UNIVERSIDADE FEDERAL DO TRIANGULO MINEIRO
CAMPUS UNIVERSITARIO DE ITURAMA

Introducao a programacao em Fortran 90

Joao Vitor Teodoro
joao.magda@gmail.com

mailto:joao.magda@gmail.com

Este material tem por objetivo apresentar conceitos basicos e introdutoérios a progra-
macao em linguagem FORTRAN 90. Os codigos e procedimentos descritos representam uma
gama de opc¢oes a serem adotadas, sendo assim, podem existir outras formas e comandos alter-
nativos que aqui nao sao citados.

Com este material, é possivel capacitar-se a resolucao de problemas basicos em com-
putacao cientifica em que, apesar de exemplos e exercicios de grande simplicidade e de facil
entendimento, o leitor pode adaptar seus problemas mais complexos ao que é apresentado.
Porém, de acordo com o rumo e necessidade para cada programa, deve-se buscar referén-
cias mais ricas e especificas em determinados procedimentos, além da importancia em buscar
metodologias eficientes.

O texto apresentado é baseado em varios materiais e, pretendeu-se reunir de forma facil,
compreensivel e sucinta o que cada um oferece de melhor. Exemplos prontos para execucao e
descricoes dos procedimentos passo-a-passo foram colocados buscando a melhor compreensao
desde aqueles que iniciam na area de programacao.

Por estar em uma primeira edi¢ao, o material pode conter erros e necessitar de melho-
rias, assim, quaisquer sujestoes e comentarios sao bem-vindos.

Licenca Atribuigao 4.0 Internacional.

Joao Vitor Teodoro

SUMARIO

1 Introducao

2 Primeiros algoritmos

2.1 CQaracteres validos L
2.2 Criando um projeto e
2.2.1 "READ" e "PRINT"
2.2.2 Execucao do programa e
2.3 Declaragoes
2.3.1 Variaveis inteiras (INTEGER)
2.3.2 Variaveis reais (REAL) o Lo
2.3.3 Variaveis complexas (COMPLEX)
2.3.4 Variaveis alfanuméricas ou literais (CHARACTER)
2.3.5 Variaveis logicas (LOGICAL)
2.3.6 Variaveis parametros (PARAMETER)
2.4 Operadores e
2.4.1 Atribuicao
2.4.2 Operadores literais
2.4.3 Operadores aritméticoso
2.4.4 Operadores relacionaiso
2.4.5 Operadores logicos Lo
2.4.6 Prioridades
2.5 Funcoes intrinsecas Lo
2.6 Exercicios

3 Controle de execugao

3.1 "GOTO" . . e e
3.2 Estrutura condicional
3.2.1 Estrutura condicional simples 0oL
3.2.2 Estrutura condicional composta L.
3.2.3 Estrutura condicional composta expandida
3.2.4 Estrutura condicional composta simplificada
3.3 Estrutura de repeticao
3.3.1 "LOOP" condicional
3.3.2 "LOOP" ciclo condicional
3.3.3 "DO"iterativo
3.3.4 "DO-WHILE"
3.4 Exercicios e e e

4 Matrizes

4.1 Declaragoes e
4.2 Operacies i e e e e e
4.3 Leitura e iImpressao e e e
4.4 Funcoes e e
4.5 Alocagdo e
4.6 Exercicios

5 Subprogramas e moédulos
5.1 Programa principal

12
12
12
13
13
14
14
16
16
16
17
17
18

19
19
19
22
23
23
25

26

5.2 Funcoes
5.3 Subrotinas e e e
5.4 Modulos L e
5.5 Exercicios e

Entrada e saida de dados

6.1 I/Osimples e
6.2 Dicheiros s,
0.3 Exercicios

7 Algoritmos dos exercicios

8 Bibliografia consultada

i

31
31
32
34

35

39

1 Introducao

Nos primordios dos computadores, programar era uma tarefa extremamente compli-
cada e, de certa forma, extenuante. Aos programadores era exigido um conhecimento de-
talhado das instrucoes, registos e outros aspectos ligados com a unidade de processamento
central (CPU) do computador onde era escrito o codigo. Os programas consistiam numa série
de instrucoes numeéricas, denominadas por codigo binario. Posteriormente, desenvolveram-se
algumas mnemonicas (auxiliares de memoria) que resultaram no designado assembly (notacao
legivel por humanos para o codigo de maquina). No periodo entre 1954-1957 uma equipe de 13
programadores liderados por John Backus desenvolveu uma das primeiras linguagens de alto
nivel para o computador IBM 704, o FORTRAN (FORmula TRANSslation). O objetivo deste
projeto era produzir uma linguagem de facil interpretacao mas, ao mesmo tempo, com uma
eficiéncia idéntica a linguagem assembly.

A linguagem FORTRAN foi ao mesmo tempo revolucionaria e inovadora. Os progra-
madores libertaram-se assim da tarefa extenuante de usar a linguagem assembler e passaram a
ter oportunidade de se concentrar mais na resolucao do problema. Mas, talvez mais importante,
foi o fato dos computadores passarem a ficar mais acessiveis a qualquer pessoa com vontade de
despender um esfor¢co minimo para conhecer a linguagem FORTRAN. A partir dessa altura, ja
nao era preciso ser um especialista em computadores para escrever programas para computador.

Nos anos seguintes, outras empresas de computadores desenvolveram os seus proprios
compiladores de FORTRAN para os seus computadores. Desta forma, programas escritos para
uma maquina nao podiam ser usados noutras méquinas sem proceder a algumas modificacoes.
Verificou-se assim uma proliferacao de diferentes compiladores de FORTRAN. A aquisicao de
programas em FORTRAN de diferentes procedéncias, associado a necessidade de converter
todos esses programas sempre que estes eram instalados num novo computador, tornou os
custos totais proibitivos.

Para ultrapassar estes problemas, passou-se a discutir a necessidade de se proceder a
uma normalizagao da linguagem FORTRAN de forma a que os programas fossem portaveis,
isto é, que pudessem ser processados em diferentes maquinas com alteracoes muito pequenas
ou, de preferéncia, sem qualquer alteracao. Em 1966, apos quatro anos de trabalho, a Associ-
acao Americana de Normalizacao, posteriormente passou a designar-se Instituto Americano de
Normaliza¢ao Nacional (American National Standards Institute, ANSI), publicou uma versdo
normalizada designada por FORTRAN IV. Na sua esséncia, esta versao era um subconjunto
comum dos varios dialetos do FORTRAN, de forma que cada dialeto era considerado como uma
extensao da versao normalizada. Os utilizadores desta linguagem que pretendessem escrever
programas portaveis teriam que ter o cuidado de evitar as extensoes referidas.

A proliferacao de dialetos continuou a ser um problema ap6s a publicacao da versao
normalizada em 1966. A primeira dificuldade era a relutancia das empresas que desenvolviam os
diferentes compiladores a aderirem & normalizacao. Por outro lado, a implementacao de carac-
teristicas nos diferentes compiladores, que eram essenciais para programas de longa extensao,
foram ignoradas pela versao normalizada.

Esta situacao, combinada com a existéncia de algumas debilidades evidentes na lin-
guagem normalizada, conduziu a introduc¢ao de um grande nimero de pré-processadores. Estes
eram programas que liam o co6digo da linguagem de um determinado dialeto do FORTRAN e
gerava um segundo texto na versao normalizada. Este procedimento era uma forma de estender
as capacidades do FORTRAN usual, mantendo a portabilidade entre diferentes computadores.
O aumento do nimero de pré-processadores registrado nos anos subsequentes, significava nao sé
a grande diversidade de dialetos do FORTRAN, mas também a insuficiéncia da versao norma-
lizada. Apesar dos programas escritos usando um pré-processador fossem portéveis, o codigo
em FORTRAN gerado desta forma era geralmente de leitura e interpretagao muito dificil.

Estas dificuldades foram parcialmente resolvidas pela publicacao de uma nova norma-

lizacdo, em 1978, conhecida por FORTRAN 77. Esta versao incluia varias novas caracteristi-
cas baseadas em dialetos ja existentes ou em pré-processadores e, por iSso, nao era um mero
subconjunto dos dialetos existentes, mas sim um novo dialeto. O periodo de transicao entre o
FORTRAN IV e 0o FORTRAN 77 revelou-se, no entanto, extremamente longo, devido ao atraso
na avaliacao dos novos compiladores baseados na nova versao normalizada e a necessidade das
duas versoes normalizadas coexistirem por um periodo de tempo consideravel. Na realidade,
somente nos meados da década de 80 o FORTRAN IV passou a ter um uso residual.

Apos trinta anos de existéncia o FORTRAN estava longe de ser a tinica linguagem de
programacao disponivel na maioria dos computadores. As modificagoes significativas introduzi-
das no FORTRAN 77 nao resolveram todos os problemas que apareceram com a primeira versao
normalizada, nem sequer incluia muitas das novas caracteristicas que, entretanto apareceram
com as novas linguagens de programagao como o Pascal ou o C. A comunidade de utilizadores do
FORTRAN embora com um vasto investimento em codigos de FORTRAN (alguns programas
continham mais de 100.000 linhas de instrugoes) em plena utiliza¢do, nao estava completamente
satisfeita com a linguagem. Por consequéncia, iniciaram-se trabalhos para rever a versao nor-
malizada. Para o efeito, a ANSI formou um comité técnico, denominado por X3J3, trabalhando
como um corpo de desenvolvimento do comité ISO, designado por ISO/IEC JTC1/SC22/WGH
(que sera referido abreviadamente por WG5), na nova versao normalizada, inicialmente referida
por FORTRAN 8x que resultou posteriormente no FORTRAN 90.

As motivacoes para o desenvolvimento da nova versao eram nao somente normalizar
as diferentes extensoes comercializadas, mas também modernizar a linguagem como resposta
a outras linguagens de programacao como o APL, Algol, Pascal, Ada, C e C++. De forma
a preservar o vasto investimento nos codigos anteriormente desenvolvidos, todo o FORTRAN
77 é considerado como um subconjunto da nova versao, embora algumas caracteristicas sejam
desaconselhadas na elaboragao de novos programas.

Ao contrario das versoes anteriores que resultaram em grande parte de um esforco para
normalizar "praticas" ja existentes, o FORTRAN 90 é muito mais do que um desenvolvimento
da linguagem, introduzindo aspectos que sao novidade em FORTRAN e resultam da experiéncia
obtida noutras linguagens. As novas caracteristicas mais importantes sao a facilidade de utilizar
variaveis indexadas ("arrays") com uma notagao mais concisa e poderosa e a facilidade de definir
e manipular diferentes tipos de dados definidos pelo utilizador. O primeiro aspecto permite uma
simplificacao na programacao de problemas matematicos e torna a linguagem FORTRAN mais
eficiente quando se utilizam super-computadores uma vez que se adapta mais convenientemente
ao hardware. O segundo aspecto permite aos programadores descrever os seus problemas em
termos dos dados-tipo que combinam perfeitamente com as suas necessidades.

Apos a publicacao da versao normalizada do FORTRAN 90, o WG5 optou por uma
nova forma de atuacao para revisoes futuras. A filosofia atual é a seguinte: se uma nova
caracteristica com possibilidade de ser introduzida no futuro nao se encontrar suficientemente
desenvolvida até uma data pré-estabelecida, entao é preferivel abandonar essa caracteristica em
vez de retardar a nova revisao.

O WG5S passou a ser assim a entidade que decide os vetores de desenvolvimento para
as futuras versdes do FORTRAN. Entretanto, apareceu o FORTRAN 95 como resultado desta
nova filosofia de revisdes. Esta versao consiste numa pequena revisao do FORTRAN 90 con-
sistindo unicamente em "corregoes, clarificacoes e interpretacoes”, algumas novas caracteristicas
e desaparecimento de outras.

O padrao FORTRAN 2003 dita regras mais precisas sobre a implementacao de carac-
teristicas inerentes a orientacdo a objetos (iniciado no FORTRAN 90). Além disso, entre os
compiladores, existem aqueles que melhoram a portabilidade da linguagem com vista a progra-
macao com maquinas paralelas ampliando as possibilidades de otimizacao de tempo e memoria.

Texto retirado de http://paginas.fe.up.pt/~aarh/pc/PC-capitulo2.pdf

2 Primeiros algoritmos

Uma das primeiras coisas que se deve aprender, é como resolver problemas com o auxilio
do computador, isto ¢, como montar, logicamente, as instrucoes para obter a solucao de um
problema que o computador resolvera utilizando as instrucoes programadas pelo usuario, ou
seja, projetar e escrever um algoritmo, que ¢ uma sequéncia ordenada de passos executaveis, e
precisamente definidos, que manipulam um volume de informacoes, a fim de obter um resultado.
O algoritmo é um método finito, escrito em um vocabulario simbdlico fixo, regido por instrugoes
precisas, que se movem em passos discretos

Para que possamos desenvolver um algoritmo, primeiramente devemos entender o pro-
blema a ser resolvido e quais serao as informacoes de entrada e saida. Definindo isso, deve-se
esquematizar um processo logico que o computador entenda.

Fazer um bolo pode ser associado a um algoritmo, definindo os ingredientes como
componentes de entrada, o trabalho do cozinheiro como a execucao do algoritmo e o bolo
(resultado final) como componente de saida. Assim, como fazer um bolo, um algoritimo pode
ser feito de varias formas, eficientes ou nao, que produzirao um mesmo resultado.

Os computadores s6 podem executar diretamente os algoritmos expressos em linguagem
de maquina. A tradugao de um programa escrito em linguagem de alto nivel para linguagem
de maquina é feita por um programa tradutor denominado Compilador. Aqui sera discutida
uma versao que suporta o FORTRAN 90, apesar de ja existirem versoes mais novas.

2.1 Caracteres validos

Nesse ambiente, regras e restricoes devem ser seguidas, porém o FORTRAN nao é
sensivel a letras maitsculas e minasculas (ndo é “Case sensitive”), ou seja, cada palavra, in-
dependentemente dos caracteres maitsculos ou mintdsculos, tem mesma representacao para o
programa.

Para que um algoritmo seja executado com sucesso, somente esses caracteres devem
ser utilizados na programagao:

Tabela 1: Caracteres validos.

0, ..., 9 | Algarismos + | Sinal de mais $ | Cifrao
A, ..., Z | Letras maiusculas — | Sinal de menos ;| Ponto e virgula
a, ..., z | Letras mintsculas / | Barra (slash) < | Menor que
’ Plica ou apostrofe Espaco em branco > | Maior que
" Aspas : | Dois pontos % | Porcentagem
(Parénteses a esquerda | = | Sinal de igual 7 | Ponto de interrogacao
) Parénteses a direita ' | Ponto de exclamacao | , | Virgula
* Asterisco & | "E" comercial . | Ponto

Além disso, é aceitavel o maximo de 132 caracteres por linha e nomes com até 31
caracteres.

2.2 Criando um projeto

Este material é baseado na utilizacao do compilador Fortran PowerStation 4.0. Para
que se possa iniciar um programa em seu ambiente, é necessario criar novo espaco de trabalho
(diretorio) do projeto, para isto, apos abrir o Fortran PowerStation 4.0, deve-se acessar através
da barra de ferramentas File/New.../Project Workspace e clicar OK. No campo Name: deve
ser inserido um nome para o ambiente de trabalho, e no campo Location: o local onde este deve
ser salvo.

Apo6s o preenchimento desses campos clicar em Create. Apo6s a criacao do espaco de
trabalho se faz necessario criar também um arquivo de texto onde seu programa serd digitado,
para sua criagdo acessar, pela barra de ferramentas File/New.../Text File e clicar OK. A tela
em branco com cursor que aparece é o editor de texto.

Apesar do espaco de trabalho estar criado, o projeto ainda nao estd associado a ele,
portanto para isso é necessario acessar File/Save ou atalho equivalente e digitar o nome do
programa .f90 no campo File Name. Em Directories é possivel selecionar o espaco de trabalho
em que se deseja salvar o projeto.

Para acessar outro projeto salvo com respectivo espaco de trabalho é necessério acessar
File/Open Workspace..., selecionar o espago de trabalho desejado em Directories e selecionar o
arquivo mdp na tela a esquerda antes do OK. Clicando no projeto dentro do espaco de trabalho
que aparece na janela é possivel retomar o projeto.

Um programa em FORTRAN deve ter o seguinte formato:

program nome
declaragdes
comandos

end program nome

O nome do programa deve iniciar sempre por letra e nao pode conter espaco, caso
necessario utilizar " " e, para finalizar o programa, em vez de escrever "end program nome",
pode-se usar apenas "end program" ou "end".

A declaragao "program nome" é opcional, porém o seu uso é recomendado. O tnico
campo nao opcional na estrutura de um programa, na definicao do padrao da linguagem, é a
instrucao "end", a qual possui dois propoésitos: indicar ao compilador que o programa chegou
ao fim e, quando da execucao do codigo, provoca a parada do mesmo.

2.2.1 "READ" e "PRINT"

Para que se possa entrar com um valor a ser operacionado no programa, utiliza-se o
comando "read*," seguido pelas varidveis a serem lidas, separadas por virgula e na ordem da
leitura.

Para imprimir valores operacionados no programa, utiliza-se o comando "print*,"
seguido pelas varidveis a serem impressas, separadas por virgula e na ordem da impressao.

program exemplo
read*,a

printx*,a

end program exemplo

Exemplo 2.1

No exemplo, o programa 1&é um valor representado pela variavel a, e em seguida imprime
este valor.

2.2.2 Execugao do programa

1. Apo6s ter escrito o programa no editor de dexto, acessar pela barra de ferramentas
File/Save, para salvar seu projeto.

2. Compilar o projeto significa converte-lo em linguagem de maquina e, para isso se faz
necessario acessar pela barra de ferramentas Build/Compile.... Ao compilar seu pro-
grama, informagoes contendo possiveis erros e avisos serao apresentadas, caso apareca "0
error(s), 0 warning(s)" pode prosseguir, caso contrario, deve verificar a(s) causa(s) do(s)
problema(s).

3. Apos a compilacdo nenhum e problema encontrado, um executavel deve ser gerado, para
isso se faz necessario acessar pela barra de ferramentas Build/Build.... Novamente serdo
apresentados possiveis erros e avisos.

4. O programa esta pronto para ser executado. Arquivos aparecerao na pasta do espaco de
trabalho, assim, se houverem alteracoes no programa, para que essas sejam atualizadas
no projeto os passos 1, 2 e 3 devem ser repetidos.

5. Para executar o programa basta acessar Build/Fzecute... na barra de ferramentas.

Exercicio 2.1 FEzxecutar o algoritmo do exemplo 2.1.

2.3 Declaracoes

As variaveis podem ser inteiras, reais, complexas, literais ou logicas. A declaracao de
uma variavel deve vir antes que ela seja usada, se isto nao ocorrer o compilador assumira que
as variaveis que comecam com as letras I até N como inteiras (INTEGER*4) e todas as outras
como reais (REAL*4), ou seja, delaradas implicitamente como ocorrido no Ezxemplo 2.1.

Esta forma de declaracao implicita pode ser modificada usando o comando "implicit
tipo (al-a2,b1-b2,...)" sendo al, a2, bl, b2 quaisquer letras do alfabeto. A virgula separa os
intervalos de letras e o sinal "—" determina o intervalo. As letras que nao estiverem em nenhum
dos intervalos terd o seu tipo dado pela declaracao implicita. O comando seguinte indica que
as variaveis que comegam com as letras a, b, ¢ e de r até z sdo do tipo real: implicit real (a, b,
¢, r-z). Os espacos sao usados para dar clareza e sao ignorados pelo compilador.

Quando nao se deseja que nenhuma varidvel seja declarada implicitamente usa-se o
comando "implicit none". Se este comando for usado e uma variavel citada no programa nao
estiver em nenhuma outra declaracio o complilador acusara um erro. E sempre bom utilizar
o comando "implicit none" evitando erros no programa.

Para se declarar variaveis que sejam matrizes e vetores deve-se indicar suas dimensoes
logo ap6s o nome da varidvel, entre parénteses, e separadas umas das outras por virgula. Por
exemplo, "a(4,3)" indica uma matriz a de 4 linhas por 3 colunas.

As variaveis podem receber valores iniciais usando " /valor/", logo apds sua declaragio.
No caso de vetores e matrizes devem ser dados os valores para todos os elementos de cada linha
em sequeéncia.

2.3.1 Variaveis inteiras (INTEGER)

As variaveis declaradas como inteiras podem assumir os seguintes valores:

o INTEGER*1: —128 a 127
e INTEGER*2: —32.768 a 32.767
e INTEGER*4 ou INTEGER: —2.147.483.648 a 2.147.483.647

Os numeros apos o "*" indicam quantos bytes a variavel ocupa na memoria do com-

putador. Esta observagao ¢ valida para todos os tipos de variaveis.
Quando uma variavel inteira recebe o resultado de uma divisao com resto, este resto é
desprezado, ou seja o valor é truncado.

program exemplo
implicit none

integer*1:: ¢, f
Exemplo 2.2 | 1%°%8 ’
P integer:: d, a/6/, b(2,2)/0,1,2,3/
comandos
end

Neste caso, o programa identifica ¢ e f como varidveis inteiras que podem assumir
valores de —128 a 127, d como variavel inteira que pode assumir valores de —2.147.483.648 a
2.147.483.647, a como variavel inteira que assume, a priori, o valor 6, mas pode assumir durante
a execucao do programa através dos comandos valores de —2.147.483.648 a 2.147.483.647 e b
como uma matriz 2x2 de variaveis inteiras que assume, a priori,

0 2
St
, mas pode assumir durante a execugao do programa através dos comandos, para cada elemento
da matriz, valores de —2.147.483.648 a 2.147.483.647.

O simbolo "::", na maioria dos casos, nao precisa ser usado e pode ser trocado por
espaco, assim, por exemplo "integer®1:: ¢, {", pode ser escrito como "integer*1 c, f".

2.3.2 Variaveis reais (REAL)
As varidveis declaradas como reais podem assumir os seguintes valores:

e REAL*4 ou REAL(Precisdo simples com 6 casas decimais):

Varia de —3, 402823 x 103® (-3.402823E+38) a +3,402823 x 103 (+3.402823E+38) e tem
incremento minimo de —1,175494 x 1073 a +1,175494 x 10738, ou seja, ntimeros reais
neste intervalo sao considerados zero.

e REAL*8 ou DOBLE PRECISION (Precisao dupla com 15 casas decimais):

Varia de —1,797693134862316 x 103%® (-1.797693134862316D-+308) a
+1,797693134862316 x 103%® (+1.797693134862316D+308) e tem incremento mi-
nimo de —2,225073858507201 x 1073% a +2,225073858507201 x 1073%. A parte
exponencial deve ser separada por um d ou D no lugar do e ou F para real do tipo *8.

Colocando-se "." ap6s um nimero no programa garantimos que ele seja
real, caso contririo somente seri reconhecida sua parte inteira.

program exemplo
implicit none
real*4 ri1,r2
real*8 r3,r4
integer i1,12,a
read*,a

ri=a/3.

r2=a/3

r3=a/3.

rd4=a/3

il=a/3.

i2=a/3
print*,rl,r2,r3,r4,i1,i2
end

Exemplo 2.3

2.3.3 Variaveis complexas (COMPLEX)
e COMPLEX*8 ou COMPLEX (Precisao simples com 6 casas decimais)
e COMPLEX*16 (Precisao dupla com 15 casas decimais)

Os valores que um complexo pode assumir sdo 0s mesmos que os reais representado
por um par ordenado (parte real,parte compleza) de reais.

6

program exemplo
implicit none
complex ¢
Exemplo 2.4 | ¢ = (-1,0)

¢ = sqrt (c)
printx*,c

end

2.3.4 Variaveis alfanumeéricas ou literais (CHARACTER)

A variavel do tipo character é declarada digitando-se "character nome*w" em que nome
é a variavel alfanuméria e w representa o nimero méaximo de caracteres que a variavel pode
conter dentro do programa. A variavel poderd conter até 32.767 caracteres e caso w nao seja
apresentado ("character nome") ele correspondera a 1.

O tamanho, em bytes, de um tipo character ¢ igual a quantidade de caracteres que a
constante ou variavel possui mais 1, onde este byte a mais, guarda o tamanho da constante ou
variavel.

Quando a variavel recebe os caracteres na propria execucdo do programa, ou seja,
através da atribuicao, ou no momento da impressao, os caracteres atribuidos devem vir entre
aspas e contendo apenas caracteres validos. Quando a variavel recebe os caracteres na execu-
¢ao do programa através do "read*," espacos entre palavras nao podem ocorrer, neste caso é

sugerido o uso de " _".

program exemplo

implicit none

character nome*30

Exemplo 2.5 | print*, "Qual e seu nome?"
read*, nome

print*, "Eu me chamo ", nome
end

2.3.5 Variaveis logicas (LOGICAL)

A varidvel logica é uma variavel binaria que pode assumir somente os valores .{rue.
(verdadeiro) ou .false. (falso). Ou até mesmo 0 e 1. Utiliza 4 bytes de memoria.

program exemplo
implicit none
logical logl, log2, log3d

Exemplo 2.6 logl=1
log2= .false.
log3= 0
print*, logl, log2, log3
end

2.3.6 Variaveis parametros (PARAMETER)

As vezes necessitamos, em um programa, de constante ou parametro que nao deve
receber outro valor, uma vez que ja foi atribuido um valor no momento de sua declaragao. Para
casos como este que utilizamos varidveis parametros.

program exemplo
implicit none

real raio, pi

Exemplo 2.7 | parameter (pi = 3.14159)
read*, raio

print*, "A area do circulo & ", pi*raio*raio
end
2.4 Operadores
2.4.1 Atribuigao
A variavel ou identificador que estiver a esquerda do sinal de atribuicao "=" recebem

o valor da expressao, constante ou variavel que estiver a direita.
Identificador = Expressao

Alguns exemplos de atribuicoes:

nome = '"Jonatas Henrique"
curso = "Ciencias Biologicas"
ano = 1999

prova(1l)= 9.6; prova(2)= 8; prova(3)= .8

t= 9.9; datal = "12/10/10"
nota = (2xprova(1l)+3*prova(2)+4*prova(3)+t)/10

Estas declaracoes poderiam estar na mesma linha desde que fossem separadas por ponto
e virgula ";".

2.4.2 Operadores literais

Uma funcao util para varidveis literais é a concatenacao, ou a juncao de duas ou mais
palavras. Em FORTRAN a concatenagao é feita pelo operador "//".
Por exemplo,

program exemplo
implicit none
character a*x3,b*5,c*8
a = "mel"

b = "ancia"

c =al//b

print*, c

end

Exemplo 2.8

2.4.3 Operadores aritméticos

Executam operagoes aritméticas comuns.

Tabela 2: Operadores aritméticos.

Fortran | Algébrico | Significado
+ + Soma
— — Subtracao
* . Multiplicagao
/ + Divisao
sk a’ Potenciacao

2.4.4 Operadores relacionais

Comparam variaveis, constantes ou expressoes e retornam " TRUE.", "T" ou "1" se a
comparacao for verdadeira, ".FALSE.", "F" ou "0" se a comparacao for falsa.

Tabela 3: Operadores relacionais.

Fortran | F90 | Algébrico Significado
.LT. < < menor que
.LE. <= < menor ou igual que
EQ. | == = igual a
NE. = #+ diferente de
.GT. > > maior que
.GE. >= > maior ou igual que

program exemplo

implicit none

logical e, f, g

real a, b, ¢, d

read*, a, b, c, d

e = (a+ b)x0.5 .LT. (¢ + d)*0.5
f (a + b)*x0.5 == (¢ + d)*0.5
g = (a + b)x0.5 > (c + d)*0.5
print*x, e, £, g

end

Exemplo 2.9

2.4.5 Operadores logicos

Sao usados quando sao necessarias mais de uma condicao relacional ou quando é preciso
inverter seu resultado.

Tabela 4: Operadores logicos.

Fortran Significado
AND. Verdadeiro se os dois operadores forem verdadeiros
.OR. Verdadeiro se ao menos um dos dois operadores for verdadeiro
NOT. Verdadeiro se o operador for falso (negagao)
NEQV. ou .XOR. Verdadeiro se somente um dos operadores for verdadeiro
EQV. Verdadeiro se os dois operadores forem falsos ou verdadeiros

Por exemplo,

program exemplo
implicit none
logical ri1, r2, r3, r4, r5, r6, r7, r8

rl = 10.GT.5 .AND. 20.GT.25
r2 = 10.GT.5 .0OR. 20.GT.25
r3 = .NOT. 20.GT.25

Exemplo 2.10 | r4 = 10 > 5 .XOR. 20 >= 25
r5 = 10.GT.5 .NEQV. 25.GT.20
ré6 = 10 < 5 EQV. 20 <= 25
r7 = 10.LT.5 .EQV. 25.GT.20
r8 = "José" == "Pedro"

print*, rl, r2, r3, r4, r5, r6, r7, r8
end

2.4.6 Prioridades

FORTRAN usa a seguinte relacao de prioridades:

Tabela 5: Ordem de prioridade.

Prioridade

1912°02°13° 3% 4° | 4° | 4° | 4° | 4° | 4°

50

6° 7°

Operador

kx| x|/

+ | — | .eq. | .ne. | .gt. | .ge. | .It. | .le.

.not.

.and. | .or.

O uso de parénteses pode ser feito para trocar a ordem de prioridade.

2.5 Fungoes intrinsecas

Existem varias funcoes predefinidas em FORTRAN, que podem ser usadas em qualquer
parte do programa. Aqui serdo sitadas algumas delas, outras funcoes intrinsecas podem ser

encontradas.
Tabela 6: Func¢oes diversas.
Nome Definicao Tipo de argumento Tipo de funcao
ALOG10(x) Logaritmo de x na base 10 Real Real
ALOG(x) Logaritmo neperiano de x Real (x > 0) Real
EXP(x) O ntmero e elevado a x Real Real
ABS(x) Valor absoluto de x Real Real
IABS(x) Valor absoluto de x Inteiro Inteiro
[FIX(x) Trunca de real para inteiro Real Inteiro
FLOAT(x) Conversao de inteiro para real Inteiro Real
DBLE(x) Converte para dupla precisao Real Real*8
CMPLX(x) Converte para o tipo complexo Real Complexo
SIGN(x,y) | Fornece |x|sey > 0e-[x|sey <0 Real Real
MOD(x,y) Resto da divisao de x por y Inteiro Inteiro
AMOD(x,y) Resto da divisao de x por y Real Real
SQRT(x) Raiz quadrada de x Real (x > 0)/Complexo | Real/Complexo
MAX(x,y) Maior entre x e y Inteiro/Real Inteiro/Real
MIN(x,y) Menor entre x e y Inteiro/Real Inteiro/Real

10

Tabela 7: Funcoes trigonométricas.

Nome Definicao Tipo de argumento | Tipo de funcao
SIN(x) Seno (radianos) Real ou complexo REAL*4
ASIN(x) Arcoseno (radianos) Real, x| <1 REAL*4
COS(x) Coseno (radianos) Real ou complexo REAL*4
ACOS(x) Arcocoseno (radianos) Real, x| <1 REAL*4
TAN(x) Tangente (radianos) Real REAL*4
ATAN(x) Arcotangente (radianos) Real REAL*4
SINH(x) Seno Hiperbolico (radianos) Real REAL*4
COSH(x) | Coseno Hiperbolico (radianos) Real REAL*4
TANH(x) | Tangente Hiperbdlica (radianos) Real REAL*4

2.6 Exercicios
Exercicio 2.2 Desenvolver um algoritmo que lé uma amostra com 5 valores reais e imprime

média e varidncia.

Exercicio 2.3 Dado um nimero inteiro de quatro algarismos imprimir o numero formado pelos
2 primeiros digitos, o numero formado pelos 2 iultimos digitos e a soma desses dois resultados.

Exercicio 2.4 Fazer um algoritmo que calcule as raizes da funcio f(z) = ax® + bz + ¢, em
que a, b e ¢ sao informacoes fornecidas no momento da execucdo do programa.

Exercicio 2.5 Fazer um algoritmo que imprima o quociente e o resto da divisio entre dois
numeros fornecidos no momento da execu¢ao do programa.

Exercicio 2.6 O nimero 3025 tem a sequinte caracteristica:
304 25 =565 e 55 x 55 = 3025

Fazer um algoritmo que [é um nidmero inteiro de quatro algarismos e testa se ele tem
ou nao a mesma caracteristica do 3025.

Exercicio 2.7 Sao dados dois nimeros inteiros positivos p e q, sendo que p e q tém respecti-
vamente 2 e 7 digitos. Verificar se p é um subnumero de q.

Ezemplo:

p = 23, q = 5723835, p € subniimero de q.

p = 23, q = 2583479, p nao é subnimero de q.

11

3 Controle de execucao

Os programas em FORTRAN devem conter os comandos escritos na ordem em que
serdo executados, com excecao das funcdes, subrotinas e lagos de repeticao. O comando "end"
indica o fim do programa. Se o programador preferir pode finalizar o programa prematuramente
usando os comandos "stop" ou "call exit".

Por exemplo:

program exemplo
implicit none
integer a, b
read*, a, b
Exemplo 3.1 | print*, a, b
stop

a = axxb
print*, a

end

Neste caso, o programa encerrara na linha de comando em que aparece "stop" ou, se
preferir pode colocar "call exit".

3.1 "GOTO"

Quando se deseja que o comando do programa avance ou recue em sua estrutura de
forma nao sequencial, usa-se o comando "goto".

goto n

n comando

Em que n é um ntmero inteiro positivo que rotula uma linha que possua ou nao um
comando, na qual o programa, ao executar a linha "goto n" redireciona-se a linha "n comando",
podendo esta estar antes ou depois de "goto n". Como uma linha rotulada nao pode estar em
branco e pode nao conter comando, pode-se usar a palavra chave "continue".

Por exemplo:

program exemplo
implicit none
integer a, b
read*, a, b
Exemplo 3.2 | goto 12
print*, a, b

a = axxb
12 print*, a
end

3.2 Estrutura condicional

Toda linguagem de programacao estruturada necessita de artificios que possibilitem a
execucao condicional de comandos. Esses comandos normalmente alteram o fluxo de execucao
de um programa.

Uma das caracteristicas da linguagem FORTRAN é o processamento de cima para
baixo, linha por linha. Entretanto, essa ordem pode ser alterada quando utilizamos algumas
condicOes para que os calculos sejam realizados. Isso pode ser feito utilizando o comando TF.

12

3.2.1 Estrutura condicional simples

A sintaxe do comando de uma estrutura condicional simples é descrita por:

if (condig3o)
comando

ou

if (condigdo) then
bloco de comandos
end if

Quando a condicao for verdadeira o comando ou bloco de comandos serd executado,
quando for falsa o programa segue para o proximo comando logo abaixo da estrutura condi-
cional. A primeira opcao s6 é valida quando for executado um dnico comando. Este comando
pode ser de qualquer tipo, atribuicao, escrita, leitura, "goto" ou interrupgao do programa.

Por exemplo,

program exemplo
implicit none
integer a,b
read*, a,b
Exemplo 3.3 >
P if (mod(a,b)==0) then
end if
end

print*, a," e multiplo de", b

Obs.: E permitido o uso de estruturas condicionais umas dento das outras.

3.2.2 Estrutura condicional composta

Na estrutura condicional composta, se a condicao for verdadeira, o blocol é executado,
se nao o bloco2 é que serd executado. Mesmo quando s6 had um comando no blocol, nao se pode

omitir a palavra chave "then". A sintaxe do comando é:

if (condig&o) then
blocol

else

bloco?2

end if

Por exemplo,

program exemplo
implicit none

integer a,b

read*, a,b

if (mod(a,b)==0) then

Exemplo 3.4))
print*, a," e multiplo de", b
else
print*, a," nao e multiplo de", b
end if
end

13

3.2.3 Estrutura condicional composta expandida

Na estrutura condicional composta expandida varias condicoes sao testadas. A estru-
tura da sintaxe é:

if (condigdol) then
blocol

else if (condig&o2) then
bloco?2

else if (condig&on) then
blocon

else

bloco(n+1)

end if

Dessa forma, se a condi¢aok for satisfeita, as seguintes sao ignoradas.
Por exemplo:

program exemplo

implicit none

real nota

print*, "Qual foi sua nota?"

read*, nota

if (nota .ge. 9.00) then

print*, "Muito bem! Conceito A"
Exemplo 3.5 | else if (nota .ge. 7.00) then
print*, "Voce foi bem! Conceito B"
else if (nota .ge. 5.00) then
print*, "Voce nao foi tao bem! Conceito C"
else

print*, "REPROVADQ!!!tti"

end if

end

3.2.4 Estrutura condicional composta simplificada

Uma outra forma de se usar uma estrutura condicional composta é usando o comando
"case". A sintaxe de comando é:

nome_case: select case (exp. case)
case (lista de selegdo 1)

comandosl

case (lista de selegdo 2)

comandos?

case (lista de selecgdo n)
comandosn

case default

comandosd

end select nome_case

14

Em que "exp. case" é uma expressio ou constante inteira, logica ou literal (somente
um caractere "character®1"). Caso o valor de "exp. case" estiver na "lista de sele¢do 1", os
"comandos1l" serao executados. Se o valor nao estiver na "lista de selecao 1" o computador
ird avaliar a "lista de selecao 2", se for verdadeira serao executados os "comandos2" e assim
até terminar os comandos "case (lista de selecdo n)". O comando "case default" é opcional
e faz com que os "comandosd" sejam executados caso nenhuma das outras avaliacOes sejam
verdadeiras. "mome case" é opcional e deve seguir as mesmas regras usadas para dar nomes
as variaveis. A sua utilidade é apenas de dar maior clareza ao programa.

E importante lembrar que somente uma das condicoes (lista de sele¢ao) deve ser satis-
feita.

As listas de selecao podem ser da seguinte forma:

Tabela 8: Listas de selecao.

Estrutura Condigao para ser verdadeira
case (valor) exp. case igual ao valor
case (:valor) exp. case menor ou igual ao valor
case (valor:) exp. case maior ou igual ao valor
case (valorl:valor2) exp. case entre valorl e valor2
case (valorl,valor2,...,valorn) | exp. case igual ao valorl ou igual ao valor2 ou ... valorn

Por exemplo, utilizando uma constante literal:

program exemplo

implicit none

character ix*1

i:IIhII

valor_i: select case (i)
case (uan nbu IICII)

Exemplo 3.6 | print*, "i=a ou b ou c"

case (”d”:"m"

print*, "i esta entre d ¢ m"
case (IIDII:IIMII)

print*, "i esta entre D e M"
end select valor_i

end

Por exemplo, utilizando uma constante inteira:

program exemplo
implicit none
integer a
read*, a

select case (a)
case (:-2)

print*, a, " menor ou igual a -2"
Exemplo 3.7 | case (0)

print*x, a, " igual a zero"

case (2:7)

print*, a, " entre 2 e 7"

case default

print*, '"nenhuma das condicoes foi satisfeita"
end select

end

15

3.3 Estrutura de repeticao

Quando o mesmo comando precisa ser executado varias vezes até que se atinja uma
certa condicao ou um numero certo de repeticoes, o melhor é usar as estruturas de repeticao.
Estas estruturas sao bem simples e podem economizar varias linhas de comando.

3.3.1 "LOOP" condicional

"Loop" consiste de um bloco de comandos que sao executados ciclicamente, infinita-
mente. E necessario um mecanismo condicional para sair do "loop". O bloco de comandos
que é executado ciclicamente é delimitado pelo comando "do ... end do" e o comando exit
determina a saida do "loop". A sintaxe de comando é:

do
if (express&o légica) exit

end do

Por exemplo:

program exemplo
implicit none
integer i

i=0

do

Exemplo 3.8 | i =i + 1

if (i .GT. 100) exit
printx, "i vale", i
end do

print*, "Fim do loop. 1 =", 1
end

3.3.2 "LOOP" ciclo condicional

"Loop" ciclico consiste de um mecanismo condicional para sair e iniciar o "loop" no-
vamente. O comando "cycle" determina, novamente, o inicio imediato do "loop". A sintaxe de
comando é:

do
if (expressdo légica) cycle

if (express&o logica) exit

end do

Por exemplo:

16

program exemplo

implicit none

integer i

i=0

do

i=1+1

if (i >= 50 .AND. i <= 59) cycle
if (i .GT. 100) exit

print*, "i vale", i

end do

print*x, "Fim do loop. 1 =", 1
end

Exemplo 3.9

3.3.3 "DOQO" iterativo

O "DO" iterativo consiste num "loop" que possui um nimero fixo de ciclos. A sintaxe
de comando é:

do varidvel = expressdol,expressdo2,expressio3d

end do

Em que, expressaol é o valor inicial, expressao2 é o valor final e expressaod é o valor
de incremento. Podemos interpretar "do varidvel = expressaol,expressao2,erpressaod ... end
do" como "Para varidvel, de expressaol até expressao? passo exrpressaod faca ... fim para'.

Por exemplo:

program exemplo
implicit none
integer i

Exemplo 3.10 | do i = 2,100,2
print*, "i vale", i
end do

end

3.3.4 "DO-WHILE"

O "DO-WHILE" consiste num "loop" que condiciona a sua execucao antes de executar
o bloco de comandos, pois a condicao é testada no topo do "loop". A sintaxe de comando é:

do while (expressdo loégica)

end do

Podemos interpretar "do while (expressao logica) ... end do" como "Faga enquanto
expressao logica ... fim para'.
Por exemplo:

17

program exemplo

implicit none

integer I

I=1

do while (I<25)

if (I==1) then

Exemplo 3.11 | print*, "Passei", I, " vez"
else

print*, "Passei" , I, " vezes"
endif

I=I+1

enddo

end

3.4 Exercicios

Exercicio 3.1 Fuazer um algoritmo que gere os n primeiros elementos da sequéncia de Fi-
bonacci, dada por: 1, 1, 2, 3,5, 8, 13, 21, ...

Exercicio 3.2 Desenvolver um programa que calcule n! para um n inteiro nao negativo qual-
quer.

Exercicio 3.3 Desenvolver um programa que solicita que se digite trés valores e informa se
eles podem corresponder a trés lados de um tridngulo equildtero, isdsceles, escaleno ou nao
formam um tridngulo.

Exercicio 3.4 Desenvolver um programa que informe os nimeros primos entre 1 e 1000.

Exercicio 3.5 Desenvolver um programa que escreva um niumero natural n como produto de
numeros primos.

Exercicio 3.6 O nidmero 3025 tem a sequinte caracteristica:
30 + 25 = 55 e b5 x 55 = 3025

Fazer um algoritmo que apresente todos os numeros naturais de quatro digitos que tém
a mesma caracteristica do 3025.

Exercicio 3.7 Sabendo que o nimero e dos logaritimos naturais neperianos € aproximada-
mente 2,718281 e sabendo que este nimero é representado numericamente pela soma abaizo,
em que quanto maior o valor de x, melhor a aprorimacao. Crie um programa que calcule o
valor de x que nos dard quantos elementos da série serao somados para que se obtenha um
valor maior ou iqual ao apresentado.

Exercicio 3.8 Escreva um programa para identificar os nimeros amigdveis menores que 2000.
Dois nimeros sao amigaveis quando cada um € igual & soma dos divisores do outro nimero
(excluindo apenas o proprio nimero). Exemplo: 220 e 284 sio nimeros amigdveis pois a soma
dos divisores de 220 (1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110) € igual a 284 e a soma dos divisores
de 284 (1, 2, 4, 71, 142) € igual a 220.

Exercicio 3.9 FEscreva um programa para calcular uma aproximagao para sen(x), onde x é um
valor inteiro lido da unidade padrao de entrada. A aprozimagao pode ser obtida de: sen(x) =
r—x/3!+x/5 —x/T + ... O programa deve encerrar o processamento quando a varia¢ao no
valor calculado for inferior a 0.001.

18

4 Matrizes

Matrizes ou "Arrays" sao uma colecao de dados armazenados na memoria e acessados,
individualmente, de acordo com a sua posicao espacial, definida pelas dimensoes da matriz.

O FORTRAN armazena os elementos de matrizes em espagos contiguos de memoria.
Este ordenamento é obtido variando-se inicialmente o indice da primeira dimensao da matriz,
depois variando-se o indice da segunda dimensao e assim por diante. Em uma matriz com
2 dimensoes isto ¢ obtido variando-se inicialmente as linhas e depois as colunas, ou seja, os
elemenos sao distribuidos por colunas.

4.1 Declaracoes

Para declarar matrizes existem as seguntes formas:

’ tipodevariavel, dimension (al, a2, ..., ak) :: matl, ..., mats ‘
ou

| tipodevariavel mati(al, a2, ..., ak), ..., mats(bl, b2, ..., bl) |
ou

dimension mati(al, a2, ..., ak), ..., mats(bl, b2, ..., bl)
tipodevariavel matl, ..., mats

Em que "tipodevariavel" determina o tipo de varidvel para cada elemento da matriz,
podendo ser inteiro, real, complexo, alfanumérico ou légico.

O FORTRAN 90 trabalha com vertores de até 7 dimensdes. O limite inferior e superior
de niveis por dimensao ficam separados pelo caractere ":". Caso nao exista esse caractere, o
limite inferior serd sempre 1 e o limite superior, o informado na defini¢do da matriz. Se esse
limite inferior nao for informado, entao a alocacao de memoria serd dinamica, ou seja, durante
a execucao do programa. Para leitura e impressao, a ordem por coluna, serd utilizada.

Por Default cada elemento das matrizes recebe, inicialmente, valor zero. Porém, pode-
se iniciar os elementos da matriz utilizando "/.../".

Por exemplo,

program exemplo

implicit none

integer, dimension(4) :: A = (/2,3,4,5/)
Exemplo 4.1 | integer B(2,2)/1,2,3,4/

print*, A

print*, B

end

4.2 Operagoes

e Para a matriz toda.

program exemplo

implicit none

integer A(3,2), B(3,2)/1,2,3,4,5,6/
A=1

Exemplo 4.2 | B = 2xB*A + 1

A=B+A

printx, A

print*x, B

end

19

Neste caso, a matriz A é declarada de ordem 3 x 2 formada por elementos inteiros, por
Default é nula, e a matriz B declarada de ordem 3 x 2 formada por elementos inteiros, a
priori:
1 4
B=125
3 6

Depois, a matriz A recebe valor 1 para todos seus elementos. Cada elemento B(i,j) da
matriz B recebe 2 x B(i,) x A(i,7) + 1, ou seja, quando apresentado "A*B" é calculado
o produto elemento a elemento, valendo também para as outras operagoes matematicas.
E ‘no comando seguinte cada elemento A(i,j) da matriz A recebe B(i,j) + A(4,7) e, por
fim, A e B sao impressas. Observa-se que quando dimensao ou ordem de matrizes sao
diferentes essas operacoes nao podem ser feitas entre elas.

Para alguns elementos da matriz

program exemplo

implicit none

integer A(3,2), B(3,3)/1,2,3,4,5,6,7,8,9/
A(1,1) = 80

A(3,2) = B(1,1) + B(3,3)

printx, A

print*, A(1,1)

end

Exemplo 4.3

Neste caso, a matriz A é declarada de ordem 3 x 2 formada por elementos inteiros, por
Default é nula, e a matriz B declarada de ordem 3 x 3 formada por elementos inteiros, a
priori:

1 4
B=125
3 6

© o I

Depois, os elementos A(1,1) e A(3,2) da matriz A recebem respectivamente valores 80 e
B(1,1)+ B(3,3) e, por fim, a matriz A e seu elemento A(1,1) sao impressos. Observa-se
que elementos de matrizes de dimensao ou ordem diferentes podem ser operacionados.

Para algumas secoes de elementos da matriz

Para se operacionar somente uma secao da matriz, podemos escrever:
matriz(liminf 1:limsup l:incremento 1, ..., liminf n:limsup n:incremento n)

Em que liminf k, limsup k e imcremento k representam respectivamente limite inferior,
limite superior e incremento da dimensao k.

Se um dos limites, inferior ou superior (ou ambos) for omitido, entdo o limite ausente
é assumido como o limite inferior ou superior da correspondente dimensao da matriz da
qual a secao esta sendo extraida e se o incremento for omitido, entao assume-se que valera
um.

Dessa forma, por exemplo, dada a matriz:

20

Il
T W N =
NoRNoIEN I o)

—
(e

11
12
13
14
15

16 21
17 22
18 23
19 24
20 25

X (:,:) ou X representa todos os elementos da matriz:

[t
o

O (00 [[
5 1o 100 I e
o e [o |

Elelxx s
& 2 (e 3 =
CU s [0 (DN [

X(2:2,2:2) ou X (2,2) representa o elemento da linha 2 e coluna 2.

11
12
13
14
15

U= W N =
—_
o © NS

16
17
18
19
20

X (3,3:5) representa os elementos de linha 3 que variam da coluna 3 & 5:

11
12
13
14
15

T W N =
©O© 0 J O

—_
)

16
17
18
19
20

21
22
23
24
25

X (2:3,2:5:2) representa os elementos das linhas 2 e 3 e das colunas 2 4 5 e incremento

11
12
13
14
15

CU WD
=S ol N o

16
17
18
19
20

X (1::2,2:4) representa os elementos da linha 1

2 e das colunas 2 a 4:

12
13
14

U W N =
[t
‘ow\oo\]\cn

21

21
22
23
24
25

até terminar as linhas com incremento

21
22
23
24
25

program exemplo
implicit none
integer X(5,5),1i,]j
do i= 1,5,1

do j= 1,5,1

X(i,j) = (j-1)*5+i
enddo

enddo

print*, X(:,:)
print*x, X(2:2,2:2)
print*, X(3,3:5)
print*, X(2:3,2:5:2)
print*, X(1::2,2:4)
end

Exemplo 4.4

4.3 Leitura e impressao

H4 véarias formas de leitura e impressao de matrizes, entre elas podemos apenas utilizar
o comando "read®, A" e "print*, A" para ler e imprimir uma matriz A. No entanto, os elementos
serao lidos e impressos no video em uma linha continua na ordem por colunas.

Outra forma de leitura e impressao de matrizes muito 1til é utilizando um processo
iterativo. Por exemplo, caso queiramos entrar com os valores da matriz A por linhas e depois
imprimir também nesta mesma ordem:

program exemplo
implicit none
integer A(3,3),1i,]
do i= 1,3,1

do j= 1,3,1
readx*, A(4,j)
enddo

enddo

do i= 1,3,1

do j= 1,3,1
print*, A(i,j)
enddo

enddo

end

Exemplo 4.5

Porém, apesar de apresentar funcionalidade matematica, ainda ha deficiéncia estética.
Para que a matriz seja apresentada em uma melhor forma utiliza-se:

(expressdo ,i = a, n, b))

Em que, ocorre uma repeticao de expressao para ¢ de a até b passo n. Ou seja, é
equivalente a:

doi=a, n, b
expresséo
end do

22

Porém, este tipo de repeticao, além representar muito bem o "DO" iterativo, muda de
linha na tela sempre que termina. Assim, por exemplo:

program exemplo

implicit none

integer A(3,3),1,]

do i= 1,3,1

read*, (A(i,j) , j=t1, 3, 1)
enddo

do i= 1,3,1

print*, (A(i,j) , j=1, 3, 1)
enddo

end

Exemplo 4.6

Apresenta o vetor A em linhas e colunas.
Outras formatacoes serao vistas nas sessoes posteriores.

4.4 Funcoes

Algumas fungoes podem ser utilizadas para apresentar informacoes e tributos destas.

Tabela 9: Funcoes de matrizes.

Funcao Significado
LBOUND Limite inferior das dimensoes da matriz
UBOUND Limite superior das dimensoes da matriz
SHAPE Ordem da matriz
SIZE Nimero de elementos da matriz
TRANSPOSE Transposta da matriz

Para obter as informagoes para uma determinada dimensao, basta inserir virgula e a
dimensao ap6s o nome da matriz. Por exemplo:

program exemplo

implicit none

integer A(2,3)/1,2,3,4,5,6/,1,j,B(3,2)

B = TRANSPOSE(A)

do i= 1,2,1

printx, (A(i,j) , j=1, 3, 1)

enddo

Exemplo 4.7 | do i= 1,3,1

printx, (B(i,j) , j=1, 2, 1)

enddo

print*, LBOUND(A), LBOUND(A,1), LBOUND(A,2)
print*, UBQUND(A), UBOUND(A,1), UBOUND(A,2)
print*, SHAPE(A)

print*, SIZE(A), SIZE(A,1), SIZE(A,2)

end

4.5 Alocacao

Uma novidade importante introduzida no FORTRAN 90 ¢ a habilidade de se declarar
variaveis dinamicas e em particular, matrizes dinamicas. O FORTRAN 90 fornece tanto ma-
trizes alocaveis quanto matrizes automaticas, ambos os tipos sendo matrizes dinamicas. Usando

23

matrizes alocaveis, é possivel alocar e de-alocar espago de memoria conforme necessério. O re-
curso de matrizes autométicas permite que matrizes locais em uma funcao ou subrotina tenham
forma e tamanho diferentes cada vez que a rotina é invocada.

Matrizes alocaveis permitem que grandes fracoes da memoria do computador sejam
usadas somente quando requerido e, posteriormente, liberadas, quando nao mais necessarias.
Este recurso oferece um uso de memoria muito mais eficiente que o FORTRAN 77, o qual
oferecia somente alocagio estatica (fixa) de memoria. Além disso, o codigo torna-se muito mais
robusto, pois a forma e o tamanho das matrizes podem ser decididos durante o processamento
do codigo.

Uma matriz alocavel é declarada na linha de declaracao de tipo de variavel com o
atributo "ALLOCATABLE". O posto da matriz deve também ser declarado com a inclusao
dos simbolos de dois pontos ":", um para cada dimensao da matriz. Por exemplo, a matriz de
duas dimensoes A é declarada como alocavel através da declaracao:

REAL, DIMENSION(:,:), ALLOCATABLE :: A

sta forma de declaracao nao aloca espaco de memoria imediatamente & matriz, como
acontece com as declaragoes usuais de matrizes. O status da matriz nesta situacao é not cur-
rently allocated, isto ¢, correntemente nao alocada. Espaco de memoria é dinamicamente alo-
cado durante a execucao do programa, logo antes da matriz ser utilizada, usando-se o comando
"ALLOCATE". Este comando especifica os limites da matriz. Por exemplo:

ALLOCATE (A(0:N,M))

O espaco alocado & matriz com o comando "ALLOCATE" pode, mais tarde, ser lib-
erado com o comando "DEALLOCATE". Este comando requer somente nome da matriz pre-
viamente alocada. Por exemplo, para liberar o espago na memoria reservado para a matriz

A
DEALLOCATE (A)

Tanto os comandos "ALLOCATE" e "DEALLOCATE" possuem o especificador op-
cional "STAT", o qual retorna o status do comando de alocacao ou de-alocacdo. Neste caso, a
forma geral do comando é:

ALLOCATE (lista de objetos alocados , STAT= status)
DEALLOCATE (lista de objetos alocados , STAT= status)

Em que "status" é uma variavel inteira escalar. Se STAT= esta presente no comando,
"status" recebe o valor zero se o procedimento do comando ALLOCATE/DEALLOCATE foi
bem sucedido ou um valor positivo se houve um erro no processo. Se o especificador STAT= nao
estiver presente e ocorra um erro no processo, o programa ¢ abortado. Finalmente, é possivel
alocar-se ou de-alocar-se mais de uma matriz simultaneamente, como indica "lista de objetos
alocados".

Matrizes alocaveis tornam possivel o requerimento freqiiente de declarar uma matriz
tendo um ntimero variavel de elementos. Por exemplo, pode ser necessario ler varidveis, digamos
taml e tam2 e entao declarar uma matriz com tami X tamZ2 elementos.

E possivel verificar se uma matriz esta ou nao correntemente alocada usando-se a funcao
intrinseca ALLOCATED. Esta é uma fungao logica com um argumento, o qual deve ser o nome
de uma matriz alocavel. Usando-se esta fungao, comandos como os seguintes sao possiveis:

IF (ALLOCATED(A)) DEALLOCATE (A)
IF (NOT. ALLOCATED(A)) ALLOCATE (A(5,20))

24

Por exemplo:

program exemplo

implicit none

real, dimension(:), allocatable :: A

real, dimension(:,:), allocatable :: B
integer N, I, J, ERRO

read*, N

allocate (A(N), B(N,N), STAT=ERRQ)

if (ERRO/=0) print#*, "Problemas de alocacao"

doI=1,N,1
Exemplo 4.8 | A(I)=N*x*(1./I)
enddo
doI=1,N,1
B(I,:)= IxA
enddo
doI=1,N,1
print*, (B(I,J) , J=1, N, 1)
enddo
deallocate (A, B)
end

4.6 Exercicios

Exercicio 4.1 Desenvolver um algoritmo que construa uma matriz identidade n X n.

Exercicio 4.2 Desenvolver um algoritmo que [é uma amostra com n valores reais e imprime
média e varidncia.

Exercicio 4.3 Calcular C=A-B para A e B matrizes quaisquer tal que o produto seja possivel.

Exercicio 4.4 Quadrado Mdgico ¢ uma tabela quadrada de lado n, onde a soma dos nimeros
das linhas, das colunas e das diagonais € constante, sendo que nenhum destes numeros se repete.
Fazer um algoritmo que verifica se uma tabela n x n € um quadrado mdgico.

Exercicio 4.5 Fazer um algoritmo que imprime as n primeiras linhas do Tridangulo de Pascal.

Exercicio 4.6 Dado um experimento com delineamento inteiramente casualizado que testa t
tratamentos com r repeticoes cada, apresentar o valor do F calculado para tratamento.

25

5 Subprogramas e médulos

Quando um algoritmo tem muitas linhas de comandos comeca a ser de dificil mani-
pulacao. Normalmente alguns programas apresentam esta catacteristica e algumas instrucoes
sao muitas vezes repetidas. Assim, é possivel dividir o programa em unidades menores que
executam as instrugoes repetidas separadamente com dados ou parametros diferentes, ou seja,
em subprogramas.

E possivel escrever um programa comipleto em um tnico arquivo, ou como uma unidade
simples. Contudo, se o codigo ¢é suficientemente complexo, pode ser necessario que um deter-
minado conjunto de instrucoes seja realizado repetidas vezes, em pontos distintos do programa.

Cada uma das unidades de programa corresponde a um conjunto completo e consis-
tente de tarefas que podem ser, idealmente, escritas, compiladas e testadas individualmente,
sendo posteriormente incluidas no programa principal para gerar um arquivo executavel. Em
FORTRAN ha dois tipos de estruturas que se encaixam nesta categoria: subrotinas e funcoes
(externas ou extrinsecas).

Um codigo executavel é criado a partir de um programa principal, que pode invocar
rotinas externas e usar médulos também. A tnica unidade de programa que deve necessaria-
mente existir sempre é o programa principal.

Quaisquer das trés unidades de programas podem também invocar rotinas internas,
as quais tém estrutura semelhante as rotinas externas, porém nao podem ser testadas isolada-
mente.

5.1 Programa principal

Todo coédigo executével deve ser composto a partir de um, e somente um, programa
principal. Opcionalmente, este pode invocar subprogramas. Um programa principal possui a
seguinte estrutura:

program nome
declaracgdes

comandos

contains

subprogramas internos
end program nome

A declaragio "contains" indica a presenga de subprogramas internos (fungdes ou sub-
rotinas).

5.2 Funcoes

Uma fun¢do retorna um tnico valor (matriz ou escalar), e esta usualmente nao altera
os valores de seus argumentos. Neste sentido, uma fun¢do em FORTRAN age como uma func¢ao
em andlise matemaética.

O FORTRAN tem dois tipos de funcoes, intrinsecas e definidas pelo usuério.

Fungdes intrinsecas sao proprias (latentes) da linguagem FORTRAN, tais como sin(x),
cos(x), sqrt(x), entre outras. Estas ja foram abordadas em 2.5.

As fungoes definidas pelo usuario sao fungoes que o programador cria para executar uma
tarefa especifica. Exceto pela declaragao inicial, as fung¢oes apresentam uma forma semelhante
a de um programa principal:

26

contains

function nome (argumentos)
declaracdes

comandos

contains

subprogramas internos

end function nome

O efeito do comando "end" em um subprograma consiste em retornar o controle a
unidade que o chamou, ao invés de interromper a execucao do programa. Recomenda-se o uso
da forma completa do comando para deixar claro ao compilador e ao programador qual parte
do programa estd sendo terminada.

Nas declaragoes dentro da fungao devem aparecer: a prépria funcao, os argumentos
e variaveis auxiliares da funcdo. Estas declaracoes nao sao declaradas novamente junto as
declaragoes do programa principal

O comando "contains" inserido dentro da fungao s6 é necessario se houverem subpro-
grams internos a funcao.

Uma funcao é ativada ou chamada de forma semelhante como se usa uma fungdao em
analise matematica. Por exemplo, dada uma fungao "func(n,x)", esta pode ser chamada para
atribuir seu valor a uma variavel escalar ou a um elemento de matriz:

y = func(n,x)

Uma fungao pode fazer operagoes em uma expressao, por exemplo: y = func(n,x) +
5*func(n,x**3), ou ainda servir de argumento para uma outra rotina.
Por exemplo:

program exemplo
implicit none

real y1, y2, y3, y4
read*, y1, y2, y3, y4
print*, func(yl,y2)
print*, func(y3,y4)
contains

function func(x,y)
real func, a, b, x, y
a=1

b=2

func = axx+bxy

end function func

end

Exemplo 5.1

5.3 Subrotinas

Uma subrotina pode executar uma tarefa mais complexa que a funcao e retornar diver-
sos valores através de seus argumentos, os quais podem ser modificados ao longo da computacao
da subrotina.

Exceto pela declaracao inicial, as subrotinas apresentam uma forma semelhante a de
um programa principal:

27

contains

subroutine nome (argumentos)
declaracdes

comandos

contains

subprogramas internos

end subroutine nome

Nas declaracoes dentro da subrotina, devem aparecer as variaveis auxiliares e os argu-
mentos da subrotina. Estas declaracoes nao sao declaradas novamente junto as declaracoes do
programa, principal.

Uma subrotina, devido ao fato de retornar, em geral, mais de um valor em cada
chamada, nao pode ser operada como uma fungao em andlise mateméatica e deve ser chamada
através da instrucao "call". Qualquer unidade de programa pode chamar uma subrotina, até
mesmo outra subrotina. Por exemplo, se existe uma sub-rotina "subrot", serd obtida através
da chamada:

call subrot(x1, x2, ..., xn)

A ordem e tipo dos argumentos na lista de argumentos devem corresponder a ordem
e tipo dos argumentos declarados na subrotina. A subrotina finaliza sua execucao quando
encontra um "return" ou um "end subroutine" e, retorna ao programa que a requisitou na
linha seguinte ao "call".

Por exemplo:

program exemplo

implicit none

real y1, y2, y3, y4, rl, r2
read*, yl1, y2, y3, y4

call subrot(yl,y2,rl,r2)
print*, rl, r2

call subrot(y3,y4,rl,r2)
print*, rl, r2

Exemplo 5.2 | contains

subroutine subrot(x,y,z1,z2)
real a, b, x, y, z1, z2

a=1

b=2

z1l = axx+b*y

z2 = a*x(x*%2)+b* (y**2)

end subroutine subrot

end

5.4 Mobdulos

No que diz respeito a modularizacdo de programas, a linguagem FORTRAN oferece
facilidades através de subrotinas e fun¢oes, o que torna possivel a implementacao de programas
modulares e estruturados. No FORTRAN 90, esta modularizagao teve um avanco significativo
através das declaracoes e procedimentos "module", tanto que esta declaracao tem status de
programa.

28

A declarac¢ao "module" (ou modulo) pode conter dados, procedimentos, ou ambos, que
podemos compartilhar entre unidades de programas (programa principal, subprograma e em
outros modulos). A estrutura de um modulo é idéntica a de um programa, porém deve-se trocar
"program” por "module". Os dados e procedimentos estarao disponiveis para uso na unidade
de programa através da declaracao "use", seguida do nome do mo6dulo.

Por exemplo:

module funcao

implicit none

contains

subroutine raizes (al,bl,cl,raizl,raiz2)
real al, bil, ci1

complex a, b, ¢, raizl, raiz2, delta

Exemplo 5.3 a = cmplx(al)
b = cmplx(bl)
¢ = cmplx(cl)

delta = b*xb - 4xaxc

raizl = (-b + sqrt(delta))/(2xa)
raiz2 = (-b - sqrt(delta))/(2xa)
end subroutine raizes

end module funcao

Que deve ser compilado como se fosse um programa principal. Assim, é possivel criar
programas no mesmo espaco de trabalho (diretorio) que o utilize:

program exemplo

use funcao

implicit none

real a, b, c

Exemplo 5.4 | complex raizum, raizdois

read*, a, b, c

call raizes(a,b,c,raizum,raizdois)
print*, raizum, raizdois

end

5.5 Exercicios

Exercicio 5.1 Fa¢a uma subrotina que receba uma matriz M (10,10), o nimero de uma linha
L, o nimero de uma coluna C' e retorne a matriz N (9,9) resultante da remog¢ao da linha L e
da coluna C'.

Exercicio 5.2 FEscreva um programa que jogue o jogo da velha com o usudrio, o qual deve
ter a sequinte estrutura: inicializar a matriz 3x8 com zeros; pedir para o jogador escolher o
seu simbolo (X ou O); pedir a jogada do usudrio; gerar a jogada do computador (que sim-
plesmente deve preencher com o seu simbolo o primeiro espaco vazio que encontrar (ele nao é
muito inteligente!); mostrar a matriz alterada na tela; verificar se hd vencedor (linhas, colu-
nas ou diagonais com um mesmo simbolo) e anuncid-lo; caso contrdrio, pedir nova jogada ao
usudrio, etc. Depois que um jogador vencer, o programa deve perguntar se o usudrio quer jogar
novamente. Se a resposta for negativa, terminar o programa.

Exercicio 5.3 O nidmero de cadastro de pessoas fisicas do Ministério da Fazenda (CPF) tem 9
digitos sequidos de dois digitos verificadores, os quais servem como teste para erros de digitagao

29

na sequéncia. Dada a sequéncia dos 9 digitos (nl,...,n9) o primeiro digito verificador (dvl)
é gerado sequindo-se a regra: a) calcula-se a soma sl = 10xnl14+9xn2+... +3xn8+2xn9; b)
calcula-se o resto r1 da divisao de sl por 11; ¢) subtrai-se r1 de 11; d) se dvl resultar 10 ou
11, transforme para 0. O sequndo digito verificador (dv2) é gerado usando-se o dvl: calcula-se
a soma s2 = 11xXnl+10xn2+...+4xXn8+3xn9+2xdvl e seqguem-se 0s demais passos de forma
semelhante. Escreva um programa para verificar se um CPF, dado numa sequéncia de 11
digitos, sem pontos ou hifen, é vdlido, ou seja, nao contém erros de digitac¢ao. (Usar mddulo).

Exercicio 5.4 FEscreva um programa que lé um niumero nao determinado de valores m, todos
inteiros e positivos, um valor de cada vez, e, se m < 10 utiliza um sub-programa do tipo func¢ao
que calcula o fatorial de m, e caso contrdrio, utiliza um sub-programa do tipo funcao para obter
o nimero de divisores de m (quantos divisores m possui). Escrever cada m lido e seu fatorial
ou seu niumero de divisores com uma mensagem adequada. Neste caso, temos um programa
principal e dois sub-programas.

30

6 Entrada e saida de dados

Entrada e saida de dados é uma parte de fundamental importancia na programacao. O
FORTRAN 90 possui uma grande variedade de opg¢oes de I/O (input/output), que permitem
diferentes tipos de arquivos se conectarem ao programa principal para leitura e gravacao.

6.1 1I/0 simples

Neste material foram utilizados, até agora, para leitura e impressao de dados no ecra
(tela do computador), respectivamente os comandos "read*," e "print*," porém, outras formas
mais elaboradas podem ser utilizadas.

Leitura: read (n° unidade , n° formato / cddigo do formato) varidveis

Impressao: write (n° unidade , n° formato / cédigo do formato) varidveis

Em que, n° unidade corresponde ao niimero que representa um ficheiro (arquivo) ou um
ecra, sua utilizacao serd descrita a frente. E n° formato corresponde ao niimero que representa
um roétulo para declaragao de formato ou pode ser substituido pelo proprio cédigo do formato
sem uso de declaracao de formato.

Para simplificacdo destas declaracoes, utiliza-se "*" em vez de nimeros, isto é uti-
lizado quando se deseja ler e imprimir variaveis ou textos no ecra e nao h& preocupacao com
formatacao:

Leitura: read (*,*) varidveis

Impressao: write (*,*) varidveis

Para utilizacao de formatacao dos dados, utiliza-se a sintaxe:

write (¥, ’(cddigo do formato)’) varidveis

ou

write (*, n° formato) varidveis

n° formato format (cédigo do formato)

Os codigos de formatacao mais utilizados sao:

Tabela 10: Codigos de formatacao mais utilizados.

Codigo Representacgao
Iw Dado inteiro com largura total de campo w
Iw.m Dado inteiro com largura total de campo w
e numero minimo de caracteres m
Fw.d Dado real com largura total de campo w e d casas decimais
nX n espacos horizontais
Ew.d Dado real em notacao exponencial
com largura total de campo w e d casas decimais
Aw Dado de caractere com largura de campo
pEw.d | Dado real com p niimeros antes da virgula, em nota¢ao exponencial
com largura total de campo w e d casas decimais
n/ n espagos verticais (saltar linha)

31

Se um nimero ou texto nao preencher o tamanho do campo declarado, serao somados
espacos. Normalmente o texto serd ajustado a direita, mas as regras variam pra formatagoes
diferentes.

program exemplo

implicit none

real x

integer n

character*19 c

x = 13.760

n = 276

¢ = "Programa em Fortran"
write(*,23) c¢
write(*,900) x
write(*x,1) n
write(*,?(5/)7)
write(*,’(10x,A19)’) ¢
write(*,’(10x,F8.4)’) x
write(*,’(10x,E8.3,10x,I10.2)’) x, n
write(*,’(10x,I10.2)°) n
write(*,’(10x,I8)°) n
write(*,2(5/)7)

23 format (15x,A8)

1 format (15x,I6)

900 format (15x,F8.1)
end

Exemplo 6.1

6.2 Ficheiros

E possivel, através de comandos em FORTRAN, ler ou imprimir em ficheiros, que sdo
armazenados em dispositivos de armazenamento de dados. Inicialmente, é necessario efetuar a
abertura de um arquivo, ja existente ou nao.

Um programa pode gerar tantos dados, que todos eles nao caberiam na tela de uma s6
vez, e ainda seriam perdidos ao finalizar o programa. Os dados salvos em arquivos podem ser
usados pelo proprio programa ou exportados para serem processados de outra forma. Arquivos
de leitura economizam um tempo precioso para o usuario do programa, pois ele nao vai precisar
enviar dados via teclado, e com arquivos milhares de dados podem ser lidos em segundos. Além
de que, nao é necessario executar o programa sempre que se desejar consultar dados de saida
em arquivos,

A sintaxe basica para abertura, criacao ou substituicao de um ficheiro é:

open(n® unidade, file="nome do arquivo")

close(n® unidade)

Em que "open" faz a chamada, se ja existente, ou a criacdo do arquivo "nome do
arquivo" e atribui a este um inteiro "n° unidade" que o representara nos comandos do algoritmo.
Quando nao for utilizado o comando "open", o programa emitird uma mensagem na tela pedindo
o seu nome, podendo o usuério escolher um nome diferente a cada vez que o programa for
executado. Todos os arquivos devem estar ou serao criados no mesmo diretério em que estiver

32

o programa. Outros comandos opcionais podem ser inseridos em "open" de acordo com cada
compilador.

E, "close" efetua o fechamento do arquivo representado por "n° unidade". Outros
comandos opcionais podem ser inseridos em "close" dacordo com cada compilador.

Para impressao em um arquivo representado por "n® unidade", é utilizado o comando
"write (n° unidade , n° formato / cddigo do formato) varidveis" apos a abertura ("open") e
antes do fechamento ("close") do arquivo.

Por exemplo:

program exemplo

implicit none

integer n, 1

read*, n
open(503,file="arquivo.txt")
do i=1,n,1

write (503,’(3x,I5)°) i
enddo

close(503)

end

Exemplo 6.2

program exemplo

implicit none

integer n, j

real i

read*, n

open(10, file="arquivo.dat")
do i=1,n,1

write (10, ’(10000(1x,f5.0))’) (i , j=1,n,1)
printx*, i

enddo

close (10)

end

Exemplo 6.3

Alguns comandos extras podem ser inseridos caso necessério:

Tabela 11: Comandos extras de formatacao.

Comando Representagao
rewind (n° unidade) Recuo total
backspace (n° unidade) | Recuo de um campo

Apesar de se poder usar qualquer extensao de arquivo ou até omiti-la, as extensoes
.dat para leitura e .out para saida sao mais comumente encontradas.
Por exemplo:

33

program exemplo

implicit none

open(10, file="arquivo.txt")
write(10,*) "Texto"

write (10, ’(1x,f6.3)’) 12.234
write (10, ’(1x,f6.3)’) 23.876
Exemplo 6.4 | rewind (10)

write (10, ’>(1x,f6.3)°’) 56.789
write (10, ’(1x,f6.3)’) 67.123
backspace (10)

write (10, ’(1x,f6.3)’) 77.153
close (10)

end

6.3 Exercicios

Exercicio 6.1 Fazer um algoritmo que leia 10 valores reais e imprima uma tabela cuja primeira
coluna seja formada por estes niumeros, a sequnda coluna apresente a parte inteira desses valores
e a terceira coluna apresente estes valores em notacao cientifica. NOTA: Considerar, por
facilidade, valores de 0 a 100 com um mdximo de trés casas decimais.

Exercicio 6.2 Criar um arquivo txt contendo uma matriz identidade 500% 500.

Exercicio 6.3 Desenvolver um programa que cria um arquivo trt com uma sequéncia de 1000
numeros aleatorios. Cada nimero deve estar entre 0 e 1, conter duas casas decimais e 0s
numeros devem Ser impressos numa mesma linha com 1rés espacos horizontais entre eles.
NOTA: Para gera¢iao de nimeros aleatorios utilizar o comando "ran(n)", em que n € um
wnteiro qualquer informado que serve como semente.

Exercicio 6.4 Desenvolver um programa que leia os dados do arquivo criado mno exercicio
anterior e apresente na tela de execucdo a porcentagem de elementos menores que 0,5.

Exercicio 6.5 Desenvolver um programa que resolva um SUDOKU espresso por um arquivo
com extensao txt e imprima a resolucao em outro arquivo txt.

Exercicio 6.6 Desenvolver um programa que gere, aleatoriamente, um SUDOKU nao resolvido
de solugao tnica e o imprima em um arquivo txt.

34

7 Algoritmos dos exercicios

Serdo apresentados alguns dos algoritmos em FORTRAN exigidos nos exercicios. E
importante salientar que sera apresentada apenas uma forma de resolver cada problema, assim,
nao existe um gabarito para os exercicios e cada programador teré, provavelmente um programa
diferente que resolva o mesmo problema. Espera-se do leitor a compreensao dos procedimentos
realizados de modo a ampliar seus horizontes as proprias criagoes e a resolver os problemas em
sua determinada area.

program exercicio_2_2

implicit none

real al, a2, a3, a4, ab, m, v

read *, al, a2, a3, a4, ab

m= (al + a2 + a3 + a4 + ab)/5
v=(((al-m)**2)+((a2-m) **2) +((a3-m) **2) + ((a4-m) **2) +((ab-m) **2)) /4
print*, "media", m

print*, "variancia", v

end

program exercicio_2_3
implicit none

integer m,r,s,t

read *, m

r = m/100

s = m-(r*100)
t=r+s

print*, r, s, t

end

program exercicio_2_4

implicit none

real al, bl, cil

complex a, b, ¢, raizl, raiz2, delta
read*, al, bl, ci

a = CMPLX(al)

b = CMPLX(b1)

¢ = CMPLX(c1)

delta bxb - 4%xaxc

raizl = (-b + sqrt(delta))/(2#a)
raiz2 = (-b - sqrt(delta))/(2#a)
print*, raizl, raiz?2

end

program exercicio_2_5
implicit none

real a, b

integer q, r

read*, a, b

q=a/b

r = a-(bxq)

print*, 'quociente: ", q
print*, "resto: ", r

end

35

program exercicio_2_6
implicit none

integer m,r,s

logical resp

read*, m

r = m/100

s = m-(r*100)

resp = ((r+s)**2) == m
print*, resp

end

program exercicio_2_7

implicit none

integer p, q, a, b, ¢, d, e, £, g

logical r

read*, p, q

a=(q/1000000)

b=(q/100000) - (a%10)

c=(q/10000) - (a*100) - (b*10)
d=(q/1000) - (a*1000) - (b*x100) - (c*10)

e=(q/100) - (a*10000) - (b*1000) - (c*100) - (d*10)

£=(q/10) - (a*100000) - (b*10000) - (c*1000) - (d*100) - (e*10)

g=q- (a*1000000) - (b*x100000) - (c*10000) - (d*1000) - (e*100) - (£%10)
r=10*a+b==p.or.10*b+c==p.or.10*c+d==p.or.10*d+e==p.or.10*e+f==p.or.10xf+g==p
printx, r

end

program exercicio_3_1
implicit none

integer n, a, b, ¢, 1
a=1

b=1

read*, n

if (n==1) then
print*, a

else

print*, a

print*, a

do i=3,n,1

printx*, atb

c=b

b=a+b

a=c¢

enddo

endif

end

36

program exercicio_3_2
implicit none
integer n, nfat, i
read*, n

nfat=1

if (n>0) then

do i=1,n,1
nfat=nfat*i

enddo

endif

if (n>=0) then
print*x, nfat

endif

end

program exercicio_3_3
implicit none

real a, b, ¢

read*, a, b, ¢

if (min(a,b,c)>0 .and. a+b>c .and. a+c>b .and.

if (a==b .and. b==c) then

print*x, "O triangulo e equilatero"
elseif (a==b .or. b==c .or. a==c) then
print*x, "O triangulo e isosceles"
else

print*x, "O triangulo e escaleno"
endif

else

print*, "Nao pode ser um triangulo"
endif

end

b+c>a)

then

program exercicio_3_4
implicit none

integer n, i, cont

do n=1,1000,1

cont=0

do i=1,n,1

if (mod(n,i)==0) then
cont=cont+1

endif

enddo

if (cont==2) then
print*, n

endif

enddo

end

37

program exercicio_3_5
implicit none

integer m, n, i
read*, n

m=n

print*, n, " pode ser escrito como produto de:"
20 do i=2,m,1

if (mod(n,i)==0) then
printx*, i

n=n/i

goto 20

endif

enddo

end

program exercicio_3_6
implicit none

integer m, r, s

do m=1000,9999,1

r = m/100

s = m-(r*100)

if (((r+s)**2) == m) then
print*, m

endif

enddo

end

program exercicio_3_7
implicit none

real soma, nfat
integer n, i

n=0

soma=0

do while (soma<2.718281)
nfat=1

if (n>0) then

do i=1,n,1

nfat=nfat*i

enddo

endif

soma=soma+(1/nfat)

n=n+1

enddo

print*, "Valor somado", soma
printx, "x =", n-1

end

38

8 Bibliografia consultada

e http://paginas.fe.up.pt/ aarh/pc/PC-apontamentos.htm
e http://www.orengonline.com/arquivos/mcf90.pdf

e http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_
exercicios.doc

e http://www.inf.ufes.br/ thomas/fortran/tutorials/inpe_fortran.pdf

e http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_
fortran90.pdf

e http://www.inf.ufes.br/ thomas/fortran/tutorials/helder/fortran.pdf
e http://minerva.ufpel.edu.br/ rudi/grad/ModComp/Apostila/
e http://astro.uesc.br/“apaula/Tutorial_fortran.pdf

e http://www.fis.ufba.br/ edmar/fortran/abel/HOMEY,20MAT045%20-7%20H0OMEY,
20PAGE/APOSTILASY,20FORTRANY,20FORMAT0%20WORD

e http://pt.scribd.com/doc/28356002/VisuAlg-Ref
e http://www.orengonline.com/computacao_fortran.html

e http://www.nr.com/oldverswitcher.html

39

http://paginas.fe.up.pt/~aarh/pc/PC-apontamentos.htm
http://www.orengonline.com/arquivos/mcf90.pdf
http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_exercicios.doc
http://www.fisica.uece.br/graduacao/caf/sites/default/files/80_exercicios.doc
http://www.inf.ufes.br/~thomas/fortran/tutorials/inpe_fortran.pdf
http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_fortran90.pdf
http://www.cenapad.unicamp.br/servicos/treinamentos/apostilas/apostila_fortran90.pdf
http://www.inf.ufes.br/~thomas/fortran/tutorials/helder/fortran.pdf
http://minerva.ufpel.edu.br/~rudi/grad/ModComp/Apostila/
http://astro.uesc.br/~apaula/Tutorial_fortran.pdf
http://www.fis.ufba.br/~edmar/fortran/abel/HOME%20MAT045%20-%20HOME%20PAGE/APOSTILAS%20FORTRAN%20FORMATO%20WORD
http://www.fis.ufba.br/~edmar/fortran/abel/HOME%20MAT045%20-%20HOME%20PAGE/APOSTILAS%20FORTRAN%20FORMATO%20WORD
http://pt.scribd.com/doc/28356002/VisuAlg-Ref
http://www.orengonline.com/computacao_fortran.html
http://www.nr.com/oldverswitcher.html

	Introdução
	Primeiros algoritmos
	Caracteres válidos
	Criando um projeto
	"READ" e "PRINT"
	Execução do programa

	Declarações
	Variáveis inteiras (INTEGER)
	Variáveis reais (REAL)
	Variáveis complexas (COMPLEX)
	Variáveis alfanuméricas ou literais (CHARACTER)
	Variáveis lógicas (LOGICAL)
	Variáveis parâmetros (PARAMETER)

	Operadores
	Atribuição
	Operadores literais
	Operadores aritméticos
	Operadores relacionais
	Operadores lógicos
	Prioridades

	Funções intrínsecas
	Exercícios

	Controle de execução
	"GOTO"
	Estrutura condicional
	Estrutura condicional simples
	Estrutura condicional composta
	Estrutura condicional composta expandida
	Estrutura condicional composta simplificada

	Estrutura de repetição
	"LOOP" condicional
	"LOOP" ciclo condicional
	"DO" iterativo
	"DO-WHILE"

	Exercícios

	Matrizes
	Declarações
	Operações
	Leitura e impressão
	Funções
	Alocação
	Exercícios

	Subprogramas e módulos
	Programa principal
	Funções
	Subrotinas
	Módulos
	Exercícios

	Entrada e saída de dados
	I/O simples
	Ficheiros
	Exercícios

	Algoritmos dos exercícios
	Bibliografia consultada

