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Parte 1

- INTRODUCAO

EquacBes Diferenciais sdo ferramentas essenciais na modelagem cientifica e
devem ser familiares para profissionais das diversas areas do conhecimento. S&0 muitos
os métodos conhecidos para resolver equacgdes diferenciais e todos eles nos permitem
conhecer o comportamento de um fendmeno dado, ou seja, a solucdo matematica de uma

equacao diferencial representa o comportamento fisico do sistema estudado.

Desta forma, nossa expectativa deve ser tentar entender, tanto quanto possivel, o
que acontece a uma funcgdo que satisfaz a solucdo de uma equacao diferencial. Assim, a
um nivel muito basico, poderemos saber o que acontece ou 0 que poderia acontecer no

futuro nesse sistema.

Recentemente, com o0 avan¢o rapido na tecnologia dos computadores e sua
capacidade de processamento crescendo cada dia mais, 0s métodos numéricos tornaram-
se uma ferramenta de grande importancia no desenvolvimento de novos algoritmos ou na
melhora de outros. Entdo a pergunta que os iniciantes se fazem é quando utilizar os
métodos numéricos? Em principio, podemos dizer que seu uso seria em equacdes
diferenciais que no tem solucdo analitica conhecida, mas também podemos afirmar que,
ainda que seja conhecida esta solu¢do, muitas vezes ao resolver numericamente um

problema temos um ganho consideravel no tempo de trabalho.

Ao resolver uma equacdo diferencial de forma numeérica estamos introduzindo
naturalmente um erro devido as aproximacoes realizadas e é fundamental que este erro
seja mantido a niveis bastante reduzidos de forma a garantir a correta representacdo do

fendmeno.
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- Revisdo de Equacdes Diferenciais

Conducéo de Calor numa Barra

Isolamento térmico
A
Isolamento térmico
Considere:

- Barra de comprimento: L
- Secdo Transversal: A
- Material condutor uniforme de calor

- Superficie lateral da barra isolada termicamente

O fluxo de calor se da somente na dire¢do longitudinal. Assim o problema é
considerado unidimensional, ou seja, as varias grandezas fisicas sdo constantes em cada

secdo transversal.

Lei de Resfriamento de Fourier: Considere duas placas P e P, de areas iguais a
A, mantidas constantemente as temperaturas T1 e To, respectivamente; se colocadas
paralelamente a uma distancia d uma da outra, havera passagem de calor da placa mais
guente para a mais fria, e a quantidade de calor, por unidade de tempo, transferida de uma

placa para outra é dada por

d
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Onde k é a condutibilidade térmica do material entre as placas (cal/cm-s-°C)
Seja:

u(x, t) temperatura de um ponto de abscissa X, no tempo t.

y

O S

Tomemos duas sec¢des transversais da barra

P1 P

X+

Como a temperatura varia com o tempo, ndo podemos aplicar a Lei de Fourier.
Para superar essa dificuldade, vamos introduzir a grandeza fluxo de calor através de uma

Secdo X, num instante t.

- Fixeotempo tnaEq. (1), faca T, = u(x + d,t) e Ty = u(x,t)
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00 0) = kA lu(x + d;it) —u(x,t)]

e passe o limite quando d tende a zero. Assim:

q(x,t) = —kAu,(x,t) (2)

Onde:seT, >Ty = u,>0,mascomoQ («—) = q<0

seT, >T, = u, <0, mascomoQ (—) = q>0

Fixemos um elemento de barra entre x, e x, + &, € vejamos qual é a quantidade

de calor q que ai entra, no periodo de tempo entre t, e t, + .

to+T to+T
q(x,t)=f q(xo,t)dt—f q(xo + &, t)dt
to to
ou
to+T
a0 = | kAo + 8,0 = w0 de ©

to

Por outro lado, sabe-se que o calor especifico (c) de uma substancia é a quantidade
de calor necessaria para elevar em 1° Celsius a temperatura de uma grama dessa

substancia e é dada pela expresséo:

to+T X0+6

Cl(x't)=f f cus(x,t) dxp Adt (4)
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onde p ¢ a densidade da substancia.

Usando o teorema fundamental do célculo na Eq. (3)

to+T x0+6

q(x, t) = j j k Au,,(x,t) dxdt (5)

to Xo

Podemos igualar as Egs. (4) e (5) como segue:

t0+T x0+6 t0+T x0+6
f f k Auy,(x,t) dxdt = j j cug(x,t) depAdt (6)
to Xo to Xo

Como a Eq. (6) e valida paratodo t, > 0,todo 0 < x, < Letodosost >0ed >

0, concluimos que:

kug,(x,t) =cpu(x,t)

Ou seja
u(x, t) = K uy (x, t) (7)

onde K = % ¢ chamado de difusibilidade térmica.

A Eq. (7) é a Equacdo de Calor Unidimensional e tem muitas solucdes como por

exemplo:
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ulx,t) =c
( ) c= constante
ulx, t) = cx

Qual delas vai representar a distribuicdo de temperaturas na barra?

- Condicao Inicial:

u(x,0) = f(x)

onde f:[0,L] » R

- Condicdes de Contorno ou de fronteira:

Tipo I: Suponhamos que as extremidades da barra sejam mantidas a temperaturas

conhecidas

u(0,t) =T, e ull,t)=T,

Um caso mais complexo seria aguele em que se conhece a varia¢ao de temperatura

em uma extremidade (ou em ambas), isto €:
u(0,t) = ho(t) e u(L,t) = hy(t)

Tipo I1: Suponhamos que as extremidades estejam isoladas termicamente, ou seja,

os fluxos de calor de x = 0 e x = L s&o nulos,
Da Eq. (2) temos
u,(0,t) = u, (L, t) =0

Tipo I1l: Suponhamos que o0 meio ambiente tenha temperatura u, € que haja

transferéncia de calor entre a barra e 0 meio ambiente, regida pela lei
ku,(0,t) = e{u(0,t) —uy}

—ku,(L,t) =e{u(L,t) —uy}



Programa de P6s-Graduagdo Mestrado em Modelagem Matematica e Computacional - UFRRJ
Disciplina: Métodos Numéricos

onde e € uma constante, dita emissividade, caracteristica do par constituido pelo

material da barra e pelo meio ambiente.

Tipo 1V: Uma combinagdo de duas quaisquer das condicGes acima, como por

exemplo:

u(0,t) =0 e u,(L,t) =0

Exercicios

1.- Deduza a equacao diferencial do Pendulo Simples e depois, fazendo as simplificacdes

necessarias, obtenha a formula utilizada na fisica.

2.- Disserte sobre a leis de Kepler.
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- DERIVACAO E INTEGRACAO NUMERICA

1 Diferenciacdo Numérica®

A derivada da funcédo f em xo é

e = i 0TV =S

Entdo, uma aproximacdo de f'(x) é

f (o +h) — f(x0)
h

é valido para pequenos valores de h. Ainda que isso possa parecer Obvio, esse
procedimento ndo € muito bem sucedido em virtude do erro de arredondamento. Mas

certamente € um ponto de partida.

Para aproximar f"(x,) suponhamos primeiro que x, € (a, b), onde f € C?[a, b]
e x; = xo + h para qualquer h # 0 suficientemente pequeno para assegurar que x; €
[a, b]. Construiremos o polindmio de Lagrange P, ; (x) de 1° grau para f determinado por

Xo € X1 com o termo de erro:

(x — x0) (x — x1)

FG) = Pos () +——5,

7))

f(xo)(x_—hxo —h) N flxo + hz(x — Xp) + (x — xo)(;!— xo + h) £ )

com o termo de erro é(x) em [a, b]. Diferenciando a equacdo anterior, temos

fQxo+h)— f(x) (x —x0)(x —xo + h)
n +

£ = D, . GG

1 Burden, R.L. e Faires, J.D., 2008, Analise Numérica, Ed. Thomson
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ot~ fw) 2o =k
s (x — xO)OZC!_ xo + h) D (f(£(x)))
e entéo
e

h

Uma dificuldade com essa formulagédo € que ndo temos nenhuma informacao sobre
D, (f(¢(x))), de maneira que o erro de truncamento ndo pode ser estimado. Quando x
é igual a xo, 0 coeficiente de D,.(f"(é(x))) é igual a zero, e a formula é simplificada para

fxo+h)—f(xo) h

f(xo) = - SEMGE)

f(xo+th)—f(x0)]
h

Para pequenos valores de h, o quociente da diferenca [ pode ser

utilizado para aproximar f”(x,) comerro limitado por@ ,onde M é o limiteem |f""(x)|

para x € [a, b]. Essa formula é conhecida como formula da diferenca superior se h>0, e

formula da diferenca inferior se h<0.
Assim, resumindo:

Diferenca superior ou ascendente: £ (x,) = f—("(’*h;‘f (X0)

Diferenca inferior ou descendente: f"(x,) = w

f(xo+h)—f (x0—h)
2h

Diferenca central; f'(x,) =

Exemplo 1
Seja f(x) =Inxex, =1.8
A formula de diferenca superior

F(1.8+ h) — £(1.8)
h

10
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é utilizada para aproximar f°(1.8) com erro

|hf"(€(x))| _ h < h onde 1.8<¢<18+h

2 282 7 2(1.8)2
Entéo
h f(1.8+ h) f(1.8+h) — f(1.8) h
h 2(1.8)2
0.1 0.64185389 0.5406722 0.0154321
0.01 0.59332685 0.5540180 0.0015432
0.001 0.58834207 0.5554013 0.0001543

Como f'(x) = i o valor exato de £'(1.8) é 0.555 e os limites de erro sio bastante

proximos do verdadeiro erro de aproximacgéo.

Codigo Méaxima: arquivo Ex1_Cap2.wxm

Para obter férmulas gerais de aproximacdo de derivadas, vamos supor que

{xo,x1,**, X} S€jam n+1 nlmeros diferentes em algum intervalo | e que f € C™*1(I).

(x — x0) =+ (x — %)
(n+1)!

FG) =) FeadLi() + O (EG)
k=0

para qualquer ¢ (x) em |, onde L, (x) indica o k-ésimo coeficiente polinomial de Lagrange
parafem xg,xq,, Xx,,.

Diferenciando temos

(x — x0) =+ (x — xy)
(n+1)!

F@ =) FLx) + D, Fe0(6)
k=0
(x = )+ (x =

") +1
(n+ D! D[ (5 )

11
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Novamente, temos um problema para estimar o erro de truncamento, a menos que
x seja um dos niimeros x;. Nesse caso, 0 termo que multiplica D, [f ™+ (&(x))] é zero,

e a formula se torna

C , for0(£(x)
f'(xj)=;f(xk)Lk(xj)+ (n+( 1)!’)1_[(x, Xi)

k*j

que é chamada formula de (n+1) pontos para aproximar f*(x;).

- Formula de Trés pontos

(x —x)(x—x,) v o 2x—x1—x
(x0 — x1) (g — x3) = Lo(x) = (x0 — x1) (g — x3)

Lo(x) =

Do mesmo modo:

2X — Xy — Xy

(x1 — x0) (%1 — x2)

Ly(x) =

2X — Xg — X1

(x5 — x0) (x3 — x1)

Ly(x) =

Portanto

Zx] X1 — 2x] Xo —

f (x]) f (%) [(xo —x1)(xo — xz)] aRACY [(xl — x0) (X1 — xz)]

2x; —x9 —

f(x2) [( Xy — xo) (X — x )] 3)(€j) Il(:l(xj - xk) j=1012

k#j

Consideremos que 0s nos tém um espagamento igual
X1 = Xp +h
X, = xo + 2k para qualquer h # 0
Seja x; = x,, temos

11 3 1 h?
f(xo) = nl~ 2 f(xo) +2f (xy) — Ef(xz) + ?f(3)(fo)

12
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Para x; = x;

Pl = t[-2 o) + 3 £ x|~ o £
E para x; = x,

171 3 h?
Fl) =3 |5 £ = 27 ) +5 FG) |+ 5 FOE)

Na medida em que x; = x, + h € x, = x, + 2h podemos escrever

Feto) =2 [~ Feo) 4 27Ceo W) = 3 Flxo + 200] + o FOG)

hZ
Flro ) =3[~ o)+ 5 f (o + 20)] — 5 FOE)

hZ
FCro+2) =[5 FOxo) = 27 (o + ) 45 o + 2)| + 5 F (&)

Por uma questdo de conveniéncia, a substituicdo da variavel x, + h por x, é
utilizada na equacdo do meio para mudar essa férmula para uma aproximacao de f”"(x,).
Uma mudanga similar x, + 2h por x, é utilizada na ultima equagdo. Isto nos da trés

formulas para aproximar f”(x,).

2
F () = 57 =3 () + 41 ey 4 W) = fxg + 2W)] + 5O E0)

h2
f(xo) = _[ f(xo—h) + f(xo + h)] _Ef(g)(fl)

1 h?
f(xo) = 2h [ f(xo —2h) —4f(xo — h) + 3f(x0)] + ?f(g)(fz)

Finalmente, cabe notar que, na medida em que a Gltima dessas equac6es pode ser
obtida a partir da primeira simplesmente substituindo h por —h, existem na verdade apenas

duas formulas

13
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1 h?
f'(xo) =53 [=3 fxo) +4f (xo + B) — fxo + 2] + ?f(z’)(fo)

onde &, esta entre xo € Xo+2h, e

1 h?
f(xo) = 2h [f (xo+h) — f(xo—h)] = gf(?’)(ﬁ)

onde &; esta entre (Xo-h) e (Xo+h).

- Férmula de cinco pontos

1

f(xo) = 12h

h4
[f(xo —2h) —8f (xg — h) + 8f(x¢ + h) — f(xo + 2h)] +% FE©

onde ¢ estaentre x, — 2h e x, + 2h

Nos extremos

1

f(xo) = 12h

[—25 f(xg) +48f(xg + h) — 36 f(xy + 2h) + 16 f(x, + 3h)
=3 f(xo + 4h)] +%4f(5><f>

onde & esta entre x, e x, + 4h

Exemplo 2
Os valores de f(x) = xe* sdo

X f(x)
1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

14
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Como f'(x) = (x + 1)e* temos f’(2.0) = 22.167168

Formulas de trés pontos

h=01 - Oiz[—3 (F(2.0) + 4f(2.1) — f(2.2)] = 22.03231 e = 1.35x10"1

h=-01 - %[—3 (£(2.0) + 4f(1.9) — £(1.8)] = 22.054525 e = 1.13x10"!

h=01 - oiz[ (f(2.1) — f(1.9)] = 22.22879 e = —6.16x1072

h=0.2 (f(2.2) — f(1.8)] = 22.414163 e =—2.47x10""

> 04l

Formula de cinco pontos

h=01- %[(f(lﬁ) — 8f(1.9) + 8f(2.1) — £(2.2)] = 22.166996

e =1.69x107*
Cddigo Maxima: arquivo Ex2_Cap2.wxm

- Aproximagcdo para a derivada segunda

Vamos expandir uma funcdo f em um polindmio de Taylor de 3° Grau em torno

do ponto x, e calcular x, + h e x, — h.

1 1 1
flxo+h) = f(xp) + f(xo)h + 2 f”(xo)hz + 6 f”'(xo)h3 + 24 f(4)(51)h4

1 1 1
flxo—h) = f(xe) — f(xo)h + 2 f”(xo)hz 5 f”,(xo)h3 + 24 f(4)(5—1)h4

15
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OndexO_h<€_1 <xO<€1 <x0+h
Somando membro a membro
1
flo+h)+ fxg—h) =2f(xo) + [ (x0)h* + o4 [f(4)($z—1) + f(4)(f1)]h4

Resolvendo para f*"(x,)

h2
f”(xo) = % [f(xo + h) — Zf(xo) + f(xo - h)] - ﬁ [f(4)(f—1) + f(4)(51)]

Suponha que ™ seja continua em [x, — h, x, + h]. Como

IFOGD + FOE)

esta entre f®(&_,) e f®(&,), o Teorema do Valor Intermediario implica que existe um

namero ¢ entre &, e §_; e portanto em (x, — h,x, + h), com

FOE) = 2 [FOED) + FOE)]

Finalmente

2
f(xo) = % [f(xo+h) —2f(xy) + f(xo—h)] — il_zf(z;)(f)

para qualquer & entre x, — h < & < xq + h.

Exemplo 3

Com os dados do exemplo anterior para f (x) = xe* aproximar f** (2.0)

7 (x) = (x+2)e* > 7 (2.0) = 29.556224
Sol.

h=01- f"(2.0) = ﬁ [£(1.9) — 2£(2.0) + f(2.1)] = 29.5932

16
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e =—3.70x10"2

h=02- f"(2.0) = ﬁ[f(m) — 2£(2.0) + f(2.2)] = 29.704275

e=—1.48x10"1

Codigo Méxima: arquivo Ex3_Cap2.wxm

17
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2 Integracdo Numérica®

Frequentemente nos deparamos com a necessidade de calcular a integral definida
de uma funcéo sem antiderivada explicita ou cuja antiderivada ndo é simples de obter. O

método basico envolvido na aproximacdo de f; f(x)dx é chamado de quadratura

numérica, e utiliza um somatorio

Zn: a; f(x;)
i=0

para aproximar f: f(x)dx

Os métodos de quadratura neste texto estdo baseados no polindmio interpolador

de Lagrange

PG =) f)Lo)
i=0

Inicialmente selecionamos um conjunto de noés distintos {x,,x;,-,x,} do

intervalo [a, b], e integramos o polindmio de Lagrange e o seu termo de erro para obter:

f fGeydx = f Zf(x Li(x) dx + f 1‘[( ) f“;ll(fl()a'c)) .

(n+1)
= alf(xl)+f1_[(x— X ]%(i(;))dx

onde é(x) estaem [a, b] para cada x e

b

a; =fLi(x) dx

a
paracadai =0,1,2,3,::-,n

A formula de quadratura é

2 Burden, R.L. e Faires, J.D., 2008, Analise Numérica, Ed. Thomson

18
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[ reoa~ S a0 £

i=0

Com um erro dado por:

b n (n+1)(£(x)
0 = [ ] Jor=m) e
a i=0

- Regra do Trapézio
Facamosx, =a,x; =b,h=Db—a

(x —x,) (x xc)

Pl(x)_( )f(O) ( )f(l)

Assim

f F(x)dx = f [( "1)) flx o>+(( °)) fle)|d

+3 f F (€)= x0) (x = xy) dx

()

- X
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Como (x — x,)(x — x;) ndo mudam de sinal em [x,, x;] 0 Teorema do Valor
Médio Ponderado para Integrais pode ser aplicado ao termo de erro, para dar, para

qualquer & em (xg, x1).

[ rr e - G-y ar=r© [ G-x) & -x) dx

; S
-1 5 - T ] == ©
Entéo
b (x — ) -x)? ] R
!f@ﬂx—z(o o3 G+ 50 )ﬂlﬂ - 1©
1~ h
=G ) 4 e - 2

h h3
S ICORFIEN EEILG

Na medida em que o termo de erro envolve f**, aregrada o resultado exato quando
aplicada a qualquer funcéo cuja derivada de 22 ordem seja igual a zero, isto €, a qualquer

polinémio de 1° grau ou menor.

- Regra de Simpson

E resultado da integracdo em [a, b] do polindmio de Lagrange de 22 ordem com

p b—
nosxo=a,x2=bex1=a+h,ondeh=7a

20
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£(x) e

/

a a+h ]

B

X0 — x1)(xo — x Xy — x0) (g — x

b X2
_ (X - X1)(X - xz) (x - XO)(X - xz)
f FG)dx = f [( < o)+ £

a

(x — x0) (x — x1)
Gy —x) (s — %) | | &

+ f f(3) (E(X)) (x B XO)(X - xl)(x - xZ) dx

6

Derivar a regra de Simpson desse modo, entretanto, nos fornece apenas um termo
de erro 0(h*) envolvendo f®. Abordando o problema de outra maneira, um termo de

ordem mais alta envolvendo ™ pode ser derivado.

Vamos supor que f seja expandida no polinémio de Taylor de 3° grau centrado em

x;. Nesse caso, para cada x em [x,, x,] existe um nimero &(x) em (x,, x,) tal que

f(x) = f(xl) + f'(xl)(x — xl) + f ;xl) (x — x1)2 + f éxl) (x _ X1)3
(4)
* f—gi(x)) O —x1)"

21
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24

[ reoar = |reete -2 + 752 -y . 20 (e
(g X2 4 *2
L x1)4l +57 f FOE)) G —x1)*dx

X0

Como (x — x;)* = 0 em [x,, x,], 0 TVM Ponderado para Integrais

X2 ) X2 @ Xy
o [ roE) - rtar =L [ mryrar =L ey

Xo
Para qualquer &, em (xg, x3).
Entretanto h = x, — x; = x; — X,

(X —x1)% — (%o — x1)% = (X, —x9)* = (%o — x1)*=0

onde
Gt — 1) — (x0 — x1)* = 21
e
Gt — 21)° — (x0 — x1)5 = 21
entio
f 2 FOOdx = 2hf(xy) + h; £+ L (zg‘a) hs

se substituirmos

1 h?
f7C) =5 [f (o) = 2f Ge) + flx2)] = Ef(‘”(fz)

‘ h K 11 1
= [ feodr = 517G + 476 + FG)] — T3 [5FOE) ~ FOE)

Ent&o a Regra de Simpson fica
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xz h hS
| redx =3 176w + 4G + £G] - 55O

da resultados exatos quando aplicada a qualquer polinémio de 3° grau ou menor.

Exemplo 4

fx) x? x* 1/(1+x) 1+ x2 sin x e*

Valor Exato | 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal | 4.000 16.000 1.333 3.326 0.909 8.389
Simpson 2.667 6.667 1.111 2.964 1.425 6.421

Para f no intervalo [0,2]

As regras Trapezoidal e de Simpson sdo exemplos de uma categoria de métodos

conhecido como formula de Newton-Cotes. Ha dois tipos de formulas de Newton-Cotes,
a aberta e a fechada.

Algumas das formulas fechadas de Newton-Cotes

- n=1: regra trapezoidal

X1
3

h h
| F@dx =21 G0 + el - 7©) onde xp<§ <

X0

- n=2 : regra de Simpson
h5
%0 B (&) onde x,<&<x,

X2 h
[ reoax = 317G +47Ge) + £ G -
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- n=3 : regra dos Trés Oitavos de Simpson.

r 3h
[ reoar =176 + 376 +3 £Ge) + 1))

3hS
—%f()(f) onde xu<é&<ux3

-n=4:
X4 h
[ Fedx = 2 177Ga) +32£Ge) +12 £) + 32 ) + 7 )
8h7

—— _f(&)
945f &) onde x,<é&<x,

Algumas férmulas abertas de Newton-Cotes

- n=0 : regra do Ponto Médio

X1 3
f f(x)dx = 2hf(x,) + h?f”(f) onde x_; <& <ux

-n=1:

[ £eoar =215 + £l + 2 @) omde 1 <E <,

-n=2:
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14h°®

5 F®(E) onde x_; <& <x3

X3 L
[ rwax = F2rG0) - 1) + 27 e +

-n=3:

r 5h
[ rear =23 115 G0 + £ + £00) +11 7o)

95h°

124 onde

+

JAC))

X1 <&E<xy

Exemplo 5

Usando as formulas abertas e fechadas de Newton-Cotes para aproximar

2
sinxdx =1— g ~ (0.29289322

O — il

n 0 1 2 3 4
F. Fechadas 0.27768018 | 0.29293264 | 0.29291070 | 0.29289318
Erro 0.01521303 | 0.00003942 | 0.00001748 | 0.0000004
F. Abertas | 0.30055887 | 0.29798754 | 0.29285866 | 0.29286923
Erro 0.00766565 | 0.00509432 | 0.00003456 | 0.00002399

Cddigo Méaxima: arquivo Ex5_Cap2.wxm

- Quadratura Gaussiana

As formulas de Newton-Cotes foram obtidas integrando-se polinémios

interpoladores. Como o termo de erro em um polinémio interpolador de grau n envolve a
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(n+1)-ésima derivada da funcéo a ser aproximada, uma formula desse tipo é exata quando

utilizada na aproximacao de qualquer polindmio de grau igual ou menor que n.

A quadratura guassiana escolhe os pontos para se calcular a aproximacéo em uma

maneira 6tima, em vez de considerar apenas pontos igualmente espagados.

Os nés xq,x,,-+,x, NO intervalo [a,b] e os coeficientes ¢y, ¢y, -, c, S80

escolhidos de modo a minimizar o erro esperado no calculo da aproximagéo.

n

b
[ rwax =y are

i=1

Exemplo 6
Selecionar os coeficientes e nds quando n=2 e o intervalo de integracéo é [-1, 1]

Queremos determinar c;, ¢,, x4, X, de

[ reaax = er) +ar e

para f(x) um polindmio de grau2n—1=2(2) -1 =3
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f(x) =ay+ a;x + ax? + azx3

para qualquer conjunto ay, a4, a,, as

1
j(ao + a;x + ayx? + azx®) dx

-1

1 1 1 1
=aofldx+a1fxdx+a2jx2dx+a Jx3dx
-1 -1 -1 -1

Este fato equivale a mostrar que a férmula da resultados exatos quando f(x) é

igual a 1,x, x2, x3.

Assim

1
e+ = [1dr=2
-1
1
C1X1 + Caxy = fxdx=0
-1
1
2 2 2 2
C1X{ + Cx5 = | x*dx = 3

-1

1

c1x3 + x5 = fx3 dx =0

-1

Finalmente, resolvendo o sistema

Cl = 1 C2 = 1
V3
X, = —3 = —0.5773502692
V3
X, = 3 = 0.5773502692

Entdo
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[ rax = wr(-5)+ s (%)

Teorema

Suponha que x4, x5, -, x, Sejam raizes do polindmio de Legendre de enésimo

grau B,(x) e que paracadai = 1,2,-:-,n 0s nUmeros c; sejam dados por

1 n
¢ = | | dx
| Xi — X]'
-1 J=1
Jj#EL

Se P(x) e qualquer polindmio de grau menor que 2n, entdo

_']1- P(x)dx = ; c;P(x;)

Tanto as constantes como as raizes dos polindmios de Legendre estdo

extensamente tabulados.

Uma integral do tipo

b
f f)dx

em um intervalo [a, b] arbitrario pode ser transformado em uma integral em
[—1, 1] utilizando a mudanca de variaveis

_2x—a—b

1
P @xzz[(b—a)t+a+b]

b 1
b — b\ b —
ff(x)dx=ff<( a)tz+a+ > Zadt

-1
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Exemplo 7

Calcule a integral seguinte usando a quadratura gaussiana

1.5

f e dx

Sol:
b—a_1.5—1_05_1
2 2 2 4
b+a 15+1 25 5
2 2 2 4
_t,S
XT3y
Entdo
1.5 1
.I- e—xzdle fe—(t+5)2/16dt
4
1 -1
Para n=2

1.5
f e‘xzdx z% [e—(0.5773502692+5)2/16 + e—(—0.5773502692+5)2/16] = 0.1094003

1

Para n=3

1.5
f e dx ~ [(0.555555556)e~(0.7745966692+5)%/16  (0.888888889)e~(00+5)°/16
4

1

+(0.555555556)e ~(707745966692+5)2/16| = (1093642

Exemplo 8
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Calcule a integral seguinte usando a quadratura gaussiana

15
f x%Inxdx
1

Sol:
b—a 15-1 05 1
2 2 2 4
b+a 15+1 25 5
2 2 2 4
_t,S
*T27g
Entao
1.5 1
f 2l d _1J(t+5)21 (t+5)dt
xX“Imx X—4 16 n 4
1 -1
Para n=2

1.5

1
f x?’Inxdx = ol [(0.577350269 +5)2 ln(

1

0.577350269 + 5)
4

—0.577350269 + 5
4

+ (—0.577350269 + 5)2 ln( )] = 0.1922687

Para n=3

1.5

1
f x?lnxdx = 2 (0.555556)(0.774597 + 5)? ln(

1

0.774597 + 5)
4

+ (0.888889)(5)In (Z)

—0.774597 + 5
4

+ (0.555556)(—0.774597 + 5)? ln( )] = 0.1922687
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Para n=4

5

Exemplo 9

1.

1
j xInx dx ~ —|(0.3478548)(0.8611363 + 5)° ln(
1

0.8611363 + 5)
4

0.339981 + 5
+ (0.652145)(0.339981 + 5)%In (—)

2
0339981 + 5
+ (0.652145)(—0.339981 + 5)?2 ln( - )
08611363 + 5
+ (0.3478548)(—0.8611363 + 5)2 ln( ; )]

= (0.1922593

sin(x) dx

O — in
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Quadratura de Gauss

)

i .
Abscisass 1

Weights i

+0.5773502691896257645091488

1.0000000000000000000000000

0

0.8888888888888888888888889

+0.7745966692414833770358531

0.5555555555555555555555556

+0.3399810435848562648026658

0.6521451548625461426269361

+0.8611363115940525752239465

0.3478548451374538573730639

0

0.5688888888888888888888889

+0.5384693101056830910363144

0.4786286704993664680412915

+0.9061798459386639927976269

0.2369268850561890875142640

+0.2386191860831969086305017

0.4679139345726910473898703

+0.6612093864662645136613996

0.3607615730481386075698335

+0.9324695142031520278123016

0.1713244923791703450402961

0

0.4179591836734693877551020

+0.4058451513773971669066064

0.3818300505051189449503698

+0.7415311855993944398638648

0.2797053914892766679014678

+0.9491079123427585245261897

0.1294849661688696932706114

+0.1834346424956498049394761

0.3626837833783619829651504

+0.5255324099163289858177390

0.3137066458778872873379622

+0.7966664774136267395915539

0.2223810344533744705443560

+0.9602898564975362316835609

0.1012285362903762591525314

0

0.3302393550012597631645251

+0.3242534234038089290385380

0.3123470770400028400686304

+0.6133714327005903973087020

0.2606106964029354623187429

+0.8360311073266357942994298

0.1806481606948574040584720

+0.9681602395076260898355762

0.0812743883615744119718922

10

+0.1488743389816312108848260

0.2955242247147528701738930

+0.4333953941292471907992659

0.2692667193099963550912269

+0.6794095682990244062343274

0.2190863625159820439955349

+0.8650633666889845107320967

0.1494513491505805931457763

+0.9739065285171717200779640

0.0666713443086881375935688
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