
UNIVERSIDADE FEDERAL DO TRIÂNGULO MINEIRO
CAMPUS UNIVERSITÁRIO DE ITURAMA

Introdução à programação em Fortran 90

João Vitor Teodoro
joao.magda@gmail.com

mailto:joao.magda@gmail.com

Este material tem por objetivo apresentar conceitos básicos e introdutórios à progra-
mação em linguagem FORTRAN 90. Os códigos e procedimentos descritos representam uma
gama de opções a serem adotadas, sendo assim, podem existir outras formas e comandos alter-
nativos que aqui não são citados.

Com este material, é possível capacitar-se à resolução de problemas básicos em com-
putação cientí�ca em que, apesar de exemplos e exercícios de grande simplicidade e de fácil
entendimento, o leitor pode adaptar seus problemas mais complexos ao que é apresentado.
Porém, de acordo com o rumo e necessidade para cada programa, deve-se buscar referên-
cias mais ricas e especí�cas em determinados procedimentos, além da importância em buscar
metodologias e�cientes.

O texto apresentado é baseado em vários materiais e, pretendeu-se reunir de forma fácil,
compreensível e sucinta o que cada um oferece de melhor. Exemplos prontos para execução e
descrições dos procedimentos passo-a-passo foram colocados buscando a melhor compreensão
desde aqueles que iniciam na área de programação.

Por estar em uma primeira edição, o material pode conter erros e necessitar de melho-
rias, assim, quaisquer sujestões e comentários são bem-vindos.

Licença Atribuição 4.0 Internacional.

João Vitor Teodoro

SUMÁRIO

1 Introdução 1

2 Primeiros algoritmos 3
2.1 Caracteres válidos . 3
2.2 Criando um projeto . 3

2.2.1 "READ" e "PRINT" . 4
2.2.2 Execução do programa . 4

2.3 Declarações . 5
2.3.1 Variáveis inteiras (INTEGER) . 5
2.3.2 Variáveis reais (REAL) . 6
2.3.3 Variáveis complexas (COMPLEX) . 6
2.3.4 Variáveis alfanuméricas ou literais (CHARACTER) 7
2.3.5 Variáveis lógicas (LOGICAL) . 7
2.3.6 Variáveis parâmetros (PARAMETER) 7

2.4 Operadores . 8
2.4.1 Atribuição . 8
2.4.2 Operadores literais . 8
2.4.3 Operadores aritméticos . 8
2.4.4 Operadores relacionais . 9
2.4.5 Operadores lógicos . 9
2.4.6 Prioridades . 10

2.5 Funções intrínsecas . 10
2.6 Exercícios . 11

3 Controle de execução 12
3.1 "GOTO" . 12
3.2 Estrutura condicional . 12

3.2.1 Estrutura condicional simples . 13
3.2.2 Estrutura condicional composta . 13
3.2.3 Estrutura condicional composta expandida 14
3.2.4 Estrutura condicional composta simpli�cada 14

3.3 Estrutura de repetição . 16
3.3.1 "LOOP" condicional . 16
3.3.2 "LOOP" ciclo condicional . 16
3.3.3 "DO" iterativo . 17
3.3.4 "DO-WHILE" . 17

3.4 Exercícios . 18

4 Matrizes 19
4.1 Declarações . 19
4.2 Operações . 19
4.3 Leitura e impressão . 22
4.4 Funções . 23
4.5 Alocação . 23
4.6 Exercícios . 25

5 Subprogramas e módulos 26
5.1 Programa principal . 26

i

5.2 Funções . 26
5.3 Subrotinas . 27
5.4 Módulos . 28
5.5 Exercícios . 29

6 Entrada e saída de dados 31
6.1 I/O simples . 31
6.2 Ficheiros . 32
6.3 Exercícios . 34

7 Algoritmos dos exercícios 35

8 Bibliogra�a consultada 39

ii

1 Introdução

Nos primórdios dos computadores, programar era uma tarefa extremamente compli-
cada e, de certa forma, extenuante. Aos programadores era exigido um conhecimento de-
talhado das instruções, registos e outros aspectos ligados com a unidade de processamento
central (CPU) do computador onde era escrito o código. Os programas consistiam numa série
de instruções numéricas, denominadas por código binário. Posteriormente, desenvolveram-se
algumas mnemónicas (auxiliares de memória) que resultaram no designado assembly (notação
legível por humanos para o código de máquina). No período entre 1954-1957 uma equipe de 13
programadores liderados por John Backus desenvolveu uma das primeiras linguagens de alto
nível para o computador IBM 704, o FORTRAN (FORmula TRANslation). O objetivo deste
projeto era produzir uma linguagem de fácil interpretação mas, ao mesmo tempo, com uma
e�ciência idêntica à linguagem assembly.

A linguagem FORTRAN foi ao mesmo tempo revolucionária e inovadora. Os progra-
madores libertaram-se assim da tarefa extenuante de usar a linguagem assembler e passaram a
ter oportunidade de se concentrar mais na resolução do problema. Mas, talvez mais importante,
foi o fato dos computadores passarem a �car mais acessíveis a qualquer pessoa com vontade de
despender um esforço mínimo para conhecer a linguagem FORTRAN. A partir dessa altura, já
não era preciso ser um especialista em computadores para escrever programas para computador.

Nos anos seguintes, outras empresas de computadores desenvolveram os seus próprios
compiladores de FORTRAN para os seus computadores. Desta forma, programas escritos para
uma máquina não podiam ser usados noutras máquinas sem proceder a algumas modi�cações.
Veri�cou-se assim uma proliferação de diferentes compiladores de FORTRAN. A aquisição de
programas em FORTRAN de diferentes procedências, associado à necessidade de converter
todos esses programas sempre que estes eram instalados num novo computador, tornou os
custos totais proibitivos.

Para ultrapassar estes problemas, passou-se a discutir a necessidade de se proceder a
uma normalização da linguagem FORTRAN de forma a que os programas fossem portáveis,
isto é, que pudessem ser processados em diferentes máquinas com alterações muito pequenas
ou, de preferência, sem qualquer alteração. Em 1966, após quatro anos de trabalho, a Associ-
ação Americana de Normalização, posteriormente passou a designar-se Instituto Americano de
Normalização Nacional (American National Standards Institute, ANSI), publicou uma versão
normalizada designada por FORTRAN IV. Na sua essência, esta versão era um subconjunto
comum dos vários dialetos do FORTRAN, de forma que cada dialeto era considerado como uma
extensão da versão normalizada. Os utilizadores desta linguagem que pretendessem escrever
programas portáveis teriam que ter o cuidado de evitar as extensões referidas.

A proliferação de dialetos continuou a ser um problema após a publicação da versão
normalizada em 1966. A primeira di�culdade era a relutância das empresas que desenvolviam os
diferentes compiladores a aderirem à normalização. Por outro lado, a implementação de carac-
terísticas nos diferentes compiladores, que eram essenciais para programas de longa extensão,
foram ignoradas pela versão normalizada.

Esta situação, combinada com a existência de algumas debilidades evidentes na lin-
guagem normalizada, conduziu à introdução de um grande número de pré-processadores. Estes
eram programas que liam o código da linguagem de um determinado dialeto do FORTRAN e
gerava um segundo texto na versão normalizada. Este procedimento era uma forma de estender
as capacidades do FORTRAN usual, mantendo a portabilidade entre diferentes computadores.
O aumento do número de pré-processadores registrado nos anos subsequentes, signi�cava não só
a grande diversidade de dialetos do FORTRAN, mas também a insu�ciência da versão norma-
lizada. Apesar dos programas escritos usando um pré-processador fossem portáveis, o código
em FORTRAN gerado desta forma era geralmente de leitura e interpretação muito difícil.

Estas di�culdades foram parcialmente resolvidas pela publicação de uma nova norma-

1

lização, em 1978, conhecida por FORTRAN 77. Esta versão incluía várias novas característi-
cas baseadas em dialetos já existentes ou em pré-processadores e, por isso, não era um mero
subconjunto dos dialetos existentes, mas sim um novo dialeto. O período de transição entre o
FORTRAN IV e o FORTRAN 77 revelou-se, no entanto, extremamente longo, devido ao atraso
na avaliação dos novos compiladores baseados na nova versão normalizada e à necessidade das
duas versões normalizadas coexistirem por um período de tempo considerável. Na realidade,
somente nos meados da década de 80 o FORTRAN IV passou a ter um uso residual.

Após trinta anos de existência o FORTRAN estava longe de ser a única linguagem de
programação disponível na maioria dos computadores. As modi�cações signi�cativas introduzi-
das no FORTRAN 77 não resolveram todos os problemas que apareceram com a primeira versão
normalizada, nem sequer incluía muitas das novas características que, entretanto apareceram
com as novas linguagens de programação como o Pascal ou o C. A comunidade de utilizadores do
FORTRAN embora com um vasto investimento em códigos de FORTRAN (alguns programas
continham mais de 100.000 linhas de instruções) em plena utilização, não estava completamente
satisfeita com a linguagem. Por consequência, iniciaram-se trabalhos para rever a versão nor-
malizada. Para o efeito, a ANSI formou um comité técnico, denominado por X3J3, trabalhando
como um corpo de desenvolvimento do comitê ISO, designado por ISO/IEC JTC1/SC22/WG5
(que será referido abreviadamente por WG5), na nova versão normalizada, inicialmente referida
por FORTRAN 8x que resultou posteriormente no FORTRAN 90.

As motivações para o desenvolvimento da nova versão eram não somente normalizar
as diferentes extensões comercializadas, mas também modernizar a linguagem como resposta
a outras linguagens de programação como o APL, Algol, Pascal, Ada, C e C++. De forma
a preservar o vasto investimento nos códigos anteriormente desenvolvidos, todo o FORTRAN
77 é considerado como um subconjunto da nova versão, embora algumas características sejam
desaconselhadas na elaboração de novos programas.

Ao contrário das versões anteriores que resultaram em grande parte de um esforço para
normalizar "práticas" já existentes, o FORTRAN 90 é muito mais do que um desenvolvimento
da linguagem, introduzindo aspectos que são novidade em FORTRAN e resultam da experiência
obtida noutras linguagens. As novas características mais importantes são a facilidade de utilizar
variáveis indexadas ("arrays") com uma notação mais concisa e poderosa e a facilidade de de�nir
e manipular diferentes tipos de dados de�nidos pelo utilizador. O primeiro aspecto permite uma
simpli�cação na programação de problemas matemáticos e torna a linguagem FORTRAN mais
e�ciente quando se utilizam super-computadores uma vez que se adapta mais convenientemente
ao hardware. O segundo aspecto permite aos programadores descrever os seus problemas em
termos dos dados-tipo que combinam perfeitamente com as suas necessidades.

Após a publicação da versão normalizada do FORTRAN 90, o WG5 optou por uma
nova forma de atuação para revisões futuras. A �loso�a atual é a seguinte: se uma nova
característica com possibilidade de ser introduzida no futuro não se encontrar su�cientemente
desenvolvida até uma data pré-estabelecida, então é preferível abandonar essa característica em
vez de retardar a nova revisão.

O WG5 passou a ser assim a entidade que decide os vetores de desenvolvimento para
as futuras versões do FORTRAN. Entretanto, apareceu o FORTRAN 95 como resultado desta
nova �loso�a de revisões. Esta versão consiste numa pequena revisão do FORTRAN 90 con-
sistindo unicamente em "correções, clari�cações e interpretações", algumas novas características
e desaparecimento de outras.

O padrão FORTRAN 2003 dita regras mais precisas sobre a implementação de carac-
terísticas inerentes a orientação a objetos (iniciado no FORTRAN 90). Além disso, entre os
compiladores, existem aqueles que melhoram a portabilidade da linguagem com vista à progra-
mação com máquinas paralelas ampliando as possibilidades de otimização de tempo e memória.

Texto retirado de http://paginas.fe.up.pt/∼aarh/pc/PC-capitulo2.pdf

2

2 Primeiros algoritmos

Uma das primeiras coisas que se deve aprender, é como resolver problemas com o auxílio
do computador, isto é, como montar, logicamente, as instruções para obter a solução de um
problema que o computador resolverá utilizando as instruções programadas pelo usuário, ou
seja, projetar e escrever um algoritmo, que é uma sequência ordenada de passos executáveis, e
precisamente de�nidos, que manipulam um volume de informações, a �m de obter um resultado.
O algoritmo é um método �nito, escrito em um vocabulário simbólico �xo, regido por instruções
precisas, que se movem em passos discretos

Para que possamos desenvolver um algoritmo, primeiramente devemos entender o pro-
blema a ser resolvido e quais serão as informações de entrada e saída. De�nindo isso, deve-se
esquematizar um processo lógico que o computador entenda.

Fazer um bolo pode ser associado a um algoritmo, de�nindo os ingredientes como
componentes de entrada, o trabalho do cozinheiro como a execução do algoritmo e o bolo
(resultado �nal) como componente de saída. Assim, como fazer um bolo, um algoritimo pode
ser feito de várias formas, e�cientes ou não, que produzirão um mesmo resultado.

Os computadores só podem executar diretamente os algoritmos expressos em linguagem
de máquina. A tradução de um programa escrito em linguagem de alto nível para linguagem
de máquina é feita por um programa tradutor denominado Compilador. Aqui será discutida
uma versão que suporta o FORTRAN 90, apesar de já existirem versões mais novas.

2.1 Caracteres válidos

Nesse ambiente, regras e restrições devem ser seguidas, porém o FORTRAN não é
sensível a letras maiúsculas e minúsculas (não é �Case sensitive�), ou seja, cada palavra, in-
dependentemente dos caracteres maiúsculos ou minúsculos, tem mesma representação para o
programa.

Para que um algoritmo seja executado com sucesso, somente esses caracteres devem
ser utilizados na programação:

Tabela 1: Caracteres válidos.

0, ..., 9 Algarismos + Sinal de mais $ Cifrão
A, ..., Z Letras maiúsculas − Sinal de menos ; Ponto e vírgula
a, ..., z Letras minúsculas / Barra (slash) < Menor que

' Plica ou apóstrofe Espaço em branco > Maior que
" Aspas : Dois pontos % Porcentagem
(Parênteses à esquerda = Sinal de igual ? Ponto de interrogação
) Parênteses à direita ! Ponto de exclamação , Vírgula
∗ Asterisco & "E" comercial . Ponto

Além disso, é aceitável o máximo de 132 caracteres por linha e nomes com até 31
caracteres.

2.2 Criando um projeto

Este material é baseado na utilização do compilador Fortran PowerStation 4.0. Para
que se possa iniciar um programa em seu ambiente, é necessário criar novo espaço de trabalho
(diretório) do projeto, para isto, após abrir o Fortran PowerStation 4.0, deve-se acessar através
da barra de ferramentas File/New.../Project Workspace e clicar OK. No campo Name: deve
ser inserido um nome para o ambiente de trabalho, e no campo Location: o local onde este deve
ser salvo.

3

Após o preenchimento desses campos clicar em Create. Após a criação do espaço de
trabalho se faz necessário criar também um arquivo de texto onde seu programa será digitado,
para sua criação acessar, pela barra de ferramentas File/New.../Text File e clicar OK. A tela
em branco com cursor que aparece é o editor de texto.

Apesar do espaço de trabalho estar criado, o projeto ainda não está associado a ele,
portanto para isso é necessário acessar File/Save ou atalho equivalente e digitar o nome do
programa .f90 no campo File Name. Em Directories é possível selecionar o espaço de trabalho
em que se deseja salvar o projeto.

Para acessar outro projeto salvo com respectivo espaço de trabalho é necessário acessar
File/Open Workspace..., selecionar o espaço de trabalho desejado em Directories e selecionar o
arquivo mdp na tela à esquerda antes do OK. Clicando no projeto dentro do espaço de trabalho
que aparece na janela é possível retomar o projeto.

Um programa em FORTRAN deve ter o seguinte formato:

program nome

declarações

comandos

end program nome

O nome do programa deve iniciar sempre por letra e não pode conter espaço, caso
necessário utilizar "_" e, para �nalizar o programa, em vez de escrever "end program nome",
pode-se usar apenas "end program" ou "end".

A declaração "program nome" é opcional, porém o seu uso é recomendado. O único
campo não opcional na estrutura de um programa, na de�nição do padrão da linguagem, é a
instrução "end", a qual possui dois propósitos: indicar ao compilador que o programa chegou
ao �m e, quando da execução do código, provoca a parada do mesmo.

2.2.1 "READ" e "PRINT"

Para que se possa entrar com um valor a ser operacionado no programa, utiliza-se o
comando "read*," seguido pelas variáveis a serem lidas, separadas por vírgula e na ordem da
leitura.

Para imprimir valores operacionados no programa, utiliza-se o comando "print*,"
seguido pelas variáveis a serem impressas, separadas por vírgula e na ordem da impressão.

Exemplo 2.1

program exemplo

read*,a

print*,a

end program exemplo

No exemplo, o programa lê um valor representado pela variável a, e em seguida imprime
este valor.

2.2.2 Execução do programa

1. Após ter escrito o programa no editor de dexto, acessar pela barra de ferramentas
File/Save, para salvar seu projeto.

2. Compilar o projeto signi�ca converte-lo em linguagem de máquina e, para isso se faz
necessário acessar pela barra de ferramentas Build/Compile.... Ao compilar seu pro-
grama, informações contendo possíveis erros e avisos serão apresentadas, caso apareça "0
error(s), 0 warning(s)" pode prosseguir, caso contrário, deve veri�car a(s) causa(s) do(s)
problema(s).

4

3. Após a compilação nenhum e problema encontrado, um executável deve ser gerado, para
isso se faz necessário acessar pela barra de ferramentas Build/Build.... Novamente serão
apresentados possíveis erros e avisos.

4. O programa está pronto para ser executado. Arquivos aparecerão na pasta do espaço de
trabalho, assim, se houverem alterações no programa, para que essas sejam atualizadas
no projeto os passos 1, 2 e 3 devem ser repetidos.

5. Para executar o programa basta acessar Build/Execute... na barra de ferramentas.

Exercício 2.1 Executar o algoritmo do exemplo 2.1.

2.3 Declarações

As variáveis podem ser inteiras, reais, complexas, literais ou lógicas. A declaração de
uma variável deve vir antes que ela seja usada, se isto não ocorrer o compilador assumirá que
as variáveis que começam com as letras I até N como inteiras (INTEGER*4) e todas as outras
como reais (REAL*4), ou seja, delaradas implicitamente como ocorrido no Exemplo 2.1.

Esta forma de declaração implícita pode ser modi�cada usando o comando "implicit
tipo (a1-a2,b1-b2,...)" sendo a1, a2, b1, b2 quaisquer letras do alfabeto. A vírgula separa os
intervalos de letras e o sinal "�" determina o intervalo. As letras que não estiverem em nenhum
dos intervalos terá o seu tipo dado pela declaração implícita. O comando seguinte indica que
as variáveis que começam com as letras a, b, c e de r até z são do tipo real: implicit real (a, b,
c, r-z). Os espaços são usados para dar clareza e são ignorados pelo compilador.

Quando não se deseja que nenhuma variável seja declarada implicitamente usa-se o
comando "implicit none". Se este comando for usado e uma variável citada no programa não
estiver em nenhuma outra declaração o complilador acusará um erro. É sempre bom utilizar
o comando "implicit none" evitando erros no programa.

Para se declarar variáveis que sejam matrizes e vetores deve-se indicar suas dimensões
logo após o nome da variável, entre parênteses, e separadas umas das outras por vírgula. Por
exemplo, "a(4,3)" indica uma matriz a de 4 linhas por 3 colunas.

As variáveis podem receber valores iniciais usando "/valor/", logo após sua declaração.
No caso de vetores e matrizes devem ser dados os valores para todos os elementos de cada linha
em sequência.

2.3.1 Variáveis inteiras (INTEGER)

As variáveis declaradas como inteiras podem assumir os seguintes valores:

• INTEGER*1: �128 a 127

• INTEGER*2: �32.768 a 32.767

• INTEGER*4 ou INTEGER: �2.147.483.648 a 2.147.483.647

Os números após o "*" indicam quantos bytes a variável ocupa na memória do com-
putador. Esta observação é válida para todos os tipos de variáveis.

Quando uma variável inteira recebe o resultado de uma divisão com resto, este resto é
desprezado, ou seja o valor é truncado.

Exemplo 2.2

program exemplo

implicit none

integer*1:: c, f

integer:: d, a/6/, b(2,2)/0,1,2,3/

comandos

end

5

Neste caso, o programa identi�ca c e f como variáveis inteiras que podem assumir
valores de �128 a 127, d como variável inteira que pode assumir valores de �2.147.483.648 a
2.147.483.647, a como variável inteira que assume, à priori, o valor 6, mas pode assumir durante
a execução do programa através dos comandos valores de �2.147.483.648 a 2.147.483.647 e b
como uma matriz 2x2 de variáveis inteiras que assume, à priori,

b =

[
0 2
1 3

]

, mas pode assumir durante a execução do programa através dos comandos, para cada elemento
da matriz, valores de �2.147.483.648 a 2.147.483.647.

O símbolo "::", na maioria dos casos, não precisa ser usado e pode ser trocado por
espaço, assim, por exemplo "integer*1:: c, f", pode ser escrito como "integer*1 c, f".

2.3.2 Variáveis reais (REAL)

As variáveis declaradas como reais podem assumir os seguintes valores:

• REAL*4 ou REAL(Precisão simples com 6 casas decimais):

Varia de −3, 402823× 1038 (-3.402823E+38) a +3, 402823× 1038 (+3.402823E+38) e tem
incremento mínimo de −1, 175494 × 10−38 a +1, 175494 × 10−38, ou seja, números reais
neste intervalo são considerados zero.

• REAL*8 ou DOBLE PRECISION (Precisão dupla com 15 casas decimais):

Varia de −1, 797693134862316 × 10308 (-1.797693134862316D+308) a
+1, 797693134862316 × 10308 (+1.797693134862316D+308) e tem incremento mí-
nimo de −2, 225073858507201 × 10−308 a +2, 225073858507201 × 10−308. A parte
exponencial deve ser separada por um d ou D no lugar do e ou E para real do tipo *8.

Colocando-se "." após um número no programa garantimos que ele seja
real, caso contrário somente será reconhecida sua parte inteira.

Exemplo 2.3

program exemplo

implicit none

real*4 r1,r2

real*8 r3,r4

integer i1,i2,a

read*,a

r1=a/3.

r2=a/3

r3=a/3.

r4=a/3

i1=a/3.

i2=a/3

print*,r1,r2,r3,r4,i1,i2

end

2.3.3 Variáveis complexas (COMPLEX)

• COMPLEX*8 ou COMPLEX (Precisão simples com 6 casas decimais)

• COMPLEX*16 (Precisão dupla com 15 casas decimais)

Os valores que um complexo pode assumir são os mesmos que os reais representado
por um par ordenado (parte real,parte complexa) de reais.

6

Exemplo 2.4

program exemplo

implicit none

complex c

c = (-1,0)

c = sqrt (c)

print*,c

end

2.3.4 Variáveis alfanuméricas ou literais (CHARACTER)

A variável do tipo character é declarada digitando-se "character nome*w" em que nome
é a variável alfanuméria e w representa o número máximo de caracteres que a variável pode
conter dentro do programa. A variável poderá conter até 32.767 caracteres e caso w não seja
apresentado ("character nome") ele corresponderá a 1.

O tamanho, em bytes, de um tipo character é igual a quantidade de caracteres que a
constante ou variável possui mais 1, onde este byte a mais, guarda o tamanho da constante ou
variável.

Quando a variável recebe os caracteres na própria execução do programa, ou seja,
através da atribuição, ou no momento da impressão, os caracteres atribuídos devem vir entre
aspas e contendo apenas caracteres válidos. Quando a variável recebe os caracteres na execu-
ção do programa através do "read*," espaços entre palavras não podem ocorrer, neste caso é
sugerido o uso de "_".

Exemplo 2.5

program exemplo

implicit none

character nome*30

print*, "Qual e seu nome?"

read*, nome

print*, "Eu me chamo ", nome

end

2.3.5 Variáveis lógicas (LOGICAL)

A variável lógica é uma variável binária que pode assumir somente os valores .true.
(verdadeiro) ou .false. (falso). Ou até mesmo 0 e 1. Utiliza 4 bytes de memória.

Exemplo 2.6

program exemplo

implicit none

logical log1, log2, log3

log1= 1

log2= .false.

log3= 0

print*, log1, log2, log3

end

2.3.6 Variáveis parâmetros (PARAMETER)

As vezes necessitamos, em um programa, de constante ou parâmetro que não deve
receber outro valor, uma vez que já foi atribuído um valor no momento de sua declaração. Para
casos como este que utilizamos variáveis parâmetros.

7

Exemplo 2.7

program exemplo

implicit none

real raio, pi

parameter (pi = 3.14159)

read*, raio

print*, "A area do círculo é ", pi*raio*raio

end

2.4 Operadores

2.4.1 Atribuição

A variável ou identi�cador que estiver à esquerda do sinal de atribuição "=" recebem
o valor da expressão, constante ou variável que estiver à direita.

Identi�cador = Expressão

Alguns exemplos de atribuições:

...

nome = "Jonatas Henrique"

curso = "Ciencias Biologicas"

!Não se pode usar acentuação

ano = 1999 ! Não é preciso de ";" no final

prova(1)= 9.6; prova(2)= 8; prova(3)= .8

! Atribuindo valores a vetores

t= 9.9; data1 = "12/10/10"

nota = (2*prova(1)+3*prova(2)+4*prova(3)+t)/10

! Casas decimais são separadas por ponto
...

Estas declarações poderiam estar na mesma linha desde que fossem separadas por ponto
e vírgula ";".

2.4.2 Operadores literais

Uma função útil para variáveis literais é a concatenação, ou a junção de duas ou mais
palavras. Em FORTRAN a concatenação é feita pelo operador "//".

Por exemplo,

Exemplo 2.8

program exemplo

implicit none

character a*3,b*5,c*8

a = "mel"

b = "ancia"

c = a//b

print*, c !c = "melancia"

end

2.4.3 Operadores aritméticos

Executam operações aritméticas comuns.

8

Tabela 2: Operadores aritméticos.

Fortran Algébrico Signi�cado
+ + Soma
− − Subtração
∗ · Multiplicação
/ ÷ Divisão
∗∗ ab Potenciação

2.4.4 Operadores relacionais

Comparam variáveis, constantes ou expressões e retornam ".TRUE.", "T" ou "1" se a
comparação for verdadeira, ".FALSE.", "F" ou "0" se a comparação for falsa.

Tabela 3: Operadores relacionais.

Fortran F90 Algébrico Signi�cado
.LT. < < menor que
.LE. <= ≤ menor ou igual que
.EQ. == = igual a
.NE. / = 6= diferente de
.GT. > > maior que
.GE. >= ≥ maior ou igual que

Exemplo 2.9

program exemplo

implicit none

logical e, f, g

real a, b, c, d

read*, a, b, c, d

e = (a + b)*0.5 .LT. (c + d)*0.5

f = (a + b)*0.5 == (c + d)*0.5

g = (a + b)*0.5 > (c + d)*0.5

print*, e, f, g

end

2.4.5 Operadores lógicos

São usados quando são necessárias mais de uma condição relacional ou quando é preciso
inverter seu resultado.

Tabela 4: Operadores lógicos.

Fortran Signi�cado
.AND. Verdadeiro se os dois operadores forem verdadeiros
.OR. Verdadeiro se ao menos um dos dois operadores for verdadeiro
.NOT. Verdadeiro se o operador for falso (negação)

.NEQV. ou .XOR. Verdadeiro se somente um dos operadores for verdadeiro
.EQV. Verdadeiro se os dois operadores forem falsos ou verdadeiros

Por exemplo,

9

Exemplo 2.10

program exemplo

implicit none

logical r1, r2, r3, r4, r5, r6, r7, r8

r1 = 10.GT.5 .AND. 20.GT.25 ! .FALSE.

r2 = 10.GT.5 .OR. 20.GT.25 ! .TRUE.

r3 = .NOT. 20.GT.25 ! .TRUE.

r4 = 10 > 5 .XOR. 20 >= 25 ! .TRUE.

r5 = 10.GT.5 .NEQV. 25.GT.20 ! .FALSE.

r6 = 10 < 5 .EQV. 20 <= 25 ! .FALSE.

r7 = 10.LT.5 .EQV. 25.GT.20 ! .FALSE.

r8 = "José" == "Pedro" ! .FALSE.

print*, r1, r2, r3, r4, r5, r6, r7, r8

end

2.4.6 Prioridades

FORTRAN usa a seguinte relação de prioridades:

Tabela 5: Ordem de prioridade.

Prioridade 1◦ 2◦ 2◦ 3◦ 3◦ 4◦ 4◦ 4◦ 4◦ 4◦ 4◦ 5◦ 6◦ 7◦

Operador ∗∗ ∗ / + − .eq. .ne. .gt. .ge. .lt. .le. .not. .and. .or.

O uso de parênteses pode ser feito para trocar a ordem de prioridade.

2.5 Funções intrínsecas

Existem várias funções prede�nidas em FORTRAN, que podem ser usadas em qualquer
parte do programa. Aqui serão sitadas algumas delas, outras funções intrínsecas podem ser
encontradas.

Tabela 6: Funções diversas.

Nome De�nição Tipo de argumento Tipo de função
ALOG10(x) Logaritmo de x na base 10 Real Real
ALOG(x) Logaritmo neperiano de x Real (x > 0) Real
EXP(x) O número e elevado a x Real Real
ABS(x) Valor absoluto de x Real Real
IABS(x) Valor absoluto de x Inteiro Inteiro
IFIX(x) Trunca de real para inteiro Real Inteiro

FLOAT(x) Conversão de inteiro para real Inteiro Real
DBLE(x) Converte para dupla precisão Real Real*8
CMPLX(x) Converte para o tipo complexo Real Complexo
SIGN(x,y) Fornece |x| se y ≥ 0 e -|x| se y < 0 Real Real
MOD(x,y) Resto da divisão de x por y Inteiro Inteiro
AMOD(x,y) Resto da divisão de x por y Real Real
SQRT(x) Raiz quadrada de x Real (x ≥ 0)/Complexo Real/Complexo
MAX(x,y) Maior entre x e y Inteiro/Real Inteiro/Real
MIN(x,y) Menor entre x e y Inteiro/Real Inteiro/Real

10

Tabela 7: Funções trigonométricas.

Nome De�nição Tipo de argumento Tipo de função
SIN(x) Seno (radianos) Real ou complexo REAL*4
ASIN(x) Arcoseno (radianos) Real, |x| ≤ 1 REAL*4
COS(x) Coseno (radianos) Real ou complexo REAL*4
ACOS(x) Arcocoseno (radianos) Real, |x| ≤ 1 REAL*4
TAN(x) Tangente (radianos) Real REAL*4
ATAN(x) Arcotangente (radianos) Real REAL*4
SINH(x) Seno Hiperbólico (radianos) Real REAL*4
COSH(x) Coseno Hiperbólico (radianos) Real REAL*4
TANH(x) Tangente Hiperbólica (radianos) Real REAL*4

2.6 Exercícios

Exercício 2.2 Desenvolver um algoritmo que lê uma amostra com 5 valores reais e imprime
média e variância.

Exercício 2.3 Dado um número inteiro de quatro algarismos imprimir o número formado pelos
2 primeiros dígitos, o número formado pelos 2 últimos dígitos e a soma desses dois resultados.

Exercício 2.4 Fazer um algoritmo que calcule as raízes da função f(x) = ax2 + bx + c, em
que a, b e c são informações fornecidas no momento da execução do programa.

Exercício 2.5 Fazer um algoritmo que imprima o quociente e o resto da divisão entre dois
números fornecidos no momento da execução do programa.

Exercício 2.6 O número 3025 tem a seguinte característica:

30 + 25 = 55 e 55 × 55 = 3025

Fazer um algoritmo que lê um número inteiro de quatro algarismos e testa se ele tem
ou não a mesma característica do 3025.

Exercício 2.7 São dados dois números inteiros positivos p e q, sendo que p e q têm respecti-
vamente 2 e 7 dígitos. Veri�car se p é um subnúmero de q.

Exemplo:
p = 23, q = 5723835, p é subnúmero de q.
p = 23, q = 2583479, p não é subnúmero de q.

11

3 Controle de execução

Os programas em FORTRAN devem conter os comandos escritos na ordem em que
serão executados, com exceção das funções, subrotinas e laços de repetição. O comando "end"
indica o �m do programa. Se o programador preferir pode �nalizar o programa prematuramente
usando os comandos "stop" ou "call exit".

Por exemplo:

Exemplo 3.1

program exemplo

implicit none

integer a, b

read*, a, b

print*, a, b

stop !ou "call exit"

a = a**b

print*, a

end

Neste caso, o programa encerrará na linha de comando em que aparece "stop" ou, se
preferir pode colocar "call exit".

3.1 "GOTO"

Quando se deseja que o comando do programa avance ou recue em sua estrutura de
forma não sequencial, usa-se o comando "goto".

...

goto n

...

n comando

...

Em que n é um número inteiro positivo que rotula uma linha que possua ou não um
comando, na qual o programa, ao executar a linha "goto n" redireciona-se à linha "n comando",
podendo esta estar antes ou depois de "goto n". Como uma linha rotulada não pode estar em
branco e pode não conter comando, pode-se usar a palavra chave "continue".

Por exemplo:

Exemplo 3.2

program exemplo

implicit none

integer a, b

read*, a, b

goto 12

print*, a, b

a = a**b

12 print*, a

end

3.2 Estrutura condicional

Toda linguagem de programação estruturada necessita de artifícios que possibilitem a
execução condicional de comandos. Esses comandos normalmente alteram o �uxo de execução
de um programa.

Uma das características da linguagem FORTRAN é o processamento de cima para
baixo, linha por linha. Entretanto, essa ordem pode ser alterada quando utilizamos algumas
condições para que os cálculos sejam realizados. Isso pode ser feito utilizando o comando IF.

12

3.2.1 Estrutura condicional simples

A sintaxe do comando de uma estrutura condicional simples é descrita por:
...

if (condição)

comando

...

ou
...

if (condição) then

bloco de comandos

end if

...

Quando a condição for verdadeira o comando ou bloco de comandos será executado,
quando for falsa o programa segue para o próximo comando logo abaixo da estrutura condi-
cional. A primeira opção só é válida quando for executado um único comando. Este comando
pode ser de qualquer tipo, atribuição, escrita, leitura, "goto" ou interrupção do programa.

Por exemplo,

Exemplo 3.3

program exemplo

implicit none

integer a,b

read*, a,b

if (mod(a,b)==0) then

print*, a," e multiplo de", b

end if

end

Obs.: É permitido o uso de estruturas condicionais umas dento das outras.

3.2.2 Estrutura condicional composta

Na estrutura condicional composta, se a condição for verdadeira, o bloco1 é executado,
se não o bloco2 é que será executado. Mesmo quando só há um comando no bloco1, não se pode
omitir a palavra chave "then". A sintaxe do comando é:

...

if (condição) then

bloco1

else

bloco2

end if

...

Por exemplo,

Exemplo 3.4

program exemplo

implicit none

integer a,b

read*, a,b

if (mod(a,b)==0) then

print*, a," e multiplo de", b

else

print*, a," nao e multiplo de", b

end if

end

13

3.2.3 Estrutura condicional composta expandida

Na estrutura condicional composta expandida várias condições são testadas. A estru-
tura da sintaxe é:

...

if (condição1) then

bloco1

else if (condição2) then

bloco2

...

else if (condiçãon) then

blocon

else

bloco(n+1)

end if

...

Dessa forma, se a condiçãok for satisfeita, as seguintes são ignoradas.
Por exemplo:

Exemplo 3.5

program exemplo

implicit none

real nota

print*, "Qual foi sua nota?"

read*, nota

if (nota .ge. 9.00) then

print*, "Muito bem! Conceito A"

else if (nota .ge. 7.00) then

print*, "Voce foi bem! Conceito B"

else if (nota .ge. 5.00) then

print*, "Voce nao foi tao bem! Conceito C"

else

print*, "REPROVADO!!!!!!"

end if

end

3.2.4 Estrutura condicional composta simpli�cada

Uma outra forma de se usar uma estrutura condicional composta é usando o comando
"case". A sintaxe de comando é:

...

nome_case: select case (exp. case)

case (lista de seleção 1)

comandos1

case (lista de seleção 2)

comandos2

...

case (lista de seleção n)

comandosn

case default

comandosd

end select nome_case

...

14

Em que "exp. case" é uma expressão ou constante inteira, lógica ou literal (somente
um caractere "character*1"). Caso o valor de "exp. case" estiver na "lista de seleção 1", os
"comandos1" serão executados. Se o valor não estiver na "lista de seleção 1" o computador
irá avaliar a "lista de seleção 2", se for verdadeira serão executados os "comandos2" e assim
até terminar os comandos "case (lista de seleção n)". O comando "case default" é opcional,
e faz com que os "comandosd" sejam executados caso nenhuma das outras avaliações sejam
verdadeiras. "nome_case" é opcional e deve seguir as mesmas regras usadas para dar nomes
as variáveis. A sua utilidade é apenas de dar maior clareza ao programa.

É importante lembrar que somente uma das condições (lista de seleção) deve ser satis-
feita.

As listas de seleção podem ser da seguinte forma:

Tabela 8: Listas de seleção.

Estrutura Condição para ser verdadeira
case (valor) exp. case igual ao valor
case (:valor) exp. case menor ou igual ao valor
case (valor:) exp. case maior ou igual ao valor

case (valor1:valor2) exp. case entre valor1 e valor2
case (valor1,valor2,...,valorn) exp. case igual ao valor1 ou igual ao valor2 ou ... valorn

Por exemplo, utilizando uma constante literal:

Exemplo 3.6

program exemplo

implicit none

character i*1

i="h"

valor_i: select case (i)

case ("a","b","c")

print*, "i=a ou b ou c"

case ("d":"m")

print*, "i esta entre d e m"

case ("D":"M")

print*, "i esta entre D e M"

end select valor_i

end

Por exemplo, utilizando uma constante inteira:

Exemplo 3.7

program exemplo

implicit none

integer a

read*, a

select case (a)

case (:-2)

print*, a, " menor ou igual a -2"

case (0)

print*, a, " igual a zero"

case (2:7)

print*, a, " entre 2 e 7"

case default

print*, "nenhuma das condicoes foi satisfeita"

end select

end

15

3.3 Estrutura de repetição

Quando o mesmo comando precisa ser executado várias vezes até que se atinja uma
certa condição ou um número certo de repetições, o melhor é usar as estruturas de repetição.
Estas estruturas são bem simples e podem economizar várias linhas de comando.

3.3.1 "LOOP" condicional

"Loop" consiste de um bloco de comandos que são executados ciclicamente, in�nita-
mente. É necessário um mecanismo condicional para sair do "loop". O bloco de comandos
que é executado ciclicamente é delimitado pelo comando "do ... end do" e o comando exit
determina a saída do "loop". A sintaxe de comando é:

...

do

...

if (expressão lógica) exit

...

end do

...

Por exemplo:

Exemplo 3.8

program exemplo

implicit none

integer i

i=0

do

i = i + 1

if (i .GT. 100) exit

print*, "i vale", i

end do

print*, "Fim do loop. i = ", i

end

3.3.2 "LOOP" ciclo condicional

"Loop" cíclico consiste de um mecanismo condicional para sair e iniciar o "loop" no-
vamente. O comando "cycle" determina, novamente, o início imediato do "loop". A sintaxe de
comando é:

...

do

...

if (expressão lógica) cycle

if (expressão lógica) exit

...

end do

...

Por exemplo:

16

Exemplo 3.9

program exemplo

implicit none

integer i

i=0

do

i = i + 1

if (i >= 50 .AND. i <= 59) cycle

if (i .GT. 100) exit

print*, "i vale", i

end do

print*, "Fim do loop. i = ", i

end

3.3.3 "DO" iterativo

O "DO" iterativo consiste num "loop" que possui um número �xo de ciclos. A sintaxe
de comando é:

...

do variável = expressão1,expressão2,expressão3

...

end do

...

Em que, expressão1 é o valor inicial, expressão2 é o valor �nal e expressão3 é o valor
de incremento. Podemos interpretar "do variável = expressão1,expressão2,expressão3 ... end
do" como "Para variável, de expressão1 até expressão2 passo expressão3 faça ... �m para".

Por exemplo:

Exemplo 3.10

program exemplo

implicit none

integer i

do i = 2,100,2

print*, "i vale", i

end do

end

3.3.4 "DO-WHILE"

O "DO-WHILE" consiste num "loop" que condiciona a sua execução antes de executar
o bloco de comandos, pois a condição é testada no topo do "loop". A sintaxe de comando é:

...

do while (expressão lógica)

...

end do

...

Podemos interpretar "do while (expressão lógica) ... end do" como "Faça enquanto
expressão lógica ... �m para".

Por exemplo:

17

Exemplo 3.11

program exemplo

implicit none

integer I

I = 1

do while (I<25)

if (I==1) then

print*, "Passei", I, " vez"

else

print*, "Passei" , I, " vezes"

endif

I=I+1

enddo

end

3.4 Exercícios

Exercício 3.1 Fazer um algoritmo que gere os n primeiros elementos da sequência de Fi-
bonacci, dada por: 1, 1, 2, 3, 5, 8, 13, 21, ...

Exercício 3.2 Desenvolver um programa que calcule n! para um n inteiro não negativo qual-
quer.

Exercício 3.3 Desenvolver um programa que solicita que se digite três valores e informa se
eles podem corresponder a três lados de um triângulo equilátero, isósceles, escaleno ou não
formam um triângulo.

Exercício 3.4 Desenvolver um programa que informe os números primos entre 1 e 1000.

Exercício 3.5 Desenvolver um programa que escreva um número natural n como produto de
números primos.

Exercício 3.6 O número 3025 tem a seguinte característica:

30 + 25 = 55 e 55 × 55 = 3025

Fazer um algoritmo que apresente todos os números naturais de quatro dígitos que têm
a mesma característica do 3025.

Exercício 3.7 Sabendo que o número e dos logarítimos naturais neperianos é aproximada-
mente 2,718281 e sabendo que este número é representado numericamente pela soma abaixo,
em que quanto maior o valor de x, melhor a aproximação. Crie um programa que calcule o
valor de x que nos dará quantos elementos da série serão somados para que se obtenha um
valor maior ou igual ao apresentado.

e ∼=
x∑

n=0

1

n!

Exercício 3.8 Escreva um programa para identi�car os números amigáveis menores que 2000.
Dois números são amigáveis quando cada um é igual à soma dos divisores do outro número
(excluindo apenas o próprio número). Exemplo: 220 e 284 são números amigáveis pois a soma
dos divisores de 220 (1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110) é igual a 284 e a soma dos divisores
de 284 (1, 2, 4, 71, 142) é igual a 220.

Exercício 3.9 Escreva um programa para calcular uma aproximação para sen(x), onde x é um
valor inteiro lido da unidade padrão de entrada. A aproximação pode ser obtida de: sen(x) =
x− x/3! + x/5!− x/7! + O programa deve encerrar o processamento quando a variação no
valor calculado for inferior a 0.001.

18

4 Matrizes

Matrizes ou "Arrays" são uma coleção de dados armazenados na memória e acessados,
individualmente, de acordo com a sua posição espacial, de�nida pelas dimensões da matriz.

O FORTRAN armazena os elementos de matrizes em espaços contíguos de memória.
Este ordenamento é obtido variando-se inicialmente o índice da primeira dimensão da matriz,
depois variando-se o índice da segunda dimensão e assim por diante. Em uma matriz com
2 dimensões isto é obtido variando-se inicialmente as linhas e depois as colunas, ou seja, os
elemenos são distribuídos por colunas.

4.1 Declarações

Para declarar matrizes existem as seguntes formas:

tipodevariável, dimension (a1, a2, ..., ak) :: mat1, ..., mats

ou

tipodevariável mat1(a1, a2, ..., ak), ..., mats(b1, b2, ..., bl)

ou

dimension mat1(a1, a2, ..., ak), ..., mats(b1, b2, ..., bl)

tipodevariável mat1, ..., mats

Em que "tipodevariável" determina o tipo de variável para cada elemento da matriz,
podendo ser inteiro, real, complexo, alfanumérico ou lógico.

O FORTRAN 90 trabalha com vertores de até 7 dimensões. O limite inferior e superior
de níveis por dimensão �cam separados pelo caractere ":". Caso não exista esse caractere, o
limite inferior será sempre 1 e o limite superior, o informado na de�nição da matriz. Se esse
limite inferior não for informado, então a alocação de memória será dinâmica, ou seja, durante
a execução do programa. Para leitura e impressão, a ordem por coluna, será utilizada.

Por Default cada elemento das matrizes recebe, inicialmente, valor zero. Porém, pode-
se iniciar os elementos da matriz utilizando "/.../".

Por exemplo,

Exemplo 4.1

program exemplo

implicit none

integer, dimension(4) :: A = (/2,3,4,5/)

integer B(2,2)/1,2,3,4/

print*, A

print*, B

end

4.2 Operações

• Para a matriz toda.

Exemplo 4.2

program exemplo

implicit none

integer A(3,2), B(3,2)/1,2,3,4,5,6/

A = 1

B = 2*B*A + 1

A = B + A

print*, A

print*, B

end

19

Neste caso, a matriz A é declarada de ordem 3 × 2 formada por elementos inteiros, por
Default é nula, e a matriz B declarada de ordem 3× 2 formada por elementos inteiros, à
priori:

B =

 1 4
2 5
3 6


Depois, a matriz A recebe valor 1 para todos seus elementos. Cada elemento B(i,j) da
matriz B recebe 2× B(i, j)× A(i, j) + 1, ou seja, quando apresentado "A*B" é calculado
o produto elemento a elemento, valendo também para as outras operações matemáticas.
E�no comando seguinte cada elemento A(i, j) da matriz A recebe B(i, j) + A(i, j) e, por
�m, A e B são impressas. Observa-se que quando dimensão ou ordem de matrizes são
diferentes essas operações não podem ser feitas entre elas.

• Para alguns elementos da matriz

Exemplo 4.3

program exemplo

implicit none

integer A(3,2), B(3,3)/1,2,3,4,5,6,7,8,9/

A(1,1) = 80

A(3,2) = B(1,1) + B(3,3)

print*, A

print*, A(1,1)

end

Neste caso, a matriz A é declarada de ordem 3 × 2 formada por elementos inteiros, por
Default é nula, e a matriz B declarada de ordem 3× 3 formada por elementos inteiros, à
priori:

B =

 1 4 7
2 5 8
3 6 9


Depois, os elementos A(1,1) e A(3,2) da matriz A recebem respectivamente valores 80 e
B(1, 1) + B(3, 3) e, por �m, a matriz A e seu elemento A(1,1) são impressos. Observa-se
que elementos de matrizes de dimensão ou ordem diferentes podem ser operacionados.

• Para algumas seções de elementos da matriz

Para se operacionar somente uma seção da matriz, podemos escrever:

matriz(liminf 1:limsup 1:incremento 1, ..., liminf n:limsup n:incremento n)

Em que liminf k, limsup k e imcremento k representam respectivamente limite inferior,
limite superior e incremento da dimensão k.

Se um dos limites, inferior ou superior (ou ambos) for omitido, então o limite ausente
é assumido como o limite inferior ou superior da correspondente dimensão da matriz da
qual a seção está sendo extraída e se o incremento for omitido, então assume-se que valerá
um.

Dessa forma, por exemplo, dada a matriz:

20

X =


1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25


X (:,:) ou X representa todos os elementos da matriz:

1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25


X (2:2,2:2) ou X (2,2) representa o elemento da linha 2 e coluna 2.


1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25


X (3,3:5) representa os elementos de linha 3 que variam da coluna 3 à 5:


1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25


X (2:3,2:5:2) representa os elementos das linhas 2 e 3 e das colunas 2 à 5 e incremento

2: 
1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25


X (1::2,2:4) representa os elementos da linha 1 até terminar as linhas com incremento

2 e das colunas 2 à 4: 
1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25



21

Exemplo 4.4

program exemplo

implicit none

integer X(5,5),i,j

do i= 1,5,1

do j= 1,5,1

X(i,j) = (j-1)*5+i

enddo

enddo

print*, X(:,:)

print*, X(2:2,2:2)

print*, X(3,3:5)

print*, X(2:3,2:5:2)

print*, X(1::2,2:4)

end

4.3 Leitura e impressão

Há várias formas de leitura e impressão de matrizes, entre elas podemos apenas utilizar
o comando "read*, A" e "print*, A" para ler e imprimir uma matriz A. No entanto, os elementos
serão lidos e impressos no vídeo em uma linha contínua na ordem por colunas.

Outra forma de leitura e impressão de matrízes muito útil é utilizando um processo
iterativo. Por exemplo, caso queiramos entrar com os valores da matriz A por linhas e depois
imprimir também nesta mesma ordem:

Exemplo 4.5

program exemplo

implicit none

integer A(3,3),i,j

do i= 1,3,1

do j= 1,3,1

read*, A(i,j)

enddo

enddo

do i= 1,3,1

do j= 1,3,1

print*, A(i,j)

enddo

enddo

end

Porém, apesar de apresentar funcionalidade matemática, ainda há de�ciência estética.
Para que a matriz seja apresentada em uma melhor forma utiliza-se:

(expressão , i = a, n, b)

Em que, ocorre uma repetição de expressão para i de a até b passo n. Ou seja, é
equivalente a:

...

do i = a, n, b

expressão

end do

...

22

Porém, este tipo de repetição, além representar muito bem o "DO" iterativo, muda de
linha na tela sempre que termina. Assim, por exemplo:

Exemplo 4.6

program exemplo

implicit none

integer A(3,3),i,j

do i= 1,3,1

read*, (A(i,j) , j=1, 3, 1)

enddo

do i= 1,3,1

print*, (A(i,j) , j=1, 3, 1)

enddo

end

Apresenta o vetor A em linhas e colunas.
Outras formatações serão vistas nas sessões posteriores.

4.4 Funções

Algumas funções podem ser utilizadas para apresentar informações e tributos destas.

Tabela 9: Funções de matrizes.

Função Signi�cado
LBOUND Limite inferior das dimensões da matriz
UBOUND Limite superior das dimensões da matriz
SHAPE Ordem da matriz
SIZE Número de elementos da matriz

TRANSPOSE Transposta da matriz

Para obter as informações para uma determinada dimensão, basta inserir vírgula e a
dimensão após o nome da matriz. Por exemplo:

Exemplo 4.7

program exemplo

implicit none

integer A(2,3)/1,2,3,4,5,6/,i,j,B(3,2)

B = TRANSPOSE(A)

do i= 1,2,1

print*, (A(i,j) , j=1, 3, 1)

enddo

do i= 1,3,1

print*, (B(i,j) , j=1, 2, 1)

enddo

print*, LBOUND(A), LBOUND(A,1), LBOUND(A,2)

print*, UBOUND(A), UBOUND(A,1), UBOUND(A,2)

print*, SHAPE(A)

print*, SIZE(A), SIZE(A,1), SIZE(A,2)

end

4.5 Alocação

Uma novidade importante introduzida no FORTRAN 90 é a habilidade de se declarar
variáveis dinâmicas e em particular, matrizes dinâmicas. O FORTRAN 90 fornece tanto ma-
trizes alocáveis quanto matrizes automáticas, ambos os tipos sendo matrizes dinâmicas. Usando

23

matrizes alocáveis, é possível alocar e de-alocar espaço de memória conforme necessário. O re-
curso de matrizes automáticas permite que matrizes locais em uma função ou subrotina tenham
forma e tamanho diferentes cada vez que a rotina é invocada.

Matrizes alocáveis permitem que grandes frações da memória do computador sejam
usadas somente quando requerido e, posteriormente, liberadas, quando não mais necessárias.
Este recurso oferece um uso de memória muito mais e�ciente que o FORTRAN 77, o qual
oferecia somente alocação estática (�xa) de memória. Além disso, o código torna-se muito mais
robusto, pois a forma e o tamanho das matrizes podem ser decididos durante o processamento
do código.

Uma matriz alocável é declarada na linha de declaração de tipo de variável com o
atributo "ALLOCATABLE". O posto da matriz deve também ser declarado com a inclusão
dos símbolos de dois pontos ":", um para cada dimensão da matriz. Por exemplo, a matriz de
duas dimensões A é declarada como alocável através da declaração:

REAL, DIMENSION(:,:), ALLOCATABLE :: A

sta forma de declaração não aloca espaço de memória imediatamente à matriz, como
acontece com as declarações usuais de matrizes. O status da matriz nesta situação é not cur-
rently allocated, isto é, correntemente não alocada. Espaço de memória é dinamicamente alo-
cado durante a execução do programa, logo antes da matriz ser utilizada, usando-se o comando
"ALLOCATE". Este comando especi�ca os limites da matriz. Por exemplo:

ALLOCATE (A(0:N,M))

O espaço alocado à matriz com o comando "ALLOCATE" pode, mais tarde, ser lib-
erado com o comando "DEALLOCATE". Este comando requer somente nome da matriz pre-
viamente alocada. Por exemplo, para liberar o espaço na memória reservado para a matriz
A:

DEALLOCATE (A)

Tanto os comandos "ALLOCATE" e "DEALLOCATE" possuem o especi�cador op-
cional "STAT", o qual retorna o status do comando de alocação ou de-alocação. Neste caso, a
forma geral do comando é:

ALLOCATE (lista de objetos alocados , STAT= status)
DEALLOCATE (lista de objetos alocados , STAT= status)

Em que "status" é uma variável inteira escalar. Se STAT= está presente no comando,
"status" recebe o valor zero se o procedimento do comando ALLOCATE/DEALLOCATE foi
bem sucedido ou um valor positivo se houve um erro no processo. Se o especi�cador STAT= não
estiver presente e ocorra um erro no processo, o programa é abortado. Finalmente, é possível
alocar-se ou de-alocar-se mais de uma matriz simultaneamente, como indica "lista de objetos
alocados".

Matrizes alocáveis tornam possível o requerimento freqüente de declarar uma matriz
tendo um número variável de elementos. Por exemplo, pode ser necessário ler variáveis, digamos
tam1 e tam2 e então declarar uma matriz com tam1 × tam2 elementos.

É possível veri�car se uma matriz está ou não correntemente alocada usando-se a função
intrínseca ALLOCATED. Esta é uma função lógica com um argumento, o qual deve ser o nome
de uma matriz alocável. Usando-se esta função, comandos como os seguintes são possíveis:

IF (ALLOCATED(A)) DEALLOCATE (A)
IF (.NOT. ALLOCATED(A)) ALLOCATE (A(5,20))

24

Por exemplo:

Exemplo 4.8

program exemplo

implicit none

real, dimension(:), allocatable :: A

real, dimension(:,:), allocatable :: B

integer N, I, J, ERRO

read*, N

allocate (A(N), B(N,N), STAT=ERRO)

if (ERRO/=0) print*, "Problemas de alocacao"

do I = 1,N,1

A(I)=N**(1./I)

enddo

do I = 1,N,1

B(I,:)= I*A

enddo

do I = 1,N,1

print*, (B(I,J) , J=1, N, 1)

enddo

deallocate (A, B)

end

4.6 Exercícios

Exercício 4.1 Desenvolver um algoritmo que construa uma matriz identidade n× n.

Exercício 4.2 Desenvolver um algoritmo que lê uma amostra com n valores reais e imprime
média e variância.

Exercício 4.3 Calcular C=A·B para A e B matrizes quaisquer tal que o produto seja possível.

Exercício 4.4 Quadrado Mágico é uma tabela quadrada de lado n, onde a soma dos números
das linhas, das colunas e das diagonais é constante, sendo que nenhum destes números se repete.
Fazer um algorítmo que veri�ca se uma tabela n× n é um quadrado mágico.

Exercício 4.5 Fazer um algoritmo que imprime as n primeiras linhas do Triângulo de Pascal.

Exercício 4.6 Dado um experimento com delineamento inteiramente casualizado que testa t
tratamentos com r repetições cada, apresentar o valor do F calculado para tratamento.

25

5 Subprogramas e módulos

Quando um algoritmo tem muitas linhas de comandos começa a ser de difícil mani-
pulação. Normalmente alguns programas apresentam esta catacterística e algumas instruções
são muitas vezes repetidas. Assim, é possível dividir o programa em unidades menores que
executam as instruções repetidas separadamente com dados ou parâmetros diferentes, ou seja,
em subprogramas.

É possível escrever um programa completo em um único arquivo, ou como uma unidade
simples. Contudo, se o código é su�cientemente complexo, pode ser necessário que um deter-
minado conjunto de instruções seja realizado repetidas vezes, em pontos distintos do programa.

Cada uma das unidades de programa corresponde a um conjunto completo e consis-
tente de tarefas que podem ser, idealmente, escritas, compiladas e testadas individualmente,
sendo posteriormente incluídas no programa principal para gerar um arquivo executável. Em
FORTRAN há dois tipos de estruturas que se encaixam nesta categoria: subrotinas e funções
(externas ou extrínsecas).

Um código executável é criado a partir de um programa principal, que pode invocar
rotinas externas e usar módulos também. A única unidade de programa que deve necessaria-
mente existir sempre é o programa principal.

Quaisquer das três unidades de programas podem também invocar rotinas internas,
as quais têm estrutura semelhante às rotinas externas, porém não podem ser testadas isolada-
mente.

5.1 Programa principal

Todo código executável deve ser composto a partir de um, e somente um, programa
principal. Opcionalmente, este pode invocar subprogramas. Um programa principal possui a
seguinte estrutura:

program nome

declarações

comandos

contains

subprogramas internos

end program nome

A declaração "contains" indica a presença de subprogramas internos (funções ou sub-
rotinas).

5.2 Funções

Uma função retorna um único valor (matriz ou escalar), e esta usualmente não altera
os valores de seus argumentos. Neste sentido, uma função em FORTRAN age como uma função
em análise matemática.

O FORTRAN tem dois tipos de funções, intrínsecas e de�nidas pelo usuário.
Funções intrínsecas são próprias (latentes) da linguagem FORTRAN, tais como sin(x),

cos(x), sqrt(x), entre outras. Estas já foram abordadas em 2.5.
As funções de�nidas pelo usuário são funções que o programador cria para executar uma

tarefa especí�ca. Exceto pela declaração inicial, as funções apresentam uma forma semelhante
a de um programa principal:

26

...

contains

function nome (argumentos)

declarações

comandos

contains

subprogramas internos

end function nome

...

O efeito do comando "end" em um subprograma consiste em retornar o controle à
unidade que o chamou, ao invés de interromper a execução do programa. Recomenda-se o uso
da forma completa do comando para deixar claro ao compilador e ao programador qual parte
do programa está sendo terminada.

Nas declarações dentro da função devem aparecer: a própria função, os argumentos
e variáveis auxiliares da função. Estas declarações não são declaradas novamente junto às
declarações do programa principal.

O comando "contains" inserido dentro da função só é necessário se houverem subpro-
grams internos à função.

Uma função é ativada ou chamada de forma semelhante como se usa uma função em
análise matemática. Por exemplo, dada uma função "func(n,x)", esta pode ser chamada para
atribuir seu valor a uma variável escalar ou a um elemento de matriz:

y = func(n,x)

Uma função pode fazer operações em uma expressão, por exemplo: y = func(n,x) +
5*func(n,x**3), ou ainda servir de argumento para uma outra rotina.

Por exemplo:

Exemplo 5.1

program exemplo

implicit none

real y1, y2, y3, y4

read*, y1, y2, y3, y4

print*, func(y1,y2)

print*, func(y3,y4)

contains

function func(x,y)

real func, a, b, x, y

a=1

b=2

func = a*x+b*y

end function func

end

5.3 Subrotinas

Uma subrotina pode executar uma tarefa mais complexa que a função e retornar diver-
sos valores através de seus argumentos, os quais podem ser modi�cados ao longo da computação
da subrotina.

Exceto pela declaração inicial, as subrotinas apresentam uma forma semelhante a de
um programa principal:

27

...

contains

subroutine nome (argumentos)

declarações

comandos

contains

subprogramas internos

end subroutine nome

...

Nas declarações dentro da subrotina, devem aparecer as variáveis auxiliares e os argu-
mentos da subrotina. Estas declarações não são declaradas novamente junto às declarações do
programa principal.

Uma subrotina, devido ao fato de retornar, em geral, mais de um valor em cada
chamada, não pode ser operada como uma função em análise matemática e deve ser chamada
através da instrução "call". Qualquer unidade de programa pode chamar uma subrotina, até
mesmo outra subrotina. Por exemplo, se existe uma sub-rotina "subrot", será obtida através
da chamada:

call subrot(x1, x2, ..., xn)

A ordem e tipo dos argumentos na lista de argumentos devem corresponder à ordem
e tipo dos argumentos declarados na subrotina. A subrotina �naliza sua execução quando
encontra um "return" ou um "end subroutine" e, retorna ao programa que a requisitou na
linha seguinte ao "call".

Por exemplo:

Exemplo 5.2

program exemplo

implicit none

real y1, y2, y3, y4, r1, r2

read*, y1, y2, y3, y4

call subrot(y1,y2,r1,r2)

print*, r1, r2

call subrot(y3,y4,r1,r2)

print*, r1, r2

contains

subroutine subrot(x,y,z1,z2)

real a, b, x, y, z1, z2

a=1

b=2

z1 = a*x+b*y

z2 = a*(x**2)+b*(y**2)

end subroutine subrot

end

5.4 Módulos

No que diz respeito a modularização de programas, a linguagem FORTRAN oferece
facilidades através de subrotinas e funções, o que torna possível a implementação de programas
modulares e estruturados. No FORTRAN 90, esta modularização teve um avanço signi�cativo
através das declarações e procedimentos "module", tanto que esta declaração tem status de
programa.

28

A declaração "module" (ou módulo) pode conter dados, procedimentos, ou ambos, que
podemos compartilhar entre unidades de programas (programa principal, subprograma e em
outros módulos). A estrutura de um módulo é idêntica à de um programa, porém deve-se trocar
"program" por "module". Os dados e procedimentos estarão disponíveis para uso na unidade
de programa através da declaração "use", seguida do nome do módulo.

Por exemplo:

Exemplo 5.3

module funcao

implicit none

contains

subroutine raizes (a1,b1,c1,raiz1,raiz2)

real a1, b1, c1

complex a, b, c, raiz1, raiz2, delta

a = cmplx(a1)

b = cmplx(b1)

c = cmplx(c1)

delta = b*b - 4*a*c

raiz1 = (-b + sqrt(delta))/(2*a)

raiz2 = (-b - sqrt(delta))/(2*a)

end subroutine raizes

end module funcao

Que deve ser compilado como se fosse um programa principal. Assim, é possível criar
programas no mesmo espaço de trabalho (diretório) que o utilize:

Exemplo 5.4

program exemplo

use funcao

implicit none

real a, b, c

complex raizum, raizdois

read*, a, b, c

call raizes(a,b,c,raizum,raizdois)

print*, raizum, raizdois

end

5.5 Exercícios

Exercício 5.1 Faça uma subrotina que receba uma matriz M(10,10), o número de uma linha
L, o número de uma coluna C e retorne a matriz N(9,9) resultante da remoção da linha L e
da coluna C.

Exercício 5.2 Escreva um programa que jogue o jogo da velha com o usuário, o qual deve
ter a seguinte estrutura: inicializar a matriz 3×3 com zeros; pedir para o jogador escolher o
seu símbolo (X ou O); pedir a jogada do usuário; gerar a jogada do computador (que sim-
plesmente deve preencher com o seu símbolo o primeiro espaço vazio que encontrar (ele não é
muito inteligente!); mostrar a matriz alterada na tela; veri�car se há vencedor (linhas, colu-
nas ou diagonais com um mesmo símbolo) e anunciá-lo; caso contrário, pedir nova jogada ao
usuário, etc. Depois que um jogador vencer, o programa deve perguntar se o usuário quer jogar
novamente. Se a resposta for negativa, terminar o programa.

Exercício 5.3 O número de cadastro de pessoas físicas do Ministério da Fazenda (CPF) tem 9
dígitos seguidos de dois dígitos veri�cadores, os quais servem como teste para erros de digitação

29

na sequência. Dada a sequência dos 9 dígitos (n1, ..., n9) o primeiro dígito veri�cador (dv1)
é gerado seguindo-se a regra: a) calcula-se a soma s1 = 10×n1+9×n2+... +3×n8+2×n9; b)
calcula-se o resto r1 da divisão de s1 por 11; c) subtrai-se r1 de 11; d) se dv1 resultar 10 ou
11, transforme para 0. O segundo dígito veri�cador (dv2) é gerado usando-se o dv1: calcula-se
a soma s2 = 11×n1+10×n2+...+4×n8+3×n9+2×dv1 e seguem-se os demais passos de forma
semelhante. Escreva um programa para veri�car se um CPF, dado numa sequência de 11
dígitos, sem pontos ou hífen, é válido, ou seja, não contém erros de digitação. (Usar módulo).

Exercício 5.4 Escreva um programa que lê um número não determinado de valores m, todos
inteiros e positivos, um valor de cada vez, e, se m < 10 utiliza um sub-programa do tipo função
que calcula o fatorial de m, e caso contrário, utiliza um sub-programa do tipo função para obter
o número de divisores de m (quantos divisores m possui). Escrever cada m lido e seu fatorial
ou seu número de divisores com uma mensagem adequada. Neste caso, temos um programa
principal e dois sub-programas.

30

6 Entrada e saída de dados

Entrada e saída de dados é uma parte de fundamental importância na programação. O
FORTRAN 90 possui uma grande variedade de opções de I/O (input/output), que permitem
diferentes tipos de arquivos se conectarem ao programa principal para leitura e gravação.

6.1 I/O simples

Neste material foram utilizados, até agora, para leitura e impressão de dados no ecrã
(tela do computador), respectivamente os comandos "read*," e "print*," porém, outras formas
mais elaboradas podem ser utilizadas.

Leitura: read (n◦ unidade , n◦ formato / código do formato) variáveis
Impressão: write (n◦ unidade , n◦ formato / código do formato) variáveis
Em que, n◦ unidade corresponde ao número que representa um �cheiro (arquivo) ou um

ecrã, sua utilização será descrita à frente. E n◦ formato corresponde ao número que representa
um rótulo para declaração de formato ou pode ser substituído pelo próprio código do formato
sem uso de declaração de formato.

Para simpli�cação destas declarações, utiliza-se "*" em vez de números, isto é uti-
lizado quando se deseja ler e imprimir variáveis ou textos no ecrã e não há preocupação com
formatação:

Leitura: read (*,*) variáveis
Impressão: write (*,*) variáveis
Para utilização de formatação dos dados, utiliza-se a sintaxe:

...

write (*, '(código do formato)') variáveis

...

ou

...

write (*, n◦ formato) variáveis

...

n◦ formato format (código do formato)

...

Os códigos de formatação mais utilizados são:

Tabela 10: Códigos de formatação mais utilizados.

Código Representação
Iw Dado inteiro com largura total de campo w

Iw.m Dado inteiro com largura total de campo w
e numero mínimo de caracteres m

Fw.d Dado real com largura total de campo w e d casas decimais
nX n espaços horizontais
Ew.d Dado real em notação exponencial

com largura total de campo w e d casas decimais
Aw Dado de caractere com largura de campo

pEw.d Dado real com p números antes da vírgula, em notação exponencial
com largura total de campo w e d casas decimais

n/ n espaços verticais (saltar linha)

31

Se um número ou texto não preencher o tamanho do campo declarado, serão somados
espaços. Normalmente o texto será ajustado à direita, mas as regras variam pra formatações
diferentes.

Exemplo 6.1

program exemplo

implicit none

real x

integer n

character*19 c

x = 13.760

n = 276

c = "Programa em Fortran"

write(*,23) c

write(*,900) x

write(*,1) n

write(*,'(5/)')

write(*,'(10x,A19)') c

write(*,'(10x,F8.4)') x

write(*,'(10x,E8.3,10x,I10.2)') x, n

write(*,'(10x,I10.2)') n

write(*,'(10x,I8)') n

write(*,'(5/)')

23 format (15x,A8)

1 format (15x,I6)

900 format (15x,F8.1)

end

6.2 Ficheiros

É possível, através de comandos em FORTRAN, ler ou imprimir em �cheiros, que são
armazenados em dispositivos de armazenamento de dados. Inicialmente, é necessário efetuar a
abertura de um arquivo, já existente ou não.

Um programa pode gerar tantos dados, que todos eles não caberiam na tela de uma só
vez, e ainda seriam perdidos ao �nalizar o programa. Os dados salvos em arquivos podem ser
usados pelo próprio programa ou exportados para serem processados de outra forma. Arquivos
de leitura economizam um tempo precioso para o usuário do programa, pois ele não vai precisar
enviar dados via teclado, e com arquivos milhares de dados podem ser lidos em segundos. Além
de que, não é necessário executar o programa sempre que se desejar consultar dados de saída
em arquivos,

A sintaxe básica para abertura, criação ou substituição de um �cheiro é:

...

open(n◦ unidade, file="nome do arquivo")

...

close(n◦ unidade)

...

Em que "open" faz a chamada, se já existente, ou a criação do arquivo "nome do
arquivo" e atribui a este um inteiro "n◦ unidade" que o representará nos comandos do algoritmo.
Quando não for utilizado o comando "open", o programa emitirá uma mensagem na tela pedindo
o seu nome, podendo o usuário escolher um nome diferente a cada vez que o programa for
executado. Todos os arquivos devem estar ou serão criados no mesmo diretório em que estiver

32

o programa. Outros comandos opcionais podem ser inseridos em "open" de acordo com cada
compilador.

E, "close" efetua o fechamento do arquivo representado por "n◦ unidade". Outros
comandos opcionais podem ser inseridos em "close" dacordo com cada compilador.

Para impressão em um arquivo representado por "n◦ unidade", é utilizado o comando
"write (n◦ unidade , n◦ formato / código do formato) variáveis" após a abertura ("open") e
antes do fechamento ("close") do arquivo.

Por exemplo:

Exemplo 6.2

program exemplo

implicit none

integer n, i

read*, n

open(503,file="arquivo.txt")

do i=1,n,1

write (503,'(3x,I5)') i

enddo

close(503)

end

Exemplo 6.3

program exemplo

implicit none

integer n, j

real i

read*, n

open(10, file="arquivo.dat")

do i=1,n,1

write (10, '(10000(1x,f5.0))') (i , j=1,n,1)

print*, i

enddo

close (10)

end

Alguns comandos extras podem ser inseridos caso necessário:

Tabela 11: Comandos extras de formatação.

Comando Representação
rewind (n◦ unidade) Recuo total

backspace (n◦ unidade) Recuo de um campo

Apesar de se poder usar qualquer extensão de arquivo ou até omití-la, as extensões
.dat para leitura e .out para saída são mais comumente encontradas.

Por exemplo:

33

Exemplo 6.4

program exemplo

implicit none

open(10, file="arquivo.txt")

write(10,*) "Texto"

write (10, '(1x,f6.3)') 12.234

write (10, '(1x,f6.3)') 23.876

rewind (10)

write (10, '(1x,f6.3)') 56.789

write (10, '(1x,f6.3)') 67.123

backspace (10)

write (10, '(1x,f6.3)') 77.153

close (10)

end

6.3 Exercícios

Exercício 6.1 Fazer um algorítmo que leia 10 valores reais e imprima uma tabela cuja primeira
coluna seja formada por estes números, a segunda coluna apresente a parte inteira desses valores
e a terceira coluna apresente estes valores em notação cientí�ca. NOTA: Considerar, por
facilidade, valores de 0 a 100 com um máximo de três casas decimais.

Exercício 6.2 Criar um arquivo txt contendo uma matriz identidade 500×500.

Exercício 6.3 Desenvolver um programa que cria um arquivo txt com uma sequência de 1000
números aleatórios. Cada número deve estar entre 0 e 1, conter duas casas decimais e os
números devem ser impressos numa mesma linha com três espaços horizontais entre eles.
NOTA: Para geração de números aleatórios utilizar o comando "ran(n)", em que n é um
inteiro qualquer informado que serve como semente.

Exercício 6.4 Desenvolver um programa que leia os dados do arquivo criado no exercício
anterior e apresente na tela de execução a porcentagem de elementos menores que 0,5.

Exercício 6.5 Desenvolver um programa que resolva um SUDOKU espresso por um arquivo
com extensão txt e imprima a resolução em outro arquivo txt.

Exercício 6.6 Desenvolver um programa que gere, aleatoriamente, um SUDOKU não resolvido
de solução única e o imprima em um arquivo txt.

34

7 Algoritmos dos exercícios

Serão apresentados alguns dos algorítmos em FORTRAN exigidos nos exercícios. É
importante salientar que será apresentada apenas uma forma de resolver cada problema, assim,
não existe um gabarito para os exercícios e cada programador terá, provavelmente um programa
diferente que resolva o mesmo problema. Espera-se do leitor a compreensão dos procedimentos
realizados de modo a ampliar seus horizontes às próprias criações e a resolver os problemas em
sua determinada área.

program exercicio_2_2

implicit none

real a1, a2, a3, a4, a5, m, v

read *, a1, a2, a3, a4, a5

m = (a1 + a2 + a3 + a4 + a5)/5

v=(((a1-m)**2)+((a2-m)**2)+((a3-m)**2)+((a4-m)**2)+((a5-m)**2))/4

print*, "media", m

print*, "variancia", v

end

program exercicio_2_3

implicit none

integer m,r,s,t

read *, m

r = m/100

s = m-(r*100)

t = r + s

print*, r, s, t

end

program exercicio_2_4

implicit none

real a1, b1, c1

complex a, b, c, raiz1, raiz2, delta

read*, a1, b1, c1

a = CMPLX(a1)

b = CMPLX(b1)

c = CMPLX(c1)

delta = b*b - 4*a*c

raiz1 = (-b + sqrt(delta))/(2*a)

raiz2 = (-b - sqrt(delta))/(2*a)

print*, raiz1, raiz2

end

program exercicio_2_5

implicit none

real a, b

integer q, r

read*, a, b

q = a / b

r = a-(b*q)

print*, "quociente: ", q

print*, "resto: ", r

end

35

program exercicio_2_6

implicit none

integer m,r,s

logical resp

read*, m

r = m/100

s = m-(r*100)

resp = ((r+s)**2) == m

print*, resp

end

program exercicio_2_7

implicit none

integer p, q, a, b, c, d, e, f, g

logical r

read*, p, q

a=(q/1000000)

b=(q/100000)-(a*10)

c=(q/10000)-(a*100)-(b*10)

d=(q/1000)-(a*1000)-(b*100)-(c*10)

e=(q/100)-(a*10000)-(b*1000)-(c*100)-(d*10)

f=(q/10)-(a*100000)-(b*10000)-(c*1000)-(d*100)-(e*10)

g=q-(a*1000000)-(b*100000)-(c*10000)-(d*1000)-(e*100)-(f*10)

r=10*a+b==p.or.10*b+c==p.or.10*c+d==p.or.10*d+e==p.or.10*e+f==p.or.10*f+g==p

print*, r

end

program exercicio_3_1

implicit none

integer n, a, b, c, i

a=1

b=1

read*, n

if (n==1) then

print*, a

else

print*, a

print*, a

do i=3,n,1

print*, a+b

c=b

b=a+b

a=c

enddo

endif

end

36

program exercicio_3_2

implicit none

integer n, nfat, i

read*, n

nfat=1

if (n>0) then

do i=1,n,1

nfat=nfat*i

enddo

endif

if (n>=0) then

print*, nfat

endif

end

program exercicio_3_3

implicit none

real a, b, c

read*, a, b, c

if (min(a,b,c)>0 .and. a+b>c .and. a+c>b .and. b+c>a) then

if (a==b .and. b==c) then

print*, "O triangulo e equilatero"

elseif (a==b .or. b==c .or. a==c) then

print*, "O triangulo e isosceles"

else

print*, "O triangulo e escaleno"

endif

else

print*, "Nao pode ser um triangulo"

endif

end

program exercicio_3_4

implicit none

integer n, i, cont

do n=1,1000,1

cont=0

do i=1,n,1

if (mod(n,i)==0) then

cont=cont+1

endif

enddo

if (cont==2) then

print*, n

endif

enddo

end

37

program exercicio_3_5

implicit none

integer m, n, i

read*, n

m=n

print*, n, " pode ser escrito como produto de:"

20 do i=2,m,1

if (mod(n,i)==0) then

print*, i

n=n/i

goto 20

endif

enddo

end

program exercicio_3_6

implicit none

integer m, r, s

do m=1000,9999,1

r = m/100

s = m-(r*100)

if (((r+s)**2) == m) then

print*, m

endif

enddo

end

program exercicio_3_7

implicit none

real soma, nfat

integer n, i

n=0

soma=0

do while (soma<2.718281)

nfat=1

if (n>0) then

do i=1,n,1

nfat=nfat*i

enddo

endif

soma=soma+(1/nfat)

n=n+1

enddo

print*, "Valor somado", soma

print*, "x =", n-1

end

38

8 Bibliogra�a consultada

• http://paginas.fe.up.pt/~aarh/pc/PC-apontamentos.htm

• http://www.orengonline.com/arquivos/mcf90.pdf

• http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_

exercicios.doc

• http://www.inf.ufes.br/~thomas/fortran/tutorials/inpe_fortran.pdf

• http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_

fortran90.pdf

• http://www.inf.ufes.br/~thomas/fortran/tutorials/helder/fortran.pdf

• http://minerva.ufpel.edu.br/~rudi/grad/ModComp/Apostila/

• http://astro.uesc.br/~apaula/Tutorial_fortran.pdf

• http://www.fis.ufba.br/~edmar/fortran/abel/HOME%20MAT045%20-%20HOME%

20PAGE/APOSTILAS%20FORTRAN%20FORMATO%20WORD

• http://pt.scribd.com/doc/28356002/VisuAlg-Ref

• http://www.orengonline.com/computacao_fortran.html

• http://www.nr.com/oldverswitcher.html

39

http://paginas.fe.up.pt/~aarh/pc/PC-apontamentos.htm
http://www.orengonline.com/arquivos/mcf90.pdf
http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_exercicios.doc
http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_exercicios.doc
http://www.inf.ufes.br/~thomas/fortran/tutorials/inpe_fortran.pdf
http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_fortran90.pdf
http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_fortran90.pdf
http://www.inf.ufes.br/~thomas/fortran/tutorials/helder/fortran.pdf
http://minerva.ufpel.edu.br/~rudi/grad/ModComp/Apostila/
http://astro.uesc.br/~apaula/Tutorial_fortran.pdf
http://www.fis.ufba.br/~edmar/fortran/abel/HOME%20MAT045%20-%20HOME%20PAGE/APOSTILAS%20FORTRAN%20FORMATO%20WORD
http://www.fis.ufba.br/~edmar/fortran/abel/HOME%20MAT045%20-%20HOME%20PAGE/APOSTILAS%20FORTRAN%20FORMATO%20WORD
http://pt.scribd.com/doc/28356002/VisuAlg-Ref
http://www.orengonline.com/computacao_fortran.html
http://www.nr.com/oldverswitcher.html

	Introdução
	Primeiros algoritmos
	Caracteres válidos
	Criando um projeto
	"READ" e "PRINT"
	Execução do programa

	Declarações
	Variáveis inteiras (INTEGER)
	Variáveis reais (REAL)
	Variáveis complexas (COMPLEX)
	Variáveis alfanuméricas ou literais (CHARACTER)
	Variáveis lógicas (LOGICAL)
	Variáveis parâmetros (PARAMETER)

	Operadores
	Atribuição
	Operadores literais
	Operadores aritméticos
	Operadores relacionais
	Operadores lógicos
	Prioridades

	Funções intrínsecas
	Exercícios

	Controle de execução
	"GOTO"
	Estrutura condicional
	Estrutura condicional simples
	Estrutura condicional composta
	Estrutura condicional composta expandida
	Estrutura condicional composta simplificada

	Estrutura de repetição
	"LOOP" condicional
	"LOOP" ciclo condicional
	"DO" iterativo
	"DO-WHILE"

	Exercícios

	Matrizes
	Declarações
	Operações
	Leitura e impressão
	Funções
	Alocação
	Exercícios

	Subprogramas e módulos
	Programa principal
	Funções
	Subrotinas
	Módulos
	Exercícios

	Entrada e saída de dados
	I/O simples
	Ficheiros
	Exercícios

	Algoritmos dos exercícios
	Bibliografia consultada

