisquer a, b ∈ Z, tem-se:

a+ b = b+ a.

(A2) A adiçao é associativa, isto é, para quaisquer a, b, c ∈ Z, tem-se:

(a+ b) + c = a+ (b+ c).

(A3) Existência e unicidade do elemento neutro da adição:
Para qualquer a ∈ Z, tem-se:

a+ 0 = a.

Em função dessa propriedade, 0 (zero) é chamado o elemento neutro da
adição e o único elemento em Z que tem essa propriedade.
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(A4) Existência e Unicidade do Oposto:
Para cada inteiro a, existe um único inteiro, denotado por −a, chamado o
oposto ou inverso aditivo de a, de modo que:

a+ (−a) = 0.

Axiomas da Multiplicação:

(M1) A multiplicação é comutativa, isto é, para quaisquer a, b ∈ Z:

ab = ba.

(M2) A multiplicação é associativa, isto é, para quaisquer a, b, c ∈ Z:

(ab)c = a(bc).

(M3) Existência e unicidade do elemento unidade:
Para qualquer a ∈ Z, tem-se que:

a.1 = a.

1 (um) é chamado o elemento neutro da multiplicação ou elemento unidade,
sendo o único elemento em Z com essa caracteŕıstica.

Dado a ∈ Z, definimos
a0 = 1
an = a.a. ... .a︸ ︷︷ ︸

n fatores

, para n = 1, 2, 3, ...

O axioma (D1) abaixo, relaciona as duas operações.

(D1) Distributividade da multiplicação com relação à adição:
Para quaisquer a, b, c ∈ Z, tem-se:

a(b+ c) = ab+ ac.

Por possuir as oito propriedades acima, dizemos que o conjunto Z, junta-
mente com as operações de adição e multiplicação, isto é, o terno (Z,+, .) é
um anel comutativo e com elemento unidade - chamado Anel dos Inteiros.

O produto de dois inteiros somente é nulo quando pelo menos um dos fa-
tores é zero, conforme o axioma abaixo. Por esta razão, dizemos que o anel
dos inteiros é sem divisores de zero.

(D2) O conjunto Z é sem divisores de zero, isto é, para quaisquerOu equiva-

lentemente, se

a 6= 0 e b 6= 0,

então ab 6= 0.

a, b ∈ Z, se ab = 0, então a = 0 ou b = 0.
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Ordem em Z

Usaremos as seguintes notações para os subconjuntos de Z:

Z∗ = Z− {0} (conjuntos dos inteiros não nulos);
Z+ = {0, 1, 2, 3, ...} (conjuntos os inteiros não negativos)
Z∗+ = {1, 2, 3, ...} (conjuntos os inteiros positivos).

Dados inteiros a e b, dizemos que a é menor do que b (ou que b é maior
do que a) e escrevemos a < b (resp. b > a) se existe um inteiro positivo c,
isto é, c ∈ Z∗+, tal que:

b = a+ c.

a ≤ b, se existe

c ∈ Z+, tal que

b = a+ c.
Escrevemos a ≤ b (a é menor do que ou igual a b) se a < b ou a = b.

Assumiremos, ainda, que soma e produto de inteiros positivos são sempre
inteiros positivos, isto é, Z∗+ é fechado sob as operações de adição e multi-
plicação, conforme axioma abaixo.

(F1) Para quaisquer a, b ∈ Z∗+, tem-se:
(i) a+ b ∈ Z∗+;
(ii) a.b ∈ Z∗+.

Dizemos que n ∈ Z é uma cota inferior de um subconjunto A de Z, se
n ≤ a, para todo a ∈ A. E dizemos que A é limitado inferiormente, se A
possui cota inferior.

Um número inteiro a0 diz-se um elemento mı́nimo de um subconjunto A
de Z (a0 = minA), se a0 ≤ a, para todo a ∈ A (isto é, a0 é cota inferior de A)
e a0 ∈ A.

Em Z, temos ainda o Prinćıpio da Boa Ordem, também dado aqui como
axioma.

(BPO) Prinćıpio da Boa Ordem em Z: ∅ 6= A ⊂ Z+,

⇓

∃ a0 = minA.

Todo subconjunto não vazio de Z, limitado inferiormente, tem elemento
mı́nimo.
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Lista de Exerćıcios 1.

(01) Compare os axiomas da adição e os da multiplicação. Quais as seme-
lhanças e quais as diferenças entre eles?

(02) Usando o axioma (A3):
(a) Determine o oposto ou os opostos dos seguintes inteiros: 3, -7 e 0. Em
cada caso quantos opostos foram encontrados?
(b) Seja a ∈ Z, mostre que o oposto de a é único.

(03) Sejam b e c dois inteiros.
(a) Sabendo-se que 5 + b = 5 + c, o que se pode concluir sobre b e c? Por quê?
(b) Sabendo-se que b + (−3) = c + (−3), o que se pode concluir sobre b e c?
Prove sua afirmação.
(c) Mostre que para quaisquer a, b, c ∈ Z, a + b = a + c ⇒ b = c. (Essa
propriedade é chamada cancelamento da adição).

(04) Calcule 3.0, (−30).0, 27.0. Qual a conclusão tirada?

(05) Mostre a.0 = 0.a = 0, para todo a ∈ Z.

(06) Usando apenas os axiomas dados no texto e resultados mostrados nas
questões anteriores, mostre que para quaisquer a, b, c ∈ Z, tem-se:
(a) −(−a) = a;
(b) (−a)b = a(−b) = −(ab);
(c) (−a)(−b) = ab.

(07) Responda e justifique: 2 < 5? −2 ≤ 2? 7 ≤ 7? −7 ≤ −10?

(08) Sejam a, b ∈ Z+ = {0, 1, 2, 3, ...}. Mostre que se a+b = 0, então a = b = 0.

(09) Mostre que para quaisquer a, b, c ∈ Z são válidas as propriedades:
(a) reflexiva: a ≤ a;
(b) antissimétrica: se a ≤ b e b ≤ a, então a = b;
(c) transitiva: Se a ≤ b e b ≤ c, então a ≤ c.

(10) Sejam a, b, c ∈ Z. Mostre que:
(a) a ≤ b⇒ a+ c ≤ b+ c;
(b) a ≤ b e c ≥ 0⇒ ac ≤ bc;
(c) a ≤ 0⇒ −a ≥ 0;
(d) a ≤ b e c ≤ 0⇒ bc ≤ ac.

(11) Dê exemplo de um número inteiro, cujo quadrado seja um número nega-
tivo. Prove sua afirmação.

(12) Pela tricotomia em Z, uma e somente uma das condições a seguir se
verifica: 0 < 1 ou 0 = 1 ou 1 < 0. Qual é a verdadeira? Prove sua afirmação.



Teoria dos Números 11

(13) Mostre que se A ⊂ Z tem elemento mı́nimo, então ele é único.

(14) Usando o axioma (PBO), mostre que todo subconjunto não vazio de Z+

tem elemento mı́nimo.

(15) Considere o conjunto A = {n ∈ Z | 0 < n < 1}. Quantos elementos
tem A? Prove sua afirmação.



Caṕıtulo 2

Indução Matemática

1 Introdução

Usaremos a notação P (n) para indicar uma propriedade associada a um inteiro
n. Vejamos alguns exemplos:

Exemplo 1: Seja P (n) a propriedade válida para todo inteiro positivo n,
dada por:

P (n) : (3n − 1) é um número par. (2.1)

A propriedade em questão diz que, se n é um inteiro positivo, então o
número (3n − 1) é par. Nessa notação, a variável em questão é n, a qual deveUm inteiro é

dito par, se é

diviśıvel por 2.

sempre ser substitúıda por um número inteiro positivo.

A pergunta que você deve estar fazendo é: - Isso é verdade, (3n − 1) é
sempre um número par, qualquer que seja o inteiro positivo n?

• Como verificar se esta propriedade é verdadeira para n = 4, por exemplo?

- Basta substituir n por 4 na expressão (2.1) e conferir se a afirmação
resultante é verdadeiro.

P (4) : (34 − 1) é um número par.

Como 34−1 = 80, que é um número par, a afirmação é verdadeira para n = 4.

• A propriedade P (n) é verdadeira para n = 7?

Fazendo n = 7 em (2.1) e conferindo o resultado:

P (7) : (37 − 1) é um número par.

Sendo 37 − 1 = 2186, que é um número par, a afirmação é verdadeira para
n = 7.

Você entendeu a notação? Para melhor fixar, verifique se são verdadeiras
P (2), P (9) e P (16).

12
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Exemplo 2: Considere P (n) a propriedade associada ao inteiro positivo n,
dada abaixo:

P (n) : 13 + 23 + ...+ n3 = (1 + 2 + ...+ n)2. (2.2)

Inicialmente, vamos entender o que diz a propriedade. No lado esquerdo
de (2.2) temos a soma dos cubos dos n primeiros inteiros positivos e no lado
direito, o quadrado da soma destes n inteiros. A propriedade diz que esses dois
valores são iguais, qualquer que seja o inteiro positivo atribúıdo à variável n.

Antes de questionarmos a validade da mesma, vamos treinar um pouco
mais o uso dessa notação. Usando (2.2) escreva P (5), P (7), P (k), P (n+ 1) e
P (n+ 2). Depois confira suas respostas com as dadas abaixo.

Respostas:
P (5) : 13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2

P (7) : 13 + 23 + 33 + 43 + 53 + 63 + 73 = (1 + 2 + 3 + 4 + 5 + 6 + 7)2

P (k) : 13 + 23 + ...+ k3 = (1 + 2 + ...+ k)2

P (n+ 1) : 13 + 23 + ...+ n3 + (n+ 1)3 = (1 + 2 + ...+ n+ (n+ 1))2

P (n+ 2) : 13 + 23 + ...+ (n+ 1)3 + (n+ 2)3 = (1 + 2 + ...+ (n+ 1) + (n+ 2))2.

• Como verificar se essa propriedade é verdadeira para n = 3?

Inicialmente, reescrevemos a propriedade substituindo n por 3. Nesse caso,
nos dois lados teremos somas com 3 parcelas.

P (3) : 13 + 23 + 33 = (1 + 2 + 3)2.

Como os dois valores são iguais a 36, temos uma identidade. Logo, a
afirmação é verdadeira para n = 3.

• Como verificar se a propriedade é verdadeira para n = 5?

Fazendo n = 5 em (2.2) temos:

P (5) : 13 + 23 + 33 + 43 + 53 = (1 + 2 + 3 + 4 + 5)2.

Como ambas os valores são iguais a 225, a afirmação é verdadeira.

• Expresse a propriedade para n = 4 e n = 7 e verifique se são verdadeiras.

Exemplo 3: Considere a propriedade válida para todo inteiro positivo ı́mpar
n, dada por:

P (n) : (3n+ 2) é um número primo. (2.3)

Um inteiro

é primo se

possui exata-

mente dois

divisores

positivos

distintos.

• Você acha que esta afirmação é verdadeira?

Vejamos como fica a propriedade para os primeiros cinco inteiros positivos
ı́mpares: 1, 3, 5, 7, 9:
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• P (1) : (3.1 + 2) é um número primo;
• P (3) : (3.3 + 2) é um número primo;
• P (5) : (3.5 + 2) é um número primo;
• P (7) : (3.7 + 2) é um número primo;
• P (9) : (3.9 + 2) é um número primo.

Como 5, 11, 17, 23 e 29 são todos números primos, P (n) vale para todos
esses inteiros. Isso já é suficiente para garantir que a propriedade vale para
todo inteiro ı́mpar? Verifiquemos para n = 11:

P (11) : (3.11 + 2) é um número primo.

Como (3.11 + 2) = 35, que não é um número primo, a afirmação feita não
vale para n = 11 e consequemente não é verdadeira para todo inteiro positivo
ı́mpar, sendo portanto, uma afirmação falsa.

2 Demonstração por Indução Matemática

No geral, se P (n) é uma propriedade em n e afirma-se que a mesma é válida
para todo inteiro positivo n, como verificar ou mostrar que tal afirmação é de
fato verdadeira?

Como existem infinitos números inteiros positivos, a rigor deveŕıamos ver-
ificar se são verdadeiras as afirmações:

P (1), P (2), P (3), P (4), P (5), P (6), P (7), ...

ou seja, temos que verificar a validade de infinitas afirmações, sendo imposśıvel
tal fato. Nesta aula você vai aprender um método para mostrar que uma pro-
priedade P (n) é verdadeira para todo inteiro n ≥ n0, para algum inteiro n0

fixado. O método usado para fazer essa prova é chamado Demonstração por
Indução Matemática, o qual consiste em dois passos:

Passo 1 : Base da Indução:

Mostra-se que P (n0) é verdadeira, isto é, que a propriedade é válida para
o primeiro inteiro n0;

Passo 2: Passo Indutivo:

Assume-se que P (n) é verdadeira para um inteiro arbitrário n ≥ n0 -
chamada a hipótese de indução - e mostra-se que P (n+ 1) é verdadeira.

Dáı, conclui-se que P (n) é verdadeira para todo inteiro n ≥ n0.

Vejamos alguns exemplos de demonstrações por indução.
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X Exerćıcios 1.

(01) Mostre que para todo inteiro n ≥ 1, temos a identidade:

1 + 2 + 3 + ....+ n =
n(n + 1)

2
.

Solução:
Queremos mostrar que a propriedade:

P (n) : 1 + 2 + 3 + ....+ n =
n(n+ 1)

2
(2.4)

é verdadeira para todo inteiro n ≥ 1. Como temos que provar a validade de
uma afirmação para todo inteiro positivo, então faremos a demonstração por
indução em n. Executaremos os dois passos da demonstração:

(i) Base de Indução: Mostrar que vale para o primeiro inteiro mencionado
na propriedade.

Como queremos mostrar que a propriedade é válidade para todo inteiro
n ≥ 1, o primeiro inteiro para o qual se deve verificar a validade é n = 1.
Assim, na base de indução devemos mostrar que P (1) é verdadeira.

P (1) : 1 =
1(1 + 1)

2
.

Ficamos com a identidade 1 = 1. Logo, a afirmação é verdadeira para n = 1.
No geral, a base de indução é apenas uma verificação da validade da pro-
priedade.

(ii) Passo Indutivo: Assumir que P (n) é verdadeira e mostrar que P (n+ 1)
é também verdadeira.

Seja n ≥ 1 um inteiro arbitrário e suponha que P (n) é verdadeira, isto é,

P (n) : 1 + 2 + 3 + ...+ n =
n(n+ 1)

2
(hipótese de indução) (2.5)

Agora, devemos mostrar que P (n+1) é verdadeira. Para melhor visualizarmos
o que precisamos mostrar, vamos escrever P (n + 1). Como você já aprendeu,
isto é feito substituindo n por n+ 1 em (2.4):

P (n+ 1) : 1 + 2 + 3 + ...+ (n+ 1) =
(n+ 1)((n+ 1) + 1)

2
(2.6)

Essa é portanto a identidade que precisa ser mostrada. E o que temos a nossa
disposição para mostrar tal igualdade? Temos a hipótese de indução dada em
(2.5). Pense um pouco, que manipulações algébricas podemos fazer em (2.5)
para obtermos (2.6)?

Somando (n+ 1) em ambos os lados de (2.5):

1 + 2 + 3 + ...+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1).
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No lado esquerdo, temos a mesma soma dada em (2.6), pois trata-se da soma
dos n+1 primeiros inteitos positivos. No lado direito, somando as duas parcelas
obtemos:

1 + 2 + 3 + ...+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

que é a identidade dada em (2.6), a qual queŕıamos mostrar. Provamos assim,
que se a propriedade vale para n, então também vale para n + 1. Com esses
dois passos podemos concluir que a propriedade é verdadeira para todo inteiro
n ≥ 1. �

(02) Mostre que para todo inteiro positivo n, (3n − 1) é um número
par.
Solução:
Queremos mostrar que a propriedade:

P (n) : (3n − 1) é um número par

é verdadeira para todo inteiro n ≥ 1. Faremos a demonstração por indução
em n.

Base de Indução: Mostrar que P (1) é verdadeira:

P (1) : (31 − 1) é um número par.

Como (31 − 1) = 2 é um número par, P (1) é verdadeira.

Passo Indutivo: Vamos assumir que P (n) é verdadeira e mostrar que P (n+1)
é também verdadeira.

Seja n ≥ 1 um inteiro arbitrário e suponha que P (n) é verdadeira, isto é,

P (n) : (3n − 1) é um número par (hipótese de indução)

Agora devemos mostrar que P (n+ 1) é verdadeiro, isto é,

P (n+ 1) : (3n+1 − 1) é um número par.

O que precisamos fazer para provar que (3n+1−1) é um número par? Lembre-
mos que um inteiro é dito par se é diviśıvel por 2, o que implica ser da forma
2k, para algum inteiro k. Da hipótese de indução, temos que (3n − 1) é um
número par, então podemos escrever 3n − 1 = 2k, com k ∈ Z. E portanto,
3n = 2k + 1. Assim,

(3n+1 − 1) = 3.3n − 1 = 3(2k + 1)− 1 = 2(3k + 1),

o qual é um número par. Logo, P (n+ 1) é verdadeira.

Com esses dois passos, podemos concluir que a propriedade é verdadeira
para todo inteiro n ≥ 1. �
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(03) Mostre que n! > n2, para todo inteiro n ≥ 4. Lembrando:{
0! = 1,
n! = n.(n− 1)!, para n = 1, 2, 3, ...

Solução:
Considere a propriedade:

P (n) : n! > n2.

Usando demonstração por indução, mostraremos que P (n) é verdadeira para
todo inteiro n ≥ 4.
(i) Base de Indução:
- Qual o inteiro que devemos usar para a base de indução? Observe que o
enunciado diz que a propriedade é válida para todo n ≥ 4, então devemos
tomar n0 = 4:

P (4) : 4! > 42.

Como 4! = 24 > 16 = 42, P (4) é verdadeira.

(ii) Passo Indutivo: Assumir que P (n) é verdadeira e como consequência,
provar que P (n+ 1) é também verdadeira.

Seja n ≥ 4 um inteiro e suponha que

P (n) : n! > n2 (hipótese de indução)

- O que devemos mostrar? Que P (n+ 1) é verdadeira, ou seja,

P (n+ 1) : (n+ 1)! > (n+ 1)2

Usando a definição de fatorial e a hipótese de indução temos:
(n+ 1)! = (n+ 1).n! - definição de fatorial

> (n+ 1)n2 - pela hipótese de indução n! > n2

> (n+ 1)(n+ 1) - pois n2 > (n+ 1) para todo inteiro n ≥ 2.
= (n+ 1)2. Assim, (n+ 1)! > (n+ 1)2. De (i) e (ii), conclui-se que a

propriedade é válida para todo inteiro n ≥ 4. �

3 Prinćıpio da Indução Finita

Vimos que a Demonstração por Indução, constitúıda de dois passos, é a técnica
usada para mostrar que certa propriedade P (n) é válida para todo número
inteiro n maior ou igual a um valor inicial n0. Você deve estar se perguntando:
- Por que os dois passos da demonstraçao garantem que as infinitas afirmações

P (n0), P (n0 + 1), P (n0 + 2), P (n0 + 3), ....

são todas válidas? A resposta é dada no corolário a seguir, conhecido como
Prinćıpio da Indução Finita.
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Teorema 1. Sejam n0 um inteiro e

S ⊂ {n0, n0 + 1, n0 + 2, n0 + 3, ...},

o qual tem as seguintes propriedades:
(i) n0 ∈ S;
(ii) Para todo inteiro n ≥ n0, se n ∈ S, então n+ 1 também pertence a S.

Nestas condições,

S = {n0, n0 + 1, n0 + 2, n0 + 3, ...}.

Com isso podemos enunciar o seguinte corolário, o qual justifica a demons-
tração por indução.

Corolário 1. (Prinćıpio da Indução Finita - 1a Forma)
Sejam n0 um inteiro e P (n) uma propriedade associada ao inteiro n. Se
(i) P (n0) é verdadeira e
(ii) Para todo inteiro n ≥ n0, temos a implicação:

P (n) verdadeira ⇒ P (n+ 1) verdadeira.

Nestas condições, P (n) é verdadeira para todo inteiro n ≥ n0.

Para um melhor entendimento do Colorário 10, retornemos a questão 01
dos exerćıcios resolvidos anteriormente. Usando a demonstração por indução
mostramos que:

P (n) : 1 + 2 + 3 + ...+ n =
n(n+ 1)

2

é validada para todo inteiro n ≥ 1.

No passo 1, mostramos que essa propriedade vale para n = 1. Mas, se
vale para n = 1, pelo passo 2, podemos concluir que a propriedade é também
válida para n = 2. E novamente pelo passo 2, se vale para 2, então vale para
3. Aplicando repetidamente o passo de indução, segue que se vale para 3, vale
para 4, se vale para 4, vale para 5 e assim sucessivamente. Sendo portanto
válida para todos os inteiros maiores do que ou iguais a 1. É isso que afirma
o Corolário 10.

Existe um variante do Prinćıpio da Indução Finita, conhecido como Prinćıpio
da Indução Finita - 2a Forma ou Prinćıpio da Indução Completa.

Corolário 2. (Prinćıpio da Indução Finita - 2a Forma)
Sejam n0 um inteiro e P (n) uma propriedade associada ao inteiro n. Se
(i) P (n0) é verdadeira e;
(ii) Para todo inteiro n ≥ n0, temos a implicação:

P (n0), P (n0 + 1), P (n0 + 2), ..., P (n) são verdadeiras ⇒ P (n+ 1) é verdadeira.

Nestas condições, P (n) é verdadeira para todo inteiro n ≥ n0.

• Explique a diferença básica entre a 1a e a 2a Forma do Prinćıpio de
Indução Finita.
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Lista de Exerćıcios 2.

(01) Dado um inteiro n ≥ 1, seja P (n) a propriedade dada por:

P (n) : 4 + 10 + 16 + ...+ (6n− 2) = n(3n+ 1)

(a) Expresse P (5) e verifique se a mesma é verdadeira;
(b) Expresse P (7) e verifique se a mesma é verdadeira;
(c) Expresse P (k), P (k + 1), P (k + 3), considerando k um inteiro.

(02) Dado um inteiro n ≥ 1, seja P (n) a propriedade dada por:

P (n) : n! > n3

(a) Expresse P (4) e verifique se a mesma é verdadeira;
(b) Expresse P (6) e verifique se a mesma é verdadeira;
(c) Expresse P (k), P (k + 1) e P (k + 2), considerando k um inteiro.

Nas questões de (03) a (12), use Demonstração por Indução para provar que
são válidas as afirmações feitas, onde n é um número inteiro.

(03) 1 + 3 + 5 + 7 + ...+ (2n− 1) = n2, ∀n ≥ 1.

(04) 4 + 10 + 16 + ...+ (6n− 2) = n(3n+ 1), ∀n ≥ 1.

(05) (−5
2
) + (−2) + (−3

2
) + (−1)...+ n−6

2
= n(n−11)

4
, ∀n ≥ 1.

(06) 12 + 22 + 32 + ...+ n2 = n(n+1)(2n+1)
6

, ∀n ≥ 1.

(07) 13 + 23 + ...+ n3 =
[
n(n+1)

2

]2

, ∀n ≥ 1.

(08) 12 + 32 + 52 + ...+ (2n− 1)2 = n
3
(4n2 − 1), ∀n ≥ 1.

(09) 1
2

+ 1
4

+ 1
8

+ ...+ 1
2n

= 1− 1
2n

, ∀n ≥ 1.

(10) 1.2 + 2.3 + 3.4 + 4.5 + ....+ n(n+ 1) = n(n+1)(n+2)
3

, ∀n ≥ 1.

(11) 1
1.2

+ 1
2.3

+ ...+ 1
n(n+1)

= n
n+1

, ∀n ≥ 1.

(12) (1 + 1
1
)(1 + 1

2
)(1 + 1

3
)...(1 + 1

n
) = n+ 1, ∀n ≥ 1.

(13) Mostre que n2 > (n+ 1) para todo inteiro n ≥ 2.

(14) Mostre que 3n2 > 3n+ 5, para todo inteiro n ≥ 2.

(15) Mostre que n3 > 3n(n+ 1) + 1, para todo inteiro n ≥ 4.

(16) Mostre que 2n > n3, para todo inteiro n ≥ 10.
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(17) Mostre que n! > 3n, para todo inteiro n ≥ 7.

(18) Mostre que n! > n3, para todo inteiro n ≥ 6.

(19) Mostre que para todo inteiro n ≥ 1, o número (5n−5) é um múltiplo de 4.

(20) (Somatório) Seja n ≥ 1 um natural e a1, a2, ...an números reais. Es-
crevemos de modo abreviado a soma a1 + a2 + ... + an como

∑n
i=1 ai (lê-se:

somatório de ai para i variando de 1 a n). Expresse cada uma das parcelas
a1, a2, ..., an dos somatórios abaixo e calcule o valor da soma:
(a)
∑5

i=1(2i+ 3);
(b)

∑4
i=1(i+ 1)(i+ 2);

(c)
∑2

j=1

∑3
i=1 2i.3j.

(21) (Propriedades do Somátorio) Dadas as sequências de números reais
a1, a2, ...an e b1, b2, ..., bn e c um número real, mostre que para todo inteiro
n ≥ 1,tem-se:
(a)
∑n

i=1(ai + bi) =
∑n

i=1 ai +
∑n

i=1 bi;
(b)

∑n
i=1 cai = c

∑n
i=1 ai.

(22) (Questão Desafio) As Torres de Hanói é um jogo que consiste de
uma base de madeira onde estão firmadas três hastes verticais (as torres) e um
certo número de disco de madeira, de diâmetros diferentes, furados no centro.
No começo do jogo os discos estão todos enfiados em uma das hastes, em or-
dem decrescente de tamanho, com o menor disco acima de todos. O objetivo
do jogo é mover todos os discos para uma outra haste, obedecendo as seguintes
regras:
(I) Somente um disco pode ser movido de cada vez;
(II) Um disco maior nunca pode ser posto sobre um disco menor.

(a) Determine o número mı́nimo de movimentos para se transferir 1 disco
de uma torre a outra;
(b) Determine o número mı́nimo de movimentos para se transferir 2 discos de
uma torre a outra;
(c) Determine o número mı́nimo de movimentos para se transferir 3 discos de
uma torre a outra;
(d) Mostre que o número mı́nimo de movimentos para se transferir n discos de
uma torre a outra é 2n − 1, para todo inteiro n ≥ 1.

(23) (ENADE-2008) Considere a sequência numérica definida por{
a1 =

√
a

an+1 =
√
a+
√
an, para n = 1, 2, 3, ....

Usando o prinćıpio da indução finita, mostre que an < a para todo n ≥ 1 e
a ≥ 2. Para isso, resolva o que se pede nos itens a seguir:
(a) Escreva a hipótese e a tese da propriedade a ser demonstrada;
(b) Prove que a(a− 1) > 0 para a ≥ 2;
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(c) Mostre que
√
a < a, para todo a ≥ 2;

(d) Supondo que an < a, prove que an+1 <
√

2a;
(e) Mostre que an+1 < a;
(f) A partir dos passos anteriores, conclua a prova por indução.

(24) (ENADE-2011) Considere a sequência númerica definida por:{
a1 = a
an+1 = 4an

2+a2n
, para n ≥ 1

Use o prinćıpio de indução finita e mostre que an <
√

2 para todo número
natural n ≥ 1 e para 0 < a <

√
2, seguindo os passos indicados nos itens a

seguir:
(a) Escreva a hipótese e a tese da propriedade a ser demonstrada;
(b) Mostre que s = 4a

2+a2
> 0 para a > 0;

(c) prove que s2 < 2, para todo 0 < a <
√

2;
(d) Mostre que 0 < s <

√
2

(e) Suponha que an <
√

2 e prove que an+1 <
√

2.
(f) Conclua a prova por indução.
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Respostas da Lista de Exerćıcios 2

(01.a) Fazendo n = 5 na sentença dada, temos:
P (5) : 4 + 10 + 16 + ... + (6.5 − 2) = 5.(3.5 + 1). Isso indica que o somatório no lado
esquerdo tem o número 4 na primeira parcela e 28, na última parcela. Ficando então:
P (5) : 4 + 10 + 16 + 22 + 28 = 5.16. Como os valores resultantes em ambos os lados são
iguais a 80, verifica-se a identidade, logo P (5) é verdadeira;
(01.b) P (7) : 4 + 10 + 16 + 22 + 28 + 34 + 40 = 7.22. Ambos os resultante são iguais a
154, logo P (7) é verdadeira;
(01.c) P (k) : 4 + 10 + 16 + ...+ (6k − 2) = k(3k + 1);
P (k + 1) : 4 + 10 + 16 + ...+ (6k − 2) + (6(k + 1)− 2) = (k + 1)(3k + 4);
P (k + 2) : 4 + 10 + 16 + ...+ (6(k + 1)− 2) + (6(k + 2)− 2) = (k + 2)(3k + 7).
(02.a) P (4) : 4! > 43, a qual é falsa, pois 4! = 24 < 43 = 64;
(02.b) P (6) : 6! > 63, a qual é verdadeira, pois 6! = 720 > 63 = 216;
(02.c) P (k) : k! > k3; P (k + 1) : (k + 1)! > (k + 1)3; P (k + 2) : (k + 2)! > (k + 2)3.
(06) Fazendo a demonstração por indução em n:
(i) Base de Indução:

Para n = 1, temos a igualdade: 12 = 1.(1+1)(2.1+1)
6 . Logo P (1) é verdadeira;

(ii) Passo Indutivo: P (n)⇒ P (n+ 1):
ou seja,

12 + 22 + ...+ n2 =
n(n+ 1)(2n+ 1)

6︸ ︷︷ ︸
P (n)−Hipótese de Indução

⇒ 12 + ...+ n2 + (n+ 1)2 =
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6︸ ︷︷ ︸
P (n+1)

Suponha P (n) verdadeira. Somando (n+ 1)2 em ambos os lados em P (n) obtemos:

12 + 22 + ...+ n2 + (n+ 1)2 = n(n+1)(2n+1)
6 + (n+ 1)2.

Somando agora as parcelas no lado direito:

12 + 22 + ... + n2 + (n + 1)2 = (n+1)
6 (n(2n + 1) + 6(n + 1)) = (n+1)(n+2)(2n+3)

6 , a qual é a
identidade dada em P (n+ 1). Com isto mostramos a implicação P (n)⇒ P (n+ 1).
De (i) e (ii), segue que P (n) é verdadeira para todo n ≥ 1.
(16) Fazendo a demonstração por indução em n:
(i) Base de Indução:
Para n = 10, verifica-se a desigualdade, pois 210 = 1024 > 103 = 1000.
(ii) Passo Indutivo: P (n)⇒ P (n+ 1):
ou seja,

2n > n3︸ ︷︷ ︸
P (n)−Hipótese de Indução

⇒ 2n+1 > (n+ 1)3︸ ︷︷ ︸
P (n+1)

Suponha P (n) verdadeira. Então

2n+1 = 2.2n > 2.n3 - pela hipótese de indução

= n3 + n3 > n3 + 3n(n+ 1) + 1 - pela questão (15)

= n3 + 3n2 + 3n+ 1 = (n+ 1)3.

Portanto 2n+1 > (n+ 1)3. Com isto mostramos a implicação P (n)⇒ P (n+ 1).

De (i) e (ii) segue que P (n) é verdadeira para todo inteiro n ≥ 10.

(20.a)
∑5

i=1(2i+ 3) = (5 + 7 + 9 + 11 + 13) = 45;

(20.b)
∑4

i=1(i+ 1)(i+ 2) = (2.3 + 3.4 + 4.5 + 5.6) = 68;

(20. c)
∑2

j=1

∑3
i=1 2i.3j =

∑3
i=1 2i.3 +

∑3
i=1 2i.32 = (2 + 4 + 8).3 + (2 + 4 + 8).9 = 168.



Caṕıtulo 3

Divisibilidade em Z

1 Divisor de um Inteiro

Definição 1. Dizemos que um inteiro b divide outro inteiro a, se existe
c ∈ Z, tal que

a = bc.

Escreve-se b|a para simbolizar que b divide a e b - a, para indicar que b não
divide a.

Se b divide a, dizemos também que b é um divisor de a ou que b é um fator
de a, ou ainda que a é um múltiplo de b.

Exemplos: Não confundir

as notações

2|6 e 6
2
. O

primeiro

caso é uma

afirmação, ela

diz que 2 é

um divisor de

6. No segundo

caso, temos

uma fração.

Podemos

escrever 6
2

= 3.

.

(01) 3|21, pois 21 = 3.7 e 7 ∈ Z;
(02) −4| − 24, pois −24 = (−4).6 e 6 ∈ Z;
(03) −9|36, pois 36 = (−9).(−4) e −4 ∈ Z;
(04) 0|0, pois 0 = 0.2 e 2 ∈ Z (mais geralmente, 0 = 0.k, ∀k ∈ Z);
(05) 5 - 16, pois não existe c ∈ Z, tal que 16 = 5.c;
(06) 0 - 2, pois não existe c ∈ Z, tal que 2 = 0.c.

X Exerćıcios 2.

(01) Responda e justifique:
(a) 2|18?
(b) −3|18?
(c) −15| − 120?
(d) 3|25?
(e) 0|3?
(f) 3|0?

(02) Mostre que se a é um inteiro e 0|a, então a = 0 (ou seja, o único in-
teiro diviśıvel por zero é o próprio zero).

(03) Mostre que para qualquer a ∈ Z, os inteiros 1 e a são divisores de a.

23
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2 Propriedades da Divisibilidade

A proposição a seguir dá uma importante propriedade da divisibilidade.

Proposição 1. Sejam a, b e c inteiros. Se a|b e a|c, então

a|(bm+ cn)

quaisquer que sejam m,n ∈ Z. Em particular, se a|b, então a|bm, para qual-
quer inteiro m.

Demonstração:
Como a|b e a|c, pela Definição 1, isso implica que existem inteiros c1 e c2, tais
que

b = ac1

e
c = ac2.

Então, dados inteiros quaisquer m e n, multiplicando a primeira identidade
por m e a segunda por n obtemos:

bm = a(c1m)

cn = a(c2n).

Somando essas duas identidades:

bm+ cn = a(c1m+ c2n)⇒ a|(bm+ cn),

pois c1m+ c2n ∈ Z. Em particular, para c = b e n = 0, temos que a|bm. �

Exemplos:
(01) Como 4|20 e 4|8, segue que 4|(20m+ 8n), quaisquer que sejam os inteiros
m e n. Assim, podemos afirmar que 4|(20.(−3) + 8.5) e também 4|(20.144 +
8.(−19)), por exemplo. �

A próxima proposição fornece o intervalo no qual estão os posśıveis divisores
positivos de um inteiro.

Proposição 2. Sejam a e b inteiros, com a 6= 0. Se b|a, então |b| ≤ |a|.
Lembrando:

|a| = a, se a ≥ 0

|a| = −a, se a <

0

Demonstração:
Suponha que b|a e a 6= 0, então existe 0 6= c ∈ Z, tal que: a = b.c. Usando a
propriedade de módulo temos:

a = b.c⇒ |a| = |b.c| = |b|.|c| ≥ |b|.1 = |b|,
pois |c| ≥ 1, qualquer que seja o inteiro c 6= 0. Assim, temos que |b| ≤ |a|. �

Se b é um divisor positivo de um inteiro não nulo a, pela proposição anterior,
1 ≤ b ≤ |a|. Se b | a e 1 < b < |a|, diz-se que b é um divisor próprio de a.
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3 Divisão Euclidiana

Considere que você tem 20 moedas de R$1, 00 e quer dividir esse valor por 5
pessoas, de modo que todas elas recebam o mesmo número de moedas, sendo
esse número o maior posśıvel. Como

20 = 5.4

então você deverá dar 4 moedas a cada pessoa, ficando com zero moedas.

E se você tiver que dividir as mesmas 20 moedas por 6 pessoas? Como 6
não é um divisor de 20, a pergunta neste caso é: - qual a quantidade máxima
de moeda que pode ser dada a cada uma delas? Se você for distribuindo uma a
uma, descobrirá que pode dar 3 moedas a cada uma delas e restarão 2 moedas.
Expressamos isso escrevendo:

20 = 6.3 + 2.

Dizemos que 3, a quantidade de moedas recebida por cada uma das 6 pessoas,
é o quociente dessa divisão e 2 é o resto. Este resultado, enunciado no próximo
teorema, conhecido como Algoritmo da Divisão ou Algoritmo de Euclides, é
de suma importância na teoria dos números inteiros.

Em preparação ao teorema, façamos os exerćıcios a seguir.

X Exerćıcios 3.

(01) Dados inteiros b > 0 e a qualquer, definamos o conjunto:

S := {a− bx | x ∈ Z e a− bx ≥ 0}.

Usando essa definição, construa S para a e b abaixo e determine, caso exista,
o elemento mı́nimo de S e o valor correspondente de x ∈ Z, para o qual se
obtém esse elemento mı́nimo:
(a) a = 13, b = 4;
Solução:
Usando a definição, temos:

S := {13− 4x | x ∈ Z e 13− 4x ≥ 0}.

13−4x ≥ 0⇒ x ≤ 13
4
⇒ S = {13−4x | x ∈ Z e x ≤ 3} = {1, 5, 9, 13, 17, ...}.

Logo, minS = 1 = 13− 4.3⇒ o minimo de S é obtido para x = 3. �

(b) a = −13, b = 4;
Solução:
Pela definição:

S := {−13−4x | x ∈ Z e −13−4x ≥ 0} = {13−4x | x ∈ Z e x ≤ −4} = {3, 7, 11, 15, ...}.

Assim, minS = 3 = −13− 4.(−4), obtido para x = −4. �
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(c) a = 12, b = 20;
Solução:
Usando a definição:

S := {12− 20x ≥ 0 | x ∈ Z}.

12−20x ≥ 0⇒ x ≤ 12
20
⇒ S = {12−20x | x ∈ Z e x ≤ 0} = {12, 32, 52, 72, ...}.

Logo, minS = 12 = 12− 20.0, obtido quando x = 0. �

(d) a = −12, b = 20;
Solução:
−12 − 20x ≥ 0 ⇒ x ≤ −12

20
⇒ S = {−12 − 20x | x ∈ Z e x ≤ −1} =

{8, 28, 48, 68, ..}. Assim, minS = 8 = −12− 20.(−1), obtido para x = −1. �

(e) a = 92, b = 5;

(f) a = −92, b = 5.

(02) Dados inteiros b > 0 e a qualquer, considerando S o conjunto definido na
questão 01, mostre que:
(a) S 6= ∅;
Solução:
Para garantir que S 6= ∅, precisamos mostrar que quaisquer que sejam a e
b > 0, sempre existe x ∈ Z, tal que a − bx ≥ 0. Como b ≥ 1, tomando
x = −|a|, segue que a − bx = a + b|a| ≥ a + |a| ≥ 0. Assim, a + b|a| ∈ S,
quaisquer que sejam a e b, logo S 6= ∅. �

(b) Se r = minS, então 0 ≤ r < b.
Solução:
Como r = minS ⇒ r ∈ S ⇒ r ≥ 0, pela definição de S. Resta mostrar que
r < b. Suponhamos, que isso seja falso, isto é, r ≥ b⇒ r−b ≥ 0. Como r ∈ S,
r = a− bx, para algum x ∈ Z. Assim,

0 ≤ r − b = (a− bx)− b = a− b(x+ 1)⇒ r − b ∈ S.

Um absurdo, pois r − b < r = minS. Portanto, 0 ≤ r < b. �

Teorema 2. (Algoritmo da Divisão) Dados inteiros a e b, com b 6= 0,
existem únicos inteiros q e r, tais que

a = bq + r,

com 0 ≤ r < |b|.

Demonstração:
(I) Existência de q e r:
Inicialmente, mostraremos a existência de q e r. Como b 6= 0, temos dois casos
posśıveis:
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Caso 1: b > 0:
Considere o conjunto S = {a− bx | x ∈ Z e ax− bx ≥ 0}, como definido no
exerćıcio anterior. Conforme mostrado na questão 02, ∅ 6= S ⊂ Z+, logo pelo
Prinćıpio da Boa Ordem (Axioma (PBO)), existe r = minS ⇒ r ∈ S
⇒ r = a− bq, para algum q ∈ Z⇒ a = bq + r, com q, r ∈ Z e como mostrado
na letra (b) da questão 02, 0 ≤ r < b.

Caso 2: b < 0
Nesse caso, |b| = −b > 0 e pelo Caso 1, existem q′ e r′ tais que:

a = |b|q′ + r′ = b(−q′) + r′, com 0 ≤ r′ < |b|.

Assim, basta tomar q = −q′ e r = r′. �

(II) Unicidade de q e r:
Suponha que existam q1, q2, r1, r2 ∈ Z, tais que:

a = bq1 + r1 e a = bq2 + r2

com 0 ≤ r1, r2 < |b|.
Se r1 6= r2, suponhamos r1 < r2, então

0 < r2 − r1 = b(q1 − q2)⇒ b|(r2 − r1)⇒ |b| ≤ |r2 − r1| = (r2 − r1).

Um absurdo, pois r2 − r1 ≤ r2 < |b|. Assim, r1 = r2 ⇒ b(q1 − q2) = 0 e como
b 6= 0, q1 = q2. �

Os números q e r do teorema anterior, chamam-se respectivamente, o quo- Dizemos

também que a

é o dividendo

e b, o divisor.

ciente e o resto da divisão de a por b. Costuma-se chamar divisão eu-
clidiana a divisão entre inteiros satisfazendo as condições dadas no Teorema
2.

Algoritmo da Divisão

Dados inteiros a e b 6= 0, para garantir a existência do quociente q e do resto
r citados no Teorema 2, constrúımos o conjunto S = {a − bx ≥ 0 | x ∈ Z} e
tomamos r = minS e q o inteiro para o qual temos r = a − bq (para b > 0)
ou r = a+ bq (para b < 0). Na prática, veremos como encontar q e r. Vamos
considerar dois casos, conforme o sinal do divisor b:

• Caso 1: b > 0
Dependo do valor de a, temos os seguintes subcasos:

– Caso 1.1 - a ≥ 0
Tomamos q como a parte inteira da divisão de a por b e r = a− bq.
Vejamos os exemplos a seguir:
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Exemplos:
(01) Encontre o quociente e o resto da divisão de:
(a) 83 por 8
Tomando q como a parte inteira da divisão de 83 por 8 e r = 83−8q,
temos: q = 10 e r = 3. Assim, 83 = 8.10 + 3. �

Observe que também temos as identidades:
83 = 8.9 + 11
83 = 8.8 + 19
83 = 8.7 + 27
83 = 8.11 + (−5)
....

que correspondem aos demais elementos do conjunto S. Porém,
em todos esses casos, o resto r não está de acordo com a condição
0 ≤ r < 8, conforme enunciado no Teorema 2, portanto em nenhum
deles temos a divisão euclidiana. �

(b) 36 por 9
Como 36 = 9.4, então q = 4 e r = 36− 9.4 = 0. �

(c) 9 por 36
Tomando q como a parte inteira da divisão de 9 por 36 e r = 9−36q,
temos 9 = 36.0 + 9, ou seja, q = 0 e r = 9. �

– Caso 1.2: a < 0
Nesse caso, efetuamos a divisão de |a| por b, conforme descrito no
Caso 1.1. Encontramos q′ e r′, com 0 ≤ r′ < b, tais que:

|a| = b.q′ + r′

Como a < 0, então |a| = −a e essa identidade fica:

−a = b.q′ + r′

Multiplicando a identidade por -1:

a = b.(−q′) + (−r′)

Se r′ = 0, então q = −q′ e r = r′ = 0. Porém se r′ 6= 0, então
−r′ < 0, logo não pode ser o resto da divisão euclidiana. Para en-
contrarmos o resto, adicionamos (b−b) no lado direito da identidade
e rearrumamos:

a = b.(−q′) + (−r′) + (b− b)

⇓

a = b.(−q′ − 1) + (b− r′).
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Assim, q = −q′− 1 e r = b− r′. Como, 0 < r′ < b⇒ 0 < b− r′ < b.
Logo, r = b− r′ é de fato o resto da divisão euclidiana.

Exemplos:
(01) Encontre o quociente e o resto da divisão de :
(a) -36 por 9
Solução:
Fazemos a divisão de | − 36| por 9.
Como 36 = 9.4 + 0⇒ −36 = 9.(−4) + 0, então q = −4 e r = 0. �

(b) -83 por 8
Fazemos a divisão de | − 83| por 8. Já vimos que:

83 = 8.10 + 3

Assim, q′ = 10 e r′ = 3. Usando o que já foi deduzido acima, temos
que q = −q′ − 1 = −11 e r = b− r′ = 8− 3 = 5. Dáı,

−83 = 8.(−11) + 5.

Lembramos que podemos deduzir os valores de q e r, repetindo o
procedimento feito no Caso 1.2, não sendo necessário memorizar
tais valores. �

(c) -112 por 42
Fazemos a divisão de | − 112| por 42:

112 = 42.2 + 28

Para um melhor entendimento do que foi feito no Caso 1.2, vamos
repetir novamente todo o procedimento, em vez de tomarmos dire-
tamente os valores de q e r como feito no letra (b).
Multiplicando a identidade acima por por -1:

−112 = 42.(−2) + (−28)

Como −28 < 0, não trata-se do resto da divisão euclidiana. Adicio-
nando (42− 42) no lado direito e reescrevendo a expressão:

−112 = 42.(−2) + (−28) + (42− 42)

−112 = 42.(−2− 1) + (42− 28)⇒ −112 = 42.(−3) + 14

Assim, q = −3 e r = 14. �

• Caso 2: b < 0:
Como |b| > 0, pelo Caso 1, existem q′ e r′, tais que

a = |b|.q′ + r′,
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com 0 ≤ r′ < |b|. Como |b| = −b, a identidade acima fica:

a = (−b).q′ + r′ ⇒ a = b.(−q′) + r′.

Assim, q = −q′ e r = r’.

Exemplos:
(01) Encontre o quociente e o resto da divisão:
(a) 36 por -9
Solução:
Dividimos 36 por | − 9|:
36 = 9.4 + 0⇒ 36 = (−9).(−4) + 0. Assim, q = −4 e r = 0. �

(b) 83 por -8
Solução:
Dividimos 83 por | − 8|:
83 = 8.10 + 3⇒ 83 = (−8).(−10) + 3. Assim, q = −10 e r = 3. �

(c) -83 por -8
Solução:
Dividimos | − 83| por | − 8|:

83 = 8.10 + 3

Usando o Caso 1.2, multiplicamos a identidade por -1:

−83 = 8.(−10) + (−3)

Somamos (8− 8) no lado direito a fim de obtermos um resto positivo:

−83 = 8.(−10) + (−3) + (8− 8)⇒ −83 = 8.(−10− 1) + (8− 3)

Assim,
−83 = 8.(−11) + 5

Resta agora fazermos uma inversão de sinais entre divisor e quociente:

−83 = (−8).11 + 5

Portanto, q = 11 e r = 5. �

(d) -112 por -42
Solução:
Dividindo | − 112| por | − 42|, obtemos:

112 = 42.2 + 28

Multiplicando por -1:

−112 = 42.(−2) + (−28)
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Somando (42− 42) no lado direito:

−112 = 42.(−2) + (−28) + (42− 42)⇒ −112 = 42.(−2− 1) + (42− 28)

Assim,
−112 = 42.(−3) + 14⇒ −112 = (−42).3 + 14

Assim, q = 3 e r = 14. �

4 Paridade de um Inteiro

Segue do algoritmo da divisão que todo inteiro n pode ser escrito na forma
n = 2q + r, com 0 ≤ r < 2. Se r = 0, isto é, n = 2q, então diz-se que n é
um inteiro par, e se r = 1, n = 2q + 1 é dito um inteiro ı́mpar. Chama-se
paridade de um inteiro a sua propriedade de ser par ou ı́mpar.

Exemplos:
(01) 26 é um número par, pois deixa resto 0 na divisão por 2, isto é, 26 =
2.13 + 0. Já −15 é um inteiro ı́mpar, pois deixa resto 1 na divisão por 2, uma
vez que
−15 = 2.(−8) + 1. �

(02) Qualquer que seja o inteiro n, segue que n e n+ 6 têm a mesma paridade.

De fato, sejam q e r, respectivamente o quociente e o resto da divisão de n
por 2. Então

n = 2q + r,

com 0 ≤ r < 2. Somando 6 a esta identidade obtemos:

n+ 6 = 2q + r + 6 = 2(q + 3) + r.

Assim, ambos deixam o mesmo resto na divisão por 2, tendo portanto, a mesma
paridade.

(03) Para todo n ∈ Z, os inteiros n e n+ 5 têm paridades distintas. �

Considere q e r, respectivamente o quociente e o resto da divisão de n por
2. Então

n = 2q + r,

com 0 ≤ r < 2. Somando 5 a essa identidade obtemos:

n+ 5 = 2q + r + 5 =

{
2(q + 2) + 1, se r = 0
2(q + 3) + 0, se r = 1

Portanto, n e n+ 5 têm restos diferentes na divisão por 2, logo suas paridades
são distintas. �
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Lista de Exerćıcios 3.

(01) Responda e justifique:
(a) 14|168?
(b) −12|60?
(c) −9|28?
(d) 7| − 35?
(e) −11| − 143?

(02) Sejam a e b inteiros não nulos. Mostre que se a|b, então
(a) −a|b;
(b) −a| − b.

(03) Sejam a, b inteiros. Mostre que:
(a) Se a|3 e 3|b, então a|b;
(b) Se a| − 15 e −15|b, então a|b;
(c) Para qualquer inteiro c, se a|c e c|b, então a|b (dizemos que a divisibilidade
é transitiva).

(04) Seja a um inteiro. Mostre que:
(a) Se a|2 e a|3, então a|6;
(b) Se a| − 7 e a|9, então a| − 63;
(c) Para quaisquer inteiros b e c, se a|b e a|c, então a|bc.

(05) Sejam a e b inteiros. Mostre que:
(a) Se a|5 e b|13, então ab|65;
(b) Se a| − 11 e b|4, então ab| − 44;
(c) Se m e n são inteiros quaisquer e a|m e b|n, então ab|mn.

(06) Sejam a e b inteiros. Mostre que:
(a) Se a|b, então a2|b2;
(b) Se a|b, então a3|b3;
(c) Se a|b, então an|bn, para todo inteiro n ≥ 2.( Sugestão: use indução em n).

(07) Faça o que se pede:
(a) Dê exemplo de dois inteiros distintos a e b, tais que a|b e b|a;
(b) Mostre que se a e b são inteiros não nulos e a|b e b|a, então a = b ou a = −b;

(08) Sejam a e b inteiros quaisquer. Mostre que:
(a) Se a|5 e a|7, então a|2;
(b) Se a|5 e a|7, então a|6;
(c) Se a|5 e a|7, então a|(5m+ 7n), para quaisquer m,n ∈ Z.

(09) Considere a, b e c inteiros. Verifique se as afirmações abaixo são ver-
dadeiras ou falsas. Sendo verdadeira, demonstre-a. Se for falsa, dê um con-
traexemplo.
(a) a|(b+ c), então a|b ou a|c;
(b) Se a|bc, então a|b ou a|c.
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(10) Determine o quociente q e o resto r da divisão euclidiana de a por b,
onde
(a) a = 144 e b = 7;
(b) a = −144 e b = 7;
(c) a = 144 e b = −7;
(d) a = −144 e b = −7;
(e) a = 139 e b = 14;
(f) a = −139 e b = 14;
(g) a = 139 e b = −14;
(h) a = −139 e b = −14.

(11) Na divisão de 477 por um inteiro positivo b o resto é 12. Determine
os posśıveis valores para o divisor b e o quociente q.

(12) Na divisão de 632 por um inteiro positivo b, o quociente é 15. Deter-
mine os posśıveis valores do divisor b e do resto r correspondente.

(13) Na divisão de a por b o quociente é 7 e o resto, o maior posśıvel. Sabendo
que a e b são inteiros positivos cuja soma é 116, determine o valor de a e b.

(14) Na divisão de a por b, o resto é o maior posśıvel. Sabendo que a e b
são inteiros positivos cuja soma é 181, determine os posśıveis valores para a e
b.

(15) Sabendo que na divisão do inteiro a por 12 o resto é 7, calcule o resto da
divisão de cada um dos inteiros abaixo por 12:
(a) 3a;
(b) 5a+ 7;
(c) 4a− 4

(16) Mostre que o produto de dois inteiros consecutivos é sempre um número
par.

(17) Mostre que para quaisquer inteiros a e b, (a2 − b2) + (a − b) é sempre
um número par. (Sugestão: Use a questão anterior.)

(18) Mostre que se a e b são dois inteiros ı́mpars, então a2 − b2 é diviśıvel
por 8. (Sugestão: Use a questão anterior.)

(19) Mostre que o quadrado de um inteiro qualquer é da forma 3k ou 3k + 1,
para algum inteiro k. (Sugestão: Divida o inteiro por 3.)

(20) De exemplo, caso exista, de um inteiro a, tal que a2;
(a) termina em 5;
(b) termina em 9;
(c) termina em 2;
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(d) termina em 7.

(21) Mostre que se a é um inteiro, então a2 termina em um dos algarismos
0, 1, 4, 5, 6 ou 9.

(22) Mostre que dado três inteiros consecutivos, um deles é divśıvel por 3.

(23) Mostre que o produto de 3 inteiros consecutivos é sempre diviśıvel por 6.

(24) Seja a um inteiro qualquer. Mostre que exatamente um dos inteiros a,
a+ 2 ou a+ 4 é diviśıvel por 3.

(25) Mostre que todo número ı́mpar é da forma 4k + 1 ou 4k + 3, para al-
gum inteiro k.

(26) Mostre que para qualquer inteiro não nulo n, 6|n(n+ 1)(2n+ 1).

(27) Mostre que se a é um número ı́mpar, então a(a2 − 1) é divisivel por
24.
(Sugestão: Use a questão anterior.)

(28) Sejam a e b inteiros quaisquer. Mostre que a + b e a − b tem a mesma
paridade.

(29) Sendo a e b inteiros quaisquer, mostre que os inteiros a e 5a + 6b tem
sempre a mesma paridade.

(30) Mostre que para qualquer inteiro a, os números a e (5a+1) tem paridades
distintas.
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Respostas da Lista de Exerćıcios 3

(01.b) Sim, pois 60 = (−12)(−5) (01.c) Não, pois não existe c ∈ Z, tal que 28 = (−9).c

(02) a|b⇒ ∃c ∈ Z, tal que b = ac⇒ b = (−a)(−c)⇒ −a|b e também −b = (−a)c⇒ −a|−b.
(03.c) a|c e c|b⇒ ∃x, y ∈ Z, c = ax e b = cy ⇒ b = (ax)y = a(xy)⇒ a|b, pois xy ∈ Z.

(04.c) a|b e a|c ⇒ ∃x, y ∈ Z, b = ax e c = ay ⇒ bc = (ax)(ay) = a(axy) ⇒ a|bc, pois

axy ∈ Z.

(07.c) a|b e b|a⇒ ∃x, y ∈ Z, b = ax e a = by ⇒ ab = (ab)(xy)⇒ ab(1− xy) = 0, como a e b

são não nulos e Z é sem divisores de zero, segue que 1− xy = 0 ⇒ xy = 1 ⇒ x = y = 1 ⇒
a = b ou x = y = −1⇒ a = −b.
(10.a) 144 = 7.20 + 4 ⇒ q = 20 e r = 4 (10.b) −144 = 7.(−21) + 3 ⇒ q = −21 e r = 3

(10.c) 144 = (−7).(−20) + 4 ⇒ q = −20 e r = 4 (10.d) −144 = (−7).21 + 3 ⇒ q = 21 e

r = 3;

(10.e) 139 = 14.9 + 13 ⇒ q = 9 e r = 13 (10.f) −139 = 14.(−10) + 1 ⇒ q = −10 e r = 1

(10.g) 139 = (−14).(−9) + 13 ⇒ q = −9 e r = 13 (10.h) −139 = (−14).10 + 1 ⇒ q =

10, r = 1.

(11) Procuramos inteiros b e q, tais que 477 = b.q + 12, com 12 < b. Então b.q = 465 ⇒
b|465⇒ b ∈ {15, 31, 93, 155, 465}. Logo os posśıveis valores para o par (b, q) são:

(15, 31), (31, 15), (93, 5), (155, 3), (465, 1).

(12) Procuramos inteiros b e r tais que 632 = b.15 + r, com 0 ≤ r < b. Dividindo 632 por 15

encontramos: 632 = 42.15 + 2. Atribuindo a b os valores inteiros mais próximos a 42, isto é,

b ∈ {..., 39, 40, 41, 42, 43, 44, ..} verifica-se que:

632 = 39.15 + 47⇒ r = 47 > b = 39 (não é a divisão euclidiana)

632 = 40.15 + 32⇒ r = 32 < b = 40 (divisão euclidiana)

632 = 41.15 + 17⇒ r = 17 < b = 41 (divisão euclidiana)

632 = 42.15 + 2⇒ r = 2 < b = 42 (divisão euclidiana)

632 = 43.15 + (−13)⇒ r = −17 < 0 ( não é divisão euclidiana)

Assim, os únicos valores para o par (b, q) são (40, 32), (41, 17), (42, 2).

(13) O maior resto que se obtém na divisão por b é (b−1), então a = 7b+(b−1) e a+b = 116.

Dessas duas equações obtemos a = 103 e b = 13.

(14) a = bq + (b− 1) e a+ b = 181⇒ b(q + 1) = 182⇒ b|182⇒ b ∈ {1, 2, 7, 14, 26, 91, 182}.
Como a e b são positivos e a+ b = 181 os posśıveis valores para o par (a, b) são:

(180, 1), (179, 2), (174, 7), (167, 14), (155, 26), (90, 91).

(15) Como a = 12q + 7, então

(a) 3a = 12(3q) + 21 = 12(3q + 1) + 9⇒ r = 9;

(b) 5a+ 7 = 12(5q) + 35 + 7 = 12(5q + 3) + 6⇒ r = 6;

(c) 4a− 4 = 12(4q) + 28− 4 = 12(4q − 2) + 0⇒ r = 0.

(17) Pela questão (16), para qualquer inteiro a, a(a+1) é um número par. Então (a2−b2)+

(a− b) = (a2 + a)− (b2 + b) = a(a+ 1)− b(b+ 1) = 2n1− 2n2 = 2(n1−n2), com n1, n2 ∈ Z.

(21) O último algarismo de qualquer inteiro a é exatamente o resto da divisão de a por 10.

Sejam q e r, respectivamente, o quociente e resto da divisão de a por 10, então a = 10q+ r,

com 0 ≤ r < 10. Portanto,

a2 = 100q2 + 20qr + r2 = 10(10q2 + 2qr) +



0 se r = 0
1 se r = 1 ou 9
4 se r = 2 ou 8
5 se r = 5
6 se r = 4 ou 6
9 se r = 3 ou 7
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(23) Mostraremos que 6|a(a + 1)(a + 2), qualquer que seja o inteiro a. Pelo algoritmo da

divisão temos que a = 3q + r, com r = 0, 1 ou 2. Se a = 3q, então a(a + 1)(a + 2) =

3q(3q + 1)(3q + 2) = 3q.2m = 6(qm), pois (3q + 1)(3q + 2) = 2m, m ∈ Z, conforme questão

(16). Se a = 3q + 1, então a(a + 1)(a + 2) = (3q + 1)(3q + 2)(3q + 3) = 2m.3(q + 1) =

6(m(q + 1)). Se a = 3q + 2, neste caso, sendo a par, então a = 3q + 2 = 2m, m ∈ Z, dáı,

a(a + 1)(a + 2) = 2m(3q + 3)(3q + 4) = 6(m(q + 1)(3q + 4), que é um múltiplo de 6. Se

a é impar, então necessariamente q é também ı̀mpar, isto é, q = 2k + 1 (verifique). Assim,

a+ 1 = (3q+ 2) + 1 = 3(q+ 1) = 3(2k+ 2) = 6(k+ 1), assim, a(a+ 1)(a+ 2) é um múltiplo

de 6, pois (a+ 1) o é.

(29) Sejam a = 2q1 + r1 e b = 2q2 + r2 dois inteiros quaisquer, com 0 ≤ r1, r2 < 2. Então

5a + 6b = 5(2q1 + r1) + 6(2q2 + r2) = 2(5q1 + 2r1 + 6q2 + 3r2) + r1. Portanto a e 5a + 6b

tem o mesmo resto na divisão por 2, logo a mesma paridade.



Caṕıtulo 4

Sistema de Numeração

1 Introdução

Tomemos dois inteiros positivos, a = 1924 e b = 10. Pelo algoritmo da
divisão, podemos dividir a por b, encontrando um quociente q e um resto r,
com 0 ≤ r < b. Nesse caso,

1924 = 192.10 + ©︸︷︷︸
resto

4 .

Aplicando agora o algoritmo da divisão aos inteiros 192 e 10, obtemos:

192 = 19.10 + ©︸︷︷︸
resto

2 .

Substituindo essa identidade na primeira:

1924 = 192.10 + 4 = (19.10 + 2).10 + 4 = 19.102 + 2.10 + 4.

Repetindo o processo, dessa vez para o quociente 19:

19 = 1.10 + ©︸︷︷︸
resto

9 .

Dáı,
1924 = (1.10 + 9).102 + 2.10 + 4 = 1.103 + 9.102 + 2.10 + 4.

Por fim, divindo 1 por 10, teremos o quociente nulo:

1 = 0.10 + ©︸︷︷︸
resto

1 .

1924 = (0.10 + 1).103 + 9.102 + 2.10 + 4 = 1.103 + 9.102 + 2.10 + 4.

Obtemos assim a identidade:

1924 = 1.103 + 9.102 + 2.10 + 4.100.

37
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Ou seja, expressamos 1924 como uma soma de múltiplos de potências de 10,
sendo os coeficientes das potências exatamente os restos obtidos nas divisões
acima, os quais, nesse caso, coincidem com os d́ıgitos que aparecem na repre-
sentação do número.

Nesse exemplo, como dividimos por 10, qualquer que fosse o valor atribúıdo
a a, em sua representação só poderiam constar os 10 restos posśıveis: 0, 1, 2, ..., 8, 9.

Vamos repetir o mesmo processo, tomando b = 7, em vez de 10.

1924 = 274.7 + ©︸︷︷︸
resto

6 .

Dividindo agora o quociente 274 por 7:

274 = 39.7 + ©︸︷︷︸
resto

1 .

Substituindo esse valor na primeira identidade:

1924 = (39.7 + 1).7 + 6 = 39.72 + 1.7 + 6.

Repetimos o processo, até que o quociente seja nulo:

39 = 5.7 + ©︸︷︷︸
resto

4 .

Dáı,
1924 = (5.7 + 4).72 + 1.7 + 6 = 5.73 + 4.72 + 1.7 + 6.

Por fim, dividindo 5 por 7:

5 = 0.7 + ©︸︷︷︸
resto

5 .

⇓

1924 = (0.7 + 5).73 + 4.72 + 1.7 + 6 = 5.73 + 4.72 + 1.7 + 6.

Portanto,
1924 = 5.73 + 4.72 + 1.7 + 6.70.

Dessa forma, também expressamos 1924 como uma soma de múltiplos de
potências de 7. E com antes, os coeficientes das potências são exatamente
os restos obtidos nas sucessivas divisões.

Tal como fizemos para b = 10, podemos representar esse número, usando
somente os restos obtidos nas divisões, desde que fique indicado o inteiro b
usado como divisor. Nesse caso, escreve-se:

(5416)7,

e dizemos que essa é a expansão de 1924 na base 7.
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No segundo exemplo, como tomamos para o divisor b = 7, os restos
posśıveis são: 0, 1, 2, 3, 4, 5, 6. Assim, somente esses sete d́ıgitos apare-
cerão na representação do inteiro a, qualquer que seja o valor atribúıdo a ele.

Podemos repetir esse processo, quaisquer que sejam os inteiros positivos a
e b. Isso é o que afirma o próximo teorema, o qual é uma aplicação da divisão
euclidiana e a base para os sistemas de numeração posicional.

2 Representação de um inteiro em bases ar-

bitrárias

Teorema 3. Seja b ≥ 2 um inteiro. Para todo inteiro a ≥ 1, existem únicos
inteiros r0, r1, ..., rn, n ≥ 0, tais que:

a = rnb
n + rn−1b

n−1 + ...+ a1b+ r0.

com 0 ≤ ri < b, para todo i e rn 6= 0.

Demonstração:
Faremos a demonstração por indução em a.
(i) Base de Indução: a = 1:
Como b ≥ 2 > a, divindo a por b, obtemos:

a = 0.b+ a.

Assim, tomando n = 0 e r0 = a < b, segue a existência dos ri. Para a unicidade,
suponhamos que também existam inteiros 0 ≤ s0, s1, ..., sm−1, sm < b, para
algum m ≥ 0, com sm 6= 0, tais que:

a = smb
m + sm−1b

m−1 + ...+ s1b+ s0.

Se m ≥ 1, então

(smb
m−1 + sm−1b

m−2 + ...+ s1)b+ s0 = 0.b+ a.

Da unicidade do quociente e resto na divisão euclidiana, segue que s0 = a e
smb

m−1 + sm−1b
m−2 + ... + s1 = 0 ⇒ sm = sm−1 = ... = s1 = 0, um absurdo,

pois sm 6= 0. Assim, m = 0 e s0 = a, provando a unicidade.

(ii) Passo Indutivo:
Usaremos a 2a Forma do Prinćıpio da Indução Finita (Corolário 2). Para isso,
suponhamos o resultado válido para todo inteiro q, com 1 ≤ q < a. Pelo
algoritmo da divisão, existem únicos inteiros q0 e r0, com 0 ≤ r0 < b, tais que:

a = bq0 + r0. (4.1)

Se q0 = 0, então r0 = a 6= 0. Se q0 ≥ 1, como b ≥ 2, então 1 ≤ q0 < a. Logo,
pela hipótese de indução, existem únicos inteiros r′0, r

′
1, ..., r

′
m, tais que:

q0 = r′mb
m + r′m−1b

m−1 + ...+ r′1b+ r′0



40 Teoria dos Números

com 0 ≤ r′0, r
′
1, ..., r

′
m < b e r′m 6= 0. Substituindo o valor de q0 em (4.1)

obtemos:

a = b(r′mb
m+r′m−1b

m−1+...+r′1b+r
′
0)+r0 = r′mb

m+1+r′m−1b
m+...+r′1b

2+r′0b+r0.

Fazendo n = m + 1, rj = r′j−1, para j = 1, 2, ...,m, obtemos o resultado dese-
jado. A unicidade dos ri, segue da unicidade de r0 e dos r′j. �

A representação do inteiro a como no teorema, isto é,

a = rnb
n + rn−1b

n−1 + ...+ r1b+ r0, (4.2)

é chamada a expansão de a na base b, e utiliza-se a notação

(rnrn−1...r1r0)b (4.3)

para representar esta expansão. Assim, temos:Se b = 10 a ex-

pressão (4.2)

é é chamada

expansão

decimal, e

se b = 2, é

dita expansão

binária.

a = (rnrn−1...r1r0)b ⇔ a = rnb
n+rn−1b

n−1 + ...+r1b+r0

No caso da base 10, que é a usual, omitem-se os parênteses e a indicação
da base em (4.3).

Exemplos:
(01) Como

3427 = 2.64 + 3.63 + 5.62 + 1.61 + 1.60,

escrevemos

(23511)6

para representar a expansão do número 3427 na base 6.

(02) Como

3427 = 6.83 + 5.82 + 4.8 + 3.80,

então,

(6543)8

representa a expansão de 3427 na base 8.

(03) Sendo

3427 = 1.55 + 0.54 + 2.53 + 0.5 + 2.50,

então,

(102202)5
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representa a expansão, em base 5, de 3427.

(04) Como
3427 = 3.103 + 4.102 + 2.10 + 7,

a notação
(3427)10

é a representação da expansão de 3427 na base 10. Nesse caso, escrevemos
apenas 3427, como é usual, omitindo-se os parênteses e a base.

(05) A notação
(11000110)2

indica a expansão em base 2 (ou expansão binária) de um certo inteiro N .
Para determinar N , basta lembrar o significado desta notação. Assim,

N = 1.27 + 1.26 + 0.25 + 0.24 + 0.23 + 1.22 + 1.2 + 0.20 = 198.

Portanto, essa expressão representa a expansão binária do número 198.

(06) A notação (324)5 indica a expansão de um certo inteiro N em base 5.
Como

N = (324)5 ⇒ N = 3.52 + 2.5 + 4.50 = 89.

(324)5 representa a expansão em base 5 de 89.

(07) (1a7b6)12 é a representação de um certo inteiro N em base 12, onde esta-
mos usando os śımbolos a e b para representar, respectivamente, os números
10 e 11. Então,

N = (1a7b6)12 ⇒ N = 1.124 + a︸︷︷︸
=10

.123 + 7.122 + b︸︷︷︸
=11

.121 + 6.120 = 39162.

Portanto, N = 39162.

X Exerćıcios 4.

(01) Determine o número N (em base 10) que na base dada, tem a expansão
abaixo:
(a) (2345)7

Solução:
(2345)7 = 2.73 + 3.72 + 4.7 + 5.70 = 686 + 147 + 28 + 5 = 866. �
(b) (2012001)3

Solução:
(2012001)3 = 2.36 + 0.35 + 1.34 + 2.33 + 0.32 + 0.31 + 1.30 = 1594. �
(c) (100001)2

Solução:
(100000)2 = 1.25 + 0.24 + 0.23 + 0.22 + 0.21 + 1.20 = 32. �
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(02) Escreva a expansão do inteiro a na base b, sendo:

(a) a = 2945 e b = 6;
Solução:
Inicialmente, dividimos a pela base b:

2945 = 490.6 + 5.

A seguir, dividimos o quociente obtido nesssa divisão, novamente pela base b
e substitúımos o resultado no valor do quociente acima (como no teorema):
Como

490 = 81.6 + 4,

então

2945 = 490.6 + 5 = (81.6 + 4).6 + 5 = 81.62 + 4.6 + 5.60.

Repetimos esse processo, sempre dividindo o quociente pela base, até obter
um quociente qn = 0:

2945 = 81.62 + 4.6 + 5.60 = (13.6 + 3).62 + 4.6 + 4.60 = 13.63 + 3.62 + 4.6 + 5.60

= (2.6 + 1).63 + 3.62 + 4.6 + 5.60 = 2.64 + 1.63 + 3.62 + 4.6 + 4.60

= (0.6 + 2).64 + 1.63 + 3.62 + 4.6 + 5.60 = 2.64 + 1.63 + 3.62 + 4.6 + 4.60

Assim, (21345)6 é a expansão de 2945 em base 6. �

(b) a = 2945 e b = 5;
Solução:
Vamos efetuar as sucessivas divisões, até obter um quociente nulo, e depois
tomar os restos r0, r1, ..., rn obtidos, conforme feito na introdução:

2945 = 589.5 + ©︸︷︷︸
r0

0 .

589 = 117.5 + ©︸︷︷︸
r1

4 .

117 = 23.5 + ©︸︷︷︸
r2

2 .

23 = 4.5 + ©︸︷︷︸
r3

3 .

4 = 0.5 + ©︸︷︷︸
r4

4 .

Assim, 2945 = (r4r3r2r1r0)5 = (43240)5.

(c) a = 2945 e b = 2;
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Solução:
Efetuando as sucessivas divisões:

2945 = 1472.2 + ©︸︷︷︸
r0

1 .

1472 = 736.2 + ©︸︷︷︸
r1

0 .

736 = 368.2 + ©︸︷︷︸
r2

0 .

368 = 184.2 + ©︸︷︷︸
r3

0 .

184 = 92.2 + ©︸︷︷︸
r4

0 .

92 = 46.2 + ©︸︷︷︸
r5

0 .

46 = 23.2 + ©︸︷︷︸
r6

0 .

23 = 11.2 + ©︸︷︷︸
r7

1 .

11 = 5.2 + ©︸︷︷︸
r8

1 .

5 = 2.2 + ©︸︷︷︸
r9

1 .

2 = 1.2 + ©︸︷︷︸
r10

0 .

1 = 0.2 + ©︸︷︷︸
r11

1 .

e tomando os restos, temos 2945 = (101110000001)2. �

(d) a = 563 e b = 12, convencionando 10 = a e b = 11.
Solução:
563 = 46.12 + 11 = (3.12 + 10).12 + 11.120 = 3.122 + 10.12 + 11.120 = (3ab)12

�
(03) Escreva (7645)8 no sistema de base 12.
Solução:
Inicialmente vamos converter para a base 10 e posteriormente para a base 12.
(7645)8 = 7.83 + 6.82 + 4.81 + 5.80 = 4005
Agora,
4005 = 333.12 + 9 = (27.12 + 9).12 + 9.120 = 27.122 + 9.12 + 9.120

= (2.12 + 3).122 + 9.12 + 9.120

= 2.123 + 3.122 + 9.12 + 9.120

Portanto (7645)8 = (2399)12. �
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(04) Determine a base b de um sistema na qual (2006)8 se escreve como (613)b.
Solução:

(613)b = (2006)8.

⇓

6.b2 + 1.b+ 3.b0 = 2.83 + 0.82 + 0.8 + 6.80

⇓

6b2 + b− 1027 = 0⇒ b = 13.

�

(05) Efetue as somas:
(a) (1012)3 + (212)3.
Solução 1:
Podemos determinar a expansão dos inteiros em base 10, efetuar a soma nessa
base e posteriormente converter o resultado para a base 3:
(1012)3 = 1.33 + 0.32 + 1.31 + 2.30 = 32 e (212)3 = 2.32 + 1.3 + 2 = 23.
Assim, (1012)3 + (212)3 = 32 + 23 = 55 = 2.33 + 0.32 + 0.3 + 1 = (2001)3.

Solução 2:
Podemos efetuar a soma diretamente em base 3. Neste caso, lembrar que o
resultado da soma dos elementos de cada coluna deve ser convertida para base
3 e, como feito na base 10, coloca-se no resultado apenas o coeficiente r0, sendo
os demais coeficientes adicionados às colunas seguinte.

1012

0212

2001

(b) (2134)5 + (1143)5

Solução:
Somando diretamente em base 5 temos:

2134

1143

3332

Assim, (2134)5 + (1143)5 = (3332)5. �
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Lista de Exerćıcios 4.
(01) Determine o número N (em base 10) que na base dada, tem a expansão
abaixo:
(a) (110011)2;
(b) (2013)5;
(c) (20163)8;
(d) (264102)7;
(e) (22010011)3.

(02) Escreva a expansão de 34561 em base:
(a) 12;
(b) 8;
(c) 5;
(d) 2.

(03) Escreva a expansão em base 8 de (110111)2.

(04) Escreva a expansão em base 5 de (231330)4.

(05) Escreva a expansão em base 3 de (237014)8.

(06) Determine a base b de um sistema na qual (234)6 se escreve como (28)b.

(07) Sabendo que (10001101)2 = (215)b, determine b.

(08) Efetue as somas, apresentando o resultado na base dada:
(a) (110101)2 + (11111)2

(b) (220121)3 + (2201)3

(c) (64587)9 + (22453)9 + (460113)9

(d) (a987a)12 + (56a3b)12, sendo a = 10 e b = 11.

(09) SejaN = rn10n+rn−110n−1+....r110+r0, com 0 ≤ ri ≤ 9, para i = 1, 2, ..n.
Mostre que:
(a) 2|N ⇔ 2|r0;
(b) 3|N ⇔ 3|(r0 + r1 + ...+ rn);
(c) 5|N ⇔ 5|r0;
(d) 11|N ⇔ 11|(r0 − r1 + r2 − ...+ (−1)nrn);

Respostas da Lista de Exerćıcios 4
(01.a) N = 51 (01.b) N = 258 (01.c) N = 8307 (01.d) N = 49443 (01.e) N = 5917
(02.a) (18001)12 (02.b) (103401)8 (02.c) (2101221)5 (02.d) (1000011100000001)2
(03) (67)8
(04) (43230)5
(05) (11010200120)3
(06) b = 43
(07) b = 8
(08.a) (1010100)2 (08.b) (1000022)3 (08.c) (557264)9 (08.d) (1446b9)12.
(09.b) Sugestão: Mostre e use que ∀n ≥ 1, 10n = 9k + 1, k ∈ Z;
(09.c) Sugestão: Mostre e use que ∀n ≥ 1, 10n = 11k + (−1)n, k ∈ Z.



Caṕıtulo 5

Máximo Divisor Comum

1 Introdução

As duas oitavas séries de uma escola vão participar de uma gincana. Para
realizar as tarefas, a comissão organizadora decidiu dividir as duas turmas em
equipes, de modo que todas as equipes tenham o mesmo número de alunos e
em cada uma delas, os alunos sejam todos da mesma turma. Sabendo que a
8aA tem 40 alunos e a 8aB 50, determine o número de alunos que deverá ficar
em cada equipe, de modo que este número seja o maior posśıvel.

Solução:
Vamos denotar por d o número de alunos em cada equipe. Pela natureza do
problema, obviamente d é um inteiro positivo. Os 40 alunos da 8aA serão
divididos em n1 equipes com d alunos cada uma, ou seja,

40 = dn1.

Portanto, d é um divisor positivo de 40, logo d ∈ {1, 2, 4, 5, 8, 10, 20, 40}.
Analogamente, os 50 alunos da 8aB serão divididos em n2 equipes com d
alunos cada uma, ou seja,

50 = dn2.

Como d é também um divisor positivo de 50, então d ∈ {1, 2, 5, 10, 25, 50}.
Portanto, d é simultaneamente divisor de 40 e 50. Assim,

d ∈ {1, 2, 4, 5, 8, 10, 20, 40} ∩ {1, 2, 5, 10, 25, 50} = {1, 2, 5, 10}.

Como queremos que o número d seja o maior posśıvel, dentre os divisores
comuns, devemos tomar o maior deles, no caso 10.

Conlcúımos assim que a comissão deverá dividir a 8aA em 4 equipes e a
8aB em 5 equipes, cada uma delas com 10 alunos. �

46
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2 MDC

O número d = 10, solução do problema anterior, é o maior dentre os divisores
comuns dos inteiros 40 e 50, é o que chamados de máximo divisor comum,
conforme definido abaixo.

Definição 2. Sejam a e b dois inteiros não conjuntamente nulos (a 6= 0 e/ou
b 6= 0). Diz-se que um inteiro positivo d é o máximo divisor comum de a
e b, se d verifica as seguintes condições:
(i) d|a e d|b;
(ii) para todo d′ ∈ Z, se d′ | a e d′ | b, então d′ | d.

Usaremos a notação mdc(a, b) para indicar o máximo divisor comum de a e b.

A condição (i) da Definição 2 diz que o mdc(a, b) é um divisor comum
de a e b e a condição (ii), que ele é o maior dos divisores comuns, pois se
d′ é qualquer outro divisor comum de a e b, então d′|mdc(a, b) e portanto,
d′ ≤ |d′| ≤ mdc(a, b).

Exemplos:
(01) mdc(4, 6) = 2.

De fato, 2 satisfaz as condições (i) e (ii) da definição acima, isto é,
(i) 2 é um divisor comum de 4 e 6, pois 2|4 e 2|6;
(ii) 2 é o maior dos divisores comuns de 4 e 6, pois se d′ ∈ Z é tal que d′|4 e
d′|6, então pela Proposição 1, d′|(6− 4), ou seja, d′|2. �

(02) mdc(3,−5) = 1.
De fato, 1 é um divisor comum de 3 e -5 e se d′ ∈ Z é tal que

d′|3 e d′| − 5, então pela Proposição 1, d′|(3.2 + (−5)). Portanto, 1 satisfaz as
condições (i) e (ii) da Definição 2. �

(03) mdc(0, 3) = 3.
Observe que 3|0 e 3|3 e se d′ ∈ Z é um divisor comum de 0 e 3, então d′|3.�

(04) mdc(8, 20) = 4.
4 é um divisor comum de 8 e 20, e se d′ é também um dividor comum de

8 e 20, então d′|(8m + 20n), quaisquer que sejam m,n ∈ Z. Em particular,
d′|(8.(−2) + 20.1). Assim, 4 é um inteiro que está de acordo com o exigido na
Definição 2. �

X Exerćıcios 5.

(01) Use a Definição 2 para justificar as afirmações abaixo:
(a) mdc(6, 9) = 3;
(b) mdc(42, 7) = 7;
(c) mdc(−8, 28) = 4;
(d) mdc(−11,−35) = 1.
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(02) Determine o mdc abaixo e mostre que o valor encontrado satisfaz as
condições (i) e (ii) da Definição 2:
(a) mdc(32, 18);
(b) mdc(−12, 38);
(c) mdc(0, 31);
(d) mdc(1, 129);
(e) mdc(14, 84).
(03) Dê exemplo de dois inteiros não nulos a e b, para os quais não existe
mdc(a, b).
(04) Encontre, caso exista, um inteiro positivo d 6= 3, tal que d = mdc(6, 9).
(05) Encontre, caso exista, um inteiro positivo d 6= 4, tal que d = mdc(−8, 28).

Segue claramente da Definição 2, que para qualquer par de inteiros
(a, b) 6= (0, 0), temos:

mdc(a, b) = mdc(b, a) = mdc(|a|, |b|).

3 Cálculo do MDC

Que conclusões podemos tirar das questões 03, 04 e 05 do exerćıcio anterior? O
que você deve estar conjecturando é afirmado no Teorema 5, dado na próxima
seção, o qual garante a existência e unicidade do máximo divisor comum de dois
inteiros quaisquer a e b, não simultaneamente nulos. Antes porém, daremos
um algoritmo, que usa a divisão euclidiana, para o cálcular o máximo divisor
comum de dois inteiros. Vejamos primeiramente o caso em que um dos inteiros
é nulo, cujo cálculo é imediato.

X Exerćıcios 6.

(01) Usando a Definição 2, determine:
(a) mdc(0, 2)
(b) mdc(0, 5)
(c) mdc(0,−3)
(d) mdc(3927, 0)

Proposição 3. Para todo inteiro não nulo a, tem-se:

mdc(a, 0) = |a|.

Demonstração:
Como, 0 = 0.|a| e a = ±1.|a|, segue que |a| é um divisor comum de a e 0. Se
d′ ∈ Z é um divisor comum de a e 0, então d′|a⇒ d′||a|. Portanto, |a| está de
acordo com a Definição 2. �



Teoria dos Números 49

Teorema 4. Sejam a e b inteiros com b 6= 0, q e r respectivamente o quociente
e o resto da divisão de a por b, isto é ,

a = bq + r, com 0 ≤ r < |b|.

Então
mdc(a, b) = mdc(b, r).

Demonstração:
Suponha d = mdc(a, b). Vamos mostrar que d = mdc(b, r). De fato,
(i) Como d = mdc(a, b)⇒ d|a e d|b, então pela Proposição 1, d| (a− bq)︸ ︷︷ ︸

=r

⇒ d|r.

Assim d é um divisor comum de b e r;
(ii) Seja d′ um inteiro, tal que d′|b e d′|r ⇒ d′| (bq + r)︸ ︷︷ ︸

=a

⇒ d′|a. Como

d = mdc(a, b) e d′ é divisor comum de a e b, segue da Definição 2, que d′|d. �

Recapitulando, o Teorema 4 afirma que se

a︸︷︷︸
dividendo

= b︸︷︷︸
divisor

. q︸︷︷︸
quociente

+ r︸︷︷︸
resto

então
mdc(a, b) = mdc(b, r)

ou seja, na divisão euclidiana

mdc(dividendo,divisor) = mdc(divisor, resto)

Exemplos:
(01) Usando o Teorema 4 e a Proposição 3, vamos calcular:
(a) mdc(398, 12):
Solução:
Dividindo 398 por 12 obtemos:

398 = 12.33 + 2.

Segue do teorema anterior que mdc(398, 12) = mdc(12, 2). Dividindo 12 por
2:

12 = 2.6 + 0.

Então, novamente pelo Teorema 4, temos que mdc(12, 2) = mdc(2, 0). Assim,

mdc(398, 12) = mdc(12, 2) = mdc(2, 0) = 2.

Na última identidade usamos a Proposição 3, pois um dos inteiros é nulo. �
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(b) mdc(138, 24):
Solução:
Dividindo o número maior pelo menor obtemos:

138 = 24.5 + 18.

Então
mdc(138, 24) = mdc(24, 18).

Por sua vez,
24 = 18.1 + 6⇒ mdc(24, 18) = mdc(18, 6).

E como 18 = 6.3 + 0, então

mdc(138, 24) = mdc(24, 18) = mdc(18, 6) = mdc(6, 0) = 6.

�

Algoritmo para o Cálculo do MDC

Formalizaremos agora um algoritmo para cálcular o máximo divisor comum
de dois inteiros a e b não conjuntamente nulos. Como mdc(a, b) = mdc(b, a) =
mdc(|a|, |b|), assumiremos a e b positivos, com a ≥ b. Temos dois casos:

Caso 1: b = 0
Como os inteiros não são simultaneamente nulos, necessariamente a 6= 0. As-
sim,

mdc(a, b) = mdc(a, 0) = |a|,
conforme Proposição 3.

Caso 2: b 6= 0
Neste caso, efetuando as sucessivas divisões:

a = bq0 + r1, 0 ≤ r1 < b;
b = r1q1 + r2, 0 ≤ r2 < r1;
r1 = r2q2 + r3, 0 ≤ r3 < r2;
r2 = r3q3 + r4, 0 ≤ r4 < r3
...
rk = rk+1qk+1 + rk+2, 0 ≤ rk+2 < rk+1;
...

obtemos a sequência decrescente de inteiros não negativos

b > r1 > r2 > r3 > ... > rk > ... ≥ 0.

Como existe um número finito de inteiros no intervalo [0, b), necessariamente
vai existir um ı́ndice s, tal que o resto rs+1 = 0. Neste caso, as duas últimas
divisões da sequência acima serão:
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rs−2 = rs−1qs−1 + rs, 0 ≤ rs < rs−1;
rs−1 = rsqs + 0

Pelo Teorema 3, temos que:

mdc(a, b) = mdc(b, r1) = mdc(r1, r2) = ... = mdc(rs−1, rs) = mdc(rs, 0) = rs.

Resumindo:

ALGORITMO PARA O CÁLCULO DO MDC
Se a e b são inteiros não nulos, para calcular mdc(a,b), começamos
dividindo o maior pelo menor dentre os inteiros |a| e |b| e, segue-se
efetuando divisões sucessivas até obter um resto nulo, onde a divisão
seguinte é sempre feita dividindo o divisor pelo resto da divisão ante-
rior. Dáı,

mdc(a,b) = ao último resto não nulo obtido nas sucessivas divisões.

X Exerćıcios 7.

(01) Use o algoritmo acima para calcular:
(a) mdc(8, 76);
(b) mdc(312, 42);
(c) mdc(−23, 14);
(d) mdc(−18,−52);
(e) mdc(234,−415).

4 Existência e Unicidade do MDC

Teorema 5. Para quaisquer inteiros a e b não conjuntamente nulos, sempre
existe um único inteiro positivo d, tal que

d = mdc(a, b).

Demonstração:
Pelo Teorema 4 e algoritmo acima, fica garantido que o resto rs = mdc(a, b),
logo sempre existe. Resta mostrar a unicidade. Suponha que d1 e d2 sejam
ambos mdc(a, b). Pela condição (i) da Definição 2, ambos são divisores comuns
de a e b. Mas pela condição (ii), isto implica que d1|d2, pois d2 = mdc(a, b)
e d1 é um divisor comum. Analogamente, d2|d1, pois d1 = mdc(a, b) e d2 é
um divisor comum. Como ambos são positivos, pela Proposição 2, segue que
d1 ≤ d2 e d2 ≤ d1. Logo, d1 = d2. Assim, o máximo divisor de dois inteiros a
e b, existe e é único. �
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X Exerćıcios 8.

(01) Use divisões sucessivas para calcular mdc(a, b) e determine inteiros r e s,
tais que:

mdc(a, b) = ra+ sb.

(a) a = 24 e b = 14.
Solução:
Começamos dividindo o número maior pelo menor:
(1) 24︸︷︷︸

dividento

= 14︸︷︷︸
divisor

. 1︸︷︷︸
quociente

+ 10︸︷︷︸
resto

Agora efetuamos divisões sucessivas até obter um resto nulo, onde a divisão
seguinte é sempre feita dividindo o divisor da divisão anterior pelo resto.
(2) 14 = 10.1 + 4
(3) 10 = 4.2 + 2© ← último resto não nulo.
(4) 4 = 2.2 + 0© ← resto nulo.
Pela Teorema 4,

mdc(24, 14) = mdc(14, 10) = mdc(10, 4) = mdc(4, 2) = mdc(2, 0) = 2.

ou seja, mdc(24, 14) é o último resto não nulo obtido nas sucessivas divisões.

Para encontrar r e s, isolaremos todos os restos não nulos em cada uma
das divisões obtidas acima, sem efetuar as multiplicações e as somas. Apenas
deixaremos indicadas as operações:
(1) 10 = 24 + (−1).14
(2) 4 = 14 + (−1).10
(3) 2 = 10 + (−2).4.
Tomamos agora a última dessas equações e vamos substituindo os valores dos
restos encontrados nas anteriores, até que a identidade fique só em função dos
inteiros 24 e 14:

2 = 10 + (−2).4 - Tomando a equação (3), onde o resto = mdc(24, 14)
= 10 + (−2).(14 + (−1).10) - substituindo o valor do resto 4 dado na equação (2)
= (−2).14 + 3.10 - organizando a soma
= (−2).14 + 3.(24 + (−1).14) - substituindo o valor do resto 10 dado na equação (1)
= 3.24 + (−5).14 - organizando a soma.

Portanto:

2 = 3.24 + (−5).14

�
assim r = 3 e s = −5.

(b) −124 e 52.
Solução:
Como mdc(−124, 52) = mdc(| − 124|, |52|), calcularemos mdc(124, 52).
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Dividindo o maior valor pelo menor:
(1) 124 = 52.2 + 20
Agora efetuamos divisões sucessivas até obter um resto nulo:
(2) 52 = 20.2 + 12
(3) 20 = 12.1 + 8
(4) 12 = 8.1 + 4© ← último resto não nulo.
(5) 8 = 4.2 + 0 ← resto nulo.
Portanto,

mdc(124, 52) = mdc(52, 20) = mdc(20, 12) = mdc(12, 8) = mdc(8, 4) = mdc(4, 0) = 4.

Para encontrar r e s, isolaremos todos os restos não nulos em cada uma
das divisões obtidas:

(1) 20 = 124 + (−2).52
(2) 12 = 52 + (−2).20
(3) 8 = 20 + (−1).12.
(4) 4 = 12 + (−1).8.
Tomandos agora a última destas equações e substituindo os valores dos restos
encontrados nas anteriores:

4 = 12 + (−1).8
= 12 + (−1).(20 + (−1).12) - substituindo valor do resto 8 dado na equação (3)
= (−1).20 + 2.12 - organizando a soma
= (−1).20 + 2.(52 + (−2).20) - substituindo o valor do resto 12 dado na equação (2)
= 2.52 + (−5).20 - organizando a soma
= 2.52 + (−5).(124 + (−2).52) - substituindo o valor do resto 20 dado na equação (1)
= (−5).124 + 12.52 - organizando a soma.

Portanto:
4 = (−5).124 + 12.52.

Mas, como queremos de fato calcular mdc(−124, 52), basta alternamos o sinal
dos fatores na primeira parcela:

4 = 5.(−124) + 12.52.

Assim r = 5 e s = 12. �

Note que uma vez calculado o mdc(a, b) usando o Algoritmo de Euclides,
é sempre posśıvel encontrar inteiros r e s, tais que mdc(a, b) = ra + sb. Esse
resultado, conhecido como Teorema de Bézout, é enunciado abaixo:

Teorema 6. (Teorema de Bézout) Sejam a e b inteiros não conjuntamente
nulos, então existem inteiros r e s, tais que:

mdc(a, b) = ra+ sb.
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No letra (a) do exerćıcio anterior encontramos

2 = 3.24 + (−5).14

Mas, observe que também podemos escrever:

2 = 10.24 + (−17).14

ou

2 = (−4).24 + 7.14

�
dentre outras soluções. Portanto, r e s mencionados no Teorema 6, não são
únicos. O algoritmo dado acima é apenas um método de encontrar inteiros r
e s, tais que mdc(a, b) = ar + sb.

O Teorema 6 afirma que se d = mdc(a, b), então então existem r, s ∈ Z,
tais que

d = ra+ sb. (5.1)

Uma pergunta natural é: - Vale a rećıproca desse teorema, isto é, se d =
ra+ sb, com r, s ∈ Z, isso implica que d = mdc(a, b)?

Esse fato nem sempre é verdadeiro, por exemplo,

8 = (−7).6 + 5.10

porém mdc(6, 10) 6= 8. No caso particular, em que a soma dada em (5.1) é
igual a 1, fica garantida a rećıproca do Teorema 6, conforme proposição abaixo.

Proposição 4. Sejam a e b inteiros. Se existem inteiros r e s, tais que

ra+ sb = 1

então

mdc(a, b) = 1.

Demonstração:
Considere que existam inteiros r e s, tais que ra + sb = 1 e suponha
d = mdc(a, b). Vamos mostrar que d = 1. Como d = mdc(a, b), então d|a
e d|b, logo d|(ra+ sb)⇒ d|1⇒ d = ±1. Mas, como d > 0, então d = 1. �

Exemplos:
(01) Como 1 = 3.5 + (−2).7, segue da Proposição 4 que mdc(3, 7) = 1;
(02) Da igualdade 1 = (−23).63 + 29.50, pode concluir que mdc(63, 50) = 1;
(03) Da identidade 1 = (−1).n + 1.(n + 1), segue que mdc(n, n + 1) = 1,
qualquer que seja n ∈ Z.
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5 Inteiros Relativamente Primos

Inteiros para os quais o máximo divisor comum é a unidade recebem deno-
minação especial, conforme definição abaixo.

Definição 3. Dois inteiros a e b dizem-se relativamente primos ou pri-
mos entre si, se mdc(a, b) = 1.

Exemplos:
(01) 2 e 3 são relativamente primos, pois mdc(2, 3) = 1;
(02) 4 e 15 são primos entre si, pois mdc(4, 15) = 1;
(03) 4 e 10 não são relativamente primos, pois mdc(4, 10) = 2.

Proposição 5. Se
mdc(a, b) = d,

então

mdc(
a

d
,
b

d
) = 1.

Demonstração:
d = mdc(a, b)⇒ existem inteiros r e s, tais que:

d = ra+ sb
⇓

1 = r.a
d

+ s. b
d
, com a

d
, b
d
∈ Z

⇓
mdc(a

d
, b
d
) = 1,

conforme Proposição 4. �

X Exerćıcios 9.

(01) Determine todos os inteiros positivos a e b, para os quais 2a + b = 160 e
mdc(a, b) = 8.
Solução:
Como mdc(a, b) = 8⇒ a = 8k1 e b = 8k2, com k1, k2 ∈ Z∗+. Então

2a+ b = 160⇒ 2(8k1) + 8k2 = 160⇒ k2 = 20− 2k1

⇓

(k1, k2) ∈ {(1, 18), (2, 16), (3, 14), (4, 12), (5, 10), (6, 8), (7, 6), (8, 4), (9, 2)}.

Agora, como 8 = mdc(a, b) = mdc(8k1, 8k2) ⇒ mdc(k1, k2) = 1, conforme
Proposicão 5. Assim, as únicas soluções posśıveis são:
k1 = 1, k2 = 18⇒ a = 8 e b = 144;
k1 = 3, k2 = 14⇒ a = 24 e b = 112;
k1 = 7, k2 = 6⇒ a = 56 e b = 48;
k1 = 9, k2 = 2⇒ a = 72 e b = 16. �
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Na questão 09 da Lista de Exerćıcio 3, você encontrou inteiros a, b e c, com
a|bc, porém a - b e a - c. Por exemplo, 4|(2.6), porém 4 - 2 e 4 - 6. Também
temos, que 9|(3.15), porém 9 - 3 e 9 - 15. O teorema a seguir, atribúıdo a
Euclides, dá a condição para que isso não ocorra.

Teorema 7. (De Euclides) Sejam a, b e c inteiros, tais que a|bc. Se a e b são
relativamente primos, então a|c.

Demonstração:
Como, mdc(a, b) = 1, existem inteiros r e s, tais que 1 = ra + sb. Por outro
lado, como a|bc, existe k ∈ Z, tal que bc = ak. Multiplicando a equação

1 = ra+ sb

por c e usando o valor de bc acima:
1 = ra+ sb⇒ c = a(rc) + (bc)s⇒ c = a(rs) + a(ks) = a(rs+ ks)⇒ a|c. �

Exemplos:
(01) Se 3|(7.a), com a ∈ Z, necessariamente 3|a, pois mdc(3, 7) = 1;
(02) Para quaisquer inteiros n 6= 0 e a, se n|(an+ a), então n|a. (Justifique).
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Lista de Exerćıcios 5.

(01) Usando a Definição 2, mostre que:
(a) mdc(80, 30) = 10;
(b) mdc(0,−12) = 12;
(c) mdc(8, 32) = 8;
(d) mdc(−24,−148) = 4.

(02) Para cada par de inteiros a e b, determine mdc(a, b) e encontre inteiros r
e s, tais que mdc(a, b) = ra+ sb:
(a) a = 8, b = 76;
(b) a = 312, b = 42;
(c) a = −23, b = 14;
(d) a = −18, b = −52;
(e) a = 234, b = −415;
(f) a = 392 e b = 490.

(03) Para cada uma das equações abaixo, determine um par de inteiros (x, y)
que seja solução da mesma:
(a) 11x+ 9y = 1;
(b) 11x+ 9y = 60;
(c) 54x+ 21y = 3;
(d) 54x+ 21y = 15;
(e) 56x+ 72y = 8;
(f) 56x+ 72y = −40.

(04) Determine todos os inteiros a, para os quais mdc(a, 0) = 13.

(05) Determine todos os inteiros positivos a e b, com a ≤ b, para os quais
a+ b = 96 e mdc(a, b) = 12.

(06) Determine todos os inteiros positivos a e b, com a ≤ b, para os quais
a.b = 294 e mdc(a, b) = 7.

(07) Calcule:
(a) mdc(mdc(6, 16), 12));
(b) mdc(6,mdc(16, 12));
(c) mdc(mdc(5, 12), 16);
(d) mdc(5,mdc(12, 16)).

(08) Sejam a, b e c inteiros não nulos. Mostre quemdc(mdc(a, b), c) = mdc(a,mdc(b, c)).

(09) A Definição 2 pode ser estendida para um quantidade finita n ≥ 2 qual-
quer de inteiros, isto é, dados inteiros a1, a2, ..., an, não simultamente nulos,
dizemos que o inteiro positivo d é o máximo divisor comum de a1, a2, ..., an e
escrevemos d = mdc(a1, a2, .., an), se
(i) d|a1, d|a2, ..., d|an;
(ii) para todo d′ ∈ Z, se d′|ai, para todo i = 1, 2, .., n, então d′|d.
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Usando esta definição e a questão (08), calcule:
(a) mdc(22, 16, 38)
(b) mdc(8, 15, 4, 23)
(c) mdc(180,−90, 84,−294, 60).

(10) Sejam a e b inteiros não nulos. Mostre que se b|a, então mdc(a, b) = |b|.

(11) Sejam a, b e c inteiros não nulos. Mostre que:
(a) Se mdc(a, c) = mdc(b, c) = 1, então mdc(ab, c) = 1;
(b) Se mdc(a, b) = 1, então mdc(a+ b, b) = 1;
(c) Se mdc(a, b) = 1, então mdc(a+ b, ab) = 1.

(12) Sejam a e b inteiros não nulos e d = mdc(a, b). Mostre que para cada
par de inteiros (r, s), tais que d = ra+ sb, tem-se que mdc(r, s) = 1.

(13) Sejam a e b inteiros. Mostre que se mdc(a, b) = 1, então mdc(an, b) = 1,
para todo inteiro n ≥ 1. (Sugestão: use indução em n).

(14) Sejam x1, x2, ..., xk, n inteiros positivos. Mostre que se mdc(xi, n) = 1,
para todo i = 1, 2, .., k, então mdc(x1x2...xk, n) = 1.

(15) Mostre que quaisquer dois inteiros consecutivos são relativamente pri-
mos.

(16) Mostre que para todo n ∈ Z, os inteiros 2n + 1 e 2n − 1 são relativa-
mente primos.

(17) Sejam a, b e c inteiros. Mostre que se mdc(a, b) = 1 e c|(a + b), então
mdc(a, c) = mdc(b, c) = 1. (Sugestão: use a hipótese para encontrar inteiros
x, y, z, w, tais que ax+ cy = 1 e bz + cw = 1).

(18) Sejam a, b e c inteiros. Mostre que se 100a|bc e a e b são relativamente
primos, então a|c.

(19) Sejam a, b e c inteiros. Mostre que:
(a) se a é diviśıvel simultaneamente por 3 e 5, então a é diviśıvel por 15;
(b) se a é diviśıvel simultameamente por 8 e 9, então a é diviśıvel por 72;
(c) se a é diviśıvel simultaneamente por b e c e mdc(b, c) = 1, então bc|a.

(20) João tem 864 bolinhas de gude, sendo 480 vermelhas e o restante, pre-
tas. Ele resolveu guardá-las em saquinhos, de modo que todos os saquinhos
tenham a mesma quantidade de bolinhas e que em cada um deles todas as
bolinhas sejam da mesma cor. Desejando colocar a maior quantidade posśıvel
de bolinhas em cada saquinho, quantos saquinhos de cada cor serão formados
e qual a quantidade de bolinhas em cada um deles?
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Respostas da Lista de Exerćıcios 5

(01.a) 80 = 8.10 e 30 = 3.10 ⇒ 10|80 e 10|30 ⇒ 10 é um divisor comum de 80 e 10. Se

d′ ∈ Z é tal que d′|80 e d′|30, então d′|(80.(−1) + 30.3)⇒ d′|10. Portanto mdc(80, 30) = 10.

(02.a) mdc(8, 76) = 4 = (−9).8 + 1.76 (02.b) mdc(312, 42) = 6 = (−2).312 + 15.42

(02.c) mdc(−23, 14) = 1 = 3.(−23) + 5.14 (02.d) mdc(−18,−52) = 2 = (−3).(−18) +

1.(−52)

(02.e) mdc(234,−415) = 1 = 94.234 + 53.(−415) (02.f) mdc(392, 490) = 98 = (−1).392 +

1.490

(03.a) (4, 5) (03.b) (−240, 300) (03.c) (2,−5) (03.d) (10,−25) (03.e) (4,−3) (03.f)

(−20, 15)

(04) a = −13 ou a = 13.

(05) Os posśıveis valores para o par (a, b) são (12, 84) ou (36, 60).

(06) Os posśıveis valores para o par (a, b) são (7, 42) ou (14, 21).

(09.a) mdc(22, 16, 38) = 2 (09.b) mdc(8, 15, 4, 23) = 1 (09.c) mdc(180,−90, 84,−294, 60) =

6.

(11.a) mdc(a, c) = mdc(b, c) = 1 ⇒ ∃x, y, z, w ∈ Z, tais que ax + cy = 1 e bz + cw = 1 ⇒
(ax + cy)(bz + cw) = 1 ⇒ ab(xz) + c(axw + bzy + cyw) = 1 ⇒ mdc(ab, c) = 1, conforme

Proposição 4, pois xz e (axw + bzy + cyw) ∈ Z.

(11.b) mdc(a, c) = 1 ⇒ ∃x, y ∈ Z, tais que ax + by = 1 ⇒ ax + bx + by − bx = 1 ⇒
(a+ b)x+ b(y − x) = 1⇒ mdc(a+ b, b) = 1, pois x e (x− y) ∈ Z.

(19.c) mdc(b, c) = 1 ⇒ ∃x, y ∈ Z, tais que bx + cy = 1 ⇒ abx + acy = a. Como b|a e

c|a ⇒ ∃ k1, k2 ∈ Z, tais que a = bk1 = ck2. Substituindo esses valores no lado esquerdo da

equação anterior: (bc)(xk2) + (bc)(yk1) = a⇒ bc(xk2 + yk1) = a⇒ bc|a.

(20) 5 saquinhos com bolinhas vermelhas e 4 com bolinhas pretas, todos com 96 unidades.



Caṕıtulo 6

Mı́nimo Múltiplo Comum

1 Introdução

Na gincana escolar, citada no caṕıtulo anterior, a turma que obtiver o maior
número de pontos na realização das tarefas será a vencedora e levará o prêmio,
o qual consiste de N livros. A quantidade N de livros foi estabelecida de modo
que possa ser igualmente dividida entre todos os alunos da turma vencedora,
qualquer que seja ela. Determine o valor de N , sabendo que ele é o menor
inteiro posśıvel com essa propriedade.
Solução:
Como N pode ser dividido de forma exata entre os alunos de quaisquer das
turmas, então

40|N e 50|N
isto é, N é um múltiplo positivo comum de ambos os inteiros. Assim,

N ∈ {40, 80, 120, 160, 200, ....}∩{50, 100, 150, 200, 250, ...} = {200, 400, 600, ...}.

Sendo N o menor posśıvel, então N = 200. �

O inteiro N = 200, por ser o menor dentre os múltiplos positivos comuns
dos inteiros 40 e 50, é chamado o mı́nimo múltiplo comum desses inteiros,
conforme definido a seguir.

2 Múltiplos de um Inteiro

Dado um inteiro n, usaremos a notação nZ para representar o conjunto de
todos os inteiros que são múltiplos de n, isto é,

nZ := {nk | k ∈ Z} = {...,−3n,−2n,−n, 0, n, 2n, 3n, ...}

Exemplos:
(01) 5Z = {5k | k ∈ Z} = {...,−15,−10,−5, 0, 5, 10, 15, ...};

60
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(02) −4Z = {−4k | k ∈ Z} = {...,−12,−8,−4, 0, 4, 8, 12, ...} = 4Z;
(03) 10Z = {10k | k ∈ Z} = {...,−40,−30,−20,−10, 0, 10, 20, 30, ...};
(04) −15Z = {−15k | k ∈ Z} = {...,−45,−30,−15, 0, 15, 30, 45, ...} = 15Z.

Definição 4. Sejam a e b inteiros não nulos (a 6= 0 e b 6= 0). Um inteiro c
diz-se um múltiplo comum de a e b se ambos são divisores de c, isto é, a|c
e b|c.

Observe que se c é um múltiplo comum de a e b, então c ∈ aZ ∩ bZ.

Exemplos:
(a) 15 é um múltiplo comum de 3 e 5, pois 3|15 e 5|15;
(b) -30 é um múltiplo comum de 10 e -15, pois 10| − 30 e −15| − 30;
(c) 40 é um múltiplo comum de 8 e 20, pois 40 ∈ 8Z∩20Z = {...,−40, 0, 40, 80, ...}.

X Exerćıcios 10.

(01) Determine:
(a) 2Z ∩ 4Z;
Solução:
Observe que se c ∈ 4Z, então existe k ∈ Z, tal que c = 4k = 2(2k) ∈ 2Z ⇒
4Z ⊂ 2Z⇒ 2Z ∩ 4Z = 4Z. �

(b) 2Z ∩ 3Z;
Solução:
c ∈ 2Z ∩ 3Z ⇒ c ∈ 2Z ⇒ c = 2k1, com k1 ∈ Z e c ∈ 3Z ⇒ c = 3k2, com
k2 ∈ Z. Assim, temos:
c = 2k1 = 3k2 ⇒ 2|3k2 ⇒ 2|k2, conforme Teorema 7, pois mdc(2, 3) = 1.
Portanto, k2 = 2k, k ∈ Z. Dáı,

c = 3k2 = 3(2k) = 6k ∈ 6Z⇒ 2Z ∩ 3Z ⊂ 6Z.

Por outro lado, para todo 6k ∈ 6Z, temos 6k = 2(3k) = 3(2k) ∈ 2Z ∩ 3Z.
Portanto, também temos a inclusão no outro sentido. Logo, 2Z ∩ 3Z = 6Z. �

(c) 4Z ∩ 10Z;
Solução:
c ∈ 4Z ∩ 10Z⇒ c = 4k1 = 10k2, k1, k2 ∈ Z⇒ 2k1 = 5k2 ⇒ 2|5k2 ⇒ 2|k2, pois
mdc(2, 5) = 1. Assim, k2 = 2k ⇒ c = 10k2 = 20k ∈ 20Z⇒ 4Z ∩ 10Z ⊂ 20Z e
obviamente, que 20Z ⊂ 4Z ∩ 10Z. Assim, 4Z ∩ 10Z = 20Z. �

(02) Mostre que para quaisquer inteiros não nulos a e b, aZ ∩ bZ 6= {0}.
Solução:
Como a e b são não nulos, então 0 6= ab ∈ aZ∩ bZ, pois é um múltiplo comum
de a e b. �
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3 Mı́nimo Múltiplo Comum

Definição 5. Sejam a e b inteiros não nulos. Diz-se que um inteiro positivo m
é o mı́nimo múltiplo comum de a e b, se m verifica as seguintes condições:
(i) a|m e b|m;
(ii) Se m′ é um inteiro tal que a|m′ e b|m′, então m|m′.

Denotaremos o mı́nimo múltiplo comum de a e b por mmc(a, b).

A condição (i) da definição acima, diz que o mmc(a, b) é um múltiplo co-
mum de a e b e a condição (ii), que ele é o menor dos múltiplos positivos
comuns de a e b, pois se m′ > 0 é qualquer outro múltiplo comum de a e b,
então mmc(a, b)|m′ e portanto, mmc(a, b) ≤ m′.

Para o mmc, temos observações análogas às feitas para o mdc, isto é,

mmc(a, b) = mmc(b, a) = mmc(|a|, |b|).

X Exerćıcios 11.

(01) Use a Definição 5 para justificar as afirmações abaixo:
(a) mmc(2, 5) = 10;
Solução:
Temos que mostrar que 10 satistaz as condições (i) e (ii) da Definição 5. De
fato,
(i) 2|10 e 5|10, logo, 10 é um múltiplo positivo comum de 2 e 5;
(ii) Se m′ ∈ Z é tal que 2|m′ e 5|m′, então m′ = 2k1 = 5k2, com k1, k2 ∈ Z.
Mas, como 2k1 = 5k2 ⇒ 2|5k2 ⇒ 2|k2, pois mdc(2, 5) = 1. Assim, k2 = 2k,
k ∈ Z. Logo m′ = 5k2 = 5(2k) = 10k ⇒ 10|m′, sendo 10, portanto, o menor
dos múltiplos positivos comuns de 2 e 5. �

(b) mmc(−5, 25) = 25;
Solução:
De fato, −5|25 e 25|25, logo 25 é um múltiplo comum de -5 e 25. E se m′ ∈ Z
é tal que −5|m′ e 25|m′ ⇒ m′ = −5k1 = 25k2 ⇒ −k1 = 5k2 ⇒ m′ = −5k1 =
5(−k1) = 5(5k2) = 25k2 ⇒ 25|m′. Portanto, 25 = mdc(−5, 25). �

(c) mmc(6, 14) = 42.
Solução:
Como 6|42 e 14|42, 42 é um múltiplo comum dos dois inteiros. E se m′ ∈ Z
é tal que 6|m′ e 14|m′ ⇒ m′ = 6k1 = 14k2 ⇒ 3k1 = 7k2 ⇒ 3|7k2 ⇒ 3|k2,
pois mdc(3, 7) = 1. Assim, k2 = 3k, k ∈ Z. Portanto, m′ = 14k2 = 14(3k) =
42k ⇒ 42|m′. Assim, 42 = mmc(6, 14). �

(d) mmc(6, 9) = 18;
(e) mmc(42, 7) = 42;
(f) mmc(−8, 28) = 56;
(g) mmc(−11,−35) = 385.
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4 Relação entre MDC e MMC

Nos exerćıcios resolvidos anteriormente, foi informado o valor do mmc de dois
inteiros e tivemos apenas que mostrar que aquele valor estava de acordo com
a definição dada. Porém, ainda não sabemos como encontrar tal inteiro. A
próxima proposição estabelece uma relação entre o mdc e mmc de dois inteiros
não nulos, fornecendo assim, um algoritmo para o cálculo do mmc.

Proposição 6. Sejam a e b inteiros não nulos, então

mdc(a, b).mmc(a, b) = |ab|.

Demonstração:
Seja d = mdc(a, b). Vamos mostrar que o inteiro m := |ab|

d
é o mı́nimo múltiplo

comum de a e b, isto é, m = mmc(a, b). De fato, temos que:
(i) a|m e b|m.
Observe que sendo d = mdc(a, b), então a

d
e b
d

são números inteiros e como

m = |a| |b|
d

= |b| |a|
d
⇒ a|m e b|m.

(ii) m é menor dos múltiplos positivos comuns de a e b:
Seja m′ ∈ Z tal que a|m′ e b | m′. Então existem inteiros k1, k2, tais que:

m′ = ak1 = bk1 ⇒
a

d
k1 =

b

d
k2 ⇒

b

d
|(a
d
.k1).

Como mdc(a
d
, b
d
) = 1, segue do Teorema 7, que b

d
| k1 ⇒ k1 = b

d
.k, com k ∈ Z.

Assim,

m′ = ak1 =
ab

d
k = ±|ab|

d
k = ±mk ⇒ m | m′.

De (i) e (ii) segue que:

mmc(a, b) =
|ab|
d
⇒ |ab| = mmc(a, b).d = mmc(a, b).mdc(a, b).

�

X Exerćıcios 12.

(01) Usando a Proposição 6, calcule:
(a) mmc(24, 14);
Solução:
Já vimos que mdc(24, 14) = 2, então pela Proposição 6:
mmc(24, 14) = 24.14

mdc(24,14)
= 336

2
= 168. �

(b) mmc(−124, 52);
Solução:
Pela Proposição 6, mmc(−124, 52) = |−124.52|

mdc(−124,52)
= 6448

4
= 1612. �
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(c) mmc(13, 8);
Solução:
Pela Proposição 6:
mmc(13, 8) = |13.8|

mdc(13,8)
= 104

1
= 104. �

(02) Determine todos os valores posśıveis para o par de inteiros positivos (a, b),
com a ≤ b, sabendo que ab = 6720 e mmc(a, b) = 1680.
Solução 1:
Como mdc(a, b).mmc(a, b) = |ab| ⇒ mdc(a, b) = ab

mmc(a,b)
= 6720

1680
= 4. Por-

tanto 4|a e 4|b⇒ a = 4k1 e b = 4k2, com k1, k2 ∈ Z. Então,

6720 = ab = (4k1)(4k2)⇒ 6720 = 16k1k2 ⇒ k1k2 = 420.

Para determinarmos os posśıveis valores para k1 e k2, vejamos todas as decom-
posição de 420 como o produto de dois inteiros positivos:

k1k2 = 420 = 1.420 = 2.210 = 3.140 = 4.105 = 5.84 = 6.70
= 7.60 = 10.42 = 12.35 = 14.30 = 15.28 = 20.21.

Agora, como 4 = mdc(a, b) = mdc(4k1, 4k2) ⇒ mdc(k1, k2) = 1. Assim, para
a solução do problema só servem os produtos em que os fatores são relativa-
mente primos. Tomando k1 e k2 com essa condição e lembrando que a = 4k1

e b = 4k2, os pares (a, b) de inteiros positivos satisfazendo a condição dada são:
(4, 1680), (12, 560), (16, 420), (20, 336), (28, 240), (48, 140), (60, 112) e (80, 84). �

Solução 2:
Podemos também tomar todas as decomposições de 6720 como produto de dois
inteiros positivos, nesse caso, teremos 56 formas de fazer essa decomposição:

ab = 6720 = 1.6720 = 2.3360 = 3.2240 = 4.1680 = .... = 80.84

e então verificar em quais dessas decomposições temos mmc(a, b) = 1680. �
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Lista de Exerćıcios 6.

(01) Use a Definição 5 para justificar as afirmações abaixo:
(a) mmc(8, 40) = 40;
(b) mmc(21, 30) = 210;
(c) mmc(14,−33) = 462;
(d) mmc(−8,−9) = 72.

(02) Usando a Proposição 6, calcule:
(a) mmc(1, 12) (b) mmc(−1, 129); (c) mmc(3, 6);
(d) mmc(−5, 30); (e) mmc(31, 31); (f) mmc(3, 5);
(g) mmc(7, 8); (h) mmc(36,−27); (i) mmc(−6,−28);
(j) mmc(11, 24); (k) mmc(32, 18); (l) mmc(−12, 38).

(03) Mostre que:
(a) 8Z ∩ 24Z = 24Z;
(b) 6Z ∩ 7Z = 42Z;
(c) 12Z ∩ 14Z = 84Z.

(04) Determine:
(a) 7Z ∩ 35Z;
(b) 12Z ∩ 13Z;
(c) 8Z ∩ 12Z.

(05) Determine o valor do inteiro positivo b, para o qual tem-se mdc(48, b) = 6
e mmc(48, b) = 432.

(06) Mostre que para todo inteiro não nulo a, mmc(a, 1) = |a|.

(07) Sejam a e b inteiros não nulos. Mostre que se a|b, então mmc(a, b) = |b|.

(08) Mostre que se a e b são inteiros primos entre si, então mmc(a, b) = |ab|.

(09) Sejam a e b inteiros não nulos. Mostre que mdc(a, b) divide mmc(a, b).

(10) Sejam a e b inteiros positivos. Mostre que se mdc(a, b) = mmc(a, b),
então a = b.

(11) Determine todos os posśıveis valores para o par de inteiros positivos (a, b),
com a ≤ b, sabendo que:
(a) mmc(a, b) = 35 e a e b são relativamente primos;
(b) mdc(a, b) = 2 e mmc(a, b) = 104;
(c) ab = 408 e mmc(a, b) = 204;
(d) mmc(a, b) = mdc(a, b) = 35;
(e) mdc(a, b) +mmc(a, b) = 266 e mdc(a, b).mmc(a, b) = 528.

(12) Seja n ∈ Z− {−1, 0}. Calcule mmc(n, n+ 1).
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(13) Seja n ∈ Z−{−1, 0}. Mostre que mmc(2n−1, 2n+1) = (2n−1)(2n+1).

(14) Um páıs tem eleições para presidente de 5 em 5 anos e para governador,
de 4 em 4 anos. Em 2000, essas duas eleições coindidiram. Quando serão as
três próximas vezes que elas voltarão a coincidir? Justifique sua resposta.

(15) Em uma estação rodoviária os ônibus com destino às cidades A, B e
C, partem em intervalos de 6, 8 e 5 horas, respectivamente. Em certo mo-
mento a partida dos ônibus para essas três cidades ocorreu exatamente no
mesmo instante. Quando tempo depois, isto ocorrerá novamente? Justifique
sua resposta.

Respostas da Lista de Exerćıcios 6

(01.c) Vamos mostrar que 210 satisfaz as condições (i) e (ii) da Definição 5. Como 21|210

e 30|210, 210 é um múltiplo comum dos dois inteiros. E se m′ ∈ Z é tal que 21|m′ e

30|m′ ⇒ m′ = 21k1 = 30k2 ⇒ 7k1 = 10k2 ⇒ 7|10k2 ⇒ 7|k2, pois mdc(7, 10) = 1. Assim,

k2 = 7k. Portanto, m′ = 30k2 = 30(7k) = 210k ⇒ 210|m′.
(02.a) mmc(1, 12) = 12 (02.b) mmc(−1, 129) = 129 (02.c) mmc(3, 6) = 6

(02.d) mmc(−5, 30) = 30 (02.e) mmc(31, 31) = 31 (02.f) mmc(3, 5) = 15

(02.g) mmc(7, 8) = 56 (02.h) mmc(36,−27) = 108 (02.i) mmc(−6,−28) = 84

(02.j) mmc(11, 24) = 264 (02.k) mmc(32, 18) = 288 (02.l) mmc(−12, 38) = 228.

(04.a) 35Z (04.b) 156Z (04.c) 24Z.

(05) b = 54

(11.a) (1, 35) ou (5, 7) (11.b) (2, 104) ou (8, 26)

(11.c) (2, 204), (4, 102), (6, 68) ou (12, 34)

(11.d) a = b = 35 (11.e) (2, 264), (6, 68), (8, 66) ou (24, 22)

(12) mmc(n, n+ 1) = n(n+ 1)

(14) 2020, 2040 e 2060

(15) 120 horas depois

(14) 2.678

(15) 120 minutos.



Caṕıtulo 7

Números Primos

1 Definição

Definição 6. Um número inteiro p diz-se primo se ele tem exatamente dois
divisores positivos distintos, 1 e |p|.

Denotando por D+(a) o conjunto dos divisores positivos de um inteiro a,
então p ∈ Z é primo se D+(p) = {1, |p|} é um conjunto com exatamente dois
elementos distintos.

Um número a ∈ Z− {−1, 0, 1} que não é primo, diz-se composto.

Exemplos:
(a) 5 é um número primo, pois D+(5) = {1, 5};
(b) -7 é um número primo, pois D+(−7) = {1, 7};
(c) 1 não é um número primo, pois D+ = {1}.
(d) 4 é um número composto, pois D+(4) = {1, 2, 4}.

Observe que se a ∈ Z − {−1, 0, 1} é um inteiro composto, então existe
b ∈ Z, tal que b|a e 1 < b < |a|. Como visto no Caṕıtulo 3 , todo inteiro
com essa propriedade é chamado divisor próprio de a. Assim, todo inteiro
composto tem pelo menos um divisor próprio.

X Exerćıcios 13.

(01) Determine D+(a) para cada inteiro a abaixo e classifique-o em primo ou
composto:
(a) a = 23;
(b) a = 26;
(c) a = −11;
(d) a = −97.
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2 Propriedades dos Números Primos

Vejamos a seguir algumas propriedades dos números primos.

Proposição 7. Sejam a e p números inteiros. Se p é primo e p - a, então
mdc(p, a) = 1.

Demonstração:
Suponha d = mdc(p, a) ⇒ d|p. Como d > 0 e p é primo, então ou d = 1 ou
d = |p|. Porém, como p - a, então d 6= |p|, pois d|a. Logo, d = 1. �

Já vimos que se a, b e c são inteiros e a|bc, não necessariamente a divide
algum dos fatores. Por exemplo, 6|(8.9), mas 6 - 8 e também 6 - 9. Porém, se a
é relativamente primo com um dos fatores, que não é o caso desse exemplo, áı
a necessariamente deverá dividir o outro fator, conforme Teorema 7. E o que
dizer se a for um número primo? Usando o Teorema 7 e a proposição acima,
a resposta, que você já deve ter inferido, é dada na proposição a seguir.

Proposição 8. Sejam p, b e c números inteiros. Se p é primo e p|bc, então
p|b ou p|c.

Demonstração:
Suponha que p|bc. Se p|b, a demonstração está encerrada. Se p - b, pela
Proposição 7, mdc(p, b) = 1 e pelo Teorema 7, p|c. �

Exemplos:
(01) 5|60 e como 5 é primo, qualquer que seja a decomposição de 60 como pro-
duto de dois inteiros, 5 necessariamente dividirá pelo menos um dos fatores.
Veja:

5|(1.60) 5|(2.30) 5|(3.10) 5|(4.15) 5|(5.12) 5|(6.10)

(02) Como 7 é primo e 7|84, então qualquer que seja a decomposição de 84
como o produdo de dois inteiros, necessariamente 7 dividirá pelo menos um
dos fatores. Verifique.

A proposição acima pode se estendida para um número n ≥ 2 qualquer de
fatores. Para a demonstração, usa-se indução no número n de fatores.

Corolário 3. Sejam a1, a2, ..., an e p números inteiros, com n ≥ 2. Se p é um
número primo e p|(a1a2....an), então p|ak, para algum 1 ≤ k ≤ n.

3 A Infinitude do Conjunto dos Primos

Repetindo, um número inteiro p > 1 é dito primo, se ele não possui divisor
próprio, isto é, entre os inteiros dos conjunto A = {2, 3, 4, 5, ...., p−1} nenhum
deles o divide. Ora, quando maior o inteiro p, mais elementos tem o conjunto
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A e a intuição nos leva a acreditar que a probabilidade de não haver em A
nenhum divisor de p, torna-se muito baixa. Então, os números inteiros ”muito
grandes” são todos números compostos? Esses eram questionamentos dos
matemáticos da antiguidade: - Existe um número primo maior que todos os
outros? - Quantos números primos existem? A Resposta é dada no próximo
teorema, cuja demonstração foi feito por Euclides. Em preparação ao teorema,
veremos antes um lema. E em preparação ao lema, façamos o exerćıcio a seguir.

X Exerćıcios 14.

(01) Dê exemplo de um divisor primo p, para cada um dos inteiros abaixo:
(a) 10 (b) 2 (c) 1349 (d) 2847 (e) 13 (f) 317 (g) 913
(02) Dê exemplo de um interio a > 1, que não possui nenhum divisor primo.

O lema a seguir mostra porque você não obteve sucesso na questão 02 do
exerćıcio acima.

Lema 1. Todo inteiro a > 1 tem um divisor primo.

Demonstração:
Faremos a demonstração por indução em a. Usaremos a 2a Forma do Prinćıpio
da Indução Finita (Corolário 2).
(i) Base de Indução: a = 2:

Nesse caso, o resultado é verdadeiro, pois 2 é primo e 2|2.

(ii) Passo Indutivo: Seja a ≥ 2 um inteiro e considere o resultado válido
para todo inteiro k, com 1 < k < a.

Se a é primo o resultado é imediato. Se a é composto, então existem in-
teiros d, q, com 1 < d, q < a, tais que a = dq. Como 1 < d < a, segue da
hipótese de indução que d tem um divisor primo p. E como p|d e d|a, segue
que p|a. �

Suponha que você seleciona 5 números primos p1, p2, ..., p5 e efetua o pro-
duto deles obtendo N = p1p2p3p4p5. O inteiro N tem divisor primo? Por quê?
E N + 1 tem divisor primo? Por quê?

Por fim, vamos ao teorema.

Teorema 8. O conjunto dos números primos é infinito.

Demonstração:
Considere P+ o conjunto de todos os números primos positivos. Suponhamos,
por absurdo, que este conjunto seja finito, digamos

P+ = {p1, p2, ..., pn}.

Usando os elementos de P+ podemos construir o inteiro

N = p1p2...pn + 1.
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Como N > 1, pelo Lema 1, ele tem um divisor primo positivo, isto é, existe
pi ∈ P+, tal que pi|N , então existe k ∈ Z, tal que N = pik. Assim,

p1p2...pi−1pipi+1...pn + 1 = pik ⇒ pi(k − p1p2...pi−1pi+1...pn) = 1⇒ pi|1,

um absurdo, pois pi é primo. Logo, o conjunto P+ não pode ser finito e obvi-
amente o conjunto de todos os primos é também infinito. �

Por maior que seja um número inteiro n, já vimos que este pode ser primo
ou composto, já que o conjunto dos números primos é infinito. Mas como
verificar se n é primo ou composto? A rigor, para afirmar que n é primo,
devemos garantir que ele não tem nenhum divisor no conjunto:

A = {2, 3, ..., n− 1}.

Se n é um inteiro muito grande, esta verificação torna-se trabalhosa. Com
aux́ılio do Lema 1, podemos diminuir consideravelmente esse trabalho. É o
que veremos na próxima proposição.

Proposição 9. Se n > 2 é um número composto, então n tem um divisor
primo p, com 1 < p ≤

√
n.

Demonstração:
Como n é composto, ele tem divisor próprio, isto é, existem inteiros d1, d2, tais
que n = d1d2, com 1 < d1, d2 < n. Suponhamos d1 ≤ d2. Então,

d1 ≤ d2 ⇒ d2
1 ≤ d1d2 = n⇒ d1 ≤

√
n.

Agora, como d1 > 1, pela Lema 1, existe p primo, tal que p|d1 ⇒ p ≤ d1 ≤
√
n.

E como p|d1 e d1|n, segue que p|n. �

X Exerćıcios 15.

(01) Use a Proposição 9 para verificar se os números abaixo são primos ou
compostos:
(a) 233;
Solução:
Pela Proposição 9, se 233 é um número composto, ele terá um divisor primo
p ≤

√
233 ≈ 15, 26, ou seja, existe p ∈ {2, 3, 5, 7, 11, 13}, tal que p|233.

Porém, como nenhum desses inteiros divide 233, podemos garantir que 233
é um número primo. �
(b) 319;
(c) 1043;
(d) 5047;
(e) 33817.
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4 Decomposição em Fatores Primos

Lema 2. Todo inteiro a > 1 pode ser escrito como um produto de números
primos.

Demonstração:
Faremos a demonstraçao por indução em a. Assumiremos também que o ”pro-
duto” possa ter um único fator.
(i) Base de Indução: a = 2:
Isto é verdadeiro, pois a já é primo.

(ii) Passo Indutivo: Suponha por hipótese de indução que a afirmaçao é válida
para todo inteiro b, com 2 ≤ b < a.
Se a é primo, a demonstraçao está encerrada. Se a não é primo, existem in-
teiros b, c, tais que a = bc, com 1 < b, c < a. Segue da hipótese de induçao que
existem primos p1, p2, ..., pr, p

′
1, p
′
2, ...p

′
s, tais que b = p1p2....pr e c = p′1p

′
2...p

′
s.

Assim,
a = bc = p1p2...pr.p

′
1p
′
2...p

′
s,

que é um produto de números primos. �

Teorema 9. ( Teorema Fundamental da Aritmética) Para todo inteiro
a > 1, existem primos positivos p1 ≤ p2 ≤ p3 ≤ ... ≤ pt, tais que Este teorema

foi demons-

trado por

Carl Friedrich

Gauss em

1796.

a = p1p2p3...pt

e essa decomposição é única.

Demonstração:
Seja a > 1 um inteiro. A existência da decomposição de a em fatores primos
já foi provada no Lema 2. Mostraremos agora a unicidade. Suponha que:

a = p1p2...pn = q1q2...qs,

com p1 ≤ p2 ≤ ... ≤ pn e q1 ≤ q2 ≤ .... ≤ qs primos positivos. Faremos a
demonstração por indução no número n de fatores primos na decomposição.
(i) Se n = 1

a = p1 = q1q2...qs ⇒ q1|p1.

Como p1 e q1 são primos positivos, então p1 = q1. Fazendo p1 = q1 na identi-
dade acima e efetuando o cancelamento, obtemos:

1 = q2(q3...qs).

Se s > 1, então q2|1, um absurdo, pois q2 é primo. Logo s = 1 = n e
a = p1 = q1. Portanto, para n = 1 a decomposição é única.

(ii) Suponha que o resultado é válido para todo inteiro que se decompõe em
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k ≥ 1 fatores primos. E considere

a = p1p2...pkpk+1 = q1q2...qs.

duas decomposiçoes de a em fatores primos positivos. Segue dáı que

q1|p1p2...pkpk+1 ⇒ q1|pi, para algum 1 ≤ i ≤ k + 1.

Como pi é primo, então q1 = pi ≥ p1. De modo análogo, obtem-se p1 = qj ≥ q1,
para algum j. Logo p1 = q1. Substituindo esses valores na identidade acima e
usando a lei do cancelamento obtemos:

p2p3...pkpk+1 = q2q3...qs.

Como à direita temos uma decomposição em k fatores primos, segue da hipótese
de induçao, segue que k = s− 1 ⇒ k + 1 = s, pi = qi, para i = 2, 3, ..., k + 1.

�

Nessa decomposição, podemos agrupar os primos eventualmente repetidos
e enunciar o resultado acima, dizendo que todo inteiro a ≥ 2 se escreve na
forma:

a = pn1
1 p

n2
2 ...p

nt
t ,

com 1 < p1 < p2 < ... < pt primos e ni ≥ 1, para i = 1, 2, ..., t - conhecida
como a Decomposição de a em Fatores Primos.

X Exerćıcios 16.

(01) Escreva a decomposição de a em fatores primos, onde:
(a) a = 7
Solução:
Como 7 já é um número primo, então a decompoisção fica:

7 = 7.

�
(b) a = 105
Solução:
Inicialmente identificamos o menor primo que divide 105 e repetimos o pro-
cesso para os fatores que vão sendo encontrados, até obtermos somente fatores
primos:
105 = 3× 35 = 3× 5× 7. �

(c) a = 352
Solução:
352 = 2× 176 = 2× (2× 88) = 22 × (2× 44) = 23 × (2× 22) = 24 × (2× 11)

= 25 × 11. �
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Lista de Exerćıcios 7.

(01) Verifique se os inteiros abaixo são primos ou compostos:
(a) 607 (b) 943 (c) 2411 (d) 19769 (e) 50653

(02) Faça a decomposição em fatores primos, de cada um dos inteiros abaixo:
(a) 13 (b) 286 (c) 3685 (d) 13800 (e) 50653

(03) Encontre todos os primos positivos p e q, tais que p− q = 3.
Um inteiro

N é dito um

quadrado per-

feito, se existe

a ∈ Z, tal que

N = a2.

(04) Determine todos os primos positivos que dividem 50!.

(05) Seja a = pn1
1 p

n2
2 ....p

nt
t a decomposição de um inteiro a > 1 em fatores

primos. Mostre que a é um quadrado perfeito se, e somente se, ni é par para
todo i = 1, 2, .., t.

(06) Encontre todos os números primos positivos que são iguais a um quadrado
perfeito menos 1.

(07) Encontre todos os primos positivos que são iguais a um cubo perfeito
menos 1.

(08) Mostre que três ı́mpares positivos consecutivos não podem ser todos pri-
mos, à exceção de 3, 5 e 7.

(09) Mostre que todo primo positivo, à exceção de 2 e 3, é da forma 6k+ 1 ou
6k − 1, para algum inteiro k.

(10) Seja n ≥ 2 um inteiro. Mostre que se n2 + 2 é um número primo, então
3|n. (sugestão: use redução ao absurdo).

(11) Dê exemplos, caso existam, de dois números primos da forma 2n − 1,
com n ≥ 2 sendo:
(a) n primo; (b) n composto.

(12) Seja n ≥ 2 um inteiro. Mostre que se (2n − 1) é primo, então n é primo.

(13) Seja a = pn1
1 p

n2
2 ...p

nt
t a decomposição de um inteiro positivo a em fatores

primos. Mostre que se d = pm1
1 pm2

2 ...pmt
t , com 0 ≤ mi ≤ ni, para i = 1, 2, .., t,

então d|a.

(14) Use o Teorema 9 para mostrar que:
(a)
√

2 não é um número racional.
(b) Se p e q são primos, então

√
pq não é um número racional.

(15) Mostre que se p > 0 é primo, então mdc(p, (p− 1)!) = 1.

(16) Usando indução em n, prove o Corolário 3.
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Respostas da Lista de Exerćıcios 7

(01.a) 607 é primo (01.b) 943 é composto (01.c) 2411 é primo

(01.d) 19769 é composto (01.e) 50653 é composto

(02.a) 13=13 (02.b) 286=2.11.13 (02.c) 3685=5.11.67

(02.d) 13800 = 23.3.52.23 (02.e) 50653 = 373

(03) p = 5 e q = 2

(04) Os primos positivos p < 50, ou seja, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

(06) 3

(07) 7

(08) Sejam N1 = 2n + 1, N2 = 2n + 3 e N3 = 2n + 5 três ı́mpares consecutivos. Se n = 1,

temos os primos 3, 5 e 7. Suponhamos N1, N2 e N3 todos primos, com n ≥ 2. Dentre os

3 inteiros consecutivos 2n + 1, 2n + 2 e 2n + 3, um deles é diviśıvel por 3 (questão 22 da

Lista de Exerćıcios 3). Como N1, N2 > 3 e ambos são primos, segue que o diviśıvel por 3 é

2n+ 2⇒ 2n+ 2 = 3k, k ∈ Z⇒ N3 = 2n+ 5 = 3k+ 3 = 3(k+ 1)⇒ 3|N3, um absurdo, pois

N3 > 3 e é primo.

(09) Seja p ≥ 5 um primo. Pelo algoritimo da divisão existem inteiros k e r, tais que

p = 6k + r, com 0 ≤ r ≤ 5. Porém, como p é primo, r 6∈ {0, 2, 3, 4}, pois nesses casos, 2|p
ou 3|p, contrariando o fato de p ser um primo ≥ 5. Assim, p = 6k + 1 ou p = 6k + 5 =

6k + (6− 1) = 6(k + 1)− 1 = 6k′ − 1, com k′ ∈ Z.

(11.a) 7 = 23 − 1; 127 = 27 − 1 são primos; (11.b) Não existe, conforme questão (12)

(12) Suponhamos, por absurdo que 2n − 1 é primo, com n composto. Como n é composto,

então n = n1n2, com 1 < n1, n2 < n. Dáı,

2n−1 = 2n1n2−1 = (2n1)n2−1 = (2n1−1)((2n1)n2−1+(2n1)n2−2+...+1)⇒ (2n1−1)|(2n−1)

e como 1 < n1 < n⇒ 1 < 2n1 − 1 < 2n − 1⇒ 2n1 − 1 é um divisor próprio de 2n − 1. Um

absurdo.

(15) Seja d = mdc(p, (p− 1)!)⇒ d|p e d|(p− 1)!. Como p é primo, d = 1 ou d = p. Se d = p,

temos p|(p − 1)! ⇒ p|((p − 1)(p − 2)(p − 3)...2.1) ⇒ p|(p − k) ⇒ p ≤ (p − k), para algum

inteiro k, com 1 ≤ k ≤ p− 1, um absurdo. Assim, d = 1.



Caṕıtulo 8

Aplicações da Decomposição em
Fatores Primos

1 Cálculo dos Divisores

Nesta seção veremos como determinar os divisores positivos de um número
inteiro, a partir de sua decomposição em fatores primos.

Proposição 10. Seja

a = pn1
1 p

n2
2 p

n3
3 ...p

nt
t

a decomposiçao de um inteiro a > 1 em fatores primos positivos e distintos.
Um inteiro d é um divisor positivo de a se, e somente se,

d = pm1
1 pm2

2 pm3
3 ...pmt

t ,

com 0 ≤ mi ≤ ni, para i = 1, 2, ..., t.

Demonstração:
(⇒) d = pm1

1 pm2
2 ...pmt

t , com 0 ≤ mi ≤ ni ⇒ d|a.

Suponha d = pm1
1 pm2

2 ...pmt
t , com 0 ≤ mi ≤ ni, para todo i. Como mi ≤ ni,

então ni −mi ≥ 0. Assim, podemos escrever:

a = pn1
1 p

n2
2 ...p

nt
t = p

m1+(n1−m1)
1 .p

m2+(n2−m2)
2 ...p

mt+(nt−mt)
t

= (pm1
1 pm2

2 ...pmt
t )(pn1−m1

1 .pn2−m2
2 ...pnt−mt

t ) = dc,

onde c = pn1−m1
1 .pn2−m2

2 ...pnt−mt
t ∈ Z. Logo, d|a.

(⇐) d|a ⇒ d = pm1
1 pm2

2 ...pmt
t , com 0 ≤ mi ≤ ni, para i = 1, 2, .., t.

Suponha que d|a⇒ existe um inteiro c, tal que

a = dc

75
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Como d e c são inteiros, esses também se decompõem em fatores primos.
Porém, a = dc, segue da unicidade da decomposição em fatores primos que na
decomposição de d e c só estarão presentes os primos que aparecem na decom-
posição de a. Assim,

d = pm1
1 pm2

2 pm3
3 ...pmt

t e c = pr11 p
r2
2 p

r3
3 ...p

rt
t

com mi, ri ≥ 0. Então

a = dc

⇓

pn1
1 p

n2
2 p

n3
3 ...p

nt
t = pm1+r1

1 pm2+r2
2 pm3+r3

3 ...prt+mt
t

⇓

ni = mi + ri ⇒ 0 ≤ mi ≤ ni, ∀i.

�

X Exerćıcios 17.

(01) Usando a Proposição 10, determine todos os divisores positivos de cada
um dos inteiros abaixo:
(a) 38
Solução:
38 = 2.19 é a decomposição de 38 em fatores primos. Pela Proposição 10, d|38
se, e só se, d = 2m1 .19m2 , com m1,m2 ∈ {0, 1}. Fazendo m1,m2 assumirem
todos os valores posśıveis, temos os seguintes divisores:
d1 = 20.190 = 1, d2 = 20.191 = 19, d3 = 21.190 = 2 e d4 = 21.191 = 38. �

(b) 360
Solução:
A decomposição de 360 em fatores primos é 360 = 23.32.5. Então os divisores
positivos de 360 são os inteiros da forma

d = 2m1 .3m2 .5m3 , com m1 ∈ {0, 1, 2, 3}, m2 ∈ {0, 1, 2} e m3 ∈ {0, 1}.

Atribuindo a m1,m2 e m3 os valores posśıveis, encontramos os seguintes divi-
sores:
20.30.50 = 1, 20.30.51 = 5, 20.31.50 = 3, 20.31.51 = 15, 20.32.50 = 9, 20.32.51 = 45,
21.30.50 = 2, 21.30.51 = 10, 21.31.50 = 6, 21.31.51 = 30, 21.32.50 = 18, 21.32.51 = 90,
22.30.50 = 4, 22.30.51 = 20, 22.31.50 = 12, 22.31.51 = 60, 22.32.50 = 38, 22.32.51 = 180,
23.30.50 = 8, 23.30.51 = 40, 23.31.50 = 24, 23.31.51 = 120, 23.32.50 = 72, 23.32.51 = 360,

Logo, o conjunto dos divisores positivos de 360 é

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 38, 40, 45, 60, 72, 90, 120, 180, 360},
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contendo um total de

4︸︷︷︸
opções de m1

× 3︸︷︷︸
opções de m2

× 2︸︷︷︸
opções de m3

= 24 elementos.

�

(c) 547;
Solução:
Como 547 = 547 é a decomposição de 547 em fatores primos, então
d|547 ⇔ d = 547m, com 0 ≤ m ≤ 1 ⇒ 5470 = 1 e 5471 = 547 são os únicos
divisores positivos de 547. �
(d) 105;
(e) 352
(f) p, com p primo.
(g) pn, com n ≥ 1 e p primo.

2 Números de Divisores

Em muitos casos, não estamos interessados em encontrar os divisores de um
inteiro, mas apenas saber quantos são eles. Essa quantidade é facilmente obtida
a partir da proposição anterior.

Corolário 4. Seja
a = pn1

1 p
n2
2 p

n3
3 ...p

nt
t

a decomposiçao do inteiro a > 1 em fatores primos positivos. Então, o número
de divisores positivos de a é dada pelo produto:

(n1 + 1)(n2 + 1)(n3 + 1)....(nt + 1).

Demonstração:
Pela Proposição 10, existem tantos divisores positivos de a quantos são os
inteiros da forma

d = pm1
1 pm2

2 pm3
3 ...pmt

t , com 0 ≤ mi ≤ ni, para todo i = 1, 2, ..., t.

Para construir um inteiro desta forma efetuamos as seguintes passos:
(1) - Escolhemos um valor param1 - temos n1+1 opções, poism1 ∈ {0, 1, 2, ..., n1};
(2) - Escolhemos um valor param2 - temos n2+1 opções, poism2 ∈ {0, 1, 2, ..., n2};
...
(t) - Escolhemos um valor paramt - temos nt+1 opções, poismt ∈ {0, 1, 2, ..., nt}.

Pelo Prinćıpio Multiplicativo, o total de modos de construir d é dado pelo
produto: (n1 + 1)(n2 + 1)(n3 + 1)....(nt + t). �
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X Exerćıcios 18.

(01) Usando o Corolário 4, determine o número de divisores positivos de cada
um dos inteiros:
(a) 3920
Solução:
3920 = 24.5.72, então o número de divisores de 3920 é dado por:

(4 + 1)︸ ︷︷ ︸
opções de m1

× (1 + 1)︸ ︷︷ ︸
opções de m2

× (2 + 1)︸ ︷︷ ︸
opçoes de m3

= 30.

�
(b) 23
Solução:
Como 23 = 23 é a decomposição de 23 em fatores primos, então o número de
seus divisores positivos é dado por (1 + 1) = 2. �
(c) 72;
(d) 416;
(e) 815;
(f) p, com p primo;
(g) pn, com n ≥ 1 e p primo.

3 Soma dos Divisores

Vejamos agora, como obter a soma dos divisores positivos de um inteiro, sem
a necessidade de relacionar esses divisores. Para um melhor entendimento,
vejamos antes alguns exerćıcios resolvidos.

X Exerćıcios 19.

(01) Determine a soma S dos divisores positivos de cada um dos inteiros abaixo:
(a) 7.
Solução:
Como 7 é primo, seus divisore são: 70 e 71. Portanto, S = (70 + 71) = 8. �

(b) p, com p primo.
Solução:
Já vimos que os divisores de p são p0 e p1, logo S = (p0 + p1) = (p+ 1). �

(c) 128
Solução:
128 = 27 é a decomposição de 128 em fatores primos, logo seus divisores são
2k, com 0 ≤ k ≤ 7. Assim,

S = (20 + 21 + ...+ 27)

S é portanto, a soma dos 8 primeiros termos da progressão geométrica (P.G.)
20, 21, 22, 23, ..... Como a soma dos n primeiros termos da P.G. a, aq, aq2, aq3, ...
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é dada por:

a+ aq + aq2 + ...+ aqn−1 =
a(qn − 1)

q − 1
.

Então,

S = (20 + 21 + ...+ 27) =
1.(28 − 1)

2− 1
= 255.

(d) pn, com n ≥ 1 e p primo.
Solução:
Trata-se de uma generalização do caso anterior. Como p0, p1, ..., pn são os
divisores positivos de a, então

S = (p0 + p1 + p2 + ...+ pn) =
p0.(pn+1 − 1)

p− 1
=
pn+1 − 1

p− 1
.

�

(e) 36
Solução:
Como 36 = 22.32, os divisores positivos de 36 são:

d = 2m.3n, com 0 ≤ m,n ≤ 2.

Assim,
S =

∑2
m=0

∑2
n=0(2m.3n) = 20

∑2
n=0 3n + 21

∑2
n=0 3n + 22

∑2
n=0 3n

= (20 + 21 + 22)
∑2

n=0 3n

= (20 + 21 + 22)(30 + 31 + 32) = (23−1
2−1

).(33−1
3−1

) = 7.13 = 91. �

(f) pm.qn, com p, q primos.
Solução:
Trata-se de uma generalização do caso anterior. Pela Proposição 10, os divi-
sores positivos de pm.qn são

d = pαqβ, com 0 ≤ α ≤ m e 0 ≤ β ≤ n.

Assim,
S =

∑m
α=0

∑n
β=0(pα.qβ) = p0

∑n
β=0 q

β + p1
∑n

β=0 q
β + ...+ pm

∑n
β=0 q

β

= (p0 + p1 + p2 + ...+ pm)
∑n

β=0 q
β

= (p0 + p1 + ...+ pm)(q0 + q1 + ...+ qn)

= (p
m+1−1
p−1

).( q
n+1−1
q−1

).
Em cada um dos parênteses acima, temos a soma dos termos de uma P.G. �

Corolário 5. Seja
a = pn1

1 p
n2
2 ...p

nt
t

a decomposiçao do inteiro a > 1 em fatores primos. Então a soma S dos
divisores positivos de a é dada pelo produto:

S = (
pn1+1

1 − 1

p1 − 1
)(
pn2+1

2 − 1

p2 − 1
)...(

pnt+1
t − 1

pt − 1
).
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Demonstração:
Como a = pn1

1 p
n2
2 ...p

nt
t , pela Proposição 10, os divisores se a são:

d = pα1
1 .p

α2
2 ...p

αt
t com cada 0 ≤ αi ≤ ni

Assim,
S =

∑n1

α1=0

∑n2

α2=0 ...
∑nt

αt=0(pα1
1 .p

α2
2 ...p

αt
t )

= p0
1.(
∑n2

α2=0 ...
∑nt

αt=0 p
α2
2 ...p

αt
t ) + p1

1.(
∑n2

α2=0 ...
∑nt

αt=0 p
α2
2 ...p

αt
t ) + ...+

pn1
1 .(
∑n2

α2=0 ...p
nt
1

∑nt

αt=0 p
α2
2 ...p

αt
t )

= (p0
1 + p1

1 + ...+ pn1
1 )(
∑n2

α2=0 ...
∑nt

αt=0 p
α2
2 ...p

αt
t )

...
= (p0

1 + p1
1 + p2

1 + ...pn1
1 ).(p0

2 + p1
2 + p2

2 + ...pn1
2 )...(p0

t + p1
t + p2

t + ...pnt
t ).

Como cada um desses fatores é a soma dos termos de uma P.G., então
aplicando a fórmula citada acima obtemos:

S = (
pn1+1

1 − 1

p1 − 1
)(
pn2+1

2 − 1

p2 − 1
)...(

pnt+1
t − 1

pt − 1
).

�

4 Algoritmo II para o cálculo do MDC e MMC

O próximo teorema diz como calcular o mdc e mmc de dois inteiros a partir
de suas decomposições em fatores primos.

Teorema 10. Sejam

a = pn1
1 p

n2
2 ...p

nt
t e b = pm1

1 pm2
2 ...pmt

t

inteiros positivos, com 1 < p1 < p2 < ... < pn primos e 0 ≤ ni,mi, para todo
i = 1, 2, ..., t. Então
(I) mdc(a, b) = pα1

1 p
α2
2 ...p

αt
t , onde αi = min{ni,mi}, para todo i = 1, 2, ..., t.

(II) mmc(a, b) = pβ11 p
β2
2 ...p

βt
t , onde βi = max{ni,mi}, para todo i = 1, 2, ..., t.

Demonstração:
(I) mdc(a, b) = pα1

1 p
α2
2 ...p

αt
t , onde αi = min{ni,mi}

Vamos mostrar que d = pα1
1 p

α2
2 ...p

αt
t , com αi = min{ni,mi}, satisfaz as

condições (i) e (ii) da Definição 2. De fato,
(i) Como αi = min{ni,mi}, então αi ≤ ni e αi ≤ mi, para todo i. Logo, pelo
Proposição 10, d|a e d|b.
(ii) Seja d′ um inteiro tal que d′|a e d′|b. Então, pela Proposição 10,
d′ = pr11 p

r2
2 ...p

rt
t , onde ri ≤ ni e ri ≤ mi, para todo i. Logo

ri ≤ min{ni,mi} = αi, e novamente pelo Proposição 10, segue que d′|d.

De (i) e (ii) segue que d = mdc(a, b).

(II) mmc(a, b) = pβ11 p
β2
2 ...p

βt
t , com βi = max{ni,mi}.



Teoria dos Números 81

Mostraremos que m = pβ11 p
β2
2 ...p

βt
t , onde βi = max{ni,mi}, satisfaz as

condições (i) e (ii) da Definição 5. De fato,

(i) Como ni ≤ βi e mi ≤ βi, para todo i = 1, 2, .., t, segue da Proposição
10 que, a|m e b|m.

(ii) Seja m′ = pr11 p
r2
2 ...p

rt
t um inteiro tal que a|m′ e b|m′. Da Proposição

10, segue que ni ≤ ri e mi ≤ ri, para todo i. Assim, ri ≥ max{ni,mi} = βi ⇒
m′|m. Portanto, m = mmc(a, b) �

X Exerćıcios 20.

(01) Usando a decomposição em fatores primos, calcule mdc(a, b) e mmc(a, b),
onde:
(a) a = 360, b = 6804
Solução:
Inicialmente, faremos a decomposição de cada um dos inteiros em fatores pri-
mos:

360 = 23.32.5 e 6804 = 22.35.7

Agora, reescrevemos essa decomposição de modos que ambas tenha os mes-
mos números primos em suas decomposições. Para isso, consideramos decom-
posições da forma a = pn1

1 .p
n2 ...pnt

t , com ni ≥ 0, ou seja, estamos admitindo a
possibilidade de expoentes nulos. Fazendo isso para as decomposições acima
obtemos:

360 = 23.32.5.70 e 6804 = 22.35.50.7

Comparamos agora os expoentes de cada número primo presente nas decom-
posições. Para o mdc tomamos o menor deles e para o mmc, o maior:

mdc(360, 6804) = 22.32.50.70 = 36
mmc(360, 6804) = 23.35.5.7 = 68040. �

(b) a = 1352 e b = 4004
Solução:
Como

1352 = 23.132 e 4004 = 22.7.11.13,

escrevemos:

1352 = 23.70.110.132 e 4004 = 22.7.11.13,

portanto:
mdc(1352, 4004) = 22.70.110.13 = 52
mmc(1352, 4004) = 23.7.11.132 = 104104. �
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Lista de Exerćıcios 8.

(01) Usando a decomposição em fatores primos, determine todos os divisores
positivos de cada um dos inteiros abaixo:
(a) 316
(b) 921
(c) 4012
(d) 22315
(e) pm.qn, com p, q primos.

(02) Determine o número de divisores positivos de cada um dos inteiros abaixo:
(a) 256
(b) 918
(c) 7704
(d) 25075
(e) pm.qn, com p, q primos.

(03) Determine o número de divisores próprios de cada um dos inteiros:
(a) 535
(b) 724
(c) 4848
(d) 1111
(e) pm.qn, com p, q primos.

(04) Determine a soma dos divisores positivos de cada um dos inteiros abaixo:
(a) 5 (b) 91 (c) 280 (d) 792

(05) Usando a decomposição em fatores primos, determinemdc(a, b) emmc(a, b):
(a) a = 28, b = 58;
(b) a = 108, b = 96;
(c) a = 33, b = 24;
(d) a = 139, b = 148;
(e) a = 286, b = 1058;
(f) a = 4612, b = 248;
(g) a = 3612, b = 108.

(06) (ENADE-2014) Os números perfeitos foram introduzidos na Grécia, antes
de Cristo. Um número n é dito perfeito se ele for igual à soma de seus divisores
positivos e próprios, ou seja, dos divisores positivos menores que n.
(a) Verifique se 28 é um número perfeito;
(b) Dado n = 22 × 42 × 127, determine o número de divisores próprios de n
(menores que n) e verifique se n é um número perfeito;
(c) Mostre que se 2k−1 é primo, k > 1, então o inteiro positivo, n = 2k−1(2k−1)
é um número perfeito;
(d) Seja n o número obtido adicionando-se as potências 20, 21, 22, 23, ...até que
a soma seja igual ao décimo primeiro número primo, e, em seguinda, mul-
tiplicando a soma obtida pela última potência. Mostre que n é um número
perfeito.
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Respostas da Lista de Exerćıcios 8
(01.a) 1, 2, 4, 79, 158, 316 (01.b) 1, 3, 307, 921
(01.c) 1, 2, 4, 17, 34, 59, 68, 118, 236, 1003, 2006, 4012 (01.d) 1, 5, 4463, 22315
(01.e) 1, q, q2, ..., qn, p, pq, pq2, ..., pqn, p2, p2q, p2q2, ..., p2qn,... pm, pmq, pmq2, ..., pmqn

(02.a) 9 (02.b) 16 (02.c) 24 (02.d) 12 (02.e) (m+ 1)(n+ 1)
(03.a) 2 (03.b) 4 (03.c) 18 (03.d) 2 (03.e) (m+ 1)(n+ 1)− 2
(04.a) 6 (04.b) 112 (04.c) 720 (04.d) 2340
(05.a) mdc(28, 58) = 2 e mmc(28, 58) = 812
(05.b) mdc(108, 96) = 12 e mmc(108, 96) = 864
(05.c) mdc(33, 24) = 3 e mmc(33, 24) = 264
(05.d) mdc(139, 148) = 1 e mmc(139, 148) = 20572
(05.e) mdc(286, 1058) = 2 e mmc(286, 1058) = 151294
(05.f) mdc(4612, 248) = 2 e mmc(4612, 248) = 285944
(05.g) mdc(3612, 108) = 12 e mmc(3612, 108) = 32508.
(06.a) Pela definição, n é perfeito se S = 2n. Como 28 = 22.7, a soma dos divisores de 28 é

dada por S = ( 23−1
2−1 )( 72−1

7−1 ) = 7.8 = 56 = 2.28⇒ 28 é um número perfeito;

(06.b) n = 22 × 42 × 127 = 8128 tem (2 + 1).(2 + 1).(1 + 1) = 18 divisores, entre eles o
próprio n. Logo, n tem 17 divisores próprios, conforme definido na questão e a soma de seus

divisores é dada por S( 23−1
2−1 )( 43−1

4−1 )( 1272−1
127−1 ) = 7.21.128 = 18816 = 2 × 9408 6= 2.n, logo n

não é um número perfeito.
(06.c) Considere n = 2k−1.p, onde p = (2k − 1) é primo. Como 2 e p são primos, a

soma dos divisores positivos de n é dada por S = ( 2k−1
2−1 )(p2−1

p−1 ) = (2k−1).(p−1)(p+1)
(p−1) =

(2k − 1)(2k − 1 + 1) = 2k(2k − 1) = 2.2k−1.p = 2n⇒ n é um número perfeito.
(06.d) Seja p = 20 + 21 + ... + 2k = (2k+1 − 1) o 110 número primo obtido somando-se
as parcelas como no comando da questão, com k o expoente para o qual isto acontece e

n = 2k.p. Como os dois fatores são números primos, segue que S = (2k+1−1)(p2−1)
p−1 =

(2k+1 − 1)(p + 1) = (2k+1 − 1)(2k+1 − 1 + 1) = 2(2k.(2k+1 − 1) = 2(2kp) = 2n ⇒ n é um
número perfeito.



Caṕıtulo 9

Congruência em Z

1 Introdução

• Em uma festa infantil, um grupo de 7 crianças - Ana, Beatriz, Carlos, Davi,
Eduardo, Fernanda e Gabriela - reuniu-se próximo a uma mesa para brincar
de ’esconde-esconde’, um jogo no qual uma criança é separada dos demais, que
procuram locais para se esconder, sem que a escolhida as veja, pois esta tentará
encontrá-las após um tempo estabelecido previamente. Assim, era necessário
escolher qual delas seria aquela que iria procurar todas as outras.

Para efetuar essa escolha, as crianças se dispuseram em um ćırculo, na
mesma ordem descrita anteriormente e, simultaneamente, mostraram um nú-
mero de dedos das mãos. Os números de dedos mostrados foram somados,
resultando em um quantidade que vamos chamar de TOTAL. Ana começou
contar de 1 até TOTAL, e, a cada número dito, apontava para uma criança da
seguinte forma: 1 - Ana, 2 - Beatriz, 3 - Carlos, 4 - Davi, e assim por diante.
Quanto chegasse ao número TOTAL, a criança correspondente a esse número
seria aquela que iria procurar as demais. Se o número TOTAL é igual a 64,
qual a criança designada para procurar as demais?

Solução:
Pensemos em uma solução para o problema acima, o qual trata-se de uma
questão do ENADE-2014. Observe que temos um grupo de 7 crianças, dis-
postas em um ćırculo e Ana atribui a cada uma delas um número de 1 a
TOTAL, da seguinte forma:

Ana Beatriz Carlos Davi Eduardo Fernanda Gabriela
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
... ... ... ... ... ... ...

Como temos um ćırculo com 7 pessoas, a cada 7 unidades, retorna-se à
mesma criança.

84
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À Beatriz ficam atribuidos os números:

2 = 7.0 + 2

9 = 7.1 + 2

16 = 7.2 + 2

...

ou seja, todos os números da forma:

n = 7.k + 2.

À Fernanda, por sua vez, recebe os números:

6 = 7.0 + 6

13 = 7.1 + 6

20 = 7.2 + 6.

...

ou seja, todos os números da forma:

n = 7.k + 6.

Portanto, o que identifica a criança a qual será atribúıdo um número n
qualquer, é exatamente o resto da divisão de n por 7, segundo tabela abaixo:

Ana Beatriz Carlos Davi Eduardo Fernanda Gabriela
Resto: 1 2 3 4 5 6 0

Como

TOTAL = 64 = 7.9 + 1⇒ r = 1⇒ a criança é a Ana.

Em linguagem matemática, dizemos que estamos operando em módulo 7 e
que os números atribúıdos a uma mesma criança são todos congruentes módulo
7, conforme definiremos a seguir. Nesta unidade estudaremos a aritmética dos
restos obtidos na divisão euclidiana.

2 Inteiros Congruentes

Definição 7. Dado um inteiro não nulo m, dizemos que os inteiros a e b são
congruentes módulo m, se eles deixam o mesmo resto na divisão euclidiana
por m.
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Exemplos:
(a) 7 e 4 são congruentes módulo 3, pois ambos deixam resto 1 na divisão por
3;
(b) 8 e −10 são congruentes módulo -6, já que deixam resto 2 na divisão por
-6;
(c) 25 e 9 são congruentes módulo 4, pois ambos deixam resto 1 na divisão por
4;
(d) 25 e 9 não são congruentes módulo 5, pois deixam restos distintos na di-
visão por 5.

Para indicar que a e b são congruentes módulo m, escreve-se:

a ≡ b(modm).

Quando a afirmação a ≡ b(modm) for falsa, diremos que a e b não são congru-
entes (ou são incongruentes) módulo m e escreveremos a 6≡ b(modm).

Exemplos:
Com a notação acima, os exemplos anteriores ficam:
(a) 7 ≡ 4(mod3);
(b) 8 ≡ −10(mod(−6));
(c) 25 ≡ 9(mod4);
(d) 25 6≡ 9(mod5).

X Exerćıcios 21.

(01) Responda e justifique:
(a) 30 ≡ 10(mod4)?
(b) 23 ≡ 17(mod4)?
(c) −30 ≡ −14(mod8)?
(d) 12 ≡ 37(mod(−5))?
(e) 6 ≡ 6(mod7)?
(f) 1907 ≡ 3917(mod1)?

Propriedades Elementares da Congruência

Da Definição 7, segue de forma imediata, que a congruência módulo m tem as
seguintes propriedades para quaisquer inteiros a, b e c:
(C1) Reflexiva: a ≡ a(modm);
(C2) Simétrica: Se a ≡ b(modm), então b ≡ a(modm);
(C3) Transitiva: Se a ≡ b(modm) e b ≡ c(modm), então a ≡ c(modm).

Observe que:
(1) Como o resto da divisão de qualquer inteiro por 1 é sempre zero, então
para quaisquer inteiros a e b, tem-se

a ≡ b(mod1).
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(02) Se a ≡ b(modm), ambos deixam o mesmo resto na divisão por m, isto é,
existem inteiros q1, q2 e r, com 0 ≤ r < |m|, tais que:

a = mq1 + r e b = mq2 + r.

Segue dáı, que:

a = (−m)(−q1) + r e b = (−m)(−q2) + r

ou seja, a e b também deixam o mesmo resto na divisão por −m, portanto
também temos a ≡ b(mod(−m)).
Resumindo:

a ≡ b(modm)⇔ a ≡ b(mod(−m)).

Em vista das observações (1) e (2) vamos nos restringir ao caso em que o
inteiro m > 1.

A próxima proposição dá uma forma equivalente de definir a congruência
módulo m.

Proposição 11. Seja m > 1 um inteiro. Para quaisquer inteiros a, b tem-se
que

a ≡ b(modm) se, e somente se, m|(a− b).

Demonstração:
(⇒) a ≡ b(modm)⇒ m|(a− b):

a ≡ b(modm)⇒ existem inteiros q1, q2 e r, com 0 ≤ r < m, tais que:

a = mq1 + r e b = mq2 + r ⇒ a− b = m(q1 − q2)⇒ m | (a− b).

(⇐) m|(a− b)⇒ a ≡ b(modm):

m|(a − b) ⇒ ∃ k ∈ Z, tal que a − b = mk ⇒ a = b + mk. Seja r o resto
da divisão de a por m, então a = mq + r, com q ∈ Z. Assim,

a = b+mk = mq + r ⇒ b = m(q − k) + r

Como 0 ≤ r < m, da unicidade do resto, segue que r é também o resto da
divisão de b por m, logo a ≡ b(modm). �

Resumindo, temos:

a ≡ b(modm)⇔ m|(a− b).
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Exemplos:
(a) 47 ≡ 11(mod9), pois 9|(47− 11);
(b) 24 ≡ 314(mod29), pois 29|(24− 314);
(c) 8 ≡ 8(mod7), pois 7|(8− 8);
(d) 16 6≡ 5(mod4), pois 4 - (16− 5).

X Exerćıcios 22.

(01) Usando agora a Proposição 11, responda e justifique:
(a) 30 ≡ 10(mod4)?
(b) 23 ≡ 17(mod4)?
(c) −30 ≡ −14(mod8)?
(d) 12 ≡ 37(mod5)?
(e) 6 ≡ 6(mod7)?
(f) 1907 ≡ 3917(mod33)?

3 Congruência no Conjunto dos Restos

Já vimos que na divisão euclidiana por um inteiro m > 1, os posśıveis restos
pertencem ao conjunto:

R := {0, 1, 2, ...,m− 1}

Vejamos algumas conclusões relevantes, referentes à congruência, que podemos
tirar sobre o conjunto R.

• Sabemos que para qualquer inteiro a, existem únicos inteiros q e r, com
r ∈ R, tais que a = mq + r. Então,

a = mq + r ⇒ a− r = mq ⇒ m|(a− r)⇒ a ≡ r(modm).

Com isto podemos afirmar:

Todo inteiro é congruente módulo m ao seu resto r na divisão
por m, e como esse resto é único, ele é congruente a um único
elemento do conjunto R = {0, 1, 2, ...,m− 1}.

Exemplos:
(01) 23 é congruente ao seu resto na divisão por 5. De fato,

23 = 5.4 + 3⇒ 5|(23− 3)⇒ 23 ≡ 3(mod5).

E esse é o único inteiro no conjunto {0, 1, 2, 3, 4} ao qual 23 é congruente
módulo 5;
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(02) 249 é congruente módulo 12 a um único elemento do conjunto {0, 1, 2, ..., 11},
sendo esse elemento o resto da divisão de 249 por 12, a saber 249 ≡ 9(mod12);

(03) Quantos e quais elementos em {0, 1, 2, ..., 16} são congruentes módulo
17 ao inteiro 52626? Justifique.

(04) Quantos e quais elementos em {0, 1, 2, ..., 49} são congruentes módulo
50 ao inteiro 52626? Justifique.

• Existem elementos distintos b, c ∈ R = {0, 1, 2, ...,m− 1}, tais que
b ≡ c(modm)?

Para responder a essa pergunta, suponhamos que existam b, c ∈ R, distin-
tos, tais que b ≡ c(modm). Sendo distintos, então b < c ou c < b. Vamos
considerar b < c. Como

0 ≤ b < c ≤ m− 1⇒ 0 < c− b ≤ m− 1.

Porém, se

b ≡ c(modm)⇒ m|(c− b)⇒ m ≤ (c− b) ≤ m− 1⇒ m ≤ m− 1,

um absurdo. Portanto, podemos afirma:

Quaisquer dois elementos distintos em R = {0, 1, 2, ...,m − 1} são
incongruentes módulo m. Portanto, se ri, rj ∈ R, são tais que:

ri ≡ rj(modm) ⇒ ri = rj.

4 Propriedades da Congruência

Já vimos que a reflexividade, a simetria e a transitividade são propriedades
elementares da congruência. Como a congruência está estritamente relacionada
com a divisibilidade, podemos deduzir mais algumas propriedades que seguem
diretamente das propriedades de divisibilidade vistas no Caṕıtulo 3.

Dado um inteiro m > 1, a relação de congruência módulo m, definida em
Z, tem as seguintes propriedades, para quaisquer inteiros a, b, c e d:

(C4) Se a ≡ b(modm), então

{
a+ c ≡ b+ c(modm)
ac ≡ bc(modm)

.

Demonstração:
a ≡ b(modm)⇒ m | (a− b). Das propriedades de divisibilidade, segue que:
(i) m | [(a− b) + (c− c)]⇒ m | [(a+ c)− (b+ c)]⇒ a+ c ≡ b+ c(modm).
(ii) m | (a− b)c⇒ m | (ac− bc)⇒ ac ≡ bc(modm). �
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(C5) Cancelamento da adição na congruência:

Se
a+ c ≡ b+ c(mod.m),

então,
a ≡ b(modm).

Demonstração:
a+ c ≡ b+ c(modm)⇒ m | [(a+ c)− (b+ c)]⇒ m | a− b⇒ a ≡ b(modm). �

(C6) Cancelamento da multiplicação na congruência:

Se

ac ≡ bc(modm) e mdc(c,m) = 1,

então,
a ≡ b(modm).

Demonstração:
ac ≡ bc(modm) ⇒ m | (ac − bc) ⇒ m | (a − b)c. Como mdc(m, c) = 1, pelo
Teorema 7, m | (a− b)⇒ a ≡ b(modm). �

(C7) Se


a ≡ b(modm)
e
c ≡ d(modm)

, então

{
a+ c ≡ b+ d(modm)
ac ≡ bd(modm)

.

Demonstração:
a ≡ b(modm) e c ≡ d(modm)⇒ m | (a− b) e m | (c− d).
Segue das propriedades de divisibilidade que:
(i) m | [(a− b) + (c− d)]⇒ m | [(a+ c)− (b+ d)]⇒ a+ c ≡ b+ d(modm);
(ii) m | (a− b)c e m | (c− d)b⇒ m | [(ac− bc) + (bc− bd)]
⇒ m | (ac− bd)⇒ ac ≡ bd(modm). �

(C8) Se
a ≡ b(modm),

então, para todo inteiro n ≥ 0, tem-se também:

an ≡ bn(modm).

Demonstração:
Faremos a demonstração por indução em n.
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(i) n = 0:
a0 − b0 = 1− 1 = 0 = 0.m⇒ m|(a0 − b0)⇒ a0 ≡ b0(modm).
(ii) Seja n ≥ 0 e suponha an ≡ bn(modm):
Como a ≡ b(modm) (hipótese) e an ≡ bn(modm) (hipótese de indução), segue
da propriedade (C7), segue que an.a ≡ bn.b(modm)⇒ an+1 ≡ bn+1(modm). �

5 Aplicação da Congruência no Cálculo do Resto

Vejamos agora como usar a congruência para resolver o problema proposto no
ińıcio da aula, cujo objetivo é calcular o resto da divisão de 3212 por 40.
Solução:
Já sabemos que para todo inteiro n ≥ 1, 3n ≡ r(mod40), onde r é o resto
da divisão de 3n por 40. Comecemos por calcular os restos da divisão das
primeiras potências positivas de 3 por 40:

31 ≡ 3(mod40)
32 ≡ 9(mod40)
33 ≡ 27(mod40)
34 ≡ 1(mod40)
35 ≡ 3(mod40)
...

Para facilitar os cálculos, escolhamos a congruência 34 ≡ 1(mod40), por deixar
o menor resto. Dividindo o expoente 212 por 4, encontramos 212 = 53.4.
Então, aplicando a propriedade (C8) à congruência escolhida:

34 ≡ 1(mod4)⇒ (34)53 ≡ 153(mod40)⇒ 3212 ≡ 1(mod40).

Como 1 ∈ {0, 1, 2, ..., 39}, ele é o resto da divisão de 3212 por 40. �

X Exerćıcios 23.

(01) Que número entre 0 e 6 é congruente módulo 7 ao produto
11× 22× 2322× 13× 9?
Solução:
Seja P = 11 × 22 × 2322 × 13 × 9. Obviamente, que está sendo pedido o
resto da divisão de P por 7. Como trata-se de um número não muito grande,
podemos calcular diretamente P e efetuar a divisão. Porém, como processo
de aprendizagem, vamos determinar o resto usando as propriedades da con-
gruência. Inicialmente, calcularemos o resto na divisão por 7, de cada um dos
fatores de P :

11 ≡ 4(mod7)
22 ≡ 1(mod7)
2322 ≡ 5(mod7)
13 ≡ 6(mod7)
9 ≡ 2(mod7).

Aplicando repetidamente a propriedade (C7), temos:

11× 22× 2322× 13× 9 ≡ 4× 1× 5× 6× 2(mod7)⇒ P ≡ 240 ≡ 2(mod7).
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Portanto, o número procurado é 2. �

(02) Calcule o resto da divisão de 19n por 14, para n = 1, 2, 3, ...., 20.
Solução:
Como 19 = 14.1 + 5, então

19 ≡ 5(mod14).
Multiplicando ambos os lados desta congruência por 19 (propriedade (C4)) e
usando a transitividade (propriedade (C3)) temos:

192 ≡ 5.19(mod14) e como 5.19 ≡ 11(mod9)⇒ 192 ≡ 11(mod14)
Repetindo o processo:

193 ≡ 11.19(mod14)⇒ 193 ≡ 13(mod14)
194 ≡ 13.19(mod14)⇒ 194 ≡ 9(mod14)
195 ≡ 9.19(mod14)⇒ 195 ≡ 3(mod14)
196 ≡ 3.19(mod14)⇒ 196 ≡ 1(mod14)

Para o o expoente 6, obtivemos resto igual a 1, então pela propriedades (C8),
para qualquer inteiro k ≥ 0, temos:

(196)k ≡ 1k(mod19)

e pela propriedade C4, para todo inteiro r = 0, 1, 2, ..., 6:

196k.19r ≡ 1.19r(mod9)⇒ 196k+r ≡ 19r(mod14).

Assim,
198 = 196.1+2 ≡ 192 ≡ 11(mod14);
199 = 196.1+3 ≡ 193 ≡ 13(mod14).
....
1920 = 196.3+2 ≡ 192 ≡ 11(mod14).

Logo, as potências 19, 192, 193, 194, ...., 1920 deixam respectivamente os restos
5, 11, 13, 9, 3, 1, 5, 11, 13, 9, 3, 1, 5, 11, 13, 9, 3, 1, 5 e 11 na divisão por 14.�

(03) Calcule o resto da divisão de 18n por 7, para um inteiro n ≥ 1, ar-
bitrário.
Solução:

18 ≡ 4(mod7)
182 ≡ 4.18 ≡ 2(mod7)
183 ≡ 2.18 ≡ 1(mod7)

Para o expoente 3, obtivemos resto igual a 1. Logo, usando as propriedades
(C8) e (C4), dado um inteiro n ≥ 1, se k e r são, respectivamente, o quociente
e resto da divisão de n por 3, então

18n = 183k+r = (183)k.18r ≡ 1k.18r ≡ 18r(mod7).

Portanto, o resto da divisão de 18n por 7 é igual ao resto da divisão de 18r por
7, sendo r é o resto da divisão de n por 3. Por exemplo,
� Como 20 = 3.6 + 2, então 1820 ≡ 182 ≡ 2(mod7);
� Como 3202 = 3.1067 + 1, então 183202 ≡ 18 ≡ 4(mod7). �
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(04) Determinar o resto da divisão de 746 por 15.
Solução:
Inicialmente vamos calcular os restos distintos que obtemos na divisão das
primeiras potências positivas de 7 por 15:

7 ≡ 7(mod15)
72 ≡ 4(mod15)
73 ≡ 13(mod15)
74 ≡ 1(mod15)

Dessa última congruência, usando a propriedade (C8) e (C4), para quaisquer
inteiros não negativos k e r, temos:

74k+r = (74)k.7r ≡ 1k.7r ≡ 7r(mod15).

Assim,
746 = 74.11+2 ≡ 72 ≡ 4(mod15) e como 4 < 15, 4 é o resto procurado. �

(05) Determine o algarismo das unidades de 880.
Solução:
Observe que o algarismo das unidades de qualquer inteiro é exatemento seu o
resto na divisão por 10. Portanto, o problema consiste em encontrar o resto
da divisão de 880 por 10. Vejamos quais os restos deixados pelas primeiras
potências positivas de 8 na divisão por 10:

8 ≡ 8(mod10)
82 ≡ 4(mod10)
83 ≡ 2(mod10)
84 ≡ 6(mod10)
85 ≡ 8(mod10).

A partir desse expoente, os restos começam a repetir, logo, qualquer que seja
a potência positiva de 8, só temos os restos 2, 4, 6 e 8. Aqui, ao contrário dos
exemplos anteriores, nenhuma potência de 8 deixa resto 1 na divisão por 10.
Porém, como

85 ≡ 8(mod10),

para quaisquer inteiros k ≥ 0 e r ∈ {0, 1, 2, 3, 4}:

85k+r = (85)k.8r ≡ 8k.8r = 8k+r(mod10).

Portanto,
85k+r ≡ 8k+r(mod10).

Assim,

880 = 85.16+0 ≡ 816+0(mod10)⇒ 85.3+1 ≡ 83+1 ≡ 6(mod10).

Outra solução, é tomar a potência que deixa o menor resto, no caso 83, e
como 80 = 3.26 + 2, então

880 = 83.26+2 ≡ (83)26.82 ≡ 226.4 = 228 = (83)3.2 ≡ 23.2 ≡ 6(mod10).

Portanto, o algarismo das unidades de 880 é 6. �
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(06) Determinar o resto da divisão de 27303 por 15.
Calculando os resto das primeiras potências positivas de 27 na divisão por 15:

27 ≡ 12(mod15)
272 ≡ 27.12 ≡ 9(mod15)
273 ≡ 27.9 ≡ 3(mod15)
274 ≡ 27.3 ≡ 6(mod15)
275 ≡ 27.6 ≡ 12(mod15).

Obtivemos aqui o mesmo resto da primeira potência. Segue então, que para
qualquer inteiro n ≥ 1, na divisão de 27n por 15 os únicos restos posśıveis são 3,
6, 9, 12. Portanto, nenhuma potência deixa resto 1. Como 275 ≡ 27(mod15),
para quaisquer inteiros k ≥ 0 e r ∈ {0, 1, 3, 4}, temos:

275k+r = (275)k.27r ≡ 27k+r(mod15).

Assim,

27302 = 275.60+2 ≡ 2762 = 275.12+2 ≡ 2714 = 275.2+4 ≡ 276 = 275.1+1 ≡ 272 ≡ 9(mod15).

Portanto, o resto é 9.

Outra solução é trabalhar com a potência que deixa o menor resto, no caso,
273. Assim,
27302 = (273)100.272 ≡ 3100.9 ≡ 3102 = (33)34 = 2734 ≡ (273)10.274

≡ 310.6 = (273).3.6 ≡ 3.18 ≡ 9(mod15). �

(07) Determine o resto da divisão de 521 por 127.
Solução:
Na divisão de um inteiro qualquer por 127, podemos ter 127 restos distintos.
Então, a tarefa de encontrar todos os restos distintos deixados pelas potências
de 5, como feito nas questões anteriores, pode ser muito fatigante. Por outro
lado, observa-se facilmente, que:
127 = 125 + 2 = 53 − (−2)⇒ 127|(53 − (−2))⇒ 53 ≡ −2(mod127)
⇒ (53)7 ≡ (−2)7 ≡ 126(mod127).

Portanto, o resto é 126. �
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Lista de Exerćıcios 9.
(01) Responda e justifique:
(a) 23 ≡ 47(mod3)? (b) −145 ≡ −12(mod7)?
(c) 34508 ≡ 111(mod10) (d) 212 ≡ (−1)9(mod3)?
(e) 32768 ≡ 1906(mod13)? (f) 1234549 ≡ 3333333(mod1)?
(g) 423 ≡ 326(mod(−6))? (h) 22 + 32 + 42 + 52 ≡ 16(mod4)?

(02) Usando agora a Proposição 11, mostre que para quaisquer inteiros a, b e
c são verdadeiras as propriedades:
(a) (C1): a ≡ a(modm) (reflexiva);
(b) (C2): Se a ≡ b(modm), então b ≡ a(modm) (simétrica);
(c) (C3): Se a ≡ b(modm) e b ≡ c(modm), então a ≡ c(modm) (transitiva).

(03) Quantos e quais elementos em {0, 1, 2, ..., 11} são congruentes módulo
12 ao inteiro 8008? Justifique.

(04) Determine os elementos em {0, 1, 2, ..., 6} que são congruentes módulo
7 ao inteiro 125? Justifique.

(05) Determine todos os posśıveis valores para x ∈ Z, que tornam verdadeira
a congruência:
(a) x ≡ 8(mod12);
(b) x ≡ 25(mod7);
(c) 5 ≡ x(mod8);
(d) 2x ≡ 8(mod12);
(e) 5x ≡ 3x− 4(mod8);
(f) 7x+ 2 ≡ 4x− 10(mod9);

(06) Determine todos os inteiros m > 1 para os quais temos:
(a) 186 ≡ 165(modm);
(b) 8012 ≡ 8056(modm);
(c) 3456 ≡ 2169(modm).

(07) Explique, usando linguagem natural, o que diz a propriedade (C4).

(08) Sejam m e k inteiros, com m > 1. Mostre, indicando as propriedades
usadas, que se 3k + 5 ≡ 7k + 20(modm), então:
(a) 3k + 25 ≡ 7k + 40(modm);
(b) 4k ≡ −15(modm);
(c) 16k + 60 ≡ 0(modm).

(09) Sejam m e k inteiros, com m > 1. Mostre que se 9k + 6 ≡ k − 1(modm),
então 3(3k2 − k − 2) ≡ (k − 1)2(modm).

(10) Mostre que se 40x ≡ 50y(mod8), então 120x ≡ 150y(mod8).

(11) Explique, em lingaguem natural, o que diz a propriedade (C5).
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(12) Mostre que se 5k + 8 ≡ 6k + 18(mod5), então 5k ≡ 6k + 10(mod5).

(13) Mostre que 40x ≡ 50y(mod8) se, e só se, 80x+ 50y ≡ 40x+ 100y(mod8).

(14) Encontre 4 inteiros a, b, c e m > 1, para o quais temos ac ≡ bc(modm),
porém a 6≡ b(modm), mostrando assim que ac ≡ bc(modm) ; a ≡ b(modm).

(15) Encontre 4 inteiros a, b, c e m > 1, para o quais temos ac ≡ bc(modm)
e cancelando c nessa congruência, vale a ≡ b(modm). Compare esse exemplo
com o dado na questão anterior e diga que propriedade adicional ele tem, que
torna, nesse caso, a implicação válida.

(16) Mostre que se 6x ≡ 10y(mod7), então 3x ≡ 5y(mod7).

(17) Mostre que se −3x ≡ 6y(mod8), então x+ 2y ≡ 0(mod8).

(18) Sejam a e p inteiros para os quais temos a+ 4 ≡ (a− 2)2(modp). Mostre
que se p é primo e p - a, então a ≡ 5(modp).

(19) Usando propriedades de congruência, mostre que se m|(a − b), então
m|(an − bn), qualquer que seja o inteiro n ≥ 1.

(20) Mostre que para qualquer inteiro n ≥ 1, na divisão de 15n por 8, os
únicos restos são 1 e 7.

(21) Mostre que 21n ≡ 6(mod15) para todo inteiro n ≥ 1.

(22) Determine o resto da divisão:
(a) 21000 por 11;
(b) 710 por 51;
(c) 431 por 257;
(d) (418 + 519 + 620) por 7;
(e) 1 + 5 + 52 + 53 + 54 + ....+ 520 por 25;
(f) 23333333 por 26.

(23) Determine o algarismo das unidades do número 13211.

(24) Mostre que para todo inteiro n ≥ 1, 13n ≡ (3r + 1)(mod9), onde r é
o resto da divisão de n por 3.

(25) Sejam a, b, m e n inteiros, com m,n > 1, sendo a ≡ b(modm) e a ≡
b(modn). Mostre que m e n são relativamente primos, então a ≡ b(modmn).

(26) (ENADE-2005) O mandato do reitor de uma universidade começa no
dia 15 de novembro de 2005, uma segunda-feira, e terá a duração de exata-
mente quatro anos, sendo um deles bissexto. Determine o dia da semana que
ocorrerá o último dia do mandato desse reitor.
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Respostas da Lista de Exerćıcios 9

(03) Como 8008 = 12.667 + 4, então 8008 ≡ 4(mod12). Suponha agora que exista s ∈
{0, 1, 2, ...11}, tal que 8008 ≡ s(mod12). Pela propriedades (C2) e (C3), temos s ≡ 4(mod12),

como s, 4 ∈ {0, 1, ..., 11}, segue que s = 4. Portanto, 8008 é congruente módulo 12 a um

único elemento desse conjunto, no caso, 4

(04) 125 ≡ 3(mod7), pois 3 é o resto da divisão de 125 por 7.

(05.a) x = 12k + 8, k ∈ Z; (05.b) x = 7k + 4, k ∈ Z; (05.c) x = 8k + 5, k ∈ Z;

(05.d) x = 6k + 4, k ∈ Z; (05.e) x = 4k + 2, k ∈ Z; (05.f) x = 3k + 2, k ∈ Z.

(06.a) 3, 7 ou 21 (06.b) 2, 4, 11, 22 ou 44 (06.c) 3, 9, 11, 13, 33, 39, 99, 117, 143, 429,

1287

(16) 6x ≡ 10y(mod7) ⇒ 2.3x ≡ 2.5y(mod7), como mdc(2, 7) = 1, pela propriedade C6,

podemos cancelar 2 nos dois lados da congruência, obtendo 3x ≡ 5y(mod7).

(17) −3x ≡ 6y(mod8)⇒ 3.(−x) ≡ 3.2y(mod8)

⇒ −x ≡ 2y(mod8) - propriedade (C6), uma vez que mdc(3, 8) = 1

⇒ 0 ≡ x+ 2y(mod8) - propriedade (C4)

⇒ x+ 2y ≡ 0(mod8) - propriedade (C2).

(18) a + 4 ≡ (a − 2)2(modp) ⇒ p|[(a + 4) − (a − 2)2] ⇒ p|a.(−a + 5) ⇒ p|(−a + 5), já que

mdc(p, a) = 1. Então a ≡ 5(modp).

(20) Temos que, 15 ≡ 7(mod8) e 150 ≡ 152 ≡ 1(mod8). Dado n ≥ 1, sejam k e r, respecti-

vamente, quociente e resto da divisão de n por 2, ou seja, n = 2k + r, com r = 0 ou r = 1.

Então,

15n = (152)k.15r ≡ 1k.15r ≡ 15r ≡
{

1(mod8), se r = 0
7(mod8), se r = 1

(21) Mostraremos por indução em n. Se n = 1, isso é verdadeiro, pois 15|(21− 6). Suponha

o resultado verdadeiro para n ≥ 1. Então, temos 21 ≡ 6(mod15) (caso n = 1) e 21n ≡
6(mod15) (hipótese de indução). Aplicando a propriedade (C4) a essas duas congruências e

posteriormente a transitividade obtemos: 21n.21 ≡ 62 ≡ 6(mod15)⇒ 21n+1 ≡ 6(mod15).

(22.a) 1 (22.b) 19 (sugestão: 51 : 72 + 2) (22.c) 193 (sugestão: 257 : 44 + 1)) (22.d) 0

(22.e) 6

(22.f) 25. Veja uma solução: 23 ≡ (−3)(mod26)⇒ 233 ≡ (−3)3 ≡ −1(mod26)

⇒ (233)111111 ≡ (−1)111111(mod26)⇒ 23333333 ≡ −1 ≡ 25(mod26)⇒ resto é 25.

(23) 7

(24) Para as primeiras 3 potências não negativas de 13, temos as congruências, em módulo

9:

13r ≡

 1 = 3.r + 1, se r = 0
4 = 3.r + 1, se r = 1
7 = 3.r + 1, se r = 2

Dado um inteiro n ≥ 1, sejam q e r, respectivmente o

quociente e resto da divisão de n por 3. Então n = 3q + r, com com r = 0, 1 ou 2. Dáı,

13n = (133)q.13r ≡ 1q.13r(mod9). Usando o resultado acima, temos 13n ≡ (3r + 1)(mod9).

(25) a ≡ b(modm) e a ≡ b(modn)⇒ m|(a− b) e n|(a− b)⇒ ∃k1, k2 ∈ Z, tais que

a− b = mk1 = nk2 ⇒ m|nk2 ⇒ m|k2, pois mdc(m,n) = 1. Assim, k2 = mk, k ∈ Z
⇒ a− b = nk2 = nm.k ⇒ nm|(a− b)⇒ a ≡ b(modmn).

(26) sábado.



Caṕıtulo 10

Aplicações da Congruência em Z

1 Introdução

Na resolução de alguns exerćıcios no caṕıtulo anterior, vimos que dados inteiros
a e m > 1, se existe um inteiro positivo k, tal que ak ≡ 1(modm), então para
todo inteiro n ≥ 1, se n = kq + r, com 0 ≤ r < k, segue das propriedades C8
e C4, que:

an = akq+r = (ak)q.ar ≡ 1q.ar ≡ ar(modm).

Resumindo,

Se existe um inteiro k ≥ 1, tal

ak ≡ 1(modm),

então para todo inteiro n ≥ 1, tem-se:

an ≡ ar(modm),

onde r é o resto da divisão de n por k.

(10.1)

Esse resultado, simplifica grandemente o cálculo do resto na divisão de
potências. Uma vez, que conhecendo o resto da divisão de ar por m, para
r = 0, 1, 2, ..(k − 1), podemos determinar o resto da divisão de an por m,
qualquer que seja o inteiro n ≥ 1.

A questão é saber, se para quaisquer a e m > 1, sempre existe alguma
potência positiva de a que deixa resto 1 na divisão por m? Caso afirmativo,
como encontrar o expoente k? Neste caṕıtulo, veremos alguns resultados nesse
sentido, o Pequeno Teorema de Fermat e uma generalização desse, que é o
Teorema de Euler. Veremos também o Teorema de Wilson, o qual nos fornece
o resto para um tipo particular de divisão.

Para inteiros a e m > 1 arbitrários, comecemos supondo que exista um

98
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inteiro k ≥ 1, tal que

ak ≡ 1(modm).

Isso implica que m|(ak − 1)⇒ ∃s ∈ Z; ak − 1 = ms e como k ≥ 1, então

ak − 1 = ms⇒ a.ak−1 +m(−s) = 1⇒ mdc(a,m) = 1.

Portanto, mdc(a,m) = 1 é um condição necessária para a existência do
expoente k. Temos assim, o seguinte resultado:

Proposição 12. Dados inteiros m > 1 e a. Se existe um inteiro k ≥ 1, tal
que

ak ≡ 1(modm),

então mdc(a,m) = 1.

Exemplos:
(01) Como mdc(8, 10) 6= 1, então 8k 6≡ 1(mod10), qualquer que seja o inteiro
k ≥ 1, conforme já t́ınhamos deduzido no caṕıtulo anterior;
(02) Como mdc(27, 15) 6= 1, não existe k ≥ 1, tal que 27k ≡ 1(mod15).

O próximo passo é investigar se mdc(a,m) = 1 é também uma condição
suficente para a existência do expoente k. Sabe-se que se p é um número
primo e p - a, então mdc(p, a) = 1. Iniciaremos nossa análise para inteiros
relativamente primos, com essa particularidade.

Dados um inteiro a qualquer e um primo positivo p, denotaremos por
M(a, p) o conjunto dos primeiros (p− 1) múltiplos positivos de a, isto é,

M(a, p) := {na | n ∈ Z, 1 ≤ n ≤ p− 1} = {a, 2a, 3a, ..., (p− 1)a}.

Exemplos:
(01) M(2, 11) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20};
(02) M(25, 7) = {25, 50, 75, 100, 125, 150}.

Façamos agora, algumas análises no conjunto M(a, p), para esses dois
exemplos particulares.

(01) M(2, 11) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20};
Dividindo cada elemento desse conjunto por p = 11, encontramos as seguintes
congruências:
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

2 ≡ 2(mod11)
4 ≡ 4(mod11)
6 ≡ 6(mod11)
8 ≡ 8(mod11)
10 ≡ 10(mod11)
12 ≡ 1(mod11)
14 ≡ 3(mod11)
16 ≡ 5(mod11)
18 ≡ 7(mod11)
20 ≡ 9(mod11)

Portanto, o conjunto dos restos das divisões dos elementos de M(2, 11) por 11
é {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Observe que, como os restos são todos distintos,
segue da Definição 7, que quaisquer dois elementos distintos de M(2, 11) são
incongruentes módulo 11. E observa-se também, que nenhum deles deixa resto
0 na divisão por 11. Aplicando agora repetidamente a propriedade C7 às
congruências acima obtemos:

(2.4.6.8.10.12.14.16.18.20) ≡ (2.4.6.8.10.1.3.5.7.9)(mod11)

ou ainda,

(2.1).(2.2).(2.3).(2.4).(2.5).(2.6).(2.7).(2.8).(2.9).(2.10) ≡ (1.2.3.4.5.6.7.8.9.10)(mod11)

⇓
(1.2.3.4.5.6.7.8.9.10).210 ≡ (1.2.3.4.5.6.7.8.9.10)(mod11)

⇓
10!.210 ≡ 10!(mod11)

Como mdc(10!, 11) = 1, pelo cancelamento da multiplicação na congruência
(propriedade C6), obtemos a congruência:

210 ≡ 1(mod11).

�

(02) M(25, 7) = {25, 50, 75, 100, 125, 150}:
Dividindo os elemento desse conjunto por p = 7, encontramos as seguintes
congruências: 

25 ≡ 4(mod7)
50 ≡ 1(mod7)
75 ≡ 5(mod7)
100 ≡ 2(mod7)
125 ≡ 6(mod7)
150 ≡ 3(mod7)

Novamente, observa-se que os restos são todos distintos e nenhum deles é nulo,
implicando que quaisquer dois elementos distintos de M(25, 7) são incongru-
entes módulo 7 e nenhum deles é diviśıvel por 7. Como no exemplo anterior,
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multiplicando membro a membro todas as congruências acima (propriedade
C7) obtemos:

25.50.75.100.125.150 ≡ 4.1.5.2.6.3(mod5)

⇓

(1.2.3.4.5.6).256 ≡ 1.2.3.4.5.6.(mod7)

⇓

6!.256 ≡ 6!(mod7)

Como mdc(6!, 7) = 1, pela propriedade C6, segue que:

256 ≡ 1(mod7).

�

Nos dois exemplos, obtivemos como resultado a mesma congruência:

ap−1 ≡ 1(modp).

A questão é: - Esse é um resultado geral? Ele vale sempre?

Vamos tentar generalizar o que foi feito nos exemplos acima, para inteiros
arbitrários a e p, com p > 1 primo e p - a, garantindo assim que mdc(p, a) = 1,
conforme Proposição 7.

Tomando o conjunto dos primeiros (p− 1) múltiplos positivos de a:

M(a, p) = {a, 2a, 3a, ..., (p− 1)a}

e dividindo cada um de seus elementos por p, obtemos as (p−1) congruências:
a ≡ r1(modp)
2a ≡ r2(modp)
3a ≡ r3(modp)
...
(p− 1)a ≡ rp−1(modp)

onde r1, r2, ...rp−1 são os restos obtidos nas divisões. Aplicando agora repeti-
damente a propriedade C7 às congruências acima, segue que:

a.2a.3a...(p− 1)a ≡ r1.r2.r3....rp−1(modp).

⇓

(p− 1)!.ap−1 ≡ r1.r2.r3....rp−1(modp). (10.2)

No caso geral, não podemos precisar exatamente o valor de cada resto ri.
Sabemos apenas que r1, r2, ...rp−1 ∈ R = {0, 1, 2, ...p−1}. Como nos exemplos,
são todos eles distintos?

Suponhamos que existam ni, nj ∈ {1, 2, ...p − 1}, tais que ri = rj,
então nia ≡ nja(modp). Como mdc(a, p) = 1, pela propriedade C6,
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ni ≡ nj(modp) ⇒ ni = nj. Logo, r1, r2, ..., rp−1 são (p − 1) elementos dis-
tintos de R. Como R tem p elementos, a pergunta é: - que elemento de R não
aparece entre os (p − 1) restos encontrados? Nos exemplos acima, vimos que
nenhuma das potências deixou resto zero. No geral, suponhamos que exista
1 ≤ nj ≤ (p− 1), tal que:

nja ≡ 0(modp)⇒ p|nja

Com mdc(p, a) = 1⇒ p|nj ⇒ p ≤ nj, um absurdo. Então, ri 6= 0, para todo i
e assim, r1, r2, ..., rp−1 ∈ {1, 2, 3, ..., p− 1}, sendo todos distintos. Portanto,
r1r2r3...rp−1 = 1.2.3....(p− 1) = (p− 1)! e a identidade (10.2) fica:

(p− 1)!.ap−1 ≡ (p− 1)!(modp).

Como p é primo, mdc((p− 1)!, p) = 1 (questão 15 do Caṕıtulo 6). Logo, pela
propriedade C6:

ap−1 ≡ 1(modp).

�

Com isso demonstramos o seguinte teorema:

Teorema 11. (Pequeno Teorema de Fermat) Sejam a e p inteiros, com p > 1
primo. Se p - a, então

ap−1 ≡ 1(modp).

Exemplos:
(01) Como 13 é primo e 13 - 8, pelo Teorema de Fermat:

812 ≡ 1(mod13).

Pela propriedade C8, para todo inteiro q ≥ 0:

(812)q ≡ 1q ⇒ 812q ≡ 1(mod13).

Assim, 8840, 8636, 86000, todos deixam resto 1 na divisão por 13.

(02) Como 23 é primo e 23 - 2, 222 ≡ 1(mod23) ⇒ 222q ≡ 1(mod23), para
todo inteiro q ≥ 0.

Tomando a congruência do Teorema de Fermat e multiplicando ambos os
lados por a (propriedade C4), obtemos:

ap ≡ a(modp).

Essa congruência é também válida, mesmo que não tenhamos a condição p - a,
exigida no teorema, pois, se p|a, como p > 1, segue que (ap−1 − 1) ∈ Z, assim
p|a(ap−1 − 1), e portanto,

ap ≡ a(modp).

Asim, se p|a ou se p - a, sempre teremos a congruencia ap ≡ a(modp), desde
que p seja primo. Enunciamos esse fato no corolário a seguir.
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Corolário 6. Sejam a e p inteiros, com p > 1 primo. Então

ap ≡ a(modp).

Exemplos:
(01) Como 7 é primo, pelo corolário acima, 7|(237 − 23);
(02) Pelo Corolário 6, podemos afirmar que 4311 deixa resto 10 na divisão por
11. De fato, como 11 é primo, então 11|(4311−43)⇒ ∃q ∈ Z; 4311−43 = 11q
⇒ 4311 = 11q + 43 = 11(q + 3) + 10. Logo, 10 é o resto da divisão de 4311 por
11;
(03) 3417 deixa resto 0 na divisão por 17, pois 17|(3417 − 34)⇒ ∃q ∈ Z;
3417 = 17q + 34 = 17(q + 2) + 0.

X Exerćıcios 24.

(01) Determinar o resto da divisão de 250 por 7.
Solução:
Como 7 é primo e 7 - 2, segue do teorema de Fermat, que 26 ≡ 1(mod7)
⇒ (26)8 ≡ 18(mod7)⇒ 248 ≡ 1(mod7)⇒ 250 ≡ 22(mod7)⇒ 250 ≡ 4(mod7).
E como 4 ∈ {0, 1, 2, ..., 6}, ele é o resto procurado. �

(02) Calcular o resto da divisão de 892 por 19.
Solução:
Como 19 é primo e 19 - 8, pelo teorema de Fermat:

818 ≡ 1(mod19)⇒ (818)5 ≡ 15(mod7)⇒ 890.82 ≡ 82 ≡ 7(mod19).

Logo, 7 é o resto procurado. �

(03) Calcular o resto da divisão de 310342 por 1033.
Solução:
Como 1033 é primo (verifique) e não divide 3, pelo teorema de Fermat:

31032 ≡ 1(mod1033)⇒ 31032q ≡ 1(mod1033),∀q ∈ Z+.

Vejamos agora como relacionar o expoente 10342 dado na questão, com o
expoente 1032 da congruência acima:

1034 ≡ 2(mod1032)⇒ 10342 ≡ 22(mod1032)⇒ 10342 = 1032q+4, com q ∈ Z.

Usando propriedades de potências, temos a igualdade:

310342 = 31032q+4 = 31032q.34

Como
34 ≡ 81(mod1033)

Então,
310342 = 31032q.34 ≡ 1.81 ≡ 81(mod1033)

Portanto, o resto é 81. �
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(04) Calcular o resto da divisão de 4615 por 59.
Solução:
59 é primo e não divide 4, logo, pelo teorema de Fermat:

458 ≡ 1(mod59)⇒ 458q ≡ 1(mod59), ∀q ∈ Z+.

Dividindo a base do expoente dado na questão pelo expoente acima temos:

61 ≡ 3(mod58)⇒ 615 ≡ 35 ≡ 11(mod58)⇒ 615 = 58q + 11, q ∈ Z.

Usando as propriedades de potências e a congruência 411 ≡ 53(mod59), temos:

4615 = 458q.411 ≡ 1.53 ≡ 53(mod159).

Portanto, o resto é 53. �

2 Teorema de Euler

Na demonstração do Teorema de Fermat, mostramos essencialmente, que se
m > 1 e a são inteiros relativamente primos, então temos a congruência:

(m− 1)!.am−1 ≡ (m− 1)!.(modm).

Se m é primo, segue que mdc((m − 1)!,m) = 1, o que nos permite cancelar
o fator comum e obter a congruência am−1 ≡ 1(modm). Porém, se m é
composto, então mdc((m − 1)!,m) 6= 1. Nesse caso, para a aplicação da
propriedade C6, precisamos eliminar do conjunto M(a,m) os múltiplos na para
os quais mdc(n,m) 6= 1. Assim, dado um inteiro m > 1, vamos considerar o
conjunto:

Am = {n ∈ Z | 1 ≤ n ≤ m e mdc{n,m} = 1}.

Suponhamos Am com t elementos, digamos Am = {n1, n2, ..., nt}. No lugar de
M(a,m), consideraremos agora o conjunto:

{na | n ∈ Am} = {n1a, n2a, ..., nta}.

Denotando por ri o resto da divisão de nia por m, temos as t congruências:
n1a ≡ r1(modm)
n2a ≡ r2(modm)
n3a ≡ r3(modm)
...
nta ≡ rt(modm)

E pela propriedade C7:

n1n2...nt.a
t ≡ r1r2...rt(modm). (10.3)
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Como já mostrado anteriormente, se mdc(a,m) = 1, então os restos ri são
todos distintos e nenhum deles é nulo. Assim, para todo i,

ri ∈ {1, 2, ...,m− 1} ⊃ {n1, n2, ..., nt}.

Para cada i = 1, 2, ..., t, seja di = mdc(ri,m). Então di|ri e di|m ⇒
di|(mk + ri), qualquer que seja k ∈ Z. Em particular, se nia = mqi + ri,
então di|nia. Assim, di é também um divisor comum de m e nia, consequente-
mente, di|mdc(nia,m). Agora, pela definição de Am e a hipótese, temos que:

mdc(ni,m) = 1 = mdc(a,m)⇒ mdc(nia,m) = 1.

Assim, di|1⇒ di = 1⇒ ri ∈ Am, para todo i. Portanto, r1r2...rt = n1n2...nt e
assim, (12.2) fica:

n1n2...nt.a
t ≡ n1n2...nt(modn)

Comomdc(ni,m) = 1, para todo i = 1, 2, ..., t, segue quemdc(n1n2...nt,m) = 1
e pela propriedade C6, obtemos a congruência:

at ≡ 1(modm),

onde t é número de elementos do conjunto Am.

A função φ dada por:
φ : Z∗+ → Z∗+

m → φ(m) := #Am.
onde #Am indica o número de elementos do conjunto Am, é chamada Função
φ de Euler.

Exemplos:
(01) Como A6 = {n ∈ Z | 1 ≤ n ≤ 6 e mdc{n, 6} = 1} = {1, 5}, então
φ(6) = #A6 = 2;
(02) φ(9) = 6, neste caso, A9 = {1, 2, 4, 5, 7, 8} e #A9 = 6;
(03) Se p é primo, então todo inteiro positivo menor que p é relativo com p,
logo
Ap = {1, 2, 3, ....p− 1} e portanto φ(p) = p− 1.

Usando a função φ de Euler, vamos enunciar o que foi mostrado acima:

Teorema 12. (Teorema de Euler) Sejam m > 1 e a inteiros. Se mdc(a,m) =
1, então

aφ(m) ≡ 1(modm).

Exemplos:
(01) Como mdc(25, 6) = 1, então 25φ(6) ≡ 1(mod6), ou seja, 252 ≡ 1(mod6);
(02) Sendo mdc(13, 9) = 1, segue que, 13φ(9) ≡ 1(mod9)⇒ 136 ≡ 1(mod9).
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Se m = p é primo e p - a, então mdc(a, p) = 1, e pelo teorema de Euler,

aφ(p) ≡ 1(modp)⇒ ap−1 ≡ 1(modp).

Assim, o teorema de Fermat é um caso particular do teorema de Euler. �

X Exerćıcios 25.

(01) Determine o resto da divisão de 450 por 9.
Solução:
Aqui não podemos aplicar o Teorema de Fermat, pois 9 não é primo. Porém,
como mdc(4, 9) = 1, pelo Teorema de Euler,

4φ(9) ≡ 1(mod9)

⇓

46 ≡ 1(mod9)⇒ 448 ≡ 18(mod9)⇒ 450 ≡ 16 ≡ 7(mod9).

Portanto, o resto é 7. �

(02) Determine o resto da divisão de 530153 por 9.
Solução:
Como mdc(5, 9) = 1, pelo Teorema de Euler:

5φ(9) ≡ 1(mod9)⇒ 56 ≡ 1(mod9).

Relacionando 6 com o expoente 30153, temos:

3015 ≡ 3(mod6)⇒ 30153 ≡ 33 ≡ 3(mod6)⇒ 30153 = 6q + 3, q ∈ Z

Então,

530153 = 56q+3 = 56q.53

Como 56 ≡ 1(mod9)⇒ 56q ≡ 1(mod9) e 53 ≡ 8(mod9), segue que:

530153 = 55q.53 ≡ 1.8 ≡ 8(mod9).

Portanto, o resto é 8. �

O Teorema de Euler mostra que vale a rećıproca da Proposição 12. Jun-
tando esses dois resultados temos:

Sejam m > 1 e a são inteiros arbitrários. Existe um inteiro k ≥ 1, tal que:

ak ≡ 1(modm) ⇔ mdc(a,m) = 1.

Com o Teorema de Fermat, podemos melhorar o resultado dado em (10.1):
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Se
mdc(a,m) = 1

então para todo inteiro n ≥ 1, tem-se:

an ≡ ar(modm),

onde r é o resto da divisão de n por φ(m).

Exemplos:
(01) Como mdc(9, 8) = 1, então

8465 ≡ 83 ≡ 8(mod9),

já que 465 = φ(9).77 + 3.

(02) 141045 deixa resto 4 na divisão por 5, uma vez que mdc(14, 5) = 1 e
1045 = φ(5).261 + 1, segue que 141045 ≡ 141 ≡ 4(mod5).

3 Teorema de Wilson

Já vimos que se p > 1 é um número primo, então p - (p − 1)!. Logo, existem
únicos inteiros q e r, tais que:

(p− 1)! = pq + r

com 1 ≤ r ≤ p− 1. Vamos mostrar que nesse caso, qualquer que seja o primo
p, o resto r é sempre o maior posśıvel, isto é r = (p− 1).

Lema 3. Seja p > 1 um número primo. Para todo a ∈ A = {1, 2, 3, ..., p− 1},
existe r ∈ A, tal que:

ar ≡ 1(modp).

Demonstração:
Como p é primo e p - a, pois a < p, segue que mdc(a, p) = 1⇒ ∃x, y ∈ Z, tais
que

ax+ py = 1.

Sejam q e r, respectivamente, o quociente e o resto da divisão de x por p.
Então,

x = pq + r, com 0 ≤ r ≤ p− 1.

Portanto,

ar−1 = a(x−pq)−1 = (ax−1)−paq = p(−y−aq)⇒ p|(ar−1)⇒ ar ≡ 1(modp).

Resta mostrar que r ∈ A. Como ax + py = 1 ⇒ mdc(p, x) = 1 ⇒ p - x, logo
1 ≤ r ≤ p− 1⇒ r ∈ A. �
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Exemplos:
(01) Pelo lema acima, para todo a ∈ A = {1, 2, 3, 4, 5, 6} existe r ∈ A, tal que
ar ≡ 1(mod7). De fato, temos as 4 congruências:

1.1 ≡ 1(mod7), 2.4 ≡ 1(mod7), 3.5 ≡ 1(mod7) e 6.6 ≡ 1(mod7);

(02) Para todo a ∈ A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} existe r ∈ A, tal que
ar ≡ 1(mod11). Para encontrar r ∈ A, tal que ar ≡ 1(mod11), podemos
proceder como na demonstração do lema. Vejamos como exemplo, tomando
a = 7.

Comomdc(7, 11) = 1, usando o algoritmo de Euclides, encontramos inteiros
x e y, tais que 7x+ 11y = 1. Posteriormente divimos x por 11, sendo r o resto
dessa divisão. Nesses caso, 7.(−3) + 11.2 = 1 e como −3 = 11.(−1) + 8, segue
que r = 8. Portanto, 7.8 ≡ 1(mod11). Procedendo dessa forma, encontramos
as 6 congruências:

1.1 ≡ 1(mod11)

2.6 ≡ 1(mod11)

3.4 ≡ 1(mod11)

5.9 ≡ 1(mod11)

7.8 ≡ 1(mod11)

10.10 ≡ 1(mod11).

Nos dois exemplos acima, para p = 7 e p = 11, encontramos r = a, ou
seja, ocorre a congruência a2 ≡ 1(modp), somente para a = 1 ou a = p− 1. O
próximo lema afirma que esse é o caso geral.

Lema 4. Sejam p > 1 um número primo. Se a ∈ A = {1, 2, 3, ..., p− 1} é tal
que:

a2 ≡ 1(modm),

então a = 1 ou a = p− 1.

Demonstração:
Suponha 1 ≤ a ≤ p− 1, tal que a2 ≡ 1(modp)⇒ p|(a2 − 1) e como p é primo,
segue que p|(a−1) ou p|(a+ 1). Agora, se p|(a−1) e a 6= 1, então p ≤ a−1 ≤
p− 2, um absurdo. Assim, nesse caso, a = 1. E se, p|(a+ 1), então p ≤ a+ 1.
Por outro lado, como 1 ≤ a ≤ p− 1⇒ a+ 1 ≤ p⇒ p = a+ 1⇒ a = p− 1. �

No geral, para um primo p > 2, temos as 1
2
(p− 3) congruências

ar ≡ 1(modp)

com a, r ∈ A′ = {2, 3, ..., p− 2} e a 6= r.
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Teorema 13. (Teorema de Wilson) Se p > 1 é um número primo, então
p divide (p− 1)! + 1.

Demonstração:
O resultado é obviamente verdadeiro para p = 2. Supondo p ≥ 3, então pelos
Lemas 3 e 4, para cada ai ∈ A′ = {2, 3, ..., p− 2}, existe ri ∈ A′, com ri 6= ai,
tal airi ≡ 1(modp). Assim, temos as 1

2
(p− 3) congruências:

a1r1 ≡ 1(mop)

a2r2 ≡ 1(mop)

...

a 1
2

(p−3)r 1
2

(p−3) ≡ 1(mop).

Multiplicando essas congruências obtemos:

2.3.4...(p− 2) ≡ 1(modp).

Por outro lado, também temos a congruência elementar:

(p− 1) ≡ (−1)(modp).

Multiplicando essas duas últimas congruencia, obtem-se:

2.3.4...(p−2)(p−1) ≡ (−1)(modp)⇒ (p−1)! ≡ −1(modp)⇒ p| ((p− 1)! + 1) .

�

Corolário 7. Se p > 1 é um número primo, então (p− 1)! deixa resto (p− 1)
na divisão por p.

Demonstração:
Pelo Teorema de Wilson, p|((p− 1)! + 1)⇒ ∃q ∈ Z, tal que:

(p− 1)! + 1 = pk ⇒ (p− 1)! = pk − 1 + (p− p) = p(k − 1) + (p− 1).

Assim,
(p− 1)! = pq + r,

onde q = k−1 ∈ Z e r = p−1 ∈ {0, 1, 2, ..., p−1}. Da unicidade do quociente
e resto, segue que r = (p− 1) é o resto da divisão de (p− 1)! por p. �

Exemplo:
(01) Como 7 é primo, pelo Teorema de Wilson, sabemos que 7|(6! + 1);
(02) Como (11! + 1) = 39916801 = 3326400 × 12 + 1 ⇒ 12 - (11! + 1), logo
podemos usar o teorema anterior, para afirmar que 12 não é um número primo;
(03) Pelo Corolário 7, podemos afirmar que 12! deixa resto 12 na divisão por
13;
(04) Como 29 é primo, então 28! deixa resto 28 na divisão por 29.
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Lista de Exerćıcios 10.

(01) Aplique o Teorema de Fermat para os pares de inteiros a e p abaixo:
(a) a = 20, p = 7;
(b) a = 8, p = 11;
(c) a = 16, p = 47.

(02) Calcule a imagem de cada inteiro abaixo pela função φ de Euler:
(a) φ(12);
(b) φ(15);
(c) φ(pn), com p primo e n ≥ 1 inteiro.

(03) Determine o resto da divisão de 530 por 11.

(04) Determine o resto da divisão de 13111 por 11.

(05) (ENADE-2008) Determine o resto da divisão de 2333 por 23.

(06) Determine o resto da divisão de 8300 por 9.

(07) Determine o resto da divisão de 7105 por 12.

(08) Determine o resto da divisão de 1430 por 15.

(09) Determine o resto da divisão de 53035 por 7.

(10) Determine o resto da divisão de 84053 por 9.

(11) Determine o resto da divisão de 8206 por 15.

(12) Determine o resto da divisão de 94242 por 25.

(13) Determine o resto da divisão de (17 + 27 + 37 + ...+ 307) por 7.

(14) Determine o resto da divisão de (16 + 26 + 36 + ...+ 306) por 7.

(15) Determine o resto da divisão de (111 + 211 + 311 + ...+ 5011) por 11.

(16) Determine o resto da divisão de (110 + 210 + 310 + ...+ 5010) por 11.

(17) Determine o resto da divisão de (22225555 + 55552222) por 7.

(18) Determine o algarismo das unidades do número 95577 .

(19) Mostre que se p > 1 é primo, então (p− 1)! ≡ (p− 1)(modp).

(20) Mostre que se p ≥ 3 é um número primo, então p|((p− 2)!− 1).
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Respostas da Lista de Exerćıcios 10
(01.a) 206 ≡ 1(mod7) (01.b) 810 ≡ 1(mod11) (01.c) 1646 ≡ 1(mod47).
(02.a) φ(12) = 4 (02.b) φ(15) = 8 (02.c) φ(pn) = pn−1(p− 1).
(03) 1
(04) 2
(05) 16
(06) 1
(07) 7
(08) 1
(09) 6
(10) 8
(11) 1
(12) 11
(13) 3
(14) 5
(15) 10
(16) 4
(17) 0
(18) 9



Caṕıtulo 11

O Anel Zm

1 Inteiros Módulo m

Lembremos que dado um inteiro m > 1, definimos em Z a seguinte relação:

a ≡ b(modm)⇔ m | (a− b),

a qual é chamada Relação de Congruência Módulo m. Essa relação,
conforme visto, tem as seguinte propriedades , para quaisquer a, b, c ∈ Z:
(i) Reflexiva:

a ≡ a(modm);

(ii) Simétrica:

Se a ≡ b(modm), então b ≡ a(modm);

(iii) Transitiva:

Se a ≡ b(modm) e b ≡ c(modm), então a ≡ c(modm).

Por possuir essas três propriedades, diz-se que a relação de congruência
módulo m é uma relação de equivalência no conjunto Z.

2 Classes de Congruência

Para cada a ∈ Z, o conjuntos dos inteiros congruentes a amódulom, é chamado
a classe de equivalência de a pela relação de congruência módulo m
e denotado por a. Assim, por definição,

a := {b ∈ Z | b ≡ a(modm)}.

Observe que:

b ∈ a⇒ b ≡ a(modm)⇒ m | (b−a)⇒ b−a = mk,⇒ b = mk+a, com k ∈ Z.

112
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Reciprocamente, se existe k ∈ Z, tal que:

b = mk + a⇒ m | (b− a)⇒ b ≡ a(modm)⇒ b ∈ a.

Desta forma, podemos descrever precisamente os elementos da classe a:

a = {mk + a | k ∈ Z}

Cada elemento do conjunto a é dito um representante da classe a.

Exemplos:
(01) Na relação de congruência módulo 3, as classes 0, 1 e −5 são:
0 = {3k + 0 | k ∈ Z} = {...,−6,−3, 0, 3, 6, ...}, que é o conjunto dos inteiros
que deixam resto 0 na divisião por 3. Os números -6, 0, 21 são alguns repre-
sentantes da classe 0;
1 = {3k + 1 | k ∈ Z} = {...,−5,−2, 1, 4, 7, ...}, que é o conjunto dos inteiros
que deixam resto 1 na divisão por 3. Os inteiros -11, 1, 22, 253, elementos
desse conjunto, são alguns representantes dessa classe;
−5 = {3k + (−5) | k ∈ Z} = {3(k − 2) + 1 | k ∈ Z} = {3k1 + 1 | k1 ∈ Z}, que
também é o conjunto dos inteiros que deixam resto 1 na divisão por 3, logo
−5 = 1, em módulo 3.

(02) Na relação ≡ (mod5), as classes 0, 1 e −5 são:
0 = {5k + 0 | k ∈ Z} = {...,−10,−5, 0, 5, 10, ...}, o qual é o conjunto dos
inteiros que deixam resto 0 na divisião por 5;
1 = {5k + 1 | k ∈ Z} = {...,−9,−4, 1, 6, 11, ...} é o conjunto inteiros que
deixam resto 1 na divisão por 5;
−5 = {5k + (−5) | k ∈ Z} = {5(k − 1) | k ∈ Z} = {5k1 + 0 | k1 ∈ Z} = 0.
Portanto, −5 = 0, em módulo 5.

3 Propriedades das Classes de Equivalência

Os exemplos acima, mostram que inteiros distintos podem produzir a mesma
classe de equivalência. A próxima proposição dá a condição para que ocorra a
igualdade das classes.

Proposição 13. Seja m > 1 um inteiro. Para quaisquer inteiros a e b tem-se:

a = b⇔ a ≡ b(modm).

Demonstração:
(⇒) a = b⇒ a ≡ b(modm) :
Da reflexividade da relação de congruência e da hipótese, segue que:
a ≡ a(modm)⇒ a ∈ a = b. Da definição de b, segue que a ≡ b(modm).
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(⇐) a ≡ b(modm)⇒ a = b.
Seja x ∈ a ⇒ x ≡ a(modm). Como por hipótese a ≡ b(modm), usando a
transitividade da relação, segue que x ≡ b(modm)⇒ x ∈ b⇒ a ⊂ b.
De modo, análogo, mostra-se que b ⊂ a. Portanto, temos a igualdade a = b. �

Exemplos:
(01) Como 843 ≡ 10(mod7), segue que 843 = 10, em módulo 7;
(02) Como 912 ≡ 282 ≡ 147 ≡ 3 ≡ (−6)(mod9), temos, em módulo 9, a igual-
dade das classes 912 = 282 = 147 = 3 = −6. Observe que os representantes
de todas essas classses deixam o mesmo resto na divisão por 9, uma vez que
estão relacionados pela relação de congruência módulo 9;
(03) Na divisão por 2, só temos dois restos posśıveis, então para todo a ∈ Z,
temos que a ≡ 0(mod2)⇒ a = 0 ou a ≡ 1(mod2)⇒ a = 1. Assim, em módulo
2, só temos duas classes distintas, 0 e 1.

Para as classes dadas no exemplos acima, não encontramos nenhum inteiro
que pertença simultaneamente a mais de uma classe. Vejamos se esse é o caso
geral.

Dadas a e b, classes distintas em módulo m, suponha existir x ∈ Z que
pertença simultaneamente a a e b. Se x ∈ a ∩ b, então x ∈ a⇒ x ≡ a(modm)
e pela Proposição 13, x = a. Analogamente, se x ∈ b ⇒ x = b e portanto,
a = b, contrariando a suposição das classes serem distintas. Assim, uma
consequência da proposição anterior é que classes distintas, não tem elementos
comuns. Temos assim, o seguinte corolário:

Corolário 8. Sejam m > 1 um inteiro. Em módulo m, para quaisquer a, b ∈ Z
tem-se que:

a 6= b⇒ a ∩ b = ∅.

Exemplos:
(01) Como 14 6≡ 3(mod7), segue que, em módulo 7, 14 6= 3. Então, pelo
corolário acima, essas duas classes são disjuntas, isto é, 14 ∩ 3 = ∅;
(02) Em módulo 5, 22 e 16 são classes distintas, uma vez que 22 6≡ 16(mod5).
Assim, pelo Corolário 8, 22 ∩ 16 = ∅. De fato, se x ∈ 22, então x deixa resto
2 na divisão por 5; se x ∈ 16, x deixa resto 1 na divisão por 5. Da unidade do
resto, segue que não existe x ∈ 22 ∩ 16.

4 Conjunto das Classes Residuais

Dado um inteirom > 1, denota-se por Zm o conjunto das classes de equivalência
módulo m, isto é,

Zm := {a | a ∈ Z}.

O conjunto Zm é chamado conjunto das Classes Residuais Módulo m.
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Por definição,

Zm = {...,−3,−2,−1, 0, 1, 2, ...,m− 1,m,m+ 1, ...}

Mas, já vimos que inteiros distintos podem produzir a mesma classe, desde que
estejam relacionados. Portanto, nem todos os elementos do conjunto acima são
distintos. A questão é: - Quantas são as classes de equivalências distintas em
Zm?

A resposta segue dos resultados abaixo, vistos Caṕıtulo 9, sobre o conjunto
R = {0, 1, ...,m− 1}:

(i) Todo inteiro é congruente a único elemento de R, no caso, o seu resto
na divisão m, Assim, para todo a ∈ Z, existe r ∈ R, tal que a ≡ r(modm)
⇒ a = r ⇒ Zm ⊂ {0, 1, ...,m− 1};

(ii) Quaisquer dois elementos distintos de R são incongruentes módulo m.
Então, pela Proposição 13, as classes do conjunto {0, 1, 2, ...,m− 1} são todas
distintas, ou seja, esse conjunto tem exatamente m elementos distintos.

Com esses dois resultados podemos descrever exatamente o conjunto Zm,
conforme proposição abaixo.

Proposição 14. Para cada inteiro m > 1,

Zm = {0, 1, ...m− 1},

o qual tem exatamente m elementos distintos.

Demonstração:
Por definição,

Zm = {a | a ∈ Z} = {...,−3,−2,−1, 0, 1, ...,m− 1,m,m+ 1, ...}.

Já mostramos que Zm ⊂ {0, 1, ...,m− 1}. A outra inclusao é imediata. Assim,
temos a igualdade:

Zm = {0, 1, ...m− 1},
e conforme item (ii) acima, Zm tem exatamente m elementos distintos. �

Exemplos:
(01) Z2 = {0, 1};
(02) Z4 = {0, 1, 2, 3};
(03) Z12 = {0, 1, 2, ..., 10, 11}.

Resumindo, dado m > 1, toda classe residual módulo m é um subconjunto
não vazio de Z e para cada a ∈ Z, existe um único inteiro r, com 0 ≤ r ≤ m−1,
tal que a ∈ r. Dizemos assim, que Zm é uma partição de Z, ou seja,

Z = 0 ∪ 1 ∪ ... ∪ (m− 1)
sendo essa união disjunta, isto é, para quaisquer 0 < ri 6= rj < m, ri ∩ rj = ∅.
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X Exerćıcios 26.

(01) Determine Z6 e descreva a classe 3.
Solução:
Pela Proposição 14,

Z6 = {0, 1, 2, 3, 4, 5},

sendo 3 = {6k + 3 | k ∈ Z} = {...,−15,−9,−3, 3, 9, 15, ...}. �

(02) Determine Z11 e descreva as classes 3 e 7.

(03) Encontre o único representante r da classe 36 ∈ Z9, com 0 ≤ r ≤ 8.
Solução:
Dividindo 36 por 9 obtemos 36 = 4.9 + 0 ⇒ 4|(36 − 0) ⇒ 36 ≡ 0(mod9) ⇒
36 = 0. Assim, r = 0 é o representante da classe 36 no intervalo pedido. �

(04) Encontre o único representante r da classe −316 ∈ Z13, com 0 ≤ r ≤ 12.
Solução:
Dividindo -316 por 13 obtemos −316 = −25.13 + 9⇒ 13|(−316− 9)
⇒ −316 ≡ 9(mod13) ⇒ −316 = 9. Assim, r = 9 é o representante da classe
−316 no intervalo pedido. �

(05) Encontre o representante r da classe 29 ∈ Z10, com 0 ≤ r ≤ 9.
(06) Encontre o representante r da classe −414 ∈ Z16, com 0 ≤ r ≤ 15.
(07) Generalizando, dado a ∈ Z arbitrário, descreva um procedimento para
encontrar o único representante r de a ∈ Zm, com 0 ≤ r ≤ m− 1.
Solução:
Dividindo a por m, encontramos q e r, tais que a = mq+r, com 0 ≤ r ≤ m−1.
Dáı, m|(a− r)⇒ a ≡ r(modm)⇒ a = r. Portanto, o representante no inter-
valo pedido, é exatamente o resto da divisão euclidiana de a por m. �

5 Operações em Zm
Definiremos agora uma adição e uma multiplicação em Zm, dando assim,
ao conjunto das classes residuais uma estrutura de anel, com propriedades
análogas as do anel Z
.

Dadas a, b ∈ Zm definimos:

(I) Adição:

a+ b := a+ b

(II) Multiplicação:

a.b := a.b
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X Exerćıcios 27.

(01) Usando as definições acima, efetue as operações no conjunto indicado:
Em Z7 = {0, 1, ...., 6}:
(a) 2 + 3;
Solução:
Pela definição, 2 + 3 = 2 + 3 = 5. �
(b) 2.3;
Solução:
2.3 = 2.3 = 6;
(c) 3 + 5
Solução:
3 + 5 = 3 + 5 = 8 = 1; �
(d) 3.5;
Solução:
3.5 = 3.5 = 15 = 1. �
(e) 4 + 5;
(f) 4.5;

(02) Em Z12 = {0, 1, ...., 11}:
(a) 2 + 3;
Solução:
2 + 3 = 2 + 3 = 5. �
(b) 2.3;
Solução:
2.3 = 2.3 = 6. �
(c) 3 + 5;
Solução:
3 + 5 = 3 + 5 = 8;
(d) 3.5;
Solução:
3.5 = 3.5 = 15 = 3. �
(e) 17 + 18;
(f) 17.18.

(03) Descreva o procedimento usado para efetuarmos a soma a+ b e o produto
a.b em Zm.

Para efetuarmos a soma de duas classes residuais, tomamos um represen-
tante de cada uma das parcelas (que são números inteiros), somamos em Z
esses representantes e então determinamos a classe residual do inteiro resul-
tante. Procedimento analógo ocorre com a multiplicação. Cabe aqui uma
pergunta: - Como essas operações são feitas usando representantes das classes,
o resultado será o mesmo quaisquer que sejam os representantes escolhidos
para as classes? Por exemplo, em Z12, 5 = 17 e 6 = 18. Dáı, 5 + 6 = 17 + 18?
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A próxima proposição mostra que as operações acima estão bem definidas,
isto é, independem do representante escolhido para a classe.

Proposição 15. Sejam a1, b1, a2, b2 ∈ Zm. Se

a1 = a2 e b1 = b2,

então
(i) a1 + b1 = a2 + b2;
(ii) a1.b1 = a2.b2.

Demonstração:
Como a1 = a2 e b1 = b2, pela Proposição 13,

a1 ≡ a2(modm) e b1 ≡ b2(modm).

Usando a propriedade C7 de congruências e a Proposição 13, temos:
(i) a1 + b1 ≡ a2 + b2(modm)⇒ a1 + b1 = a2 + b2 ⇒ a1 + b1 = a2 + b2 e
(ii) a1.b1 ≡ a2.b2(modm)⇒ a1.b1 = a2.b2 ⇒ a1.b1 = a2.b2. �

Exemplos: Abaixo, as tábuas da adição e multiplicação de Z6:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

. 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

6 Propriedades das Operações em Zm

A adição e a multiplicação definidas em Zm tem as seguintes propriedades
(compare com as propriedades das operações em Z, vistas no Caṕıtulo 1):

Propriedades da Adição

(A1) Associatividade:
para quaisquer a, b, c ∈ Zm, tem-se:

(a+ b) + c = a+ (b+ c).

Demonstração:
Sejam a, b, c ∈ Zm. Então
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(a+ b) + c = a+ b+ c - definição da soma em Zm
= (a+ b) + c - definição da soma em Zm;

= a+ (b+ c) - pela associatividade da soma em Z;

= a+ b+ c - definição da soma em Zm;

= a+ (b+ c) - definição da soma em Zm.

Portanto, (a+ b) + c = a+ (b+ c). �

(A2) Comutatividade
a+ b = b+ a,

para quaisquer a, b ∈ Zm.

(A3) Existência do elemento neutro:
A classe 0 é o elemento neutro da adição, isto é, para todo a ∈ Zm, tem-se:

a+ 0 = a.

(A4) Existência do oposto:
Para todo a ∈ Zm existe b ∈ Zm, tal que:

a+ b = 0.

O elemento b é chamado o oposto (ou inverso aditivo) de a e será denotado
por −a.

Propriedades da Multiplicação:

(M1) Associatividade:

(a.b).c = a.(b.c),

para quaisquer a, b, c ∈ Zm;

(M2) Comutatividade:
A multiplicação é comutativa, isto é, para quaisquer a, b ∈ Zm tem-se:

a.b = b.a.

(M2) Existência do elemento unidade:
A classe 1 é o elemento neutro da multiplicação, - chamado elemento unidade
- isto é, para todo a ∈ Zm:

a.1 = a.

Além disso, vale a propriedade distributiva que relaciona as duas operações.
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(D1) Distributividade da multiplicação em relação à adição:

a.(b+ c) = a.b+ a.c,

para quaisquer a, b e c ∈ Zm.

Por possuir essas oito propriedades dizemos que (Zm,+, .) é um anel co-
mutativo com elemento unidade.

X Exerćıcios 28.

(01) Faça a demonstração de todas as propriedades acima.
(02) Determine o oposto de 3 em Z5;
Solução:
Como 3 + 2 = 5 = 0, então −3 = 2. �

(03) Determine o oposto de 3 em Z8.
Solução:
Como 3 + 5 = 8 = 0⇒ −3 = 5. �

(04) Determine um representate r do oposto de 16 ∈ Z10, com 0 ≤ r ≤ 9.
Solução:
Como 16 + −16 = 0 ⇒ −(16) = (−16), ou seja, −16 é um representante
da classe oposta. Para encontrar um representante desta classe no inter-
valo pedido, basta dividir -16 por 10 e tomar o resto como representante:
−16 = 10.(−2) + 4⇒ −(16) = (−16) = 4. �

(05) Dado a ∈ Zm, descreva um procedimento para encontrar o represen-
tante r classe oposta −a, com 0 ≤ r ≤ m− 1.
Solução:
Como a + (−a) = a− a = 0, então dada a ∈ Zm, −a é sempre um represen-
tante da classe oposta−a. Para encontrar um representante r desta classe, com
0 ≤ r ≤ m− 1, procedemos como descrito no exerćıcio anterior, dividindo −a
por m e tomando a classe determinadada pelo resto. Por exemplo, claramente
temos que −20 é um representante da classe −20 ∈ Z8. Para encontrar um re-
spresentante desta classe no intervalo pedido, dividindos -20 por 8 e tomamos
o resto: −20 = −3.8+4⇒ −20 = −20 = 4 e de fato, 20+4 = 24 = 0, em Z8.�

(06) Resolva em Z5 as equações:
(a) 2 + x = 3.4;
Solução:
2 + x = 3.4⇒ 2 + x = 12 = 2⇒ 3 + (2 + x) = 3 + 2⇒ x = 0. �
(b) 2.x = 3 + 4.
Solução:
2.x = 3 + 4⇒ 2.x = 2⇒ 3.2.x = 3.2⇒ 6.x = 6 = 1⇒ x = 1. �
(07) Resolva em Z7 as equações:
(a) 2 + x = 3.4;
(b) 2.x = 3 + 4.
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7 Elementos Inverśıveis em Zm
Definição 8. Um elemento a ∈ Zm diz-se inverśıvel (para a multiplicação) se
existe b ∈ Zm, tal que a.b = 1.

O elemento b, citado na definição acima, é chamado o inverso (multiplica-
tivo) de a e denotado por (a)−1.

Exemplos:
(01) 3 é inverśıvel em Z5 tendo como inverso 2, pois 3.2 = 1;
(02) 3 é inverśıvel em Z8, pois 3.3 = 1;
(03) 4 não é inverśıvel em Z6, pois 4.b 6= 1, qualquer que seja b ∈ Z6.

A próxima proposição identifica os elementos não nulos que são inverśıveis
em Zm.

Proposição 16. Um elemento 0 6= a ∈ Zm é inverśıvel se, e somente se,
mdc(a,m) = 1.

Demonstração:
(⇒) mdc(a,m) = 1⇒ a é inverśıvel:
mdc(a,m) = 1⇒ existem inteiros r e s, tais que:
ar +ms = 1⇒ ar +ms = 1⇒ a.r +m.s = 1⇒ a.r + 0.s = 1⇒ a.r = 1
⇒ r é o inverso de a, o qual é portanto inverśıvel.

(⇐) a é inverśıvel ⇒ mdc(a,m) = 1:
a é inverśıvel ⇒ existe b ∈ Zm tal que:
a.b = 1 ⇒ ab = 1 ⇒ ab ≡ 1(modm) ⇒ m | (ab − 1) ⇒ existe k ∈ Z, tal que
ab− 1 = mk ⇒ ab+m(−k) = 1⇒ mdc(a,m) = 1. �

Se p é um primo positivo, para todo 0 < a < p, tem-se que mdc(a, p), então
temos o corolário abaixo.

Corolário 9. Seja p um número primo positivo. Então todos os elementos
não nulos de Zp são inverśıveis.

Exemplos:
(01) Em Z8 = {0, 1, ..., 7}, a classe 5 é inverśıvel, pois mdc(5, 8) = 1. Para
encontrar o inverso de 5, determinamos inteiros r e s, tais que 5r + 8s = 1,
sendo então (5)−1 = r. Como

5.(−3) + 8.2 = 1⇒ 5.(−3) + 8.2 = 1⇒ 5.(−3) = 1 e como (−3) = 5,

segue (5)−1 = 5.

(02) Como mdc(4, 8) = 2, em Z8 o elemento 4 não é inverśıvel, ou seja, não
existe b ∈ Z8, tal que 4.b = 1, como você pode verificar.
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X Exerćıcios 29.

(01) Determine o inverso de cada uma das classses abaixo, caso exista. Não
existindo, justifique:
(a) 5 ∈ Z14;
Solução:
Como mdc(5, 14) = 1, 5 é inverśıvel. Da identidade, 5.3 + 14.(−1) = 1
⇒ 5.3 = 14.(−1) = 1⇒ 5.3 = 1. Assim, (5)−1 = 3. �
(b) 6 ∈ Z14;
Solução:
Como mdc(6, 14) = 2, 6 não é inverśıvel. �
(c) 8 ∈ Z12;
(d) 8 ∈ Z9;
(e) 8 ∈ Z17.

8 Divisores de Zero em Zm

Definição 9. Um elemento não nulo a ∈ Zm diz-se um divisor não nulo de
zero em Zm, se existe um b ∈ Zm, também não nulo, tal que

a.b = 0.

Exemplos:
(01) 2 e 3 são divisores não nulos de zero em Z6, pois ambos são não nulos e
2.3 = 6 = 0;
(02) 6 e 8 são divisores não nulos de zero em Z12, pois 6.8 = 48 = 0.
(03) 3 não é um divisor de zero em Z5, pois 3.b 6= 0, para qualquer 0 6= b ∈ Zm.
(Verifique)

Vejamos como identificar se 0 6= a ∈ Zm é um divisor de zero.

Pela proposição 16, se 0 6= a ∈ Zm não é inverśıvel, mdc(a,m) = d > 1.
Como d|m e d|a, m

d
e a
d

são números inteiro e 1 < m
d
< m. Portanto, a classe

(m
d

) ∈ Zm é não nula e

a.(
m

d
) = m.(

a

d
) = 0.

Logo, a é um divisor de zero.

Exemplos:
(01) Como mdc(6, 14) 6= 2, segue que 6 ∈ Z14 não é inverśıvel, logo será um
divisor de zero, ou seja, existe 0 6= b ∈ Z14, tal que 6.b = 0. Para encontrar
um respresentante para b, tomamos b = 14

mdc(6,14)
= 7. Assim, 6.7 = 42 = 0.

(02) Como mdc(12, 18) = 6, então 12 ∈ Z18 não é inverśıvel, sendo portanto um
divisor de zero. De fato, tomando b = 18

mdc(12,18)
= 3, temos que 12.3 = 36 = 0.
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Por outro lado, suponha a inverśıvel, então existe (a)−1 ∈ Zm, tal que
a.(a)−1 = 1. Assim, se b ∈ Zm é tal que:

a.b = 0⇒ (a)−1.(ab) = (a)−1.0⇒ ((a)−1.a).b = 0⇒ 1.b = 0⇒ b = 0.

Portanto, a não inversibilidade de a é uma condição necessária e suficiente
para que este seja um divisor de zero. Enunciamos esse resultado na proposição
a seguir.

Proposição 17. Seja 0 6= a ∈ Zm. Então

a é um divisor de zero ⇔ a não é inverśıvel.

Corolário 10. Zm é sem divisores não nulos de zero se, e somente se, m é
um número primo.

Demonstração:
Se m é primo, pelo Corolário 9, todo 0 6= a ∈ Zm é inverśıvel e portanto não
é divisor de zero. Se m é composto, então existem inteiros 1 < r, s < m, tais
que r.s = m. Assim, r e s são não nulos e r.s = m = 0. Logo r ( e também s)
é um divisor não nulo de zero. �

X Exerćıcios 30.
(01) Determine todos os elementos inverśıveis e todos os divisores não nulos
de zero dos seguintes anéis:
(a) Z6;
Solução:
a ∈ Z6 é inverśıvel se, e só se, mdc(a, 6) = 1. Assim são inverśıveis 1 e 5 e são
divisores não nulos de zeros todas as demais classes não nulas: 2, 3 e 4. �
(b) Z9;
Solução:
Inverśıveis: {1, 2, 4, 5, 7, 8} e os divisores não nulos de zero são {3, 6}. �
(c) Z12;
(d) Z15;
(02) Dê exemplos, caso existam, de elementos não nulos a, b e c ∈ Z20, para
os quais temos a.c = b.c, porém a 6= b.
Solução:
Tomando a = 7, b = 17 e c = 6, temos que a.c = b.c = 2, embora 7 6= 17, em
Z20. �
(03) Dê exemplos, caso existam, de elementos não nulos a, b e c ∈ Z19, para
os quais temos a.c = b.c, porém a 6= b.
Solução:
Suponha a, b, c ∈ Z19, para os quais temos a.c = b.c ⇒ (a − b).c = 0. Como
todo elemento de Z19 é inverśıvel (Corolário 9), então c é inverśıvel, logo existe
(c)−1 ∈ Z19, tal que c.(c)−1 = 1. Assim, (a − b).c(c)−1 = 0.(c)−1 ⇒ a = b.
Portanto, em Z19, tais elementos não existem. �
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Lista de Exerćıcios 11.

(01) Determine as classes 0, 1 e −5, em módulo m, para:
(a) m = 4;
(b) m = 6;
(c) m = 10.

(02) Responda e justifique:
(a) 23 = 77, em módulo 8?
(b) 23 = 77, em módulo 9?
(c) Para que valores de m > 1, temos −14 = −6, em módulo m?
(c) Para que valores de m > 1, temos 83 = 68, em módulo m?

(03) Determine Zm e descreva as classes 0, 4 e 20 ∈ Zm, para:
(a) m = 8;
(b) m = 10;
(c) m = 13.

(04) Determine o representante r da classe a ∈ Zm, dada abaixo, com
0 ≤ r < m, sendo:
(a) a = 33 e m = 12;
(b) a = 33 e m = 23;
(c) a = −22 e m = 7;
(d) a = −22 e m = 15;
(e) a = 41 e m = 19.

(05) Efetue as operações abaixo:
(a) Em Z7, 4 + 4 e 4.4;
(c) Em Z9, 5 + 8 e 5.8;
(e) Em Z13, 7 + 9 e 7.9.

(06) Construa as tábuas da adição e multiplicação para Z7 e Z8.

(07) Determine um representate r do oposto de a ∈ Zm, com 0 ≤ r < m,
para a e m abaixo:
(a) a = 5, m = 13;
(b) a = 12, m = 33;
(c) a = −8, m = 4;
(d) a = 58, m = 7.

(08) Resolva em Z8 as equações:
(a) 2 + x = 4.5;
(b) 3.x = 4 +−13.

(09) Resolva em Z13 as equações:
(a) −5 + 2.x = 7.−3;
(b) −6 + 4.x = −10 + 6.
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(10) Determine o inverso multiplicativo de cada uma das classes abaixo, caso
exista. Não existindo, justifique:
(a) 7 ∈ Z13;
(b) 7 ∈ Z20;
(c) 12 ∈ Z13;
(d) 12 ∈ Z26.

(11) Em Z20, determine:
(a) o menor representante positivo das classes 34 e −51
(b) Todos os divisores não nulos de zero.

(12) Mostre que se a ∈ Zm é inverśıvel, então seu inverso é único.

(13) Em Z18 determine:
(a) o oposto de 4;
(b) o oposto de −13;
(c) o inverso multiplicativo de 13, caso exista;
(d) o inverso multiplicativo de 8, caso exista;
(e) um elemento não nulo b, tal que 14.b = 0.

(14) (ENADE-2008) Em Z12, determine:
(a) todos divisores não nulos de zero;
(b) todos os elementos inverśıveis.

(15) Verifique se 3640 é inverśıvel em Z7297. Caso afirmativo, calcule seu in-
verso.

(16) Determinar todos os divisores não nulos de zero e os elementos inverśıveis
de Z26.

(17) Sejam a, b e c elementos de Zm, tais que a.c = b.c. Mostre que se
mdc(c,m) = 1, então a = b.

(18) Sejam p um primo positivo e a um elemento de Zp. Mostre que ap = a.

(19) Seja p um número primo positivo. Determine em Zp as soluções da
equação x2 = 1.

(20) Seja p ≥ 5 um número primo. Resolver em Zp a equação xp = 4.
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Respostas da Lista de Exerćıcios 11
(01.a) 0 = {4k + 0 | k ∈ Z} = {...,−12,−8,−4, 0, 4, 8, 12, ...};
1 = {4k + 1 | k ∈ Z} = {...,−11,−7,−3, 1, 5, 9, 13, ...};
−5 = {4k + (−5) | k ∈ Z} = {4k′ + 3 | k′ ∈ Z} = {...,−9,−5,−1, 3, 7, 11, ...};
(01.b) 0 = {6k + 0 | k ∈ Z} = {...,−18,−12,−6, 0, 6, 12, 18, ...};
1 = {6k + 1 | k ∈ Z} = {...,−17,−11,−5, 1, 7, 13, ...};
−5 = {6k + (−5) | k ∈ Z} = {6k′ + 1 | k′ ∈ Z} = 1;
(01.c) 0 = {10k + 0 | k ∈ Z} = {−30,−20,−10, 0, 10, 20, 30, ...};
1 = {10k + 1 | k ∈ Z} = {−29,−19,−9, 1, 11, 21, 31, ...};
−5 = {10k + (−5) | k ∈ Z} = {10k′ + 5 | k′ ∈ Z} = {−25,−15,−5, 5, 15, 25, ...};
(02.a) 8 - (23− 77)⇒ 23 6≡ 77(mod8)⇒ 23 6= 77 em módulo 8.
(02.a) 9 | (23− 77)⇒ 23 ≡ 77(mod9)⇒ 23 = 77 em módulo 9.
(02.c) −14 = −6, em módulo m⇔ −14 ≡ (−6)(modm)⇔ m|(−14 + 6)⇔ m = 2, 4 ou 8.
(02.d) 83 = 68, em módulo m⇔ 83 ≡ 68(modm)⇔ m|(83− 68)⇔ m = 3, 5 ou 15.
(03.a) Z8 = {0, 1, 2, ..., 7}, sendo
0 = {8k+0 | k ∈ Z} = {...,−16,−8, 0, 8, 16, ...}; 4 = {8k+4 | k ∈ Z} = {...,−12,−4, 4, 12, 20, ...};
Como 20 ≡ 4(mod8)⇒ 20 = 4;
(03.b) Z10 = {0, 1, 2, ..., 9}, sendo
0 = {10k+0 | k ∈ Z} = {...,−20,−10, 0, 10, 20, ...}; 4 = {10k+4 | k ∈ Z} = {...,−16,−6, 4, 14, 24, ...};
Como 20 ≡ 0(mod10)⇒ 20 = 0;
(03.c) Z13 = {0, 1, 2, ..., 12}, sendo
0 = {13k+0 | k ∈ Z} = {...,−26,−13, 0, 13, 26, ...}; 4 = {13k+4 | k ∈ Z} = {...,−22,−9, 4, 17, 30, ...};
Como 20 ≡ 7(mod13)⇒ 20 = 7 = {13k + 7 | k ∈ Z} = {...,−19,−6, 7, 20, 33, ...}.
(04.a) Como 33 = 12.2 + 9⇒ r = 9;
(04.b) 33 = 23.1 + 10⇒ r = 10;
(04.c) −22 = 7.(−4) + 6⇒ r = 6;
(04.d) −22 = 15.(−2) + 8⇒ r = 8;
(04.d) 41 = 19.2 + 3⇒ r = 3.
(05.a) 4 + 4 = 4 + 4 = 8 = 1; 4.4 = 4.4 = 16 = 2;
(05.b) 5 + 8 = 4; 5.8 = 4;
(05.c) 7 + 9 = 3; 7.9 = 11.
(06) Tábuas de Z7

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

. 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 2
4 0 4 1 5 2 4 3
5 0 5 3 1 6 3 2
6 0 6 2 4 3 2 1

(07.a) −(5) = 8;

(07.b) −(12) = 21;

(07.c) −(−8) = 8;

(07.d) −(58) = −(2) = 5;

(08.a) x = 2; (8.b) x = 3

(09.a) x = 5; (09.b) x = 7

(10.a) (7)−1 = 2;

(10.b) (7)−1 = 3;

(10.c) (12)−1 = 12;

(10.d) como mdc(12, 26) = 2, 12 não é inverśıvel em módulo 26;

(11.a) 34 = 14 e −51 = 9

(11.b) divisores não nulos de zero: {2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18}.
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(12) Suponha a inverśıvel com inversos b, c. Então, a.b = b.a = 1 e a.c = c.a = 1. Dáı,

b = b.1 = b.(a.c) = (b.a).c = 1.c = c.

(13.a) −(4) = 14;

(13.b) −13 = 5;

(13.c) (13)−1 = 7;

(13.d) como mdc(8, 18) = 2, 8 não é inverśıvel em módulo 18;

(13.e) 14.9 = 0.

(14.a) Os divisores não nulos de zero são: 2, 3, 4, 6, 8, 9 e 10;

(14.b) os elementos inverśıveis são 1, 5, 7 e 11.

(15) (3640)−1 = 3863;

(16) Elementos inverśıveis: {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}, divisores não nulos de zero:

{2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24} (17) a.c = b.c⇒ ac = bc⇒ ac ≡ bc(modm). Como

mdc(c,m) = 1, pela lei do cancelamento na congruência, a ≡ b(modm)⇒ a = b.

(18) Como p é primo, pelo Corolário 6, para todo inteiro a, tem-se ap ≡ a(modp)⇒ ap ≡ a.

(19) Seja a ∈ Zp solução desta equação, então a2 ≡ 1⇒ a2 ≡ 1(modp)⇒ p|(a2−1)⇒ a = 1

ou a = p− 1⇒ x = 1 ou x = p− 1.

(20) Seja a ∈ Zp uma solução da equação, então ap = 4 ⇒ ap ≡ 4(modm). Por outro

lado, como p é primo, pelo Corolario 6, ap ≡ a(modp), para todo a ∈ Z. Pela simetria e

transsitividade, temos a ≡ 4(modp)⇒ a = 4.



Caṕıtulo 12

Equações Diofantinas Lineares

1 Introdução

Um jogo eletrônico tem o seguinte funcionamento: A máquina exibe um
número inteiro positivo, que corresponde a pontuação exata que o jogador
deverá marcar para vencer a partida. Os pontos são marcados cada vez que
o jogador abate um invasor, que o fica desafiando na tela. Existem dois tipos
de invasores: os marcianos (na cor vermelha), valendo cada um 22 pontos e os
jupiterianos (na cor verde), com o valor individual de 18 pontos. Suponha que
você vai participar deste jogo e a máquina lhe exibe o número 540. De quantas
maneiras você pode vencer o jogo? Quantos invasores de cada cor você deverá
abater?

Em busca da resposta, vamos formalizar o problema. O que queremos
saber?
- O número de marcianos e o número de jupiterianos que devem ser abatidos.
Denotaremos, respectivamente por x e y essas quantidades. Relacionando as
variáveis temos a equação abaixo:

22x+ 18y = 540.

A questão agora é saber se essa equação tem solução inteira, e se sim, como
encontrá-la?

A técnica para encontrar o conjunto solução de tais equações - chamadas
Equações Diofantinas Lineares - é o que estudaremos nesta aula.

2 Definição
Tais equações re-

cebem este nome

em homenagem

a Diophanto

de Alexandria

(≈ 250 d.c.).

Definição 10. Chama-se Equação Diofantina Linear nas incognitas x e
y, a toda equação da forma

ax+ by = c (12.1)

onde a, b e c são inteiros fixos, com ab 6= 0.

128



Teoria dos Números 129

X Exerćıcios 31.

(01) Das equações abaixo, quais estão de acordo com a Definição 10, ou seja,
são equações diofantinas lineares com duas incognitas? Justifique.
(a) 6x+ 8y = 76;
(b) 4x+ 10y = 16;
(c) 2x+ 4y = 7;
(d) 3x2 + 5y = 10;
(e) 5x+ 1

2
y = 14;

(f) 3x+ 0y = 12;
(g) 4x+ 8y = 3

5
;

(h) 2x+ 5y = −47.

(02) Dê exemplo de duas equações diofantinas lineares com duas incognitas.

3 Solução da Equação Diofantina

Todo par de inteiros (x0, y0) para o qual

ax0 + by0 = c,

diz-se uma solução da equação (12.1).

Exemplos:
(a) O par (−38, 38) é uma solução da equação diofantina linear

6x+ 8y = 76,

pois
6.(−38) + 8.38 = 76.

(b) O par (9,−2) é um solução da equação

4x+ 10y = 16,

pois
4.9 + 10.(−2) = 16.

(c) A equação diofantina linear

2x+ 4y = 7

não apresenta solução inteira, pois para qualquer par de inteiros (x0, y0),

2x0 + 4y0 6= 7

uma vez que à esquerda da equação teremos um número par e à direita, um
número ı́mpar.

Obs: Doravante, sempre que falarmos de solução de uma equação diofantina,
fica subentendido que estamos falando de soluções inteiras.
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X Exerćıcios 32.

(01) Dê uma solução, caso exista, para cada uma das equações abaixo:
(a) 2x+ 3y = 7;
(b) 8x+ 6y = 61;
(c) 5x+ 7y = 33;
(d) 12x+ 16x = 30.

(02) Dê uma solução para cada um dos exemplos dados por você na questão
02, do exerćıcio anterior.

4 Condição de Existência da Solução

As perguntas que queremos responder são:
- Como saber se a equação 22x+ 18y = 540 tem solução?
- Se sim, como encontrá-las?

Relembrando, uma solução da equação diofantia

ax+ by = c (12.2)

é qualquer par de inteiros (x0, y0), tal que

ax0 + by0 = c.

No caso particular, em que o termo independente c = d, onde d = mdc(a, b),
a equação vai ter solução, pois, como já vimos, existem inteiros r e s, tais que

ar + bs = d. (12.3)

- É posśıvel a partir da solução dada em (12.3) obter uma solução da
equação (12.2)?

Vejamos. Se d|c, então existe k ∈ Z, tal que c = dk. Neste caso, multipli-
cando a equação (12.3) por k obtemos:

a(rk) + b(sk) = c.

Logo, o par de inteiros (rk, sk) é uma solução da equação original (12.2).
Portanto, o mdc(a, b) ser um divisor do termo constante c garante a existência
de pelo menos uma solução para a equação. Dizemos que essa é uma condição
suficiente para a existência de solução. Será ela também necessária, isto é, se
mdc(a, b) - c, a equação não terá solução?

Vamos supor que d - c, porém a equação (12.2) tem solução. Então existem
inteiros x0, y0, tais que

ax0 + by0 = c

Colocando d em evidência nesta equação:

d(
a

d
x0 +

b

d
y0) = c
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Como d é um divisor comum de a e b, a
d

e b
d

são números inteiros. Assim,
(a
d
x0 + b

d
y0) ∈ Z, e portanto, d|c, contrariando nossa suposição inicial.

Podemos então enunciar o seguinte resultado:

A equação diofantina linear

ax+ by = c

tem solução se, e somente se, mdc(a, b) divide c.

X Exerćıcios 33.

(01) Verifique se as equações diofantinas abaixo tem solução. Caso afirmativo,
encontre uma solução particular da equação.
(a) 22x+ 18y = 540;
Solução:
Como mdc(22, 18) = 2 e 2|540, esta equação tem solução. Para encontrar uma
solução particular, incialmente procuramos inteiros r e s, tais que 22r+18s = 2.
Usando o algoritmo dado no Caṕıtulo 5, obtemos:

22(−4) + 18.5 = 2.

Agora multiplicamos esta equação por 540
2

= 270 (isto é, por c
mdc(a,b)

):

22.(−1080) + 18.(1350) = 540

Portanto, o par (−1080, 1350) é uma solução da equação dada. �

(02) 24x+ 14y = 36;
Solução:
Como mdc(24, 14) = 2 e 2|36 a equação tem solução. No Caṕıtulo 5, vimos
que

24.3 + 14.(−5) = 2.

Multiplicando esta equação por 36
2

= 18 obtemos:

24.54 + 14.(−90) = 36.

Portanto, (54,−90) é uma solução particular da equação. �

(03) −124x+ 52y = −20
Solução:
Como mdc(−124, 52) = 4 e 4| − 20 a equação tem solução. Como já calculado
anteriormente:

(−124).5 + 52.12 = 4.

Multiplicando esta equação por −5:

(−124).(−25) + 52.(−60) = −20.
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Portanto, (−25,−60) é uma solução particular dessa equaçao. �

(04) 40x+ 56y = 34.
Solução:
Como mdc(40, 56) = 8 e 8 - 34, essa equação não tem solução inteira. �

5 Conjunto Solução da Equação Diofantina

Na seção anterior, aprendemos a identificar quando uma equação diofantina
linear tem solução, e no caso da existência, como encontrar uma solução partic-
ular. Veremos agora como encontrar o conjunto de todas as soluções posśıveis,
ou seja, o conjunto solução da equação.

Proposição 18. Sejam
ax+ by = c

uma equação diofantina linear e d = mdc(a, b), com d | c. Se (x0, y0) ∈ Z2 éZ2 = Z× Z.

uma solução particular, então o conjunto de todas as soluções dessa equação
é dado por:

S = {(x0 +
b

d
t, y0 −

a

d
t) | t ∈ Z}.

Demonstração:
Por definição, o conjunto solução da equação diofantina ax + by = c é dado
por:

S = {(u, v) ∈ Z2 | au+ bv = c}.

Considere o conjunto X := {(x0 + b
d
t, y0 − a

d
t) | t ∈ Z}. Vamos mostrar que

X = S. De fato,

(i) X ⊂ S.
Seja (x0 + b

d
t, y0 − a

d
t) ∈ X, então

a(x0 +
b

d
t) + b(y0 −

a

d
t) = (ax0 + by0) + (

ab

d
− ab

d
)t = c+ 0 = c.

Logo, (x0 + b
d
t, y0 − a

d
r) ∈ S ⇒ X ⊂ S.

(ii) S ⊂ X.
Seja (u, v) ∈ S. Como (x0, y0) é uma solução particular, então

au+ bv = c = ax0 + by0 ⇒ a(u− x0) = b(y0 − v)⇒ a

d
(u− x0) =

b

d
(y0 − v).

Como a
d

é um inteiro, isto implica que a
d
| b
d
(y0 − v). Porém, mdc(a

d
, b
d
) = 1,

logo, segue do Teorema 7, que a
d
| (y0 − v), então existe t ∈ Z, tal que:

y0 − v =
a

d
t⇒ v = y0 −

a

d
t.
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Substituindo este valor na identidade a(u−x0) = b(y0−v) obtemos u = x0+ b
d
t.

Assim (u, v) ∈ X ⇒ S ⊂ X.

De (i) e (ii) segue que S = {(x0 + b
d
t, y0 − a

d
t) | t ∈ Z}. �

X Exerćıcios 34.

(01) Encontre o conjunto solução de cada uma das equações diofantinas abaixo:
(a) 22x+ 18y = 540;
Solução:
Já vimos mdc(22, 18) = 2 e que x0 = −1080 e y0 = 1350 é uma solução
particular da equação. Portanto, o conjunto solução é dado por:

S = {(−1080 +
18

2
t, 1350− 22

2
t) | t ∈ Z} = {(−1080 + 9t, 1350− 11t) | t ∈ Z}.

�

(02) 24x+ 14y = 36;
Solução:
mdc(24, 14) = 2 e x0 = 54 e y0 = −90 é uma solução particular da equação.
Logo, o conjunto solução é dado por:

S = {(54 + 7t,−90− 12t) | t ∈ Z}.

�

(03) −124x+ 52y = −20
Solução:
Como mdc(−124, 52) = 4, o par (−25,−60) é uma solução particular da
equaçao, então

S = {(−25 + 13t,−60− 31t) | t ∈ Z}.
�

(04) 40x+ 56y = 34.
Solução:
Como mdc(40, 56) = 8 - 34 esta equação não tem solução alguma, logo seu
conjunto solução é o conjunto vazio, isto é, S = ∅. �

(05) Encontre todas as soluções para o problema proposto no ińıcio da aula.
Solução:
O conjunto solução da equação 22x+ 18y = 540 é dado por:

S = {(−1080 + 9t, 1350− 11t) | t ∈ Z}.

Para o nosso problema particular, nem todas as soluções são válidas, pois
como x e y representam as quantidades de invasores, servem somente soluções
inteiras não negativas. Assim, devemos impor a condição:

−1080 + 9t ≥ 0 e 1350− 11t ≥ 0
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Resolvendo essas inequações encontramos:

t ≥ 120 e t ≤ 122, 72

Como t ∈ Z, podemos ter t = 120, 121 ou 122. Substituindo esses valores em
(−1080+9t, 1350−11t) obtemos as seguintes soluções: (0, 30), (9, 19) e (18, 8).
Assim, para ganhar o jogo deve-se abater 30 jupiterianos e nenhum marciano;
ou 9 marcianos e 19 jupterianos ou ainda 18 marcianos e 8 jupterianos. �
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Lista de Exerćıcios 12.

(01) Verifique se as equações diofantinas abaixo tem solução. Caso afirmativo,
use o algoritmo dado no Caṕıtulo 5, para encontrar uma solução particular da
equação.
(a) 2x+ 3y = 9;
(b) 3x+ 5y = 47;
(c) 12x+ 45y = 18;
(d) 24x+ 14y = 8;
(e) 56x+ 72y = 40;
(f) 60x+ 72y = 16;
(g) 47x− 29y = 15.

(02) Determine o conjunto solução de cada uma das equações diofantinas dadas
na questão anterior.

(03) Determine todas as soluções inteiras positivas das equações abaixo:
(a) 54x+ 21y = 906;
(b) 182x− 86y = 166.

(04) Um caixa eletrônico tem apenas notas de R$10, 00 e R$ 50, 00.
(a) De quantas maneiras este caixa pode liberar um saque de R$ 530, 00?
(b) Que valores podem ser sacados neste caixa?

(05) De quantos modos podemos decompor o número primo 751 como uma
soma de dois inteiros positivos, sendo um deles múltiplo de 5 e o outro múltiplo
de 7?

(06) Determine todos os múltiplos negativos de 8 e 17, cuja soma é igual a
−300.

(07) Expresse o número 277 como soma de dois inteiros positivos, de modo
que o primeiro deixa resto 2 na divisão por 12 e o segundo, deixa resto 5 na
divisão por 18.

(08) Determinado produto é vendido em recipientes de 7 e 9 litros. De quantas
e quais maneiras se pode comprar 120 litros deste produto?

(09) Quanto um professor dividiu os n alunos de sua turma em grupos de
7, sobraram 3 alunos e quando os dividiu em grupos de 6, sobraram 5. Quan-
tos são os alunos dessa turma, sabendo que 50 ≤ n ≤ 80?

(10) Isabel deverá tomar duas medicações A e B, no total de 60 comprimi-
dos. Na primeira dose, A e B foram tomados simultaneamnte. A partir dáı, a
medição A deverá ser tomada de 6 em 6 horas e B, a cada intervalo de 9 horas.
Quantos comprimidos de cada medicamento ela deverá tomar, de modo que o
intervalo de tempo entre as doses finais dos dois remédios seja a menor posśıvel?
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Respostas da Lista de Exerćıcios 12

(01.a) x0 = −36 e y0 = 27

(01.b) x0 = 94 e y0 = −47

(01.c) x0 = 24 e y0 = −6

(01.d) x0 = 12 e y0 = −20

(01.e) x0 = 20 e y0 = −15

(01.f) A equação não tem solução

(01.g) x0 = −120 e y0 = −195

(02.a) S = {(−36 + 3t, 27− 2t) | t ∈ Z}
(02.b) S = {(94 + 5t,−47− 3t) | t ∈ Z}
(02.c) S = {(24 + 15t,−6− 4t) | t ∈ Z}
(02.d) S = {(12 + 7t,−20− 12t) | t ∈ Z}
(02.e) S = {(20 + 9t,−15− 7t) | t ∈ Z}
(02.f) S = ∅
(02.g) S = {(−120− 29t,−195− 47t) | t ∈ Z}
(03.a) {(2, 38), (9, 20), (16, 2)}
(03.b) {(8, 15), (51, 106), (94, 197)}
(04.a) Representando por x o número de notas de 10 reais e por y o número de notas de 50

reais, os valores posśıveis para o par (x, y) são: (3, 10), (8, 9), (13, 8), (18, 7), (23, 6), (3, 10),

(28, 5), (33, 4), (38, 3), (43, 2), (48, 1).

(04.b) Apenas valores que são múltiplos de 10.

(05) Podemos decompor como 751 = (11265 + 35t) + (−10.514 − 35t),−321 ≤ t ≤ −301.

Portanto, existem 21 formas de escrever a soma pedida.

(06) (−232,−68) e (−96,−204).

(07) 277 = (−538 + 36t) + (815− 36t), com 15 ≤ t ≤ 22.

(08) De duas maneiras: 12 recipientes de 7 litros e 4 de 9 livros ou 3 recipientes de 7 litros

e 11 de 9.

(09) n = 59

(10) 42 de A e 18 de B.
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Congruência Linear

1 Introdução

- Certo dia um professor dividiu os n alunos da sua turma em grupos, ficando
exatamente 6 alunos em cada grupo. Na aula seguinte usou a mesma estratégia,
só que desta vez colocou 8 pessoas em cada grupo e sobraram 4. Sabendo que
o número n de alunos dessa turma está no intervalo, 50 ≤ n ≤ 100, quais os
valores posśıveis para n?

Pensemos juntos na solução desse problema. Seja n o número de alunos
da turma. Se ao dividir a turma em grupos de 6, a divisão foi exata, n é um
múltiplo de 6, isto é,

n = 6x, x ∈ Z.

Por outro lado, ao dividir n por 8 restaram 4, então

n ≡ 4(mod8).

Substituindo n por 6x na congruência acima obtemos 6x ≡ 4(mod8). Portanto,
para encontrar os posśıveis valores de n, devemos resolver em Z a equação:

6x ≡ 4(mod8).

Definição 11. Seja m > 1 um inteiro. Chamamos congruência linear a
todo equação da forma:

ax ≡ b(modm) (13.1)

onde a e b são inteiros fixos.

Exemplos:
(01) 6x ≡ 4(mod8);
(02) 3x ≡ 5(mod8);
(03) 2x ≡ 3(mod4);
(04) 18x ≡ 30(mod42);
(05) x ≡ −5(mod7).

137
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2 Condição de Existência da Solução

Todo inteiro x0, tal que
ax0 ≡ b(modm)

é chamado uma solução da congruência linear ax ≡ b(modm).

A questão imediata é saber se toda congruência linear tem solução.

Se a congruência linear ax ≡ b(modm) tem solução, então existe x0 ∈ Z,
tal que

ax0 ≡ b(modm)

⇓

m|(ax0 − b)

Consequentemente, existe y0 ∈ Z, tal que:

ax0 − b = my0 ⇒ ax0 + (−m)y0 = b.

Logo, (x0, y0) é uma solução da equação diofantina linear ax + (−m)y = b.
Conclúımos assim, que se a congruência linear ax ≡ b(modm) tem solução,
então a equação diofantina ax+ (−m)y = b também o tem.

Reciprocamente, se a equação diofantina ax + (−m)y = b tem solução,
então existe um par de inteiros (x0, y0), tal que:

ax0 + (−m)y0 = b⇒ ax0 − b = my0 ⇒ m|(ax0 − b)⇒ ax0 ≡ b(modm)

⇓

x0 é solução da congruência linear ax ≡ b(modm).

Portanto temos que:

ax ≡ b(modm) tem solução se, e somente se, ax+ (−m)y = b tem solução.

Por sua vez,

ax+ (−m)y = b tem solução se, e somente se, mdc(a,−m) divide b.

Juntando estes dois resultado e o fato de mdc(a,−m) = mdc(a,m), podemos
afirmar:

A congruência linear

ax ≡ b(modm)

tem solução se, e somente se, mdc(a,m) divide b.

Dizemos que ax + (−m)y = b é a equação diofantina associada a con-
gruência linear ax ≡ b(modm).
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X Exerćıcios 35.

(01) Verifique quais das congruências abaixo tem solução:
(a) 6x ≡ 4(mod8);
Solução:
Neste caso, a = 6, b = 4 e m = 8. Como mdc(a,m) = mdc(6, 8) = 2 e 2|4, a
congruência tem solução. �

(b) 8x ≡ 24(mod12);
Solução:
Aqui, a = 8, b = 24 e m = 12. Como mdc(8, 12) = 4 e 4|24, a congruência
tem solução. �

(c) 4x ≡ 13(mod20).
Solução:
Como mdc(4, 20) = 4 e 4 - 13, a congruência não tem solução. �

3 Solução da Congruência Linear

Já vimos que a congruência linear

ax ≡ b(modm)

tem solução se, e só se, a equação diofantina

ax+ (−m)y = b

o tiver. Para encontrar uma solução particular x0 da primeira, devemos então
encontrar uma solução da segunda. Relembremos como encontrar tal solução.

Inicialmente escrevemos d = mdc(a,m) como soma de múltiplos inteiros
de a e m, isto é, encontramos inteiros r e s, tais que:

ar +ms = d.

Em seguida multiplicamos esta equação pelo inteiro b
d
:

a(r
b

d
) +m(s

b

d
) = d

b

d

ou ainda,

a(r
b

d
) + (−m)(−s b

d
) = b.

Logo, (r b
d
,−s b

d
) é uma solução da equação diofantina linear ax+ (−m)y = b e

consequentemente x0 = r b
d

é uma solução da congruência ax ≡ b(modm).
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X Exerćıcios 36.
(01) Encontre uma solução particular para cada uma das congruências lineares:
(a) 6x ≡ 4(mod8).
Solução:
Para encontrar uma solução da congruência linear 6x ≡ 4(mod8), devemos
determinar uma solução da equação diofantina associada 6x + (−8)y = 4.
Inicialmente, escrevemos d = mdc(6, 8) = 2 como soma de múltiplos de 6 e 8,
o que pode ser feito usando o algoritmo de Euclides. Nesse caso temos que:

6.(−1) + 8.1 = 2.

Pelo que vimos acima, uma equação particular é dada por
x0 = r b

d
= −1.4

2
= −2. Porém, para uma melhor aprendizagem, vamos

encontrar tal valor repetindo todo o procedimento feito anteriormente.

Multiplicamos a equação acima por b
d

= 4
2

= 2:

6.(−2) + 8.2 = 4.

Como os coeficientes da equação diofantina são 6 e -8, rearrumamos a equação
escrevendo:

6.(−2) + (−8).(−2) = 4.

Assim, (−2,−2) é uma solução da equação 6x+(−8)y = 4 e consequentemente
x0 = −2 é uma solução particular da congruência 6x ≡ 4(mod8).
(b) 8x ≡ 24(mod12);
Solução:
Inicialmente vamos procurar uma solução da equação diofantina associada:
8x + (−12)y = 24. Como mdc(8, 12) = 4 usando o algoritmo de Euclides
encontramos:

8.(−1) + 12.1 = 4.

Multiplicamos essa equação por 24
4

= 6:

8.(−6) + 12.6 = 24.

ou ainda,
8.(−6) + (−12).(−6) = 24.

Assim, (−6,−6) é uma solução da equação 8x + (−12)y = 24 e consequente-
mente x0 = −6 é uma solução particular da congruência 8x ≡ 24(mod12). �

(c) 18x ≡ 30(mod42).
Solução:
A equação diofantina associada a essa congruência é 18x+(−42)y = 30 e como
mdc(18, 42) = 6 e 6|30, a equação tem solução. Para uma solução particular,
usamos a identidade:

18.(−2) + 42.1 = 6.

e multiplicamos essa equação por b
d

= 30
6

= 5:

18.(−10) + 42.5 = 30⇒ 18.(−10) + (−42).(−5) = 30.

Assim, (−10,−5) é uma solução da equação 18x+(−42)y = 30 e consequente-
mente x0 = −10 é uma solução particular da congruência 18x ≡ 30(mod42).
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4 Conjunto Solução da Congruência Linear

Já sabemos calcular uma solução particular da congruência linear ax ≡ b(modm),
quando essa tem solução. Vejamos agora como, a partir de uma solução par-
ticular, encontrar o conjunto de todas as soluções.

Como já visto na Proprosição 18, se (x0, y0) é uma solução da equação
diofantina ax + (−m)y = b e d = mdc(a,m), então o conjunto solução da
equação é dado por:

S = {(x0 −
m

d
t, y0 −

a

d
t) | t ∈ Z}.

Portanto, se α é uma solução da congruência linear ax ≡ b(modm), então
aα ≡ b(modm) ⇒ m|(aα − b) ⇒ aα − b = mk, k ∈ Z ⇒ aα + (−m)k = b ⇒
(α, k) ∈ S ⇒ α = x0 − m

d
t, para algum inteiro t.

Reciprocamente, se α = x0 − m
d
t, para algum t ∈ Z, então o par

(x0 − m
d
t, y0 − a

d
t) ∈ S, logo é solução da equação diofantina ax + (−m)y = b

e portanto,

a(x0 −
m

d
t) + (−m)(y0 −

a

d
t) = b

⇓

a(x0 −
m

d
t)− b = m(y0 −

a

d
t)⇒ m|

(
a(x0 −

m

d
)t− b

)
⇓

a(x0 −
m

d
t) ≡ b(modm)

⇓

α = x0 − m
d
t é solução da congruencia linear ax ≡ b(modm).

Com isso, identificamos o conjunto solução da congruência ax ≡ b(modm),
quando essa tem solução, dado a seguir:

O conjunto solução da congruência linear ax ≡ b(mod),
quando d = mdc(a,m) divide b é dado por:

S ′ = {x0 +
m

d
t | t ∈ Z}.

Obs: S ′ = {x0 − m
d
t | t ∈ Z} = {x0 + m

d
t | t ∈ Z}.
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X Exerćıcios 37.

(01) Encontre o conjunto solução das congruências abaixo:
(a) 6x ≡ 4(mod8).
Solução:
Como x0 = −2 é uma solução particular da congruência, então seu conjunto
solução é dado por:

S = {−2 + 4t | t ∈ Z}.

Assim, os inteiros -6, -2, 2, 6, 10, 18 são algumas dessas soluções. De posse do
conjunto solução, podemos agora responder a questão proposta no ińıcio da
aula. Lembremos que o número n de alunos da turma é dado por n = 6x, onde
x ∈ S. Assim, n = −12 + 24t, com t ∈ Z. Além disso , temos a informação
adicional de que 50 < n ≤ 100. Assim, 50 ≤ −12 + 24t ≤ 100 ⇒ 31

12
≤ t ≤

14
3
⇒ t ∈ {3, 4}. Logo, os posśıveis valores para o número de alunos é 60 ou

84. �

(b) 8x ≡ 24(mod12);
Solução:
Tomando a solução particular x0 = −6 já encontrada anteriormente, segue que

S = {−6 + 3t | t ∈ Z}.

�

(c) 18x ≡ 30(mod42).
Solução:
Usando a solução particular x0 = −10 já encontrada, segue que

S = {−10 + 7t | t ∈ Z}.

�

(d) 4x ≡ 13(mod20);
Solução:
Como a equação não tem solução, então seu conjunto solução é S = ∅. �

5 Congruência Lineares Equivalentes

Definição 12. Dizemos que as congruências lineares

a1x ≡ b1(modm1) e a2x ≡ b2(modm2)

são equivalentes se elas têm o mesmo conjunto solução.
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Exemplos:
(01) As congruências 3x ≡ 9(mod6) e x ≡ 9(mod2) são equivalentes, pois
ambas tem

S = {1 + 2t | t ∈ Z}.
como conjunto solução. �

(02) As congruências 8x ≡ 20(mod12) e 4x ≡ 100(mod3) são equivalentes,
tendo

S = {1 + 3t | t ∈ Z}.
como conjunto solução. �

Considere a congruência linear

ax ≡ b(modm) (13.2)

com b sendo um múltiplo de mdc(a,m). Vejamos como obter uma congruência
linear equivalente a ela e em geral de mais fácil resolução.

Sejam d = mdc(a,m) e r e s inteiros, tais que:

d = ar +ms. (13.3)

Se x0 é uma solução qualquer de (13.2), então

ax0 ≡ b(modm)⇒ m|(ax0 − b)⇒ ax0 − b = mk, k ∈ Z.

Multiplicando a última identidade por r, obtemos:

(ar)x0 − br = m(rk).

Substituindo nessa identidade o valor de ar dado em (13.3):

(d−ms)x0 − br = m(rk)

⇓

dx0 − br = m(rk + sx0)⇒ x0 −
b

d
r =

m

d
(rk + sx0)

⇓

x0 ≡
b

d
r(mod

m

d
)

Portanto, x0 é também solução da congruência linear x ≡ b
d
r(modm

d
).

Reciprocamente, se x0 é solução da congruência linear x ≡ b
d
r(modm

d
),

então

x0 ≡
b

d
r(mod

m

d
).

De (13.3) obtemos a congruencia linear:

a

d
r ≡ 1(mod

m

d
)
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Multiplicando membro a membro essas congruencias (propriedade C7):

a

d
rx0 ≡

b

d
r(mod

m

d
) (13.4)

Como d = ar +ms⇒ 1 = a
d
r + m

d
s⇒ mdc(r, m

d
) = 1. Assim, podemos usar a

lei do cancelamento em (13.4), obtendo:

a

d
x0 ≡

b

d
(mod

m

d
)

⇓
a

d
x0 −

b

d
=
m

d
k, k ∈ Z⇒ ax0 − b = mk ⇒ ax0 ≡ b(modm).

⇓

x0 é solução da congruencia linear ax ≡ b(modm).

Desta forma, provamos o que é enunciado na proposição abaixo.

Proposição 19. Sejam a e m > 1 inteiros, com d = mdc(a,m). Para quais-
quer inteiros r e s, tais que

d = ar +ms,

e qualquer b ∈ dZ, as congruências lineares:

ax ≡ b(modm) e x ≡ b
d
r(modm

d
)

são equivalentes.

X Exerćıcios 38.

(01) Encontre uma congruência linear equivalente a equação dada e seu con-
junto solução:
(a) 18x ≡ 30(mod42).
Solução:
Como mdc(18, 42) = 6 e 30 é um múltiplo de 6, então pela Proposição 19, essa
congruência é equivalente a congruência linear

x ≡ 5r(mod7)

qualquer que seja o inteiro r, para o qual existe s ∈ Z, tal que 18r + 42s = 6.
Em particular, como 18.(−2) + 42.1 = 6, segue que

x ≡ −10(mod7)

é equivalente a equação dada. Facilmente, vemos que x0 = −3 é uma solução
particular dessa última, portanto seu conjunto solução (o qual é também con-
gruência original) é dado por:

S = {−3 + 7t | t ∈ Z}.
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(b) 15x ≡ 20(mod10);
Solução:
Como mdc(15, 10) = 5|20, essa congruencia é equivalente a congruência linear:

x ≡ 4r(mod2)

qualquer que seja o inteiro r ∈ Z, para o qual existe s ∈ Z, tal que 15r+10s = 5.
Como 15.1 + 10.(−1) = 5, então

x ≡ 4(mod2)

é equivalente a equação dada. Claramente, x0 = −2 é uma solução particular
dessa última, portanto o conjunto solução de ambas as congruências é dado
por:

S = {−2 + 2t | t ∈ Z}.

Como também temos as identidades

15.3 + 10.(−4) = 5

e
15.(−7) + 10.10 = 5

obtemos também as congruências equivalentes

x ≡ 12(mod2) e x ≡ −28(mod2)

dentre outras.
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Lista de Exerćıcios 13.

(01) Verifique quais das congruências abaixo tem solução:
(a) 3x ≡ 5(mod8);
(b) 3x ≡ 6(mod18);
(c) −6x ≡ 5(mod4);
(d) 34x ≡ 60(mod98);
(e) 4x ≡ 13(mod20);
(f) 27x ≡ 45(mod18).

(02) Encontre o conjunto de cada uma das congruências lineares da questão
(01).

(03) Encontre uma congruencia linear que seja equivalente a congruência abaixo:
(a) 3x ≡ 5(mod8).
(b) 18x ≡ 30(mod42).
(c) 5x ≡ 20(mod7).
(d) 25x ≡ 15(mod29)
(e) 5x ≡ 2(mod26)

(04) Determine todos os múltiplos de 5 que deixa resto 7 na divisão por 9.

(05) Determine todos os múltiplos positivos de 11, que deixam resto 2 na
divisão por 5.

(06) Encontre todos os anos bissextos até 2016, que deixam resto 5 na di-
visão por 9.
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Respostas da Lista de Exerćıcios 13
(01.a) mdc(3, 8) = 1|5⇒ a congruência tem solução.
(01.b) mdc(3, 18) = 3|6⇒ a congruência tem solução.
(01.c) mdc(−6, 4) = 2 - |5⇒ a congruência não tem solução.
(01.d) mdc(34, 98) = 2|60⇒ a congruência tem solução.
(01.e) mdc(4, 20) = 4 - 13⇒ a congruência não tem solução.
(01.f) mdc(27, 18) = 9|45⇒ a congruência tem solução.
(02.a) S = {15 + 8t | t ∈ Z}.
(02.b) S = {2 + 6t | t ∈ Z}.
(02.c) S = ∅.
(02.d) S = {−690 + 49t | t ∈ Z}.
(02.e) S = ∅.
(02.f) S = {5 + 2t | t ∈ Z}.
(03.a) x ≡ 15(mod8).
(03.b) x ≡ −60(mod7).
(03.c) x ≡ 60(mod7).
(03.d) x ≡ 105(mod29)
(03.e) x ≡ −10(mod26)
(04) 45t+ 25, t ∈ Z
(05) 22 + 55t, t ≥ 0.
(06) −40 + 36t, 2 ≤ t ≤ 57.



Caṕıtulo 14

Sistema de Congruências
Lineares

1 Introdução

- Quanto um professor dividiu os alunos de sua turma em equipes com sete
pessoas cada uma, sobrou um aluno. E quando dividiu em equipes com cinco
ou com oito pessoas, áı sobraram três alunos. Qual o menor número posśıvel
de alunos nessa turma?

Solução:
Vamos representar por x o número de alunos na turma, o qual queremos de-
terminar. Do enunciando acima, conclui-se que x deixa resto 1 na divisão por
7 e resto igual 3 na divisão por 5 e também por 8. Usando linguagem de con-
gruência, isso equivale a dizer que x deve verifica simultaneamente as seguintes
congruências lineares: 

x ≡ 3(mod5)
x ≡ 1(mod7)
x ≡ 3(mod8)

Temos assim um sistema de congruências lineares. Vejamos, uma maneira de
determinar o valor de x, usando propriedades da congruência já estudadas.

(i) Resolvemos a primeira equação x ≡ 3(mod5):

x ≡ 3(mod5)⇒ 5|(x− 3)⇒ x = 3 + 5y, com y ∈ Z;

(ii) Substituindo o valor encontrado para x na segunda equação:
x ≡ 1(mod7)⇒ (3 + 5y) ≡ 1(mod7)⇒ 5y ≡ −2(mod7)⇔ y ≡ −6(mod7)
⇒ y = −6 + 7z;
(iii) Substituindo o valor encontrado para y na equação x = 3 + 5y:

x = 3 + 5y = 3 + 5(−6 + 7z)⇒ x = −27 + 35z

(iv) Substuindo o último valor encontrado para x na terceira equação: x ≡
3(mod8)⇒ (−27 + 35z) ≡ 3(mod8)⇒ 35z ≡ 30(mod8)⇔ z ≡ 90(mod8)

148
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⇒ z = 90 + 8t.

Assim,

x = −27 + 35z = −27 + 35(90 + 8t) = 3123 + 280t.

Como x representa a quantidade de alunos na turma, então x ≥ 0. Assim,

x = 280t+ 3123 ≥ 0⇒ t ≥ −11.

Por fim, sendo x uma função crescente de t, então o menor valor de x é assum-
ido quando t é mı́nimo, ou seja, quando t = −11. Portanto, o menor número
de alunos na turma é igual a 43. �

2 Definição

O que fizemos no exemplo acima foi encontrar um valor para uma variável x
que satisfaz simultaneamente a mais de uma congruência linear, ou seja, a um
Sistema de Congruências Lineares, conforme definido a seguir.

Definição 13. Chamamos de Sistema de Congruências Lineares a todo
sistema da forma: 

a1x ≡ b1 (modm1)
a2x ≡ b2 (modm2)
... ... ...
akx ≡ bk (modmk)

onde a1, a2, ..., ak, b1, b2, ..., bk,m1,m2, ...,mk são inteiros fixados, com mi > 1,
para todo i = 1, 2, .., k.

Exemplos:

(01)


x ≡ 2 (mod3)
x ≡ 3 (mod5)
x ≡ 2 (mod7)

(02)


6x ≡ 2 (mod4)
2x ≡ 1 (mod3)
4x ≡ 2 (mod7)

(03)

{
x ≡ −1 (mod4)
x ≡ 2 (mod6)

.

3 Solução do Sistema

Vejamos agora um resultado - conhecido como Teorema Chinês do Resto - o
qual dá uma condição a para a existência de solução de um sistema de con-
gruências lineares e fornece um algoritmo para calcular uma solução particular
do mesmo.
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Teorema 14. (Teorema Chinês do Resto) Se os inteiros m1,m2, ...,mk

são dois a dois relativamente primos, então o sistema de congruências lineares:
Dizer que a

solução é única

módulo m,

implica dizer

que se x1, x2 são

duas soluções do

sistema, então

x1 ≡ x2(modm).


x ≡ b1(modm1)
x ≡ b2(modm2)

...
x ≡ bk(modmk)

admite uma solução, que é única módulo m = m1m2...mk.

Algoritmo da Aplicação do Teorema Chinês do Resto

Daremos a seguir os passos para encontrar uma solução particular x0 de um
sistema de congruência lineares, quando este verifica as hipóteses do Teorema
acima. De posse de x0, determinamos o conjunto solução.

Passo 1: Construir inteiros m, M1,M2, ...,Mk, onde

m = m1m2...mk

e
M1 =

m

m1

, M2 =
m

m2

, ... Mi =
m

mi

, ... Mk =
m

mk

.

Passo 2: Encontrar inteiros ri e si:
Para cada i = 1, 2, ..., k, mdc(Mi,mi) = 1, logo existe inteiros ri e si, tais que:

M1.r1 +m1.s1 = 1

M2.r2 +m2.s2 = 1

....

Mk.rk +mk.sk = 1

Determina-se inteiros ri e si que verifiquem essas condições;

Passo 3: Determinar a solução particular:
A solução particular x0 é dada por:

x0 = b1M1r1 + b2M2r2 + ...+ bkMkrk.

Passo 4: Determinar o conjunto solução:
Todas as demais soluções do sistema são congruentes a x0 módulo m, logo o
conjunto solução é dado por:

S = {x0 +mt | t ∈ Z}.
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Exemplos:
(01) Usaremos o algoritmo acima para resolver novamente o sistema proposto
no ińıcio do caṕıtulo: 

x ≡ 3(mod5)
x ≡ 1(mod7)
x ≡ 3(mod8).

Solução:
Como

mdc(5, 7) = mdc(5, 8) = mdc(7, 8) = 1,

os inteiros m1 = 5, m2 = 7 e m3 = 8 são dois a dois relativamente primos, logo
o sistema tem uma única solução x0 módulo m1m2m3 = 280. Para determinar
x0 seguiremos os passos dados no algoritmo acima:
Passo 1: Determinar m e M1,M2,M3:

m = m1m2m3 = 280

e

M1 = m
m1

= 280
5

= 56, M2 = m
m2

= 280
7

= 40 e M3 = m
m3

= 280
8

= 35.

Passo 2: Encontrar inteiros ri e si:
Escrevendo 1 = mdc(56, 5) = mdc(40, 7) = mdc(35, 8) como soma de múltiplos
desses inteiros temos:

1 = 56.1 + 5.(−11)

1 = 40.3 + 7.(−17)

1 = 35.3 + 8.(−13)

Passo 3: Determinar uma solução particular:
Então

x0 = b1M1r1 + b2M2r2 + b3M3r3 = 3.56.1 + 1.40.3 + 3.35.3 = 603.

Passo 4: Determinar o conjunto solução:
Como x0 = 603 é uma solução, então

S = {603 + 280t | t ∈ Z}.

(02) Usando o algoritmo do Teorema Chinês do Resto, resolveremos o sistema:
x ≡ 2(mod3)
x ≡ 3(mod5)
x ≡ 2(mod7).

Solução:
Como

mdc(3, 5) = mdc(3, 7) = mdc(5, 7) = 1,
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os inteiros m1 = 3, m2 = 5 e m3 = 7 são dois a dois relativamente primos, logo
o sistema tem uma única solução x0 módulo m1m2m3 = 105. Para determinar
x0 seguiremos os passos dados acima:
Passo 1: Determinar m e M1,M2,M3:

m = m1m2m3 = 105

e

M1 = m
m1

= 105
3

= 35, M2 = m
m2

= 105
5

= 21 e M3 = m
m3

= 105
7

= 15.

Passo 2: Determinar os inteiros ri e si:
Escrevendo 1 = mdc(35, 3) = mdc(21, 5) = mdc(15, 7) como soma de múltiplos
destes inteiros temos:

1 = 35.(−1) + 3.12

1 = 21.1 + 5.(−4)

1 = 15.1 + 7.(−2)

Passo 3: Determinar uma solução particular:
Então

x0 = b1M1r1 + b2M2r2 + b3M3r3 = 2.35.(−1) + 3.21.1 + 2.15.1 = 23.

Passo 4: Determinar o conjunto solução:
Como x0 = 23 é uma solução, então

S = {23 + 105t | t ∈ Z}.

�

Agora que você já entendeu e se familiarizou com o enunciado do Teorema
14, vamos demonstrá-lo. Para tal, precisaremos de alguns resultados, dados
no Lema a seguir.

Lema 5. Dados inteiros m1, m2, ...,mk, para cada i = 1, 2, ..., k, definamos

Mi =
m1m2...mi−1mimi+1...mk

mi

= m1m2....mi−1mi+1...mk.

Se os inteiros m1,m2, ...,mk são dois a dois relativamente primos, então
(i) Mi e mi são também relativamente primos, para todo i = 1, 2, .., n;
(ii) Se a é um inteiro tal que, mi|a, para todo i = 1, 2, ..., k, então m1m2...mk|a.

Demonstração:
(i) Como m1,m2, ...,mk são dois a dois relativamente primos, então para cada
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i ∈ {1, 2, ..., k} arbitrário, temos:

mdc(m1,mi) = ... = mdc(mi−1,mi) = mdc(mi+1,mi) = ...mdc(mk,mi) = 1,

logo,
mdc(m1m2...mi−1mi+1...mk,mi) = 1⇒ mdc(Mi,mi) = 1.

�

(ii) Faremos a demonstração por indução em k:
Base de Indução: k = 2
m1|a e m2|a⇒ a = m1k1 = m2k2, com k1, k2 ∈ Z.
Como mdc(m1,m2) = 1⇒ ∃x, y ∈ Z, tais que:

m1x+m2y = 1

⇓ (×a)

a(m1x)+a(m2y) = a⇒ (m2k2)(m1x)+(m1k2)(m2y) = a⇒ m1m2(k2x+k1y) = a

⇓

m1m2|a.

Passo Indutivo: Vamos assumir, como hipótese de indução, a implicação:

m1|a,m2|a, ...,mk|a⇒ m1m2...mk|a.

E suponha que, m1|a, m2|a, ..., mk|a, mk+1|a. Então,

m1m2...mk|a︸ ︷︷ ︸
hipótese de indução

e mk+1|a,

Pelo item (i), segue que (m1m2...mk)mk+1|a. �

Agora vamos à demonstração do teorema.

Demonstração do Teorema 14:

Seja m = m1m2...mk e considere os inteiros:

M1 =
m

m1

, M2 =
m

m2

, ... Mi =
m

mi

, ..., Mk =
m

mk

.

Pelo Lema 5,
mdc(Mi,mi) = 1,∀i = 1, 2, ..., k

já que mdc(mi,mj) = 1, para todo i 6= j. Então, existem inteiros ri, si, tais
que:

M1.r1 +m1.s1 = 1

M2.r2 +m2.s2 = 1
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....

Mk.rk +mk.sk = 1

Mostraremos que

x0 := c1M1r1 + c2M2r2 + ...+ ckMkrk.

é uma solução particular do sistema.

Observe inicialmente que para todo i 6= j, tem-se

Mj = m1...mi...mj−1mj+1...mk ⇒ mi|Mj ⇒Mj ≡ 0(modmi)⇒ cjrjMj ≡ 0(modmi),

Assim, temos as congruências:

c1M1r1 ≡ 0(modmi)

c2M2r2 ≡ 0(modmi)

...

ci−1Mi−1ri−1 ≡ 0(modmi)

ci+1Mi+1ri+1 ≡ 0(modni)

...

ckMkrk ≡ 0(modmi)

De onde obtemos:

c1M1r1 + c2M2r2 + ci−1Mi−1ri−1 + ci+1Mi+1ri+1 + ...+ ckMkrk ≡ 0(modmi)

Somando ciMiri em ambos os lados da congruência:

c1M1r1+...+ci−1Mi−1ri−1+ciMiri+ci+1Mi+1ri+1+...+ckMkrk ≡ ciMiri(modmi)

⇓

x0 ≡ ciMiri(mdomi), ∀i = 1, 2, ..., k

Por outro lado, multiplicando por ci a identidade Miri +misi = 1, temos:

ciMiri + cimisi = ci ⇒ ciMiri − ci = mi(cisi)⇒ ciMiri ≡ ci(modmi)

Por transitividade, tem-se:

x0 ≡ ci(modmi), ∀i = 1, 2, ..., k

Sendo portanto x0 solução de todas as congruências do sistema.

Resta mostrar a unicidade desta solução módulo m. Seja w outra solução
do sistema. Então para todo i = 1, 2, ..., k, temos

w ≡ ci(modmi) e x0 ≡ ci(modmi)⇒ mi | (w − x0)
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para todo i = 1, 2, ..., k. Comos os mi são dois a dois relativamente primos,
segue do item (ii) do Lema 5 que:

m1m2...mk|(w − x0)⇒ m|(w − x0)

e portanto w ≡ x0(modm). �

X Exerćıcios 39.

Resolva os sistemas lineares abaixo. Use o Teorema Chinês do Resto, quando
posśıvel.

(01)


x ≡ 5(mod6)
x ≡ 4(mod11)
x ≡ 3(mod7)

Solução:
Como

mdc(6, 11) = mdc(6, 7) = mdc(11, 7) = 1,

os inteiros m1 = 6, m2 = 11 e m3 = 7 são dois a dois relativamente primos,
portanto o Teorema 14 garante a existência de uma única solução x0 módulo
m1m2m3. Vamos determinar x0.
Passo 1: Determinar m e M1,M2,M3:

m = m1m2m3 = 6.11.7 = 462

e

M1 = m
m1

= 462
6

= 77, M2 = m
m2

= 462
11

= 42 e M3 = m
m3

= 462
7

= 66.

Passo 2: Determine os inteiros ri e si:
Temos:

1 = 77.(−1) + 6.13

1 = 42.5 + 11.(−19)

1 = 66.(−2) + 7.(19)

Passo 3: Determinar uma solução particular:
Então

x0 = b1M1r1 + b2M2r2 + b3M3r3 = 5.77.(−1) + 4.42.5 + 3.66.(−2) = 59.

Passo 4: Determinar o conjunto solução:
Como x0 = 59 é uma solução e m = 462, então

S = {59 + 462t | t ∈ Z}.

�
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(02)

{
9x ≡ 4(mod8)
3x ≡ 6(mod21)

Solução:
Observe que o sistema dado não está como apresentado no enunciado do Teo-
rema 14, pois a1 = 9 e a2 = 3, ao passo que no teorema os coeficientes das
variáveis são todos iguais a 1. Logo, não podemos aplicar o algoritmo dire-
tamente nesse sistema. Para encontrar o conjunto solução, procuremos um
sistema equivalente que esteja naquela forma.

Como
mdc(9, 8) = 1 = 9.1+8.(−1), então 9x ≡ 4(mod8) é equivalente a x ≡ 4(mod8);
mdc(3, 21) = 3 = 3.1 + 21.0, 3x ≡ 6(mod21) é equivalente a x ≡ 2(mod7).
Assim, o sistema a ser resolvido tem o mesmo conjunto solução do sistema:{

x ≡ 4(mod8)
x ≡ 2(mod7)

o qual podemos aplicar o Teorema 14.
Passo 1: Determinar m, M1 e M2:
m1 = 8, m2 = 7⇒ m = m1m2 = 56 e

M1 =
m

m1

= 7, M2 =
m

m2

= 8.

Passo 2: Determinar os inteiros ri e si:

1 = 7.(−1) + 8.1

1 = 8.1 + 7.(−1)

Passo 3: Determinar uma solução particular:

x0 = b1M1r1 + b2M2r2 = 4.7.(−1) + 2.8.1 = −12.

Passo 4: Determinar o conjunto solução:
Como x0 = −12, então

S = {−12 + 56t | t ∈ Z}.

�

(03)

{
x ≡ 4(mod6)
x ≡ 13(mod15)

Solução:
Como mdc(6, 15) 6= 1, não estamos nas condições da hipótese do Teorema 14.
Vamos tentar resolvê-lo diretamente.
(i) Resolvendo a primeira equação encontramos:

x ≡ 4(mod6)⇒ x = 4 + 6y, y ∈ Z;

(ii) Substituindo este valor na 2a. equação:

x ≡ 13(mod15)⇒ (4 + 6y) ≡ 13(mod15)⇒ 6y ≡ 9(mod15)
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m

y ≡ −6(mod5)⇒ y = −6 + 5t, t ∈ Z;

Então x = 4 + 6y = 4 + 6(−6 + 5t) = −32 + 30t, t ∈ Z. Logo,

S = {−32 + 30t | t ∈ Z}.

�

(04)

{
x ≡ 8(mod14)
x ≡ 5(mod7)

Solução:
Como mdc(7, 14) = 7, o sistema não está de acordo com as hipóteses do Teo-
rema 14. Vamos resolvê-lo diretamente.
(i) Resolvendo a 1a equação encontramos:

x ≡ 8(mod14)⇒ x = 8 + 14y, y ∈ Z;

(ii) Substituindo este valor na 2a equação:

x ≡ 5(mod7)⇒ (8 + 14y) ≡ 5(mod7)⇒ 14y ≡ −3(mod7);

Como mdc(14, 7) = 7 - −3, essa equação não tem solução, logo o sistema em
questão não tem solução. Assim, seu conjunto solução é

S = ∅.

�
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Lista de Exerćıcios 14.

(01) Encontre o conjunto solução de cada um dos sistemas abaixo:

(a)

{
x ≡ 1(mod3)
x ≡ 2(mod5)

(b)

{
x ≡ 8(mod6)
x ≡ −4(mod7)

(c)

{
x ≡ 3(mod9)
6x ≡ 4(mod8)

(d)


x ≡ 1(mod3)
x ≡ 2(mod5)
x ≡ 3(mod7)

(e)


x ≡ 5(mod6)
x ≡ 4(mod11)
x ≡ 3(mod7)

(f)


x ≡ 4(mod6)
x ≡ 13(mod15)
x ≡ 8(mod14)
x ≡ 1(mod7)

(02) Determine o inteiro positivo, menor que 1000, que na divisão por 13,
36 e 41, deixa como restos 8, 5 e 3, respectivamente.

(03) Determine o menor inteiro positivo, que tem como restos 6 e 5, na di-
visão por respectivamente 7 e 9.

(04) Determine o menor inteiro positivo, sabendo que seu quádruplo deixa
resto 1 na divisão por 13, seu qúıntuplo deixa resto 3 na divisão por 7 e seu
óctuplo, deixa resto 4 na divisão por 5.

(05) Determinar o menor inteiro a > 10 tal que 3|(a+ 1), 4|(a+ 2) e 5|(a+ 3).

Respostas da Lista de Exerćıcios 14

(01.a) S = {7 + 15t | t ∈ Z}.
(01.b) S = {80 + 42t | t ∈ Z}.
(01.c) S = {66 + 36t | t ∈ Z}.
(01.d) S = {52 + 105t | t ∈ Z}.
(01.e) S = {59 + 462t | t ∈ Z}.
(01.f) S = {−3002 + 210t | t ∈ Z}.
(02) 905

(03) 41

(04) 23

(05) 62.



Caṕıtulo 15

Os Números Naturais

Ao longo de todo este texto, apresentamos diversas propriedades e aplicações
dos números inteiros. Tudo o que foi provado teve como alicerce as pro-
priedades apresentadas no Caṕıtulo 1. Dessa forma, a validade de tudo que
você aprendeu até então, dependende grandemente da veracidade daquelas
afirmações, que foram apresentadas como axiomas, mas não o são. Todas são
pasśıveis de demonstrações. Visando eliminar desest́ımulos, que surgem em
geral, decorrentes da pouca habilidade que tem o aluno, no inicio do curso,
para trabalhar com desmonstrações matemática, optamos por assumir as pro-
priedades como verdadeiras (axiomas) e seguir demonstrando as demais pro-
priedades em Z à partir daqueles axiomas. Estamos agora preparados para
retornar àquela propriedades e provar as afirmações feitas no Caṕıtulo 1.

Como em qualquer teoria axiomatica, precisamos de um ponto de par-
tida. O alicerce são os axiomas de Peano, formulados pelo matemático ita-
liano Guiseppe Peano, em 1879. Peano assume a existência de um conjunto
satisfazendo certos axiomas, os quais caracterizam de forma rigoroza e precisa,
a idéia intuitiva que temos do conjunto dos números naturais. Todas as de-
mais propriedades seguem desses axiomas. A partir da existência do conjunto
dos Naturais faremos então a construção do conjunto dos números inteiros
para enfim, mostrar todas as propriedades. Neste caṕıtulo, estudaremoss as
Propriedades do conjunto N dos números naturais e no próximo, faremos a
construção do conjunto Z dos números inteiros.

1 Os Axiomas de Peano

Na axiomatização de Peano são dados como objetos não definidos:

� um conjunto N, cujos elementos são chamados números naturais;
� uma função s : N→ N.

A imagem s(n), de cada n ∈ N, pela função s é chamada o sucessor de
n e s(N) = {s(n) | n ∈ N} é o conjunto imagem dessa função. Com essas

159
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notações, apresentamos abaixo os três axiomas de Peano:

(Axioma 1):
A função s é injetora, isto é, para quaisquer m,n ∈ N:

m 6= n⇒ s(n) 6= s(m).

(Axioma 2): Existe 0 ∈ N− s(N).

(Axioma 3):

Prinćıpio da Indução: Se X ⊂ N verifica simultaneamente as
duas condições:

(i) 0 ∈ X;
(ii) Para todo n ∈ N, temos a implicação: n ∈ X ⇒ s(n) ∈ X;

então,
X = N.

O Axioma 1, diz que números naturais distintos tem sucessores distintos.
Já o Axioma 2, afirma que existe um número natural que não é sucessor de
nenhum outro. Esse número é reprentado pelo śımbolo 0 e chamado zero.
Assim, 0 6= s(n), para todo n ∈ N. Por sua vez, o Axioma 3, diz que o único
subconjunto de N que contém 0 (zero) e o sucessor de todos os seus elementos,
é o próprio N.

À primeira vista, parece ter-se afirmado a existência de um único elemento
em N (Axioma 2). Porém, como s(N) ⊂ N, então:

X = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))), ...},

é um subconjunto de N, o qual contém 0 e o sucessor de todos os seus elementos,
logo pelo Axioma 3, X = N. Assim,

N = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))), ...}.

Dos Axiomas 1 e 2, segue que esses elementos são todos distintos.(Veja questão
01)

Denotaremos por N∗ o conjunto dos números naturais sem 0, isto é,

N∗ = N− {0}.

Claramente, temos que N = s(N) ∪ {0} e como 0 6∈ s(N), então,

s(N) = N∗.

Assim, para todo n ∈ N∗, existe n′ ∈ N, tal que n = s(n′).

2 Operações em N

Usando a função s, definem-se duas operações em N, chamadas de adição (+)
e multiplicação (.).
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Adição em N

Definição 14. A adição de m,n ∈ N, denotada por m + n, é definida como
segue: {

m+ 0 = m;
m+ s(n) = s(m+ n).

Como N∗ = s(N), dado m ∈ N, a soma m+ n, está perfeitamente definida,
qualquer que seja n ∈ N.

Antes de vermos alguns exemplos de uso da definida acima, definiremos o
sucessor de 0.

Definição 15. O sucessor de 0 é chamado de um e denotado por 1, isto é,
s(0) := 1.

Definem-se também:

s(1) := 2 (dois);
s(2) := 3 (três);
s(3) := 4 (quatro);
s(4) := 5 (cinco);

e assim, sucessivamente. Dessa forma, temos agora,

N = {0, s(0), s(s(0), s(s(s(0))), s(s(s(s(0)))), ....} = {0, 1, 2, 3, 4, ...}.

Exemplos:
Usando a Definição 14, temos:
(01) 1 + 0 = 1;

(02) 1 + 1 = 1 + s(0) - pela Definição 15
= s(1 + 0) - pela Definição 14
= s(1) := 2 - pela Definição 14.

(03) 2 + 1 = 2 + s(0) = s(2 + 0) = s(2) := 3.

(04) 3 + 4 = 3 + s(3) = s(3 + 3) = s(3 + s(2)) = s(s(3 + 2)) = s(s(3 + s(1)))
= s(s(s(3 + 1))) = s(s(s(3 + s(0))) = s(s(s(s(3 + 0))))
= s(s(s(s(3)))) = s(s(s(4))) = s(s(5)) = s(6) = 7.

Definindo

 s0 = IN (função indentidade de N)
sn = s ◦ s ◦ ... ◦ s︸ ︷︷ ︸

n×

, para n = 1, 2, 3, .. ,

então para quaisquer m,n ∈ N, tem-se:

m+ n = sn(m).
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Observe, que para todo m ∈ N, tem-se:

m+ 1 = m+ s(0) = s(m+ 0) = s(m).

Assim,
s(m) = m+ 1.

Propriedades da Adição

A adição definida em N tem as seguintes propriedades:

(A′1) Associativa:

(m+ n) + p = m+ (n+ p), ∀m,n, p ∈ N.

Demonstração:
Sejam m,n ∈ N fixados. Vamos mostrar a propriedade usando indução em p.
Considere o conjunto:

X = {p ∈ N | (m+ n) + p = m+ (n+ p)}.

Para mostrar que X = N, portanto que a propriedade vale para quaisquer
m,n, p ∈ N, é necessário mostrar que 0 ∈ X e que temos a implicação
p ∈ X ⇒ s(p) ∈ X.

Pela Definição 14, segue que:

(m+ n) + 0 = m+ n = m+ (n+ 0)⇒ 0 ∈ X.

Suponha agora p ∈ X. Então
m+ (n+ s(p)) = m+ s(n+ p) - pela Definição 14

= s(m+ (n+ p)) - pela Definição 14
= s((m+ n) + p) - pela hipótese de indução
= (m+ n) + s(p) - pela Definição 14.

Assim,
m+ (n+ s(p)) = (m+ n) + s(p)⇒ s(p) ∈ X.

Pelo Axioma 3, temos que X = N, conforme queŕıamos demonstrar. �

(A′2) Existência de Elemento Neutro para Adição:
Zero é o elemento neutro da adição, isto é, para todo natural m, tem-se:

m+ 0 = m = 0 +m.

Demonstração:
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A primeira identidade já foi dada na Definição 14. Resta mostrar que
0 +m = m,∀m ∈ N. Para tanto, considere o conjunto:

X = {m ∈ N | 0 +m = m}.

Como 0 + 0 = 0⇒ 0 ∈ X. Por outro lado, se m ∈ X, isto é, 0 +m = m, então

0 + s(m) = s(0 +m) = s(m)⇒ s(m) ∈ X ⇒ X = N.

�
na identidade

u + 0 = u, us-

amos que u ∈

N e 0 é o el-

emento neutro

e u + 0 = 0,

segue de 0 ∈ N

e u ser o ele-

mento neutro.

Obviamente, que 0 é o único elemento em N com essa própriedade, pois se
u ∈ N, é tal que

u+m = m = m+ u, ∀m ∈ N,

então teremos:
0 = u+ 0 = u.

Mostrando assim, que o elemento neutro da adição é único.

(A′3) Para qualquer m ∈ N, tem-se:

m+ 1 = 1 +m.

Demonstração:
Considere o conjunto:

X = {m ∈ N | m+ 1 = 1 +m}.

Pela propriedade (A′2), 0 + 1 = 1 = 1 + 0 ⇒ 0 ∈ X. Se m ∈ X, então
m+ 1 = 1 +m. Logo,

1+s(m) = s(1+m) = s(m+1) = s(m+s(0)) = s(s(m+0)) = s(s(m)) = s(m)+1

⇒ s(m) ∈ X. Pelo Axioma 3, X = N, ou seja, m+ 1 = 1 +m, ∀m ∈ N. �

Assim, para qualquer m ∈ N, tem-se:

s(m) = m+ 1 = 1 +m.

Na verdade, podemos estender a comutatividade dada em (A′3), para quais-
quer m,n ∈ N.

(A′4): Comutatividade:

m+ n = n+m, ∀m,n ∈ N.

Demonstração:
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Sejam m ∈ N fixado e X = {n ∈ N | m+ n = n+m}.
Suponha n ∈ N, tal que m+ n = n+m. Então,
m+ s(n) = m+ (1 + n) - pois, s(n) = n+ 1 = 1 + n

= (m+ 1) + n - por (A′1)
= (1 +m) + n - por (A′3)
= 1 + (m+ n) - por (A′1)
= 1 + (n+m) - pela hipótese de indução
= (1 + n) +m - pela propriedade (A′1)
= s(n) +m. - pois 1 + n = s(n)

Assim, n ∈ X ⇒ s(n) ∈ X e pela Propriedade (A′2), 0 ∈ X. Consequente-
mente, X = N. �

(A′5) Cancelamento da Adição:
Dados m,n, p ∈ N, temos a implicação:

m+ p = n+ p⇒ m = n.

Demonstração:
Dados m,n ∈ N, considere:

X = {p ∈ N | m+ p = n+ p⇒ m = n}.

Obviamente, 0 ∈ X. E se p ∈ X, então,
m+ s(p) = n+ s(p)⇒ m+ (p+ 1) = n+ (p+ 1) - pois s(p) = p+ 1

⇒ (m+ p) + 1 = (n+ p) + 1 - por (A′1)
⇒ s(m+ p) = s(n+ p) - por (A′3)
⇒ m+ p = n+ p - pois s é injetiva
⇒ m = n - pela hipótese de indução.

Logo, s(p) ∈ X. Portanto, X = N. �

X Exerćıcios 40.

(01) Sejam m,n ∈ N. Mostre que se m+ n = 0, então m = n = 0.
Solução:
Suponha, por absurdo, que m+ n = 0, porém n 6= 0, isto é, n ∈ N∗ = s(N)⇒
∃n′ ∈ N, tal que n = s(n′) ⇒ 0 = m + n = m + s(n′) = s(m + n′), con-
trariando o Axioma 2. Assim, n = 0 e pela hipótese e Definição 14, temos
0 = m+ n = m+ 0 = m. Portanto, m = n = 0. �

Multiplicação em N

Definição 16. A multiplicação de m,n ∈ N, denotada por m.n, é definida
como segue: {

m.0 = 0;
m.s(n) = m.n+m.
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Quando necessário, usaremos apenas mn para o produto m.n.

Como N∗ = s(N), segue que está operação está definida para quaisquer
m,n ∈ N.

Exemplos:
Usando as Definições 16 e 14, temos:
(01) 2.0 = 0;

(02) 2.1 = 2.s(0) = 2.0 + 2 = 0 + 2 = 2;

(03) 3.2 = 3.s(1) = 3.1+3 = 3.s(0)+3 = (3.0+3)+3 = (0+3)+3 = 3+3 = 6.

(04) 2.3 = 2.s(2) = 2.2 + 2 = 2.s(1) + 2 = (2.1 + 2) + 2 = (2.s(0) + 2) + 2
= ((2.0 + 2) + 2) + 2 = ((0 + 2) + 2) + 2) = (2 + 2) + 2 = 4 + 2 = 6.

Propriedades da Multiplicação

A Multiplicação definida em N tem as seguintes propriedades:

(M ′
1) Para m ∈ N:

m.0 = 0.m = 0.

Demonstração:
Considere X = {m ∈ N | m.0 = 0.m = 0}. Pela Definição 16, já temos que
m.0 = 0. Resta mostrar que 0.m = 0. Como, 0.0 = 0⇒ 0 ∈ X. E se m ∈ X,
pela Definição 16 e a hipótese de indução, temos:
0.s(m) = 0.m+ 0 = 0 + 0 = 0⇒ s(m) ∈ X ⇒ X = N. �

(M ′
2) Distributividade (à direita):

(m+ n)p = mp+ np, ∀m,n, p ∈ N.

Demonstração:
Sejam m,n ∈ N fixados e considere X = {p ∈ N | (m+ n)p = mp+ np}.
Como (m+ n).0 = 0 = m.0 + n.0, segue que 0 ∈ X. Por outro lado, se p ∈ N
é tal que (m+ n)p = mp+ np, então
(m+ n)s(p) = (m+ n)p+ (m+ n) - Definição 16

= (mp+ np) + (m+ n) - hipótese de indução
= (mp+m) + (np+ n) - propriedades (A′4) e (A′1)
= m.s(p) + n.s(p) - Definição 16.

Portanto, p ∈ X ⇒ s(p) ∈ X. Assim, X = N. �
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(M ′
3) Existência e Unicidade do Elemento Unidade:

m.1 = 1.m = m, ∀m ∈ N.

Sendo 1 o único elemento em N com esta propriedade.

Demonstração:
Por (M ′

1), essa propriedade é válida para m = 0. Além disso, pela Definição
16 e (M ′

1), para todo m ∈ N, tem-se:

m.1 = m.s(0) = m.0 +m = 0 +m = m.

Em particular, para m = 1, temos 1.1 = 1. Agora, se m ∈ N é tal que

m.1 = 1.m = m

então,
1.s(m) = 1.m+ 1 = m.1 + 1.1 = (m+ 1).1 = s(m).1.

Portanto, essa propriedade vale para todo natural m.

Resta mostrar a unicidade. Se existe 1′ ∈ N, tal que 1′.m = m.1′ = m,
para todo m ∈ N. Como 1, 1′ ∈ N, segue que 1 = 1.1′ = 1′. �

(M ′
4) Comutatividade:

m.n = n.m, ∀,m, n ∈ N.

Demonstração:
Fixado m ∈ N, seja n ∈ N, tal que m.n = n.m. Usando (M ′

3) e (M ′
2) e a

hipótese de indução:

m.s(n) = m.n+m = n.m+ 1.m = (n+ 1).m = s(n).m.

Assim, temos a implicação m.n = n.m⇒ m.s(n) = s(n).m e como m.0 = 0.m,
segue a validade da propriedade para quaisquer m,n ∈ N. �

Usando a comutivativa, podemos estender a distributividade para também
à esquerda, isto é, para todo m,n, p ∈ N:

p(m+ n) = pm+ pn.

(M ′
4) Associatividade:

(mn)p = m(np), ∀m,n, p ∈ N.

Demonstração:
Sejam m,n ∈ N fixados e considere o conjunto:

X = {p ∈ N | (mn)p = m(np)}.
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Pela Definição 16, temos:

(mn).0 = 0 = m.(n.0)⇒ 0 ∈ X.

Além disso, por (M ′
3), temos que (mn).1 = mn = m(n.1)⇒ 1 ∈ X.

Assim, se p ∈ X, então (mn)p = m(np). Dáı,
(mn).s(p) = (mn)p+mn - Definição 16

= (mn)p+ (mn).1 - por (M ′
3)

= m(np) + (mn).1 - hipótese de indução
= m(np) +m(n.1) - 1 ∈ X
= m(np+ n.1) - pela distributividade
= m(n(p+ 1)) -pela distributividade
= m(n.s(p)).

Assim,

(mn).s(p) = m(n.s(p))⇒ s(p) ∈ X ⇒ X = N.

�

3 Ordem em N

Definiremos agora uma relação em N, que nos permite colocar os números
naturais em uma sequência, formalizando assim a idéia intuitiva que temos de
ordem nesse conjunto.

Se m ≤ n, diz-

se também que

n é maior do

que ou igual a

m.

Definição 17. Dados m,n ∈ N, dizemos que m é menor do que ou igual a n,
simbolicamente escrevemos m ≤ n, se existe p ∈ N, tal que

n = m+ p.

Dizemos que m é (estritamente) menor do que n, e escrevemos m < n, se
m ≤ n, porém m 6= n, isto é, existe p ∈ N∗, tal que n = m+ p.

Exemplos:
(01) 4 ≤ 6, pois 6 = 4 + 2;
(02) 4 ≤ 4, pois 4 = 4 + 0;
(03) 4 < 6, pois 4 = 6 + 2 e 2 6= 0.

X Exerćıcios 41.

(01) Sejam m,n ∈ N. Mostre que se m < n, então m+ 1 ≤ n.
Solução:
m < n⇒ n = m+ p, com p ∈ N∗ ⇒ p = s(p′) = p′ + 1. Assim,

n = m+ (p′ + 1) = (m+ 1) + p′ ⇒ m+ 1 ≤ n.

�
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Propriedades da Relação de Ordem em N

Vejamos algumas propridades que tem a relaçao de ordem, definida acima.

A relação ≤, definida em N, tem as seguintes propriedades:

(R′1) Reflexiva:
Para qualquer m ∈ N, tem-se

m ≤ m.

Demonstração:
Como m = m+ 0⇒ m ≤ m. �

(R′2) Antissimétrica:
Para quaisquer m,n ∈ N tem-se:

m ≤ n e n ≤ m⇒ m = n.

Demonstração:
Se m ≤ n⇒ n = m+ p1, p1 ∈ N;
e
n ≤ m⇒ m = n+ p2, p2 ∈ N.
Usando a propriedade (A′5) e Exerćıcio 40, segue que: m = m + (p1 + p2) ⇒
p1 + p2 = 0⇒ p1 = p2 ⇒ m = n. �

(R′3) Transistiva:
Para quaisquer m, n, p ∈ N, tem-se:

m ≤ n e n ≤ p⇒ m ≤ p.

Demonstração:
m ≤ n⇒ n = m+ q1, q1 ∈ N
e
n ≤ p⇒ p = n+ q2, q2 ∈ N.
Dáı,
p = n+ q2 = (m+ q1) + q2 = m+ (q1 + q2)p ≤ m. �

Por possuir as propriedades (R′1), (R′2) e (R′3), dizemos que ≤ é uma relação
de ordem em N e que N é um conjunto ordenado. Veremos que esta ordem com-
pat́ıvel com as operações definidas em N, conforme propriedade (R′4) abaixo.

(R′4) Monotonicidade:
Sejam m,n ∈ N. Se

m ≤ n,

então, para qualquer número natural p, também temos:
(i) m+ p ≤ n+ p;



Teoria dos Números 169

(ii) mp ≤ np.

Demonstração:
Suponha m ≤ n, então existe h ∈ N, tal que n = m+ h. Segue dáı que:
(i) (n+ p) = (m+ p) + h⇒ m+ p ≤ m+ p
e
(ii) np = (m+ h)p = mp+ hp⇒ mp ≤ np.

�

(R′5) Tricotomia em N:
Para quaisquer m e n ∈ N, verifica-se uma, e somente uma, das condições:
(i) m < n;
(ii) m = n;
(iii) n < m.

Demonstração:
Inicialmente, vamos mostrar que quaisquer duas delas não podem ocorrer si-
multaneamente. Por definição, (ii) é incompat́ıvel com (i) e com (ii). Supon-
hamos que tenhamos as condições (i) e (iii) simultaneamente, isto é, m < n e
n < m. Então, existem p, p′ ∈ N∗ tais que:

n = m+ p e m = n+ p′ ⇒ m+ 0 = m+ (p+ p′)⇒ 0 = p+ p′

Pelo Exerćıcio 40 acima, segue que p = p′ = 0, uma contradição. Assim,
quaisquer duas delas não podem ocorrer simultaneamente. Resta mostrar que
uma delas sempre ocorre.

Considere m ∈ N fixado e n arbitrário. Mostraremos, usando indução em
n. Seja

X = {n ∈ N | m < n ou m = n ou n < n}.

Como m ∈ N é arbitrário, então

m = 0 ou m 6= 0⇒ m = s(m′) > 0.

Logo, 0 ∈ X.
Suponha agora, n ∈ X ⇒ m < n ou m = n ou n < m. Vejamos o que pode-se
deduzir sobre s(n) em cada uma dessas situações:
(i) m < n:
⇒ ∃ p ∈ N∗, tal que n = m+ p⇒ s(n) = n+ 1 = m+ (p+ 1)⇒ s(n) > m;
(ii) m = n:
⇒ s(n) = s(m) = m+ 1⇒ s(n) > m;
(iii) n < m:
⇒ ∃ p ∈ N∗, tal que m = n+ p. Como p 6= 0⇒ p = p′ + 1
⇒ m = (n + 1) + p′ ⇒ m = s(n) + p′ ⇒ s(n) = m, se p′ = 0 ou s(n) < m, se
p′ 6= 0.
Assim, n ∈ X ⇒ s(n) ∈ X. Portanto, X = N. �
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Com uso da tricotomia, podemos também enunciar a propriedade do can-
celamento para a multiplicação em N.

(R′6) Cancelamento na Multiplicação:
Sejam m,n, p ∈ N. Se

mp = np, com p 6= 0, então m = n.

Demonstração:
Suponhamos que temos a identidade mp = np, porém m 6= n. Pela Tricoto-
mia, segue que m < n ou n < m. Como p 6= 0, segue que mp < np ou np < mp
(veja questão 16), contrariando a hipótese. Assim, necessariamente, m = n.�

4 Prinćıpio da Boa Ordem em N

Lembremos que s0 é o elemento mı́nimo de um subconjunto S ⊂ N, isto é,
s0 = minS, se s0 ∈ S e s0 ≤ x, para todo x ∈ S.

Exemplos:
(01) Considere S = {7, 14, 23, 28, 29, 30, 31...} ⊂ N.
Tomemos agora o conjunto:

X = {n ∈ N | n ≤ x, ∀x ∈ S} = {0, 1, 2, 3, 4, 5, 6, 7}

X é um subconjunto próprio de N (isto é, X ⊂ N, porém X 6= N) que contém
0. Pelo Axioma 3, isso implica existir x ∈ X, tal que s(x) 6∈ X. No caso, esse
elemento é 7 e observe que 7 = minS.

(02) Seja S = {23, 45, 60, 80, 203} ⊂ N.
Tomemos agora o conjunto

X = {n ∈ N | n ≤ x, ∀x ∈ S} = {0, 1, 2, 3, 4, ...., 23}

Como 0 ∈ X e X & N, então existe x ∈ X, tal que s(x) 6∈ X. No caso,
x = 23 = minS.

Vamos generalizar o que foi feito acima, para mostrar o Prinćıpio da Boa
Ordem em N.

Teorema 15. (Prinćıpio da Boa Ordem em N)
Todo subconjunto não vazio de N tem elemento mı́nimo.

Demonstração:
Seja S um subconjnto não vazio de N. Vamos mostrar que existe s0 = minS.
Como nos exemplos acima, vamos considerar o conjunto:

X = {n ∈ N | n ≤ x, ∀x ∈ S}.
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S 6= ∅, logo existe s ∈ S e como s < s + 1 ⇒ s + 1 6∈ X. Por outro lado,
0 ≤ x,∀x ∈ N, logo 0 ∈ X. Assim, X é um subconjunto próprio de N
que contém 0. Pelo Axioma 3, deve necessariamente exitir s0 ∈ X, porém
s(s0) = s0 + 1 6∈ X. Vamos mostrar que s0 = minS. De fato, com s0 ∈ X,
então s0 ≤ x,∀x ∈ S. Resta mostrar que s0 ∈ S. Suponha, por absurdo,
que isso não ocorra, isto é, s0 6∈ S. Neste caso, temos a desigualdade estrita
s0 < x, ∀x ∈ S. Pelo Exerćıcio 41, temos s0 + 1 ≤ x,∀x ∈ S ⇒ s(s0) ∈ X,
uma contradição. Assim, s0 ∈ S, sendo portanto s0 = minS. �
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Lista de Exerćıcios 15.

(01) Moste que se os elementos do conjunto {0, s(0), s(s(0)), s(s(s(0))), ....} são
todos distintos.

(02) Mostre que s(N) = N∗.

(03) Mostre que para quaisquer m,n ∈ N, a soma m + n está perfeitamente
definida.

(04) Usando a Definição 14, calcule:
(a) 2 + 5;
(b) 4 + 9;

(05) Mostre que para quaisquer m,n ∈ N, tem-se, m + n = sn(m), onde
s0 é a função identidade em N e para n = 1, 2, 3, ..., sn = s ◦ s ◦ ... ◦ s︸ ︷︷ ︸

n×

.

(06) Usando a questão (05), calcule:
(a) 7 + 8
(b) 8 + 7
(c) 8 + 0
(d) 0 + 8

(07) Mostre que a multiplicação em N está definida, quaisquer que sejam
m,n ∈ N.

(08) Usando a Definição 16, calcule:
(a) 3.5
(b) 0.5
(c) 5.5
(d) 8.10

(09) Mostre que para quaisquer números naturais m e n ≥ 1, tem-se m.n =
m+m+ ...+m︸ ︷︷ ︸

n×

.

(10) Responda e justifique:
(a) 8 ≤ 8?
(b) 8 < 8?
(c) 8 ≤ 9?
(d) 8 < 9?
(e) 9 < 8?

(11) Mostre que para todo n ∈ N, s(n) > 0.

(12) Sejam m,n ∈ N. Mostre que m.n = 0⇒ m = 0 ou n = 0.

(13) Mostre que para todo n ∈ N, n > 0. Em particular, 1 > 0.
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(14) Mostre que s(n) > n, para todo n ∈ N.

(15) Sejam m,n, p ∈ N. Mostre que m < n, então m+ p < n+ p.

(16) Sejam m,n, p ∈ N. Mostre que m < n e p 6= 0, então mp < np.

(17) Sejam m,n, p ∈ N. Mostre que m+ p ≤ n+ p, então m ≤ n.

(18) Sejam m,n, p ∈ N. Mostre que mp ≤ np e p 6= 0, então m ≤ n.

(19) Sejam m,n naturais. Mostre que m+ n = 1⇒ m = 1 ou n = 1.

(20) Sejam a ∈ N e X ⊂ N. Mostre que se X satisfaz simultaneamente as
condições:
a ∈ X e x ∈ X ⇒ s(x) ∈ X, então X = {a, s(a), s(s(a)), ...}.



Caṕıtulo 16

A Construção de Z

1 Introdução

Neste Caṕıtulo faremos a construção teórica do conjunto Z dos números in-
teiros e então provaremos as propriedades apresentadas, como axiomas, no
Caṕıtulo 1.

A equação

x+ 2 = 7

tem uma única solução no conjunto dos números naturais. Embora, a ”sub-
tração” não esteja definida em N, sabemos que a solução é obtida, efetuando
a diferença 7− 2.

Por outro, a equação

x+ 7 = 2

não tem solução em N. Nesse caso, a solução (2− 7) não pertence ao conjunto
dos naturais. Nosso objetivo, é então ”ampliar”o conjunto dos naturais, us-
ando tão somente o recurso teórico desenvolvido no caṕıtulo anterior, para um
conjunto que contenha também as soluções de equações desse tipo.

Generealizando, para cada par de números naturais (a, b), sabemos que a
solução da equação

x+ b = a

é dada pelo ”número”a− b. Assim, para cada par de números naturais (a, b),
podemos definir o número inteiro z(a, b) := a− b e o conjunto Z, dos números
inteiros, por:

Z = {z(a, b) | a, b ∈ N}

Essa estratégia apresenta dois inconvenientes a serem contornados:
(i) Existem infinitos pares de naturais (a1, b1), (a2, b2), (a3, b2), ...., cuja diferença
geram o mesmo inteiro z. Por exemplo, (7, 2), (22, 17), (5, 0) representam o
mesmo inteiro. Logo, os elementos em Z não são todos distintos;
(ii) A diferença a− b não foi definida em N;

174
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Para contornar o primeiro problema, podemos definir uma relação de equiva-
lência, de modo que todos os pares de números naturais que gerem o mesmo
inteiro, pertençam à mesma classe de equivalência. E definimos o inteiro, não
como a diferença, e sim como a classe de equivalência, a qual conterá todos
os pares relacionados entre si. Desses modo, pares que geram o mesmo inteiro
serão visto como um único objeto. Assim, se a − b = c − d, então diremos
que (a, b) e (c, d) estão relacionados pela relação em questão. Representando
a relaçao por ∼, podemos definir:

(a, b) ∼ (c, d)⇔ a− b = c− d.

Por fim, precisamos eliminar dessa definição a ”diferença”, por não ser uma
operação definida em N. Como a− b = c− d⇔ a+ d = b+ c. Então, diremos
que (a, b) ∼ (c, d)⇔ a+ d = b+ c. Formalizaremos tudo a seguir.

2 A Relação de Equivalencia em N× N

Definamos no conjunto N× N = {(a, b) | a, b ∈ N} a seguinte relação:

(a, b) ∼ (c, d)⇔ a+ d = b+ c.

Exemplos:
(01) (11, 6) ∼ (8, 3), pois 11 + 3 = 6 + 8;
(02) (0, 7) ∼ (2, 9), pois 0 + 9 = 7 + 2;
(03) (1, 4) 6∼ (4, 1), pois 1 + 1 6= 4 + 4.

A relação definida acima tem as seguintes propriedades para quaisquer
(a, b), (c, d), (e, f) ∈ N× N:

(1) Reflexiva: (a, b) ∼ (a, b).
Demonstração:
Pela comutativade da adição em N, temos a+ b = b+ a⇒ (a, b) ∼ (a, b). �

(2) Simétrica: Se (a, b) ∼ (c, d)⇒ (c, d) ∼ (a, b).
Demonstração:
Se (a, b) ∼ (c, d)⇒ a+ d = b+ c⇒ c+ b = d+ a⇒ (c, d) ∼ (a, b). �

(3) Transitiva: Se (a, b) ∼ (c, d) e (c, d) ∼ (e, f), então (a, b) ∼ (e, f).
Demonstração:
(a, b) ∼ (c, d)⇒ a+ d = b+ c
e
(c, d) ∼ (e, f)⇒ c+ f = d+ e.
Pela comutatividade e associativade em N, segue então que

(a+ d) + (c+ f) = (b+ c) + (d+ e)⇒ (a+ f) + (d+ c) = (b+ e) + (d+ c).
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Pelo cancelamento da adição em N, obtemos:

a+ f = b+ e⇒ (a, b) ∼ (e, f).

�

Fica dessa forma provada que ∼ é uma relação de quivalência em N× N.

3 Classes de Equivalência

Para cada (a, b) ∈ N × N, denotaremos por (a, b), o conjunto de todos os
elementos de N× N, que estão relacionados com (a, b) pela relação ∼:

(a, b) := {(c, d) ∈ N× N | (a, b) ∼ (c, d)}.

(a, b) é chamado a classe de equivalência de (a, b) pela relação de equivalência
∼. Cada elemento desse conjunto é chamado um representante da classe.

Exemplos:

(01) (3, 1) = {(x, y) ∈ N2 | (3, 1) ∼ (x, y)} = {(x, y) ∈ N2 | 3 + y = x+ 1}
= {(y + 2, y) | y ∈ N} = {(2, 0), (3, 1), (4, 2), (5, 3), ...};

(02) (2, 7) = {(x, y) ∈ N2 | (2, 7) ∼ (x, y)} = {(x, y) ∈ N2 | 2 + y = 7 + x}
= {(x, 5 + x) | x ∈ N} = {(0, 5), (1, 6), (2, 7), (3, 8), ...}.

(03) (4, 4) = {(x, y) ∈ N2 | (4, 4) ∼ (x, y)} = {(x, y) ∈ N2 | 4 + y = 4 + x}
= {(x, x) | x ∈ N} = {(0, 0), (1, 1), (2, 2), (3, 3), ...}.

Como ∼ é uma relação reflexiva, então para todo par (a, b) ∈ N × N,
tem-se que (a, b) ∈ (a, b). Assim, se (a, b) = (c, d), então (a, b) ∼ (c, d).
Reciprocamente, se (a, b) ∼ (c, d), então dado (x, y) ∈ (a, b) ⇒ (x, y) ∼ (a, b)
e como temos (a, b) ∼ (c, d), por transitividade, tem-se que (x, y) ∼ (c, d) ⇒
(x, y) ∈ (c, d) ⇒ (a, b) ⊂ (c, d). De modo análogo, obtemos a inclusão no
outro sentido. Portanto, temos um resultado análogo ao que foi obtido para a
relação de congruência definida em Z, estuda no Caṕıtulo 9:

(a, b) = (c, d)⇔ (a, b) ∼ (c, d).

Na verdade, esse é um resulto válida em qualquer relação de equivalencia:

Classes de equivalência iguais ⇔ seus representantes estão relacionados.

Exemplos: Usando os exemplos anteriores, da observação acima, temos que:
(01) (2, 0) = (3, 1) = (4, 2) = (200, 198);
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(02) (0, 5) = (2, 7) = (1, 6) = ... = (314, 319);

(03) (0, 0) = (1, 1) = (4, 4) = ... = (415, 415).

4 O Conjunto dos Números Inteiros
o Śımbolo

Z vem da

palavra alemã

Zahl, que

significa

número.

O Conjunto de todas as classes de equivalência, pela relação ∼, é denotado
por Z e chamado o conjunto dos números inteiros. Então, por definição,

Z := {(a, b) | a, b ∈ N}.

Dessa forma, cada número inteiro α ∈ Z é na verdade uma classe de
equivalência, isto é,

α := (a, b) = {(x, y) ∈ N× N | a+ x = b+ y}

sendo portando, um conjuto de pares ordenados de números naturais.

A construção de Z foi pensado como uma extensão de N. Porém, esses con-
juntos tem objetos de naturezas distintas. A próxima proposição mostra como
podemos associar a cada número natural m uma única classe de equivalência
em Z, e assim ”enxergar” N como subconjunto de Z.

Proposição 20. A função f : N→ Z, definida por:

f(m) = (m, 0)

é injetora.

Demonstração:
Sejam m1,m2 ∈ N, tais que:

f(m1) = f(m2)⇒ (m1, 0) = (m2, 0)⇒ (m1, 0) ∼ (m2, 0)⇒ m1+0 = 0+m2 ⇒ m1 = m2.

Logo, f é injetora. �

A imagem de f é o conjunto:

f(N) = {(m, 0) | m ∈ N} ⊂ Z.

E como f é injetora, então a restrição f : N→ f(N) é uma bijeção, logo temos
que N ' f(N) ⊂ Z. Assim, por meio da identifição

m↔ (m, 0)

podemos pensar N como um subconjunto de Z. A função f , definida na
proposição acima, é chamada imersão de N em Z.
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Exemplos:
Com a identicação acima tem-se que:
� 0 corresponde ao inteiro (0, 0) = {(m,m) | m ∈ N};
� 1 corresponde ao inteiro (1, 0) = {(m+ 1,m) | m ∈ N};
...
� 7 corresponde ao inteiro (7, 0) = {(m+ 7,m) | m ∈ N}.
...
No geral, para a ∈ N, usaremos
a para representar o inteiro (a, 0) = {(m+ a,m) | m ∈ N}.

5 Operações em Z

Definiremos agora duas operações Z, uma adição (+) e uma multiplicação (.).

Adição em Z

Definição 18. Dados (a, b), (c, d) ∈ Z, definimos a soma (a, b) + (b, c) como
abaixo:

(a, b) + (c, d) = (a+ c, b+ d).

Exemplos:
(01) (3, 4) + (9, 2) = (12, 6);
(02) (10, 11) + (15, 8) = (25, 19);
(03) (3, 3) + (14, 3) = (17, 6);
(04) (5, 2) + (2, 5) = (7, 7).

Uma vez que a classe representante da soma é obtida operando-se com os
representes tomados para as classes, precisamos garantir que essa operação
está bem definido, isto é, independe do representante escolhido para a classe.

Proposição 21. Sejam a, a′, b, b′, c, c′, d, d′ ∈ N. Se

(a, b) = (a′, b′) e (c, d) = (c′, d′),

então
(a, b) + (c, d) = (a′, b′) + (c′, d′).

Demonstração:
(a, b) = (a′, b′)⇒ (a, b) ∼ (a′, b′)⇒ a+ b′ = b+ a′

e
(c, d) = (c′, d′)⇒ (c, d) ∼ (c′, d′)⇒ c+ d′ = d+ c′.
Segue dáı, que:

(a+ b′) + (c+ d′) = (b+ a′) + (d+ c′).

Pela comutatividade e associatividade da adição em N, tem-se:

(a+ c) + (b′ + d′) = (b+ d) + (a′ + c′)
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⇓ (pela definição de ∼)

(a+ c, b+ d) ∼ (a′ + c′, b′ + d′)

⇓ (elementos relacionados, classes iguais)

(a+ c, b+ d) = (a′ + c′, b′ + d′)

⇓ (Definição 18)

(a, b) + (c, d) = (a′, b′) + (c′, d′).

�

Veremos que a função imersão definida na Proprosição 20 preserva a soma,
conforme dado na proposição a seguir.

Proposição 22. Considerando a função imersão f : N → Z, definida na
Proposição 20, para quaisquer m1,m2 ∈ N, tem-se:

f(m1 +m2) = f(m1) + f(m2)

Demonstração:
De fato, dados m1,m2 ∈ N, então

f(m1 +m2) = (m1 +m2, 0) = (m1, 0) + (m2, 0) = f(m1) + f(m2).

�

Propriedades da Adição em Z

A adição definida em Z tem as seguintes propriedades:

(A1) Comutativa:
Para quaisquer α e β ∈ Z, tem-se:

α + β = β + α.

Demonstração:
Sejam α = (a, b), β = (c, d) ∈ Z. Usando a a comutatividade da adição em N,
temos:
α + β = (a, b) + (c, d)

= (a+ c, b+ d)
= (c+ a, d+ b)
= (c, d) + (a, b)
= β + α. �
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(A2) Associativa:
Para quaisquer α, β e γ ∈ Z, tem-se:

(α + β) + γ = α + (β + γ).

Demonstração:
Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z. Usando a associativada e a
comutatividade da adição em N, temos:
(α + β) + γ = ((a, b) + (c, d)) + (e, f)

= (a+ c, b+ d) + (e, f)
= ((a+ c) + e, (b+ d) + f)
= (a+ (c+ e), b+ (d+ f))
= (a, b) + ((c+ e), (d+ f))
= (a, b) + ((c, d) + (e, f))
= α + (β + γ). �

(A3) Existencia e Unicidade do Elemento Neutro da Adição:
A classe 0 = (0, 0) ∈ Z é elemento neutro da adição, isto é, para qualquer
α ∈ Z, tem-se:

α + 0 = α.

Demonstração:
De fato, como 0 é o elemento neutro da adição em N, então dado α = (a, b) ∈ Z:

α + 0 = (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b) = α.

�

A demonstração da unicidade é análoga àquela feita para a adição em N. �

(A4) Existência e unicidade do oposto:
Para todo α ∈ Z, existe um único β ∈ Z, tal que

α + β = 0.

Demonstração:
Dado α = (a, b) ∈ Z, tomando β = (b, a) ∈ Z, temos:

α + β = (a, b) + (b, a) = (a+ b, b+ a) = (0, 0) = 0.

Se β e β′ ∈ Z são tais que α + β = α + β′ = 0, segue das propriedades
(A1), (A2) e (A3) acima que:

β = β + 0 = β + (α + β′) = (β + α) + β′ = 0 + β′ = β′.

�
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Assim, dado α ∈ Z, existe um único β ∈ Z, tal que α+ β = 0. O inteiro β
é chamado o oposto, (simétrico ou inverso aditivo) de α e denotado por −α.
Assim, para qualquer α ∈ Z, tem-se:

α + (−α) = 0.

(A5) Cancelamento da adição em Z:
Para quaisquer α, β, γ ∈ Z, temos a implicação:

α + γ = β + γ ⇒ α = β.

Demonstração:
Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z. Então:
α + γ = β + γ ⇒ (a, b) + (e, f) = (c, d) + (e, f)

⇒ (a+ e, b+ f) = (c+ e, d+ f) - Definição 18
⇒ (a+ e, b+ f) ∼ (c+ e, d+ f) - classes iguais, representantes

relacionados
⇒ (a+ e) + (d+ f) = (b+ f) + (c+ e) - definição da relação ∼
= (a+ d) + (e+ f) = (b+ c) + (e+ f) - por (M’1) e (M’5) em N
⇒ a+ d = b+ c - cancelamento da adição em N
⇒ (a, b) ∼ (c, d) - definição de ∼
⇒ (a, b) = (c, d) - elementos relacionaos, classes iguais
⇒ α = β. �

Multiplicação em Z

Definição 19. Dados (a, b), (c, d) ∈ Z definimos o produto (a, b).(b, c) como
abaixo:

(a, b).(c, d) = (ac+ bd, ad+ bc).

Exemplos:
(01) (3, 4).(9, 2) = (3.9 + 4.2, 3.2 + 4.9) = (35, 42);
(02) (10, 11).(15, 8) = (10.15 + 11.8, 10.8 + 11.15) = (238, 245);
(03) (3, 3).(14, 3) = (3.14 + 3.3, 3.3 + 3.14) = (51, 51);
(04) (5, 2).(4, 3) = (5.4 + 2.3, 5.3 + 2.4) = (26, 23).

Mostraremos agora que a multiplicação definida acima, independe do rep-
resentante escolhido para a classe.

Proposição 23. Sejam a, a′, b, b′, c, c′, d, d′ ∈ N. Se

(a, b) = (a′, b′) e (c, d) = (c′, d′),

então
(a, b).(c, d) = (a′, b′).(c′, d′).
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Demonstração:
Da hipótese (a, b) = (a′, b′) e (c, d) = (c′, d′), obtemos as identidades

a+ b′ = b+ a′ (16.1)

e
c+ d′ = d+ c′ (16.2)

Multiplicando (16.1) por c e por d obtemos as equações:

ac+ b′c = bc+ a′c e ad+ b′d = bd+ a′d

De onde segue, que:

(ac+ b′c) + (bd+ a′d) = (bc+ a′c) + (ad+ b′d)

ou ainda,
(ac+ bd) + (b′c+ a′d) = (ad+ bc) + (a′c+ b′d) (16.3)

Multiplicando agora (16.2) por b′ e depois por a′, obtemos as equações:

b′c+ b′d′ = b′d+ b′c′ e a′c+ a′d′ = a′d+ a′c′

E dáı, segue:

(b′c+ b′d′) + (a′d+ a′c′) = (b′d+ b′c′) + (a′c+ a′d′)

ou ainda,

(b′c+ a′d) + (a′c′ + b′d′) = (a′c+ b′d) + (b′c′ + a′d′) (16.4)

Somando as equações (16.3) e (16.4) obtemos:

[(ac+bd)+(b′c+a′d)]+[(a′c+b′d)+(b′c′+a′d′)] = [(ad+bc)+(a′c+b′d)]+[(b′c+a′d)+(a′c′+b′d′)]

usando a comutatividade e associatividade em N:

(ac+bc)+(a′d′+b′c′)+[(a′c+b′d)+(b′c+a′d)] = (ad+bc)+(a′c′+b′d′)+[(a′c+b′d)+(b′c+a′d)]

Pelo cancelamento da adição em N, obtem-se:

(ac+ bc) + (a′d′ + b′c′) = (ad+ bc) + (a′c′ + b′d′)

⇓
(ac+ bc, ad+ bc) ∼ (a′c′ + b′d′, a′d′ + b′c′)

⇓
(ac+ bd, ad+ bc) = (a′c′ + b′d′, a′d′ + b′c′)

⇓
(a, b).(c, d) = (a′, b′).(c′, d′).

�

A próxima proposiçao mostra que a função imersão f : N → Z também
preserva o produto.
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Proposição 24. Considerando a função imersão f : N → Z, definida na
Proposição 20, para quaisquer m1,m2 ∈ N tem-se:

f(m1.m2) = f(m1).f(m2)

Demonstração:
Se m1,m2 ∈ N, então
f(m1.m2) = (m1m2, 0) = (m1m2 + 0, 0 + 0)

= (m1m2 + 0.0, m1.0 + 0.m2) = (m1, 0).(m2, 0) = f(m1).f(m2). �

Propriedades da Multiplicação em Z

A Multiplicação, definida em Z, tem as seguintes propriedades:

(M1) Associativa:
Para quaisquer α, β e γ ∈ Z, tem-se:

(αβ)γ = α(βγ).

Demonstração:
Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z. Usando a associativada e a
comutatividade da adição em N, temos:
(αβ)γ = ((a, b).(c, d)).(e, f)

= (ac+ bd, ad+ bc).(e, f)
= ((ac+ bd)e+ (ad+ bc)f, (ac+ bd)f + (ad+ bc)e)
= ((ac)e+ (bd)e+ (ad)f + (bc)f, (ac)f + (bd)f + (ad)e+ (bc)e)
= ((a(ce) + a(df)) + (b(de+ b(cf)), (a(cf) + a(de)) + (b(df) + b(ce))
= (a(ce+ df) + b(cf + de), a(cf + de) + b(ce+ df))
= (a, b).(ce+ df), (cf + de)
= (a, b).((c, d).(e, f))
= α(βγ). �

(M2) Comutativa:
Para quaisquer α, β ∈ Z tem-se:

αβ = βα.

Demonstração:
Sejam α = (a, b) e β = (c, d) ∈ Z. Então
αβ = ((a, b).(c, d)) = (ac+ bd, ad+ bc) = (ca+ db, cb+ da) = (c, d).(a, b) =
βα. �

(M3) Existência e Unicidade do Elemento Unidade:
A classe 1 = (1, 0) é o elemento neutro da multiplicação, isto é, para todo
α ∈ Z, tem-se:

α.1 = α.
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Demonstração:
Para α = (a, b) ∈ Z, temos:

α.1 = (a, b).(1, 0) = (a.1 + b.0, a.0 + b.1) = (a, b) = α.

Mostra-se também que 1 = (1, 0) é o único elemento em Z com esta pro-
priedade, sendo chamado o elemento unidade de Z. �

(M4) Cancelamento da Multiplicação em Z:
Sejam α, β, γ ∈ Z.

Se αγ = βγ e γ 6= 0, então α = β.

Demonstração:

Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z, comγ 6= 0. Se
αγ = βγ ⇒ (ae+ bf, af + be) = (ce+ df, cf + de)

⇒ (ae+ bf, af + be) ∼ (ce+ df, cf + de)
⇒ (ae+ bf) + (cf + de) = (af + be) + (ce+ df)
⇒ (a+ d)e+ (b+ c)f = (b+ c)e+ (a+ d)f .

Como γ = (e, f) 6= (0, 0)⇒ e 6= f . Logo, pela Tricotomia em N, e < f ou
f < e. Suponhamos e < f ⇒ f = e+ h, para algum h ∈ N∗. Dáı, temos:
αβ = αγ ⇒ (a+ d)e+ (b+ c)(e+ h) = (b+ c)e+ (a+ d)(e+ h)

⇒ (a+ d)e+ (b+ c)e+ (b+ c)h = (b+ c)e+ (a+ d)e+ (a+ d)h
⇒ (b+ c)h = (a+ d)h
⇒ (b+ c) = (a+ d)⇒ (a, b) ∼ (c, d)⇒ (a, b) = (c, d)⇒ α = β. �

(M5) Distributividade:
Para quaisquer α, β, γ ∈ Z, tem-se:

α(β + γ) = αβ + αγ.

Demonstração:
Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z. Então
α(β + γ) = (a, b).((c, d) + (e, f))

= (a, b).(c+ e, d+ f) - Definição 19
= (a(c+ e) + b(d+ f), a(d+ f) + b(c+ e)) - Definção 19
= (ac+ bd) + (ae+ bf), (ad+ bc) + (af + be)) - Por (M1),(M2) e

(M3) em N
= (ac+ bd, ad+ bc) + (ae+ bf, af + be) - Definição 18
= (a, b).(c, d) + (a, b).(e, f) - Definição 19
= αβ + αγ. �



Teoria dos Números 185

6 Relação de Ordem em Z

Análogo ao que fizemos no conjunto dos naturais, definiremos uma relação em
Z, a qual permite comparar dois inteiros α e β quaisquer.

Definição 20. Dados inteiros α = (a, b) e β = (c, d), dizemos que α é menor
do que β, indicado por α ≤ β, se a+ d ≤ b+ c, isto é,

(a, b) ≤ (c, d)⇔ a+ d ≤ b+ c.

E dizemos que α é (estritramente) menor do que β, indicado por α < β, se
α ≤ β, porém α 6= β, isto é,

(a, b) < (c, d)⇔ a+ d < b+ c.

Exemplos:
(01) (5, 2) ≤ (10, 3), pois 5 + 3 < 2 + 10;
(02) (18, 10) ≤ (9, 1), pois 18 + 1 = 10 + 9;
(03) (5, 10) < (3, 3), pois 5 + 3 < 10 + 3.

A próxima proposição mostra que a relação ≤, definida acima, independe
do representante escolhido para a classe, portanto, está bem definida.

Proposição 25. Sejam a, a′, b, b′, c, c′, d, d′ ∈ N. Se

(a, b) = (a′, b′) e (c, d) = (c′, d′),

então

(a, b) ≤ (c, d)⇒ (a′, b′) ≤ (c′, d′).

Demonstração:
(a, b) = (a′, b′)⇒ (a, b) ∼ (a′, b′)⇒ a+ b′ = b+ a′

e
(c, d) = (c′, d′)⇒ (c, d) ∼ (c′, d′)⇒ c+ d′ = d+ c′.
E dáı, obtemos (a+ d) + (b′ + c′) = (b+ c) + (a′ + d′).
Então se, (a, b) ≤ (c, d)⇒ a + d ≤ b + c⇒ (b + c) = (a + d) + h, para algum
h ∈ N. Dáı,
(a+d)+(b′+c′) = (b+c)+(a′+d′)⇒ (a+d)+(b′+c′) = (a+d)+(a′+d′)+h
e pelo cancelamento em N, obtemos:
(b′ + c′) = (a′ + d′) + h⇒ a′ + d′ ≤ b′ + c′ ⇒ (a′, b′) ≤ (c′, d′). �
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Propriedades da Relação de Ordem em Z

A relação ≤, definida em Z, tem as seguintes propriedades:

(R1) Reflexiva:
Para qualquer α ∈ Z, tem-se

α ≤ α.

Demonstração:
Seja α = (a, b) ∈ Z. Como a+ b = b+ a⇒ α ≤ α. �

(R2) Antissimétrica:
Para quaisquer α, β ∈ Z tem-se:

α ≤ β e β ≤ α⇒ α = β.

Demonstração:
Sejam α = (a, b) e β = (c, d) ∈ Z. Se,
α ≤ β ⇒ a+ d ≤ b+ c⇒ (b+ c) = (a+ d) + h1, h1 ∈ N;
e
β ≤ α⇒ b+ c ≤ a+ d⇒ (a+ d) = (b+ c) + h2, h2 ∈ N.
Segue dáı, que
(b+ c) = (b+ c) + (h1 + h2)⇒ h1 + h2 = 0⇒ h1 = h2 = 0⇒ a+ d = b+ c⇒
(a, b) ∼ (c, d)⇒ (a, b) = (c, d)⇒ α = β. �

(R3) Transistiva:
Para quaisquer α, β, γ ∈ Z, tem-se:

α ≤ β e β ≤ γ ⇒ α ≤ γ.

Demonstração:
α ≤ β ⇒ (b+ c) = (a+ d) + h1, h1 ∈ N
e
β ≤ γ ⇒ (d+ e) = (c+ f) + h2, h1 ∈ N.
Dáı,
(b+ c) + (d+ e) = (a+ d) + (c+ f) + (h1 + h2)
⇒ (b+ e) + (c+ d) = (a+ f) + (c+ d) + (h1 + h2)
⇒ (b+ e) = (a+ f) + (h1 + h2)
⇒ a+ f ≤ b+ e⇒ α ≤ γ. �

De (R1), (R2) e (R3), segue que ≤ é uma relação de ordem em Z, logo Z é
um conjunto ordenado. Esta ordem é compat́ıvel com as operações definidas
em Z, conforme propriedade (R4) e (R5) abaixo.

(R4) Monotonicidade da Adição:
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Sejam α, β ∈ Z. Se

α ≤ β,

para qualquer γ ∈ Z, temos

α + γ ≤ β + γ.

Demonstração:

Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z, com α ≤ β. Então
(a, b) ≤ (c, d)⇒ a+ d ≤ b+ c⇒ (a+ d) + (e+ f) ≤ (b+ c) + (e+ f)
⇒ (a+ e) + (d+ f) ≤ (b+ f) + (c+ e)
⇒ (a+ e, b+ f) ≤ (c+ e, d+ f)
⇒ (a, b) + (e, f) ≤ (c, d) + (e, f)⇒ α + γ ≤ β + γ. �

(R4) Monotonicidade Multiplicação:
Sejam α, β, γ ∈ Z. Se

α ≤ β,

para qualquer γ ≥ (0, 0) em Z, tem-se:

αγ ≤ βγ.

Demonstração:
Sejam α = (a, b), β = (c, d) e γ = (e, f) ∈ Z, com α ≤ β e γ ≥ (0, 0). Então
(a, b) ≤ (c, d)⇒ a+ d ≤ b+ c⇒ ∃ p ∈ N, tal que:

(b+ c) = (a+ d) + p. (16.5)

Multiplicando (16.5) por e, e posteriormente por f , obtemos as equações:

(a+ d)e+ pe = (b+ c)e e (b+ c)f = (a+ d)f + pf.

Somando essas duas equações obtem-se:

(a+ d)e+ (b+ c)f + pe = (a+ d)f + (b+ c)e+ pf (16.6)

Agora, como (0, 0) ≤ (e, f) ⇒ f ≤ e ⇒ e = f + q, q ∈ N. Multiplicando essa
equação por p, tem-se:

pe = pf + pq

Substituindo esse valor em(16.6):

(a+ d)e+ (b+ c)f + (pf + pq) = (a+ d)f + (b+ c)e+ pf

Pelo cancelamento da adição em N, ficamos com:

(a+ d)f + (b+ c)e = (a+ d)e+ (b+ c)f + pq
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⇓
(a+ d)e+ (b+ c)f ≤ (a+ d)f + (b+ c)e

⇓
(ae+bf)+(cf+de) ≤ (af+be)+(ce+df)⇒ (ae+ bf, af + be) ≤ (ce+ df, cf + de)

⇓
(a, b).(e, f) ≤ (c, d).(e, f)⇒ αγ ≤ βγ.

�

Por fim, veremos que a função imersão f : N → Z também preserva a
ordem definida em Z.

Proposição 26. Considerando a função imersão definida na Proposição 20,
para quaisquer m1,m2 ∈ N tem-se a implicação:

m1 ≤ m2 ⇒ f(m1) ≤ f(m2).

Demonstração:
Se m1 < m2 ⇒ m1 + 0 < 0 +m2 ⇒ (m1, 0) < (m2, 0)⇒ f(m1) < f(m2). �

7 Inteiros Positivos e Negativos

Proposição 27. Para todo α ∈ Z, temos uma, e somente uma, das afirmações:
(i) α < 0;
(ii) α = 0;
(iii) α > 0.

Demonstração:
Segue diretamente da Tricotomia em N, pois, se α = (a, b) ∈ Z, pela tricotomia
em N, ocorre uma e somente uma, das condições:
(i) a < b⇒ a+ 0 < b+ 0⇒ (a, b) < (0, 0)⇒ α < 0;
(ii) a = b⇒ a+ 0 = b+ 0⇒ (a, b) = (0, 0)⇒ α = 0;
(iii) b < a⇒ b+ 0 < a+ 0⇒ (0, 0) < (a, b)⇒ α > 0. �

Como consequência da proposião acima e da Tricotomia em N, segue a
tricotomia em Z.

Corolário 11. (Tricotomia em Z)
Dados α, β ∈ Z ocorre uma, e somente uma, das afirmações:
(i) α < β;
(ii) α = β;
(iii) α > β.
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Demonstração:
Considere γ = α+ (−β) ∈ Z. Com o uso das propriedades (R3) e (R4), segue
que ocorre uma e somente uma das condições:
(i) γ < 0⇒ α + (−β) < 0⇒ α < β;
(ii) γ = 0⇒ α− β = 0⇒ α = β;
(iii) γ < 0⇒ α− β > 0⇒ β < α. �

Definição 21. Diz-se que um inteiro α ∈ Z é:
(i) positivo, se α > 0;
(ii) não negativo, se α ≥ 0;
(iii) negativo, se α < 0;
(iv) não positivo, se α ≤ 0.

Denotaremos por:
Z+ - o conjunto dos inteiros não negativos;
Z− - o conjuntos dos inteiros não positivos;
Z∗+ - o conjunto dos inteiros positivos;
Z∗− - o conjunto dos inteiros negativos;

Vamos agora caracterizar os inteiros positivos, isto é, descrever o conjunto
Z∗+. Se α = (a, b) ∈ Z∗+, então α > 0. Assim, temos:

(0, 0) < (a, b)⇒ 0 + b < 0 + a⇒ a = b+m, m ∈ N∗
⇒ a+ 0 = b+m⇒ (a, b) ∼ (m, 0)⇒ (a, b) = (m, 0), com m ∈ N∗.

Reciprocamente, para cada m ∈ N∗, temos:
0 + 0 < m+ 0⇒ (0, 0) < (m, 0)⇒ (m, 0) ∈ Z∗+.
Assim,

Z∗+ = {(m, 0) | m ∈ N∗}.

Analogamente, se α = (a, b) ∈ Z∗−, então α < 0. Dáı,

(a, b) < (0, 0)⇒ a < b⇒ b = a+m, m ∈ N∗
⇒ a+m = b+ 0⇒ (a, b) ∼ (0,m)⇒ (a, b) = (0,m), com m ∈ N∗.

De modo rećıproco, para cada m ∈ N∗, tem-se,
0 + 0 < m+ 0⇒ (0,m) < (0, 0)⇒ (0,m) ∈ Z∗−.
Portanto, o conjunto dos inteiros negativos é dado por:

Z∗− = {(0,m) | m ∈ N∗}.

Da Proposição 27, segue que:

Z = Z∗− ∪ {0} ∪ Z∗+

ou seja,
Z = {(0,m) | m ∈ N∗} ∪ {(0, 0)} ∪ {(m, 0) | m ∈ N}, (16.7)

sendo essa união disjunta.

Podemos agora demonstrar que o conjunto Z+ é fechado com relação as
operações definidas em Z.
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Proposição 28. Para quaisquer α, β ∈ Z∗+, temos:
(i) α + β ∈ Z∗+;
(ii) α.β ∈ Z∗+;

Demonstração:
Pelo exposto acima, se α, β ∈ Z∗+, então existem m1,m2 ∈ N∗, tais que

α = (m1, 0) e β = (m2, 0). Dáı,
(i) α + β = (m1 +m2, 0) ∈ Z∗+ e

(ii) α.β = (m1.m2, 0) ∈ Z∗+. �

Proposição 29. Z é sem divisores de zero, isto é, para quaisquer α, β ∈ Z,
se α.β = 0,e ntão α = 0 ou β = 0.

Demonstração:
Sejam α, β = (a, b) ∈ Z, para os quais temos α.β = 0. Se α = 0, nada há a
demonstrar. Suponha α 6= 0. Pela Proposição 27, temos dois casos posśıveis:
(i) α < 0⇒ α = (0,m), para algum m ∈ N∗. Assim,
α.β = 0 ⇒ (0,m).(a, b) = (mb,ma) = (0, 0) ⇒ ma = mb ⇒ a = b, pois
m 6= 0. Assim, β = (a, a) = 0;
(ii) α > 0⇒ α = (m, 0), para algum m ∈ N∗. Assim,
α.β = 0 ⇒ (m, 0).(a, b) = (ma,mb) = (0, 0) ⇒ ma = mb ⇒ a = b, pois
m 6= 0. Assim, β = (a, a) = 0. �

Dado m ∈ N, já vimos que o oposto do inteiro α = (m, 0) ∈ Z é a classe
−α = (0,m). Usando a identificação dada pela função de imersão:

m↔ (m, 0)

obtemos:
−m = −(m, 0) = (0,m)

Com esta identificação, (16.7) fica:

Z = {−m | m ∈ N∗} ∪ {0} ∪ {m | m ∈ N∗} = {...,−3,−2,−1, 0, 1, 2, 3, ...}

coincidindo com a notação usual. Além disso, dados a, b ∈ N, temos:

a− b = a+ (−b) = (a, 0) +−(b, 0) = (a, 0) + (0, b) = (a, b).

Dessa forma, identitificamos a classe (a, b) com o inteiro obtido pela diferença
a− b, conforme usado para na definição da equivalência ∼ .

8 Prinćıpio da Boa Ordem em Z

Dizemos que X ⊂ Z é limitado inferiormente, se existe n ∈ Z, tal que

n ≤ x, para todo x ∈ X.
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Todo n ∈ Z que satisfaz a condição acima é dito uma cota inferior de X.

Exemplos:
(01) X = {4, 8, 12, 16, 20, ...} é um subconjunto não vazio de Z, limitando in-
feriormente. Claramamente vemos que 4 = minX. Vejamos, um algoŕıtmo
que nos permite determinar esse elemento mı́nimo, usando o Prinćıpio da Boa
Ordem em N.

Comecemos tomando uma cota inferior qualquer de X. Observe que tal
cota existe, pois X é limitado inferiormente. Por exemplo, n = 1 é um cota
inferior de X, pois 1 ≤ x, para todo x ∈ X. Agora, consideremos o conjunto
X ′, abaixo definido:

X ′ = {x− n | x ∈ X} = {x− 1 | x ∈ X} = {3, 7, 11, 15, 19, ...}

Como X 6= ∅ e 1 ≤ x para todo x ∈ X, X ′ é um subconjunto não vazio de
N, logo, pelo Prinćıpio da Boa Ordem, X ′ tem elemento mı́nimo, isto é, existe
m′ = minX. Neste caso, m′ = 3. E observe que, 4 = minX = m′ + n.

(02) X = {−7,−1, 0, 1, 21, 22, 23, ...} é um subconjunto não vazio de Z, limi-
tando inferiormente. Claramamente, vemos que −7 = minX. Vamos usar o
mesmo processo acima, para chegar a esse elemento mı́nimo.

Tomemos uma cota inferior qualquer de X, por n = −10 e construamos o
conjunto:

X ′ = {x− n | x ∈ X} = {x+ 10 | x ∈ X} = {3, 9, 10, 11, 31, 32, 33, ...}

X ′ é um subconjunto não vazio de N, logo, existe m′ = minX = 3. E também
temos que, −7 = minX = m′ + n

Vejamos a generalização desse processo na demonstração do próximo teo-
rema.

Teorema 16. (Prinćıpio da Boa Ordem em Z)
Todo subconjunto não vazio de Z, limitado inferiomente, tem elemento mı́nimo.

Demonstração:
Seja ∅ 6= X ⊂ Z, limitado inferiormente. Então, existe n ∈ X, tal que n ≤ x,
para todo x ∈ X. Consideremos o conjunto:

X ′ = {x− n | x ∈ X}.

Claramente, ∅ 6= X ′ ⊂ N e pelo Prinćıpio da Boa Ordem em N, existe
m′ = minX ′ ⇒ m′ ∈ X ′ e m′ ≤ x′,∀x′ ∈ X ′. Como m′ ∈ X ′ ⇒ m′ = x − n,
para algum x ∈ X. Vamos mostrar que m := m′ + n é o elemento mı́nimo de
X. De fato,
� m = m′ + n e m′ = x− n⇒ m = (x− n) + n = x ∈ X;
� m′ ≤ x′, para todo x′ ∈ X ⇒ m′ ≤ x − n,∀x ∈ X ⇒ m′ + n ≤ x,
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∀x ∈ X ⇒ m ≤ x, ∀x ∈ X;
Portanto, m = minX. �

Corolário 12. Não existe x ∈ Z, tal que 0 < x < 1.

Demonstração:
Seja X = {x ∈ Z | 0 < x < 1}. Claramente, X é um subconjunto de Z,
limitado inferior. Se X 6= ∅, então pelo prinćıpio da Boa Ordem em Z, existe
x0 = minX. Então,

x0 ∈ X ⇒ 0 < x0 < 1 ⇒︸︷︷︸
×x0

0.x0 < x0.x0 < x0.1⇒ 0 < x2
0 < x0 < 1⇒ x2

0 ∈ X.

Uma contradição, pois x2
0 < x0 = minX. Logo X = ∅.
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