
LUCIO VASCONCELOS DOS SANTOS

MINICURSO DE ALGORITMOS E PROGRAMAÇÃO: O DESIGN INSTRUCIONAL DE UM

MINICURSO ONLINE PARA O ENSINO SUPERIOR

Produto Educacional referente à Dissertação

de Mestrado intitulada: o uso da metodologia

ADDIE no Design Instrucional de um minicurso

online de algoritmos e programação para o

Ensino Superior, apresentado ao Programa de

Mestrado Profissional em Ensino de Ciências,

Matemática e Tecnologias como parte dos

requisitos para obtenção do título de Mestre

Ensino de Ciências, Matemática e Tecnologias.

Orientadora: Prof.ª Dra. Isabela Gasparini

JOINVILLE, SC

2017

Instituição de Ensino: UNIVERSIDADE DO ESTADO DE SANTA CATARINA
Programa: ENSINO DE CIÊNCIAS, MATEMÁTICA E TECNOLOGIAS
Nível: MESTRADO PROFISSIONAL
Área de Concentração: Ensino de Tecnologias
Linha de Pesquisa: Tecnologias Educacionais

Título: MINICURSO DE ALGORITMOS E PROGRAMAÇÃO: o Design Instrucional de um
minicurso online para o Ensino Superior.
Autor: Lucio Vasconcelos dos Santos
Orientador: Prof.ª Dra. Isabela Gasparini
Data: 2017

Produto Educacional: Minicurso Online.
Nível de Ensino: Superior.
Área de Conhecimento: Computação, Licenciaturas, Engenharias.
Tema: conceitos iniciais de AP (Algoritmos e Programação).

Descrição do Produto Educacional:
Este minicurso é o resultado de ampla pesquisa e desenvolvimento a partir de uma situação
de aprendizagem, fundamentado pelo Design Instrucional, tornando-se uma solução inicial
pronta para ser utilizada, mas que pode ser referência para futuras melhorias, adaptações
ou ampliações. Tem como objetivo geral proporcionar que estudantes do Ensino Superior
tenham acesso a um minicurso online, extracurricular e gratuito para aprendizagem de
conceitos iniciais de AP.

Biblioteca Universitária UDESC: http://www.udesc.br/bibliotecauniversitaria
Publicação Associada: O uso da Metodologia ADDIE no Design Instrucional de um Minicurso
Online de Algoritmos e Programação para o Ensino Superior.

URL: http://www.cct.udesc.br

Arquivo *Descrição Formato

Texto completo Adobe PDF

Licença de uso: O autor é titular dos direitos autorais dos documentos disponíveis e é
vedado , nos termos da lei, a comercialização de qualquer espécie sem sua autorização
prévia (Lei nº 12.853, de 2013).

http://www.udesc.br/bibliotecauniversitaria
http://www.cct.udesc.br/

LISTA DE FIGURAS

Figura 1 – Ambiente do professor no AdaptWeb®. .. 14

Figura 2 – Ambiente do estudante no AdaptWeb®. ... 14

Figura 3 – Conceitos por curso no AdaptWeb®. ... 15

Figura 4 – Tela de cadastro de curso no AdaptWeb® ... 16

Figura 5 – Tela de cadastro de disciplina no AdaptWeb® ... 16

Figura 6 – Tela de cadastro de conceitos no AdaptWeb® ... 17

Figura 7 – Processo de criação, do croqui à interface do minicurso ... 32

Figura 10 – Foto do panfleto original de divulgação do MAP, distribuído no CCT-UDESC 33

Figura 11 – Intervenção enviada na 1ª semana .. 35

Figura 12 – Intervenção enviada na 3ª semana .. 35

Figura 13 – Intervenção enviada na 4ª semana .. 36

Figura 14 – Desafio 2, enviado durante as intervenções .. 36

Figura 15 – Trecho da tela da avaliação final .. 37

LISTA DE TABELAS

Tabela 1 – Análise contextual – questões de pesquisa ... 20

Tabela 2 – Relatório de Análise: definições iniciais para o produto educacional 22

Tabela 3 – Proposta inicial dos conteúdos do MAP .. 24

Tabela 4 – Cursos e disciplinas de AP no CCT-UDESC ... 26

Tabela 5 – Estudo de equivalência de conteúdos por disciplina... 27

Tabela 6 - Análise das entrevistas com os professores ... 29

Tabela 7 – Exemplos de formatação do texto para o ambiente ... 31

Tabela 8 – Relação das intervenções da etapa de Implementação .. 34

SUMÁRIO

1 Apresentação .. 11

2 Introdução ... 12

3 Ambiente AdaptWeb® ... 13

4 Metodologia .. 18

5 Design do Produto Educacional Utilizando ADDIE .. 20

5.1 ADDIE – Análise ... 20

5.2 ADDIE – Design .. 25

5.3 ADDIE – Desenvolvimento .. 30

5.4 ADDIE – Implementação ... 33

5.5 ADDIE – Evaluation – Avaliação .. 37

6 Considerações Finais ... 39

7 Referências .. 41

APÊNDICE A Trabalhos estudados para a Análise Contextual ... 42

APÊNDICE B Documentos selecionados do SBIE 2015 .. 43

APÊNDICE C Entrevistas com Professores – TCLE .. 44

APÊNDICE D Entrevistas com Professores – Roteiro do entrevistador ... 46

APÊNDICE E Transcrições das falas dos professores ... 55

APÊNDICE F Matriz de Design Instrucional (MDI) ... 61

APÊNDICE G Objetos de Aprendizagem ... 67

APÊNDICE H Intervenções da etapa de Implementação ... 102

APÊNDICE I Desafios da etapa de Implementação ... 107

11

1 Apresentação

Aos colegas, professoras e professores:

O ensino de programação é foco de muitos currículos de cursos de Ensino Superior,

não somente daqueles diretamente ligados à área de Computação. A oferta de disciplinas

com ênfase em algoritmos e conceitos iniciais de programação é uma proposta para

minimizar as dificuldades de aprendizagem enfrentadas por estudantes ingressantes no

Ensino Superior, especialmente em outras disciplinas que envolvam a resolução de

problemas. O ensino de fundamentos comumente utilizados em programação, como

algoritmos e estratégias para resolução de problemas, podem ampliar as possibilidades dos

estudantes desenvolverem seu pensamento abstrato e seu raciocínio lógico-matemático.

Porém, pesquisas apontam que professores e estudantes têm encontrado desafios na

aprendizagem de tais conteúdos, e que em cursos de computação podem estar relacionados

a índices de reprovação e de evasão. Desta forma, nos propusemos a elaborar um minicurso

online, como apoio às disciplinas presenciais de Algoritmos e Programação (AP).

Nosso objetivo é apresentar a você o minicurso completo, tal como foi concebido e

aplicado, a partir de nossa pesquisa de mestrado, a estudantes de cursos nas áreas da

computação, licenciaturas e engenharias, que tinham disciplinas de AP em seu currículo. Tal

minicurso, denominado MAP (Minicurso de Algoritmos e Programação), foi desenvolvido no

AdaptWeb® (Ambiente de Ensino-Aprendizagem Adaptativo na Web) e aplicado em turmas

de cursos de graduação do Centro de Ciências Tecnológicas da Universidade do Estado de

Santa Catarina (CCT-UDESC). Para seu desenvolvimento, utilizaram-se técnicas de Design

Instrucional (DI) com base no modelo ADDIE (Análise, Design, Desenvolvimento,

Implementação e Avaliação). Foram elaborados mais de 200 objetos de aprendizagem,

dentre conceitos, exemplos e exercícios, permitindo assim ao estudante rever os conteúdos

que eram apresentados em sala de aula, durante o curso de uma disciplina presencial, de

modo que ele pudesse acessar este conteúdo online, na hora e local mais conveniente, de

forma sequencial ou livre, no seu próprio ritmo de aprendizagem. Para você, professor,

existem ferramentas que permitem acompanhar a participação de cada estudante por meio

de relatórios, e utilizar avaliações para verificar seu desempenho.

Desta forma, o professor poderá conhecer melhor o minicurso e verificar a

possibilidade aplicação para seus próprios objetivos, podendo inclusive melhorá-lo, adaptá-

lo ou ampliá-lo, sendo para nós uma satisfação poder colaborar para a expansão da pesquisa

a partir do nosso trabalho.

Apresentamos, inicialmente, o ambiente utilizado. Em seguida, descrevemos a

concepção e elaboração dos conteúdos do MAP, e, finalmente, a implementação do

minicurso.

12

2 Introdução

Em sala de aula, como professor de Matemática no Ensino Fundamental e Médio,

venho percebendo como é importante o uso da tecnologia na minha prática docente e

também no processo de aprendizagem dos estudantes. Essa questão me lembra de uma

parte das minhas experiências ligadas ao uso da tecnologia: eu tive a oportunidade de

aprender a programar computadores muito cedo, em uma época que essas máquinas

estavam ainda começando a se popularizar no Brasil, poucas pessoas tinham acesso ou

conhecimento, o material de ensino era escasso e ainda não existia Internet.

De lá para cá, de uma forma ou outra, estas questões me instigaram e me levaram a

continuar estudando e a querer pesquisar na área, pois comecei a relacionar algumas

estratégias de programação aos conteúdos da escola, como professor de Matemática.

Mesmo não tendo me tornado um especialista da computação – uma vez que cursei a

Licenciatura em Matemática –, estou certo de que muitas das habilidades que acabei

desenvolvendo na área de computação, mesmo sem perceber, me ajudaram (e ajudam) a

resolver problemas nas mais diversas situações. Atualmente, em minhas aulas de

matemática, percebo em muitos estudantes dificuldades no processo de desenvolvimento

de certas habilidades, como o raciocínio lógico e o pensamento abstrato, ao se deparar com

a resolução de problemas. Partindo da minha experiência pessoal e profissional e dos

estudos que venho fazendo sobre o tema, penso que a tecnologia pode ajudá-los nesse

processo. Especificamente, acredito que o ensino de fundamentos de algoritmos e

programação podem ajudar os estudantes a desenvolver tais habilidades, especialmente

àqueles que não tiveram esta oportunidade na Educação Básica, e que precisam delas para

seguir seus estudos no Ensino Superior.

13

3 Ambiente AdaptWeb®

O ensino de programação nos cursos de graduação é tema de debate na área

acadêmica, tanto pela sua importância na formação geral dos estudantes quanto pelos

desafios ligados ao seu ensino, notadamente as reprovações em disciplinas de AP e a evasão

dos cursos. É preciso, pois, atacar esse problema. Uma das maneiras de se fazer isso aparece

na forma de propostas de desenvolvimento, utilizando as Tecnologias da Informação e da

Comunicação (TIC), de ambientes online de aprendizagem como apoio ao ensino presencial.

O AdaptWeb® (Ambiente de Ensino-Aprendizagem Adaptativo na Web) é um

ambiente de aprendizagem online utilizado no CCT-UDESC. Trata-se de um sistema

hipermídia adaptativo que permite a adaptação da navegação, da apresentação e do

conteúdo conforme o perfil do estudante (GASPARINI et al., 2009). O ambiente armazena

alguns dados do estudante, tais como curso, conhecimento, preferências e histórico

navegacional e adequa o conteúdo, a apresentação e a navegação ao perfil de cada

estudante.

Uma importante característica em sistemas de EaD (Educação a Distância) é procurar

a melhor maneira para apresentar a informação aos estudantes, e a utilização de sistemas

adaptativos, versáteis e poderosos para organização e acesso a informação, pode ser uma

alternativa para aumentar a qualidade dos sistemas de EaD via web.

O AdaptWeb® é apresentado em dois ambientes distintos: o ambiente de autoria,

para os professores, e o ambiente de navegação, para os estudantes. O cadastro das contas

de professor e de estudante é feito da mesma forma, porém a conta de professor necessita

de uma aprovação especial pelo administrador do sistema. O acesso ao ambiente de autoria

permite que o professor crie e disponibilize um curso ou disciplina, além de poder controlar

as solicitações de matrículas aos cursos por ele criados. A conta de estudante permite a

escolha e solicitação de acesso aos cursos ou disciplinas desejados.

14

Figura 1 – Ambiente do professor no AdaptWeb®.

Fonte: AdaptWeb® (2016).

Pelo ambiente de autoria, mostrado na Figura 1, o professor pode organizar os

materiais instrucionais em tópicos hierárquicos. Para cada um dos tópicos, o material pode

ser incluído na forma de conceito (um para cada tópico), exemplos, exercícios e materiais

complementares.

Figura 2 – Ambiente do estudante no AdaptWeb®.

Fonte: AdaptWeb® (2016).

Uma vez dentro do ambiente de navegação, descrito como “Ambiente Aluno” na

Figura 2, o estudante deverá selecionar o link “assistir disciplinas”, que o levará a uma

página onde poderá optar pelo modo tutorial ou livre. No modo tutorial, os tópicos do curso

são apresentados conforme a sequência pré-estabelecida pelo professor na fase de autoria,

garantindo que um tópico seja visto somente se seu pré-requisito tiver sido estudado; em

15

modo livre, qualquer tópico pode ser visitado, independente da classificação estabelecida

pelo professor.

Processo de pré-autoria. Sugere-se antes do processo de autoria, um processo de

pré-autoria onde o material a ser disponibilizado é organizado. É importante que se defina a

disciplina e seus objetivos, estabelecendo os conteúdos que a disciplina abrange, e

organizando-os em tópicos, que no ambiente são chamados de conceitos.

Figura 3 – Conceitos por curso no AdaptWeb®.

Fonte: elaborada pelo autor, 2016.

Como mostra a representação apresentada na Figura 3, o professor pode organizar

os materiais instrucionais uma única vez para uma disciplina ministrada em dois ou mais

cursos, definindo quais materiais estarão disponíveis para cada um deles. Por exemplo, o

professor pode criar uma única vez uma disciplina de cálculo, e definir que conceitos,

exemplos, exercícios e materiais complementares serão vistos para diferentes cursos

(Matemática, Computação, Engenharia).

Processo de autoria. Inicialmente, deve-se acessar o ambiente como usuário de

professor. A partir deste momento, pode-se cadastrar os cursos e as disciplinas, bem como

estruturar os conteúdos que se deseja disponibilizar no ambiente.

Cadastro do curso. Nesta etapa o professor deve informar o nome do curso que

deseja cadastrar.

Curso 1

Índice

Conceito 1

Conceito 2

Conceito 2.1 Conceito 2.1.1

Conceito 2.2

Conceito 3

Curso 2

Índice

Conceito 1 Conceito 1.1

Conceito 2

Conceito 2.1

Conceito 2.2 Conceito 2.2.1

16

Figura 4 – Tela de cadastro de curso no AdaptWeb®

Fonte: AdaptWeb® (2016).

Cadastro de disciplina. Após ter cadastrado os cursos relacionados ao conteúdo a ser

inserido no ambiente, deve-se cadastrar a disciplina, através do item Disciplina no menu à

esquerda da tela, como mostra a Figura 5.

Figura 5 – Tela de cadastro de disciplina no AdaptWeb®

Fonte: elaborada pelo autor, 2016.

Pode-se cadastrar uma mesma disciplina para vários cursos diferentes, e cada

disciplina poderá ter seus conceitos, exemplos, exercícios e materiais complementares

específicos.

Estruturar conteúdo. A estrutura dos tópicos – ou conceitos – de um curso dentro do

AdaptWeb® é configurada por uma tela de cadastro.

17

Figura 6 – Tela de cadastro de conceitos no AdaptWeb®

Fonte: AdaptWeb® (2016).

Com isto deve-se inserir o conceito inicial da disciplina, assim como a descrição

resumida do conceito e as palavras chaves e clicar em Cadastrar para salvar os dados, como

pode ser visualizado na Figura 6.

Os exemplos, exercícios e materiais complementares devem estar associados aos

respectivos conceitos. Por isso, durante a etapa de estruturação do conteúdo devem-se

inserir estes itens corretamente, associando-se os arquivos necessários a cada conteúdo.

O professor também pode criar avaliações e analisar a participação de seus

estudantes. O estudante, por sua vez, acessa a disciplina por meio do Ambiente da

Disciplina, em que tem acesso ao Ambiente de Aula (i.e., onde se pode ver todo o material

instrucional destinado àquela disciplina), ao Mural de Recados, ao Fórum de Discussão e à

ferramenta de Análises de Aprendizagem.

Ao final do processo de autoria, o curso estará disponível para ser liberado pelo

professor, e assim poder ser acessado pelo estudante.

18

4 Metodologia

Este capítulo apresenta o desenvolvimento do produto educacional, e contou com a

parceria, além do próprio autor e da professora orientadora da dissertação, Prof.ª Dra.

Isabela Gasparini, de mais três colaboradores: as então mestrandas, Ana Carolina Tomé

Klock e Barbara Moissa, do Programa de Pós-Graduação em Computação Aplicada da

UDESC, e o graduando Vitor Mulazani dos Santos, do Curso de Bacharelado em Ciência da

Computação da UDESC. A esta parceria denominamos “equipe do MAP”, e creditamos a esta

equipe todos os recursos que não foram gerados exclusivamente por um único autor.

De acordo com Demo (1996), pesquisa “é uma atitude, um questionamento

sistemático, crítico e criativo, mais a intervenção competente na realidade, ou o diálogo

crítico permanente com a realidade em sentido teórico e prático”. Sampieri, Collado e Lucio

(2013), definem pesquisa científica como sendo “um processo composto por múltiplas

etapas relacionadas entre si, que acontece ou não de maneira sequencial ou contínua. [...] é

um processo composto por diferentes etapas interligadas” (SAMPIERI; COLLADO; LUCIO,

2013).

Nesse sentido, serão apresentadas as etapas e procedimentos metodológicos

desenvolvidos ao longo do período de mestrado para a concepção deste produto

educacional.

Pode-se classificar esta pesquisa como de natureza aplicada, pois “objetiva gerar

conhecimentos para aplicação prática, dirigida à solução de problemas específicos”(KAUARK;

MANHÃES; MEDEIROS, 2010, p. 26).

Quanto à abordagem do problema, pode ser classificada como quali-quantitativa ou

mista:
Os métodos mistos representam um conjunto de processos sistemáticos e críticos
de pesquisa e implicam a coleta e a análise de dados quantitativos e qualitativos,
assim como sua integração e discussão conjunta, para realizar inferências como
produto de toda a informação coletada e conseguir um maior entendimento do
fenômeno em estudo . (HERNANDEZ, SAMPIERI E MENDOZA, 2008 APUD
SAMPIERI, CALADO E LUCIO, 2008)

As etapas da pesquisa, no sentido proposto por Sampieri, Collado e Lucio (2013)

foram planejadas e executadas para compreenderem as fases de elaboração de conteúdo do

MAP como produto educacional derivado da pesquisa de mestrado profissional. Tais etapas

são listadas a seguir, sendo que as etapas 2 e 3, referentes ao desenvolvimento do MAP,

serão explicadas em detalhes na seção seguinte. Os processos referentes às etapas 4 e 5

serão descritos e discutidos na publicação associada a este documento, que é a dissertação

de mestrado.

 Etapa 1. Como primeira etapa, fez-se uma revisão de literatura sobre temas

ligados ao desenvolvimento do produto educacional. Estudaram-se, assim,

questões relacionadas ao ensino de programação no Ensino Superior, o Design

Instrucional e o estudo de Algoritmos e Programação. Esses estudos serviram

para embasar as concepções da proposta de criação do MAP. Além disso, foi

19

estudado o funcionamento do AdaptWeb®, ambiente que ambientou o

minicurso.

 Etapa 2. Os conteúdos do MAP foram elaborados na segunda etapa da pesquisa.

Para tal, além dos estudos sobre o tema, foi realizado um levantamento dos

conteúdos ministrados nas disciplinas do CCT-UDESC, observando ementas,

planos das disciplinas e por meio de Entrevistas Estruturadas com os respectivos

professores.

 Etapa 3. Na terceira etapa, o MAP foi concebido e implantado no ambiente

AdaptWeb®.

 Etapa 4. A quarta etapa compreende a coleta e análise dos dados referentes à

observação da participação e do desempenho dos estudantes no minicurso. Os

dados foram avaliados tanto de forma quantitativa como qualitativa com o

objetivo de evidenciar a satisfação dos estudantes participantes e fornecer dados

para verificação do objetivo da pesquisa realizada.

 Etapa 5. Apresentação dos resultados da pesquisa.

Neste documento referente ao produto serão mais exploradas as Etapas de

Elaboração do Conteúdo (Etapa 2) e de Concepção e Implementação (Etapa 3).

20

5 Design do Produto Educacional Utilizando ADDIE

Nesta seção são descritas as ações de pesquisa relacionadas às etapas 2 e 3 dos

procedimentos metodológicos, onde são apresentados os processos de concepção,

elaboração e implementação do Minicurso Algoritmos de Programação (MAP), que é o

produto educacional online resultante da pesquisa aqui apresentada.

O MAP foi concebido e implementado no ambiente AdaptWeb® da UDESC, segundo o

modelo ADDIE (Análise, Design, Desenvolvimento, Implementação e Avaliação), para apoiar

os estudantes de disciplinas presenciais de cursos de graduação do CCT-UDESC.

As etapas de criação do curso, no modelo ADDIE, são descritas a seguir.

5.1 ADDIE – Análise

Para criação do MAP, foi levantado o referencial teórico sobre o ensino de

programação no Ensino Superior. Tal busca e análise levou ao processo de criação do

produto educacional. Porém, investigaram-se também outros artigos científicos, indexados

no APÊNDICE A, para responder às questões de pesquisa na Tabela 1.

Tabela 1 – Análise contextual – questões de pesquisa

Q1 – Quais as características que mais se destacaram?

 Ferramentas tecnológicas – criação de nova ferramenta, uso de ferramenta de terceiros ou não uso de
ferramentas (apenas com referência de técnicas ou teorias).

 Estratégias de ensino ou aprendizagem utilizadas para auxiliar na compreensão dos conteúdos.

Q2 – Que tipo de ferramentas tecnológicas foi utilizado?

Q3 – Que estratégias didáticas fundamentaram os trabalhos?

Fonte: elaborada pelo autor, 2015.

21

Assim, foi realizada uma análise contextual guiada pela seguinte questão: quais

estratégias didáticas e tecnológicas para o ensino de AP vêm sendo utilizadas voltadas a um

público iniciante na graduação?

Três questões derivaram desta primeira, tornando-se fundamentais nesta etapa do

método ADDIE. As perguntas e os resultados encontrados são apresentados na Tabela 1.

Como relação à ferramenta de apoio ao ensino de programação, como visto no

gráfico de setores apresentado na Tabela 1, encontram-se tanto propostas que sugerem

novos aplicativos (37% dos trabalhos avaliados), a exemplo do Mojo, Ceebot e o iVProg,

quanto outras que se utilizam de softwares ou recursos tecnológicos de terceiros, isto é, já

existentes (a maioria, com 53% do total destes trabalhos), tais como Scratch, Lego

Mindstorms, Juizes Online, Moodle, Portugol Studio. Apenas 10% (dois documentos) não

utilizaram qualquer ferramenta, como o que sugere a aplicação de técnicas da teoria das

múltiplas inteligências para o aprendizado de AP. Verificou-se uma preocupação comum aos

trabalhos estudados, que era a de tornar o ato de aprender em uma atividade atrativa e

agradável para os estudantes iniciantes.

A partir desses resultados iniciais, a busca pelo estado da arte ampliou-se com a

inserção dos artigos publicados nos anais de 2015 do SBIE1, por ser esse um importante

simpósio sobre informática na educação que envolve o contexto brasileiro. Buscaram-se, nos

trabalhos publicados nos anais do evento, enfoques teóricos e práticos relacionados ao

ensino de programação a iniciantes. A lista artigos estudados está no APÊNDICE B.

Nesta nova análise, observou-se que as principais informações destas publicações

foram: (a) o problema de dificuldade de aprendizagem em disciplinas iniciais da computação

ou mesmo disciplinas curriculares, causando alto índice de reprovação e evasão dos cursos;

(b) alguns artigos do evento trazem como referência publicações em geral recentes, mas

estas referências têm referências primárias bem mais antigas, e a maioria cita a mesma

dificuldade no aprendizado, remetendo a publicações já da década de 1980; (c) alguns

mapeamentos sistemáticos desta edição do evento fazem estudo de publicações anteriores

e um, inclusive, destaca que a quantidade de estudos recentes no simpósio é indício de que

o problema ainda preocupa; (d) também é frequente o tema de ensino de programação a

iniciantes, propondo soluções para auxiliar no aprendizado.

O modelo proposto por Filatro (2008) quanto ao método ADDIE prevê a apresentação

de um relatório de análise, ou seja, de um documento resultante da etapa de análise na

forma de “relatório estruturado que deve ser apresentado ao cliente e a outros envolvidos

diretamente no problema” (FILATRO, 2008, p. 38). Devido às características de um trabalho

acadêmico dentro de uma universidade, e não tendo a definição exata de um “cliente” em

nosso processo, considerou-se como Relatório de Análise a discussão resultante da pesquisa

realizada, conforme Tabela 2.

1
 O Simpósio Brasileiro de Informática na Educação (SBIE) de 2015 ocorreu durante o IV Congresso

Brasileiro de Informática na Educação e X Conferência Latino-Americana de Objetos e Tecnologias de
Aprendizagem (CBIE & LACLO). O CBIE é um evento anual de caráter internacional promovido pela Sociedade
Brasileira de Computação (SBC), disponível em: http://ic.ufal.br/evento/cbie_laclo2015/.

http://ic.ufal.br/evento/cbie_laclo2015/

22

Tabela 2 – Relatório de Análise: definições iniciais para o produto educacional

Tópico Definição

Estratégias de ensino (a) Elaboração conteúdos para o ensino de AP por meio de exemplos e
exercícios em linguagem C, mas oferecendo ao estudante a oportunidade de
estudar pela pseudolinguagem.

(b) Traços de gamificação inseridos com o intuito de potencializar os resultados
desejados com a aplicação dos métodos de DI.

(c) Possibilidade de aplicação dos conceitos de adaptabilidade no produto
educacional.

Público-alvo (d) Estudantes matriculados em todos os cursos de graduação do CCT-UDESC
que têm disciplinas voltadas ao ensino dos conceitos iniciais de programação.

Modalidade (presencial / à
distância)

(e) O ensino a distância, na modalidade de minicurso online, é utilizado como
apoio ao ensino presencial das disciplinas de AP.

Teoria de aprendizagem (f) O minicurso foi baseado na perspectiva socioconstrutivista, desde a
elaboração dos conteúdos à avaliação da aprendizagem, passando pelas etapas
de ministrar os conteúdos e compartilhar conhecimentos.

Fonte: elaborada pelo autor, 2015.

Da Tabela 2, seguem as explicações.

(a) Por ser referência para o ensino e aprendizagem de AP, a linguagem C ainda é

utilizada em muitos trabalhos pela sua relativa simplicidade de compreensão e

aplicação, sendo um caminho de fácil acesso ao aprendizado de outras linguagens

mais avançadas. Porém, é uma linguagem estruturada, ou seja, que exige uma

estrutura rígida em sua escrita, e que ainda tem seus comandos escritos em

inglês, o que pode ser uma dificuldade extra para estudantes que não dominam

este idioma. Por isso, neste minicurso, optou-se por oferecer a possibilidade de

acesso a um interpretador de código, que “traduz” os comandos para o idioma

português, além de simplificar a estrutura da linguagem C – é a chamada

pseudolinguagem. O foco do estudante passa a ser, então, a funcionalidade do

programa, e não a sua escrita. Assim, decidiu-se, como uma das estratégias de

ensino em nosso projeto, elaborar conteúdos para o ensino de AP por meio de

exemplos e exercícios em linguagem C, mas oferecendo ao estudante a

oportunidade de estudar pela pseudolinguagem.

(b) Dentre as diversas estratégias de ensino relatas nas publicações analisadas,

notaram-se importantes resultados positivos no uso de soluções que envolvem o

incentivo ao engajamento dos estudantes e sua consequente satisfação com o

aprendizado. Dentre elas, mais recentemente, a gamificação. Por ser um tema

recente, mas com grande potencial de aplicação na implantação do minicurso,

elementos de gamificação foram inseridos no AdaptWeb® pelo trabalho de Klock

(2017), com o intuito de potencializar os resultados desejados com a aplicação

dos métodos de DI.

23

(c) A adaptabilidade também é uma estratégia que mostra resultados eficazes,

principalmente em relação à satisfação dos estudantes. Um minicurso aplicado de

forma adaptativa oferece ao estudante a possibilidade de estudar conteúdos

direcionados às suas necessidades, em quantidade, grau de dificuldade e

momento mais adequado. Estruturou-se o minicurso, então, considerando os

contextos de curso já se prevendo a possibilidade futura de adaptabilidade no

produto educacional. Porém, neste trabalho optou-se por criar objetos de

aprendizagem para as diferentes situações e serem utilizados por todos os

participantes. A partir dos resultados obtidos, outros trabalhos podem continuar

o desenvolvimento e realizar adaptações a cada perfil.

(d) A proposta da pesquisa do mestrado profissional iniciou com o objetivo de

investigar os benefícios do ensino de programação aos estudantes o mais cedo

possível na fase escolar, ou seja, na Educação Básica. Porém, com a evolução do

estudo pesquisas, observou-se que há outro grupo de estudantes que carece de

apoio para enfrentar dificuldades prévias de aprendizagem na área: os estudantes

que concluíram o Ensino Médio ou aqueles ingressantes no Ensino Superior.

Analisando-se as possibilidades de aplicação do produto educacional para

apresentar uma alternativa de solução para um problema encontrado nos cursos

de graduação da universidade onde foi realizada a pesquisa do mestrado, optou-

se por voltar a pesquisa para estudantes da graduação. Mais especificamente,

escolheram-se como público alvo os estudantes matriculados nos cursos de

graduação do CCT-UDESC que têm disciplinas voltadas ao ensino de AP, já que

este tema e as dificuldades de aprendizado não se restringem apenas aos

estudantes dos cursos de computação.

(e) Com relação ao ambiente do curso, optou-se pelo modo online, pois nos estudos

realizados notou-se grande ênfase às vantagens oferecidas pelo ensino híbrido,

que integra as formas de ensino presencial e de ensino à distância. Assim, neste

produto educacional, o ensino a distância, na modalidade de minicurso online, é

utilizado como apoio ao ensino presencial das disciplinas de AP.

(f) A respeito da concepção do curso, optou-se por utilizar uma postura

socioconstrutivista, como a apresentada em Filatro (2008): a aprendizagem do

estudante se dá sobre conceitos e habilidades existentes; a construção do

conhecimento é apoiada pelo ambiente social, no qual o estudante desenvolve

uma compreensão compartilhada dos conteúdos; utilização de ambientes

colaborativos, com recursos e desafios apropriados. Dessa forma, o minicurso foi

baseado na perspectiva socioconstrutivista desde a elaboração dos conteúdos à

avaliação da aprendizagem, passando pelas etapas de ministrar os conteúdos e

compartilhar conhecimentos.

Definidos os fundamentos do produto educacional até este momento, ainda faltava

selecionar os conteúdos do tema principal. Que conceitos poderiam ser considerados

fundamentais ou suficientes aos iniciantes em estudos de AP? A resposta não era clara nos

24

textos pesquisados. Cada estudo defendia um conteúdo diferente, mas com alguns pontos

em comum. Como proposta inicial, os autores basearam-se em sua própria experiência em

sala de aula como professor da disciplina e nos parceiros do projeto, além de estudo de

literatura especializada, como Forbellone e Eberspächer (2000), Mizrahi (2008) e Pereira

(2010).

Tabela 3 – Proposta inicial dos conteúdos do MAP

1 Seja bem-vindo(a)!
2 Noções de algoritmo
 Definição
 Motivo para aprender
 Meios de representar

 Estrutura básica
 Como criar

3 Portugol IDE
 Pré-requisitos
 Download
 Utilização

4 Pseudolinguagem
 Definição
 Estrutura básica

5 Dados, constantes e variáveis
 Dados
 Constantes
 Variáveis
 Identificadores

6 Comandos básicos
 Comando de atribuição
 Comando de saída
 Comando de entrada

7 Operadores
 Operadores aritméticos
 Operadores relacionais
 Operadores lógicos
 Precedência entre todos os operadores

8 Estruturas condicionais
 Se...entao
 Se...entao...senao
 Escolhe...caso

9 Estruturas de repetição
 Enquanto...faz
 Faz...enquanto
 Repete...ate
 Para

Fonte: elaborada pelo autor, 2015.

Desta forma, conforme a Tabela 3, delimitou-se um conteúdo considerando alguns

conceitos básicos, como algoritmos, dados, constantes, variáveis e operadores, além das

estruturas mais comumente utilizadas em programação, como as condicionais e de

25

repetição. Para que se pudessem exercitar estes conteúdos, foram incluídas instruções para

utilização de duas ferramentas, a da pseudolinguagem e a da linguagem C.

Na próxima seção é feito um estudo dos cursos que têm disciplinas referentes à AP

no CCT-UDESC e seus conteúdos. Também são utilizadas as informações coletadas nas

entrevistas com os professores para definição do design final do minicurso.

5.2 ADDIE – Design

O planejamento e a elaboração do conteúdo do minicurso, sua abrangência e demais

elementos que farão parte do produto, como exemplos, exercícios e materiais

complementares correspondem à etapa de design.

No planejamento das unidades de aprendizagem (UA), aqui denominados Objetos de

Aprendizagem (OA), bem como para estabelecer uma relação adequada do conteúdo do

minicurso online com as disciplinas presenciais, optou-se por (a) fazer levantamentos de

todas as disciplinas iniciais dos cursos do CCT-UDESC, observando suas ementas e planos de

ensino, e (b) após a compilação dos resultados, consultar professores do CCT-UDESC que

ministram disciplinas relacionadas à AP. Esta investigação foi feita por meio de entrevistas

estruturadas, que foram gravadas em áudio.

Uma entrevista envolve a interação entre, pelo menos, duas pessoas e podem ser de

três tipos: (a) semiestruturadas, que envolvem perguntas abertas, pré-planejadas e são

influenciadas por estímulos como “Por quê?” ou “Fale mais”; (b) não estruturadas, que

apenas possuem um tema e não são planejadas; e (c) estruturadas, apoiadas por um

questionário planejado e com rigoroso controle do tempo (OLSEN, 2015). Ainda segundo o

autor, a entrevista estruturada tem o objetivo principal de obter respostas quantificáveis,

que sejam facilmente registradas, e nelas, o entrevistador deve procurar não influenciar as

respostas do entrevistado e utilizar um dispositivo para gravação.

As entrevistas com os professores de AP do CCT-UDESC foram planejadas e

executadas porque uma das necessidades na definição dos conteúdos do minicurso era estar

em sintonia com as disciplinas presenciais dos cursos que o minicurso apoiaria e, nesse caso,

os professores regentes dessas disciplinas poderiam ser fontes de referência. A princípio, um

simples questionamento a estes professores seria suficiente para saber se o conteúdo

proposto estaria em consonância com o seu planejamento, e se o início e duração seriam

adequados aos principais marcos de conteúdo, atividades e avaliações correspondentes.

Mas, para isso, a entrevista não seria necessária, pois estas informações são disponibilizadas

no site universidade ou constam nas páginas e repositórios online dos próprios professores.

No entanto, nosso objetivo era entender a abordagem do professor, buscando obter outras

informações mais relevantes, como as estratégias didáticas que eles aplicam em sala, a

forma de abordagem dos conteúdos, as maiores dificuldades que os estudantes apresentam.

Assim as entrevistas tiveram como objetivo ajudar a: decidir que conteúdos

atenderiam a prática da maioria dos professores das disciplinas presenciais; perceber se

período de aplicação do minicurso estaria adequado à maioria dos professores considerando

o andamento da disciplina presencial; reunir opiniões sobre o uso da pseudolinguagem (e o

26

Portugol IDE), da linguagem C (ou outras sugestões) ou de outras linguagens nas práticas do

minicurso; reunir impressões sobre a utilização do minicurso online como apoio à disciplina

presencial (e sua possível aplicação em outros contextos); conhecer a opinião sobre a

utilização do AdaptWeb® como ambiente do minicurso; reunir experiências e sugestões

sobre exemplos de conteúdos, exercícios, formas de avaliação e estratégias didáticas que

poderiam ser utilizadas.

Além da coleta de respostas referentes aos objetivos, a entrevista foi um momento

em que os professores foram apresentados à proposta inicial do curso (Tabela 3) e, sobre

ela, convidados a sugerirem ajustes.

O roteiro das entrevistas (APÊNDICE D) foi elaborado a partir dos resultados de

experiências e de pesquisas de satisfação obtidas em minicursos anteriormente aplicados.

Associado ao roteiro, elaborou-se um Termo de Consentimento Livre e Esclarecido (TCLE),

que consta no APÊNDICE C, necessário instrumento de autorização de aplicação da

entrevista e uso sigiloso das informações.

A seleção dos professores entrevistados foi feita por meio de um mapeamento. Foi

feito um levantamento de todos os cursos e disciplinas do CCT-UDESC que abordavam, em

seus planos de ensino, conceitos iniciais de programação. Os resultados são apresentados na

Tabela 4.

Tabela 4 – Cursos e disciplinas de AP no CCT-UDESC

Disciplinas

Modalidade Curso

AGT ALP PRE ICC APG

algoritmos algoritmos e
linguagens de
programação

programação
para

engenharia

Introdução à
ciência da

computação

Algoritmos e
programação

Computação
Ciência da Computação 1ª fase

TADS 1ª fase

Licenciaturas

Licenciatura em Física 3ª fase

Licenciatura em
Matemática

 5ª fase

Engenharias

Engenharia Civil 2ª fase

Engenharia Elétrica

1ª fase

Engenharia Mecânica

1ª fase

Engenharia Produção e
Sistemas

 1ª fase 2ª fase

Fonte: elaborada pelo autor, 2016.

Na Tabela 4 observam-se os oito cursos do CCT-UDESC que possuem disciplinas de AP

em seus currículos, com indicação dos nomes e siglas e da fase do curso em que são

ministradas. Na tabela, as disciplinas estão agrupadas em três modalidades: os cursos de

computação, os cursos de licenciatura e os cursos de engenharia. Destas modalidades,

analisando em termos de envolvimento com a programação, a de Computação contém os

cursos mais representativos, sendo disciplinas fundamentais para diversas outras

subsequentes; a de Engenharia tem aplicações que envolvem eventualmente a continuidade

do seu estudo em algumas disciplinas, como o uso em máquinas, equipamentos ou

27

dispositivos; e para as Licenciaturas, geralmente, a programação é estudada em apenas um

semestre do curso, sem continuidade explícita em outras disciplinas, somente possíveis

aplicações em situações específicas de cada área.

O período de preparação para entrevistas foi de 18 de fevereiro de 2016 a 5 de junho

de 2016. A média de duração das entrevistas com cada professor foi de 1 hora e 10 minutos.

Esta etapa do planejamento das entrevistas com os professores também proporcionou um

estudo das ementas de todas as disciplinas envolvidas. Isso foi relevante para se estabelecer

uma visão geral dos conteúdos abordados nas disciplinas presenciais. O resultado é

apresentado na Tabela 5.

Tabela 5 – Estudo de equivalência de conteúdos por disciplina

Disciplina

Tema

Algoritmos
Algoritmos e

Linguagem de
Programação (1)

Algoritmos e
Linguagem de

Programação (2)

Algoritmos e
Programação

Introdução à
Ciência da

Computação

Programação
para Engenharia

Arquitetura
e hardware

Noções de
arquitetura e

Conceitos básicos
de Hardware.

Principais
unidades

funcionais do
computador.

Sistemas de
computação

Noções básicas

sobre sistemas de
computação.

Noções básicas
sobre sistemas de

computação.

Conceitos
básicos de

lógica.

Princípios
de

Programa
ção

Programa
ção de

computado
res.

linguagens de
programação.

Noções sobre
linguagens de
programação.

Conceitos básicos
de software.
Principais

softwares básicos.
Principais
softwares

aplicativos.

Linguagens de
programação.

Algoritmos

Algoritmo,
fluxograma e

pseudo-
codificação.

Noções sobre
algoritmos.

Revisão dos
conceitos de
algoritmos.

Conceito de
algoritmo e
programa.

Dados
Entrada e
saída de
dados.

Representação de

dados.

Variáveis
Constantes e

variáreis.

Sistemas de
numeração.

Operadores
Operadores e
expressões.

Estruturas
decisão

Desvios e
laços.

Estruturas de

decisão e
controle.

Comandos mais
comuns de um

sistema
operacional.

Vetores e
matrizes

Vetores e
matrizes.

 Vetores.

Programa
ção

Programação
estruturada.

Programas. Programas.

Elaboração e
implementação
de programas

em uma
linguagem de
programação.

Algoritmos:
representação,

técnicas de
elaboração,

estruturas para
elaboração.

Programação
básica.

Linguagem
de alto nível

Experimentaç
ão em

linguagem de
alto nível.

Estudo de uma
linguagem de alto

nível.

Estudo de uma
linguagem de alto

nível.

Funções Funções.

Fonte: elaborada pelo autor, 2016.

O estudo feito a partir dos dados da Tabela 5 aponta os conteúdos definidos pelas

ementas da UDESC para cada disciplina relacionada com os conteúdos iniciais de

28

programação. Notaram-se diferenças de acordo com o curso, além do que alguns termos

deixam dúvidas quanto a sua equivalência de conteúdo. Ampliando a análise das ementas,

foi realizado um estudo dos conteúdos programáticos de cada professor, registrados em

seus planos de ensino, baseado nas informações disponíveis no site da UDESC. Depois disso,

viu-se reforçada a necessidade de realizar as entrevistas com os professores das disciplinas

de AP para melhor entendimento dos conteúdos ministrados e do encadeamento dos

tópicos para cada curso.

Em etapa seguinte, foi feito o levantamento dos nomes dos professores que

ministram as disciplinas relacionadas. Ao todo, foram identificados 13 professores. Com

todos eles foi feito um contato por e-mail, convidando-os a participarem de uma reunião

onde a pesquisa seria apresentada, quando seria informada a contribuição que cada um

poderia dar para o estudo e para o desenvolvimento do produto educacional.

A reunião inicial (antes das entrevistas) foi realizada em 18 de fevereiro de 2016, na

sala F107 do CCT-UDESC, com duração de 1 hora, contando com a participação de 5

professores. Nela, os professores participantes foram informados sobre o experimento que

estava sendo planejado, sua relação com experimentos anteriores desenvolvidos em outros

projetos que, eventualmente alguns já conheciam ou mesmo tinham participado. Foi

esclarecida a proposta diferenciada de contar com a participação deles, de forma voluntária

e anônima, no planejamento do conteúdo por meio do registro de suas observações e

sugestões dadas em entrevistas individuais que seriam gravadas em áudio. Ressaltou-se que

os dados das entrevistas seriam considerados na preparação do conteúdo do minicurso,

atendendo opiniões expressas pela maioria em caso de divergência sobre algum tema.

 Ainda durante a reunião, alguns dos professores presentes declararam apoio à

proposta de sua participação no processo de desenvolvimento do minicurso, já se

predispondo a colaborar com o que fosse necessário. Nenhum dos presentes se pronunciou

contra ou fez qualquer citação que os posicionasse de forma negativa à continuidade da

proposta. Não foi feita nenhuma forma de votação, nem registro de nomes ou opiniões, pois

isso não era o objetivo deste encontro.

O passo seguinte foi o convite individual, por e-mail, para realização das entrevistas.

Foram enviados convites para 13 professores, dos quais 7 aceitaram participar. A partir

disso, foi elaborado um cronograma das entrevistas. Foi realizado um encontro com cada

professor, de aproximadamente 1 hora cada, no período de 08/06/2016 a 13/06/2016,

geralmente em suas salas de trabalho, todos registrados em áudio utilizando um aparelho de

celular.

A cada encontro, foi seguido o seguinte roteiro macro, que organizou o conjunto das

23 questões que podem ser consultadas no APÊNDICE D:

 Apresentação e assinatura do TCLE;

 Realização de perguntas sobre o professor e sua disciplina;

 Apresentação da proposta inicial dos conteúdos do MAP, baseada na Tabela 3 ;

 Questões sobre a opinião do professor em relação à proposta;

 Questões sobre a proposta do minicurso como apoio à disciplina;

29

 Questões investigativas sobre o uso do minicurso em outros contextos.

Mesmo sendo uma entrevista estruturada, com questões claras e pré-definidas,

ocorreram nos discursos dos professores algumas transposições de temas, de forma natural,

mesmo sem influência do entrevistador. Procurou-se não interromper a fala do professor,

apenas interferindo quando se estendia muito além do tema ou do tempo. Desta forma,

optou-se por não transcrever as respostas completas, mas dividi-las em trechos que foram

então agrupados por temas. As transcrições das falas dos entrevistados são apresentadas no

APÊNDICE E, classificadas por tema e agrupados de forma a permitir uma análise

comparativa. Cabe ressaltar que as falas dos professores influenciaram na elaboração e nos

ajustes dos conteúdos do minicurso.

Após a análise de cada tema abordado nas entrevistas, foi decidido, em conjunto com

a professora orientadora, o que seria alterado, o que poderia mudar, e o que permaneceria

inalterado. As informações foram resumidas e apresentadas na Tabela 6.

Tabela 6 - Análise das entrevistas com os professores

Certamente será alterado Talvez mude Não será mudado

- Pseudo + C.

- Pseudo “como apoio” ao C.

- Básico: Matrizes.

- Básico: Vetores.

- Mais exemplos.

- Mais exercícios.

- Mais recursos audio-visuais.

- Estratégia: exemplos com teste de
mesa.

- Estratégia: focar mais na
compreensão do problema, menos na
estrutura e sintaxe.

- Estratégia: Usar o ensino de
programação para compreender a
construir a lógica, não focar tanto nas
ferramentas (linguagens).

- MDI (pseudo+C) explicitar aonde
entra a pseudo nos conceitos 7a 10.

- Usar, por exemplo, cores para
destacar bem a diferença de exemplos
e exercícios em C ou em pseudo.

- Buscar exemplos e exercícios dos
professores para adaptar no
minicurso.

- Pseudolinguagem: Portugol IDE [não
mudou]

- Temas complementares:
procedimentos e funções. [mudou]

- Complementar: elementos do
computador. [mudou]

- Mais interação, atividades no fórum.
[não mudou]

- Exemplos e exercícios de acordo com
o curso. [mudou]

- Elaborar os conceitos focando
bastante o modo livre de navegação
no minicurso. [mudou, em partes]

- Laços: avaliar formas diferentes de
ensinar – ex. Forbellone. [mudou, em
partes]

- Planejar intervenções de acordo com
o andamento médio das diversas
disciplinas. [não mudou]

- Linguagem C.

- Conceitos básicos que já estavam
estabelecidos.

- Exercícios em todos os conceitos.

- Avaliação final.

- Minicurso como apoio à disciplina
presencial.

- Tempo de início e duração do
minicurso.

- Gamificação.

- Não gastar o tempo do minicurso
com conteúdos informativos, explorar
mais a vantagem do recurso online.

Fonte: elaborada pelo autor, 2016.

O resultado das entrevistas foi a definição de uma MDI (Matriz de Design

Instrucional) em sua versão final (APÊNDICE F), referência fundamental para a elaboração

das etapas seguintes do projeto.

30

Portanto, pode-se dizer que as entrevistas com os professores se tornaram a

principal fonte de referência para especificação dos tópicos abordados. Como materiais,

entendem-se todos os recursos necessários para a elaboração do minicurso, em acordo com

os objetivos especificado para cada UA seguem a estrutura do ambiente AdaptWeb®:

 Conceitos;

 Exemplos;

 Exercícios;

 Materiais complementares;

 Links de apoio;

 Ferramentas de apoio à programação (compiladores e interpretadores).

No período de 14 de junho de 2016 a 11 de agosto de 2016, todos os materiais foram

criados, testados e validados pela Equipe do MAP, conforme descrito na próxima seção. De

12 a 14 de agosto de 2016, todo o minicurso foi validado com professores ou em testes

pilotos com convidados.

5.3 ADDIE – Desenvolvimento

Nesta fase foram elaborados todos os conteúdos necessários ao MAP, a partir da MDI

definida na fase anterior. Todo o material concebido no design foi inserido no ambiente

online do AdaptWeb®, sendo testado e revisado até atingir os objetivos estabelecidos na

MDI. Ao final, obteve-se o minicurso completo e funcional no ambiente online, pronto para

ser acessado pelos estudantes.

A respeito da produção dos materiais, os conteúdos desenhados anteriormente

tiveram que ser repensados levando-se em conta o aprendizado no formato online. A forma

de apresentação, como fontes de letras, cores, destaques, ilustrações, foi desenvolvida de

modo a permitir clareza e objetividade das informações.

Os conteúdos foram criados fundamentalmente em texto puro, sem formatação, com

características de roteiro, e depois transformados para apresentação no ambiente. Todos os

objetos criados para o MAP estão no APÊNDICE G.

É importante lembrar que este conteúdo tem o objetivo de desenvolver habilidades e

promover a aquisição de conhecimentos pelos estudantes, e por isso deve-se deixar claro

nestes roteiros como deve ser a apresentação final de cada Objeto de Aprendizagem, de

modo que este objetivo seja alcançado. A disposição dos textos e das imagens, títulos ou

caixas de comentários, devem ser destacados para que o objeto final tenha os elementos

adequados.

A Tabela 7 mostra alguns exemplos de como esta formatação de conteúdos ocorreu.

31

Tabela 7 – Exemplos de formatação do texto para o ambiente

Conteúdo em modo texto Conteúdo formatado
Boas Vindas
01 Seja bem-vindo ao minicurso de Algoritmos e Programação!

Este minicurso foi concebido para ensinar os fundamentos de algoritmos e de
programação a iniciantes no estudo da computação.
Não é necessário ter qualquer experiência anterior na área, além do
conhecimento básico como usuário(a) de computador, tablet, celular ou outro
dispositivo. Também é interessante, mas não obrigatório, que você já tenha
feito acessos à Internet e redes sociais.
Ah, e caso você não tenha recebido instrução inicial sobre o uso do
AdaptWeb®, não se preocupe: o ambiente é bem intuitivo, e ainda tem fácil
acesso à ajuda, sempre que precisar.

(...) 3. Primeiro programa
Vamos escrever então o nosso primeiro código, para começar a se habituar
com as ferramentas (interpretadores ou compiladores), e nada melhor do que
começar com o clássico "Alô mundo!".
--
Dica: caso ainda não tenha prática para escrever programas, sugerimos
simplesmente copiar dos exemplos e exercícios para fazê-los funcionar da
primeira vez. Depois, "brinque" com os valores e parâmetros, o observe os
resultados a cada mudança. Com a prática você irá começar a compreender
cada parte do programa.
--
[Materiais] Alo mundo (veja também a versão em pseudocódigo)
Note que é uma estrutura sequencial, com apenas uma instrução, que está
dentro de um único bloco. Simples, não? Porém, vamos avaliar:
--
Dica: você pode usar um método interessante para testar seus programas.
Saiba mais sobre o Teste de Mesa.
[Materiais] Teste de mesa
-- (...)

Estrutura de controle – Decisão (condição)
09.1.5 Exemplo - Ano bissexto

#include <stdio.h>
int main()
{
 int ano;
 printf("Entre um ano para verificar se eh bissexto\n");
 scanf("%d", &ano);
 if (ano%400 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else if (ano%100 == 0)
 printf("\n%d nao eh ano bissexto.", ano);
 else if (ano%4 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else
 printf("\n%d nao eh ano bissexto.", ano);
 return 0;
}

Fonte: produção do autor, 2017.

Os desenhos que compõem os conteúdos foram criados exclusivamente para o MAP,

e depois incorporados no ambiente. O estudante Vitor, da Equipe do MAP, foi o responsável

pela criação destas ilustrações exclusivas do minicurso.

32

Figura 7 – Processo de criação, do croqui à interface do minicurso

 Fonte: elaborado pela equipe do MAP, 2016.

A Figura 7 apresenta o processo de criação, desde o croqui da primeira ideia até a

implementação na interface do minicurso.

Todas as imagens, animações, gráficos e tabelas presentes no conteúdo foram

validadas em suas versões finais, diretamente no ambiente de aprendizagem. Foram

realizados vários testes, simulando os diferentes públicos e em situações diversas.

Resultaram, então, algumas correções ou adequações, tendo sempre como foco a

minimização de problemas e imprevistos para a fase seguinte, a implementação.

Os testes piloto (de conteúdo, materiais, navegação pelo ambiente) foram feitos por

professores de disciplinas de AP e por estudantes de grupos de pesquisa do CCT-UDESC.

33

5.4 ADDIE – Implementação

O MAP foi oferecido a todos os estudantes do CCT-UDESC que estavam matriculados

em disciplinas de AP no segundo semestre de 2016. Para tal, foi feita uma apresentação

presencial em cada sala de aula, durante as referidas disciplinas, explicando sobre o projeto

de mestrado e seu objetivo como apoio às disciplinas presenciais. Nessas apresentações foi

entregue a cada estudante uma mensagem impressa, como a apresentada na Figura 8.

Figura 8 – Foto do panfleto original de divulgação do MAP, distribuído no CCT-UDESC

Fonte: elaborada pela equipe do MAP, 2016.

Nesta imagem observa-se um texto de apresentação em um panfleto, explicando

sobre o projeto de mestrado e do que se trata o MAP. Também foi colocado o link completo

para que os estudantes pudessem acessar e se inscrever, caso aceitassem participar do

minicurso. Esta inscrição poderia ser feita imediatamente na aula, caso o professor

permitisse, ou o estudante levaria o panfleto para se inscrever depois da aula. Os estudantes

que aceitaram participar tiveram um período para realizar matrícula (de 15 a 30 de Agosto

de 2016). Ao todo, 139 estudantes se matricularam no minicurso, que foi realizado no

período de 01 de Setembro de 2016 a 31 de Outubro de 2016. Finalizado o período de

divulgação e inscrições, liberou-se o MAP para que os estudantes pudessem acessá-lo

online. Neste novo período, os estudantes puderam acessar a qualquer momento, de

qualquer lugar, assistindo aos conteúdos ou respondendo às atividades da maneira que

melhor lhes conviesse.

Para aqueles estudantes que acessaram uma quantidade mínima de conteúdos, de

01 a 11 de novembro de 2016 foram liberados a avaliação final e o questionário de

satisfação. Os estudantes que concluíram o minicurso, num total de 60 receberam

certificado de participação.

A respeito de questões relacionadas à capacitação da equipe, observando o modelo

ADDIE, foi necessário esclarecer a toda a equipe que colaborou no trabalho, como

ocorreriam as atividades nesta fase de implementação. Cada etapa, planejada previamente,

34

foi estudada pelos responsáveis para que tudo ocorresse sem contratempos e dentro dos

prazos previstos. Entende-se por equipe todos os envolvidos nesta etapa de implementação.

Além da Equipe do MAP, incluem-se os estudantes, que formam o público-alvo do projeto e

os professores das disciplinas de AP, que acompanharam o progresso e desempenho dos

estudantes de suas disciplinas durante a realização do minicurso acessando os relatórios

online com as notas e dados de análise do aprendizado.

Aos desenvolvedores e organizadores do MAP, coube a revisão das atividades da

implementação, como a divulgação, controle de inscrições, acompanhamento dos acessos

aos conteúdos e avaliações, tutoria e geração de relatórios. Os professores tiveram um

treinamento informal e individual sobre os recursos que poderiam usar para

acompanhamento dos seus estudantes, e também sobre a interpretação dos dados em

relatórios gerados. No caso dos estudantes, não houve treinamento prévio, mas eles

receberam as orientações necessárias, e em momentos adequados, para realizar cada etapa

planejada.

Com materiais e recursos prontos, e a equipe capacitada, deu-se início efetivamente

à fase de implementação. A partir deste momento os estudantes tomaram ciência do MAP, e

o planejamento foi seguido para que o cronograma pudesse ser cumprido nas datas

determinadas.

O minicurso contou com intervenções periódicas da equipe desenvolvedora (ver 0).

Com o intuito de organizar e manter um ritmo de estudo, além de manter um contato

frequente e mais pessoal com o participante, foram enviadas mensagens periodicamente,

sugerindo tópicos para estudo. A cada uma destas mensagens foi dado o nome de

intervenção. Elas eram enviadas por email ou disponibilizadas em um mural de recados do

próprio ambiente.

Tabela 8 – Relação das intervenções da etapa de Implementação

Intervenção nº Ordem Data Conceito(s)

1 Semana 0 qui 01/09/16 1. Boas Vindas

2 Semana 1 dom 04/09/16 2 a 6. Lógica, algoritmos, interpretadores, compiladores,
narrativas.

3 Semana 2 dom 11/09/16 7. O que é um programa?

4 Semana 3 dom 18/09/16 8. Dados, variáveis e operadores

5 Semana 4 dom 25/09/16 1 a 8

6 Semana 5 dom 02/10/16 9. Estrutura de Controle - Decisão

7 Semana 6 dom 09/10/16 10. Estrutura de controle – Laços (repetição)

8 Semana 7 dom 16/10/16 11. Vetores e matrizes

9 Semana 8 dom 23/10/16 9 a 11

10 Semana 9 dom 30/10/16 1 a 11

11 Semana 10 seg 31/10/16 1 a 11

Fonte: elaborada pelo autor, 2016.

O conteúdo completo de todas as intervenções pode ser visto no APÊNDICE H.

A seguir, alguns exemplos de intervenções que foram enviadas aos estudantes.

35

Figura 9 – Intervenção enviada na 1ª semana

Fonte: elaborado pela equipe do MAP, 2016.

Figura 10 – Intervenção enviada na 3ª semana

Fonte: elaborado pela equipe do MAP, 2016.

36

Com uma frequência menor, foram lançados alguns desafios, que eram enviados

junto com algumas intervenções. O objetivo foi provocar o estudante de forma a resolvê-los

utilizando os conhecimentos de AP. Os conteúdos de todos os desafios constam no

APÊNDICE I.

Figura 11 – Intervenção enviada na 4ª semana

Fonte: elaborado pela equipe do MAP, 2016.

Observa-se na Figura 11 que os desafios foram anunciados na mensagem, mas eram

disponibilizados em um fórum de discussão, acessível pelo próprio ambiente do minicurso.

Segue, na Figura 12, um exemplo de desafio.

Figura 12 – Desafio 2, enviado durante as intervenções

Fonte: elaborada do autor, 2016.

Concluindo-se o período do minicurso, o ambiente não permitia mais que o conteúdo

fosse acessado. Neste projeto, o período encerrou-se em Outubro, e em Novembro foi

37

liberada a avaliação final do minicurso. Na Figura 13, apresenta-se um trecho da tela da

avaliação final.

Figura 13 – Trecho da tela da avaliação final

Fonte: AdaptWeb® (2016).

Após o envio das respostas, o estudante recebia um feedback caso respondesse

incorretamente. Era necessário tirar uma nota superior a 7,0 para o seu desempenho ser

considerado satisfatório.

No mesmo período da avaliação final, também foi disponibilizado o questionário de

satisfação. Este questionário foi elaborado a partir dos objetivos do minicurso, e é a principal

fonte de informação para responder a um questionamento desta pesquisa a respeito do

aumento da satisfação do estudante, motivando-o a permanecer no curso, após ampliação

de seus conhecimentos sobre AP.

O questionário de satisfação é apresentado no APÊNDICE J.

5.5 ADDIE – Evaluation – Avaliação

Esta etapa é apresentada em dois momentos: acompanhamento da execução e

revisão.

Acompanhamento da execução: a atividade de avaliação inicia antes mesmo da fase

de execução (realização do minicurso pelos estudantes), ao prever todos os envolvidos no

processo. Para tanto, foi solicitado aos estudantes o preenchimento de um formulário antes

de acessarem o conteúdo do minicurso, denominado “levantamento do perfil inicial”. Da

mesma forma, ao final do período de acesso ao minicurso, ficou disponível aos estudantes

mais dois questionários: a avaliação de conhecimentos e o questionário de satisfação.

38

Também foram coletados, de forma automática e transparente ao participante, os dados de

acesso ao minicurso.

Revisão: neste momento os estudantes já tinham concluído sua participação no

minicurso, não podendo mais acessá-lo sequer para consulta. Isso garantiu que os dados do

minicurso não seriam mais alterados, permitindo assim que pudessem ser coletados e

tabulados. Os dados coletados na fase de acompanhamento da execução foram tabulados e

analisados, podendo ser consultados na dissertação associada a este produto educacional.

39

6 Considerações Finais

Considerando a história da evolução dos computadores, que começaram a se

popularizar a partir dos anos de 1970, o ensino de programação tem sido discutido desde

então. A preocupação com as dificuldades de ensino e aprendizagem para estas novas

tecnologias já era tema de diversos trabalhos na década seguinte. A grande quantidade de

trabalhos recentes sobre o tema indica que essa ainda é uma questão a ser debatida.

O estudo da revisão de literatura, bem como o estudo do processo ADDIE e do

ambiente AdaptWeb®, foram essenciais para a criação do minicurso. Além disso, foram

relevantes as ideias apresentadas por professores de disciplinas de programação do CCT-

UDESC que contribuíram para a seleção e preparação dos conteúdos. Assim, esse conjunto

levou à elaboração de uma proposta que poderia auxiliar os estudantes com dificuldades

iniciais de aprendizado de AP, por meio de recursos e métodos que aumentassem a sua

satisfação ao cursar as disciplinas presenciais, e, por consequência, reduzisse as dificuldades

com o raciocínio lógico e o pensamento abstrato para estas e outras disciplinas que

envolvam a resolução de problemas.

A elaboração do minicurso exigiu grande planejamento e envolvimento de

professores e acadêmicos, com base teórica fundamental para orientação dos trabalhos.

Observou-se uma importante colaboração por parte dos professores, o que incentivou o

grande número de inscrições. A estratégia de aplicação do minicurso online como apoio à

disciplina presencial foi bem aceita pelos estudantes e pelos professores das disciplinas.

A aplicação do minicurso pode ser considerada como uma ação de ensino que utiliza

o reforço dos conteúdos iniciais de AP para ajudar no desenvolvimento das habilidades e

competências, como o raciocínio lógico-matemático e o pensamento abstrato, necessárias

para a resolução de problemas, em disciplinas que necessitam destas habilidades, e ajuda

também no desenvolvimento de habilidades das próprias disciplinas presenciais de AP.

O Brasil tem obtido resultados positivos com a melhoria da qualidade de ensino na

Educação Básica, pois hoje já se observa uma maior preocupação com o desenvolvimento de

habilidades para a resolução de problemas. Para estudantes que estão no final do Ensino

Fundamental e início do Ensino Médio ainda é possível recuperar estas dificuldades com

ações direcionadas a este público. Mas ainda há um contingente que não teve a

oportunidade de receber os benefícios destas melhorias, e já está entrando no Ensino

Superior com estas dificuldades acentuadas, e para estes torna-se necessário ações como a

apresentada neste trabalho.

Ainda há pouca pesquisa para a Educação Básica, e diversas publicações com busca

de soluções para o Ensino superior. Talvez ainda não se dê tanta atenção à formação básica

dos estudantes, e por isso ainda se necessitem ações intensas para os ingressantes no Ensino

Superior. Pode-se estar, de certa forma, “remediando”, e não “prevenindo”, em relação às

dificuldades de aprendizado.

Como sugestão de complemento ou continuação desta pesquisa:

40

 Adaptar o conteúdo do MAP para o Ensino Médio, e posteriormente para o

ensino Fundamental, verificando, a cada um desses grupos, o resultado da

satisfação e motivação dos estudos em disciplinas críticas.

 Aplicar o MAP a estudantes concluintes do Ensino Médio, verificando antes

quantos são interessados em seguir os estudos na área da Computação na

graduação, e destes, quantos continuam interessados após a realização do

minicurso.

Pelas características de adaptabilidade, é possível utilizar-se o MAP para outras

linguagens e/ou pseudolinguagens de programação, permitindo-se diferentes combinações

entre elas. Neste projeto foram utilizadas a linguagem C e uma pseudolinguagem, com o

foco na aprendizagem do conceito de programação estruturada. No entanto, poderiam ser

utilizadas linguagens tais como Java, C++, Scratch, Python, Ruby on Rails, Haskell), podendo

combiná-las de acordo com:

 público-alvo (e.g. Ensino Médio, Ensino Fundamental, Ensino Técnico ou

profissionalizante, treinamento de colaboradores de uma empresa);

 objetivo de aprendizagem (e.g., como apoio à disciplinas presenciais, como

material didático de uma disciplina ou curso);

 conceito de programação (e.g., estruturada, orientada a objetos, linear,

modular);

 classificação das linguagens (e.g., paradigma, tipagem, geração).

Propõe-se como desafio até mesmo a implementação de mais de duas linguagens

simultaneamente, permitindo ao estudante não somente optar por uma ou duas, mas

conhecer as diferentes possibilidades de cada uma e desenvolver habilidades competências

pela comparação prática entre elas.

Outra possível aplicação seria no ensino de uma nova linguagem ou conceito de

programação, podendo no MAP ser compreendida por meio da comparação com outras

linguagens existentes.

41

7 Referências

ADAPTWEB. AdaptWeb (Ambiente de Ensino-Aprendizagem Adaptativo na Web). Disponível em:
<http://ead.joinville.udesc.br/adaptweb/>. Acesso em: 21 nov. 2017.

DEMO, P. Pesquisa: Princípio científico e educativo. 4a. ed. São Paulo: Cortez, 1996.

FILATRO, A. Design instrucional na prática. São Paulo: Pearson Education do Brasil, 2008.

KAUARK, F. DA S.; MANHÃES, F. C.; MEDEIROS, C. H. Metodologia da Pesquisa: Um guia prático. p. 88,
2010.

KLOCK, A. C. T. Análise da influência da gamificação na interação, na comunicação e no
desempenho dos estudantes em um sistema de hipermídia adaptativo educacional. 2017.
Dissertação (Mestrado em Ciência da Computação) - Universidade do Estado de Santa Catarina,
Joinville.

MIZRAHI, V. V. Treinamento em Linguagem C. 2a ed. São Paulo: Pearson Prentice Hall, 2008.

OLSEN, W. Coleta de dados: debates e métodos fundamentais em pesquisa social. [s.l: s.n.].

SAMPIERI, R. H.; COLLADO, C. F.; LUCIO, P. B. Metodologia de Pesquisa. 5a. ed. São Paulo: Penso,
2013.

42

 Trabalhos estudados para a Análise Contextual APÊNDICE A

Seq Documento Breve resumo
1 Abordagem Visual para Aprendizagem

Colaborativa de Programação
Uso de aprendizagem colaborativa de programação visual com ambiente
3D em programas desenvolvidos pelos estudantes organizados em
times. Baseado em um estudo sobre esquema progressivo para
aprendizagem de programação em grupo.

2 Ambiente de Simulação e Animação para o Ensino
de Programação

Utilização de softwares de animação como ferramentas educacionais
para auxiliar o aprendiz a caminhar da compreensão abstrata para o
entendimento real da funcionalidade de uma determinada estrutura de
programação.

3 Aplicação de Técnicas da Teoria Das Múltiplas
Inteligências No Ensino de Algoritmos e
Programação

Uso de técnicas relacionadas à teoria de aprendizagem cognitivas das
múltiplas inteligências para amenizar as dificuldades de ensino e
aprendizagem de disciplinas que usem algoritmos e linguagens de
programação.

4 Complementando o Aprendizado Em
Programação: Revisitando Experiências No Curso
de Sistemas de Informação da USP

Competições entre equipes para resolução de problemas, para a
complementação do aprendizado de lógica de programação, algoritmos
e estruturas de dados.

5 Construção e Uso de Ambiente Visual para o
Ensino de Programação Introdutória

Uso de ambiente visual de programação para disciplinas de introdução à
computação a estudantes do Ensino Fundamental.

6 Desenvolvimento de Um Dispositivo para Apoio ao
Ensino de Computação e Robótica

Utilização de dispositivo robótico como elemento motivador ao
aprendizado de computação e robótica.

7 Ensino de Programação para Alunos Do Ensino
Médio Utilizando o Robô Lego Mindstorms

Ensino de programação à estudantes do EM através da robótica.

8 Ferramenta Computacional de Apoio ao Processo
de Ensino-Aprendizagem dos Fundamentos de
Programação de Computadores

Implementação de um Sistema Tutor Inteligente que faz uso de uma
metodologia de ensino baseada em analogias entre os conceitos de
programação e situações comuns do dia-a-dia dos estudantes.

9 Incentivando Meninas Do Ensino Médio À Área de
Ciência da Computação Usando o Scratch Como
Ferramenta

Utilizar uma linguagem de programação visual para meninas do EM no
intuito de aumentar o interesse na área da computação, por meio de sua
aplicação no ensino da Química, Física e Matemática, além de ajudá-las
pedagogicamente em ciências exatas.

10 Iquiz-Ambiente de Autoria para Avaliação Do
Aprendizado No Moodle

Utilização de ferramenta auxiliar (i-Quiz) para ajudar a compreender e
reduzir as dificulda-
des enfrentadas por professores no emprego do módulo Quiz do
Moodle, usado para a produção de questionários.

11 Mojo: Uma Ferramenta para Integrar Juízes Online
ao Moodle No Apoio ao Ensino e Aprendizagem
de Programação

Utilização de sistemas denominados Juízes Online (repositórios de
problemas de competições de programação) para auxiliar o professor de
disciplinas de programação na elaboração de questões, com o objetivo
de treinar as habilidades em programação de seus estudantes.

12 O Ensino de Programação de Computadores
Baseado Em Jogos

Uso de gamificação para ensino de algoritmos e programação de
computadores aos estudantes de cursos técnicos e superiores na área
de Computação.

13 Portugol Studio: Uma IDE para Iniciantes Em
Programação

Uso de ferramenta de programação (Portugol) para auxiliar estudantes
iniciantes em lógica de programação.

14 Proposta de Uma Nova Abordagem para
Desenvolvimento de Algoritmos de Programação

Uso de abordagem de resolução de problemas e desenvolvimento de
algoritmos a partir da “Metodologia da Problematização” e da
“Abordagem Baseada em Problemas”.

15 Protótipo de Uma Ferramenta para Auxiliar No
Ensino de Técnicas de Programação

Uso de ferramenta educacional para auxiliar professores e estudantes
no ensino das disciplinas que envolvem programação de computadores.

16 Trabalhando Lógica de Programação Com
Portadores de Deficiência Auditiva: A Experiência
Com A Linguagem Proglib e A IDE Hands

Criação de linguagem de programação baseada em LIBRAS (intérprete
virtual) para ensino da lógica de programação para deficientes auditivos.

17 Uma Proposta de Ensino de Física para Turmas
Noturnas

Ensino da Física a estudantes do EJA, utilizando aplicações do sistema
Arduino na área da Física e linguagem de programação. Utilização do
sistema POE (Previsão, Observação e Explanação).

18 Uso de Semiótica e Análise de Normas Em Práticas
de Ensino de Programação de Computadores
Utilizando Robótica Pedagógica

uso de Robótica Pedagógica no ensino de programação de
computadores, utilizando conceitos de normas e affordances da
Semiótica Organizacional para análise de práticas pedagógicas e
avaliações do aprendizado.

19 Uso Do Software Ceebot No Processo de Ensino
aprendizagem Nas Disciplinas de Algoritmos e
Programação

Resolução de exercícios elaborados com base nas principais dificuldades
em relação ao aprendizado de Algoritmos e Programação, apontadas por
uma pesquisa de campo com estudantes. Estes exercícios são resolvidos
através de uma ferramenta (CeeBot) cujos resultados vão auxiliar no
ajuste dos processos de ensino e aprendigagem das aulas de Algoritmos
e Programação.

43

 Documentos selecionados do SBIE 2015 APÊNDICE B

Seq Documento

1 XP & Skills: gamificando o processo de ensino de introdução a programação

2 Uma dinâmica para ensino de conceitos fundamentais de programação

3 Interdisciplinaridade, programação visual e robótica educacional: relato de experiência sobre o ensino
inicial de programação

4 Sala de aula invertida, ambientes de aprendizagem e educação online: a junção de três métodos para
potencialização do ensino de algoritmos

5 Uma Experiência Piloto de Integração Curricular do Raciocínio Computacional na Educação Básica

6 Pré-Comp: introduzindo os fundamentos da Computação e contribuindo com a motivação e
aproveitamento acadêmico

7 Avaliação de um Jogo Educativo para o Desenvolvimento do Pensamento Computacional na Educação
Infantil

8 Aprendendo linguagem de programação através da auto-explicação de exemplos em vídeo

9 Introdução à Robótica e Estímulo à Lógica de Programação no Ensino Básico Utilizando o Kit Educativo
LEGO® Mindstorms

10 Uma Experiência no Ensino de Pensamento Computacional para Alunos do Ensino Fundamental

11 Jogos de Programar como uma Abordagem para os Primeiros Contatos dos Estudantes com à
Programação

12 Diseño e Implementación de un Taller de Programación de Juegos Digitales con Scratch como Apoyo a
Fundamentos de Programación

13 Robótica Educativa na aprendizagem de Lógica de Programação: Aplicação e análise.

14 Programação de computadores para alunos do ensino fundamental: A Escola de Hackers

15 Ensino de programação para Olimpíada Brasileira de Informática

16 Diseño y evaluación de un taller de robótica basado en Estilos de Aprendizaje para la enseñanza de
Fundamentos de Programación

17 Softwares Educacionais para o Ensino de Programação: Um Mapeamento Sistemático

18 A Comparação da Realidade Mundial do Ensino de Programação para Iniciantes com a Realidade
Nacional: Revisão sistemática da literatura em eventos brasileiros

19 Um Mapeamento Sistemático sobre Iniciativas Brasileiras em Ambientes de Ensino de Programação

20 Robótica Pedagógica Aplicada ao Ensino de Programação: Uma Revisão Sistemática da Literatura

44

 Entrevistas com Professores – TCLE APÊNDICE C

45

46

 Entrevistas com Professores – Roteiro do entrevistador APÊNDICE D

47

48

49

50

51

52

53

54

55

 Transcrições das falas dos professores APÊNDICE E

Sobre os conceitos:

 Falar dos elementos do computador, só que
“homeopaticamente”.

 Mostrar o conceito, o problema, e quais as ferramentas
disponíveis para resolver (deixar o estudante construir a
partir da necessidade).

 Iniciar com algoritmos para puxar a abstração.

 Falar da ambiguidade, porque a linguagem de
programação é mais adequada que a linguagem natural
(algoritmo não deixa de ser uma conceituação
matemática, não pode ter ambiguidade).Envolver os
estudantes já nas primeiras aulas, de forma até divertida
(resolver desafios algorítmicos não-computacionais).

 Fazer link de algoritmos com a vida cotidiana, associar ao
computador, mostrando quais problemas o computador
resolve, e como usar algoritmos para resolvê-los.

 Fazer com que os próprios estudantes criem os comandos,
a partir da necessidade.

 Usar a programação para aprender a construir a lógica. O
foco não é instituir uma linguagem, mas sim a lógica.

 Passar visão ampla da programação e sua importância,
para que o estudante futuramente, como profissional,
saiba como ir atrás da informação.

 Para começar a falar de programa, faz uma “brincadeira”
como se fosse um simulador de robô (ex.: o robô só
entende essas instruções, e vocês devem, utilizando essa
linguagem que ele entende, fazer determinada tarefa
(ideia de formalização).

 Mostrar resultados rapidamente. O estudante é muito
visual. Se o professor passa o conceito e ele não vê
funcionando, eles não entendem ou aprendem.

 Não introduzir novos conceitos junto com os de
programação, mesmo sendo da área/curso destes
estudantes. Ao fazer isso, o professor está introduzindo
uma nova dificuldade, ou seja, além deles terem que
aprender programação vão ter que aprender um outro
conceito, que não lhes é familiar ainda (mas isso é
diferente se os estudantes já está lá pela 5a ou 6a fase).

 Procurar apresentar os temas em áudio-visual, porque os
estudantes não lêem (ex.: os estudantes com dificuldade
durante a aula não costumam consultar no Google, mas
sim no Youtube). Eles não querem saber, por exemplo, o
nome do comando, eles querem saber como usar.

 Procurar montar os conceitos "orientados a exemplos".

 Não precisa ampliar tanto os conceitos do minicurso.
Considerando o que é básico de programação, já está
ótimo para o objetivo do minicurso. Como é usado como
apoio à disciplina presencial, qualquer outro conceito
adicional pode ser melhor explorado pelo professor em
sala de aula.

 O minicurso é bastante válido para a análise. O estudante
pode não aprender a programar, mas vai aprender a
analisar. Essa parte de análise na sala de aula é muito mais
cansativa - o curso online ajuda bastante nisso. Fazer a
análise de algoritmo ajuda bastante depois a programar.

Sobre os exemplos:

• Usar exemplos reais, do dia-a-dia. Idem Exercícios.
• Focar mais na compreensão dos problemas, e não na

estrutura da linguagem ou na sintaxe.
• Usar testes de mesa.
• Mudar a cor dos exemplos, por exemplo, para ficar claro

ao estudante quando está na linguagem C ou quando está
na pseudolinguagem. Idem Exercícios.

• Para vetores (e matrizes) tem muito exemplo na internet,

mas não mostrar muitos (nem sempre é bom, porque o
estudante acaba copiando e não aprende).

• Usar GIFs animados para explicar as estruturas.
• Evitar usar slides.
• Mostrar o programa primeiro numa estrutura sequencial,

e depois mostrar a simplificação colocando a estrutura de
repetição.

• Elétrica: calcular a tensão elétrica num circuito. Idem
Exercícios.

• Engenharias: dificuldades em dados, variáveis e
operadores, por causa de Cálculo (na computação isso
geralmente não acontece). Idem Exercícios.

Sobre os exercícios:

• Coisas práticas funcionam melhor. Fazer um parte inicial

mais teórica, e no restante bastante prática.
• Propor muitos exercícios, e diferentes.
• Propor muitos exercícios de interpretar o que um

programa faz.
• Focar nos exercícios com respostas objetivas, pois em sala

o professor pode focar na construção dos programas.
• Começar com os exercícios básicos, e na sequência fazer

variações (se o estudante só decorar, ele não saberá fazer
as variações).

• Colocar alguns exercícios mais complexos, para prender a
atenção dos que já sabem.

• Propor exercícios para o estudante começar do zero (ele
tem de sentir a necessidade de gerar ou decidir usar uma
variável).

• Usar questionários tipo quizz (se o estudante não
responder em no máximo 6 segundos, ele passa para a
próxima).

• Colocar no minicurso problemas que exijam que o
estudante aplique o conceito que foi aprendido na aula
presencial (ideia de "ampliação do escopo").

• Fonte: maratona de programação.
• Fonte: SciLab.
• Fonte: URI.
• Fonte: apostila da UFMG.
• Tema: Fibonacci.
• Tema: Fatorial.
• Tema: número primo.
• Tema: cálculo dos números perfeitos.
• Tema: calcular um percurso usando matrizes.
• Tema: travessia.
• Tema: preencher matrizes com os resultados dos

exercícios.

Sobre a interatividade estudante-estudante, estudante-
professor e estudante-conteúdo:

• Indicar para os estudantes estudarem em grupo, mas

focar nos desafios mais individuais. Tem que variar entre
individual e grupo, para não se acomodarem.

• Usar bastante a interação com o estudante.
• Indicar para os estudantes estudarem em grupo, mas

focar nos desafios mais individuais. Tem que variar entre
individual e grupo, para não se acomodarem.

• Criar atividades para incentivar a participação dos
estudantes.

Sobre as estratégias didáticas:

• Ensinava antes Depuração, mas agora usa o teste de mesa

(que é semelhante mas o resultado é melhor).
• Tem um livro texto, slides que vai disponibilizando de

acordo com o andamento na sala de aula. Não libera antes

56

de passar em sala de aula.
• Prefere que os estudantes foquem mais na parte de

compreensão do problema, de estruturar dados.
• Adotou no 1o mês sem computador, só no papel e caneta,

mesmo no pseudocódigo, até começar o IF. A 1a prova foi
no papel.

• Coisas mais práticas funcionam melhor. Dá 1 aula teórica e
o resto é aula prática.

• Fazer com que os próprios estudantes criem os comandos,
a partir da necessidade.

• Passar visão ampla da programação e sua importância,
para que o estudante futuramente, como profissional,
saiba como ir atrás da informação.

• Usar a programação para aprender a construir a lógica. O
foco não é instituir uma linguagem, mas sim a lógica.

• Investigar o nível de conhecimento dos estudantes na
área, e descobrir quais são os vícios deles.

• Colocar os que sabem mais para ajudar aos que tem
dificuldade.

• A parte introdutória, faz por vídeos (bem rápido), mostra
figuras, leva dispositivos físicos.

• Para começar a falar de programa, faz uma brincadeira
como se fosse um simulador de robô (ex.: o robô só
entende essas instruções, e vocês devem, utilizando essa
linguagem que ele entende, fazer determinada tarefa
(ideia de formalização).

• No laboratório, fazer atendimento em máquina.
• Comentar sobre filmes, por exemplo, como "O Vale do

Silício", fala sobre a história da Apple.
• Mostrar resultados rapidamente. O estudante é muito

visual. Se o professor passa o conceito e ele não vê
funcionando, eles não entendem ou aprendem.

• Usar bastante a interação com o estudante, brincar, ter
um companheirismo com o estudante.

• Atendimento exclusivo, eventualmente. Tem estudantes
que vão ficando para trás lá no início, e o professor dá
uma atenção especial, senta junto, um por um, dando
atendimento na máquina. Assim ele recupera a maioria
dos estudantes.

• Primeiro conhecer bem os estudantes, conversar
bastante, tentar saber o nome de cada um, essa questão
de fazer muitas aulas no laboratório e passar por cada um
também ajuda, até para conhecer as dificuldades de cada
um.

• Indicar os monitores com certa antecedência (1,5 mês).
• Indicar para os estudantes estudarem em grupo, mas

focar nos desafios mais individuais. Tem que variar entre
individual e grupo, para não se acomodarem.

• Tem estudantes que já programam muito, e ficam
incomodados quando o professor chega perto. Nestes
casos é melhor se afastar, respeitar o estudante.

• Não introduzir novos conceitos junto com os de
programação, mesmo sendo da área/curso destes
estudantes. Ao fazer isso, o professor está introduzindo
uma nova dificuldade, ou seja, além deles terem que
aprender programação vão ter que aprender um outro
conceito, que não lhes é familiar ainda. Portanto, é melhor
trabalhar para que o foco seja na solução do problema, e
não criar um problema novo. Se os estudantes já
estiverem lá pela 5a, 6a ou 7a fase, já é diferente. É
possível pedir para eles usarem os recursos
computacionais para fazer um cálculo avançado da área
deles, por exemplo.

• Incentivar a participação em aula, chamar todos pelo
nome, esse envolvimento com os estudantes é
importante.

• Usar "fragmentos de pontos" por participação em sala. Os
estudantes chegam a se envolver tanto que até cobram do
professor. Apesar do receio de estar dando pontos apenas
para quem não precisa, percebe uma participação geral,
com algumas exceções, mas o grupo fica motivado.

• Apresentar aos calouros, logo no início, estudantes do
mesmo curso/área deles que estão mais avançados e
participando, com sucesso, de grupos, eventos ou
competições.

• Depois das 3 semanas iniciais, passar temas diferentes
para os estudantes, por exemplo, ao falar de Sistemas
operacionais, não mencionar o Windows. Dar uma aula
sobre Linux.

• Na 1a aula de laboratório, ninguém senta nas cadeiras,
ficam em pé no quadro com o professor. É feito uma
revisão de tudo o que foi visto na teoria. Só então são
passadas as atividades que serão feitas ali no laboratório.
O professor tomou esta iniciativa porque cansou de ver
excelentes professores dando aula e os estudantes
ficarem no facebook, Internet, ou seja, ninguém
prestando atenção. Não há como evitar. Por isso, o
professor faz essa "preleção" em 15 a 20 minutos, toda
aula. Com isso, o desgaste dele é mínimo em laboratório.

• O professor sugere fortemente a apresentação dos temas
em áudio-visual, simplesmente porque os estudantes não
lêem (ex.: os estudantes com dificuldade durante a aula
não costumam consultar no Google, mas sim no Youtube).
Eles não querem saber, por exemplo, o nome do
comando, eles querem saber como usar.

• Procurar montar os conceitos "orientados a exemplos".
Sugere também que pensemos para o nosso curso a ideia
de "ampliação do escopo", ou seja, colocar no curso
problemas que exijam que o estudante aplique o conceito
que foi aprendido na aula presencial.

• O conteúdo está muito bom, o que é básico está perfeito,
não precisa alterar. O que passa disso, é aprimoramento, é
a sequência do conteúdo, e isso não precisa estar aqui.
Está ótimo.

Sobre os elementos do computador:

• Junto ao (a) Introdução, se inclui álgebra de Boole e

sistemas de numeração, histórico da computação,
conversão de base (mas não se aprofunda), um pouco de
circuitos lógicos. São esses os conteúdos que ele acha
importante para que os estudantes possam construir os
conceitos que virão na sequência (como IF por exemplo).

• Não dá para chegar em todos estes conteúdos. Ele
incluiria no início, elementos do computador. O professor
"perdeu" pelo menos umas 3 semanas até explicar tudo
isso, como exemplo o que tem dentro de um smartphone.

• Falar dos elementos do computador, como a memória
RAM e a forma de manipular a memória, mas sempre
"homeopaticamente".

• Compreender o funcionamento do computador para
poder imitar este comportamento, e programar este
comportamento.

• Associar os novos conceitos de comandos às partes do
computador. O computador só vai entender o que está
dentro da limitação dele. Se ele tem dispositivos de
entrada, tem comandos que acionam estes dispositivos de
entrada. o mesmo para as saídas, memórias (armazenar),
processamento (calcular). Só a partir daí é que se começa
o algoritmo computacional.

• Fazer o uso , já de início, o paralelo da teoria-máquina.
• Acrescentaria, antes de todos os outros conteúdos, sobre

a estrutura do computador (1 aula), para poder entender
algumas características da linguagem C, e poder
referenciar quando necessário, por exemplo, vetores e
matrizes.

Sobre os algoritmos:

• Iniciar com algoritmos para puxar a abstração.
• Falar da ambiguidade, porque a linguagem de

programação é mais adequada que a linguagem natural.

57

Algoritmo não deixa de ser uma conceituação matemática,
não pode ter ambiguidade.

• As primeiras aulas são absolutamente cruciais, são as
aulas de envolvimento, trazendo um grau até de diversão,
fazendo eles resolverem desafios algorítmicos não
computacionais, que costumam ser muito divertidos.

• Dar o conceito de algoritmos logo no início, geralmente a
1a e 2a aula, e fazer o link com a vida cotidiana (exemplos
como a travessia, como se vestir, fazer pipoca, trocar
pneu, etc). Depois começa a explicar o computador, as
suas partes, e associa com o comando, o que o
computador tem disponível, uma parte mínima de
hardware, componentes básicos, e faz essa associação dos
conceitos já aprendidos de algoritmos com o computador.

• A partir da 4a aula é que começa a parte "dura", quais
problemas o computador resolve, e como usar algoritmos
para resolvê-los.

Sobre a linguagem de programação:

• Usa o C, mas seria melhor outras linguagens (como o

"falecido" Pascal), ou alguma de tipagem, indentação,
teste de mesa.

• As linguagens escolhidas, como o C, é uma demanda da
Elétrica. Deveriam ser outras como o Python, mas sabe
que ela é muito ágil para ensinar os estudantes, e já
existem muitos estudos de linguagens funcionais como o
Haskell, que requer o estudo de recursividade. Também
existe o Prolog, largamente utilizado atualmente em
muitas universidade no mundo. Para se ter uma ideia, é
possível se ter em 2 a 3 semanas estudantes iniciantes já
fazendo programas avançados, por exemplo, resolvendo
problemas do Racha-Cuca, como o Teste de Einstein.
Também há outra linguagem, como o Picat, que ele
considera um grande passo após o Prolog.

Sobre a pseudolinguagem:

• Algumas turmas, abordou mais o VisuAlg, mas como

ferramenta de apoio, uma "bengala".
• Optou por não usar o VisuAlg.
• Em AGT, a turma C é só de repetentes, eles tinham

resistência ao C. Então o foco foi a linguagem (não faz
sentido falar em pseudo).

• Usar ferramentas (como o VisuAlg). Quando o estudante
interage com a máquina, ele tem um interesse maior.

• Introduzir a pseudolinguagem (o VisuAlg) mais para o final
de Algoritmos, como intermediário antes do C,
principalmente, para eles verem que o algoritmos tinha
vida e para acompanhar os resultados.

• O professor não usa a pseudolinguagem, pois acredita que
esta vertente da pseudolinguagem não ajuda a fazer
código. Usando a pseudolinguagem, você perde muitos
elementos, como quando você fala de compilador, são 3
fases, código fonte, código objeto, código executável.
Numa pseudolinguagem você não vê nada disso. Eles
aprendem então linhas de comando, gerar o objeto, gerar
o executável.

• Na proposta pseudolinguagem e depois C, no momento
que você termina a pseudolinguagem e volta para explicar
tudo de novo em C, você perde os estudantes bons. o
professor não gosta deste processo "não-linear" (ir e
voltar no mesmo conceito). É como se estivesse
"brincando" com o tempo do estudante.

Sobre a adaptabilidade por curso:

• Vai adaptando conforme o andamento da turma, na

questão pedagógica, mas não foge muito do que foi
planejado. Adapta conforme a turma (Civil ou Produção),
pois andam diferente, mesmo sendo a mesma disciplina.

• No caso de ALP, tem uma programação para ver
introdução a ponteiros, mas geralmente é feito de forma
muito vaga, apenas para dar uma ideia do assunto aos
estudantes.

• Pela experiência, a 1a coisa que o estudante faz é colocar
código no editor e ver se compila ou não, não pensa na
lógica de programação (tentativa e erro). Então decidiu
atrasar um pouco a ida ao computador, e foi direto ao C,
sem usar pseudolinguagem.

• Se o professor tivesse a mesma disciplina em mais de um
curso, mudaria em termos de tipos de algoritmo a ser
desenvolvido. Ex.: para Elétrica, calcular a tensão elétrica
num circuito. Na Matemática, poderia ser cálculo de
séries, por exemplo.

• Não vê diferença. O estudante gosta de exercícios que ele
vê que é uma coisa do dia a dia, não é tão filosófico. Ex.:
um menu, ele vê funcionando e vê utilidade no dia a dia.
Independente do curso.

• Já usou em outro curso (Mecânica) o Sci Lab, e deu
bastante certo. Quanto mais exercícios, e diferentes,
melhor como incentivo para que eles aprendam.

• No início há dificuldade de estudantes das engenharias em
Dados, Variáveis e Operadores por causa da disciplina
Cálculo, eles confundem bastante. Na computação isso
geralmente não acontece. Algumas turmas, como a de
repetentes, o professor procura explicar de maneira
diferente (as vezes já sai implementando VisuAlg), insiste
que eles implementem durante a aula, e a motivação é
desafiar através de problemas, a entrega.

• Isso depende muito de qual é o curso. Quando é para
computação, ele "pega mais pesado", pois é a área deles.
Apesar de ele não facilitar, se o estudante souber o "feijão
com arroz", para ele está bom (ex. variável, escopo de
variável, etc). no caso da Computação, tem que exigir um
pouco mais, porque faz parte da formação deles; dos
outros cursos não. O professor não acha ruim se os
estudantes de outros cursos forem pedir ajuda para os
monitores ou estudantes da Computação, mas se o
pessoal da Computação fizer o trabalho deles, o professor
vai descobrir na hora, a não ser se eles souberem explicar.

• Não, inclusive o professor não faz muitas variações na
forma de ensinar. A diferença é que o ritmo em ALP é um
pouco mais acelerado, e os estudantes geralmente
acompanham.

• Sim, tem que adaptar de acordo com o curso.

Sobre os exemplos e exercícios:

• Muitos exercícios, passa para eles, e vai andando pelo

laboratório, esclarecendo dúvidas pontuais, e um ou outro
exercício faz junto com todos. Mas a maior parte, ela
deixa que eles façam no tempo deles.

• Usar exemplos reais, do dia a dia.
• Lista de exercícios com alguns complicados, para prender

a atenção dos que já sabem.
• Deixar que os estudantes façam as atividades, já que eles

não reagem muito, daí nestes momentos é que emergem
as perguntas.

• Listas de exercícios individuais.
• Fazer exercícios com os estudantes, mas dar muitos

exercícios para eles começarem do zero. Eles tem de
sentir a necessidade de gerar ou decidir usar uma variável.

• Elaborar níveis de exercícios, propostos no dia ou para
entregar em alguns dias (não muitos), os primeiros a
resolver recebem notas de participação. Os estudantes
que estão mais avançados, não fica ali perdendo tempo.

• Usar desafios da maratona de programação, que fazem
bastante a ligação entre a teoria e a prática, com
problemas bem hipotéticos e outros bem reais.

• Em cada início de aula, o professor passa as tarefas, e faz a
ligação da teoria com a prática. Quando faltam 5 minutos

58

finais, ele resolve e disponibiliza a solução online.
• O professor sugere melhorar a MDI para que fique claro

ao estudante de que há intenção de apresentar esta
mesma forma, tanto na pseudolinguagem quanto na
linguagem C. Na proposta pseudo+C, pode causar algum
tipo de confusão para o estudante; poderia se destacar de
alguma forma, por exemplo, com cores, para diferenciar
em que exemplo está estudando, se em pseudo ou se em
C.

• Sugere mais materiais complementares de ponteiros (é
muito chato em C), vetores, matrizes, modularização (que
é bem complicado na engenharia), Mais que isso, "já está
quase substituindo o professor", mas isso também é bom.
Mesmo materiais bons em C param nestes tópicos.
Vetores tem muitos problemas, mas nem sempre é bom
ver muitos exemplos na Internet, porque ele acaba
copiando e não aprende.

• Em alguns momentos, como no início sobre dados,
variáveis e operadores, são muito parecidos, devido a
possibilidade de respostas únicas. Depois, em matrizes e
vetores, tem exercícios que eles preenchem as matrizes
com os resultados dos exercícios. No mais, os exercícios
são de criação de algoritmos. Ainda assim, os exercícios
neste formato também são importantes.

• Acha bastante interessante os exercícios em termos de
respostas objetivas, nos Estados Unidos tem bastante.
Exercícios tem que ter dinâmica, se em 6 segundos o
estudante não tiver a resposta, ele passa para a próxima.
São exemplos os cursos que usam questionários tipo Quiz.

Sobre os materiais complementares e links de apoio:

• Dependendo do conteúdo, aprofunda mais e busca

materiais complementares.
• Indicar muitos links de apoio.
• Sim, mas não é muito frequente. Ex.: URI. Também passar

problemas inspirados em aplicações reais. Ex.: detecção
de colisão em jogos, cálculos de geometria, cálculo de
potência elétrica. Quem está realmente aprendendo,
adora isto. Ou seja, aplicações simples, mas aplicações do
mundo real.

• Muitos. Ex.: strings (que é bem difícil em C). Prefere
sugerir links bem direcionados ao tópico que está sendo
ensinado. Indica apostila da UFMG.

• Gosta de usar o maior número de recursos possíveis, e faz
com que os estudantes procurem. Quando os estudantes
acham algo interessante, também indica aos outros. Usa
vídeos de apoio. As vezes é uma forma diferente, um
momento diferente, ou porque desenhou de forma
diferente no quadro.

• Exercícios de interpretar o que o programa faz são muito
bons. O professor citou exemplo que outro professor usou
em uma prova, e foi um massacre. Ele particularmente
acha que o estudante que tem que construir, mas acha
bem interessante que estejam em um minicurso, pois ele
pode focar em sala os exercícios de construção do
programa. Poderia indicar aqueles básicos, como
Fibonacci, fatorial, número primo, e depois começar a
fazer variações. Se o estudante só decorou, ele não vai
saber fazer as variações. Outro ex.: cálculo dos números
perfeitos (a soma dos seus divisores). Lá pelo 5o número
perfeito esta lógica já não funciona mais. Alguns
encontram o teorema na Internet, mas se ele não entende
que tem que usar o "long", que é uma questão básica de
matemática. O professor procurava pegar coisas aplicadas,
Ex.: usar "guia 4 rodas" (quando não tinha ainda GPS) para
calcular um percurso usando matrizes, os estudantes
acham muito fácil, mas funciona para o aprendizado.

• Não. Ele já usa a apostila da UFMG, e mais atualmente
uma de Uberlândia, que é mais bem elaborada (está na
página do professor), e por isso não acha necessário ficar

fazendo indicações. Qualquer busca que o estudante fizer
para qualquer conceito da disciplina, o estudante
encontrará diversos exemplos e exercícios. Para não dizer
que não indica nada, ele passa o link do Code Blocks par
que eles possam treinar em casa. Ele não usa o VisuAlg,
porque acredita que está introduzindo outra dificuldade
para o estudante. Se for para empenhar um tempo neste
tipo de dificuldade, que seja direto em C.

• Nas 2 primeiras aulas, tem vários exercícios, ex. travessia,
para fazer em sala, ele sugere outros para fazer em casa.
Um dos que o professor sugere, nestes casos, é tipo o
Racha-Cuca, as vezes como exemplo, para eles
experimentarem. Para ALP, em alguns momentos do
curso, ele obriga a usar o URI, e dá pontos por isso.
Principalmente porque o URI permite que se cadastre a
sua turma e acompanhe a participação. Também sugere
links para guias da pseudolinguagem e da linguagem C.
Mas os estudantes de hoje estão antenados, e muitas
vezes os próprios estudantes sugerem links e
compartilham com a turma. Sempre que pode, sugere
outros links.

• Não. Tudo o que ele precisa está no Git Hub.

Sobre o minicurso como apoio à disciplina presencial:

• Sim, é sempre bom. Quanto mais disciplinas tiver, mais de

uma ferramenta é capaz de ajudar (porque os estudantes
aprendem de maneira diferente). O único problema que o
professor vê é a questão da motivação - convencer este
estudante a tentar de outra forma não é uma tarefa
trivial. No momento da pseudolinguagem, para os
estudantes que são bons, isso se torna rapidamente
desmotivador (pois eles querem ir além); e o contrário, na
linguagem C, os estudantes que são fracos acabam
achando difícil demais. Por isso o professor optou por
fazer direto na linguagem C, para manter um nível de
dificuldade constante. Se der ênfase na pseudolinguagem
e deixar o C para o final, vai acontecer de ter grandes
teóricos com pouca habilidade prática. Se der pouca
ênfase na pseudolinguagem e muita ênfase na linguagem
C, terá estudantes com muita dificuldade no desenvolver
porque tiveram pouca teoria.

• Com certeza, pois ele tem o foco nesta parte que é a base,
e o estudante tem aonde pegar conteúdo (teoria e
exercício), a professora dá exercício em sala, mas as vezes
não chega a corrigir, ou dá o gabarito e o estudante não
olha. No online ele vai fazendo e vendo o resultado, é uma
ferramenta essencial. Se neste semestre tivesse sido
jogada ao mesmo tempo em que foi dada a disciplina, isso
teria sido um ponto chave. Ele veio um pouco atrasado,
mas foi bom porque os estudantes que fizeram disseram
que estava "bem fácil", e isso para o professor é bom
porque ele realmente deveria saber aquilo bem.

• Sim. A professora gosta de usar o máximo de recursos
possíveis, e gosta que eles usem. É uma forma diferente
de verem as mesmas coisas, terem outros exercícios, não
ficar só nos da sala de aula. Outra coisa interessante por
ser curso online é a possibilidade de se usar gifs animados
para explicar as estruturas. Evitar usar slides. Outra,
sugere colocar, por ex., uma estrutura sequencial e depois
simplificar colocando uma repetição no programa.

• Sim, pois alguns participam mais (aqueles que não falam
muito, não se sentiam a vontade), e o ranking deu muito
incentivo para estes estudantes, que se mostraram
bastante competitivos, eles queriam subir no ranking. O
importante é o estudante estar motivado, trabalhando.
Ela acha que a partir do momento que tiver mais
conteúdos, vai ficar melhor ainda. No final, é difícil elencar
muitos problemas interessantes por tópico, com essa
sensibilidade de o estudante não ficar interpretando
muito o conteúdo do problema sem se perder. As vezes,

59

montar um conjunto de exercícios interessantes para cada
tópico demanda um pouco, e se tiver mais exercícios no
ambiente, melhor.

• É um apoio interessante. Mas o professor fica frustrado de
os estudantes não procurarem muito a monitoria. Um
recurso a mais que tenha para o estudante poder
entender, auxiliar, ele acha válido. Ele nunca parou para
pensar se "seria o ideal que tivesse um minicurso", mas
qualquer ajuda para o aprendizado do estudante é bem
vinda e ele não se opõe em hipótese alguma. Falando da
participação do minicurso atual, ele não acompanhou a
turma dele. Mas na turma do semestre anterior só
tiveram 1 ou 2. Neste semestre, dos 21 que se
matricularam, 10 já desistiram na 1a prova, só uns 8
vieram fazer a última prova, mas são vários fatores, talvez
por pré-requisitos (essa disciplina não tem), entre outros.

• Sem dúvida, todo recurso adicional é sempre bem vindo.
• Sim, claro. O professor pode disponibilizar aos estudantes,

poderia ocupar uma das aulas da semana inicialmente
para fazer os estudantes verem o que eles podem usar.
Poderia fazer uma aula por semana, para ensinar o
conteúdo do professor com C e o conteúdo na
pseudolinguagem que ele está aprendendo. Quando o
estudante vier com a pergunta para o professor, ele pode
confirmar.

Sobre o minicurso estar no AdaptWeb:

• Usar o AdaptWeb® como ponto extra.
• A possibilidade de ter mais exercícios, e poder navegar

pelo curso no ritmo dele, é bem interessante.
• Em paralelo com as aulas, o professor não "perderia

tempo", explicaria mas não faria os exercícios, a prática da
análise fica no AdaptWeb® e a prática de programação no
curso presencial.

• (Q4) Professores têm pouco ou nenhum contato com o
AdaptWeb®.

• É uma ferramenta interessante, diferente de sala de aula,
que o professor passa o conteúdo de um livro, um
material, mas no minicurso ele tem um conteúdo inteiro,
perde menos tempo para consultar.

• Não é necessário gastar o tempo do minicurso com outros
conteúdos informativos, é melhor se aprofundar mais
coisas de programação, o ganho é melhor. O recurso tem
mais coisas para explorar por ser online, e a vantagem é
que se o estudante não se sair muito bem no minicurso,
ele poder vir para o professor com mais dúvidas de
programação.

• Não é necessário gastar o tempo do minicurso com outros
conteúdos informativos, é melhor se aprofundar mais
coisas de programação, o ganho é melhor. O recurso tem
mais coisas para explorar por ser online, e a vantagem é
que se ele não se sair muito bem no minicurso, é ele
poder vir para o professor com mais dúvidas de
programação.

• O minicurso online é perfeito para complementar o que se
faz em sala de aula.

Sobre a aplicação do minicurso em outros contextos:

• Ferramenta interessante para aquele estudante que está

precisando de recuperação. Também para formação de
professores (como exemplo essa discussão sobre os
conteúdos do minicurso entre professores).

• O conteúdo da parte básica, por exemplo poderia até
substituir os slides da professora, poderia desenvolver a
aula em cima daquele conteúdo, poderia ser usado como
guia durante a aula. Pode ser no futuro, acrescentando
mais exemplos, mais conteúdo, como apoio de aula
presencial.

• Em paralelo com as aulas, o professor não "perderia

tempo" , explicaria mas não faria os exercícios, a prática
da análise fica no AdaptWeb® e a prática de programação
no curso presencial.

• Sim, por exemplo, para quem está tentando programar
sozinho, fora da faculdade, mas tem que ver a questão do
suporte. Quando se aprende sozinho, procura livros ou
ambientes, mas não é só isso. As dúvidas maiores acabam
procurando em fóruns. Como apoio também é muito bom,
eles fazem um programa e esquecem como é. Tem que
revisar, refazer para fixar.

• Talvez abrir para quem ainda não está matriculado na
disciplina, ou que queira começar a tomar contato com
isso, para ir se preparando para quando vier a disciplina.

• Aplicar nos minicursos da OBI, e em alguns casos, ser o
minicurso da OBI. Seja como complemento às aulas
presenciais, seja como o curso em si, para estudantes do
Ensino Médio.

• Como apoio à disciplina sim, é atemporal. Poderia deixar
como algo externo à comunidade, em um programa de
extensão à comunidade, às escolas do Ensino Médio.

• Antes do semestre: talvez não, pode até ser "assustador"
para um estudante que nunca teve contato com isso. Pode
ser bom para aqueles estudantes autodidatas (para quem,
aliás, qualquer método é bom).

• Antes do semestre: A parte básica, se viesse antes da
disciplina, em um curso de férias, o professor já entraria
direto na programação, até mais pesada, não perderia
tempo, avançaria como uma disciplina mais aplicada.

• Antes do semestre: Como pré-requisito para a aula (sonho
de todo professor). Interessante antes, como se fosse um
"pré-algoritmos". Daria para ir mais rápido em algumas
coisas iniciais e focar em problemas mais complexos
durante o semestre. A possibilidade de lógica de
programação que se poderia colocar seria muito maior.
Eles viriam com a dificuldade formulada, também.

• Antes do semestre: Talvez não, pois o tempo entre o
período de matrícula e o início é muito curto. Mas quando
o minicurso estiver mais estabelecido, mais maduro,
divulgar para quem quiser tentar se adiantar um pouco,
talvez seja interessante.

• Antes do semestre: Poderia ser, talvez no momento que já
fazem a matrícula. Todas as formas são interessantes.

• Após o semestre: Para o estudante que tem dificuldade, é
importante ter diferentes métodos. Para recuperação de
estudantes pode ser interessante a partir do segundo mês
de aula, após a primeira prova. É interessante o minicurso
desde que o estudante possa escolher o método (texto,
vídeo, áudio), e o online permite isso.

• Após o semestre: Seria bem interessante também,
principalmente para os que reprovam.

• Após o semestre: Não, acha apenas interesante ser
aplicado antes do curso.

• Após o semestre: Alguns repetentes tem problema de
conteúdo (ou de atitude), mas tudo que oferece
abordagem de aprendizado alternativa é válido. Alguns
estudantes são contra gastar tempo com linguagem de
programação, não que seja errado, mas acabamos
perdendo alguns estudantes por isso. O que é alternativo
à forma tradicional, pode estimular ou ajudar em alguma
deficiência, é válido, mas depende da vontade dele
também.

• Após o semestre: Se você chega no final, quando ele já
reprovou, e você mostra o minicurso, o estudante pode
pensar: "por que não me mostraram isso antes?", este
enfoque tem que ser mostrado com cuidado. Talvez
mostrar antes como opção para ele saber que existe, e aí
sim reapresentar se ele reprovar.

• Após o semestre: Ótima ideia. Todos os casos, ela acha
positivo. Até neste caso, sugerir que o estudante faça
quando ele não teve êxito, é talvez mais motivador que
sugerir antes do início do semestre.

60

Sobre o tempo de início e duração:

• Não precisava ser tão no começo, mas não tem prejuízo

nenhum começar nesta data.
• Não vê problema se o estudante avançar mais no

minicurso que na aula presencial. Isso até facilita o
trabalho dele.

• Possivelmente, próximo do prazo final, pedirá para
estender um pouco mais o acesso ao minicurso, mas
somente para permitir que os estudantes continuem
acessando os conteúdos.

• Única coisa que vai estar em descompasso é aquela
semana inicial sobre os componentes do computador
(obs.: este professor não gosta de sair da programação
nem permitir que os estudantes vejam conteúdos antes
da hora...).

• A opção de navegação livre ou tutorial é boa, pois nem
todos gostam do tutorial.

• Sim. O professor não gasta muito tempo na parte de
narrativa. É 1 aula de boas vindas, introdução à lógica, e já
vai para narrativas, estrutura de programa, até mostra um
fluxograma para exemplificar, mas é menos tempo que
isso.

• Tudo soma, mas tem que tomar cuidado se o pré-requisito
da turma é a linguagem C. Tem que dar a ferramenta de
tal forma que o estudante possa fazer todos os saltos que
ele quiser.

• Os estudantes não têm muita gana de ficar sentado em
um ambiente online "autodidata", principalmente de tiver
muito texto. Se tiver a oportunidade de chegar em um
ambiente e rapidamente começar a desenvolver soluções,
será diferente. O ambiente, a ferramenta, deve ser um
mecanismo para acelerar o desenvolvimento, e o texto
retarda. O professor passa problemas pequenos no
começo do semestre, em seguida já passa problemas
maiores, e no final do semestre já está mostrando
problemas com alta complexidade. É a "bola de neve".
Isso se aplica independente da turma. A complexidade
crescente exige o raciocínio abstrato.

• Os estudantes não vão disponibilizar muito devido a
outras prioridades de estudo.

• Se eles dedicarem 1 hora por semana, já vai ser lucro. A
não ser que tenham algum tipo de incentivo. O que ele
recomenda é que eles "percam" um meia hora por
semana, senão não vai dar certo. O professor sempre
informa na aula anterior o que vai ensinar na próxima
aula, para que o estudante tenham a chance de ir atrás
das informações por conta.

• Depois de começar a ir ao laboratório, pensar em uns 15
minutos finais parar antes da aula e tentar direcionar o
uso do minicurso. O ideal é que o minicurso fosse
tutoreado.

Sobre a avaliação final de aprendizagem:

• Exercícios altamente focados em memorização de

comandos são desnecessários (as próprias ferramentas já
oferecem isso). O estudante tem de entender a diferença
entre a programação e a codificação. Eles têm de saber
"programar", ou seja, dar problemas e o estudante ser
capaz de confeccionar uma sequência sistemática de
passos que resolvem aquele problema. Aí sim, vem a
codificação, em qualquer linguagem. Sugere exercícios
para interpretar algoritmos (propor entradas e o
estudante dizer o que era na saída).

• O curso é bastante válido para a análise. O estudante
pode não aprender a programar, mas vai aprender a
analisar. Essa parte de análise na sala de aula é muito mais
cansativa - o curso online ajuda bastante nisso. Fazer a
análise de algoritmo ajuda bastante depois a programar.

• Se o exercício é muito complexo, e fizer por alternativas,

fica complicado avaliar. Ele não tem certeza sobre isso.
Talvez a compreensão dos recursos didáticos no meio
"informático", seja o "pulo do gato". Para ele, há a
convicção de que ninguém conseguiu ainda criar um
framework de aprendizado usando recursos de
computação ou Internet. Não é apenas usar uma lousa
digital, ou escrever no computador ao invés de escrever a
mão. "O paradigma não foi estabelecido ainda", talvez
nem vá, ou promover uma imersão no assunto.

• O ideal seria escrever um algoritmo e avaliar
completamente. Mas entende o objetivo para o curso
online, e neste sentido está perfeito. Quem vai fazer este
outro julgamento é o professor presencial, que pode
subsidiar o quanto “interferiu" na aula dele, até a opinião
do professor, o quanto ele gostou ou não. Algum
questionamento que os estudantes tiveram em minicurso
anterior foi quanto ao tempo disponível para realização,
mas foi só isso.

61

 Matriz de Design Instrucional (MDI) APÊNDICE F

MDI completa, em sua representação com todos os campos necessários para orientar a inclusão dos

objetos no ambiente de aprendizagem.

62

MDI resumida, representando os níveis e sub-níveis de cada conceito, bem como o

tempo estimado necessário para o cumprimento do estudo de cada conceito.

Nº Conceito Pré-requisitos Tempo (min.)

1 Boas Vindas - 6

1.1 Objetivo do minicurso 1 6

1.2 Ferramentas de aprendizagem 1.1 6

1.3 O que você vai ver neste curso? 1.2 6

1.4 Como estudar 1.3 6

2 Da lógica à programação 1.4 10

2.1 Por que aprender a programar? 2 10

2.2 Aplicações de Algoritmos 2.1 5

2.3 Algoritmos e Programação 2.2 5

3 Interpretadores e compiladores 2.3 6

3.1 Interpretadores de algoritmos (Portugol IDE) 3 8

3.2 Compiladores de linguagem (DevC++) 3.1 8

3.3 Outras ferramentas de aprendizagem 3.2 8

4 Algoritmos 3.3 10

4.1 Criando um algoritmo 4 25

4.2 Tipos de algoritmo 4.1 25

5 Sobre narrativas 4.2 5

5.1 Tipos de narrativas 5 5

5.2 Exercitando as narrativas 5.1 50

6 Sobre pseudocódigos 5.2 10

6.1 Estrutura de um pseudocódigo 6 25

6.2 Predefinições para escrita de pseudocódigos 6.1 25

7 O que é um programa? 6.2 30

7.1 Linguagem C - Principais conceitos 7 30

7.2 Estrutura de um programa 7.1 5

7.3 Constantes e comandos de atribuição 7.2.3 40

7.4 Comandos de Entrada-Saída 7.3 20

7.5 Strings 7.4.2 60

8 Dados, variáveis e operadores 7.5 5

8.1 Dados 8 10

8.2 Operadores básicos 8.1 10

8.3 Operadores aritméticos em C 8.2 10

8.4 Operadores relacionais 8.3 10

8.5 Operadores lógicos 8.4 10

8.6 Precedência entre todos os Operadores 8.5 10

9 Estrutura de Controle - Decisão 8.6 20

9.1 Estrutura de decisão simples 9 20

9.2 Estrutura de decisão composta 9.1 20

9.3 Estrutura de decisão encadeada 9.2 60

10 Estrutura de controle – Laços (repetição) 9.3 60

10.1 Laço while (enquanto) 10 60

10.2 Laço do...while (repita) 10.1 0

10.3 Laço for (para) 10.2 0

11 Vetores e matrizes 10.3 0

11.1 Matrizes de uma dimensão (Vetores) 11 120

11.2 Matrizes 11.1 120

63

MDI resumida, apresentando os exemplos, exercícios, links de apoio e materiais

complementares.

Nº Conceito Conteúdos Exemplos Exercícios Materiais Links

1 Boas Vindas (01) Seja Bem-
Vindo

(54) Exemplos -
Fazer sanduiche

(108) Exercício -
Identificar etapas
algoritmo opção 1

(147) Materiais
01.1 Video - Seja
bem-vindo

(178) 03.2.1 Links
- Aplicativo -
DevCpp

1.1 Objetivo do minicurso (02) Objetivo do
minicurso

(55) Exemplos -
Tomar banho

(109) Exercício -
Receita de bolo

(148) Materiais
01.2 Creditos

(179) 03.2.2 Links
- Download
DevCpp 5.4.0

1.2 Ferramentas de aprendizagem (03) Ferramentas
de aprendizagem

(56) Exemplos -
Trocar lâmpada

(110) Exercício -
Ordenar
sequencia
algoritmo

(149) Materiais
02.1 Papo BJPnet

(180) 03.3.1 Links
- Aplicativo - G-
Portugol

1.3 O que você vai ver neste curso? (04) O que voce
vai ver neste
curso

(57) Exemplos -
Soma de dois
números

(111) Exercício -
Identificar etapas
algoritmo opção 2

(150) Materiais
02.2 Jogo Light-
bot

(181) 03.3.2 Links
- Aplicativo –
MACP

1.4 Como estudar (05) Como
estudar

(58) Exemplos -
Divisao de dois
números

(112) Exercício
(Narrativa de
seleção) Divisão
de 2 números

(151) Materiais
03.3.1 Outros
interpretadores
de
pseudolinguage
m

(182) 03.3.3 Links
- Aplicativo –
VisuAlg

2 Da lógica à programação (06) Por que
aprender a
programar

(59) Exemplos -
Divisão de dois
números se
possível

(113) Exercício -
Somar 2 números

(152) Materiais
03.3.2 Outros
compiladores de
linguagem C

(183) 03.3.4 Links
- Aplicativo -
Portugol online

2.1 Por que aprender a programar? (07) Aplicacoes
de Algoritmos

(60) Exemplos -
Atribuicoes de
variáveis

(114) Exercício -
Somar conteúdos
retângulos opção
1

(153) Materiais
04.1.1 Passos
para criar
algoritmo

(184) 03.3.5 Links
- Aplicativo –
Webportugol

2.2 Aplicações de Algoritmos (08) Aplicacoes
de Algoritmos

(61) Exemplos -
Pseudocodigo -
Atribuicoes de
variáveis

(115) Exercício -
Somar 3 números

(154) Materiais
05.1.1 Narrativa
sequencial

(185) 03.3.6 Links
- Aplicativo –
AMBAP

2.3 Algoritmos e Programação (09)
Interpretadores
e compiladores

(62) Exemplos -
Pseudocodigo -
Aplicacao de
atribuicoes
usando variaveis

(116) Exercício -
Somar conteúdos
retângulos opção
2

(155) Materiais
05.1.2 Narrativa
de selecao

(186) 03.3.7 Links
- Aplicativo -
Microsoft Visual
Cpp

3 Interpretadores e compiladores (10)
Interpretadores
de algoritmos
(Portugol IDE)

(63) Exemplos -
Constantes
numéricos

(117) Exercício -
Criação de
algoritmos

(156) Materiais
05.1.3 Narrativa
de repetição

(187) 03.3.8 Links
- Aplicativo –
CppDroid

3.1 Interpretadores de algoritmos
(Portugol IDE)

(11)
Compiladores de
linguagem
(DevCpp)

(64) Exemplos -
Caracteres
constantes

(118) Exercício -
Pseudocódigo -
Teste dos códigos
especiais

(157) Materiais
06.1.1 Animacao
- estrutura do
pseudocódigo

(188) 03.3.9 Links
- Aplicativo –
CodeBlocks

3.2 Compiladores de linguagem
(DevC++)

(12) Outras
ferramentas de
aprendizagem

(65) Exemplos -
Cadeia de
caracteres
constantes

(119) Exercício -
Teste dos códigos
especiais

(158) Materiais
07.1.1 Animacao
- Comparativo
estrutura pseudo
e C

(189) 03.3.10 Links
- Pagina -
codepad.org

3.3 Outras ferramentas de
aprendizagem

(13) Algoritmos (66) Exemplos -
Pseudocodigo -
Aplicacao de
caracteres
especiais

(120) Exercicio -
String

(159) Materiais
07.1.2 Alo
mundo

(190) 03.3.11 Links
- Pagina -
ideone.com

4 Algoritmos (14) Criando um
algoritmo

(67) Exemplos -
Constantes no C

(121) Exercício –
programa

(160) Materiais
07.1.3
Pseudocodigo -
Alo mundo

(191) 03.3.12 Links
- Pagina -
tutorialspoint.com

4.1 Criando um algoritmo (15) Tipos de (68) Exemplos - (122) Exercício - (161) Materiais (192) Avaliação –

64

Nº Conceito Conteúdos Exemplos Exercícios Materiais Links

algoritmo Alo mundo Avalie Alo mundo
opção 1

07.1.4 Teste de
mesa

QUESTÃO 01
(estrutura do
programa)

4.2 Tipos de algoritmo (16) Sobre
narrativas

(69) Exemplos -
Pseudocodigo -
Alo mundo

(123) Exercício -
Avalie Alo mundo
opção 2

(162) Materiais
07.3.1
Pseudocodigo -
Comando de
atribuição

(193) Avaliação –
QUESTÃO 02
(condição)

5 Sobre narrativas (17) Tipos de
narrativas

(70) Exemplos -
Entrar com inteiro
e mostrar

(124) Exercício –
Saída

(163) Materiais
07.4.1 Pseudo x
C - Comandos de
saída

(194) Avaliação –
QUESTÃO 03
(algoritmo/narrati
va)

5.1 Tipos de narrativas (18) Exercitando
as narrativas

(71) Exemplos -
Trocar 2 numeros

(125) Exercício -
Tipos de
operadores
aritméticos

(164) Materiais
07.4.2 Tabela de
códigos especiais

(195) Avaliação –
QUESTÃO 04
(compreensão do
código)

5.2 Exercitando as narrativas (19) Sobre
pseudocódigos

(72) Exemplos -
Funcoes string –
imprimir

(126) Exercício -
Dados do tipo
inteiro

(165) Materiais
07.4.2.1
Pseudocodigo -
Funcao de
entrada

(196) Avaliação –
QUESTÃO 05
(estruturas de
controle)

6 Sobre pseudocódigos (20) Estrutura de
um
pseudocódigo

(73) Exemplos -
Funcoes string –
copiar opção 1

(127) Exercício -
Operadores -
Soma de dois
números

(166) Materiais
07.4.2.2 Funcao
de entrada

(197) Avaliação –
QUESTÃO 06
(repetição)

6.1 Estrutura de um pseudocódigo (21)
Predefinicoes
para escrita de
pseudocódigos

(74) Exemplos -
Funcoes string –
copiar opção 2

(128) Exercício -
(aritméticos) área
do retângulo

(168) Materiais
07.4.2.3
Pseudocodigo -
Entrada de dados

(198) Avaliação –
QUESTÃO 07
(dados, variáveis,
operadores)

6.2 Predefinições para escrita de
pseudocódigos

(22) Programa (75) Exemplos -
Funcoes string –
comprimento

(129) Exercício -
(aritméticos) área
do triangulo

(169) Materiais
07.4.2.4 Entrada
de dados

(199) Avaliação –
QUESTÃO 08
(dados, variáveis,
operadores)

7 O que é um programa? (23) Estrutura de
um programa

(76) Exemplos
07.5.4 Funcoes
string – reverter

(130) Exercício -
(aritméticos)
volume do cilindro

(170) Materiais
07.4.3 Tabela de
codigos de
formatação

(200) Avaliação –
QUESTÃO 09
(repetição)

7.1 Linguagem C - Principais
conceitos

(24) Linguagem C
- Principais
conceitos

(77) Exemplos -
Funcoes string –
concatenar

(131) Exercício -
(aritméticos)
volume do cubo

(171) Materiais
07.5.1 Tabela das
funcoes de string

(201) Avaliação –
QUESTÃO 10
(matrizes)

7.2 Estrutura de um programa (25) main() (78) Exemplos -
Funcoes string –
comparar

(132) Exercício -
Operadores -
condição
existência
triângulo

(172) Materiais
08.1.1
Pseudocodigo -
Atribuicoes com
variáveis

7.3 Constantes e comandos de
atribuição

(26) system() (79) Exemplos -
Variáveis no C

(133) Exercício -
salário bruto-
líquido

(173) Materiais
08.1.2
Atribuicoes com
variáveis

7.4 Comandos de Entrada-Saída (27) #include (80) Exemplos -
Quatro operações
básicas

(134) Exercício -
Torre de Hanói

(174) Materiais
08.1.3 Tabela -
Pseudo x C -
Tipos de dados

7.5 Strings (28) Constantes e
comandos de
atribuição

(81) Exemplos -
Pseudocódigo -
Área do circulo

(135) Exercício -
Condição - nota
maior igual a 7

(175) Materiais
08.4.1 Tabela -
Operadores
relacionais

8 Dados, variáveis e operadores (29) Comandos
de Entrada-Saida

(82) Exemplos -
Área do circulo

(136) Exercício -
numero par impar
pos neg nulo

(176) Materiais
11.1.1
Declaracao de
vetores

8.1 Dados (30) printf (83) Exemplos -
Decisao simples

(137) Exercício -
idade_atleta x
categoria

(177) Materiais
11.2.1
Declaracao de

65

Nº Conceito Conteúdos Exemplos Exercícios Materiais Links

matrizes

8.2 Operadores básicos (31) scanf (84) Exemplos -
Pseudocódigo -
Divisão de dois
números

(138) Exercício -
número é par ou
impar

8.3 Operadores aritméticos em C (32) Strings (85) Exemplos -
Maior de três
números

(139) Exercício -
while e do-while

8.4 Operadores relacionais (33) Dados
Variaveis e
Operadores

(86) Exemplos -
Par ou impar

(140) Exercício -
Mesa de testes 1

8.5 Operadores lógicos (34) Dados (87) Exemplos -
Ano bissexto

(141) Exercício -
Mesa de testes 2

8.6 Precedência entre todos os
Operadores

(35) Operadores
básicos

(88) Exemplos -
Média de duas
notas

(142) Exercício -
mostra pares de 2
a 20

9 Estrutura de Controle - Decisão (36) Operadores
aritmeticos em C

(89) Exemplos -
Pseudocódigo -
(SE) numero maior
que 0 ou não

(143) Exercício -
Matrizes -
Compara palavras

9.1 Estrutura de decisão simples (37) Operadores
relacionais

(90) Exemplos -
Pseudocódigo -
(SE composta)
numero maior que
0 ou não

(144) Exercício -
Matrizes - Entrada
valores

9.2 Estrutura de decisão composta (38) Operadores
lógicos

(91) Exemplos -
Pseudocódigo -
(SE composta)
numero maior
menor ou igual a
zero

(145) Exercicio -
Matrizes -
Palavras em
ordem inversa

9.3 Estrutura de decisão encadeada (39) Precedência
entre todos os
Operadores

(92) Exemplos -
Pseudocódigo - 4
operações

(146) Exercício -
Vetores - Inverte
ordem

10 Estrutura de controle – Laços
(repetição)

(40) Estrutura de
Controle –
Decisão

(93) Exemplos -
Pseudocódigo -
Ano bissexto

10.1 Laço while (enquanto) (41) Estrutura de
decisão simples

(94) Exemplos -
Pseudocódigo - 4
operações

10.2 Laço do...while (repita) (42) Estrutura de
decisão
composta opção
1

(95) Exemplos -
Checar vogal

10.3 Laço for (para) (43) Estrutura de
decisão
composta opção
2

(96) Exemplos -
Pseudocódigo - x
menor que 3

11 Vetores e matrizes (44) Estrutura de
decisão
encadeada
opção 1

(97) Exemplos -
Somar dígitos

11.1 Matrizes de uma dimensão
(Vetores)

(45) Estrutura de
decisão
encadeada
opção 2

(98) Exemplos -
Quadrado dos
números de 0 a 20

11.2 Matrizes (46) Estrutura de
controle – Laços

(99) Exemplos -
Pseudocódigo -
Quadrado dos
números 0 a 20

 (47) Laco while
(enquanto)

(100) Exemplos –
Pseudocódigo - x
menor que 3

66

Nº Conceito Conteúdos Exemplos Exercícios Materiais Links

 (48) Laco
do...while
(repita)

(101) Exemplos -
Pseudocódigo -
Mostra x de 0 a 2

 (49) Laco para
(for)

(102) Exemplos - x
de 0 a 3

 (50) Laco para
(for)

(103) Exemplos -
Pseudocódigo - x
de 0 a 3

 (51) Vetores e
matrizes

(104) Exemplos -
Matemática -
Conjuntos
numéricos

 (52) Vetores (105) Exemplos -
Vetores - Entrada
de dados

 (53) Matrizes (106) Exemplos -
Vetores -
Ordenação por
seleção

 (107) Exemplos -
Matrizes - Entrada
de dados

67

 Objetos de Aprendizagem APÊNDICE G

Os Objetos de Aprendizagem foram inicialmente escritos em modo texto, durante a

etapa de Desenvolvimento, e posteriormente adaptados para o formato web, conforme

descrito na seção 5.3. Todos os objetos estão representados a seguir, cada um deles

identificado, em negrito, por um número sequencial e uma breve descrição. Nas duas linhas

seguintes de cada, está o Conceito e o Sub-conceito, tal qual representado na MDI, no

APÊNDICE F.

CONCEITOS

(1) Seja Bem-Vindo

1 Boas Vindas
1 Seja bem-vindo ao minicurso de Algoritmos e Programação!

Este minicurso foi concebido para ensinar os fundamentos de
algoritmos e de programação a iniciantes no estudo da
computação.
Não é necessário ter qualquer experiência anterior na área,
além do conhecimento básico como usuário(a) de computador,
tablet, celular ou outro dispositivo. Também é interessante,
mas não obrigatório, que você já tenha feito acessos à Internet
e redes sociais.
Ah, e caso você não tenha recebido instrução inicial sobre o uso
do AdaptWeb®, não se preocupe: o ambiente é bem intuitivo, e
ainda tem fácil acesso à ajuda, sempre que precisar.

(2) Objetivo do minicurso

1 Boas Vindas
1.1 Objetivo do minicurso

Oferecer conteúdos, exemplos e exercícios que complementem
a disciplina de introdução à programação ou algoritmos que
você cursará nesta universidade.
Esperamos assim poder contribuir para que você, a partir destes
conhecimentos adicionais, possa melhorar suas habilidades e
manter sua motivação nos estudos desta ou de qualquer outra
disciplina que envolva o raciocínio lógico para solução de
problemas.

(3) Ferramentas de aprendizagem

1 Boas Vindas
1.2 Ferramentas de aprendizagem

Durante o minicurso você precisará de uma ferramenta para
associar os conteúdos aprendidos (conceitos) à prática de
programação.
Para tanto, você terá acesso a exemplos e exercícios, propostos
aqui em forma de uma pseudolinguagem e também na
linguagem C.

(4) O que voce vai ver neste curso

1 Boas Vindas
1.3 O que você vai ver neste curso?

Nos capítulos iniciais você verá conceitos de lógica, algoritmos e
seus tipos, como as narrativas e os pseudocódigos; também
conhecerá sobre o Portugol IDE e o DevC++, que serão suas
ferramentas de apoio de aprendizagem neste minicurso:

(figura)
Os capítulos seguintes são fundamentais para a começar a
entender a programação. São apoiados por exemplos e
exercícios práticos e apresentam algumas das principais funções
na linguagem C:
(figura)
Apoiados pelas funções do C apresentadas, você vai aprender
sobre dados, variáveis e operadores:
(figura)
Nos últimos capítulos entram os conceitos de programação
estruturada, com foco nas estruturas de condição e repetição,
vetores e matrizes:
(figura)

(5) Como estudar

1 Boas Vindas
1.4 Como estudar

(figura)
1. Para navegar no conteúdo deste curso utilize os links
disponíveis no menu localizado à sua esquerda.
2. Em paralelo a leitura dos Conceitos, você poderá consultar
exemplos, responder a exercícios ou consultar materiais
complementares, quando disponíveis, selecionando a Categoria
no lado esquerdo superior. Também há disponíveis alguns links
de apoio, sugeridos para incentivar o aprofundamento nos
temas.
3. A qualquer momento, você poderá consultar os links de
apoio, sugeridos durante todo o minicurso.
4. Para saber quais as categorias disponíveis para cada conceito,
você pode abrir o Mapa da Disciplina (canto superior direito) a
qualquer momento.
5. Saiba mais sobre os recursos do AdaptWeb®, clicando em
Ajuda no canto superior direito.

(6) Por que aprender a programar

2 Da lógica à programação
2.1 Por que aprender a programar?

É desafiador. Estudar lógica de programação é quase como
resolver um quebra-cabeça: você deve analisar os argumentos e
reordená-los para que façam sentido. De início, as conexões
podem não ser tão óbvias e, por isso, você precisará exercitar
sua mente para encontrar os encaixes de modo a torná-los
válidos. A tarefa não é fácil, mas o desafio é motivador!
Rapidez de raciocínio. Ao se deparar com um problema, os
profissionais devem pensar rapidamente para encontrar uma
solução. A pressão e o fato de não saber o que deu errado
podem complicar a resolução desta situação, mas se você
pratica com frequência a análise de fatos aparentemente
isolados e suas possíveis relações, como propõe a lógica, você
conseguirá mais velocidade nas questões relativas ao trabalho.
Argumentação melhor fundamentada. Embora a argumentação
seja atribuída a advogados e publicitários, esta habilidade diz

68

respeito a todas as profissões e não se restringem ao ambiente
profissional, afinal persuasão é exigida tanto durante uma
entrevista de emprego, na qual você tenta convencer o gestor
de que você é o melhor candidato para a vaga, como nas
tradicionais discussões de família sobre política ou futebol. Até
as redações dos vestibulares prezam que os candidatos
aprovados saibam debater suas ideias.

(7) Aplicacoes de Algoritmos

2 Da lógica à programação
2.2 Aplicações de algoritmos

Os algoritmos auxiliam a compreender a lógica de programação
de maneira fácil e sem a barreira do idioma. Assim, os conceitos
aprendidos podem ser aplicados para programar em qualquer
linguagem.
Podemos descrever, por exemplo, algoritmos para:
Ir de casa para a universidade
(figura)
Fazer um sanduíche de presunto e queijo
(figura)
Localizar produtos no mercado
(figura)
Elaborar bons algoritmos e aplicá-los no momento certo é a
chave para se escrever programas eficientes e interessantes.
Observe alguns exemplos bem sucedidos de algoritmos:
Como um aplicativo de transmissão de vídeo ao vivo pela
internet pode ser tão rápida? Ele usa algoritmos de compressão
de dados de áudio e vídeo.
(figura)
Como um aplicativo de mapas descobre o caminho correto para
ir de Joinville a Florianópolis? Ele usa um algoritmo de
localização de rotas.
(figura)
Como é que um programa pode gerar luzes e sombras realistas
para o personagem de uma animação 3D? Ele usa algoritmos de
renderização.
(figura)
Como uma agência espacial decide como e quando colocar
painéis solares na estação espacial? Ela utiliza algoritmos de
planejamento e otimização.
(figura)
Dos mais simples aos mais complexos, os algoritmos remetem à
mesma coisa: um conjunto de passos para realizar uma tarefa.

(8) Aplicacoes de Algoritmos

2 Da lógica à programação
2.3 Algoritmos e Programação

Por conceito, um programa de computador é um conjunto de
instruções que descrevem uma tarefa a ser realizada por um
computador.
Podemos dizer, então, que um programa nada mais é do que
um algoritmo, já que as “instruções que descrevem uma tarefa”
nada mais são do que um conjunto de passos com o mesmo
objetivo.
(figura)
Linguagem de programação
Uma linguagem de programação é um meio de dar instruções
ao computador. Existem diferentes linguagens de programação,
tais como: C, C++, Java, PHP, Python, etc. Todas elas são
diferentes uma das outras e remetem ao idioma inglês.
(figura)
O que nós fazemos com eles é o resultado de uma sequência de
instruções. Se o programa permitir e assim desejarmos,
podemos utilizar códigos para programar algumas funções
específicas, por exemplo, descobrir os melhores movimentos
para um programa de jogo de xadrez.
Se você aprender a elaborar bons algoritmos, evitará esforços

desnecessários escrevendo programas mais eficientes.

(9) Interpretadores e compiladores

3 Interpretadores e compiladores
3 Interpretadores e compiladores

Um computador só entende internamente a chamada
linguagem de máquina. Esta linguagem nada mais é que uma
sequência ordenada de 1s (uns) e 0s (zeros), ou fisicamente
falando, a presença ou ausência de um sinal elétrico. Apenas
para ilustrar, veja como fica a primeira frase que você acabou
de ler, no início deste parágrafo, convertida para números
binários:
(figura)
(é claro que para um programa com instruções e comandos, a
conversão não é tão simples assim...)
Para nos comunicarmos com o computador, precisamos
converter a linguagem que nós, humanos, entendemos, para a
linguagem que a máquina entende. Para isso, usamos os
interpretadores ou compiladores.

(10) Interpretadores de algoritmos (Portugol IDE)

3 Interpretadores e compiladores
3.1 Interpretadores de algoritmos (Portugol IDE)

Mesmo sendo os algoritmos representados por uma descrição
narrativa, é possível escrevê-los e interpretá-los dentro de um
computador através de programas interpretadores. Estes
programas reconhecem algumas palavras pré-definidas em
linguagem humana, e as convertem em instruções para o
computador.
Portugol IDE
Em nosso curso optamos por utilizar um programa desenvolvido
para o idioma português, o Portugol IDE. Trata-se de um
programa gratuito, distribuído pela Bloodshed Software, e que
não requer instalação (é só baixar um arquivo e descompactar).
Seu uso é bastante intuitivo e de fácil analogia com linguagens,
utilizando o português estruturado, ou "portugol".
Guia rápido do Portugol IDE - instalação e uso
--
Atenção: essas informações podem ser atualizadas pelo
fornecedor sem aviso prévio. Sempre consulte o site do
fornecedor.
--
1. Verifique o Java (em navegador diferente do Chrome). Para
utilizar o Portugol IDE você precisa ter o Java JRE instalado em
seu computador. Se você estiver usando um navegador que não
seja o Google Chrome, você pode verificar se o Java JRE está
instalado neste link:
► Verificar Java (não Chrome)
2. Caso necessário, instale o Java. Se o Java JRE não estiver
instalado, em computadores com MacOS você deve baixá-lo
através da Apple Software Update. Se estiver usando Windows
ou Linux, você pode baixá-lo através do link:
► Download Java (Win ou Linux)
3. Baixe o Portugol IDE. Acesse o link:
► Página do aplicativo - Portugol IDE
4. Descompacte o arquivo baixado (portugol23.zip). Escolha um
local de sua preferência para salvar os arquivos
descompactados.
5. Execute o arquivo run.bat para abrir o Portugol IDE
(sugerimos criar um atalho para facilitar o acesso). A seguinte
janela abrirá:
(Figura - Menu inicial do Portugol IDE)
6. Selecione "Editor de texto". Será mostrada a seguinte janela:
(Figura - Janela de edição de texto do Portugol IDE)
7. Esta é a interface do Portugol IDE que iremos utilizar neste
minicurso para escrever pseudocódigos e testá-los.
Escreveremos nossos algoritmos na área destacada na figura
abaixo:

69

(Figura - Escrevendo um programa no Portugol IDE)
8. Após escrever o programa, basta executar clicando em F3, ou
use os ícones no menu superior (sugerimos consultar a ajuda no
site do fornecedor para conhecer melhor outros recursos do
aplicativo). Os resultados aparecerão na janela de execução na
parte inferior:
(Figura - Janela de execução no Portugol IDE)
9. Agora é só continuar a estudar os conceitos em nosso
minicurso, testar os exemplos sugeridos e começar a
desenvolver seus próprios programas!

(11) Compiladores de linguagem (DevCpp)

3 Interpretadores e compiladores
3.2 Compiladores de linguagem

Compilação: Sempre que se codifica um algoritmo numa
linguagem de programação, este programa precisa ser
“traduzido” para a linguagem entendida pela máquina. A este
processo chama-se compilação (ou interpretação).
Compiladores: O trabalho de compilação é feito por um
programa editor, chamado linkeditor, que além de compilar o
código ainda cria um produto final com a extensão .EXE, o qual
pode ser executado diretamente no sistema operacional.
DevC++
Como optamos por utilizar a linguagem C para o aprendizado da
programação, vamos utilizar um compilador para a linguagem
C, chamado DevC++ (ou DevCpp, do inglês “plus plus” = “mais
mais”), gratuito, desenvolvido pela Bloodshed. Acesse à versão
mais recente pelo link:
► Pagina do aplicativo DevCpp
Caso tenha problemas para instalar a versão mais recente, tente
este:
► Download DevCpp 5.4.0
Guia rápido do DevC++ Instalação e uso
--
Atenção: essas informações podem ser atualizadas pelo
fornecedor sem aviso prévio. Sempre consulte o site do
fornecedor.
--
Abra o programa DevC++.
Selecione o menu Arquivo > Novo > Arquivo fonte.
Digite o programa na janela aberta.
Compile o programa, no menu Executar > Compilar (ou clique
em F9).
Neste momento será solicitado para salvar o arquivo –
selecione o tipo C sources file (*.c), e digite um nome para o seu
programa.
Se não houver erros surgirá uma janela informando que est[a
tudo ok – clique em Fechar.
Execute o programa clicando no botão “Executar”.

(12) Outras ferramentas de aprendizagem

3 Interpretadores e compiladores
3.3 Outras ferramentas de aprendizagem

Existem diversas soluções para auxiliar no aprendizado de
programação, algumas bem práticas e interessantes. Não nos
dedicamos a testar todas elas profundamente, nem era esse o
objetivo. Portanto, atenção para diferenças de sintaxe, e
também para a disponibilidade dos respectivos sites.
--
Atenção! Todos os exemplos e exercícios deste curso foram
escritos e testados nas ferramentas Portugol IDE e DevC++. Não
é obrigatório usar as mesmas, mas caso decida usar outras,
lembre-se que você terá de adaptar tudo de forma a fazê-los
mostrar resultados semelhantes.
Bem, pode ser um ótimo exercício para quem gosta de
desafios...
--

(13) Algoritmos

4 Algoritmos
4 Algoritmos

Um algoritmo é um conjunto de instruções bem definidas e não
ambíguas disposto em uma ordem específica, cada uma das
quais devendo ser executadas mecânica ou eletronicamente em
um período de tempo finito, no qual se admitem dados de
entrada que serão tratados (processados) e transformados em
dados de saída (resultado).
Frequentemente são ilustrados por exemplos de receitas
culinárias, embora muitos algoritmos sejam mais complexos.
Eles podem repetir passos (fazer interações) ou necessitar de
decisões (como lógica ou comparação) até que a tarefa seja
finalizada.
(Figura - Receita de bolo. Fonte: própria)
Um algoritmo não necessariamente é um programa de
computador, e sim os passos para realizar uma tarefa. Sua
implementação pode ser feitar por um computador, por
equipamentos ou mesmo pelo ser humano. Como na
matemática em que um resultado pode ser obtido por diversos
cálculos diferentes em alguns casos, nos algoritmos, podemos
realizar a mesma tarefa usando um conjunto diferenciado de
instruções em mais ou menos tempo e espaço que outros.
[Exercícios] Será que você entendeu os conceitos básicos de
Algoritmos?

(14) Criando um algoritmo

4 Algoritmos
4.1 Criando um algoritmo

Para que você possa criar um algoritmo é necessário que você
analise cada tópico descrito abaixo:
Entender o problema;
Determinar os dados de entrada;
Determinar como os dados serão processados;
Determinar os dados de saída;
Construir o algoritmo;
Testar o algoritmo.
(Figura - Processo de criação de um Algoritmo. Fonte: própria)
Imagine que você vai escrever uma receita de bolo para alguém.
Seu problema é “fazer um bolo” e então você precisa saber o
que é um bolo, quais são os ingredientes da receita e como
você irá misturá-los para ter um bolo.
ENTRADA: Para determinar quais são os dados de entrada você
descreve os ingredientes;
PROCESSAMENTO: Para determinar como eles serão
processados você descreve o modo de preparo;
SAÍDA: Para determinar os dados de saída você descreve como
é o bolo desejado.
Por fim, você constrói o algoritmo (a receita) escrevendo um
passo-a-passo. Para testar o algoritmo criado, você o executa.
Neste caso, você segue a receita escrita avaliando os resultados
de cada passo. Se no final você tiver um bolo conforme o
desejado, sua receita está certa. Caso contrário será necessário
corrigir os passos desta receita.

(15) Tipos de algoritmo

4 Algoritmos
4.2 Tipos de algoritmo

Existem diversos tipos de algoritmos. Dentre eles, podemos
citar: descrição narrativa, fluxograma, pseudocódigo e diagrama
de Chapin.
Digamos que o nosso problema seja verificar se um estudante é
aprovado ou reprovado, a partir da informação de duas notas.
Observe a solução em cada um dos tipos apresentados (não se

70

preocupe em entender os códigos ainda):
Narrativa
A descrição narrativa utiliza uma linguagem natural para
especificar os passos para realizar tarefas.
 Exemplo:
Obter as notas das duas provas do estudante;
Somar a nota das provas e ividir o resultado por 2;
Se o resultado for maior ou igual a 7, o estudante foi aprovado;
caso contrário, ele foi reprovado.
Fluxograma (ou diagrama de blocos)
Esta é uma forma universal de representação, pois se utiliza de
figuras geométricas para ilustrar os passos a serem seguidos
para resolução dos problemas.
(Figura - Exemplo de fluxograma. Fonte: própria)
Pseudocódigo
Um pseudocódigo utiliza linguagem estruturada e se assemelha
em sua forma normal a um programa escrito na linguagem de
programação, também chamado de português estruturado.
Neste minicurso iremos representar os algoritmos através da
pseudolinguagem.
Exemplo (lembre-se que pode haver diferença na sintaxe de
algumas pseudolinguagens):
inicio
 variavel real N1, N2, media
 escrever "Digite a primeira nota"
 ler N1
 escrever "Digite a segunda nota"
 ler N2
media <- (N1 + N2)/2
 se N1 >= 7 entao
 escrever "\nAprovado"
 senão
 escrever "\nReprovado"
 fim se
fim
Diagrama de Chapin
Apresenta a solução de problemas por meio de um diagrama de
quadros através de uma visão hierárquica e estruturada.
(Figura - Exemplo de diagrama de Chapin. Fonte:
<http://image.slidesharecdn.com/logicaalgoritmo02algoritmo-
1231615383342346-2/95/logica-algoritmo-02-algoritmo-22-
728.jpg?cb=1231594394>)
Em nosso curso teremos noções de NARRATIVA, e usaremos
PSEUDOCÓDIGO para intermediar a linguagem natural e uma
linguagem de programação (como o C, no nosso caso).

(16) Sobre narrativas

5 Sobre narrativas
5 Sobre narrativas

Antes de começarmos a escrever algoritmos através do
pseudocódigo, precisamos treinar a construção de algoritmos
em uma linguagem mais "humana".
As NARRATIVAS podem parecer a princípio um pouco distantes
do nosso objetivo de escrever programas. Porém, são recursos
muito úteis para construir em nossa mente as habilidades para
resolver problemas através da LÓGICA.

(17) Tipos de narrativas

5 Sobre narrativas
5.1 Tipos de narrativas

Utilizaremos a descrição narrativa para descrever as ações de
forma ordenada (narrativa sequencial), para descrever
caminhos alternativos através de uma seleção (narrativa de
seleção) ou repetir determinadas ações até conseguir o
resultado esperado (narrativa de repetição).
[Materiais] Narrativa sequencial
[Materiais] Narrativa de seleção

[Materiais] Narrativa de repetição

(18) Exercitando as narrativas

5 Sobre narrativas
5.2 Exercitando as narrativas

Podemos descrever algumas narrativas sobre as atividades mais
simples, como fazer um café. Mas o nosso objetivo aqui é
desenvolver as suas habilidades com lógica, para a resolução de
problemas mais complexos. Então, como "algoritmizar" um
problema em forma de narrativa?
[Exemplos] Soma de dois numeros
Agora, vamos fazer o mesmo para a divisão de dois números:
[Exemplos] Divisao de dois numeros
Note que em uma divisão a ordem de entrada dos números é
importante.
Mas... e se o segundo número for zero?
Precisaremos utilizar o tipo de Narrativa de Seleção, pois se o
denominador da divisão for zero não poderá haver divisão.
[Exemplos] Divisao de dois numeros se possivel
--
Dica: nem sempre os critérios, como o da divisão por zero,
estarão tão explícitos assim. Avalie sempre todas as situações
possíveis de ocorrer, e procure criar seus próprios critérios
(claro, usando o bom senso e dentro do que for realmente
necessário).
--

(19) Sobre pseudocódigos

6 Sobre pseudocódigos
6 Sobre pseudocódigos

O objetivo de um pseudocódigo (ou pseudolinguagem) é
intermediar a linguagem natural e linguagem de programação
para que possamos representar um algoritmo. Para isso, é
importante entendermos como é a estrutura de um
pseudocódigo e também estabelecermos algumas predefinições
para "falarmos a mesma língua" quando formos escrevê-los no
computador.

(20) Estrutura de um pseudocódigo

6 Sobre pseudocódigos
6.1 Estrutura de um pseudocódigo

A estrutura de um pseudocódigo corresponde às seguintes
partes:
Na primeira parte (nem sempre obrigatória) é a identificação do
algoritmo.
A segunda parte é onde identificamos as variáveis a serem
usadas no restante do programa (declaração de variáveis);
Na terceira parte fica o corpo principal do programa,
identificada entre “marcas” de início e fim;
De uma forma genérica, podemos representar assim a estrutura
descrita acima:
(animação)
Dependendo do tamanho do programa, começa a ficar mias
difícil de lembrar como você o criou e organizou. Por isso é
importante fazer “anotações” ou comentários, sobre o que faz
cada linha ou cada parte do programa.
Observe o mesmo texto do programa anterior, agora com os
comentários:
algoritmo “nome”
// Primeiro exemplo de pseudocódigo
declarar (ou variaveis, var)
...
Inicio
// Fazendo o algoritmo imprimir um alô mundo
...

71

Fimalgoritmo

(21) Predefinicoes para escrita de pseudocódigos

6 Sobre pseudocódigos
6.2 Predefinições para escrita de pseudocódigos

Para “falarmos a mesma língua”, é importante combinarmos
algumas definições, que serão futuramente adotadas em um
aplicativo para escrever pseudocódigos no computador.
1. Sintaxe
Nomes de variáveis: sensíveis a maiúsculas/minúsculas.
Todos comandos em minúsculas.
Usar sublinhado (no lugar de negrito) para destacar as palavras-
chave.
Não precisa de “;” no final das linhas.
Procurar escrever tudo sem acentos ou cedilhas.
Seta de atribuição: pode ser <- no lugar de ←.
Assim como nos conjuntos da Matemática, aqui também
utilizaremos números inteiros ou reais.
Números: 3.14 e não 3,14 (usar ponto, e não a vírgula, para
casaas decimais).
2. Constantes
Informação que não sofre alteração, ou seja, é fixa.
Ex.: atribuir a uma constante pi o valor real de 3,14.
Pode-se declarar constantes conforme abaixo:
 declarar
 constante pi <- 3.14 real
3. Variáveis
Variáveis do tipo caractere usaremos entre aspas simples;
variáveis do tipo alfanumérico, escreveremos entre aspas
duplas;
Variáveis do tipo lógico, escreveremos com "Verdadeiro" e
"Falso".
Informação que pode sofrer alteração, ou seja, é variável.
Ex.: pode-se definir variável x dentro do pseudocódigo e este
valor poderá se alterar durante a execução do programa.
Pode-se declarar variáveis conforme abaixo:
 declarar
 X: inteiro
4. Tipos de dados
Inteiro. Exemplos:
-5
0
32
Real (usa-se ponto, e não vírgula). Exemplos:
-9.0
0.5
Caracter (entre aspas simples). Exemplos:
‘1’
‘E’
‘%’
Alfanumérico (entre aspas duplas). Exemplos:
“15”
“Eu”
“Pare!”
“&%@”
Lógico. Exemplos:
Verdadeiro
Falso
Pode-se declarar vários dados em pseudocódigo na mesma
linha quando eles forem do mesmo tipo:
 declarar
 telefone, idade, valor, cor: alfanumérico

(22) Programa

7 O que é um programa?
7 O que é um programa?

Figura - O que é um programa.

Um programa de computador é um conjunto de instruções que
descrevem uma tarefa a ser realizada por um computador. Ele
pode se referir ao código fonte, escrito em alguma linguagem
de programação, ou ao arquivo executável deste código fonte.
O programador, por sua vez, é o profissional que cria os
programas e os disponibiliza em mídias ou na internet.
O usuário busca estes programas e os instala em seu
computador. Este usuário não precisa entender de
programação para utilizar o programa.

(23) Estrutura de um programa

7 O que é um programa?
7.2 Estrutura de um programa

Programar é codificar um algoritmo em uma linguagem de
programação específica.
Todo programa de computador tem uma estrutura, que
determina a sua forma de funcionamento e a lógica que lhe
será permitida.
1. Estrutura básica de um programa em C
tipo nomeFunc (declaracao dos parametros)
{
 declaracao de variaveis;
 instrucao 1;
 instrucao 2;
 ...
 instrucao n;
 return var_tipo;
}
Comparando com a estrutura de programa da
pseudolinguagem:
(figura)
Observe os conjuntos de instruções nas estruturas
apresentadas (intrucao 1, instrucao 2, ..., instrucao n). Podemos
chamar estes conjuntos de BLOCOS. De forma geral, dizemos
que os blocos são conjuntos de ações com uma função definida.
Cada linha de um programa poder conter uma ação, então
definimos aonde um bloco começa, com uma marcação de
início, e ao terminar as ações com uma marcação de fim.
Desta forma, podemos dizer que um algoritmo pode ser um
bloco, pois tem as marcações de “início” e “fim”. Dentro de um
programa podem haver vários blocos como, por exemplo, o de
declaração de variáveis.
--
Dica: sempre que estudar um programa, procure identificar
aonde estão estas estruturas, seus blocos, início/fim de
comandos, instruções, comentários, indentações, etc. Estes
elementos agilizam muito a compreensão da lógica de quem
programou (mesmo que tenha sido você), e pode ser muito útil,
por exemplo, na identificação de erros ou na implementação de
uma melhoria.
--
2. Tipos de estruturas
Mostramos nos exemplos anteriores um tipo de estrutura
chamada SEQUENCIAL, pois as ações são executadas numa
ordem sequencial, ou seja, de cima para baixo, da esquerda
para direita. Além desta ainda existem ainda a estrutura
CONDICIONAL e a estrutura de REPETIÇÃO, as quais
apresentaremos melhor com exemplos e exercícios, mais
adiante.
3. Primeiro programa
Vamos escrever então o nosso primeiro código, para começar a
se habituar com as ferramentas (interpretadores ou
compiladores), e nada melhor do que começar com o clássico
"Alô mundo!".
--
Dica: caso ainda não tenha prática para escrever programas,
sugerimos simplesmente copiar dos exemplos e exercícios para
fazê-los funcionar da primeira vez. Depois, "brinque" com os
valores e parâmetros, o observe os resultados a cada mudança.

72

Com a prática você irá começar a compreender cada parte do
programa.
--
[Materiais] Alo mundo (veja também a versão em
pseudocódigo)
Note que é uma estrutura sequencial, com apenas uma
instrução, que está dentro de um único bloco. Simples, não?
Porém, vamos avaliar:
--
Dica: você pode usar um método interessante para testar seus
programas. Saiba mais sobre o Teste de Mesa.
[Materiais] Teste de mesa
--

(24) Linguagem C - Principais conceitos

7 O que é um programa?
7.1 Linguagem C - Principais conceitos

Compilação
Sempre que se codifica um algoritmo numa linguagem de
programação, este programa precisa ser “traduzido” para a
linguagem entendida pela máquina. A este processo chama-se
compilação (ou interpretação).
Compiladores
O trabalho de compilação é feito por um outro programa editor,
chamado linkeditor, que além de compilar o código ainda cria
um produto final com a extensão .EXE, o qual pode ser
executado diretamente no sistema operacional. Exemplos de
compiladores:
DevC++
Microsoft Visual C++
CppDroid (para celulares Android)

(25) main()

7 O que é um programa?
7.2.1 main()

O ponto de entrada de qualquer programa escrito em C é a
função main. Ela é obrigatória e é por ela que o sistema
operacional sabe por onde começar a execução do programa.
Parênteses
Os parênteses após o nome main() são a característica que
permite que o compilador saiba que se trata de uma função.
Sem eles, o compilador poderia pensar que o nome refere-se a
uma variável.
No nosso programa, os parênteses estão vazios, mas nem
sempre isso ocorre.
Blocos
Tudo o que estiver entre a chave de abertura de bloco”{“ e a
chave de fechamento de bloco “}”. Equivale, respectivamente,
às marcas de início e fim, no pseudocódigo.
Espaços
Você pode inserir espaços em branco, tabulações e pular linhas
à vontade em seus programas. O compilador ignora estes
caracteres.
--
É importante destacar que, apesar da estrutura e sintaxe rígida,
não há um estilo obrigatório para a escrita de programas em C.
--

(26) system()

7 O que é um programa?
7.2.2 system()

Executa um comando interno do sistema operacional ou um
programa (.EXE, .COM, .BAT).
A função system() não faz parte da linguagem C, e sim da
biblioteca stdlib.h.

(27) #include

7 O que é um programa?
7.2.3 #include

Diretivas do pré-processador

As duas primeiras linhas não são instruções da linguagem C (não
há ponto-e-vírgula no final), mas sim diretivas do pré-
processador.
Diretiva é uma indicação, instrução ou norma que deve orientar
uma ação ou atividade.
O pré-processador é um programa que examina o programa
fonte em C e executa certas modificações com base em
instruções chamadas diretivas.
Inicia por (#) e deve ser escrita em uma única linha.
A diretiva #include: inclui outro arquivo em nosso programa
fonte.
Na verdade, o compilador substitui esta linha pelo conteúdo do
arquivo indicado.

(28) Constantes e comandos de atribuição

7 O que é um programa?
7.3 Constantes e comandos de atribuição

Constantes
Podemos dizer que uma informação é constante quando não
sofre alteração durante a execução de um processo. Por
exemplo: se definirmos dentro de um algoritmo ou programa
que a variável PI valerá 3.14, este valor permanecerá o mesmo
até o final da execução.
Tipos de constantes
Constantes numéricos: são valores numéricos escritos na forma
usual das linguagens de programação. Podem ser inteiros ou
reais. Neste último caso, o separador de decimais é o ponto e
não a vírgula, independente da configuração regional do
computador onde o programa está sendo executado.
Caracteres constantes: Números que cabem em um único byte
(0 a 255). São delimitados por aspas simples ('), ou apóstrofos.
Cadeia de caracteres constantes: qualquer sequência de
caracteres delimitada por aspas duplas ("").
Comando de Atribuição
Nas linguagens de programação em geral o comando de
atribuição é representado pelo símbolo igual (=), e é utilizado da
seguinte forma:
variavel = valor
[Exemplo] Atribuições de variáveis
Veja como funcionam os comandos de atribuição para o
pseudocódigo:
[Materiais] Pseudocódigo - Comando de atribuição
[Exemplo] Pseudocódigo - Atribuições com variáveis

(29) Comandos de Entrada-Saida

7 O que é um programa?
7.4 Comandos de Entrada-Saída

Os comandos de entrada e saída são usados para permitir uma
interação entre o computador e o usuário (ou o programador).
Saída
A saída é o resultado retornado por uma máquina. É a saída
padrão do sistema operacional.
[Materiais] Pseudo x C - Comandos de saida
Códigos especiais
Alguns caracteres não podem ser digitados diretamente dentro
do argumento da função. Para tanto, a linguagem usa um
recurso, colocando uma barra invertida "\" combinada com
outros caracteres.
O \n, por exemplo, informa à função que a impressão deve

73

continuar na linha seguinte. Da mesma forma funciona para os
demais códigos.
[Materiais] Tabela de codigos especiais
Códigos de formatação
[Materiais] Tabela de codigos de formatacao
Entrada
Entendemos como entrada quando, por exemplo, o usuário
fornece algum dado para o computador (usuário digita um
dado). Primeiro o usuário digita este valor pelo teclado, e em
seguida o valor é atribuído à variável.
Note que a atribuição é uma forma de entrada, só que feita
pelo próprio algoritmo, e não pelo usuário.

(30) printf

7 O que é um programa?
7.4.1 printf

Exemplo:
printf("Alo mundo!")
A função printf é associada à saída padrão do sistema
operacional, geralmente vídeo. Ela não faz parte da linguagem
C, e sim da biblioteca stdio.h.
Dentro dos parênteses desta função fica o seu argumento. No
exemplo, este argumento está entre aspas "Alo mundo!". Ou
seja:
Função: printf();
Argumento: "Alo mundo!"

(31) scanf

7 O que é um programa?
7.4.2 scanf

A função scanf() nos permite ler os dados digitados pelo teclado
(entrada padrão). Ela é o complemento da função printf(), e da
mesma forma, já está incluída na biblioteca-padrão dos
compiladores C.
Marcadores de formatação mais comuns para scanf():
%d Número inteiro
%f Número real (notação normal)
%.1f Número real com 1 casa decimal
%s Sequência de caracteres (string)
%c Caractere simples
Leitura de mais de um valor ao mesmo tempo:
scanf(“%s %d”, &nome, &num);
Vetor de caracteres:
char palavra[15];
scanf (“%s”, &palavra);

(32) Strings

7 O que é um programa?
7.5 Strings

Strings armazenam um texto, chamado cadeia de caracteres.
Elas podem conter nenhum, um ou mais caracteres.
As strings sempre estarão entre aspas duplas (""), enquanto o
tipo caractere (que é como uma string de apenas um caractere)
estará entre aspas simples (').
Internamente, para o computador, a string termina com um
caractere nulo '\0', que indica o final desta cadeia.
Por exemplo, esta declaração e inicialização cria uma string com
a palavra "MARIA":
char nome[6] = {'M', 'A', 'R', 'I', 'A', '\0'};
Para manter o \0 (caractere nulo) no fim da cadeia, o tamanho
total será de um número a mais dos caracteres na palavra
"MARIA".
Também podemos escrever a declaração acima desta forma:
char nome[] = "MARIA";
Se a string armazenar um texto com mais de uma linha, cada

uma delas deve finalizar com um caractere identificador de
nova linha.
Funções das strings em C
Para usar as funções de string deve-se importar a diretiva
string.h.
[Materiais] Tabela das funções de string
[Exemplos] (veja os exemplos de funções de string)
Aritmética com strings
A maioria dos operadores funcionam como nos valores
numéricos (+=, >, < , ==, etc)
Exemplo:
string texto1;
string texto2;
texto1 = "Fulano ";
texto2 = "da Silva";
texto1 = texto1 + texto2 ; // texto1 contém "Fulano da Silva"

(33) Dados Variaveis e Operadores

8 Dados, variáveis e operadores
8 Dados, variáveis e operadores

Os algoritmos ou programas que você criou até agora realizam
operações envolvendo dados e variáveis.
Agora iremos aprender quais são os dados, as variáveis,
operadores e quais suas precedências.

(34) Dados

8 Dados, variáveis e operadores
8.1 Dados

Dados
A informação é o que faz com que os computadores sejam
necessários, já que eles são capazes de armazenar e processar
um grande volume de dados de forma que nós, seres humanos,
possamos nos dedicar a outras atividades. O computador
armazena quatro tipos primitivos de dados: inteiro, real,
caractere ou lógico.
Entretanto cada linguagem de programação pode definir seus
tipos de maneiras diferentes. Em nosso pseudocódigo
poderemos utilizar os seguintes tipos:
Inteiro: Os dados do tipo inteiro são todo e qualquer número
inteiro, sejam eles negativos ou não.
Real: Os dados do tipo real são todos aqueles pertencentes ao
conjunto dos números reais (todo número inteiro é também um
número real). Para representá-los utilizaremos um ponto no
lugar da vírgula (10.4 ao invés de 10,4).
Lógico: Os dados do tipo lógico aceitam apenas dois valores:
verdadeiro ou falso (sem fazer a distinção de maiúsculas e
minúsculas, ou seja, podemos escrever VERDADEIRO ou
verdadeiro e o interpretador irá reconhecer o valor).
Caractere: Os dados do tipo caractere são todos aqueles
compostos por um único caractere alfanumérico, ou seja,
números (0-9), letras (a-z) e especiais (*, +, -, /, %, $, #, etc.).
Sempre escreveremos os caracteres dentro de aspas duplas.
Texto: Os dados de do tipo texto são todos aqueles compostos
por quantos caracteres alfanuméricos desejarmos. Se
quisermos um texto que contenha aspas, devemos escapá-las,
escrevendo o código \"".
Ao definir utilizá-los para declarar constantes e variáveis
usamos as seguintes palavras reservadas: inteiro, real, logico,
caractere e texto.
[Materiais] Tabela - Pseudo x C - Tipos de dados

(35) Operadores básicos

8 Dados, variáveis e operadores
8.2 Operadores básicos

Em programas de computador uma das principais

74

funcionalidades é a capacidade de realizar cálculos. Para tanto,
é importante sabermos quais os operadores disponíveis e como
podemos utilizá-los.
Os operadores básicos são os aritméticos (soma, subtração,
multiplicação e divisão).
+ Adição. Ex.:
2+3, x+y
- Subtração. Ex.:
4-2, n-m
* Multiplicação. Ex.:
3*4, A*B
/ Divisão. Ex.:
10/2, X1/X2

(36) Operadores aritmeticos em C

8 Dados, variáveis e operadores
8.3 Operadores aritméticos em C

Além dos operadores básicos, existem em C alguns outros
operadores bastante úteis:
pow - potenciação. Ex.: pow(2,3)
sqrt - radiciação. Ex.: sqrt(9)
% - resto da divisão. Ex.: 7%3 (equivalente ao 7 mod 3, na
matemática)
Para usar os operadores pow e sqrt, deve-se incluir a biblioteca
math.h (o operador % não precisa, pois já está incluso na
linguagem C).
Operadores de divisão
% Resto da divisão
9 % 4
(resulta em 1)
27 % 5
(resulta em 2)
div Quociente da divisão
9 div 4
(resulta em 2)
27 div 5
(resulta em 5)
Operadores de potenciação e radiciação
Para usar os operadores pow e sqrt, deve-se incluir a biblioteca
math.h (o operador % não precisa, pois já está incluso na
linguagem C).
pow Potenciação: x elevado a y. Ex.:
pow(2,3) ou 2^3
sqrt Radiciação: raiz quadrada de x. Ex.:
sqrt(9)
Precedência entre operadores aritméticos
Ao se trabalhar com operadores aritméticos em programação, é
imprescindível saber a ordem em que o computador os executa.
A isso se chama precedência. São similares à precedência
utilizada na matemática.
Primeiro, são realizadas as operações que estiverem entre
parênteses. Em seguida, são executadas as operações de
potência e raiz quadrada. Depois as operações de multiplicação
e divisão, e por último, as operações de soma e subtração.
Reescrevendo:
1ª Parênteses mais internos: (...(...(...)...)...)
2ª pow sqrt
3ª * / div %
4ª + -

(37) Operadores relacionais

8 Dados, variáveis e operadores
8.4 Operadores relacionais

Além de fazer cálculos aritméticos, os programas podem
trabalhar com operadores relacionais, ou seja, comparar os
termos que estão de cada lado do operador. O resultado é do
tipo lógico (VERDADEIRO ou FALSO). Por exemplo:

3=3
Estamos afirmando para o computador que 3 é igual a 3.
O computador nos responde dizendo se esta afirmação é
verdadeira ou falsa (verdadeira, no caso, pois 3 é, de fato, igual
a 3).
Se afirmarmos que 3 é menor que 3 (3<3) então a resposta será
falsa (pois, obviamente, 3 não é menor que 3).
Em outro exemplo:
x <- 5 (atribuimos previamente à variável x um valor de 5).
y <- 8 (atribuimos previamente à variável y um valor de 8).
y > x
Como afirmarmos que y é maior que x, o computador nos
retornará VERDADEIRO (pois 8 é maior que 5).
por outro lado, se afirmarmos que x>y, ou y<x, a resposta é
FALSO (pois 5 não é maior que 8).
No mesmo exemplo acima, se fizermos x<-5 e y<-5, o que
aconteceria na expressão y>=x ?
Observe que usamos >=, pois o computador não tem o símbolo
equivalente ao "maior ou igual a", da matemática. Neste caso,
temos dois operadores na mesma expressão. É como se
disséssemos: x>y ou x=y.
A resposta seria, então, VERDADEIRO, pois não atende à
expressão x>y, mas atende à x=y.
Operadores relacionais
= Igual a. Ex.: 3=3, x=y
> Maior que. Ex.: 5>4, x>y
< Menor que. Ex.: 3<6, x<y
>= Maior ou igual a. Ex.: 5>=3, x>=y
<= Menor ou igual a. Ex.: 3<=5, x<=y
<> Diferente de . Ex.: 8<>9, x<>y
Precedência entre os operadores relacionais
1ª =
2ª <
3ª <=
4ª >
5ª >=

(38) Operadores lógicos

8 Dados, variáveis e operadores
8.5 Operadores lógicos

Os operadores lógicos são muito importantes na solução de
problemas que envolvem lógica.
Eles trabalham de forma semelhante aos operadores
relacionais, e podem ser usados de forma combinada.
Podem ser de 3 formas: negação (não), conjunção (e) ou
disjunção (ou).
não - negação.
e - conjunção.
ou - disjunção.
Os operadores lógicos obedecem a algumas regras, que
colocamos aqui como tabelas verdade. As afirmações (ou
proposições) podem ser o resultado de operadores relacionais
(Ex.: A <- 15 mod 4 < 19 mod 6)
Operação de negação
Na tabela da negação, se a afirmação (ou proposição) A for
verdadeira, então NÃO A será falsa.
A não A
F V
V F
Operação de conjunção
Na tabela da conjunção, se a proposição A for FALSO e a
proposição B for VERDADEIRO, então a conjunção da
proposição A com a B será FALSO.
A B A e B
F F F
F V F
V F F
V V V
Operação de disjunção

75

O mesmo acontece com a tabela dos operadores de disjunção
(OU).
A B A ou B
F F F
F V V
V F V
V V V
Precedência entre Operadores Lógicos
Da mesma forma que os operadores aritméticos, também existe
uma precedência para os operadores lógicos (resolver primeiro
os NÃO, depois os E e finalmente os OU).
1ª Não
2ª e
3ª ou

(39) Precedência entre todos os Operadores

8 Dados, variáveis e operadores
8.6 Precedência entre todos os Operadores

Avaliando todos os tipos de operadores vistos até aqui, também
se estabelece uma precedência entre eles (primeiro resolve-se
tudo o que está entre parênteses, depois os operadores
aritméticos, seguidos pelos relacionais, e finalmente os
operadores lógicos).
1ª Parênteses mais internos
2ª Operadores aritméticos
3ª Operadores relacionais
4ª Operadores lógicos

(40) Estrutura de Controle – Decisão

9 Estrutura de controle – Decisão
9 Estrutura de Controle – Decisão

Estrutura de controle – Decisão (condição)

Tomar decisões - esta é uma das funções mais importantes de
um algoritmo ou programa. A partir de escolhas, que podem ser
tomadas a partir de uma EXPRESSÃO CONDICIONAL, o
programa decide a próxima ação a tomar.
O resultado desta expressão poderá ser Verdadeiro ou Falso,
Sim ou não, 0 ou 1, dependendo dos critérios adotados no seu
desenvolvimento.
(Figura - Tomada de decisão)
Estudaremos estes tipos de estrutura de condição:
Decisão simples - se...então (ou if...then)
Decisão composta - se...senão...se...(ou if...else...if...)
Múltipla escolha - escolha...caso (ou switch...case)

(41) Estrutura de decisão simples

9 Estrutura de controle – Decisão
9.1 Estrutura de decisão simples

Estrutura de Controle - Condição
Quando esta sequência é organizada como um fluxo de
execução, podemos determinar estruturas básicas de controle
para criar algoritmos e solucionar problemas. Começaremos
estudando as estruturas de decisão (simples ou composta) e as
estruturas de seleção (múltipla escolha).
Estrutura de Decisão Simples (se...então)
Uma estrutura de decisão funciona exatamente como o nome
diz: o programa deverá tomar uma decisão de que caminho
tomar, baseado em uma condição.
Na estrutura de decisão simples, SE determinada condição for
verdadeira, ENTÃO faça determinada ação.
Após a decisão, o fluxo de ações segue normalmente.

(42) Estrutura de decisão composta opção 1

9 Estrutura de controle – Decisão
9.2 Estrutura de decisão composta

Uma estrutura de seleção nada mais é do que uma estrutura de
seleção disposta de forma encadeada. Mas o que é uma
estrutura de seleção encadeada? São várias decisões, uma
dentro da outra. Lê-se:
Se a primeira condição for verdadeira, execute a primeira ação;
senão avalie a segunda condição. Se esta for verdadeira,
execute a segunda ação; senão avalie a terceira condição... E
assim por diante.
Note que estamos fazendo escolhas, como em um menu:
se condição 1, ação 1; Se condição 2, ação 2; (e assim por
diante).

(43) Estrutura de decisão composta opção 2

9 Estrutura de controle – Decisão
9.2 Estrutura de decisão composta

Uma estrutura de seleção nada mais é do que uma estrutura de
seleção disposta de forma encadeada. Mas o que é uma
estrutura de seleção encadeada? São várias decisões, uma
dentro da outra. Lê-se:
Se a primeira condição for verdadeira, execute a primeira ação;
senão avalie a segunda condição. Se esta for verdadeira,
execute a segunda ação; senão avalie a terceira condição... E
assim por diante.
Note que estamos fazendo escolhas, como em um menu:
se condição 1, ação 1
Se condição 2, ação 2
(e assim por diante).

(44) Estrutura de decisão encadeada opção 1

9 Estrutura de controle – Decisão
9.3 Estrutura de decisão encadeada

Digitar uma estrutura encadeada é muito trabalhoso, quanto
mais decisões se necessitar. Para nosso alívio, existe um
comando que substitui toda esta estrutura, de forma mais
simples: ESCOLHA (CASO).
Interpretamos assim: Caso Condição 1 seja verdadeira (V1),
escolha ação 1 (C1); Caso V2, escolha C2; Caso V3, escolha C3; e
assim por diante.

(45) Estrutura de decisão encadeada opção 2

9 Estrutura de controle – Decisão
9.3 Estrutura de decisão encadeada

Digitar uma estrutura encadeada é muito trabalhoso, quanto
mais decisões se necessitar. Para nosso alívio, existe um
comando que substitui toda esta estrutura, de forma mais
simples: ESCOLHA (CASO).

Interpretamos assim:
Caso Condição 1 seja verdadeira (V1), escolha ação 1 (C1); Caso
V2, escolha C2;
Caso V3, escolha C3;
e assim por diante.

(46) Estrutura de controle – Laços

10 Estrutura de controle – Laços (repetição)
10 Estrutura de controle – Laços (repetição)

Mostraremos aqui o funcionamento das estruturas de repetição
(ou laços de repetição). Estas estruturas permitem a repetição
de um conjunto de ações, até que a condição desejada seja
atingida.

76

Estudaremos aqui os laços:
do...while (ou Enquanto...Faça)
while (ou Repita...até)
for (ou para)

(47) Laco while (enquanto)

10 Estrutura de controle – Laços (repetição)
10.1 Laço while (enquanto)

Este laço se repete com base em uma PRECONDIÇÃO (a
condição é verificada no início do laço):
Enquanto (condição) for verdadeira, faça (ação).
Neste tipo de estrutura, se a condição for já de início falsa, a
ação jamais será executada.
Exemplo:
Enquanto (x<3) for verdadeira, escreva o valor de x e
incremente x.
Note que cada vez que a estrutura é repetida, o valor de x
aumenta em 1, ou seja, é incrementado.
Se o valor inicial de x era 0, na primeira vez que a estrutura for
repetida ele valerá 1, na segunda, 2, e assim por diante.
Quando x valer 3, a estrutura não será mais repetida.

(48) Laco do...while (repita)

10 Estrutura de controle – Laços (repetição)
10.2 Laço do...while (repita)

Diferente do enquanto...faça, este laço se repete com base em
uma POSCONDIÇÃO (a condição é verificada ao final do laço):
Faça (ação) até que (condição) seja verdadeira.
Este tipo de estrutura é usado quando não sabemos a princípio
quantas vezes a ação será repetida, mas precisamos que ela
seja executada pelo menos uma vez.
Exemplo:
Escreva o valor de x e incremente x, até que (x<3) seja
verdadeira.
Note que cada vez que a estrutura é repetida, o valor de x
aumenta em 1, ou seja, é incrementado.
Se o valor inicial de x era 0, na primeira vez que a estrutura for
repetida ele valerá 1, na segunda, 2, e assim por diante.
Quando x valer 3, a estrutura não será mais repetida.

(49) Laco para (for)

10 Estrutura de controle – Laços (repetição)
10.3 Laço para (for)

O laço Para repete uma ação por um determinado número de
vezes.
Diferente das estruturas Enquanto ou o Repita, este tipo de laço
não necessita de uma expressão de incremento, pois este
incremento é declarado junto ao próprio comando.
Exemplo:
Neste programa, x vale de 0 até 2. Isso quer dizer que da
primeira vez que a estrutura for repetida, x valerá 0; na
segunda, x valerá 1, e assim por diante, até que x seja igual a 2.
Adicionalmente, este comando permite definir o passo, ou seja,
de quanto em quanto o x será incrementado.
Neste exemplo o incremento é de 1, mas poderia ser de 2 em 2,
de 3 em 3, e assim por diante.
Pseudocódigo:
inicio
 inteiro x
 para x de 0 ate 2 passo 1
 escrever ""\nO valor de x eh: "",x
 proximo
fim
Linguagem C:
#include <stdio.h>

void main()
{
 int x;
 for (x=0; x<3; x++){
 printf(""\nO valor de x eh: %d"",x);
 }
}
11.3. Exemplo 1 - Somar n números.

(50) Laco para (for)

10 Estrutura de controle – Laços (repetição)
10.3 Laço para (for)

O laço Para repete uma ação por um determinado número de
vezes.
Diferente das estruturas Enquanto ou o Repita, este tipo de laço
não necessita de uma expressão de incremento, pois este
incremento é declarado junto ao próprio comando.

(51) Vetores e matrizes

11 Vetores e matrizes
11 Vetores e matrizes

As variáveis que vimos até agora armazenam somente um valor
de cada vez. Mas, às vezes, precisamos agrupar mais de um
valor, relacionados à mesma variável. Para isso, precisamos
utilizar os conceitos de Vetores e Matrizes.
Matriz é uma coleção de variáveis de mesmo tipo que
compartilham o mesmo nome.
Vetor é um termo que tem vários significados, dependendo da
literatura. Em nosso minicurso, consideraremos vetor como
uma matriz de uma única dimensão (1 linha por n colunas).
As matrizes em geral são caracterizadas por se tratarem de uma
única variável de um determinado tamanho que guarda varias
informações do mesmo tipo.
Essas informações são gravadas na memória sequencialmente,
e são referenciadas através de índices.
Estudaremos as matrizes unidimensionais (vetores) e
multidimensionais (matrizes com duas dimensões ou mais).

(52) Vetores

11 Vetores e matrizes
11.1 Vetores

São estruturas indexadas para armazenar dados de mesmo tipo.
Pode-se considerar que são matrizes de uma única dimensão,
ou seja, de 1 linha por n colunas.
Declaração em C:
Tipo nome_vetor[tamanho];
Exemplo: Matriz "Tempo", contém 10 elementos, que vão de 0
a 9:
Índice
0
1
2
3
4
5
6
7
8
9
Valor
1.2
1.5
1.3
1.4
1.4

77

1.2
1.4
1.5
1.3
1.8
Como declarar:
Tempo[10] = {1.2, 1.5, 1.3, 1.4, 1.4, 1.2, 1.4, 1.5, 1.3, 1.8}
Dica: sempre some ao número da dimensão (Ex.: 9) mais um,
que corresponde ao índice do elemento "0" (ou seja, 10
elementos).

(53) Matrizes

11 Vetores e matrizes
11.2 Matrizes

São matrizes linha-coluna, onde o primeiro índice indica a linha
e o segundo a coluna.
Matrizes de duas dimensões
Exemplo:
valor[5][2] é uma de matriz de duas dimensões:
valor 0 1 2
0 5.4 3.7 7.5
1 7.8 8.5 4.4
2 8.0 9.3 3.8
3 6.1 9.2 5.2
4 4.9 5.0 4.6
--
Observação: Em programação, os índices das matrizes sempre
começam com zero.
--
No exemplo acima, dizemos que o valor da linha 1 e coluna 2 é:
4.4
Representamos como:
valor[1][2] = 4.4
Matrizes de mais de duas dimensões
Em programação é permitido que se crie matriz de matriz,
conhecido como matriz multidimensional.
Por exemplo: digamos que a matriz bidimensional do exemplo
acima são os valores referentes ao ano passado, e queremos
adicionar em uma matriz "periodo" os mesmos indices para
este ano; temos então 2 anos para a matriz [2][2]:
periodo[1][2][2]
Exemplo 12.2.2 [LngC] Transferindo matrizes multidimensionais
para funções

EXEMPLOS

(54) Exemplos - Fazer sanduiche

5 Sobre narrativas
5.1.1 Exemplo de narrativa: fazer sanduíche

Pegar o pão.
Cortar o pão ao meio.
Pegar a maionese.
Passar a maionese no pão.
Pegar e cortar alface e tomate.
Colocar alface e tomate no pão.
Pegar o hambúrguer.
Fritar o hambúrguer.
Colocar o hambúrguer no pão.

(55) Exemplos - Tomar banho

5 Sobre narrativas
5.1.2 Exemplo de narrativa: tomar banho

Entrar no banheiro e tirar a roupa.
Abrir a torneira do chuveiro.

Entrar na água.
Ensaboar-se.
Sair da água.
Fechar a torneira.
Enxugar-se.
Vestir-se.

(56) Exemplos - Trocar lâmpada

5 Sobre narrativas
5.1.3 Exemplo de narrativa: trocar lâmpada

Pegar uma lâmpada nova.
Pegar uma escada.
Posicionar a escada embaixo da lâmpada queimada.
Subir na escada com a lâmpada nova na mão.
Retirar a lâmpada queimada.
Colocar a lâmpada nova.
Descer da escada.
Testar o interruptor.
Guardar a escada.
Jogar a lâmpada velha no lixo.

(57) Exemplos - Soma de dois números

5 Sobre narrativas
5.2.1 Exemplo de narrativa: soma de dois números

Problema: escreva um algoritmo para mostrar o resultado da
soma de dois números.
Solução:
Receber os números que serão somados.
Somar os dois números informados.
Mostrar o resultado desta soma.

(58) Exemplos - Divisao de dois números

5 Sobre narrativas
5.2.2 Exemplo de narrativa: divisão de dois números

Problema: escreva um algoritmo para mostrar o resultado da
divisão de dois números.
Solução:
Receber os números que serão divididos.
Dividir os o primeiro número informado pelo segundo.
Mostrar o resultado desta divisão.

(59) Exemplos - Divisão de dois números se possível

5 Sobre narrativas
5.2.3 Exemplo de narrativa: divisão de dois números, se possível

Problema: escreva um algoritmo para mostrar o resultado da
divisão de dois números, caso seja possível.
Solução:
Receber os números que serão divididos.
Se o segundo número for igual a zero, não poderá haver divisão,
pois não existe divisão por zero; caso contrário, dividir o
primeiro número informado pelo segundo.
Mostrar o resultado desta divisão.

(60) Exemplos - Atribuicoes de variáveis

7 O que é um programa?
7.3.1 Exemplos de atribuições de variáveis:

x = 25
y = x + 15 – 3
z = y – x + rad(x) – pot(y,2)

(61) Exemplos - Pseudocodigo - Atribuicoes de variáveis

78

7 O que é um programa?
7.3.2 Exemplos de atribuições de variáveis em pseudocódigo:

x <- 25
y <- x + 15 – 3
z <- y – x + rad(x) – pot(y,2)

(62) Exemplos - Pseudocodigo - Aplicacao de atribuicoes
usando variaveis

7 O que é um programa?
7.3.3 Aplicação de atribuições usando variáveis

inicio
\\ Declaracao de variaveis
 variavel real a, valor1, valor2, matriz[4][10]
 variavel texto nome_do_estudante
 variavel logico sinalizador
\\ Calculos
 a <- 3
 Valor1 <- 1.5
 Valor2 <- Valor1 + a
 matriz[3][9] <- a/4 - 5
 nome_do_estudante <- "José da Silva"
 sinalizador <- FALSO
\\ Mostrar resultados
 escrever a
 escrever "\n",Valor1
 escrever "\n",Valor2
 escrever "\n",matriz[3][9]
 escrever "\n",nome_do_estudante
 escrever "\n",sinalizador
fim

(63) Exemplos - Constantes numéricos

7 O que é um programa?
7.3.4 Exemplos de constantes numéricos

8734
60
13

(64) Exemplos - Caracteres constantes

7 O que é um programa?
7.3.5 Exemplos de caracteres constantes

'A'
'3'
'x'
'\n'
'\t'

(65) Exemplos - Cadeia de caracteres constantes

7 O que é um programa?
7.3.6 Exemplos de cadeia de caracteres constantes

"Alo mundo"
"\nEstou entendendo"

(66) Exemplos - Pseudocodigo - Aplicacao de caracteres
especiais

7 O que é um programa?
7.3.7 Exemplo - pseudocódigo: aplicação de caracteres especiais

inicio
 escrever "Estou \n entendendo"

fim

(67) Exemplos - Constantes no C

7 O que é um programa?
07.3.8 Exemplo - Constantes no C

const double pi;
Pode-se declarar vários dados constantes em C numa mesma
linha se eles forem todos do mesmo tipo.
Observação: no momento da declaração de um dado constante
em C, pode-se também inicializar a constante. Exemplo:
const double pi = 3.14;

(68) Exemplos - Alo mundo

7 O que é um programa?
7.4.1 Alô mundo!

Escreva um programa que mostre na tela a frase "Alo mundo!"
Solução:
 #include <stdio.h>
 void main()
 {
 printf("Alo mundo!");
 }

(69) Exemplos - Pseudocodigo - Alo mundo

7 O que é um programa?
7.4.2 Pseudocódigo - Alô mundo!

Exercício: Escreva um programa que mostre na tela a frase "Alo
mundo!"
Solução:
 inicio
 escrever "Alo mundo!"
 fim

(70) Exemplos - Entrar com inteiro e mostrar

7 O que é um programa?
7.4.3 Exemplo - Entrar com número inteiro e mostrar o valor
digitado

#include < stdio.h >
int main()
{
 int a;
 printf(""Entre com um numero inteiro\n"");
 scanf(""%d"", &a);
 //trecebe um inteiro do usuario
 printf(""O n[umero que voce entrou foi %d\n"", a);
 return 0;
}

(71) Exemplos - Trocar 2 numeros

7 O que é um programa?
7.4.4 Exemplo - Trocar dois números

#include <stdio.h>
int main()
{
int x, y, temp;
printf("Entre com os valores de x e y:\n");
scanf("%d%d", &x, &y);
printf("Antes da troca\nx = %d\ny = %d\n",x,y);
//usando temp para trocar:
temp = x; //armazenar x em temp
x = y; //armazenar y em x

79

y = temp; //mover temp para y
printf("Apos a troca\nx = %d\ny = %d\n",x,y);
return 0;
}
Resultado na tela:
Entre com os valores de x e y:
4
9
Antes da troca
x = 4
y = 9
Apos a troca
x = 9
y = 4

(72) Exemplos - Funcoes string – imprimir

7 O que é um programa?
7.5.1 Exemplos de funções de strings - imprimir

#include <stdio.h>
int main()
{
 char texto[100];
 printf("Escreva algo\n");
 scanf("%s", texto);
/* %s é usado para permitir a entrada de texto pelo usuário*/
 printf("Voce escreveu %s\n",texto);
 return 0;
}

(73) Exemplos - Funcoes string – copiar opção 1

7 O que é um programa?
7.5.2 Exemplos de funções de strings - copiar

#include <stdio.h>
#include <string.h>
main()
{
 char origem[] = "Linguagem C";
 char destino[50];
 strcpy(destino, origem);
 printf("Texto de origem: %s\n", origem);
 printf("Texto de destino: %s\n", destino);
 return 0;
}

(74) Exemplos - Funcoes string – copiar opção 2

7 O que é um programa?
7.5.2 Exemplos de funções de strings - copiar

#include <stdio.h>
#include <string.h>
main()
{
 char origem[] = "Linguagem C";
 char destino[50];
 strcpy(destino, origem);
/*strcpy copiará o texto de origem para destino*/
 printf("Texto de origem: %s\n", origem);
 printf("Texto de destino: %s\n", destino);
 return 0;
}

(75) Exemplos - Funcoes string – comprimento

7 O que é um programa?
7.5.3 Exemplos de funções de strings - Comprimento

#include <stdio.h>

#include <string.h>
int main()
{
 char a[100];
 int comprimento;
 printf("Digite uma string para que seja calculado o seu
comprimento\n");
 gets(a);
 comprimento = strlen(a);
/* A função strlen(string) informa o comprimento da string*/
 printf("O comprimento da string digitada eh:
%d\n",comprimento);
 return 0;
}

(76) Exemplos 07.5.4 Funcoes string – reverter

7 O que é um programa?
7.5.4 Exemplos de funções de strings - Reverter

#include <stdio.h>
#include <string.h>
 int main()
{
 char arr[100];
 printf("Digite uma string para ser revertida\n");
 gets(arr);
 strrev(arr);
/*strrev(string) reverte a string dada */
 printf("A reversa da string digitada é \n%s\n",arr);
 return 0;
}

(77) Exemplos - Funcoes string – concatenar

7 O que é um programa?
7.5.5 Exemplos de funções de strings - Concatenar

#include <stdio.h>
#include <string.h>
int main()
{
 char a[100], b[100];
 printf("Entre com a primeira string\n");
 gets(a);
 printf("Entre com a segunda string\n");
 gets(b);
 strcat(a,b);
/*strcat acrescentará a string b na string a*/
 printf("A string obtida na concatenacao eh %s\n",a);
 return 0;
}

(78) Exemplos - Funcoes string – comparar

7 O que é um programa?
7.5.6 Exemplos de funções de strings - Comparar

#include <stdio.h>
#include <string.h>
int main()
{
 char a[100], b[100];
 printf("Entre com a primeira string\n");
 gets(a);
 printf("Entre com a segunda string\n");
 gets(b);
/*strcmp(string, string) retorna 0 se as strings forem iguais, caso
contrário, elas não são iguais*/
 if(strcmp(a,b) == 0)
 printf("\nAs strings digitadas sao iguais.");

80

 else
 printf("\nAs strings digitadas nao sao iguais.");
 return 0;
}

(79) Exemplos - Variáveis no C

8 Dados, variáveis e operadores
8.1.1 Exemplo - Variáveis no C

int x;
Pode-se declarar vários dados variáveis em C numa mesma
linha se eles forem todos do mesmo tipo. Exemplo:
char letra, tom, nome;
Obs.: no momento da declaração de um dado variável em C,
pode-se também inicializar a variável. Exemplo:
double y = 5;

(80) Exemplos - Quatro operações básicas

8 Dados, variáveis e operadores
8.2.3 Exemplo - Quatro operações básicas

#include <stdio.h>
int main()
{
int num1, num2, soma, subtracao, multiplicacao;
float divisao;
printf("Entre dois inteiros\n");
scanf("%d%d", &num1, &num2);
soma = num1 + num2;
subtracao = num1 - num2;
multiplicacao = num1 * num2;
divisao = num1 / (float)num2;
//typecasting
printf("Soma = %d\n",soma);
printf("Diferenca = %d\n",subtracao);
printf("Multiplicacao = %d\n",multiplicacao);
printf("Divisao = %.2f\n",divisao);
return 0;
}
Resultado na tela:
Entre dois inteiros
4
3
Diferenca = 1
Multiplicacao = 12
Divisao = 1.0

(81) Exemplos - Pseudocódigo - Área do circulo

8 Dados, variáveis e operadores
8.2.4 Exemplo - Pseudocódigo - Área do círculo

inicio
 real pi <- 3.142
 real raio , area
 escrever "Entre com o raio do circulo: \n"
 ler raio
 area <- pi * raio * raio
 escrever "Area do circulo = \n" , area
fim
Resultado:
Entre com o raio do circulo:
12
Area do circulo =
452.448

(82) Exemplos - Área do circulo

Dados, variáveis e operadores

08.2.5 Exemplo - Área do círculo

#include <stdio.h>
#include <math.h>
#define PI 3.142
void main()
{
float raio, area;
printf("Entre com o raio do circulo: \n");
scanf("%f", &raio);
area = PI * pow(raio, 2);
printf("Area do circulo = %5.2f\n", area);
}
Resultado:
Entre com o raio do circulo:
12
Area do circulo =
452.448

(83) Exemplos - Decisao simples

9 Estrutura de controle – Decisão
9.1.1 Exemplo - Decisão simples

Programa que solicita um número inteiro ao usuário, e o exibe
somente se for positivo.
inicio
 inteiro num
 ler num
 se (num > 0) entao
 escrever num
 fimse
fim

(84) Exemplos - Pseudocódigo - Divisão de dois números

9 Estrutura de controle – Decisão
9.1.2 Exemplo - Divisão de dois números

Programa que solicita um número inteiro ao usuário, e o exibe
somente se for positivo.
inicio
 inteiro num
 ler num
 se (num > 0) entao
 escrever num
 fim se
fim

(85) Exemplos - Maior de três números

9 Estrutura de controle – Decisão
9.1.3 Exemplo - Maior de três números

#include <stdio.h>
void main()
{
int a,b,c;
printf("Entre tres numeros quaisquer:\n");
scanf("%d%d%d",&a, &b, &c);
if(a>b&&a>c)
printf("O maior numero eh: %d",a);
else if(b>c)
printf("O maior numero eh: %d",b);
else
printf("O maior numero eh: %d",c);
}

(86) Exemplos - Par ou impar

9 Estrutura de controle – Decisão

81

9.1.4 Exemplo - Par ou ímpar

#include <stdio.h>
main()
{
 int n;
 printf("Entre um numero inteiro\n");
 scanf("%d",&n);
/*Se o numero for divisivel por 2 mostra par, senao n eh
impar*/
 if (n%2 == 0)
 printf("Par\n");
 else
 printf("Impar\n");
 return 0;
}

(87) Exemplos - Ano bissexto

9 Estrutura de controle – Decisão
9.1.5 Exemplo - Ano bissexto

#include <stdio.h>
int main()
{
 int ano;
 printf("Entre um ano para verificar se eh bissexto\n");
 scanf("%d", &ano);
 if (ano%400 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else if (ano%100 == 0)
 printf("\n%d nao eh ano bissexto.", ano);
 else if (ano%4 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else
 printf("\n%d nao eh ano bissexto.", ano);
 return 0;
}

(88) Exemplos - Média de duas notas

9 Estrutura de controle – Decisão
9.1.6 Exemplo - Média de duas notas

O programa solicita duas notas ao usuário, e calcula a média. Se
for maior ou igual a 60, mostra uma mensagem parabenizando
pela aprovação:
inicio
 real nota1
 real nota2
 real media
 ler nota1
 ler nota2
 media <- (nota1 + nota2) / 2
 se media >= 60 entao
 escrever "Parabéns! Aprovado!"
 fimse
fim
Como no programa anterior, solicita duas notas ao usuário e
calcula a média. Mas neste caso, se não atender a condição
(senão), faz outra coisa, apresenta uma mensagem de
reprovação.
inicio
 real nota1
 real nota2
 real media
 ler nota1
 ler nota2
 media <- (nota1 + nota2) / 2
 se media >= 60 entao
 escrever "Parabéns! Aprovado!"

 senao
 escrever "Reprovado!"
 fimse
fim

(89) Exemplos - Pseudocódigo - (SE) numero maior que 0 ou
não

9 Estrutura de controle – Decisão
9.2.1 Exemplo - Pseudocódigo - (SE) número maior que 0 ou não

inicio
 inteiro num
 escrever "Entre com um inteiro: "
 ler num
 se (num >= 0) entao
 escrever num, " eh maior ou igual a zero"
 senao
 escrever num, " eh menor que zero"
 fimse
fim

(90) Exemplos - Pseudocódigo - (SE composta) numero maior
que 0 ou não

9 Estrutura de controle – Decisão
9.2.2 Exemplo - Pseudocódigo - (SE composta) número maior
que 0 ou não

inicio
 inteiro num
 ler num
 se (num > 0) entao
 escrever num , " é maior que zero"
 senao
 escrever num , " é menor ou igual a zero"
 fimse
fim

(91) Exemplos - Pseudocódigo - (SE composta) numero maior
menor ou igual a zero

9 Estrutura de controle – Decisão
9.2.3 Exemplo - Pseudocódigo - (SE composta) número maior,
menor ou igual a zero

inicio
 inteiro num
 ler num
 se (num > 0) entao
 escrever num , " é maior que zero"
 senao
 se (num < 0) entao
 escrever num , " é menor que zero"
 senao
 escrever num , " é igual a zero"
 fimse
 fimse
fim

(92) Exemplos - Pseudocódigo - 4 operações

9 Estrutura de controle – Decisão
9.2.4 Exemplo - Pseudocódigo - Quatro operações

inicio
 inteiro num_1 , num_2
 caracter operacao
 ler num_1
 ler num_2
 ler operacao

82

 se (operacao = "+") entao
 escrever (num_1 + num_2)
 senao
 se (operacao = "-") entao
 escrever (num_1 - num_2)
 senao
 se ((operacao = "*") ou (operacao = "X")) entao
 escrever (num_1 * num_2)
 senao
 se (operacao = "/") entao
 escrever (num_1 / num_2)
 senao
 escrever ("Operação inválida")
 fimse
 fimse
 fimse
 fimse
fim

(93) Exemplos - Pseudocódigo - Ano bissexto

9 Estrutura de controle – Decisão
9.2.5 Exemplo - Ano bissexto

#include <stdio.h>
int main()
{
 int ano;
 printf("Entre um ano para verificar se eh bissexto\n");
 scanf("%d", &ano);
 if (ano%400 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else if (ano%100 == 0)
 printf("\n%d nao eh ano bissexto.", ano);
 else if (ano%4 == 0)
 printf("\n%d eh ano bissexto.", ano);
 else
 printf("\n%d nao eh ano bissexto.", ano);
 return 0;
}

(94) Exemplos - Pseudocódigo - 4 operações

9 Estrutura de controle – Decisão
9.3.1 Exemplo - Pseudocódigo - Quatro operações

inicio
 inteiro num_1 , num_2
 caracter operacao
 ler num_1
 ler num_2
 ler operacao
 escolhe operacao
 caso "+":
 escrever (num_1 + num_2)
 caso "-":
 escrever (num_1 - num_2)
 caso "*" , "X":
 escrever (num_1 * num_2)
 caso "/":
 escrever (num_1 / num_2)
 defeito:
 escrever ("Operação inválida")
 fimescolhe
fim

(95) Exemplos - Checar vogal

9 Estrutura de controle – Decisão
9.3.2 Exemplo - Checar vogal

#include < stdio.h >
int main()
{
 char ch;
 printf("Input a character\n");
 scanf("%c", &ch);
 switch(ch)
 {
 case 'a':
 case 'A':
 case 'e':
 case 'E':
 case 'i':
 case 'I':
 case 'o':
 case 'O':
 case 'u':
 case 'U':
 printf("%c is a vowel.\n", ch);
 break;
 /*if ch matches any case then it prints & breaks the execution
*/
 default:
 printf("%c is not a vowel.\n", ch);
 /*if the ch is not from the cases then prints ch is not a vowel */
 }
 return 0;
}

(96) Exemplos - Pseudocódigo - x menor que 3

10 Estrutura de controle – Laços (repetição)
10.1.1 Exemplo - Pseudocódigo - x menor que 3

inicio
 inteiro x
 enquanto x<3 faz
 escrever ""\nO valor de x é: "",x
 x<-x+1
 fim enquanto
fim

(97) Exemplos - Somar dígitos

10 Estrutura de controle – Laços (repetição)
10.1.2 Exemplo - Somar dígitos

#include <stdio.h>
int main()
{
 int n, sum = 0, remainder;
 printf("Enter an integer\n");
 scanf("%d",&n);
 while(n != 0)
 {
 remainder = n % 10;
 /*stores unit place digit to remainder*/
 sum = sum + remainder;
 n = n / 10;
 /*dividing no to discard unit place digit*/
 }
 printf("Sum of digits of entered number = %d\n",sum);
 return 0;
}

(98) Exemplos - Quadrado dos números de 0 a 20

10 Estrutura de controle – Laços (repetição)
10.1.3 Exemplo - Quadrado dos números de 0 a 20

#include <stdio.h>

83

void main()
{
 int val, ind=0;
 printf("Quadrados dos numeros inteiros\n");
 while (ind<=20){
 val=ind*ind;
 printf("%d*%d=%d\n",ind, ind, val);
 ind++;
 }
}

(99) Exemplos - Pseudocódigo - Quadrado dos números 0 a 20

10 Estrutura de controle – Laços (repetição)
10.1.4 Exemplo - Pseudocódigo - Quadrado dos números de 0 a
20

inicio
inteiro val, ind
 ind <- 0
 escrever "Quadrados dos numeros inteiros\n"
 enquanto ind <= 20 faz
 val <- ind*ind
 escrever ind, " * ", ind," = ",val, "\n"
 ind <- ind + 1
 fimenquanto
fim

(100) Exemplos – Pseudocódigo - x menor que 3

10 Estrutura de controle – Laços (repetição)
10.2.1 Exemplo - Pseudocódigo - x menor que 3

inicio
 inteiro x
 repete
 escrever ""\nO valor de x é: "",x
 x <- x+1
 ate x>=3
fim

(101) Exemplos - Pseudocódigo - Mostra x de 0 a 2

10 Estrutura de controle – Laços (repetição)
10.2.2 Exemplo - Pseudocódigo - Mostra x de 0 a 2

Escreva o valor de x e incremente x até que x seja maior que 2.
x<-0
repita
escreval("O valor de x é: ",x)
x<-x+1
ate (x>2)

(102) Exemplos - x de 0 a 3

10 Estrutura de controle – Laços (repetição)
10.3.1 Exemplo - x de 0 a 3

Exemplo:
Neste programa, x vale de 0 até 2. Isso quer dizer que da
primeira vez que a estrutura for repetida, x valerá 0; na
segunda, x valerá 1, e assim por diante, até que x seja igual a 2.
Adicionalmente, este comando permite definir o passo, ou seja,
de quanto em quanto o x será incrementado.
Neste exemplo o incremento é de 1, mas poderia ser de 2 em 2,
de 3 em 3, e assim por diante.
#include <stdio.h>
void main()
{
 int x;
 for (x=0; x<3; x++){

 printf(""\nO valor de x eh: %d"",x);
 }
}

(103) Exemplos - Pseudocódigo - x de 0 a 3

10 Estrutura de controle – Laços (repetição)
10.3.2 Exemplo - Pseudocódigo - x de 0 a 3

Exemplo:
Neste programa, x vale de 0 até 2. Isso quer dizer que da
primeira vez que a estrutura for repetida, x valerá 0; na
segunda, x valerá 1, e assim por diante, até que x seja igual a 2.
Adicionalmente, este comando permite definir o passo, ou seja,
de quanto em quanto o x será incrementado.
Neste exemplo o incremento é de 1, mas poderia ser de 2 em 2,
de 3 em 3, e assim por diante.
inicio
 inteiro x
 para x de 0 ate 2 passo 1
 escrever ""\nO valor de x eh: "",x
 proximo
fim

(104) Exemplos - Matemática - Conjuntos numéricos

11 Vetores e matrizes
11.1 Exemplo - Matemática - conjuntos numéricos

Conjuntos numéricos, na matemática:
Naturais: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}
Naturais não nulos: N* = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...}
Inteiros: Z = {... -4, -3, -2, -1, 0, 1, 2, 3, 4, ...}
Inteiros não negativos: Z+ = {0, 1, 2, 3, 4, 5, 6, ...}
Inteiros não positivos: Z- = {..., -5, -4, -3, -2, -1, 0}
Inteiros não negativos e não nulos: Z*+ = {1, 2, 3, 4, 5, 6, 7, ...}
Inteiros não positivos e não nulos: Z*- = {... -4, -3, -2, -1}
Outros conjuntos:
Decimais finitos (Ex.: 743,8432)
Decimais infinitos periódicos ou dízimas periódicas (Ex.:
12,050505…)
Racionais (inteiros, decimais finitos + decimais infinitos
periódicos).
Irracionais (decimais infinitos não periódicos). Ex. PI
(3,14159265…) e todas as raízes não exatas (como a raiz de 2 =
1,4142135...)
Fonte: http://www.infoescola.com/matematica/conjuntos-
numericos/

(105) Exemplos - Vetores - Entrada de dados

11 Vetores e matrizes
11.1.1 Exemplo - Vetores - Entrada de dados

#include <stdio.h>
#include <stdlib.h>
int main ()
{
float notas[10];
int indice;
printf (“Lendo as notas:\n”);
for (indice=0; indice<10; indice++){
printf (“Digite a nota do proximo estudante:”);
scanf (“%f”, ¬as[indice]);
}
printf (“Exibindo as notas digitadas:\n”);
for (indice=0; indice<10; indice++){
printf (“A nota %f foi armazenada na posicao %d do
vetor.\n”,notas[indice], indice);
}
system (“pause”);

84

}

(106) Exemplos - Vetores - Ordenação por seleção

11 Vetores e matrizes
11.1.2 Exemplo - Vetores - Ordenação por seleção

#include < stdio.h >
int main()
{
 int array[100], n, c, d, position, swap;
 printf("Enter number of elements\n");
 scanf("%d", &n);
 printf("Enter %d integers\n", n);
 for (c = 0 ; c < n ; c++)
 scanf("%d", &array[c]);
 for (c = 0 ; c < (n - 1) ; c++)
{
 position = c;
/* for all array, from position c selecting smallest element in
array and swap with c position*/
 for (d = c + 1 ; d < n ; d++)
{
 if (array[position] > array[d])
 position = d;
}
 if (position != c)
{
 swap = array[c];
 array[c] = array[position];
 array[position] = swap;
}
}
 printf("Sorted list in ascending order:\n");
 for (c = 0 ; c < n ; c++)
 printf("%d\n", array[c]);
 return 0;
}

(107) Exemplos - Matrizes - Entrada de dados

11 Vetores e matrizes
11.2.1 Exemplo - Matrizes - Entrada de dados

#include <stdio.h>
#include <stdlib.h>
int main (){
float notas[5][2];
int lin,col;
printf (“INICIANDO O LOOP DE LEITURA \n \n”);
for (lin=0;lin<5;lin++)
for (col=0;col<2;col++) {
printf (“Digite a nota %d do estudante %d: “, col, lin);
scanf (“%f”, ¬as[lin][col]);}
printf (“\nINICIANDO O LOOP DE EXIBICAO \n \n”);
for (lin=0;lin<5;lin++)
for (col=0;col<2;col++)
printf (“nota = %.2f \n”,notas[lin][col]);
system (“pause”);}

EXERCÍCIOS

(108) Exercício - Identificar etapas algoritmo opção 1

4 Algoritmos
4.1 Exercício - Identificar etapas algoritmo

Identifique no algoritmo, para cada passo, os dados de entrada
(E), processamento (P) e saída (S), e responda a alternativa
correta:

1. Receba código da peça.
2. Receba valor da peça.
3. Receba Quantidade de peças.
4. Calcule o valor total da peça (Quantidade * Valor da peça).
5. Mostre o código da peça e seu valor total.
() 1-E, 2-E, 3-E, 4-P, 5-S. (correta)
() 1-S, 2-S, 3-S, 4-S, 5-E.
() 1-P, 2-P, 3-P, 4-P, 5-S.
() 1-E, 2-E, 3-E, 4-S, 5-P.
() 1-P, 2-P, 3-P, 4-E, 5-S.

(109) Exercício - Receita de bolo

4 Algoritmos
04.2 Exercício - Receita de bolo

Fazendo uma analogia do algoritmo com uma receita de bolo,
relacione os elementos da primeira linha com os da segunda
linha.
(x) Ingredientes (y) Bolo pronto (z) Modo de preparo
(1) Saída (2) Dados de entrada (3) Processamento
Responda: qual é a correspondência correta?
x-1, y-2, z-3.
x-2, y-3, z-1.
x-2, y-1, z-3. (correta)
x-1, y-3, z-2.

(110) Exercício - Ordenar sequencia algoritmo

4 Algoritmos
4.3 Exercício - Ordenar sequencia algoritmo

Leia as sentenças a seguir e ordene conforme a necessidade na
criação de algoritmos:

(w) Construir o algoritmo.
(x) Entender o problema.
(y) Testar o algoritmo.
(z) Determinar os dados de entrada, processamento e saída.

Qual é a ordem correta das sentenças?
w – x – y – z.
z – x – y – w.
x – y – z – w.
x – z – w – y. (correta)

(111) Exercício - Identificar etapas algoritmo opção 2

4 Algoritmos
4.4 Exercício - Identificar etapas algoritmo

Identifique no algoritmo, para cada passo, os dados de entrada
(E), processamento (P) e saída (S), e responda a alternativa
correta:
1. Receba código da peça.
2. Receba valor da peça.
3. Receba Quantidade de peças.
4. Calcule o valor total da peça (Quantidade * Valor da peça).
5. Mostre o código da peça e seu valor total.

1-E, 2-E, 3-E, 4-P, 5-S. (correta)
1-S, 2-S, 3-S, 4-S, 5-E.
1-P, 2-P, 3-P, 4-P, 5-S.
1-E, 2-E, 3-E, 4-S, 5-P.
1-P, 2-P, 3-P, 4-E, 5-S.

(112) Exercício (Narrativa de seleção) Divisão de 2 números

5 Sobre narrativas
5.1 (Narrativa de seleção) Divisão de dois números

85

Faça um algoritmo para mostrar o resultado da divisão
de dois números:
 Passo 1 – Receber dois números que serão divididos;
 Passo2 – Se o segundo número for igual a zero, não poderá
haver divisão, pois não existe divisão por zero; caso contrário,
dividir os números e mostrar o resultado da divisão.

(113) Exercício - Somar 2 números

5 Sobre narrativas
5.2.1 Exercício - Somar 2 números

Escreva um algoritmo para somar dois números.

--
Resposta:
1. Receber os dois números.
2. Somar os dois números.
3. Mostrar o resultado obtido.

(114) Exercício - Somar conteúdos retângulos opção 1

5 Sobre narrativas
5.2.2 Exercício - Somar conteúdos de retângulos

Considere três retângulos, A, B e C. Faça um algoritmo que
escreva números dentro de cada retângulo, de forma que
atenda a expressão A+B=C.

--
Resposta:

1. Escreva o primeiro número no retângulo A
2. Escreva o segundo número no retângulo B
3. Some o número do retângulo A com número do retângulo B e
coloque o resultado no
retângulo C.

[]A + []B = []C

Obs.: os caracteres [] acima representam um retângulo.

(115) Exercício - Somar 3 números

5 Sobre narrativas
5.2.3 Exercício - Somar 3 números

Escreva um algoritmo para somar três números.

--
Resposta:
1. Receber os três números.
2. Somar os três números.
3. Mostrar o resultado obtido.

(116) Exercício - Somar conteúdos retângulos opção 2

5 Sobre narrativas
5.2.4 Exercício - Somar conteúdos de retângulos

Considere dois retângulos, A e B. Faça um algoritmo que
escreva números dentro de cada retângulo, de forma que
atenda a expressão A=A+B.

--
Resposta:

1. Escreva o primeiro número no retângulo A
2. Escreva o segundo número no retângulo B
3. Some o número do retângulo A com número do retângulo B e
coloque o resultado no retângulo A.

[]A = []A + []B

Obs.: os caracteres [] acima representam um retângulo.

(117) Exercício - Criação de algoritmos

5 Sobre narrativas
5.2.5 Exercício - Criação de algoritmos

Pergunta: Leia as sentenças a seguir e ordene conforme a
necessidade na criação de algoritmos:

(w) Construir o algoritmo.
(x) Entender o problema.
(y) Testar o algoritmo.
(z) Determinar os dados de entrada, processamento e saída.

Qual é a ordem correta das sentenças?
w – x – y – z.
z – x – y – w.
x – y – z – w.
x – z – w – y.

(118) Exercício - Pseudocódigo - Teste dos códigos especiais

7 O que é um programa?
7.1 Exercício - Pseudocódigo - Teste dos códigos especiais

1. Digite o programa:

inicio
 escrever "Estou \n entendendo"
fim

(119) Exercício - Teste dos códigos especiais

7 O que é um programa?
7.2 Exercício - Teste dos códigos especiais

1. Digite o programa:

Pseudocódigo:

inicio
 escrever "Estou \n entendendo"
fim

Linguagem C:

#include <stdio.h>
 void main()
 {
 printf("Estou \n entendendo");
 }

2. Altere o programa usando os demais códigos especiais da
função printf. Altere as frases, espaços ou posições dos códigos
dentro dos argumentos. Observe os resultados a cada
alteração.

(120) Exercicio - String

7 O que é um programa?
7.3 Exercício - String

Uma string de texto é uma sequência de caracteres composta
de linhas, cada linha composta por nenhum, um ou mais
caracteres, acrescentada de um caractere identificador de nova
linha.

86

Verdadeiro. (correta)
Falso.

Verdade, cada linha deve conter nenhum, um ou mais
caracteres finalizadas por um caractere de nova linha.

(121) Exercício – programa

7 O que é um programa?
7.4 Exercício - Programa

Sobre o conceito de programa, indique a alternativa
INCORRETA:

() é uma lista de eventos que o computador analisa para
escolher qual deles o usuário vai utilizar. (correta)
() é a codificação de um algoritmo numa linguagem de
programação específica.
() é um conjunto de instruções que descrevem uma tarefa a ser
realizada por um computador.
()refere-se ao código fonte, escrito em alguma linguagem de
programação, ou ao arquivo executável deste código fonte.

(122) Exercício - Avalie Alo mundo opção 1

7 O que é um programa?
7.5 Exercício - Avalie Alo mundo opção 1

Exercício:
Por que na estrutura do pseudocódigo não aparece o bloco de
declaração de variáveis?

--
Resposta:
Por que não há variáveis a declarar. Como o programa apenas
mostra na tela uma string (sequência de caracteres entre
aspas), nenhuma variável foi necessária para esta ação.

(123) Exercício - Avalie Alo mundo opção 2

7 O que é um programa?
7.6 Exercício - Avalie Alo mundo opção 2

Exercício:
Na estrutura da linguagem C, por que surgiu um elemento
desconhecido logo no início do programa (#include <stdio.h>)?

--
Resposta:
Por que um programa em C não tem todas as funções
embutidas previamente, assim como o printf, e por isso precisa
que seja incluída esta informação (include) que está dentro de
um arquivo chamado biblioteca (stdio.h), juntamente com
algumas outras funções semelhantes.

(124) Exercício – Saída

7 O que é um programa?
7.7 Exercício – Saída

Na função escrever (printf), o especificador de formato %s pode
ser usado para escrever um caractere em letras maiúsculas.

Verdadeiro.
Falso. (correta)

Explicação: O especificado de formato diz ao compilador que a
informação fornecida é uma string de caracteres.

(125) Exercício - Tipos de operadores aritméticos

8 Dados, variáveis e operadores
8.1 Exercício - Tipos de operadores aritméticos

Na classe de “Operadores Aritméticos” temos alguns tipos
especiais. Identifique-os abaixo na 1ª coluna, e relacione-o com
o exemplo que melhor o representa na 2ª coluna (obs.:
operadores baseados no VisuALG). Em seguida responda a única
alternativa que corresponde à combinação correta.

potenciação (1)
radiciação (2)
resto da divisão (3)
quociente da divisão (4)

(a) Ex.: raiz quadrada de 9, ou raizq(9)
(b) Ex.: 27 mod 5
(c) Ex.: 2 elevado a 3, ou 2^3
(d) Ex.: 9 div 4

a) 1-a, 2-c, 3-b, 4-d.
b) 1-c, 2-a, 3-b, 4-d.
c) 1-c, 2-a, 3-d, 4-b.
d) 1-c, 2-a, 3-b, 4-d. (correta)

(126) Exercício - Dados do tipo inteiro

8 Dados, variáveis e operadores
8.2 Exercício - Dados do tipo inteiro

Exercício:
Marque os dados do tipo inteiro:

1000 (correta)
"0"
"-900"
VERDADEIRO
-456 (correta)
34 (correta)
"Casa 8"
0 (correta)
FALSO
-1.56

(127) Exercício - Operadores - Soma de dois números

8 Dados, variáveis e operadores
8.3 Exercício - Operadores - Soma de dois números

Exercício:

Faça um programa que solicite dois números inteiros ao
usuário, some os dois valores e armazene o resultado em uma
terceira variável. Ao final, o programa deve exibir a operação
que foi realizada, os valores entrados e o resultado desta
operação.

Respostas:

Pseudocódigo:

inicio
 variavel real primeiro_num, segundo_num, x
 escrever "Digite o primeiro numero: "
 ler primeiro_num
 escrever "Digite o segundo numero: "
 ler segundo_num
 x <- primeiro_num + segundo_num
 escrever "\nA soma eh: "
 escrever x
fim

87

Linguagem C:

#include <stdio.h>
int main(){
 float primeiro_num, segundo_num, x;
 printf("Digite o primeiro numero: ");
 scanf("%f",&primeiro_num);
 printf("Digite o segundo numero: ");
 scanf("%f",&segundo_num);
 x = primeiro_num + segundo_num;
 printf("\nA soma eh: ");
 printf("%f",x);
}

(128) Exercício - (aritméticos) área do retângulo

8 Dados, variáveis e operadores
8.4 Exercício - (aritméticos) área do retângulo

Exercício:

Sabendo-se que a área de um retângulo é a medida do
comprimento multiplicada pela sua largura, desenvolva um
programa em que o usuário informe as medidas necessárias, e
retorne o valor da área do retângulo.

--
Resposta:

Pseudocódigo:

inicio
 inteiro comprim, largura, area
 escrever "\nEntre o comprimento do retangulo: "
 ler comprim
 escrever "\nEntre a largura do retangulo: "
 ler largura
 area <- comprim * largura
 escrever "\nArea do retangulo: ", area
fim

Linguagem C:

#include <stdio.h>
#include <conio.h>
 int main() {
 int comprim, largura, area;
 printf("\nEntre o comprimento do retangulo: ");
 scanf("%d", &comprim);
 printf("\nEntre a largura do retangulo: ");
 scanf("%d", &largura);
 area = comprim * largura;
 printf("\nArea do retangulo: %d", area);
 return (0);
}

Resultado na tela:

Entre o comprimento do retangulo: 4

Entre a largura do retangulo: 3

Area do retangulo: 12

(129) Exercício - (aritméticos) área do triangulo

8 Dados, variáveis e operadores
8.5 Exercício – (aritméticos) área do triangulo

Informe qual foi a fórmula utilizada para desenvolver a principal

função do programa a seguir:

Pseudocódigo:

inicio
 inteiro a, b
 real resp
 escrever "Entre com os valores de a e b\n"
 ler a, b
 resp <- 0.5 * a * b
 escrever "O resultado eh ",resp
fim

Linguagem C:

#include <stdio.h>
void main()
{
 int a, b;
 float resp;
 printf("Entre com os valores de a e b\n");
 scanf("%d %d",&a, &b);
 resp = 0.5 * a * b;
 printf("O resultado eh %f",resp);
}

Assinale a alternativa que apresenta a fórmula mais corrreta:
() resp=(b*a)/2 (correta)
() resp = b*a
() 0.5*b*a
() "resultado %f", resp

(130) Exercício - (aritméticos) volume do cilindro

8 Dados, variáveis e operadores
8.6 Exercício - (aritméticos) volume do cilindro

Analisando o programa a seguir:

#include <stdio.h>
void main()
{
 float vol,pie=3.14;
 float r,h;
 printf("ENTER THE VALUE OF RADIOUS :- ");
 scanf("%f",&r);
 printf("ENTER THE VALUE OF HEIGHT :- ");
 scanf("%f",&h);
 vol = pie * r * r * h;
 printf("ANSWER:- %3.2f ",vol);
}

Informe qual é a função deste programa:

() Cálculo do volume de um cilindro.
() Cálculo da área de uma circunferência.
() Cálculo do valor de ANSWER.
() Não calcula nada, apenas mostra "ANSWER:- %3.2f " ao final.

(131) Exercício - (aritméticos) volume do cubo

8 Dados, variáveis e operadores
8.7 Exercício - (aritméticos) volume do cubo

Olhe bem para o programa a seguir, que calcula a área e volume
de um cubo. Ele contém alguns erros:

#include <stdio.h>
void main()
{

88

 float a, b
 float surface_area,volume;
 printf("Entre com o valor do lado do cubo: ");
 scanf("%d",&a);
 surface_area = 6 * (a * a * a);
 volume = a * a * a
 printf("A area da superfície do cubo eh: %.3f",srf_area);
 printf("\nO volume do cubo eh: %.3f",volume);
}

Agora responda: dentre as alternativas abaixo, quais as que são
realmente erros:

() falta de ";". (correta)
() Cálculo incorreto da área. (correta)
() cálculo incorreto do volume.
() Variável não declarada.
() Variável escrita incorretamente. (correta)
() Variável declarada e não usada.
() código de formatação errado. (correta)

(132) Exercício - Operadores - condição existência triângulo

8 Dados, variáveis e operadores
8.8 Exercício - Operadores - condição existência triângulo

O algoritmo abaixo testa a condição de existência do triângulo,
sabendo que cada um dos lados é menor que a soma dos outros
dois. O usuário deve entrar com três valores, referentes às
medidas de cada lado. Sendo assim, complete as lacunas abaixo
de modo que funcione, e a seguir responda a alternativa
correta.

inicio
 variável real lado1, lado2, lado3
 escrever("Digite os valores dos 3 lados.\n")
 _____ lado1
 _____ lado2
 ler _____
 se (lado1 + lado2 > _____) e (_____ + lado3 > lado1) e (lado1
+ lado3 > lado2) entao
 escrever("Triangulo possivel.")
 senao
 escrever ("________________")
 fim _____
fim

ler, ler, lado3, lado2, Triangulo impossivel, se. (correta)
escrever, escrever, lado3, lado2, Triangulo impossivel, se.
ler, ler, lado2, lado3, Triangulo impossivel, se.
escrever, escrever, lado3, lado2, Triangulo possivel, se.
ler, ler, lado3, lado2, Triangulo impossivel, senao.

(133) Exercício - salário bruto-líquido

8 Dados, variáveis e operadores
8.9 Exercício - salário bruto-líquido

Um analista desenvolveu um algoritmo para ajudar a calcular o
salário líquido dos colaboradores da empresa em que trabalha.
As regras (fictícias) para o cálculo serão as seguintes:
1) salário líquido = salário bruto - %IR - %INSS
2) salário bruto menor que 1,55 mil, sem desconto de IR e 8%
de INSS.
3) salário a partir de 1,55 mil, desconta 7,5% de IR e 9% de INSS.
Ao final deverá ser exibido o salário líquido a ser pago ao
colaborador.

inicio
 ____ bruto, liquido, inss, ir
 ________ "Digite o salario\n"

 ___ bruto
 se _____ < 1550 entao
 inss <- _____ * 0.08
 ir <- ___
 senao
 ____ <- bruto * 0.09
 ir <- bruto * ____
 fimse
 liquido <- bruto - ____ - ___
 ________ "O valor do salário líquido eh: ", _______
fim

--
Respostas (na sequência):

real
escrever
ler
bruto
bruto
0
inss
0.075
inss
ir
escrever
liquido

(134) Exercício - Torre de Hanói

8 Dados, variáveis e operadores
8.10 Exercício - Torre de Hanói

No jogo “Torre de Hanoi” podemos nos basear em um
algoritmo para resolver o quebra-cabeça. Além disso, por ter
movimentos lógicos e previsíveis, é possível calcular a
quantidade mínima de movimentos dos N discos entre suas três
hastes necessários para sua solução.

Observe o pseudocódigo abaixo, e assinale a alternativa que
responde corretamente à pergunta: o que faz este programa?

inicio
 inteiro n
 real x
 escrever " Informe o numero de discos: "
 ler n
 se n>=3 entao
 x<-(2^n-1)
 escrever "O numero de movimentos sera: ",x
 senao
 escrever "O numero de discos é insuficiente"
 fimse
fim

()Calcula a quantidade de movimentos para solução, em função
do número de hastes informado pelo usuário. (correta)
() Calcula a quantidade de discos necessários para movimentar
as 3 hastes existentes.
() Calcula a quantidade de movimentos de 3 discos entre as 3
hastes existentes.
() Calcula a quantidade de movimentos para solução, em função
do número de discos informado pelo usuário.

(135) Exercício - Condição - nota maior igual a 7

9 Estrutura de controle - Decisão
9.1 Exercício - Condição - nota maior ou igual a 7

Desenvolva um programa que solicita que o usuário preencha

89

suas duas notas, tire a média das duas e, caso a média seja
maior ou igual a 6, apresente uma mensagem parabenizando-o
pela aprovação.

--
Resposta:

inicio
 real nota1, nota2, media
 ler nota1, nota2
 media <- (nota1 + nota2)/2
 se media >= 7 entao
 escrever "Parabens! Aprovado!"
 senao
 escrever "Estudante Reprovado!"
 fim se
fim

--

(136) Exercício - numero par impar pos neg nulo

9 Estrutura de controle - Decisão
9.2 Exercício - número par, ímpar, positivo, negativo ou nulo

O programa abaixo solicita um número inteiro ao usuário e diz
se ele é par ou ímpar:

#include <stdio.h>
main()
{
 int n;
 printf("Entre um numero inteiro\n");
 scanf("%d",&n);
 if (n%2 == 0)
 printf("Par\n");
 else
 printf("Impar\n");
 return 0;
}

Implemente este mesmo programa para que ele indique se o
mesmo número é positivo, negativo ou nulo (zero).

--
Resposta:

#include <stdio.h>
main()
{
 int n;
 printf("Entre um numero inteiro\n");
 scanf("%d",&n);
 if (n%2 == 0)
 printf("Par\n");
 else
 printf("Impar\n");
 if (n > 0)
 printf("Positivo\n");
 else
 if (n<0)
 printf("Negativo\n");
 else
 printf("Nulo\n");
 return 0;
}

(137) Exercício - idade_atleta x categoria

9 Estruturas de controle - Decisão
9.3 Exercício - idade_atleta x categoria

Observe o problema abaixo:

Escreva um programa em que o usuário entre com a idade de
um atleta e mostre a categoria em que ele se enquadra, de
acordo com estes parâmetros:
de 5 a 10 anos: categoria infantil
de 11 a 17 anos: categoria juvenil
de 18 a 30 anos: categoria profissional
acima de 30 anos: categoria sênior

Agora, responda qual destas estruturas de controle seria a mais
adequada para desenvolver a função principal deste programa:

() escolha(caso). (correta)
() repita-até (do-while).
() para (for).
() enquanto-faça (while)

(138) Exercício - número é par ou impar

9 Estruturas de controle - Decisão
9.4 Exercício - número é par ou impar

Escreva um algoritmo que leia um número inteiro e diga se ele é
par ou ímpar.
Dica: utilize o operador % (resto da divisão inteira).

--
Resposta:

#include <stdio.h>
main()
{
 int n;
 printf("Entre um numero inteiro\n");
 scanf("%d",&n);
 if (n%2 == 0)
 printf("Par\n");
 else
 printf("Impar\n");
 return 0;
}

(139) Exercício - while e do-while

10 Estrutura de controle - Laços (repetição)
10.1 Exercício - while e do-while

Marque duas diferenças entre o enquanto-faça (do-while) e o
repita-até (while).

() Na estrutura enquanto-faça (do-while), a ação poderá nunca
ser executada. (correta)
() Na estrutura repita-até (while), a ação é executada pelo
menos uma vez.
() Na estrutura enquanto-faça (do-while), a condição é
verificada no início do laço.
() Na estrutura repita-até (while), a condição é verificada ao
final do laço.

(140) Exercício - Mesa de testes 1

10 Estrutura de controle - Laços (repetição)
10.2 Exercício - Mesa de testes 1

Analisando a “mesa de testes” do programa a seguir, qual será
o último valor assumido pela variável s ao término do da
execução?

90

inicio
 inteiro i,s
 i <- 1
 s <- 0
 enquanto(i<=10) faz
 s <- s+i
 escrever i,"\t",s,"\n"
 i <- i+1
 fim enquanto
fim

Mesa de testes:
i s
1 0
1 1
2 3
3 .
4 .
5 .
6 .
7 .
8 .
9 .
10 .

Marque a resposta correta:

() 36.
() 45.
() 55. (correta)
() 66.

(141) Exercício - Mesa de testes 2

10 Estrutura de controle - Laços (repetição)
10.3 Exercício - Mesa de testes 2

Analise o programa abaixo, e responda a questão a seguir:

inicio
 inteiro i,s
 i <- 1
 s <- 0
 enquanto (i<=10) faz
 s <- s+i
 escrever i,"\t",s,"\n"
 i <- i+1
 fim enquanto
fim

Mesa de testes:
i s
1 0
1 1
2 3
3 .
4 .
5 .
6 .
7 .
8 .
9 .
10 .

Se formos converter a estrutura do programa da questão
anterior para a estrutura REPITA... ATÉ, de forma a mostrar o
mesmo resultado no final, indique a alternativa que representa
o algoritmo correto:

() (correta)
 i <- 1

 s <- 0
 repete
 s <- s + i
 escrever i , "\t" , s , "\n"
 i <- i + 1
 ate (i > 10)

()
 i <- 0
 s <- 1
 repete
 s <- s + i
 escrever i , "\t" , s , "\n"
 i <- i + 1
 ate (i > 10)

()
 i <- 1
 s <- 0
 repete ate (i > 10)
 s <- s + i
 escrever i , "\t" , s , "\n"
 i <- i + 1
 fim repita

()
 i <- 1
 s <- 0
 repete
 s <- s + i
 i <- i + 1
 escrever i , "\t" , s , "\n"
 ate (i > 10)

(142) Exercício - mostra pares de 2 a 20

10 Estrutura de controle - Laços (repetição)
10.4 Exercício - mostra pares de 2 a 20

Abaixo temos uma aplicação de algoritmo com uma estrutura
Para (for). Observe as variáveis e responda:

inicio
 inteiro a,b,c,d
 escrever "Qual o valor inicial? "
 ler b
 escrever "Qual o valor final? "
 ler c
 escrever "Qual o passo? "
 ler d
 para a de b ate c passo d
 escrever "\n",a
 proximo
fim

Que valores devemos inserir para as variáveis b, c e d,
respectivamente, para que o resultado na tela seja exatamente
uma lista dos números pares de 2 a 20?

() 2, 20, 2. (correta)
() 1, 20, 2.
() 2, 20, 1.
() 1, 20, 1.

(143) Exercício - Matrizes - Compara palavras

11 Vetores e matrizes
11.1 Exercício - Matrizes - Compara palavras

Faça um programa que lê duas palavras do teclado e diz se elas

91

são iguais ou diferentes. O programa deve dizer ainda se
alguma das palavras digitadas é igual a “papagaio”.

Resposta:

#include <stdio.h>
#include <stdlib.h>
int main(){
 char p1[30],p2[30];
 //captura palavras
 printf("Informe palavra 1: ");
 gets(p1);
 printf("Informe palavra 2: ");
 gets(p2);
 //verifica se sao iguais
 if(strcmp(p1,p2)==0)
 printf("\nPalavras sao iguais.");
 if(strcmp(p1,"papagaio")==0)
 printf("\nPalavra 1 igual papagaio.");
 if(strcmp(p2,"papagaio")==0)
 printf("\nPalavra 2 igual papagaio.");
 return 0;
}

(144) Exercício - Matrizes - Entrada valores

11 Vetores e matrizes
11.2 Exercício - Matrizes - Entrada valores

Desenvolva um algoritmo que recebe 25 valores numéricos
inteiros numa matriz 5x5 e mostra estes números.

Resposta:

#include <stdio.h>
void main()
{
 int Mat [5][5],i,j;
 for(i=0; i<5; i++)
 {
 for(j=0; j<5; j++)
 {
 printf("Digite um valor inteiro:
");
 scanf("%d",&Mat[i][j]);
 printf("%d",Mat[i][j]);
 }
 }
return 0;
}

(145) Exercicio - Matrizes - Palavras em ordem inversa

11 Vetores e matrizes
11.3 Exercício - Matrizes - Palavras em ordem inversa

Faça um programa que lê três palavras do teclado e imprime as
três palavras na ordem inversa.

Resposta:

#include <stdio.h>
#include <stdlib.h>
int main(){
 int i;
 char palavras[3][30];
 //captura palavras
 for(i=0;i<3;i++){
 printf("Informe palavra %d: ",i+1);
 gets(palavras[i]);
 }

 //EXIBE EM ORDEM INVERSA
 printf("\n::: Palavras em ordem inversa :::\n");
 for(i=2;i>=0;i--)
 printf("%s\n",palavras[i]);
 return 0;
}

(146) Exercício - Vetores - Inverte ordem

11 Vetores e matrizes
11.4 Exercício - Vetores - Inverte ordem

Faça um programa que cria um vetor com 5 elementos inteiros,
lê 5 números do teclado, armazena os números no vetor e
imprime o vetor na ordem inversa.

Resposta:

#include <stdio.h>
#include <stdlib.h>
int main(){
 int i, v[5];
 //captura os elementos
 for(i=0;i<5;i++){
 printf("Elemento[%d]= ",i);
 scanf("%d",&v[i]);
 }
 //EXIBIR VALORES ORIGINAIS
 printf("\n::: Valores originais :::\n");
 for(i=0;i<5;i++)
 printf("%d\n",v[i]);
 //EXIBIR VALORES ORIGINAIS
 printf("\n::: Valores na ordem inversa :::\n");
 for(i=4;i>=0;i--)
 printf("%d\n",v[i]);
 return 0;
}

MATERIAIS COMPLEMENTARES

(147) Materiais 01.1 Video - Seja bem-vindo

Vídeo de boas vindas:
https://drive.google.com/open?id=0B8wKF3o5SDwnMEItbV9Xa
zhMV1E

(148) Materiais 01.2 Creditos

Equipe de Desenvolvimento

Conteúdo do curso:
Lucio Vasconcelos dos Santos
Ana Klock
Prof. Dra. Isabela Gasparini

Ilustrações:
Vitor Mulazani dos Santos

Coordenação:
Prof. Dra. Isabela Gasparini

Agradecimentos
…
…
...

(149) Materiais 02.1 Papo BJPnet

Da lógica à programação
Sugestão - Papo BJPnet

https://drive.google.com/open?id=0B8wKF3o5SDwnMEItbV9XazhMV1E
https://drive.google.com/open?id=0B8wKF3o5SDwnMEItbV9XazhMV1E

92

Você pode aprender muito sobre algoritmos e programação
(assim como qualquer outro assunto de seu interesse) ouvindo
podcasts disponíveis na internet, como este:
Link: Podcast: Papo BJPnet 27
Fonte: BJPnet (o que é um programa de computador)

(150) Materiais 02.2 Jogo Light-bot

Da lógica à programação
Sugestão - Jogo Light-bot

Jogo Light-bot - para "aquecer" no aprendizado da lógica de
programação, neste jogo devem ser criadas sequencias de
passos para que o personagem possa resolver um problema,
inclusive usando as estruturas que vamos aprender neste curso:

Link: Jogo Light-bot

(151) Materiais 03.3.1 Outros interpretadores de
pseudolinguagem

Outras ferramentas de aprendizagem
Sugestão - Outros interpretadores de pseudolinguagem
G-Portugol
MACP Compilador Portugol
VisuAlg
Portugol online
Webportugol
Projeto AMBAP

(152) Materiais 03.3.2 Outros compiladores de linguagem C

Outras ferramentas de aprendizagem
Sugestão - Outros compiladores de linguagem C
Microsoft Visual Studio
Code::Blocks
Codepad.org
Ideone.com
TutorialsPoint
CppDroid (para mobile)

(153) Materiais 04.1.1 Passos para criar algoritmo

Algoritmos
Passos para criação de um algoritmo

Entender o problema;
Determinar os dados de entrada;
Determinar como os dados serão processados;
Determinar os dados de saída;
Construir o algoritmo;
Testar o algoritmo.

(154) Materiais 05.1.1 Narrativa sequencial

Sobre narrativas
Narrativa Sequencial

É a descrição de uma ação que é constituída por um número
variável de sequencial (segmentos narrativos com princípio,
meio e fim). Como exemplo de narrativa sequencial, vamos
descrever de forma simples como fazer um café:
 1. Pegar o bule.
 2. Colocar o coador de plástico sobre o bule.
 3. Colocar o coador de papel no coador de plástico.
 4. Colocar pó de café no coador de papel.
 5. Colocar água quente no coador de papel.
Observe que as ações foram dispostas de tal modo que não é
possível trocar as ordens das frases.

(155) Materiais 05.1.2 Narrativa de selecao

Sobre narrativas
Narrativa de Seleção

Digamos que no algoritmo anterior queiramos detalhar o
momento correto de se colocar a água sobre o café. Precisamos
fazer então um teste para saber se a água já está fervendo. Se
isto for verdadeiro, ou seja, SE a água estiver fervente, ENTÃO
neste momento pode-se colocar a água sobre o café.
Pegar o bule.
Colocar o coador de plástico sobre o bule.
Colocar o coador de papel no coador de plástico.
Colocar pó de café sobre o coador de papel.
Se a água estiver fervente, então colocar água sobre o café.
Vamos aprimorar o nosso algoritmo, dando uma certa
"inteligência" a ele. Digamos que ou possa acompanhar o
processo de aquecimento da água. Vou então repetindo testes
ou observações, ATÉ QUE a água esteja fervente. Daí segue
então o meu processo (colocar água sobre o café), que agora
tem o aspecto de uma narrativa de repetição.

(156) Materiais 05.1.3 Narrativa de repetição

Sobre narrativas
Narrativa de Repetição

Descrição de narrativa de repetição usando a estrutura de
repetição. Para não termos que ficar testando indefinidamente
a temperatura da água, e repetindo este texto indefinidas vezes
no meu algoritmo, posso ESTRUTURAR o meu texto de forma
adequada e clara.
Ou seja, escrevo em apenas uma frase a mesma coisa que quis
dizer em várias linhas no algoritmo anterior.
Pegar o bule.
Colocar o coador de plástico sobre o bule.
Colocar o coador de papel sobre o coador de plástico.
Colocar pó de café sobre o coador de papel.
Enquanto a água não estiver fervente, faça aquecer a água.
Colocar água sobre o café.

(157) Materiais 06.1.1 Animacao - estrutura do pseudocódigo

Sobre pseudocódigos
Animação - estrutura do pseudocódigo

(158) Materiais 07.1.1 Animacao - Comparativo estrutura
pseudo e C

Programa
Comparativo das estruturas básicas de pseudocódigo e C
Observe as estruturas básicas de um programa em
pseudocódigo e em linguagem C, lado a lado. As cores definem
as funções semelhantes em cada uma.

Figura - Comparativo das estruturas básicas de um programa

93

em pseudocódigo e em C.

(159) Materiais 07.1.2 Alo mundo

Programa
Primeiro programa - Alô mundo!

 #include <stdio.h>
 void main()
 {
 printf("Alo mundo!");
 }

(160) Materiais 07.1.3 Pseudocodigo - Alo mundo

Programa
Primeiro programa em pseudocódigo - Alô mundo!

 inicio
 escrever "Alo mundo!"
 fim

(161) Materiais 07.1.4 Teste de mesa

Programa
Teste de Mesa

Após desenvolver um algoritmo, é importante checar seu
funcionamento para saber se está se comportando conforme o
esperado. O TESTE DE MESA é um recurso preciso e eficiente,
que nos permite acompanhar o valor de todas as variáveis
envolvidas a cada passo de execução do programa.
Alguns programas compiladores ou interpretadores já possuem
o teste de mesa integrado, o que facilita esta análise.
Vamos tomar como exemplo o cálculo da média anual de um
estudante, a partir de suas notas (B1 a B4) em cada um dos 4
bimestres.
1. Entrar com a B1.
2. Entrar com a B2.
3. Entrar com a B3.
4. Entrar com a B4.
5. Media = (B1 + B2 + B3 + B4) / 4
6. Mostrar Media.

Teste de mesa:

(162) Materiais 07.3.1 Pseudocodigo - Comando de atribuição

Programa
Comando de atribuição em pseudocódigos

Em pseudocódigos, por motivos didáticos, o comando de
atribuição é representado por uma seta para a esquerda (<-).
Ele é utilizado da seguinte forma:
variavel <- valor
Do seu lado esquerdo fica a variável à qual está sendo atribuído
o valor, e à sua direita pode-se colocar qualquer expressão
(constantes, variáveis, expressões numéricas), desde que seu
resultado tenha tipo igual ao da variável.
Observe os exemplos a seguir. Tente compreender a estrutura
do comando, mesmo que não entenda alguns termos da
expressão (não é necessário resolver os cálculos).

x <- 25
y <- x + 15 – 3
z <- y – x + rad(x) – pot(y,2)

(163) Materiais 07.4.1 Pseudo x C - Comandos de saída

Programa
Comparativo Pseudocódigo x Linguagem C - Comandos de Saída

Neste exemplo, "escrever" (ou "printf") é a função, e o
argumento é o que está entre aspas "Mostrando o resultado".

(164) Materiais 07.4.2 Tabela de códigos especiais

Programa
Tabela de Códigos Especiais em C

(165) Materiais 07.4.2.1 Pseudocodigo - Funcao de entrada

Programa
Pseudocódigo - Função de entrada

inicio
 variavel inteiro x
 escrever "Entre com o valor de x: "
 ler x
 escrever "x = ", x
fim

(166) Materiais 07.4.2.2 Funcao de entrada

Programa
Função de entrada

#include <stdio.h>
 void main()
 {
 int x;
 printf("Entre com o valor de x: ");
 scanf("%d",&x);
 printf("x = %d",x);
 }

(168) Materiais 07.4.2.3 Pseudocodigo - Entrada de dados

Programa
Pseudocódigo - Entrada de dados

inicio

94

 inteiro a
 escrever "Entre um numero inteiro:\n"
 ler a //recebe um numero inteiro do usuario
 escrever "O numero inteiro que voce digitou eh ",a,".\n"
fim

(169) Materiais 07.4.2.4 Entrada de dados

Programa
Pseudocódigo - Entrada de dados

#include <stdio.h>
int main()
{
 int a;
 printf("Entre um numero inteiro:\n");
 scanf("%d", &a); //recebe um numero inteiro do usuario
 printf("O numero inteiro que você digitou eh %d.\n", a);
 return 0;
}

(170) Materiais 07.4.3 Tabela de codigos de formatação

Programa
Tabela de códigos de formatação

(171) Materiais 07.5.1 Tabela das funcoes de string

Programa
Tabela das funções de String

(172) Materiais 08.1.1 Pseudocodigo - Atribuicoes com
variáveis

Dados, variáveis e operadores
Pseudocodigo - Atribuicoes com variaveis

Exemplos de atribuições usando variáveis:
a <- 3
Valor1 <- 1.5
Valor2 <- Valor1 + a
vet[1] <- vet[1] + (a * 3)
matriz[3,9] <- a/4 - 5
nome_do_estudante <- "José da Silva"
sinalizador <- FALSO

inicio
\\ Declaracao de variaveis
 variavel real a, valor1, valor2, matriz[4][10]
 variavel texto nome_do_estudante
 variavel logico sinalizador
\\ Calculos
 a <- 3
 Valor1 <- 1.5
 Valor2 <- Valor1 + a
 matriz[3][9] <- a/4 - 5
 nome_do_estudante <- "José da Silva"
 sinalizador <- FALSO
\\ Mostrar resultados
 escrever a
 escrever "\n",Valor1
 escrever "\n",Valor2
 escrever "\n",matriz[3][9]
 escrever "\n",nome_do_estudante
 escrever "\n",sinalizador
fim

Observe que variável do tipo lógico mostra o resultado na tela
como VERDADEIRO ou FALSO, enquanto que na linguagem C o
resultado é 1 ou 0.

(173) Materiais 08.1.2 Atribuicoes com variáveis

Dados, variáveis e operadores
Atribuições com variáveis

95

Exemplos de atribuições usando variáveis:

a <- 3
Valor1 <- 1.5
Valor2 <- Valor1 + a
vet[1] <- vet[1] + (a * 3)
matriz[3,9] <- a/4 - 5
nome_do_estudante <- "José da Silva"
sinalizador <- FALSO

Aplicação com atribuições de variáveis:

#include <stdio.h>
#include <stdlib.h>
void main()
{
//Declaracao de variaveis
 float a, valor1, valor2, matriz[4][10];
 char nome[]="Jose da Silva";
 int sinalizador;
// Calculos
 a = 3;
 valor1 = 1.5;
 valor2 = valor1 + a;
 matriz[3][9] = a/4 - 5;
 sinalizador = a > valor1;
// Mostrar resultados
 printf ("%f", a);
 printf ("\n%f",valor1);
 printf ("\n%f",valor2);
 printf ("\n%f",matriz[3][9]);
 printf ("\n%s",nome);
 printf ("\n%d",sinalizador);
}

Observe que variável do tipo lógico mostra o resultado na tela
como 1 ou 0, enquanto que no pseudocódigo o resultado é
VERDADEIRO ou FALSO.

(174) Materiais 08.1.3 Tabela - Pseudo x C - Tipos de dados

Dados, variáveis e operadores
Tabela - Pseudocódigo x Linguagem C - Tipos de dados

(175) Materiais 08.4.1 Tabela - Operadores relacionais

Dados, variáveis e operadores
Tabela - Operadores relacionais em C

Na tabela abaixo observamos os operadores relacionais em C:

(176) Materiais 11.1.1 Declaracao de vetores

Vetores e matrizes
Exemplo - Declaração de vetores

Tipo nome_vetor[tamanho];

Também é possível inicializar o vetor no momento de sua
declaração:
Tipo nome_vetor[tamanho]={lista_de_valores};
Exemplo:
int vetor_exemplo[9]={0,1,2,3,4,5,6,7,8,9};

Entrada de dados do vetor pelo usuário:
Exemplo:
scanf (“%d”, &vetor_exemplo[5]);

(177) Materiais 11.2.1 Declaracao de matrizes

Vetores e matrizes
Exemplo - Declaração de matrizes

Exemplo: matriz "B" de 3 linhas por 3 colunas:
Declaração da matriz:
int B[2][2];

inicialização da matriz:
int B[2][2] = {{1,2}, {3,4}};

Acessando a matriz:
B[0][0] = 1;
B[0][1] = 2;
B[1][0] = 3;
B[1][1] = 4;

LINKS DE APOIO

(178) 03.2.1 Links - Aplicativo - DevCpp

http://www.bloodshed.net/devcpp.html

(179) 03.2.2 Links - Download DevCpp 5.4.0

http://sourceforge.net/projects/orwelldevcpp/files/Setup%20R
eleases/Dev-Cpp%205.4.0%20TDM-
GCC%20x64%204.7.1%20Setup.exe/download

(180) 03.3.1 Links - Aplicativo - G-Portugol

http://sourceforge.net/projects/gpt.berlios/

(181) 03.3.2 Links - Aplicativo – MACP

http://portugol.sourceforge.net/

(182) 03.3.3 Links - Aplicativo – VisuAlg

http://www.apoioinformatica.inf.br/produtos/visualg

(183) 03.3.4 Links - Aplicativo - Portugol online

https://www.vivaolinux.com.br/artigo/Portugol-Online-
Software-livre-para-facilitar-o-estudo-de-algoritmos

(184) 03.3.5 Links - Aplicativo – Webportugol

http://www.univali.br/webportugol

(185) 03.3.6 Links - Aplicativo – AMBAP

http://www.bloodshed.net/devcpp.html
http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download
http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download
http://sourceforge.net/projects/orwelldevcpp/files/Setup%20Releases/Dev-Cpp%205.4.0%20TDM-GCC%20x64%204.7.1%20Setup.exe/download
http://sourceforge.net/projects/gpt.berlios/
http://portugol.sourceforge.net/
http://www.apoioinformatica.inf.br/produtos/visualg
https://www.vivaolinux.com.br/artigo/Portugol-Online-Software-livre-para-facilitar-o-estudo-de-algoritmos
https://www.vivaolinux.com.br/artigo/Portugol-Online-Software-livre-para-facilitar-o-estudo-de-algoritmos
http://www.univali.br/webportugol

96

https://sites.google.com/site/ldsicufal/softwares/projeto-
ambap

(186) 03.3.7 Links - Aplicativo - Microsoft Visual Cpp

https://www.visualstudio.com/features/cplusplus

(187) 03.3.8 Links - Aplicativo – CppDroid

https://play.google.com/store/apps/details?id=name.antonsmir
nov.android.cppdroid&hl=pt_BR

(188) 03.3.9 Links - Aplicativo – CodeBlocks

http://www.codeblocks.org/

(189) 03.3.10 Links - Pagina - codepad.org

http://codepad.org/

(190) 03.3.11 Links - Pagina - ideone.com

https://ideone.com/

(191) 03.3.12 Links - Pagina - tutorialspoint.com

http://www.tutorialspoint.com/compile_embedded_c_online.p
hp

QUESTÕES DA AVALIAÇÃO

(192) Avaliação – QUESTÃO 01 (estrutura do programa)

Observe o programa na figura, e tente visualizar cada parte de
sua estrutura (ENTRADA, PROCESSAMENTO, SAÍDA):

Qual o número da linha em que o programa realiza a etapa
correspondente ao PROCESSAMENTO?
a) Linha 6.
b) Linha 7.
c) Linha 8. (correta)
d) Linha 9.

Justificativa:
A operação principal do programa é o cálculo de uma
determinada fórmula. Verifica-se que tem uma ENTRADA de
dados, pelo usuário (linhas 6 e 7), e a SAÍDA é a apresentação
do resultado deste cálculo (linha 9). Portanto, o

PROCESSAMENTO corresponde ao cálculo da fórmula (linha 8).

(193) Avaliação – QUESTÃO 02 (condição)

O que faz este programa?

a) Calcula o troco, baseado em um valor pago informado pelo
usuário, e informa quantas e quais cédulas ou moedas serão
necessárias.
b) Calcula o troco, baseado em um valor pago pré-declarado
(pré-existente) no programa, e informa quantas e quais cédulas
ou moedas serão necessárias. (correta)
c) Calcula o troco, baseado nas cédulas ou moedas que o
usuário informou, e mostra o valor pago.
d) Calcula o troco, baseado nas cédulas ou moedas pré-
declaradas (pré-existentes) no programa, e mostra o valor pago.

Justificativa:
O programa auxilia a selecionar as cédulas e moedas em uma
atividade de troco. A estratégia usada é baseada no cálculo do
resto de uma divisão (operador %): iniciando pela cédula de
maior valor, divide-se o valor desta cédula pelo valor do troco.

https://sites.google.com/site/ldsicufal/softwares/projeto-ambap
https://sites.google.com/site/ldsicufal/softwares/projeto-ambap
https://www.visualstudio.com/features/cplusplus
https://play.google.com/store/apps/details?id=name.antonsmirnov.android.cppdroid&hl=pt_BR
https://play.google.com/store/apps/details?id=name.antonsmirnov.android.cppdroid&hl=pt_BR
http://www.codeblocks.org/
http://codepad.org/
https://ideone.com/
http://www.tutorialspoint.com/compile_embedded_c_online.php
http://www.tutorialspoint.com/compile_embedded_c_online.php

97

Se der um número exato, apenas verifica-se a quantidade de
cédulas necessárias (divisão simples). Se sobrar resto, este valor
será o novo troco, e compara-se da mesma forma com a cédula
seguinte. No início do programa é feito o cálculo do troco,
subtraindo o valor do produto do valor pago. Estes valores
(valorproduto e valorpago) já estão declarados no código, não
há entrada de dados pelo usuário. As cédulas e moedas
também já estão estabelecidas no código (cédulas de 50, 20, 10,
5 e 2 Reais, e moeda de 1 real).

(194) Avaliação – QUESTÃO 03 (algoritmo/narrativa)

Um estudante tinha uma calculadora simples, de quatro
operações [+] [-] [*] [/] (soma, subtração, multiplicação e
divisão), mas as teclas de [*] e [/] quebraram. Como desafio, ele
pensou em um algoritmo (em forma de narrativa) que fosse
capaz de calcular as operações de [*] e [/] utilizando apenas
somas ou subtrações. Dentre as alternativas, qual a única que
descreve a narrativa POSSÍVEL que o estudante pensou?
Observação: para simplificar, considere para a subtração apenas
números positivos, e para a divisão apenas números maiores ou
iguais a zero.

a) Algoritmo 1:

Entrar com o primeiro valor.
Entrar com o segundo valor.
Entrar com a operação.
Se a operação for soma, então
 primeiro valor [+] segundo valor.
 Mostrar o resultado da operação.
Se a operação for subtração, então
 primeiro valor [-] segundo valor.
 Mostrar o resultado da operação.
Se a operação for multiplicação, então
 primeiro valor [*] segundo valor.
 Mostrar o resultado da operação.
Se a operação for divisão, então
 Primeiro valor [/] segundo valor.
 Mostrar o resultado da operação

b) Algoritmo 2:

Entrar com o primeiro valor.
Entrar com o segundo valor.
Entrar com a operação.
Se a operação for soma, então
 primeiro valor [+] segundo valor.
 Mostrar o resultado da operação.
Se a operação for subtração, então
 primeiro valor [-] segundo valor.
 Mostrar o resultado da operação.
Se a operação for multiplicação, então
 primeiro valor [*] segundo valor.
 Mostrar o resultado da operação.
Se a operação for divisão, então
 Se o segundo valor for zero
 Informar erro ao usuário e
parar programa.
 Senão
 Primeiro valor [/] segundo valor.
 Mostrar o resultado da operação.

c) Algoritmo 3:

Entrar com o primeiro valor.
Entrar com o segundo valor.
Entrar com a operação.
Se a operação for soma, então
 primeiro valor [+] segundo valor.
 Mostrar o resultado da operação.

Se a operação for subtração, então
 primeiro valor [-] segundo valor.
 Mostrar o resultado da operação.
Se a operação for multiplicação, então
 Repetir
 primeiro valor [+] ele mesmo, pela
 quantidade de vezes representada pelo
 segundo valor.
 Mostrar o resultado da operação.
Se a operação for divisão, então
 Repetir
 primeiro valor [-] ele mesmo, pela
 quantidade de vezes representada pelo
 segundo valor.
 Mostrar o resultado da operação.

d) Algoritmo 4: (correta)

 Entrar com o primeiro valor.
Entrar com o segundo valor.
Entrar com a operação.
Se a operação for soma, então
 primeiro valor [+] segundo valor.
 Mostrar o resultado da operação.
Se a operação for subtração, então
 primeiro valor [-] segundo valor.
 Mostrar o resultado da operação.
Se a operação for multiplicação, então
 Repetir
 primeiro valor [+] ele mesmo, pela
quantidade
 de vezes representada pelo segundo valor.
 Mostrar o resultado da operação.
Se a operação for divisão, então
 Se o segundo valor for zero
 Informar erro ao usuário e parar
programa.
 Senão
 Repetir
 Segundo valor [-] primeiro
valor
 Até que o resultado da
subtração seja menor que o
segundo valor.
 Contar o número de subtrações que
foram necessárias,
 e mostrar (este será o resultado da
divisão).
 Mostrar o resultado da última subtração
(será o resto).

Justificativa:
- Para a multiplicação, são feitas somas repetidas do primeiro
valor, pela quantidade de vezes do segundo valor. Por exemplo:
4 * 7 = 28, soma-se o número 4 por sete vezes, ou 4 + 4 + 4 + 4 +
4 + 4 + 4. Vale a comutativa, ou seja, soma-se 4 vezes o número
7, ou 7 + 7 + 7 + 7.

(195) Avaliação – QUESTÃO 04 (compreensão do código)

No jogo “Torre de Hanoi” podemos nos basear em um
algoritmo para resolver o quebra-cabeça. Além disso, por ter
movimentos lógicos e previsíveis, é possível calcular a
quantidade mínima de movimentos necessários para sua
solução. O código apresentado na figura foi desenvolvido
justamente para realizar este cálculo.

98

Avalie o seu funcionamento, e responda as afirmativas a seguir
com Verdadeiro ou Falso.
a) A quantidade de movimentos é calculada em função do
número de discos. (verdadeiro)
b) A variável x corresponde ao número de discos. (falso)
c) O cálculo só é realizado a partir de 3 discos. (verdadeiro)
d) A fórmula para calcular o número de movimentos é n>=3.
(falso)
e) O usuário informa o número de movimentos, e o programa
calcula o número de discos. (falso)
f) A variável n representa a informação fornecida pelo usuário.
(verdadeiro)

Justificativa:
O jogo Torre de Hanoi tem, invariavelmente, 3 hastes, só se
pode movimentar 1 disco por vez, e um disco menor nunca
pode ficar sob um disco maior. Após um certo treino, pode-se
prever os movimentos porque se comportam de forma lógica. A
quantidade de movimentos aumenta se forem adicionados mais
discos, e nota-se um valor exato e mínimo de movimentos até a
solução, em função do número de discos. Trata-se de uma
relação de Progressão Geométrica (PG), que pode ser calculada
pela fórmula x=2^n+1 , onde x é o número de movimentos e n é
o número de discos. Avaliando o jogo, não faz sentido realizar o
cálculo com menos de 3 discos (daí a restrição no código).

(196) Avaliação – QUESTÃO 05 (estruturas de controle)

Considere um programa em que o usuário entre com a idade de
um atleta e mostre a categoria em que ele se enquadra, de
acordo com estes parâmetros:

de 5 a 10 anos: categoria infantil
de 11 a 17 anos: categoria juvenil
de 18 a 30 anos: categoria profissional
acima de 30 anos: categoria sênior

Agora responda, qual destas estruturas de controle seria a mais
adequada para desenvolver a função principal deste programa?
a) repetir-ate (do-while)
b) se (if) (correta)
c) para (for)
d) enquanto-faz (while)

Justificativa:
Não faz sentido utilizar estruturas de repetição neste problema.
No entanto, uma estrutura de condição (if, ou se) resolve bem:
se idade é x, então categoria é y.

(197) Avaliação – QUESTÃO 06 (repetição)

Abaixo temos uma aplicação de algoritmo com uma estrutura
Para (for). Observe as variáveis e responda:

Que valores devemos inserir para as variáveis b, c e d,
respectivamente, para que o resultado na tela seja exatamente
uma lista dos números pares de 2 a 20?
a) 2, 20, 2. (correta)
b) 1, 20, 2.
c) 2, 20, 1.
d) 1, 20, 1.

Justificativa:
Quando o usuário entra com os valores de b, c e d, estamos
determinando os parâmetros do laço para (for). Então o
comando ficará assim:
Pseudocódigo:
para a de b até c passo d
Linguagem C:
 for (a = b; a <=c ; a+=d)
O valor que aparece na tela é o da variável a. Se queremos que
a assuma os valores pares de 2 a 20, então então ele deve
iniciar a primeira iteração valendo 2, e a cada nova iteração ser
acrescido de 2. O laço só irá ser executado enquanto o a for
menor ou igual a 20.
Em resumo: o laço a inicia em b = 2, faz iterações enquanto a
for menor ou igual a c = 20, e a cada nova iteração é acrescido

99

de d = 2.

(198) Avaliação – QUESTÃO 07 (dados, variáveis, operadores)

Um analista desenvolveu um algoritmo para ajudar a calcular o
salário líquido dos colaboradores da empresa em que trabalha.
Deverá ser digitado o salário bruto, e ao final deverá ser exibido
o salário líquido a ser pago ao colaborador. As regras (fictícias)
para o cálculo serão as seguintes:
1) salário bruto menor que 1550, não tem desconto de IR, mas
desconta 8% de INSS.
2) salário a partir de 1550, desconta 7,5% de IR, e 9% de INSS.
3) salário líquido = salário bruto - IR - INSS

Observe as lacunas na figura, identificadas por “____”:

Identifique a única alternativa em que TODAS as opções
preenchem corretamente as lacunas no programa:
a) bruto, bruto, bruto, 0, inss, 0.09, 0.075, liquido. (correta)
b) bruto, liquido, bruto, 0.075, ir, 0.09, 0.075, bruto.
c) bruto, bruto, liquido, 0.09, inss, 0.075, 0.09, bruto.
d) liquido, liquido, liquido, 0, ir, 0.075, 0.09, liquido.

Justificativa:
- bruto: o valor a ser entrado é o do salário bruto, conforme a
linha seguinte do programa.
- bruto: o valor que é comparado a 1550 é o bruto.
- bruto: o valor de INSS para salário abaixo de 1550 é calculado
sobre o valor bruto.
- 0: quando o salário é menor que 1550, não há desconto de IR.
Por isso seu valor deve ser zero.
- inss: como a linha seguinte calcula o IR, supõe-se que esta
calcule o INSS.
- 0.09: se esta linha calcula o INSS, então a alíquota sobre o
bruto é de 9%, ou bruto * 0,09.
- 0.075: se esta linha calcula o IR, então a alíquota sobre o bruto
é de 7,5%, ou bruto * 0,075.
- liquido: deve ser mostrado na tela o valor líquido, calculado na
linha anterior.

(199) Avaliação – QUESTÃO 08 (dados, variáveis, operadores)

O programa da figura testa a condição de existência do
triângulo, sabendo que cada um dos lados é menor que a soma
dos outros dois. O usuário deve entrar com três valores,
referentes às medidas de cada lado. Sendo assim, complete as
lacunas abaixo, representadas por “____”, de modo que esta
regra funcione, e a seguir responda a alternativa correta.

a) lado1, lado3, lado2, impossivel, possivel.
b) lado2, lado1, lado3, possivel, impossivel.
c) lado1, lado2, lado3, impossivel, possivel.
d) lado3, lado2, lado1, possivel, impossivel. (correta)

Justificativa:
- lado3: lado1 deve ser menos que lado2 + lado3.
- lado2: lado2 deve ser menos que lado1 + lado3.
- lado1: lado3 deve ser menos que lado1 + lado2.
- possivel: se todas as condições forem verdadeiras, o triângulo
será possível.
- impossivel: se alguma das condições não for verdadeira, o
triângulo será impossível.

(200) Avaliação – QUESTÃO 09 (repetição)

Em relação às diferenças entre as estruturas enquanto-faz (do-
while) e repete-até (while), verifique se as afirmativas são
verdadeiras ou falsas.
I. Na estrutura repete-até (do-while), a ação poderá
nunca ser executada.
II. Na estrutura enquanto-faz (while), a ação é
executada pelo menos uma vez.
III. Na estrutura repete-até (do-while), a condição é
verificada no início do laço.
IV. Na estrutura enquanto-faz (while), a condição é
verificada ao final do laço.
Assinale a alternativa correta:
a) As afirmativas I e III são verdadeiras.
b) Todas as afirmativas são falsas. (correta)
c) As afirmativas II e IV são verdadeiras.

100

d) Todas as afirmativas são verdadeiras.

Justificativa:
Observe as estruturas de cada tipo:
Pseudolinguagem:

repete
...
até (condição)

enquanto (condição) faz
...
fim enquanto

Linguagem C:

do{
...
} while (condição)

while (condição){
...
}

Independente de ser em pseudolinguagem ou linguagem C, na
estrutura da esquerda a condição é testada ao final do bloco, e
na estrutura da direita a condição é testada no início.

(201) Avaliação – QUESTÃO 10 (matrizes)

Este programa realiza a soma de 12 valores inseridos pelo
usuário, dispostos em uma matriz 3x4. Logo abaixo, observa-se
uma representação da ORDEM de preenchimento da matriz
(figura a. Original).
Digamos, que, por algum motivo, a ordem de entrada dos dados
seja importante, e sabemos que para preencher a matriz de
uma forma alternativa (figura b. Alternativa), basta uma
pequena alteração no código. Indique a resposta que mostre
como deve ser esta alteração.

a) Na declaração da matriz, trocar i com j (ficará: MAT[4][3]).
b) Trocar um laço de repetição (para / for) com o outro.
(correta)
c) Trocar os índices apenas na leitura dos dados do usuário (ler /
scanf).
d) Trocar os índices na declaração da Matriz e também na
leitura de dados.

Justificativa:
Note que, no programa, um laço está dentro do outro (laços
encadeados ou aninhados). Isso significa que a cada iteração do
laço mais externo, é executado um ciclo completo de iterações
do laço mais interno.

Se o laço mais externo for a linha i, conforme apresentado na
estrutura original, para cada iteração de i, o laço da coluna j irá
variar de 0 a 3. Ou seja:
linha i = 0 ---- coluna j = 0
linha i = 0 ---- coluna j = 1
linha i = 0 ---- coluna j = 2
linha i = 0 ---- coluna j = 3
linha i = 1 ---- coluna j = 0
linha i = 1 ---- coluna j = 1
linha i = 1 ---- coluna j = 2
linha i = 1 ---- coluna j = 3
...
Na prática, a matriz será preenchida inicialmente toda a linha 0,
depois toda a linha 1, e assim por diante.
Trocar os índices na declaração da matriz não resolveria, pois
apenas mudaria a quantidade de elementos de linhas e colunas
– não queremos uma matriz de 4 linhas por 3 colunas, e sim o
contrário.
Trocar i com j na leitura dos valores (ler/scanf) poderia até
funcionar, mas daria erro ao solicitar o elemento MAT[3][0],
pois não existe linha 3 (apenas linhas 0, 1 e 2).
Trocando os índices na declaração da matriz e também na
leitura dos dados seria uma solução, e até funcionaria, mas
cairia no mesmo problema da matriz de 4 linha por 3 colunas.
Porém, se trocarmos um laço com o outro,ou seja, os laços i
com j, o preenchimento da matriz será inicialmente todos os
elementos da coluna 1, depois os da coluna 2, e assim por
diante, que é o que se deseja na forma alternativa de
preenchimento da matriz:

101

102

 Intervenções da etapa de Implementação APÊNDICE H

Intervenção 1 (qui 01/09/16)

Intervenção 2 (dom 04/09/16)

103

Intervenção 3 (dom 11/09/16)

Intervenção 4 (dom 18/09/16)

104

Intervenção 5 (dom 25/09/16)

Intervenção 6 (dom 02/10/16)

105

Intervenção 7 (dom 09/10/16)

Intervenção 8 (dom 16/10/16)

106

Intervenção 9 (dom 23/10/16)

Intervenção 10 (dom 30/10/16)

Intervenção 11 (seg 31/10/16)

Intervenção 12 (dom 06/11)

107

 Desafios da etapa de Implementação APÊNDICE I

DESAFIO 1:

Qual é a resposta correta para as equações abaixo?

a) 6 / 2 * (1 + 2) = ?
b) 7 + 8 * 0 - 2 = ?
c) 2 + 5 x 3 + 4 = ?
d) 2 + 2 + 2 * 0 = ?
e) 7 + 7 / 7 + 7 * 7 - 7 = ?
f) 12 / 2 * (6 - 7 + 4) * 2 = ?

Por quê?
--
RESPOSTAS:

Para qualquer um destes exercícios, a forma que o computador resolve é a mesma da Matemática: são adotadas as
mesmas prioridades entre as operações.

a) 6 / 2 * (1 + 2) = 6 / 2 * (3) = 3 * (3) = 9
Justificativa: resolve-se primeiro o que está entre parênteses, então a fração (6/2), e finalmente a multiplicação.

b) 7 + 8 * 0 - 2 = 7 + 0 – 2 = 5
Justificativa: resolve-se primeiro a multiplicação, depois a soma ou subtração.

c) 2 + 5 x 3 + 4 = 2 + 15 + 4 = 21
Justificativa: idem ao anterior.

d) 2 + 2 + 2 * 0 = 2 + 2 + 0 = 4
Justificativa: idem aos anteriores.

e) 7 + 7 / 7 + 7 * 7 - 7 = 7 + 1 + 7 * 7 – 7 = 7 + 1 + 49 – 7 = 7 + 50 – 7 = 50
Justificativa: primeiro resolve-se a fração, depois multiplicação, e ao final as somas e subtrações.

f) 12 / 2 * (6 - 7 + 4) * 2 = 12 / 2 * (3) * 2 = 6 * (3) * 2 = 36
Justificativa: inicialmente resolve-se o que está entre parênteses, a fração, e depois as multiplicações.

108

DESAFIO 2:

(Prazo até 02/10) Observe a sequência: 2, 5, 10, 17, 26, ... Escreva um programa que forneça o n-ésimo elemento desta
sequência. Sabemos que não existe uma única forma de se resolver, e que cada pessoa pensa de maneira diferente.
Compartilhe com os outros participantes, através do fórum de discussões, como você desvendou a sequência, e qual
estratégia você usou para resolvê-la.
--
DISCUSSÕES:
Compreensão do problema:
Uma sequência de números geralmente obedece a um determinado padrão. Há uma ordem lógica entre seus termos, de
forma que se possa calcular o elemento seguinte.
É comum utilizar-se a variável n para identificar cada termo de uma sequência: “A1” para o primeiro termo ou n = 1, “A2”
para o segundo ou n = 2, “A20” para o vigésimo ou n = 20. Daí o termo “n-ésimo” (ou An), que serve referenciar qualquer
um dos termos desta sequência.

Estratégia sugerida:
1. Desvendar a sequência.
2. Desenvolver um algoritmo que gere qualquer elemento da sequência.
3. Criar um programa que receba o n do usuário e execute este algoritmo.

1. Desvendando a sequência:
(Opção 1) Uma possibilidade é elevar cada número natural (0, 1, 2, 3, ...) ao quadrado, e a cada vez, adicionar 1.
(Opção 2) Uma segunda forma seria adicionar um número ímpar, na ordem (3, 5, 9, 11, ...), ao termo anterior da
sequência.
2. Algoritmo:
(Opção 1)
1. Receber n do usuário.
2. An = (n^2) + 1
3. Mostrar An. (“O termo n da sequência é An”)
(Opção 2)
1. A1 = 2 (primeiro termo da sequência).
2. x = 2 (variável auxiliar, será incrementado de 2 até n).
3. i (número ímpar, calculado: 2 * x - 1).
4. Receber n do usuário.
5. Repetir:
i = 2 * x - 1 (próximo número ímpar).
An = A1 + i (adiciona termo anterior ao número ímpar).
A1 = An (O termo atual An será o novo termo anterior).
x = x + 1 (incrementa x).
até que x > n.
6. Mostrar An. (“O termo n da sequência é An”)

3. Programa:
(Opção 1)
inicio
 inteiro n , an
 escrever "Entre com o número do termo: "
 ler n
 an <- n ^ 2 + 1
 escrever an
fim

#include <stdio.h>
main()
{
 int n, an;
 printf("Entre com o numero do termo: ");
 scanf("%d",&n);
 an=pow(n,2)+1;
 printf("O valor eh %d",an);
}

(Opção 2)

109

inicio
 inteiro a1 <- 2 , n , i , an , x <- 2
 escrever "Entre com o número do termo: "
 ler n
 repete
 i <- 2 * x - 1
 an <- a1 + i
 a1 <- an
 x <- x + 1
 ate (x > n)
 escrever an
fim

#include <stdio.h>
main()
{
 int n, an, i, a1 = 2, x = 2;
 printf("Entre com o numero do termo: ");
 scanf("%d",&n);
 do
 {
 i = (2 * x) - 1;
 an = a1 + i;
 a1 = an;
 x = x + 1;
 }
 while (x > n);
 printf("O valor eh %d",an);
}

--

110

DESAFIO 3:

(Prazo até 02/10) Crie uma calculadora de tempo. Por exemplo, calcular a diferença entre 3:15:33 (3 horas : 15 minutos :
33 segundos) e 17:28:22. A resposta também deve ser em horas:minutos:segundos. Compartilhe através do fórum a sua
solução, e qual estratégia usou para escrever o programa.

--
POSSÍVEIS DISCUSSÕES:

Como não foi especificado mais nada além de se calcular simplesmente a diferença entre dois horários, podemos pensar
em várias alternativas para resolver. As observações a seguir podem parecer muito óbvias para você, mas pense
“friamente” sobre cada uma delas:
Obs.2: no exemplo foram mostrados dois horários, mas não foi especificada nenhuma ordem entre eles;
Obs.3: o primeiro horário mostrado é menor do que o segundo.
Obs.4: não foi dito se o usuário entrará com os horários.

Algumas questões podem surgir:
• Os horários correspondem a horas de um dia (Ex.: 0 horas até 24 horas) ou são horas “corridas” (Ex.: 3 horas, 17
horas, 39 horas, 112 horas)? Resposta: horas corridas. De fato, pode-se pensar que seriam horas do dia, já que foi usada a
palavra “horário”. Mas, para isso, seria necessário usar ao menos a variável “dia” para possibilitar a resolução, ou então
limitar o valor de entrada.

• Poderá se mostrar hora negativa na resposta? Resposta: Não. Geralmente, quando se fala de horas, não usamos
valores negativos. Além do mais, o enunciado pede a “diferença” entre dois valores, e não algo como “o primeiro menos o
segundo” ou “o maior menos o menor”. Assim, vamos considerar que não existirá ordem de entrada dos horários.

• Como será a entrada de dados de cada horário, tudo junto, como no exemplo (no formato hora:minuto:segundo)
ou separado (primeiro a hora, depois minuto, e depois segundo)? Resposta: separado. Somente para simplificar o
algoritmo. Se formos usar de outra forma, precisaremos tratar a entrada como string, o que complica um pouco o
desenvolvimento. O nosso foco aqui não é a estrutura do código, e sim a estratégia da resolução.

Estratégia sugerida:
1. Entender como se faz cálculo com horas;
2. Criar um algoritmo que faça este cálculo com dois horários quaisquer;
3. Escrever um programa em que o usuário entre com dois horários, e o programa mostra na tela a diferença entre
eles.

1. Fazendo cálculo com horas:
Estamos usando horas, minutos e segundos.
Começando pelo menor, podemos dizer que 60 segundos é igual a 1 minuto, e que 60 minutos é igual a 1 hora.
Podemos calcular a diferença por, ao menos, 3 formas diferentes: (a) fazer as contas diretamente em horas; (b) converter
tudo em decimais da maior unidade, que é a hora, fazer as contas diretas com estes decimais, e ao final voltar para h:m:s;
(c) converter tudo para a menor unidade, que é segundos, fazer as contas normalmente, e depois voltar para h:m:s.
Seguindo o exemplo:
(a) Contas diretamente em horas:

Para não dar número negativo, subtraimos o maior do menor:
17:28:22
03:15:33 –
??:??:??

Começamos pelos segundos: como não dá para subtrair 22 de 33, emprestamos 1 min dos 28 min, que vira 27 min, e o 1
min (ou 60 seg) soma com os 22 seg. Então:
17:27:82
03:15:33 –

Agora sim, a conta é possível, e não precisa emprestar mais nada.
17:27:82
03:15:33 –
14:12:49

(b) Convertendo tudo em horas:

111

3:15:33 = 3 h + 15 min + 33 seg
Se 1 h = 60 min, então 15 min = 0,25 h (por regra de três)
Se 1 h = 60 min * 60 seg = 3600 seg, então 33 seg = 0,0091666...h
Ou seja, 3h + 0,25 h + 0,0091666...h = 3,259166...h

Da mesma forma: 17:28:22 = 17 h + 0,4666...h + 0,006111...h = 17,472777...h

Portanto, a diferença entre 3,259166...h e 17,472777...h é 14,2136111...h

Mas se tirarmos a parte inteira do número (14 h inteiras), teremos 0,2136111...h
 ou em minutos: 0,2136111...h * 60 min = 12,81666...min

E se tirarmos a parte inteira deste número (12 min inteiros) teremos 0,81666...min
ou em segundos: 0,81666...min * 60 seg = 49 seg

Juntando as partes inteiras (em destaque):
14 h 12 min 49 s ou 14:12:49

(c) Convertendo tudo em segundos:

3:15:33 = 3 h + 15 min + 33 seg = (3 * 60 * 60) seg + (15 * 60) seg + 33 seg =
= 10800 + 900 + 33 seg = 11733 seg

17:28:22 = 17 h + 28 min + 22 seg = (17 * 60 * 60) seg + (28 * 60) seg + 33 seg =
= 61200 + 1680 + 22 seg = 62902 seg

Subtraindo: (62902 – 11733) seg = 51169 seg

Revertendo:
(51169 / 60 / 60) h = 14,21361111 h ou 14 h inteiras + 0,21361111 h

O restante é igual ao método (b):

Em minutos: 0,2136111...h * 60 min = 12,81666...min

E se tirarmos a parte inteira deste número (12 min inteiros) teremos 0,81666...min
ou em segundos: 0,81666...min * 60 seg = 49 seg

Juntando as partes inteiras (em destaque):
14 h 12 min 49 s ou 14:12:49

2. Criar algoritmo:
(a) Contas direto em horas:
• Receber h1.
• Receber min1.
• Receber seg1.
• Receber h2.
• Receber min2.
• Receber seg2.
• Se (seg1 – seg2) > 0, então segFinal = seg1 – seg2.

 Senão, segFinal = (seg1 + 60) – seg2, e min1 = min1 – 1.
• Se (min1 – min2) > 0, então minFinal = min1 – min2.

 Senão, minFinal = (min1 + 60) – seg2, e h1 = h1 – 1.
• Se (h1 – h2) > 0, então hFinal = h1 – h2.

 Senão, inverter sinal de hFinal.
• Mostrar hFinal + ”:” + minFinal + ”:” + segFinal.

(b) convertendo tudo em horas:
• Receber h1.
• Receber min1.
• Receber seg1.
• Receber h2.
• Receber min2.

112

• Receber seg2.
• Horário1 em horas: T1 = h1 + (min1/60) + (seg1/60/60).
• Horário2 em horas: T2 = h2 + (min2/60) + (seg2/60/60).
• Diferença em horas: Dif = T1 – T2 (se for negativo, inverter sinal de Dif).
• Revertendo: HoraFinal = parte inteira de h.
• m = casas decimais de h * 60.
• MinutosFinal = parte inteira de m.
• SegundosFinal = casas decimais de m * 60.
• Mostrar HoraFinal + ”:” + MinutoFinal + ”:” + SegundosFinal.

 (c) convertendo tudo em segundos:
• Receber h1.
• Receber min1.
• Receber seg1.
• Receber h2.
• Receber min2.
• Receber seg2.
• Horário1 em segundos: T1 = (h1*60*60) + (min1*60) + seg1.
• Horário2 em segundos: T2 = (h2*60*60) + (min2*60) + seg2.
• Diferença em segundos: Dif = T1 – T2 (se for negativo, inverter sinal de Dif).
• Revertendo: h = Dif / 60 / 60.
• HoraFinal: parte inteira de h.
• m = casas decimais de h * 60.
• MinutosFinal = parte inteira de m.
• SegundosFinal = casas decimais de m * 60.
• Mostrar HoraFinal + ”:” + MinutoFinal + ”:” + SegundosFinal.

113

DESAFIO 4:

Proposta 1:
O que você prefere? Receber 1 milhão de reais de uma só vez ou receber 1 centavo hoje, e a cada dia, durante 30 dias,
receber o dobro do dia anterior? Elabore um algoritmo que demonstre qual opção é mais vantajosa.

--
Possível solução da proposta 1:

Se fizer as contas, recebendo em um dia o dobro do valor do dia anterior, chega-se a conclusão que começar com 1
centavo vale mais a pena. Ao final de 30 dias você terá recebido mais de 10 milhões de reais.

--
Proposta 2:
O torneio de Wimbledon é uma competição mundial de tênis que envolve mais de quase 1000 atletas em diversas
categorias, e ocorre em um período relativamente curto. Como isso é possível? E se os participantes fossem a população
do mundo todo, digamos, 8 bilhões de pessoas, em quantas rodadas o torneio terminaria?

--
Possível solução da proposta 2:
Agrupam-se todos os participantes, 2 a 2, na 1ª rodada. Os ganhadores são agrupados novamente, 2 a 2, na 2ª rodada, e
assim por diante. A cada rodada, a metade dos participantes é eliminada. O torneio de Wimbledon tem seu campeão em
10 rodadas. Calculando-se para 8 bilhões de participantes, o torneio terminaria em 33 rodadas.

--
Proposta 3:
Suponha que você tenha 100 amigos no Facebook, e cada um deles tenham mais 100 amigos. Quantas
interações/conexões são necessárias para que você tenha ligação com qualquer pessoa no mundo?
--

Possível solução da proposta 3:
Você tem 100 amigos. Na 1ª interação, seus amigos tem 100*100 = 10.000 amigos. Os amigos dos amigos têm, na 2ª
interação, 100*100*100 = 1.000.000 amigos, e assim por diante. Em 5 interações, já seriam mais de 10 bilhões de pessoas
interligadas, sendo que o mundo tem cerca de 8 bilhões de pessoas.

--
Proposta 4:
Pensando o Jogo da velha, entre dois jogadores, como uma matriz 3x3, como identificar que alguém ganhou o jogo?

Possível solução da proposta 4:
No jogo clássico, se um jogador completar uma linha, coluna ou diagonal com a sua marcação, ele ganha. No computador,
é necessário analisar, A CADA JOGADA, os elementos da matriz. Podem existir várias estratégias. Duas delas são:
a) Para cada jogador, e a cada jogada, verificar se há a combinação de caracteres iguais na sequência. Por exemplo:
verificar se na linha 1 da matriz tem ”X”, “X”, “X”, repete, para linhas 2 e 3. Verificar se na coluna 1 tem ”X”, “X”, “X”,
repete, para colunas 2 e 3. As diagonais são duas: verificar, para cada uma delas, se ocorre os mesmos ”X”, “X”, “X”.
Depois, fazer o mesmo para “O”, “O”, “O”, e repetir tudo a cada nova jogada.
http://duvidainsana.blogspot.com.br/p/apostilas.html
b) Atribuir +1 para o elemento “X” do jogador1, e -1 para o elemento “O” do jogador2, e 0 para elemento vazio. A cada
jogada, se a soma da linha, da coluna ou da diagonal der 3, o jogador1 ganha; se der -3, o jogador2 ganha.
http://www.cprogressivo.net/2013/03/Codigo-jogo-da-velha-em-C.html

http://www.cprogressivo.net/2013/03/Codigo-jogo-da-velha-em-C.html

114

 Questionário de Satisfação APÊNDICE J

Figura 14 – Questionário de satisfação – Tela 1 de 3

Fonte: elaborada pelo autor, 2016.

Transcrição do texto na Figura 14:

Sobre o minicurso (resposta em escala de Likert, de 1 a 5):

 Eu me senti motivado(a) durante todo o minicurso

 Eu explorei os recursos disponíveis no sistema

 Eu interagi com os demais participantes durante o minicurso

 Este minicurso me auxiliou na disciplina presencial

 De modo geral, valeu a pena participar do minicurso

115

Figura 15 – Questionário de satisfação – Tela 2 de 3

Fonte: elaborada pelo autor, 2016.

Transcrição do texto na Figura 15:

Sobre o conteúdo (resposta em escala de Likert, de 1 a 5):

 O conteúdo estava claro e organizado

 A apresentação visual do conteúdo e os recursos multimídia contribuíram para o
entendimento dos assuntos abordados

 A abrangência e profundidade do conteúdo atenderam às minhas expectativas

 Eu gostei da apresentação da pseudolinguagem em conjunto com a Linguagem C

 As mensagens me incentivaram a acessar o minicurso com mais frequência

 Os desafios propostos estimularam minha participação

 A avaliação final foi condizente com o conteúdo apresentado

 Minha nota na avaliação final refletiu o meu esforço neste minicurso

116

Figura 16 – Questionário de satisfação – Tela 3 de 3

Fonte: elaborada pelo autor, 2016.

Transcrição do texto na Figura 16:

Sobre sua participação:

 O que você MAIS gostou neste minicurso?

 O que você MENOS gostou neste minicurso?

 O que lhe motivou a realizar o minicurso até o final?

	h.bj0r7p3r2spz
	h.5zsv107uznw
	h.lnxbz9
	h.b1q4y241lr1p
	h.m9y5t6kv7iib

