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Parte 1 

- INTRODUÇÃO 

Equações Diferenciais são ferramentas essenciais na modelagem científica e 

devem ser familiares para profissionais das diversas áreas do conhecimento. São muitos 

os métodos conhecidos para resolver equações diferenciais e todos eles nos permitem 

conhecer o comportamento de um fenômeno dado, ou seja, a solução matemática de uma 

equação diferencial representa o comportamento físico do sistema estudado.  

Desta forma, nossa expectativa deve ser tentar entender, tanto quanto possível, o 

que acontece a uma função que satisfaz a solução de uma equação diferencial. Assim, a 

um nível muito básico, poderemos saber o que acontece ou o que poderia acontecer no 

futuro nesse sistema.  

Recentemente, com o avanço rápido na tecnologia dos computadores e sua 

capacidade de processamento crescendo cada dia mais, os métodos numéricos tornaram-

se uma ferramenta de grande importância no desenvolvimento de novos algoritmos ou na 

melhora de outros. Então a pergunta que os iniciantes se fazem é quando utilizar os 

métodos numéricos? Em principio, podemos dizer que seu uso seria em equações 

diferenciais que no tem solução analítica conhecida, mas também podemos afirmar que, 

ainda que seja conhecida esta solução, muitas vezes ao resolver numericamente um 

problema temos um ganho considerável no tempo de trabalho.  

Ao resolver uma equação diferencial de forma numérica estamos introduzindo 

naturalmente um erro devido às aproximações realizadas e é fundamental que este erro 

seja mantido a níveis bastante reduzidos de forma a garantir a correta representação do 

fenômeno.  
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- Revisão de Equações Diferenciais 

Condução de Calor numa Barra 

 

Considere: 

- Barra de comprimento: L 

- Seção Transversal: A 

- Material condutor uniforme de calor 

- Superfície lateral da barra isolada termicamente 

 

O fluxo de calor se da somente na direção longitudinal. Assim o problema é 

considerado unidimensional, ou seja, as várias grandezas físicas são constantes em cada 

seção transversal. 

Lei de Resfriamento de Fourier: Considere duas placas P1 e P2, de áreas iguais a 

A, mantidas constantemente às temperaturas T1 e T2, respectivamente; se colocadas 

paralelamente a uma distância d uma da outra, haverá passagem de calor da placa mais 

quente para a mais fria, e a quantidade de calor, por unidade de tempo, transferida de uma 

placa para outra é dada por 

 

𝑄 =
𝑘𝐴 |𝑇2 − 𝑇1|

𝑑
 

(1) 
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Onde k é a condutibilidade térmica do material entre as placas (cal/cm-s-ºC) 

Seja: 

𝑢(𝑥, 𝑡) temperatura de um ponto de abscissa x, no tempo t. 

 

Tomemos duas seções transversais da barra 

 

Como a temperatura varia com o tempo, não podemos aplicar a Lei de Fourier. 

Para superar essa dificuldade, vamos introduzir a grandeza fluxo de calor através de uma 

seção x, num instante t. 

- Fixe o tempo t na Eq. (1), faça 𝑇2 = 𝑢(𝑥 + 𝑑, 𝑡) e 𝑇1 = 𝑢(𝑥, 𝑡) 
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𝑞(𝑥, 𝑡) =
𝑘𝐴 |𝑢(𝑥 + 𝑑, 𝑡) − 𝑢(𝑥, 𝑡)|

𝑑
 

 

 

e passe o limite quando d tende a zero. Assim: 

 

𝑞(𝑥, 𝑡) = −𝑘𝐴 𝑢𝑥(𝑥, 𝑡) (2) 

 

Onde : se 𝑇2 > 𝑇1     ⟹  𝑢𝑥 > 0 , mas como 𝑄 (⟵)  ⟹   𝑞 < 0 

            se 𝑇1 > 𝑇2     ⟹  𝑢𝑥 < 0 , mas como 𝑄 (⟶)  ⟹   𝑞 > 0 

 

Fixemos um elemento de barra entre 𝑥0 e 𝑥0 + 𝛿, e vejamos qual é a quantidade 

de calor q que aí entra, no período de tempo entre 𝑡0 e 𝑡0 + 𝜏.  

 

𝑞(𝑥, 𝑡) = ∫ 𝑞(𝑥0, 𝑡)𝑑𝑡

𝑡0+𝜏

𝑡0

− ∫ 𝑞(𝑥0 + 𝛿, 𝑡)𝑑𝑡

𝑡0+𝜏

𝑡0

  

 

ou 

𝑞(𝑥, 𝑡) = ∫ 𝑘𝐴 [ 𝑢𝑥(𝑥0 + 𝛿, 𝑡) −  𝑢𝑥(𝑥0, 𝑡)] 𝑑𝑡 

𝑡0+𝜏

𝑡0

 (3) 

 

Por outro lado, sabe-se que o calor especifico (c) de uma substância é a quantidade 

de calor necessária para elevar em 1º Celsius a temperatura de uma grama dessa 

substância e é dada pela expressão: 

 

𝑞(𝑥, 𝑡) = ∫ ∫ 𝑐 𝑢𝑡(𝑥, 𝑡)

𝑥0+𝛿

𝑥0

 𝑑𝑥 𝜌 𝐴 𝑑𝑡

𝑡0+𝜏

𝑡0

 (4) 
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onde 𝜌 é a densidade da substância. 

Usando o teorema fundamental do cálculo na Eq. (3) 

 

𝑞(𝑥, 𝑡) = ∫ ∫ 𝑘 𝐴 𝑢𝑥𝑥(𝑥, 𝑡)

𝑥0+𝛿

𝑥0

 𝑑𝑥 𝑑𝑡

𝑡0+𝜏

𝑡0

 (5) 

 

Podemos igualar as Eqs. (4) e (5) como segue: 

 

∫ ∫ 𝑘 𝐴 𝑢𝑥𝑥(𝑥, 𝑡)

𝑥0+𝛿

𝑥0

 𝑑𝑥 𝑑𝑡

𝑡0+𝜏

𝑡0

=  ∫ ∫ 𝑐 𝑢𝑡(𝑥, 𝑡)

𝑥0+𝛿

𝑥0

 𝑑𝑥 𝜌 𝐴 𝑑𝑡

𝑡0+𝜏

𝑡0

 (6) 

 

Como a Eq. (6) é válida para todo 𝑡0 > 0, todo 0 < 𝑥0 < 𝐿 e todos os 𝜏 > 0 e 𝛿 >

0, concluímos que: 

 

𝑘 𝑢𝑥𝑥(𝑥, 𝑡) = 𝑐 𝜌 𝑢𝑡(𝑥, 𝑡)  

 

Ou seja  

 

𝑢𝑡(𝑥, 𝑡) = 𝐾 𝑢𝑥𝑥(𝑥, 𝑡) (7) 

 

onde 𝐾 =
𝑘

𝜌 𝑐
 é chamado de difusibilidade térmica. 

 

A Eq. (7) é a Equação de Calor Unidimensional e tem muitas soluções como por 

exemplo: 
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𝑢(𝑥, 𝑡) = 𝑐
𝑢(𝑥, 𝑡) = 𝑐𝑥

      c= constante 

 

Qual delas vai representar a distribuição de temperaturas na barra? 

- Condição Inicial: 

𝑢(𝑥, 0) = 𝑓(𝑥) 

onde 𝑓: [0, 𝐿] → ℝ 

 

- Condições de Contorno ou de fronteira: 

Tipo I: Suponhamos que as extremidades da barra sejam mantidas a temperaturas 

conhecidas 

𝑢(0, 𝑡) = 𝑇1    𝑒      𝑢(𝐿, 𝑡) =  𝑇2 

Um caso mais complexo seria aquele em que se conhece a variação de temperatura 

em uma extremidade (ou em ambas), isto é: 

𝑢(0, 𝑡) = ℎ0(𝑡)    𝑒      𝑢(𝐿, 𝑡) = ℎ1(𝑡) 

Tipo II: Suponhamos que as extremidades estejam isoladas termicamente, ou seja, 

os fluxos de calor de 𝑥 = 0 e 𝑥 = 𝐿 são nulos, 

Da Eq. (2) temos 

𝑢𝑥(0, 𝑡) = 𝑢𝑥(𝐿, 𝑡) = 0 

Tipo III: Suponhamos que o meio ambiente tenha temperatura 𝑢0 e que haja 

transferência de calor entre a barra e o meio ambiente, regida pela lei 

𝑘 𝑢𝑥(0, 𝑡) = 𝑒 {𝑢(0, 𝑡) − 𝑢0} 

−𝑘 𝑢𝑥(𝐿, 𝑡) = 𝑒 {𝑢(𝐿, 𝑡) − 𝑢0} 
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onde e é uma constante, dita emissividade, característica do par constituído pelo 

material da barra e pelo meio ambiente. 

Tipo IV: Uma combinação de duas quaisquer das condições acima, como por 

exemplo: 

𝑢(0, 𝑡) = 0   𝑒  𝑢𝑥(𝐿, 𝑡) = 0  

 

 

Exercicios 

 

1.- Deduza a equação diferencial do Pendulo Simples e depois, fazendo as simplificações 

necessárias, obtenha a formula utilizada na física.  

 

2.- Disserte sobre a leis de Kepler.  
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- DERIVAÇÃO E INTEGRAÇÃO NUMÉRICA 

 

1 Diferenciação Numérica1 

A derivada da função f em x0 é 

𝑓´(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

Então, uma aproximação de 𝑓´(𝑥) é 

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

é valido para pequenos valores de h. Ainda que isso possa parecer óbvio, esse 

procedimento não é muito bem sucedido em virtude do erro de arredondamento. Mas 

certamente é um ponto de partida. 

Para aproximar 𝑓´(𝑥0) suponhamos primeiro que 𝑥0 ∈  (𝑎, 𝑏), onde 𝑓 ∈  𝐶2[𝑎, 𝑏] 

e 𝑥1 = 𝑥0 + ℎ para qualquer ℎ ≠ 0 suficientemente pequeno para assegurar que 𝑥1 ∈

[𝑎, 𝑏]. Construiremos o polinômio de Lagrange 𝑃0,1(𝑥) de 1º grau para f  determinado por 

x0 e x1 com o termo de erro: 

𝑓(𝑥) = 𝑃0,1(𝑥) +
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

2!
 𝑓´´(𝜉(𝑥)) 

=
𝑓(𝑥0)(𝑥 − 𝑥0 − ℎ)

−ℎ
+

𝑓(𝑥0 + ℎ)(𝑥 − 𝑥0)

ℎ
+

(𝑥 − 𝑥0)(𝑥 − 𝑥0 + ℎ)

2!
 𝑓´´(𝜉(𝑥)) 

com o termo de erro 𝜉(𝑥) em [𝑎, 𝑏]. Diferenciando a equação anterior, temos 

𝑓´(𝑥) =
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
+ 𝐷𝑥 [

(𝑥 − 𝑥0)(𝑥 − 𝑥0 + ℎ)

2!
 𝑓´´(𝜉(𝑥))] 

                                                             
1 Burden, R.L. e Faires, J.D., 2008, Análise Numérica, Ed. Thomson 
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=
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
+

2(𝑥 − 𝑥0) − ℎ

2
 𝑓´´(𝜉(𝑥))

+
(𝑥 − 𝑥0)(𝑥 − 𝑥0 + ℎ)

2!
 𝐷𝑥(𝑓´´(𝜉(𝑥))) 

e então 

𝑓´(𝑥) ≈
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

Uma dificuldade com essa formulação é que não temos nenhuma informação sobre 

𝐷𝑥(𝑓´´(𝜉(𝑥))), de maneira que o erro de truncamento não pode ser estimado. Quando x 

é igual a x0, o coeficiente de 𝐷𝑥(𝑓´´(𝜉(𝑥))) é igual a zero, e a formula é simplificada para  

𝑓´(𝑥0) =
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
−

ℎ

2
𝑓´´(𝜉(𝑥)) 

Para pequenos valores de h, o quociente da diferença 
[𝑓(𝑥0+ℎ)−𝑓(𝑥0)]

ℎ
 pode ser 

utilizado para aproximar 𝑓´(𝑥0) com erro limitado por 
𝑀 |ℎ|

2
 , onde M é o limite em |𝑓´´(𝑥)| 

para 𝑥 ∈ [𝑎, 𝑏]. Essa formula é conhecida como fórmula da diferença superior se h>0, e 

fórmula da diferença inferior se h<0. 

Assim, resumindo: 

Diferença superior ou ascendente: 𝑓´(𝑥0) =
𝑓(𝑥0+ℎ)−𝑓(𝑥0)

ℎ
 

Diferença inferior ou descendente: 𝑓´(𝑥0) =
𝑓(𝑥0)−𝑓(𝑥0−ℎ)

ℎ
 

Diferença central; 𝑓´(𝑥0) =
𝑓(𝑥0+ℎ)−𝑓(𝑥0−ℎ)

2ℎ
 

 

Exemplo 1 

Seja 𝑓(𝑥) = ln 𝑥 e 𝑥0 = 1.8 

A formula de diferença superior 

𝑓(1.8 + ℎ) − 𝑓(1.8)

ℎ
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é utilizada para aproximar 𝑓´(1.8) com erro  

|ℎ𝑓´´(𝜉(𝑥))|

2
=

ℎ

2𝜉2
≤

ℎ

2(1.8)2
     𝑜𝑛𝑑𝑒    1.8 < 𝜉 < 1.8 + ℎ 

Então  

h 𝑓(1.8 + ℎ) 𝑓(1.8 + ℎ) − 𝑓(1.8)

ℎ
 

ℎ

2(1.8)2
 

0.1 0.64185389 0.5406722 0.0154321 

0.01 0.59332685 0.5540180 0.0015432 

0.001 0.58834207 0.5554013 0.0001543 

 

Como 𝑓´(𝑥) =
1

𝑥
, o valor exato de 𝑓´(1.8) é 0.555̅ e os limites de erro são bastante 

próximos do verdadeiro erro de aproximação.  

Código Máxima: arquivo Ex1_Cap2.wxm 

 

Para obter fórmulas gerais de aproximação de derivadas, vamos supor que 

{𝑥0, 𝑥1, ⋯ , 𝑥𝑛} sejam n+1 números diferentes em algum intervalo I e que 𝑓 ∈  𝐶𝑛+1(𝐼). 

𝑓(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿𝑘(𝑥)

𝑛

𝑘=0

+
(𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛)

(𝑛 + 1)!
 𝑓(𝑛+1)(𝜉(𝑥)) 

para qualquer 𝜉(𝑥) em I, onde 𝐿𝑘(𝑥) indica o k-ésimo coeficiente polinomial de Lagrange 

para f em 𝑥0, 𝑥1, ⋯ , 𝑥𝑛.  

Diferenciando temos 

𝑓´(𝑥) = ∑ 𝑓(𝑥𝑘)𝐿𝑘
´ (𝑥)

𝑛

𝑘=0

+ 𝐷𝑥 [
(𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛)

(𝑛 + 1)!
] 𝑓(𝑛+1)(𝜉(𝑥))

+
(𝑥 − 𝑥0) ⋯ (𝑥 − 𝑥𝑛)

(𝑛 + 1)!
 𝐷𝑥[𝑓(𝑛+1)(𝜉(𝑥))]  
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Novamente, temos um problema para estimar o erro de truncamento, a menos que 

x seja um dos números 𝑥𝑗. Nesse caso, o termo que multiplica 𝐷𝑥[𝑓(𝑛+1)(𝜉(𝑥))] é zero, 

e a formula se torna 

𝑓´(𝑥𝑗) = ∑ 𝑓(𝑥𝑘)𝐿𝑘
´ (𝑥𝑗)

𝑛

𝑘=0

+  
𝑓(𝑛+1) (𝜉(𝑥𝑗))

(𝑛 + 1)!
 ∏(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑘=0
𝑘≠𝑗

 

que é chamada fórmula de (n+1) pontos para aproximar 𝑓´(𝑥𝑗). 

 

- Fórmula de Três pontos 

𝐿0(𝑥) =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
   → 𝐿0

´ (𝑥) =
2𝑥 − 𝑥1 − 𝑥2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
 

Do mesmo modo: 

𝐿1
´ (𝑥) =

2𝑥 − 𝑥0 − 𝑥2

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
 

𝐿2
´ (𝑥) =

2𝑥 − 𝑥0 − 𝑥1

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 

Portanto 

𝑓´(𝑥𝑗) = 𝑓(𝑥0) [
2𝑥𝑗 − 𝑥1 − 𝑥2

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
] + 𝑓(𝑥1) [

2𝑥𝑗 − 𝑥0 − 𝑥2

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
]

+ 𝑓(𝑥2) [
2𝑥𝑗 − 𝑥0 − 𝑥1

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
] +

1

6
𝑓(3)(𝜉𝑗) ∏(𝑥𝑗 − 𝑥𝑘)

2

𝑘=0
𝑘≠𝑗

      𝑗 = 0, 1, 2 

Consideremos que os nós têm um espaçamento igual  

𝑥1 = 𝑥0 + ℎ
𝑥2 = 𝑥0 + 2ℎ

    𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 ℎ ≠ 0 

Seja 𝑥𝑗 = 𝑥0, temos 

𝑓´(𝑥0) =
1

ℎ
[−

3

2
 𝑓(𝑥0) + 2𝑓(𝑥1) −

1

2
𝑓(𝑥2)] +

ℎ2

3
𝑓(3)(𝜉0) 
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Para 𝑥𝑗 = 𝑥1 

𝑓´(𝑥1) =
1

ℎ
[−

1

2
 𝑓(𝑥0) +

1

2
𝑓(𝑥2)] −

ℎ2

6
𝑓(3)(𝜉1) 

E para 𝑥𝑗 = 𝑥2 

𝑓´(𝑥2) =
1

ℎ
[
1

2
 𝑓(𝑥0) − 2𝑓(𝑥1) +

3

2
𝑓(𝑥2)] +

ℎ2

3
𝑓(3)(𝜉2) 

Na medida em que 𝑥1 = 𝑥0 + ℎ e 𝑥2 = 𝑥0 + 2ℎ podemos escrever 

𝑓´(𝑥0) =
1

ℎ
[−

3

2
 𝑓(𝑥0) + 2𝑓(𝑥0 + ℎ) −

1

2
𝑓(𝑥0 + 2ℎ)] +

ℎ2

3
𝑓(3)(𝜉0) 

𝑓´(𝑥0 + ℎ) =
1

ℎ
[−

1

2
 𝑓(𝑥0) +

1

2
𝑓(𝑥0 + 2ℎ)] −

ℎ2

6
𝑓(3)(𝜉1)                        

e 

𝑓´(𝑥0 + 2ℎ) =
1

ℎ
[
1

2
 𝑓(𝑥0) − 2𝑓(𝑥0 + ℎ) +

3

2
𝑓(𝑥0 + 2ℎ)] +

ℎ2

3
𝑓(3)(𝜉2) 

Por uma questão de conveniência, a substituição da variável 𝑥0 + ℎ por 𝑥0 é 

utilizada na equação do meio para mudar essa fórmula para uma aproximação de 𝑓´(𝑥0). 

Uma mudança similar 𝑥0 + 2ℎ por 𝑥0 é utilizada na última equação. Isto nos dá três 

fórmulas para aproximar 𝑓´(𝑥0). 

𝑓´(𝑥0) =
1

2ℎ
[−3 𝑓(𝑥0) + 4𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)] +

ℎ2

3
𝑓(3)(𝜉0) 

𝑓´(𝑥0) =
1

2ℎ
[− 𝑓(𝑥0 − ℎ) + 𝑓(𝑥0 + ℎ)] −

ℎ2

6
𝑓(3)(𝜉1)                             

e 

𝑓´(𝑥0) =
1

2ℎ
[ 𝑓(𝑥0 − 2ℎ) − 4𝑓(𝑥0 − ℎ) + 3𝑓(𝑥0)] +

ℎ2

3
𝑓(3)(𝜉2)        

Finalmente, cabe notar que, na medida em que a última dessas equações pode ser 

obtida a partir da primeira simplesmente substituindo h por –h, existem na verdade apenas 

duas formulas 
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𝑓´(𝑥0) =
1

2ℎ
[−3 𝑓(𝑥0) + 4𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)] +

ℎ2

3
𝑓(3)(𝜉0) 

onde 𝜉0 está entre x0 e x0+2h, e   

𝑓´(𝑥0) =
1

2ℎ
[𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 − ℎ)] −

ℎ2

6
𝑓(3)(𝜉1)                             

onde 𝜉1 está entre (x0-h) e (x0+h). 

 

- Fórmula de cinco pontos 

𝑓´(𝑥0) =
1

12ℎ
 [𝑓(𝑥0 − 2ℎ) − 8𝑓(𝑥0 − ℎ) + 8𝑓(𝑥0 + ℎ) − 𝑓(𝑥0 + 2ℎ)] +

ℎ4

30
 𝑓(5)(𝜉) 

onde 𝜉 está entre 𝑥0 − 2ℎ e 𝑥0 + 2ℎ 

Nos extremos 

𝑓´(𝑥0) =
1

12ℎ
 [−25 𝑓(𝑥0) + 48𝑓(𝑥0 + ℎ) − 36 𝑓(𝑥0 + 2ℎ) + 16 𝑓(𝑥0 + 3ℎ)

− 3 𝑓(𝑥0 + 4ℎ)] +
ℎ4

5
 𝑓(5)(𝜉) 

onde 𝜉 está entre 𝑥0 e 𝑥0 + 4ℎ 

 

Exemplo 2 

Os valores de 𝑓(𝑥) = 𝑥𝑒𝑥 são 

x f(x) 

1.8 10.889365 

1.9 12.703199 

2.0 14.778112 

2.1 17.148957 

2.2 19.855030 
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Como 𝑓´(𝑥) = (𝑥 + 1)𝑒𝑥 temos 𝑓´(2.0) = 22.167168 

Fórmulas de três pontos 

ℎ = 0.1  →
1

0.2
[−3 (𝑓(2.0) + 4𝑓(2.1) − 𝑓(2.2)] = 22.03231       𝑒 = 1.35𝑥10−1 

ℎ = −0.1  →
1

−0.2
[−3 (𝑓(2.0) + 4𝑓(1.9) − 𝑓(1.8)] = 22.054525     𝑒 = 1.13𝑥10−1 

 

ℎ = 0.1  →
1

0.2
[ (𝑓(2.1) − 𝑓(1.9)] = 22.22879       𝑒 = −6.16𝑥10−2 

ℎ = 0.2  →
1

0.4
[ (𝑓(2.2) − 𝑓(1.8)] = 22.414163       𝑒 = −2.47𝑥10−1 

 

Fórmula de cinco pontos 

ℎ = 0.1 →  
1

0.2
[(𝑓(1.8) − 8𝑓(1.9) + 8𝑓(2.1) − 𝑓(2.2)] = 22.166996        

 𝑒 = 1.69𝑥10−4 

 

Código Máxima: arquivo Ex2_Cap2.wxm 

 

- Aproximação para a derivada segunda 

Vamos expandir uma função f em um polinômio de Taylor de 3º Grau em torno 

do ponto 𝑥0 e calcular 𝑥0 + ℎ e 𝑥0 − ℎ. 

𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + 𝑓´(𝑥0)ℎ +
1

2
 𝑓´´(𝑥0)ℎ2 +

1

6
 𝑓´´´(𝑥0)ℎ3 +

1

24
 𝑓(4)(𝜉1)ℎ4 

e 

𝑓(𝑥0 − ℎ) = 𝑓(𝑥0) − 𝑓´(𝑥0)ℎ +
1

2
 𝑓´´(𝑥0)ℎ2 −

1

6
 𝑓´´´(𝑥0)ℎ3 +

1

24
 𝑓(4)(𝜉−1)ℎ4 
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onde 𝑥0 − ℎ < 𝜉−1 < 𝑥0 < 𝜉1 < 𝑥0 + ℎ. 

Somando membro a membro 

𝑓(𝑥0 + ℎ) +  𝑓(𝑥0 − ℎ) = 2𝑓(𝑥0) + 𝑓´´(𝑥0)ℎ2 +
1

24
[𝑓(4)(𝜉−1) + 𝑓(4)(𝜉1)]ℎ4 

Resolvendo para 𝑓´´(𝑥0) 

𝑓´´(𝑥0) =
1

ℎ2
[𝑓(𝑥0 + ℎ) − 2𝑓(𝑥0) +  𝑓(𝑥0 − ℎ)] − 

ℎ2

24
[𝑓(4)(𝜉−1) + 𝑓(4)(𝜉1)] 

Suponha que 𝑓(4) seja contínua em [𝑥0 − ℎ, 𝑥0 + ℎ]. Como  

1

2
[𝑓(4)(𝜉−1) + 𝑓(4)(𝜉1)] 

está entre 𝑓(4)(𝜉−1) e 𝑓(4)(𝜉1), o Teorema do Valor Intermediário implica que existe um 

número 𝜉 entre 𝜉1 e 𝜉−1 e portanto em (𝑥0 − ℎ, 𝑥0 + ℎ), com  

𝑓(4)(𝜉) =
1

2
[𝑓(4)(𝜉−1) + 𝑓(4)(𝜉1)] 

Finalmente 

𝑓´´(𝑥0) =
1

ℎ2
[𝑓(𝑥0 + ℎ) − 2𝑓(𝑥0) +  𝑓(𝑥0 − ℎ)] −  

ℎ2

12
𝑓(4)(𝜉) 

para qualquer 𝜉 entre 𝑥0 − ℎ < 𝜉 < 𝑥0 + ℎ.  

 

Exemplo 3 

Com os dados do exemplo anterior para 𝑓(𝑥) = 𝑥𝑒𝑥 aproximar 𝑓´´ (2.0) 

 

𝑓´´ (𝑥) = (𝑥 + 2)𝑒𝑥 → 𝑓´´ (2.0) = 29.556224 

Sol. 

ℎ = 0.1 → 𝑓´´ (2.0) =
1

0.01
[𝑓(1.9) − 2𝑓(2.0) + 𝑓(2.1)] = 29.5932     
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 𝑒 = −3.70𝑥10−2 

ℎ = 0.2 → 𝑓´´ (2.0) =
1

0.01
[𝑓(1.8) − 2𝑓(2.0) + 𝑓(2.2)] = 29.704275     

 𝑒 = −1.48𝑥10−1 

Código Máxima: arquivo Ex3_Cap2.wxm 
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2 Integração Numérica2 

Freqüentemente nos deparamos com a necessidade de calcular a integral definida 

de uma função sem antiderivada explícita ou cuja antiderivada não é simples de obter. O 

método básico envolvido na aproximação de ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 é chamado de quadratura 

numérica, e utiliza um somatório 

∑ 𝑎𝑖 𝑓(𝑥𝑖)

𝑛

𝑖=0

 

para aproximar ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Os métodos de quadratura neste texto estão baseados no polinômio interpolador 

de Lagrange  

𝑃𝑛(𝑥) = ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥)

𝑛

𝑖=0

 

Inicialmente selecionamos um conjunto de nós distintos {𝑥0, 𝑥1, ⋯ , 𝑥𝑛} do 

intervalo [𝑎, 𝑏], e integramos o polinômio de Lagrange e o seu termo de erro para obter: 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ ∑ 𝑓(𝑥𝑖)𝐿𝑖(𝑥)

𝑛

𝑖=0

 𝑑𝑥

𝑏

𝑎

+ ∫ ∏(𝑥 − 𝑥𝑗)
𝑓(𝑛+1)(𝜉(𝑥))

(𝑛 + 1)!

𝑛

𝑖=0

𝑑𝑥

𝑏

𝑎

 

      =  ∑ 𝑎𝑖 𝑓(𝑥𝑖)

𝑛

𝑖=0

+ ∫ ∏(𝑥 − 𝑥𝑗)
𝑓(𝑛+1)(𝜉(𝑥))

(𝑛 + 1)!

𝑛

𝑖=0

𝑑𝑥

𝑏

𝑎

 

onde 𝜉(𝑥) está em [𝑎, 𝑏] para cada x e  

𝑎𝑖 = ∫ 𝐿𝑖(𝑥)

𝑏

𝑎

 𝑑𝑥 

para cada 𝑖 = 0, 1, 2, 3, ⋯ , 𝑛 

A formula de quadratura é 

                                                             
2 Burden, R.L. e Faires, J.D., 2008, Análise Numérica, Ed. Thomson 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈ ∑ 𝑎𝑖  𝑓(𝑥𝑖)

𝑛

𝑖=0

 

Com um erro dado por: 

𝐸(𝑓) = ∫ ∏(𝑥 − 𝑥𝑗)
𝑓(𝑛+1)(𝜉(𝑥))

(𝑛 + 1)!

𝑛

𝑖=0

𝑑𝑥

𝑏

𝑎

 

 

- Regra do Trapézio 

Façamos 𝑥0 = 𝑎, 𝑥1 = 𝑏, ℎ = 𝑏 − 𝑎 

𝑃1(𝑥) =
(𝑥 − 𝑥1)

(𝑥0 − 𝑥1)
 𝑓(𝑥0) +

(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
 𝑓(𝑥1) 

Assim 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ [
(𝑥 − 𝑥1)

(𝑥0 − 𝑥1)
 𝑓(𝑥0) +

(𝑥 − 𝑥0)

(𝑥1 − 𝑥0)
 𝑓(𝑥1)] 𝑑𝑥

𝑥1

𝑥0

+
1

2
∫ 𝑓´´ (𝜉(𝑥))(𝑥 − 𝑥0)

𝑥1

𝑥0

(𝑥 − 𝑥1) 𝑑𝑥 

 

 

x

y

 f(x) 

a b



Programa de Pós-Graduação Mestrado em Modelagem Matemática e Computacional - UFRRJ 

Disciplina: Métodos Numéricos 

 

 

20 
 

Como (𝑥 − 𝑥0)(𝑥 − 𝑥1) não mudam de sinal em [𝑥0, 𝑥1] o Teorema do Valor 

Médio Ponderado para Integrais pode ser aplicado ao termo de erro, para dar, para 

qualquer 𝜉 em (𝑥0, 𝑥1). 

∫ 𝑓´´ (𝜉(𝑥))(𝑥 − 𝑥0)

𝑥1

𝑥0

(𝑥 − 𝑥1) 𝑑𝑥 = 𝑓´´(𝜉) ∫ (𝑥 − 𝑥0)

𝑥1

𝑥0

(𝑥 − 𝑥1) 𝑑𝑥

= 𝑓´´(𝜉) [
𝑥3

3
−

(𝑥1 + 𝑥0)

2
𝑥2 + 𝑥0𝑥1𝑥]

𝑥0

𝑥1

= −
ℎ3

6
𝑓´´(𝜉) 

Então 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= [
(𝑥 − 𝑥1)2

2(𝑥0 − 𝑥1)
 𝑓(𝑥0) +

(𝑥 − 𝑥0)2

2(𝑥1 − 𝑥0)
 𝑓(𝑥1)]

𝑥0

𝑥1

−
ℎ3

6
𝑓´´(𝜉)

=
(𝑥1 − 𝑥0)

2
[𝑓(𝑥0) + 𝑓(𝑥1)] −

ℎ3

6
𝑓´´(𝜉)

=
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] −

ℎ3

6
𝑓´´(𝜉) 

Na medida em que o termo de erro envolve 𝑓´´, a regra dá o resultado exato quando 

aplicada a qualquer função cuja derivada de 2ª ordem seja igual a zero, isto é, a qualquer 

polinômio de 1º grau ou menor. 

 

- Regra de Simpson 

É resultado da integração em [𝑎, 𝑏] do polinômio de Lagrange de 2ª ordem com 

nós 𝑥0 = 𝑎, 𝑥2 = 𝑏 e 𝑥1 = 𝑎 + ℎ, onde ℎ =
𝑏−𝑎

2
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∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ [
(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
 𝑓(𝑥0) +

(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
 𝑓(𝑥1)

𝑥2

𝑥0

+
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
 𝑓(𝑥2)] 𝑑𝑥

+ ∫ 𝑓(3) (𝜉(𝑥))
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

6

𝑥2

𝑥0

 𝑑𝑥 

Derivar a regra de Simpson desse modo, entretanto, nos fornece apenas um termo 

de erro 𝑂(ℎ4) envolvendo 𝑓(3). Abordando o problema de outra maneira, um termo de 

ordem mais alta envolvendo 𝑓(4) pode ser derivado. 

Vamos supor que f seja expandida no polinômio de Taylor de 3º grau centrado em 

𝑥1. Nesse caso, para cada x em [𝑥0, 𝑥2] existe um número 𝜉(𝑥) em (𝑥0, 𝑥2) tal que 

𝑓(𝑥) = 𝑓(𝑥1) + 𝑓´(𝑥1)(𝑥 − 𝑥1) +
𝑓´´(𝑥1)

2
(𝑥 − 𝑥1)2 +

𝑓´´´(𝑥1)

6
(𝑥 − 𝑥1)3

+
𝑓(4)(𝜉(𝑥))

24
(𝑥 − 𝑥1)4 

e 
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∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

= [𝑓(𝑥1)(𝑥 − 𝑥1) +
𝑓´(𝑥1)

2
(𝑥 − 𝑥1)2 +

𝑓´´(𝑥1)

6
(𝑥 − 𝑥1)3

+
𝑓´´´(𝑥1)

24
(𝑥 − 𝑥1)4]

𝑥0

𝑥2

+
1

24
∫ 𝑓(4)(𝜉(𝑥))

𝑥2

𝑥0

(𝑥 − 𝑥1)4𝑑𝑥 

Como (𝑥 − 𝑥1)4 ≥ 0 em [𝑥0, 𝑥2], o TVM Ponderado para Integrais  

1

24
∫ 𝑓(4)(𝜉(𝑥))

𝑥2

𝑥0

(𝑥 − 𝑥1)4𝑑𝑥 =
𝑓(4)(𝜉1)

24
∫ (𝑥 − 𝑥1)4

𝑥2

𝑥0

𝑑𝑥 =
𝑓(4)(𝜉1)

120
(𝑥 − 𝑥1)5|

𝑥0

𝑥2

 

Para qualquer 𝜉1 em (𝑥0, 𝑥2). 

Entretanto ℎ = 𝑥2 − 𝑥1 = 𝑥1 − 𝑥0 

(𝑥2 − 𝑥1)2 − (𝑥0 − 𝑥1)2 = (𝑥2 − 𝑥1)4 − (𝑥0 − 𝑥1)4 = 0 

onde  

(𝑥2 − 𝑥1)3 − (𝑥0 − 𝑥1)3 = 2ℎ3 

e 

(𝑥2 − 𝑥1)5 − (𝑥0 − 𝑥1)5 = 2ℎ5 

então 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

= 2ℎ𝑓(𝑥1) +
ℎ3

3
𝑓´´ (𝑥1) +

𝑓(4)(𝜉1)

60
ℎ5 

se substituirmos 

𝑓´´(𝑥1) =
1

ℎ2
[𝑓(𝑥0) − 2𝑓(𝑥1) +  𝑓(𝑥2)] −  

ℎ2

12
𝑓(4)(𝜉2) 

⟹ ∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

=
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) +  𝑓(𝑥2)] −

ℎ5

12
[
1

3
𝑓(4)(𝜉2) −

1

5
𝑓(4)(𝜉1)] 

Então a Regra de Simpson fica 
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∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

=
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) +  𝑓(𝑥2)] −

ℎ5

90
𝑓(4)(𝜉) 

dá resultados exatos quando aplicada a qualquer polinômio de 3º grau ou menor. 

 

Exemplo 4 

 

𝑓(𝑥) 𝑥2 𝑥4 1
(1 + 𝑥)⁄  √1 + 𝑥2 sin 𝑥 𝑒𝑥 

Valor Exato 2.667 6.400 1.099 2.958 1.416 6.389 

Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389 

Simpson 2.667 6.667 1.111 2.964 1.425 6.421 

 

Para f no intervalo [0,2] 

 

As regras Trapezoidal e de Simpson são exemplos de uma categoria de métodos 

conhecido como formula de Newton-Cotes. Há dois tipos de fórmulas de Newton-Cotes, 

a aberta e a fechada. 

Algumas das fórmulas fechadas de Newton-Cotes 

- n=1 : regra trapezoidal 

∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥0

=
ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] −

ℎ3

6
𝑓´´(𝜉)    𝑜𝑛𝑑𝑒    𝑥0 < 𝜉 < 𝑥1 

 

- n=2 : regra de Simpson 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥0

=
ℎ

3
[𝑓(𝑥0) + 4𝑓(𝑥1) +  𝑓(𝑥2)] −

ℎ5

90
𝑓(4)(𝜉)    𝑜𝑛𝑑𝑒    𝑥0 < 𝜉 < 𝑥2 
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- n=3 : regra dos Três Oitavos de Simpson. 

∫ 𝑓(𝑥)𝑑𝑥

𝑥3

𝑥0

=
3ℎ

8
[𝑓(𝑥0) + 3𝑓(𝑥1) + 3 𝑓(𝑥2) +  𝑓(𝑥3)]

−
3ℎ5

80
𝑓(4)(𝜉)           𝑜𝑛𝑑𝑒       𝑥0 < 𝜉 < 𝑥3 

 

- n=4 :  

∫ 𝑓(𝑥)𝑑𝑥

𝑥4

𝑥0

=
2ℎ

45
[7𝑓(𝑥0) + 32𝑓(𝑥1) + 12 𝑓(𝑥2) + 32 𝑓(𝑥3) + 7𝑓(𝑥4)]

−
8ℎ7

945
𝑓(6)(𝜉)           𝑜𝑛𝑑𝑒       𝑥0 < 𝜉 < 𝑥4 

 

Algumas fórmulas abertas de Newton-Cotes 

- n=0 : regra do Ponto Médio 

∫ 𝑓(𝑥)𝑑𝑥

𝑥1

𝑥−1

= 2ℎ𝑓(𝑥0) +
ℎ3

3
𝑓´´(𝜉)    𝑜𝑛𝑑𝑒    𝑥−1 < 𝜉 < 𝑥1 

 

- n=1 : 

∫ 𝑓(𝑥)𝑑𝑥

𝑥2

𝑥−1

=
3ℎ

2
[𝑓(𝑥0) + 𝑓(𝑥1)] +

3ℎ3

4
𝑓´´(𝜉)    𝑜𝑛𝑑𝑒    𝑥−1 < 𝜉 < 𝑥2 

 

- n=2 : 
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∫ 𝑓(𝑥)𝑑𝑥

𝑥3

𝑥−1

=
4ℎ

3
[2𝑓(𝑥0) − 𝑓(𝑥1) + 2𝑓(𝑥2)] +

14ℎ5

45
𝑓(4)(𝜉)    𝑜𝑛𝑑𝑒    𝑥−1 < 𝜉 < 𝑥3 

 

- n=3 : 

∫ 𝑓(𝑥)𝑑𝑥

𝑥4

𝑥−1

=
5ℎ

24
[11𝑓(𝑥0) + 𝑓(𝑥1) +  𝑓(𝑥2) + 11 𝑓(𝑥3)]

+
95ℎ5

144
𝑓(4)(𝜉)           𝑜𝑛𝑑𝑒       𝑥−1 < 𝜉 < 𝑥4 

 

Exemplo 5  

Usando as fórmulas abertas e fechadas de Newton-Cotes para aproximar  

∫ sin 𝑥 𝑑𝑥

𝜋
4

0

= 1 −
√2

2
≈ 0.29289322 

 

n 0 1 2 3 4 

F. Fechadas  0.27768018 0.29293264 0.29291070 0.29289318 

Erro  0.01521303 0.00003942 0.00001748 0.0000004 

F. Abertas 0.30055887 0.29798754 0.29285866 0.29286923  

Erro 0.00766565 0.00509432 0.00003456 0.00002399  

 

Código Máxima: arquivo Ex5_Cap2.wxm 

 

- Quadratura Gaussiana 

As fórmulas de Newton-Cotes foram obtidas integrando-se polinômios 

interpoladores. Como o termo de erro em um polinômio interpolador de grau n envolve a 
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(n+1)-ésima derivada da função a ser aproximada, uma fórmula desse tipo é exata quando 

utilizada na aproximação de qualquer polinômio de grau igual ou menor que n. 

 

A quadratura guassiana escolhe os pontos para se calcular a aproximação em uma 

maneira ótima, em vez de considerar apenas pontos igualmente espaçados. 

Os nós 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 no intervalo [𝑎, 𝑏] e os coeficientes 𝑐1, 𝑐2, ⋯ , 𝑐𝑛 são 

escolhidos de modo a minimizar o erro esperado no cálculo da aproximação. 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

≈ ∑ 𝑐𝑖𝑓(𝑥𝑖)

𝑛

𝑖=1

 

 

 

 

Exemplo 6 

Selecionar os coeficientes e nós quando n=2 e o intervalo de integração é [-1, 1] 

Queremos determinar 𝑐1, 𝑐2, 𝑥1, 𝑥2 de  

∫ 𝑓(𝑥)𝑑𝑥

1

−1

≈ 𝑐1𝑓(𝑥1) + 𝑐2𝑓(𝑥2) 

para 𝑓(𝑥) um polinômio de grau 2𝑛 − 1 = 2(2) − 1 = 3 
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𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 

para qualquer conjunto 𝑎0, 𝑎1, 𝑎2, 𝑎3 

∫(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3)

1

−1

𝑑𝑥

= 𝑎0 ∫ 1

1

−1

𝑑𝑥 + 𝑎1 ∫ 𝑥

1

−1

𝑑𝑥 + 𝑎2 ∫ 𝑥2

1

−1

𝑑𝑥 + 𝑎 ∫ 𝑥3

1

−1

𝑑𝑥 

Este fato equivale a mostrar que a fórmula dá resultados exatos quando 𝑓(𝑥) é 

igual a 1, 𝑥, 𝑥2, 𝑥3. 

Assim 

𝑐1(1) + 𝑐2(1) = ∫ 1 𝑑𝑥

1

−1

= 2 

𝑐1𝑥1 + 𝑐2𝑥2 = ∫ 𝑥 𝑑𝑥

1

−1

= 0 

𝑐1𝑥1
2 + 𝑐2𝑥2

2 = ∫ 𝑥2 𝑑𝑥

1

−1

=
2

3
 

𝑐1𝑥1
3 + 𝑐2𝑥2

3 = ∫ 𝑥3 𝑑𝑥

1

−1

= 0 

Finalmente, resolvendo o sistema 

𝑐1 = 1           𝑐2 = 1 

𝑥1 = −
√3

3
= −0.5773502692 

𝑥2 =
√3

3
= 0.5773502692 

Então 
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∫ 𝑓(𝑥)𝑑𝑥

1

−1

≈ (1)𝑓 (−
√3

3
) + (1)𝑓 (

√3

3
) 

 

 

Teorema 

Suponha que 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 sejam raízes do polinômio de Legendre de enésimo 

grau 𝑃𝑛(𝑥) e que para cada 𝑖 = 1, 2, ⋯ , 𝑛 os números 𝑐𝑖 sejam dados por 

𝑐𝑖 = ∫ ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗
 𝑑𝑥

𝑛

𝑗=1
𝑗≠𝑖

1

−1

 

Se 𝑃(𝑥) é qualquer polinômio de grau menor que 2n, então 

∫ 𝑃(𝑥)𝑑𝑥

1

−1

= ∑ 𝑐𝑖𝑃(𝑥𝑖)

𝑛

𝑖=1

 

Tanto as constantes como as raízes dos polinômios de Legendre estão 

extensamente tabulados. 

Uma integral do tipo 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

em um intervalo [𝑎, 𝑏] arbitrário pode ser transformado em uma integral em 

[−1, 1] utilizando a mudança de variáveis 

𝑡 =
2𝑥 − 𝑎 − 𝑏

𝑏 − 𝑎
 ⟺ 𝑥 =

1

2
[(𝑏 − 𝑎)𝑡 + 𝑎 + 𝑏] 

E 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= ∫ 𝑓 (
(𝑏 − 𝑎)𝑡 + 𝑎 + 𝑏

2
)

1

−1

 
𝑏 − 𝑎

2
 𝑑𝑡 
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Exemplo 7 

Calcule a integral seguinte usando a quadratura gaussiana 

∫ 𝑒−𝑥2
𝑑𝑥

1.5

1

 

Sol: 

𝑏 − 𝑎

2
=

1.5 − 1

2
=

0.5

2
=

1

4
 

𝑏 + 𝑎

2
=

1.5 + 1

2
=

2.5

2
=

5

4
 

𝑥 =
𝑡

4
+

5

4
 

Então 

∫ 𝑒−𝑥2
𝑑𝑥

1.5

1

=
1

4
∫ 𝑒−(𝑡+5)2 16⁄ 𝑑𝑡

1

−1

 

Para n=2 

∫ 𝑒−𝑥2
𝑑𝑥

1.5

1

≈
1

4
 [𝑒−(0.5773502692+5)2 16⁄ + 𝑒−(−0.5773502692+5)2 16⁄ ] = 0.1094003 

 

Para n=3 

∫ 𝑒−𝑥2
𝑑𝑥

1.5

1

≈
1

4
 [(0.555555556)𝑒−(0.7745966692+5)2 16⁄ + (0.888888889)𝑒−(0.0+5)2 16⁄

+ (0.555555556)𝑒−(−0.7745966692+5)2 16⁄ ] = 0.1093642 

 

Exemplo 8 
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Calcule a integral seguinte usando a quadratura gaussiana 

∫ 𝑥2 ln 𝑥 𝑑𝑥

1.5

1

 

Sol: 

𝑏 − 𝑎

2
=

1.5 − 1

2
=

0.5

2
=

1

4
 

𝑏 + 𝑎

2
=

1.5 + 1

2
=

2.5

2
=

5

4
 

𝑥 =
𝑡

4
+

5

4
 

Então 

∫ 𝑥2 ln 𝑥 𝑑𝑥

1.5

1

=
1

4
∫

(𝑡 + 5)2

16
ln (

𝑡 + 5

4
) 𝑑𝑡

1

−1

 

Para n=2 

∫ 𝑥2 ln 𝑥 𝑑𝑥

1.5

1

≈
1

64
[(0.577350269 + 5)2 ln (

0.577350269 + 5

4
)

+ (−0.577350269 + 5)2 ln (
−0.577350269 + 5

4
)] = 0.1922687 

 

Para n=3 

∫ 𝑥2 ln 𝑥 𝑑𝑥

1.5

1

≈
1

64
[(0.555556)(0.774597 + 5)2 ln (

0.774597 + 5

4
)

+ (0.888889)(5)2 ln (
5

4
)

+ (0.555556)(−0.774597 + 5)2 ln (
−0.774597 + 5

4
)] = 0.1922687 
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Para n=4 

∫ 𝑥2 ln 𝑥 𝑑𝑥

1.5

1

≈
1

64
[(0.3478548)(0.8611363 + 5)2 ln (

0.8611363 + 5

4
)

+ (0.652145)(0.339981 + 5)2 ln (
0.339981 + 5

4
)

+ (0.652145)(−0.339981 + 5)2 ln (
−0.339981 + 5

4
)

+ (0.3478548)(−0.8611363 + 5)2 ln (
−0.8611363 + 5

4
)]

= 0.1922593 

 

 

Exemplo 9 

∫ sin(𝑥) 𝑑𝑥

𝜋
2

0
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Quadratura de Gauss 

 

Abscisass  Weights  

2 ±0.5773502691896257645091488 1.0000000000000000000000000 

3 

0 0.8888888888888888888888889 

±0.7745966692414833770358531 0.5555555555555555555555556 

4 

±0.3399810435848562648026658 0.6521451548625461426269361 

±0.8611363115940525752239465 0.3478548451374538573730639 

5 

0 0.5688888888888888888888889 

±0.5384693101056830910363144 0.4786286704993664680412915 

±0.9061798459386639927976269 0.2369268850561890875142640 

6 

±0.2386191860831969086305017 0.4679139345726910473898703 

±0.6612093864662645136613996 0.3607615730481386075698335 

±0.9324695142031520278123016 0.1713244923791703450402961 

7 

0 0.4179591836734693877551020 

±0.4058451513773971669066064 0.3818300505051189449503698 

±0.7415311855993944398638648 0.2797053914892766679014678 

±0.9491079123427585245261897 0.1294849661688696932706114 

8 

±0.1834346424956498049394761 0.3626837833783619829651504 

±0.5255324099163289858177390 0.3137066458778872873379622 

±0.7966664774136267395915539 0.2223810344533744705443560 

±0.9602898564975362316835609 0.1012285362903762591525314 

9 

0 0.3302393550012597631645251 

±0.3242534234038089290385380 0.3123470770400028400686304 

±0.6133714327005903973087020 0.2606106964029354623187429 

±0.8360311073266357942994298 0.1806481606948574040584720 

±0.9681602395076260898355762 0.0812743883615744119718922 

10 

±0.1488743389816312108848260 0.2955242247147528701738930 

±0.4333953941292471907992659 0.2692667193099963550912269 

±0.6794095682990244062343274 0.2190863625159820439955349 

±0.8650633666889845107320967 0.1494513491505805931457763 

±0.9739065285171717200779640 0.0666713443086881375935688 

 

 


