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APRESENTAÇÃO DA DISCIPLINA

Caríssimo discente,

Estamos iniciando uma disciplina que é de fundamental importância para todos 
aqueles que estudam Matemática. Este curso de Introdução à Álgebra Linear é base 
para outras disciplinas mais avançadas do curso de Licenciatura em Matemática, 
como por exemplo, Cálculo III e Álgebra Abstrata.

Vale a pena ressaltarmos aqui que, para um melhor aproveitamento dessa disciplina, 
é aconselhável que o discente tenha cursado Geometria Analítica, já que faremos 
uma extensão de alguns conceitos vistos na disciplina como: vetores, espaço vetorial 
e base.

É muito importante que o discente procure tirar o maior proveito possível de todos 
os conteúdos vistos durante o decorrer da disciplina, pois como já dissemos será 
a base para o aprendizado de vários conhecimentos que serão essenciais para a 
formação de um licenciando em matemática.

No mais, estamos à disposição de todos sempre buscando contribuir com um 
aprendizado que venha a colaborar de forma efetiva principalmente para aqueles 
que irão atuar na área do ensino da matemática.

Bons estudos.

Os autores.
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I MATRIZES, DETERMINANTES 
E SISTEMAS DE EQUAÇÕES 
LINEARES

Nesta unidade trabalharemos com algumas ferramentas para o estudo 
de uma estrutura chamada Espaço Vetorial: as matrizes, suas operações 
e propriedades. Aprenderemos a calcular determinantes e, finalmente, 
aplicaremos esse conhecimento para discutir e resolver sistemas de equações 
lineares. Muitos dos principais problemas da física, engenharia, química e, é 
claro, da matemática, recaem (ou procuramos fazer com que recaiam) num 
sistema de equações lineares.

Objetivos

• Conhecer os tipos de matrizes e operacionalizar com elas;
• Aplicar o conceito de matrizes em situações reais;
• Conceituar determinantes e descrever suas propriedades;
• Definir e classificar sistemas lineares;
• Resolver sistemas lineares usando o método de Gauss-Jordan;
• Resolver sistemas lineares usando o método do escalonamento;
• Apresentar a Regra de Cramer.
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Matrizes 
UN 01

Consideremos o conjunto de alunos do curso de Licenciatura em Matemática da EaD, ligados ao polo 
GCN, cursando a disciplina Introdução à Álgebra Linear. Digamos que sejam 5 alunos. Ao longo do 
semestre, eles farão duas avaliações online e duas presenciais, num total de quatro notas parciais. 
Representaremos esses dados na tabela abaixo:

Para calcular a nota final de um determinado aluno, digamos, o Charles, basta atentarmos para a linha 
correspondente (8,0; 7,5; 5,9; 7,2); por outro lado, se estivermos interessados em calcular a média da 
turma na segunda avaliação online, devemos olhar para a coluna correspondente (6,2; 6,8; 7,5; 8,5; 
7,2). Também podemos ir diretamente ao local da tabela em que se encontra, por exemplo, a nota de 
Charles na segunda avaliação presencial (7,2).

Vejamos agora, a definição formal de matrizes.

Definição: Uma matriz real A de ordem m X n (m por n) é uma tabela de mn números reais, dispostos 
em m linhas e n colunas, onde m e n são números inteiros positivos.

Uma matriz real de m linhas e n colunas pode ser representada por Am×n(R). Neste curso, como só 
trabalharemos com matrizes reais, usaremos a notação simplificada Am×n, que se lê “matriz A m por 
n". Também podemos escrever A = (aij); onde i ∈ {1,2,…,m} é o índice de linha e j ∈{1,2,…,n} é o índice 
de coluna do termo genérico da matriz. Ou ainda,

Alunos AO1 AO2 AP1 AP2
Aline 4,5 6,2 7,0 5,5
Bárbara 7,2 6,8 8,0 10,0
Charles 8,0 7,5 5,9 7,2
Davi 9,2 8,5 7,0 8,0
Eliana 6,8 7,2 6,8 7,5

Introdução

TABELA 1: Notas de alunos do polo de GCN

SAIBA MAIS

Estrutura matemática é um conjunto no qual são definidas operações. As propriedades 
dessas operações “estruturam” o conjunto. Talvez você já tenha ouvido falar em alguma 
das principais estruturas matemáticas, como grupo, anel e corpo. Você estudará essas 
estruturas nas disciplinas de álgebra.
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O conjunto de todas as matrizes reais “m por n” é representado por Mm×n(R). Os elementos de uma 
matriz são limitados por parênteses, colchetes ou barras duplas.

Exemplo 1

	 i. Uma matriz 2 × 3:

	 ii. Uma matriz 3 × 1: 

	 iii. Uma matriz 3 × 3:

Exemplo 2

Os dados da Tabela  1 representam as notas dos alunos do curso de Licenciatura em Matemática da EaD e 
podem ser apresentados na matriz dada a seguir:

onde cada elemento aij dessa matriz é a nota obtida pelo aluno de número i na avaliação j. Por exemplo, o 
elemento a24  é a nota (10,0) obtida pelo aluno que está na segunda posição (Bárbara) na quarta avaliação 
(segunda avaliação presencial). 

Podemos também representar os elementos de uma matriz por fórmulas, como ilustra o próximo exemplo.

 
Exemplo 3

Primeiramente definiremos os tipos de matrizes dados de acordo com o número de linhas e colunas. Seja 
Am×n  = (aij ), esta matriz pode ser: 

Matriz Linha

Definição: Quando m=1, chamamos a matriz A1×n de matriz linha:

A=(a1  a2… an ).

Observação: A matriz linha é denominada vetor linha (ou simplesmente, vetor), assim 

A = (a1, a2, …, an).

Tipos de matrizes
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Matrizes Quadradas Especiais

Dada uma matriz quadrada An   =  (aij), dizemos que A é uma matriz:

	 triangular superior, quando aij = 0 se i  >  j, ou seja, possui todos os elementos abaixo da diagonal 
principal nulos.

 
Exemplo: A matriz abaixo é uma matriz quadrada de ordem 4 chamada matriz triangular superior:

Matriz Quadrada

Definição: Chamamos de matriz quadrada a matriz que tem o número de linhas igual ao número de colunas, 
isto é, m = n:

Dizemos que a matriz acima é uma matriz quadrada de ordem n, e escrevemos apenas An. 

Destacamos numa matriz quadrada An  = (aij) os seguintes elementos:

	  diagonal principal é formada pelos termos aii, ou seja, pelos termos onde os índices de linha e 
de coluna são iguais.

	 diagonal secundária é formada pelos termos aij, onde i  +  j  =  n + 1.

 
Exemplo:  Destacamos a diagonal principal e a secundária na matriz A3×3 a seguir:

Matriz Coluna

Definição: Quando n = 1, chamamos a matriz Am×1 de matriz coluna:

Observação: A matriz coluna pode ser denominada vetor coluna.

A

a
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	  triangular inferior, quando aij = 0 se i  <  j, ou seja, possui todos os elementos acima da diagonal 
principal nulos.

Exemplo: A matriz abaixo é uma matriz quadrada de ordem 3 chamada matriz triangular inferior:

	  diagonal, quando aij = 0 se i ≠ j, ou seja, possui todos os elementos fora da diagonal principal 
nulos. 

Observação: Uma matriz diagonal é, ao mesmo tempo, triangular superior e triangular inferior.

Exemplo: A matriz abaixo é uma matriz quadrada de ordem 4 chamada matriz diagonal:

	 escalar, quando		                onde k é um real qualquer.   Isto é, uma matriz escalar é diagonal   
e possui todos os elementos da diagonal principal iguais a um certo escalar k.

Observação: Uma matriz escalar onde temos k = 1 é chamada matriz identidade. E é representada por In, 
ou simplesmente, I.

Exemplo: A matriz abaixo é uma matriz quadrada de ordem 4 chamada matriz escalar:

Igualdade entre Matrizes

Definição: Dadas as matrizes A, B  ∈  Mm×n (R), dizemos que A = (aij ) é igual a B = (bij), denotamos por 
A = B, se aij = bij  para todo  i  ∈  {1, 2, …, m}  e todo j ∈ {1, 2, …, n}.

Exemplo: Para determinar  x,  y  e  z  sabendo que as matrizes             	       e  	      são iguais, 
 
devemos, usando a definição, resolver as seguintes equações:
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Matriz Oposta

Definição: Dada a matriz A = (aij)   ∈   Mm×n (R), dizemos que a matriz  B = (bij)  ∈  Mm×n (R) é oposta 
de  A  se  bij  =  - aij  para todo  i  ∈  {1, 2, …, m}  e  todo j ∈ {1, 2, …, n}. Ou seja, os elementos da matriz 
oposta de A  são os elementos opostos aos elementos de A. Representamos a oposta de A por -A.

Exemplo: A matriz oposta de 

 

Matriz Transposta

Definição: Dada a matriz A = (aij )  ∈   Mm×n (R), dizemos que a matriz B = (bji)  ∈  Mn×m (R) é transposta 
de  A  se bji  =  aij  para todo i  ∈ {1,2,…,m}  e  todo  j ∈ {1,2,…,n}. Representamos a transposta de A por At.

Observação: Note que para obter a transposta de uma matriz A, basta escrever as linhas de A como 
sendo as colunas da nova matriz ou, equivalentemente, escrever as colunas de A como as linhas da 
nova matriz.

Exemplo: A seguir temos a matriz A e sua transposta:

Propriedades

Dadas as matrizes A = (aij),  B = (bij),  ∈   Mm×n (R) quaisquer e α ∈ R, vale: 

(T1) (At )t = A.

(T2) (A + B)t = At + Bt

(T3) (αA)t = αAt

(T4) (AB)t = Bt . At

Matriz Simétrica

Definição: Dizemos que uma matriz  A = (aij )   ∈   Mn (R) é simétrica se   A  =  At, isto é,  aij  =  aji, ∀i, j 
∈ {1, 2, …, n}.

Exemplo: A matriz 			    é simétrica, já que  

Matriz Antissimétrica

Definição: Dizemos que uma matriz  A  =  (aij )   ∈   Mn  (R) é antissimétrica se  A =  - At,  isto é,   
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Exemplo: A matriz 			         é antissimétrica, já que

Observação: Note que, todos os elementos da diagonal principal de uma matriz antissimétrica são, 
necessariamente, iguais a zero.

Operações com matrizes

Adição

Vamos considerar novamente, o exemplo dos alunos do curso de Licenciatura em Matemática do polo 
GCN que cursam a disciplina Introdução à Álgebra Linear, onde a matriz, referente à nota desses 
alunos, foi vista no exemplo 2 do tópico introdução.  Cada aluno tem seu nome associado a um número 
(o número da linha) e cada prova também é associada a um número (o número da coluna). Assim, 
como vimos anteriormente temos a matriz abaixo:

Supondo que as provas tenham sido submetidas a uma recorreção, temos abaixo as alterações que 
deverão ser feitas nas notas:

Logo, as notas corrigidas, NC, dos alunos serão dadas pela soma da matriz N com a matriz R, isto é, a 
matriz NC é formada pelas somas de cada nota (na matriz N) com seu fator de correção (elementos 
correspondentes, na matriz R):

Portanto,

A =
−

−
−

















0 1 3

1 0 7

3 7 0

A At =
−

−
−

















= −
0 1 3

1 0 7

3 7 0

.

N =

4 5 6 2 7 0 5 5

7 2 6 8 8 0 10 0

8 0 7 5 5 9 7 2

9 2 8 5 7 0 8 0

6 8 7 2 6

, , , ,

, , , ,

, , , ,

, , , ,

, , ,, ,

.

8 7 5























R =

−
−
0 5 0 5 0 0 0 0

0 2 0 0 0 0 0 0

0 0 0 5 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0

, , , ,

, , , ,

, , , ,

, , , ,

, , −−





















0 3 0 0, ,

.

N N RC = + =

4 5 6 2 7 0 5 5

7 2 6 8 8 0 10 0

8 0 7 5 5 9 7 2

9 2 8 5 7 0 8 0

6

, , , ,

, , , ,

, , , ,

, , , ,

,88 7 2 6 8 7 5

0 5 0 5 0 0 0 0

0 2 0 0 0 0 0 0

0 0 0

, , ,

, , , ,

, , , ,

,























+

−
−

,, , ,

, , , ,

, , , ,

, ,

5 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 3 0 0

4 5 0 5

−

+





















=

66 2 0 5 7 0 0 0 5 5 0 0, ( , ) , , , ,+ − + +

( )7,2+ -0,2 6,8+0,0 8,0+0,0 10,0+0,0

8,,0+0,0 7,5+0,5 5,9+0,0 7,2+0,0

9,2+0,0 8 5 0 0 7 0 0 0 8 0 0 0

6

, , , , , ,

,

+ + +
88 1 0 7 2 0 0 6 8 0 3 7 5 0 0+ + + − +





















, , , , ( , ) , ,

.

NC =

5 0 5 7 7 0 5 5

7 0 6 8 8 0 10 0

8 0 9 2 7 8 8 0

8 5 7 2 5 9 7 0

6 5 7 2

, , , ,

, , , ,

, , , ,

, , , ,

, , 88 0 7 5, ,

.






















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Multiplicação de uma matriz por um escalar 

Voltando à nossa tabela de notas dos alunos do polo GCN, suponhamos que, para facilitar o cálculo das 
médias, queiramos trabalhar numa escala de 0 a 100 (em vez de 0 a 10). Para isso, cada nota deverá 
ser multiplicada por 10. Assim, as notas dos alunos passarão a ser:

Definição: Dadas as matrizes A = (aij)  e  B = (bij )  em  Mm×n (R), definimos por  C = (cij )  ∈  Mm×n (R), a 
matriz soma de A e B, representada por  A + B, tal que  cij  =  aij  +  bij, ∀i  ∈  {1, 2, …, m}  e  ∀j ∈ {1,2,…,n}. 
Isto é, cada elemento de A + B é a soma dos elementos correspondentes das matrizes A e B.

Observação: A diferença de A e B, indicada por A - B, é a soma de A com a matriz oposta de B, isto é,  
A - B  =  A  +  (-B).

Propriedades

Dadas as matrizes A =(aij ), B=(bij ), C = (cij )  ∈ Mm×n (R) quaisquer, vale as seguintes propriedades: 

(A1) Comutativa: A + B = B + A

(A2) Associativa: (A + B) + C = A + (B + C)

(A3) Existência do elemento neutro: Existe O ∈ Mm×n (R) tal que A + O = A.

(A4) Existência do elemento oposto: Existe (-A) ∈ Mm×n (R) tal que A + (-A) = O.

(A5) Soma de transpostas: (A  +  B)t = At + Bt

Exemplo: Dadas as matrizes 		             e			       a diferença de A por B é dada por:

Exemplo: Dadas as matrizes 			   e		          a matriz soma de A por B é dada 
por:

Na verdade, o que fizemos foi:

A =
−

−










2 1 7

3 0 4
B =

−









11 0 7

13 8 4

A B+ =
−

−








 +

−







 =

+ −( ) + + −( )
−( ) +

2 1 7

3 0 4

11 0 7

13 8 4

2 11 1 0 7 7

3 13 00 8 4 4

13 1 0

10 8 8+ +








 =

−







 .

A =
−

−










2 1 7

3 0 4
B =

−









11 0 7

13 8 4

A B A B− = + −( ) =
−

−








 +

−
− − −









 =

+ −( ) −( ) +2 1 7

3 0 4

11 0 7

13 8 4

2 11 1 0 77 7

3 13 0 8 4 4

9 1 14

16 8 0

+
−( ) + −( ) + −( ) + −( )









 =

− −
− −









 .

50 57 70 55

70 68 80 100

80 92 78 80

85 72 59 70

65 72 80 75























.

10

10 5 0 10 5 7 10 7 0 10 5 5

10 7 0 10 6 8 10 8 0 10 10 0

10.

. , . , . , . ,

. , . , . , . ,

.NC = 88 0 10 9 2 10 7 8 10 8 0

10 8 5 10 7 2 10 5 9 10 7 0

10 6 5 10 7 2

, . , . , . ,

. , . , . , . ,

. , . , 110 8 0 10 7 5. , . ,

.






















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Definição: Dada a matriz A = (aij ) em Mm×n (R) e  α  ∈  R, definimos por C = (cij ) ∈ Mm×n (R), a matriz 
produto de A por α, representada por αA, tal que cij = αaij, ∀i ∈ {1, 2,…, m} e ∀j ∈ {1, 2, …, n}. Isto é, cada 
elemento de αA é o produto de α pelos elementos correspondentes da matriz A.

Exemplo: Dadas as matrizes 		         e		            temos que

	              

		  i.

                            ii.

Propriedades

Dadas as matrizes A = (aij ), B = (bij )  ∈  Mm×n (R)  e  α, β ∈ R quaisquer, vale as seguintes propriedades:

(M1) (αβ)A = α(βA) 

(M2) (α + β) A = αA + βA

(M3) α (A + B) = αA + αB

(M4) 1.A = A

(M5) (αA)t = αAt

Exemplo: Dadas as matrizes  		         e		             vamos calcular     		  . . Para  
 
isso, vamos usar as propriedades vistas anteriormente:

A =
−

−
















2 3

1 0

7 4

B =
−

−

















6 2

11 4

12 6

− = −
−

−
















=
−( ) −( ) −( )

−( ) −( ) −( )
−

3 3

2 3

1 0

7 4

3 2 3 3

3 1 3 0

3

A .

. .

. .

(( ) −( )

















=
−

− −















. .

.

7 3 4

6 9

3 0

21 12

2
1

2
2

2 3

1 0

7 4

1

2

6 2

11 4

12 6

A B− =
−

−
















+ −







−

−

















=.

44 6

2 0

14 8

6

2

2

2

11

2

4

2

12

2

6

2

−
−

















+

−

− −

−

























=
−

−
















+

−

− −

−



















=

+ −( ) −( ) +
4 6

2 0

14 8

3 1

11

2
2

6 3

4 3 6 1

−−( ) + −





 + −( )

+ −( ) +



















=

−

− −2
11

2
0 2

14 6 8 3

1 5

15

2
2

8 111



















.

A =
−











2 1

0 1
B =

−










4 0

2 6
, 2 2

1

2
. A Bt

t

−







2 2
1

2
2 2

1

2

5

. .A B A Bt
t A

t t t

+ −















 = ( ) + −




















=
( ) MM

t t tA B
5

2 2
1

2

( )

( ) − ( )








.
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Produto de matrizes

Considerando, novamente, o exemplo dos alunos da Introdução à Álgebra Linear, temos a seguinte 
matriz, na qual fornece as notas dos alunos numa escala de 0 a 100:

Seja P a matriz coluna dada pelos pesos das notas na ordem que aparece acima, isto é:

Logo, em vez de escrever uma expressão para cada um dos 5 alunos, basta efetuarmos a seguinte 
operação:

Lembrando que as duas primeiras colunas indicam as notas das avaliações online, e as duas últimas, 
as notas das avaliações presenciais dos alunos Aline, Bárbara, Charles, Davi e Eliana, nessa ordem. 

Supondo que as avaliações online tenham, cada uma, peso 2, isto é, cada uma colabora com 2/10 (ou 
20%) da nota final. Enquanto cada avaliação presencial terá peso 3, ou seja, representará 3/10 (ou 
30%) da nota final. Então, a nota final de cada aluno será dada por:

2
10
3

10

= −





 = ( ) − 






 = − =

( ) ( ) ( )T
t t

M
t

M

A B A B A B
1 13

2 2
1

2
2 2 2

1

2
4

  
. . .

88 4

0 4

4 2

0 6−








 −

−









=
− − −( )
− −( ) −









 =

−










8 4 4 2

0 0 4 6

4 6

0 10
.

NC =





















50 57 70 55

70 68 80 100

80 92 78 80

85 72 59 70

65 72 80 75




.

N
A A A A

A A A AF
O O P P

O O P P=
+ + +

= + + +
2 2 3 3

10

2

10

2

10

3

10

3

10

1 2 1 2
1 2 1 2

. . . .
.

P =

























2
10

2
10

3
10

3
10

.

N PC . =



















50 57 70 55

70 68 80 100

80 92 78 80

85 72 59 70

65 72 80 75






























=

+ + +

.

. . .

2
10

2
10

3
10

3
10

2

10 50

2

10 57

3

10 70

33

10 55

2

10 70

2

10 68

3

10 80

3

10 100

2

10 80

2

10 80

3

10 59

3

1

.

. . . .

. . .

+ + +

+ + +
00 72

2

10 92

2

10 85

3

10 70

3

10 80

2

10 78

2

10 72

3

10 65

3

10 7

.

. . . .

. . . .

+ + +

+ + +
55

58 9

81 6

71 3

80 4
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

































=












,

,

,

,






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Note que para fazer a operação acima, devemos ter o número de colunas da primeira matriz igual ao 
número de linhas da segunda, ou equivalentemente, o número de termos em cada linha da primeira é 
igual ao número de termos de cada coluna da segunda. Dessa forma, podemos multiplicar os pares de 
elementos, simultaneamente, uma linha da primeira matriz e uma coluna da segunda e, depois, somamos 
os produtos obtidos. Esse elemento obtido estará na posição ij da matriz resultante, onde i é o número 
referente à linha da primeira matriz e j é o número referente à coluna da segunda. Por exemplo, a41 = 80,4, 
pois esse elemento foi o resultado da operação feita com a linha 4 da primeira matriz com a coluna 1 da 
segunda matriz.

Definição: Dadas as matrizes A = (aik ) ∈ Mm×p (R)  e  B = (bkj )  ∈  Mp×n (R), definimos por matriz produto 
de A e B, a matriz  A. B = (cij )  ∈  Mm×n (R) tal que

Observação: O somatório anterior está dizendo que o elemento ij do produto é igual à soma dos 
produtos dos elementos da i-ésima linha de A pelos elementos correspondentes da j-ésima coluna de 
B. Isto é,

Propriedades

(P1) (A.B).C  =  A.(B.C),  ∀ A  ∈  Mm×n (R), B  ∈  Mn×p (R), C  ∈  Mp×q (R);

(P2) A.(B + C) = A.B + A.C,  ∀ A  ∈  Mm×n (R), B, C  ∈  Mn×p (R);

(P3) (A + B) . C = A.C + B.C,  ∀ A, B  ∈  Mm×n (R), C  ∈  Mn×p (R);

(P4) α(A.B) = (αA) . B = A.(αB), ∀ A  ∈  Mm×n (R), B  ∈  Mn×p (R);

(P5) Dada A  ∈  Mm×n (R), Im.A = A.In = A;

(P6) (AB)t = Bt . At, ∀ A  ∈  Mm×n (R), B  ∈  Mn×p (R);

(P7) O produto matricial não é, em geral, comutativo.

Exemplo: Considere as matrizes	     	        e		      . O produto dessas matrizes é 
 
dado por:

c a b i m j nij
k

p

ik kj= = … = …
=

∑
1

1 2 1 2. , , , , ; , , , .

c a b a b a b a bij i j i j ip pj
k

p

ik kj= + +…+ =
=

∑1 1 2 2

1

. .

A =
−

−










2 1 7

3 0 4
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















1 5 0
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5 1 4

A B. .
. . . .

=
−

−


























=
+ −( ) + + −2 1 7

3 0 4

1 5 0

0 0 3

5 1 4

2 1 1 0 7 5 2 5 11 0 7 1 2 0 1 3 7 4

3 1 0 0 4 5 3 5 0 0 4 1 3 0

( ) + + −( ) +
−( ) + + −( ) + + −( )

. . . . .

. . . . . . . ++ +








 =

−










0 3 4 4
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17 11 16. .
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Exemplos

i. Considere as matrizes 				    Note que,

 
 
Concluímos, então, desse exemplo, que a propriedade comutativa não vale para produto de matrizes.

ii. Dadas as matrizes quadradas A e B, vamos verificar se vale a igualdade 

     (A+B)(A-B) = A2 - B2. 

Temos pelas propriedades anteriores que:

Concluímos, então que a igualdade vale se, e somente se, B.A - A.B = 0, ou seja, se, e somente se,  
A.B = B.A. Como o produto de matrizes não é comutativo, a conclusão é que a igualdade não vale para 
matrizes em geral. 

 
Observação: A igualdade (A+B) (A-B) = A2 - B2 só vale se as matrizes A e B forem comutativas, isto é, 
se valer A.B = B.A.

Inversão de matrizes

Definição: Seja A uma matriz quadrada de ordem n, dizemos que B é a matriz inversa de A, denotada 
por B = A-1, se A.B  =  B.A  =  In, onde In é a matriz identidade de ordem n. Se a matriz A possui inversa, 
dizemos que A é inversível ou não singular. Caso contrário, dizemos que A é não inversível ou singular.

Exemplo: Determine, caso exista, a matriz inversa de 	              .  Seja  	                 a matriz inversa de 
A, assim,

 
Temos então,

Resolvendo o sistema, obtemos x = 3,  y = -5, z  =  -1 e t=2.

 
Observação: Quando definirmos determinantes, veremos que 			   , onde det (A) é o  
 
determinante da matriz A e adj(A) é a matriz adjunta de A, definidos posteriormente.

 
Propriedades

(I1) Se A ∈ Mn (R) é inversível, então (A-1) -1 = A;

(I2) Se A, B  ∈  Mn (R)  são inversíveis, então AB é inversível e (AB)-1 = B-1  A-1;

(I3) Se A  ∈  Mn (R) é inversível, então (At )-1 = (A-1 )t.

A B. .=










−







 =

−










1 2

3 4

2 0

1 3

0 6

2 12
B A. . .=

−

















 =

− −









2 0

1 3

1 2

3 4

2 4

10 14
e

A B A B A B A B A B A A B B
P

+( ) −( ) = +( ) + −( )( ) = +( ) + +( ) −( )
2

.

= + + −( ) + −( ) = + − −
P P

A A B A A B B B A B A AB B
3 4

2 2
 

. . . . . .

A =










2 5

1 3
B

x y
z t

=










AB I
x y
z t

x z y t
x z y t

= ⇒

















 =









 ⇒

+ +
+ +




2

2 5

1 3

1 0

0 1

2 5 2 5

3 3





 =











1 0

0 1

2 5 1

3 0

2 5 0

3 1

x z
x z

y t
y t

+ =
+ =





+ =
+ =





e .

A
A
adj A− =

( ) ( )1 1

det
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Matriz Ortogonal

Definição: Dada uma matriz A ∈ Mn (R), inversível, dizemos que A é ortogonal, se A-1 = At.

 
Observação: Note que, A-1 = At  ⇔ AA-1 = AAt  ⇔ I =AAt, assim para verificar se uma matriz A é ortogonal, 
basta multiplicar A por At e observar se o produto é a identidade.

 
Exemplo:  A matriz 		             é ortogonal, já que,

1. Escreva a matriz A = (aij ) em cada caso:

     a) A é do tipo 2 × 3  e 

 
     b) A é quadrada de ordem 4 e 

 
     c) A é quadrada de terceira ordem e aij = i - 2j + 4.

2. Considere as seguintes matrizes:

     Se for possível calcule:

     a) 2C - D

     b) A.B - B.A

     c) (2Dt - 3E)t

EXERCÍCIO PROPOSTO

3. Calcule o valor de x, sabendo-se que At = A, onde

 
4. Verifique quais dos itens abaixo são verdadeiros ou falsos:

A =
−



















1

2

3

2

3

2

1

2

AAt =
−

















 −



















=










1

2

3

2

3

2

1

2

1

2

3

2

3

2

1

2

1 0

0 1
.

a
i j se i j
i j se i jij =

+ =
− ≠





,

,2

a
i se i j

i j se i j
j se i j

ij =
− <
− =

>









,

,

,2

A B C D=
−







 =

−








 =

−







 = − −


1 0

5 2

3 7

2 1

5 3 1

0 2 0

0 7 2

9 2 2

1 3 2

, , ,















=
−

−

















e E
0 3 2

9 0 0

1 1 2

A x
x

=
−











2

2 1 0

2

a)     (–𝐴𝑡) =−At

b)     (A + B)t = Bt + At

c)     Se 𝐴.𝐵 = 0 então 𝐴 = 0 o  u B = 0

d)     (𝑘1 𝐴) . (𝑘2 𝐵) = (𝑘1𝑘2)  𝐴. 𝐵 ,  𝑘1, 𝑘2  ∈  ℝ.

e)    (−𝐴) . (−𝐵)   = −(𝐴.𝐵)

f)     Se 𝐴 e   𝐵 são matrizes simétricas, então 𝐴.𝐵 = 𝐵 .𝐴

g)     Se 𝐴 .  𝐵 = 0, então 𝐵 . 𝐴   =  0
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A B. =










2 5

1 0
AC. =











3 2

0 1

7. Dadas as matrizes A = (x   4 −2) e B = (2 −3   5), encontre o valor de x sabendo que A. Bt = 0.

8. Se 𝐴𝐵 = 𝐵𝐴 e   𝑝 é um inteiro positivo,  mostre que (𝐴𝐵)𝑝 = Ap Bp.

 
9. Determine 𝑥 e 𝑦 para que a matriz 			   seja simétrica.

 
10.  Determine as matrizes 𝑋 e 𝑌 tais que                        ,  o nde                                      e

 
11. Calcule o valor de 𝑘 para que a  matriz 		   não tenha inversa.

 
12. Determine os valores de 𝑥 e 𝑦 para que as matrizes 		     e		  comutem.

 
13.  Sejam 𝐴, 𝐵 e 𝐶 inversíveis, determine 𝑋 em cada equação.

        a) 𝐴 𝑋 𝐵 = 𝐶

        b) 𝐴𝐵 = 𝐶𝑋

         c) (𝐴𝑋)−1𝐵 = 𝐵 𝐶

         d) [(𝐴𝑋)−1 𝐵]𝑡 = 𝐶

 
14. Quais as condições de k para que a matriz		   seja inversível.

 

2 4 2

3 0

1 0 5

x y
x y

−
+
−

















2
2

X Y A
X Y B

+ =
− =





A =










9 4 2

6 12 11
A =

− −
− − −











8 7 9

12 19 2

2 3

6 k










A =
−











2 3

9 5
B

x
y

=
−








1

3

1 1 1

2 1 2

1 2 k

















 
5. Sabendo-se que , 		  e	              ,	  calcule  A. (B + C), Bt  At, Ct  At  e  (ABA)C.

 
6. Se 		            ache B de modo que B2  =  A, onde  B2 =  B. B.
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Determinantes
UN 01

Seja A = (aij) uma matriz quadrada de ordem n, isto é, A ∈ Mn (R). Definimos o determinante de A, 
representado por det A ou |A|, da seguinte forma:

 
 Se n = 1, ou seja, A = (a11 ) então det A = a11.

 Se n >1 então 			  ,                                  onde i é uma linha qualquer fixada de A e A-i,-j  é a matriz 
quadrada de ordem n-1 obtida a partir de A, com a retirada da i-ésima linha e da j-ésima coluna.

 
Observe como é simples de calcular o determinante de uma matriz. Vamos calcular para n = 2  e  n = 3:

 
 n=2: Temos 		            e seu determinante, considerando a primeira linha, isto é, i =1, é dado por:

	  
 n=3: Temos 			       e seu determinante, considerando a primeira linha, isto é, i = 1, é  
 
dado por:

Observação: A definição de determinante também pode ser feita fixando uma coluna j ao invés de uma 
linha. Assim, teríamos 

 
Exemplo 1: Dada a matriz 		   ,  temos:

Definição de determinante

SAIBA MAIS

Determinante é uma função que associa a cada matriz quadrada um valor real. Essa 
função, além de atuar na solução de sistemas de equações lineares, permite saber 
se a matriz tem ou não inversa, pois as que não têm são precisamente aquelas cujo 
determinante é igual a 0.

A
a a
a a

=










11 12

21 22

detA a det A a det A a a a= −( ) ( ) + −( ) ( ) = −+
− −

+
− −1 1

1 1

11 1 1

1 2

12 1 2 11 22 1, , 22 21a

A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

detA a det A a det A a= −( ) ( ) + −( ) ( ) + −( )+
− −

+
− −

+
1 1 1
1 1

11 1 1

1 2

12 1 2

1 3

1, , 33 1 3 11

22 23

32 33

12

21 23

31 33

13

21 22

31

det A a
a a
a a

a
a a
a a

a
a a
a

− −( ) = −

+

,

aa32
.

A =
















2 1 4

0 2 1

3 0 5

detA = −( ) 







 + −( ) 







 + −( )+ + +

1 2
2 1

0 5
1 1

0 1

3 5
1 4

01 1 1 2 1 3
. . . . . .

22

3 0
2 2 5 0 1 1 0 5 3 1 4 0 0 3 2

2 10 3 4









 = −( ) − −( ) + −( )

= − −( ) +

. . . . . . . .

. . −−( ) = + − = −6 20 3 24 1.
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Propriedades dos determinantes

Exemplo2: Vamos determinar o valor de  x  sabendo que 		                 .	  Com efeito,

DICA

Note que o determinante de uma matriz de ordem 2 é a diferença entre o produto dos 
termos da diagonal principal e o produto dos termos da diagonal secundária. Esses 
produtos se chamam, respectivamente, termo principal e termo secundário da matriz.

Sejam A, B  ∈  Mn (R), temos:

(D1) Se todos os elementos de uma linha (ou coluna) de A são nulos, então det A = 0.

(D2)  det A = det At.

(D3) Se multiplicarmos uma linha (ou coluna) de A por uma constante k, o determinante fica multiplicado 
por k.

(D4) Quando trocamos duas linhas (ou colunas) de A, o determinante troca de sinal.

(D5) Se A tem duas linhas (ou colunas) iguais, então  detA = 0.

(D6) Se escrevemos cada elemento de uma linha (ou coluna) de A como soma de 2 parcelas, então detA é a 
soma de dois determinantes de ordem n, cada um considerando como elemento daquela linha (ou coluna) 
uma das parcelas, e repetindo as demais linhas (ou colunas)

(D7) O determinante de A não se altera se somarmos a uma linha outra linha multiplicada por uma 
constante.

(D8)  det (A .B)  =  det A . det B.

(D9) O determinante de uma matriz triangular é o seu termo principal.

(D10) Se A é inversível, então det(A-1)  =  (detA)-1.

(D11) Se A ∈ Mn (R)  é  ortogonal, então detA = ± 1.

 
Concluímos da propriedade (D10) que:

Teorema: Seja A ∈ Mn (R).

			   A é inversível ⇔ detA ≠ 0.

det
x
x
x

3 2

1 2

2 1

8−
−

















=

8

3 2

1 2

2 1

1 3
2

1
1 2

11 1 1 2= −
−

















= −( ) −
−









 + −( )+ +det

x
x
x

x
x

x
22

1
1 2

2 1
3 2 2 2

1 2 2

1 3

x
x x x x x

x









 + −( ) −

−








 = − −( ) − −( ) +

+ − − −( )

+

(( ) = −( ) − −( ) + ( ) = − + + = ⇒ = ⇒ = ⇒ =3 2 3 3 2 3 2 2 8
8

2
4x x x x x x x x x x .
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Exemplo 1: Para calcular o determinante da matriz                                          ,   note que se somarmos a segunda 
linha à terceira, obteremos a matriz 

Logo, pela propriedade (D7) o determinante dessas duas matrizes é o mesmo. Portanto,

Observação: Note que, no exemplo anterior, para calcularmos o determinante aplicamos a fórmula fixando 
a terceira linha para reduzir as contas, já que a mesma contém dois zeros. 

Exemplo 2: Determine x para que a matriz		          seja inversível.

Sabemos da propriedade (D10), que A é inversível se, e somente se, detA ≠ 0. Logo, devemos ter 

 
Mas, note que,							                                 
 
Portanto, 

		   

Definição 1: Seja A ∈ Mn  (R). Chamamos de matriz dos cofatores de A a matriz A̅=(aij ) ∈ Mn-1 (R), tal que 

(aij )  = (-1)i+j  det(A-i,-j)

onde A-i,-j é a matriz quadrada de ordem n - 1 obtida a partir de A, com a retirada da i-ésima linha e 
da j-ésima coluna.

 
Exemplo 1: Dada a matriz		             , temos que a matriz A-2,-3 é dada por:

 
Exemplo 2: Determine a matriz dos cofatores da matriz 		         Temos, por definição, que a 
  
matriz dos cofatores é dada por A̅ = (aij), onde aij  = (-1)i+j  det (A-i,-j), logo:

Matriz adjunta e matriz inversa

A =
−

−
− −

















1 2 3

2 1 1

2 1 2

1 2 3

2 1 1

0 0 1

−
−

















detA det det=
−

−
















= −( ) −
−









 + −+

1 2 3

2 1 1

0 0 1

1 0
2 3

1 1
1

3 1
. . (( )

−








 + −( ) −







 =

= − −

+ +3 2 3 3
0

1 3

2 1
1 1

1 2

2 1

1 1 2 2

. . . .

. .

det det

(( ) = + =1 4 5

A
x
x x

=
−











1

20

x x x x2 2
20 0 20 0− −( ) ≠ ⇔ + − ≠ .

x x x x ou x2

2

20 0
1 1 4 1 20

2 1

1 81

2

1 9

2
4 5+ − = ⇔ =

− ± − −( )
=

− ±
=

− ±
⇔ = = −

. .

.
.

x x x e x2
20 0 4 5− −( ) ≠ ⇔ ≠ ≠ − .

A
a a a
a a a
a a a

=
















11 12 13

21 22 23

31 32 33

A
a a a
a a a
a a a

a a
a a− − =

















=


2 3

11 12 13

21 22 23

31 32 33

11 12

31 32
,









A = −
















2 1 0

3 1 4

1 6 5

.
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Portanto,

Definição 2:  Seja A ∈ Mn (R). Chamamos de matriz adjunta de A, denotamos por adjA, a transposta da 
matriz dos cofatores de A. Assim,

 
adjA = (A̅)t.

 
Exemplo 3: Determine a matriz adjunta da matriz 			   Temos, por definição, que  
 
adjA = (A̅ )t. Sabemos, do exemplo anterior, que

Logo,

Teorema 1:  Toda matriz  A  ∈  Mn (R)  satisfaz A.adjA = (detA) In.

Demonstração: Seja A = (aij)  e  adjA = (bij),  onde bij = a̅ji  = (-1)j+i det(A-j,-i). Assim, A.adjA = (cij), onde

  
logo, usando a propriedade de matriz temos:

a det A det

a de

11

1 1

1 1

12

1 2

1
1 4

6 5
5 24 19

1

= −( ) ( ) =








 = − = −

= −( )

+
− −

+

,

tt A det

a det A

− −

+
−

( ) = −
−







 = − − −( ) =

= −( )

1 2

13

1 3

1

1
3 4

1 5
15 4 19

1
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Teorema 2: Toda matriz A  ∈  Mn (R) inversível satisfaz

Demonstração: Seja A = (aij) uma matriz quadrada de ordem n, inversível. Assim detA ≠ 0. Temos pela 
propriedade de determinante (D9) que:

Logo, pelo teorema 1:

 
Concluímos então que:

Observação: O teorema 2 nos fornece outro método para calcular uma matriz inversa.

 
Exemplo 4: Determine, caso exista, a matriz inversa da matriz 

Como detA = 6.4 - 11.2 = 2 ≠ 0, temos que a matriz A é inversível, isto é, existe a matriz A-1. Logo, sendo 

temos,

 
Logo,

Exemplo 5: Determine a matriz inversa da matriz

A matriz adjunta dessa matriz já foi calculada no exemplo 3.  Logo, como:

A
detA
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. .
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. . . .
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 temos que:

1. Dadas as matrizes					         calcule os seguintes 
 
     determinantes:

a) det (A + B)

b) det (AB)

c) det (Bt  At)

d) det (2A - 5C + B)

e) det [A(C)t ]

2. Encontre os determinantes abaixo, sabendo que det (A) = -2.

a) det (At )

b) det (2A)

c) det (A3)

d) det (A-1)

3. Resolva as equações.

      a)

      b)

 
      c)

4. Sejam A, B  e  C matrizes quadradas de mesma ordem e inversíveis. Resolva as equações matriciais, onde  
     a X é a variável.

a) ABX = C

b) CAXt = C

c) AX2 C = AXBC

d) CX + 2B = 3B

EXERCÍCIO PROPOSTO

A
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5. Encontre todos os valores de x para os quais a matriz 		             tem inversa.

6. Mostre que, se At = A-1 ,  então  detA = ± 1.

7. Seja A uma matriz quadrada, de ordem n. Mostre que A é inversível se, e somente se, At A é inversível.

8. Dadas as matrizes A e P quadradas, de ordem n, onde P é inversível, mostre que det (P-1 AP) = detA.

9. Responda verdadeiro ou falso e justifique sua resposta.

a) Se A2 = -2A2, então (I - A2 )-1 = I - 2A2;

b) Se At = -A2  e detA ≠ 0, então determinante de A é -1.

c) Se B = AAt A-1, então detA = detB.

d) det(A + B) = detA + detB

10. Calcule os determinantes abaixo, usando as propriedades de determinantes, 
 
sabendo que

A
x
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
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Sistemas de equações lineares
UN 01

Para que estudar sistemas lineares? Essa é uma pergunta feita com frequência pelos alunos. Por isso, 
considere o problema abaixo como motivação:

A nutricionista Márcia estabeleceu uma dieta diária contendo 25 unidades de vitamina A, 20 unidades 
de vitamina B, 10 unidades de vitamina C, 5 unidades de vitamina D e 8 unidades de vitamina E. Essas 
vitaminas estão contidas em quantidades variadas em cinco alimentos que vamos chamar de A1, A2, 
A3, A4 e A5. O quadro seguinte fornece o número de unidades das vitaminas A, B, C, D e E em cada 
unidade desses cinco alimentos.

Como calcular as quantidades dos cinco alimentos que devem ser incluídas na dieta diária, para obter 
os teores desejados de vitamina? 

Veja como fica o problema:

Sejam   x1,  x2,  x3,  x4   e   x5   o número de unidades dos alimentos  A1,   A2,   A3,   A4   e  A5, respectivamente, 
de uma dieta diária. O teor de 25 unidades de vitamina A pode ser expresso pela seguinte equação:

 

 
Analogamente, podemos expressar os teores das vitaminas B, C, D e E, respectivamente, pelas 
equações:

2x1 +  x2 + 3x4 + 2x5 = 20 

x1 +  x2 + 2x4 = 10

x4 + x5 = 5

4x4 = 8

 
Devemos então, encontrar os valores x1,  x2,  x3, x4  e  x5  que satisfaçam o sistema de equações abaixo:

 
 

Encontramos com muita frequência problemas dessa natureza. Suas soluções dependem de 
entendermos como resolver um sistema de equações lineares.

Introdução

TABELA 2: Número de unidades das vitaminas 
A, B, C, D e E por unidade de cada alimento.

A
B
C
D
E

A1 A2 A3 A4

0 1 4 4 3
A5

2
1
0
0

0
0 0

0
0

001
1

1 1

0 23

4

2

1 2 3 4 5 2 3 4 50. 1. 4. 4. 3. 25  4 4 3 25.x x x x x x x x x+ + + + = ⇒ + + + =

2 3 4 5

1 2 4 5

1 2 4

4 5

4

4 4 3 25
2  3 2 20

 2 10 .
5

4 8

x x x x
x x x x

x x x
x x

x

+ + + =
 + + + = + + =
 + =
 =
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É comum encontrar problemas em várias áreas da Ciência e que recaem na solução de sistemas lineares. 
Vamos ver como a álgebra matricial pode simplificar o estudo dos sistemas lineares.

Definição 1:  Uma equação linear em n variáveis x1, x2, …, xn é uma equação da forma

a1x1  +  a2  x2  +  ⋯  + an  xn =b,

em que a1,  a2, …, a n  e  b são constantes reais.

 
Definição 2: Um sistema de equações lineares ou simplesmente sistema linear é um conjunto de equações 
lineares, ou seja, é um conjunto de equações da forma

 
 
Em que aij  e  bk  são constantes reais, para i, k = 1, 2, …, m  e  j = 1, 2, …, n.

 
Usando o produto de matrizes que definimos anteriormente, o sistema linear acima pode ser escrito 
como uma equação matricial 

 
ou, AX  =  B, onde

				       e	      A matriz A é chamada matriz do sistema linear ou 
 
 
 
 
matriz dos coeficientes, X é a matriz das incógnitas e B é a matriz dos termos independentes.

 
Exemplo 1: São sistemas de equações lineares:

 
i.

 
ii.

 
 
iii.

Sistemas e matrizes

a x a x a x b
a x a x a x b

a x a

n n

n n

m m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2

+ +…+ =

+ +…+ =

=
+

   

xx a x bmn n m2 +…+ =











11 12 1 1 1

21 22 2 2 2

1 2

. ,

n

n

m m mn n n

a a a x b
a a a x b

a a a x b

…     
     …     =     
          …     

     

11 12 1 1

21 22 2 2
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A X
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b
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B

b
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x y
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x y z
x y z

− + =
 + − =

2 8 0
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a b
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Exemplo 2:  Os sistemas de equações lineares do exemplo anterior podem ser escritos como as equações 
matriciais abaixo:

 
i.

  
ii.

 
 
iii.

Para encontrar a solução de um sistema linear, podemos substituir o sistema inicial por outro que 
tenha o mesmo conjunto solução do primeiro, mas que seja mais fácil de resolver. Isso é feito aplicando 
sucessivamente uma série de operações que não alteram a solução do sistema sobre as equações. 
Essas operações são as seguintes:

 
 Trocar a posição de duas equações do sistema;

 Multiplicar uma equação por um escalar diferente de zero;

 Somar a uma equação outra equação multiplicada por um escalar.

 
 Essas operações são chamadas de operações elementares. Quando aplicamos operações elementares 
sobre as equações de um sistema linear, somente os coeficientes do sistema são alterados, assim 
podemos aplicar as operações sobre a matriz de coeficientes do sistema, que chamamos de matriz 
ampliada do sistema, ou seja, a matriz

 
Usando essas operações, podemos construir um algoritmo para encontrar solução de sistemas de 
equações lineares da seguinte forma:

 
Exemplo: Dado o sistema 

i. Quando queremos permutar, por exemplo, a 2ª equação com a 3ª, escrevemos:

ii. Quando queremos multiplicar a 2ª equação, por exemplo, por 	    escrevemos:

Operações elementares

e o sistema resultante será 

e o sistema resultante será 

2 5 5
3 1 16

x
y

−    
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   

11 12 1 1

21 22 2   2

1 2

.

n

n

m m mn n
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iii. Quando queremos substituir a 1ª equação, por exemplo, pela soma dela com a 2ª equação multiplicada 
      por (-1), escrevemos:

e o sistema resultante será 

Observação: Depois que aprender a solucionar um sistema linear, você poderá verificar que todos os 
sistemas do exemplo anterior são equivalentes, isto é, têm a mesma solução. Analogamente, podemos 
dizer que a aplicação de qualquer operação elementar sobre um sistema de equações lineares produz um 
sistema linear equivalente. Essa afirmação justifica-se pelo fato de que uma operação elementar sempre 
adiciona um mesmo valor em ambos os membros de uma equação do sistema dado. 

Baseado nesse fato, construiremos um algoritmo para encontrar soluções de sistemas de equações 
lineares. Esse algoritmo está descrito abaixo:

 
 
Método de Gauss-Jordan

O método de Gauss-Jordan é dado pelas duas afirmações abaixo:

Considere a matriz ampliada do sistema. Transformamos, por meio de operações elementares, a matriz 
do sistema na matriz identidade;

Transformada a matriz do sistema na matriz identidade, a matriz dos termos independentes ficará 
transformada na solução do sistema.

 
Isto é, dada a matriz:

devemos aplicar as operações elementares de tal modo que a matriz anterior se transforme na matriz 
abaixo:

onde 	          será a solução do sistema.

 

SAIBA MAIS

Note que, para aplicar esse método, a matriz do sistema deve ser quadrada, já que devemos 
transformá-la na matriz identidade.

( )2 2 1

3 8                                           
2 2 1   

3 2 5 26                                   

x z
x y L L L

x y z

+ = −
 − = − → = + −
 − − =

3 8
2 3 6  

3 2 5 26

x z
y z

x y z

+ = −
 − − =
 − − =

11 12 1 1

21 22 2   2

1 2

,

n

n

m m mn n

a a a b
a a a  b

a a a b

… 
 … 
 
  … 

� � � � �

1

2

1 0 0
0 1 0          ,

0 0 1 n

s
s

s

 … 
 …
 
 
 … 

� � � � �

1

2

n

s
s

s

 
 
 
 
 
 

�
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Logo:

Exemplo: Considere o sistema do exemplo anterior,  

Solução: A matriz ampliada desse sistema é 

3 8
3 2 5 26

2 4 4

x z
x y z

x y

+ = −
 − − =
 − = −

1 0 3 8
3 2 5  26
2 4 0 4

− 
 − − 
 − − 

23 2

1 0 3 8 1 0 3 8
13 2 5  26  2 4 0     4  
2

2 4 0 4 3 2 5 26
L L

− −   
    − − → ⇒ −     − →     
    − − − −   

( )2 2 1 3 1 3

1 0 3 8 1 0 3 8
    1 2 0     2 1 0 2 3    6                               3

3 2 5 26 3 2 5 26
L L L L L L

− −   
   ⇒ − − → = + − ⇒ − − → = −   
   − − − −   

3 2 3 1 1 3

1 0 3 8 1 0 3 8
0 2 3    6 0     2      3     6 11 3
0 2 14 2 0 0 11 8

L L L L L L
− −   

   ⇒  −     −  → =      + ⇒ − −  → =  −   
   
   

1
2 2 3 1

11 0 0  112 11 0 0 112
0 2 3      6 11 3 0 22 0      90

11
0 0 11 8 0 0 11 8

L
L L L L

 − −   
   ⇒ − −  → = + ⇒ − → =   
   
   

32
2 3

1 0 0 112/11 1 0 0 112/11
0 22 0         90 0 1 0     90 /11

11 11
0 0 11 8 0 0 11 8

LL
L L

− −   
   ⇒ − → = − ⇒    −  → =   
   
   

1 0 0 112/11
0 1 0     90 /11
0 0 1 8 /11

− 
 ⇒                  − 
 
 

112
11

x = − 90
11

y = −
8

11
z =Portanto, pelo método de Gauss-Jordan, a solução do sistema é                    ,                       e

 
Observação: Note que a matriz			          é a matriz ampliada do sistema:

1 0 0 112/11
0 1 0     90 /11
0 0 1 8 /11

− 
 − 
 
 

112 1121 0 0
11 11
90 900 1 0
11 11
8 80 0 1

11 11

x y z x

x y z y

x y z z

 + + = − = − 
 
 + + = − ⇔ = − 
 
 

+ + = =  
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Exemplo: Note que:

	 i. O sistema 	                possui uma única solução, x = 0  e  y = 1;

	    
	 ii. O sistema 		   possui mais de uma solução, no caso: 

 
1ª solução: x = 0  e  y = 1;

2ª solução: x = 1  e  y = 0;

3ª solução:               e             ;

4ª solução:               e            ;

Essas são algumas das soluções. Nesse exemplo, existem infinitas soluções;

	 iii. O sistema 	                 não possui solução (Já que, a soma de dois números reais é única).

Definição: Dizemos que um sistema linear é homogêneo quando os termos independentes de todas as 
equações que o compõem são iguais a zero.

Exemplo:                             e

Um sistema linear homogêneo em n incógnitas sempre admite a solução 

chamada solução trivial. Concluímos, então, que um sistema linear homogêneo é sempre compatível. 
Assim, quando for determinado, possuirá somente a solução trivial. E quando for indeterminado, 
possuirá outras soluções, além da trivial, chamadas soluções não-triviais.

Sistemas lineares homogêneos

SAIBA MAIS

Veja que, de acordo com as definições sobre classificação de um sistema, no exemplo ao 
lado o item (i) é compatível e determinado, o item (ii) é compatível e indeterminado e o item 
(iii) é incompatível .

SAIBA MAIS

A solução trivial também é conhecida como solução nula ou ainda solução imprópria.

Um sistema linear pode não ter solução. Mas, se tiver solução, poderá ser uma ou mais de uma. Podemos, 
então, classificar um sistema linear quanto à existência e quantidade de soluções em três tipos:

 
Compatível (ou possível) e determinado: quando possui uma única solução.

Compatível e indeterminado: quando possui mais de uma solução.

Incompatível (ou impossível): quando não possui solução.

Classificação de um sistema linear quanto à solução

1
1

x y
x y

+ =
 − = −

1
2 2 2

x y
x y

+ =
 + =

1
2

x =
1
2

y =

1
4

x = 3
4

y =

1
0

x y
x y

+ =
 + =

        0
      2 0

x z
y z

− =
 − =

2 3 0
3 2 0
2 0

x y z
x y z
x y z

+ + =
 + + =
 − − =

( )
 

0,0,..., 0
n elementos

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Definição: Uma matriz                      está na forma escalonada reduzida quando satisfaz as seguintes 
condições:

	 i. Todas as linhas nulas (formadas inteiramente por zeros) devem aparecer abaixo das linhas 
não nulas;

	 ii. O primeiro elemento não nulo de cada linha não nula é igual a 1;

	 iii. O primeiro elemento não nulo de cada linha não nula deve aparecer à direita do primeiro 
elemento não nulo da linha anterior.

	 iv. Se uma coluna contém um primeiro elemento não nulo de uma linha, então todos os seus 
outros elementos são iguais a zero.

 
Importante: Dizemos que uma matriz está na forma escalonada se satisfaz as propriedades (i) e (iii), 
mas não necessariamente (ii) e (iv).

Exemplo 1: As matrizes                       e

são escalonadas reduzidas, enquanto

 
são escalonadas, mas não são escalonadas reduzidas. 

 
Importante: Esse método de resolução de sistemas, que consiste em aplicar operações elementares às 
linhas da matriz ampliada até que a matriz do sistema esteja na forma escalonada, também é conhecido 
como método de Gauss-Jordan. Nesse caso, o método vale para qualquer matriz, não apenas para matriz 
quadrada.

Exemplo 2: Dado o sistema linear

 
temos que sua matriz ampliada é:

Como o primeiro elemento é 1, devemos obter zeros na primeira coluna, da segunda linha em diante. Note 
que, nesse caso, como o elemento da terceira linha já é zero, precisamos apenas obter zero na segunda linha. 
Para isso, vamos substituir a segunda linha pela soma da mesma com a primeira linha multiplicada por -2:

Soluções de um sistema de equações linearesClassificação de um sistema linear quanto à solução

( )ij m n
A a

×
=

1 0 0
0 1 0
0 0 1

 
 
 
 
 

1 5 0 2
0 0 1 3
0 0 0 0

 
 − 
 
 

1 1 2
0 1 1
0 0 5

− 
 
 
 
 

1 5 0 2
0 0 4 3
0 0 0 0

 
 − 
 
 

e

2 5 28
2 3 1
          4 13

x y z
x y z

y z

+ + =
 + − = −
 + =

1 2 5 28
2 3 1    1 .
0 4 1 13

 
 − − 
 
 

( )2 2 1

1 2 5 28 1 2 5 28
2 3 1    1  2 0 1 11    57
0 4 1 13 0 4 1 13

L L L
   
   − − → = + − ⇒ − − −   
   
   
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Passemos, agora, para a segunda coluna (não usaremos mais a primeira linha - ela está pronta). Queremos 
obter zero abaixo da segunda linha. Para isso, multiplicamos a segunda linha por 4 e somamos à terceira:

Temos então a matriz escalonada. Logo, o sistema associado a ela é:

 
Obtemos, da terceira equação,

Substituindo esse valor na segunda, teremos: 

Finalmente, substituindo y = 2   e  z = 5 na primeira equação ficamos com: 

Logo, o conjunto solução é {(-1, 2, 5)}. Podemos classificar o sistema como compatível e determinado.

Mostraremos agora outro método de resolução de sistemas de equações lineares. Usaremos, neste 
método, o cálculo da inversa de uma matriz e determinantes. O mesmo é conhecido como Regra de 
Cramer.

 
Observação: Esse método só se aplica a sistemas lineares em que o número de equações é igual ao 
número de incógnitas. 

 
Suponha que desejamos resolver o sistema linear de n equações e n incógnitas.

Escrevendo esse sistema na forma matricial, Obtemos:

 
ou, A. X  = B, onde

			     é a matriz dos coeficientes, 	            é a matriz das

 
 
incógnitas e 	           é a matriz dos termos independentes.

Regra de Cramer 

3 3 2

1 2 5 28 1 2 5 28
0 1 11    57  4 0 1 11     57
0 4 1 13 0 0 43 215

L L L
   
   − − − → = + ⇒ − − −   
   − −   

2 5 28
        11 57

                  43 215

x y z
y z

z

+ + =
 − − = −
 − = −

215 5
43

z z−
= ⇒ =

−
11.5 57 57 55 2.y y y− − = − ⇒ − = − + ⇒ =

2.2 5.5 28 28 4 25 1x x x+ + = ⇒ = − − ⇒ = −

a x a x a x b
a x a x a x b

n n

n n

11 1 12 2 1 1

21 1 22 2 2 2

+ +…+ =

+ +…+ =

 �         �      �        �   =  �
+ +…+a x a x a xn n nn n1 1 2 2 ==









 bn

11 12 1 1 1

21 22 2 2 2

1 2

.
n

n

n n nn n n

a a a x b
a a a x b

a a a x b

     …
     … =     
     
     

…     
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11 12 1

21 22 2

1 2
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n

n n nn

a a a
         a a a

a a a

 
 

…

 
 

                       …

 
… 
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1
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n
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          x

x

 
 
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 
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 
 
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 
 
 
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 
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Supondo que det (A) ≠ 0, temos que a matriz A possui inversa A-1. Assim, multiplicando a equação A . X  =  
B  por A-1  e, isolando X, temos:

Mas, sabemos que 					              Na forma matricial, temos:

 
para, (aij ) = (-1)i+j  det (A-i,-j)  onde A-i,-j é a matriz quadrada de ordem n-1 obtida a partir de A, com a 
retirada da i-ésima linha e da j-ésima coluna.

 
Observação: A matriz adjA foi definida anteriormente.

Portanto,

Porém, note que o numerador desta fração é igual ao determinante da matriz obtida de A substituindo a 
primeira coluna pela matriz dos termos independentes:

Concluímos então que

 
Analogamente, obtemos:

11 21 11 1

2 12 22 2 2

1 2

1 . ,
n

n

n n
n n nn

a a ax b
x a a a b

detA

x ba a a

    
   

…

   
 

   
= … 

   
 
 

…    

� � � � ��
 

11 1 21 2 1
1

. . .n na b a b a b
x

detA
+ +…+

=

1 12 1

2 22 2 1 11 2 21 1

2

. . . .
n

n n n

n n nn

b a a
det b a a b a b a b a

b a a

 
 

…

 
 

… = + +…+

 
… 

� � ��

1 12 1

2 22 2

2
1

11 12 1

21 22 2

1 2

.

n

n
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n n nn

b a a
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b a a
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a a a
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a a a

 
 

…
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 
… 
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
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Note que no denominador temos o determinante da matriz dos coeficientes (det A ≠ 0), e no numerador 
aparece o determinante da matriz obtida de A substituindo a i-ésima coluna pela coluna dos termos 
independentes. Lembre-se de que esse método somente se aplica a um sistema linear de n equações e n 
incógnitas e quando o determinante da matriz dos coeficientes for não nulo.

Exemplo 1: Dado o sistema

Como			         , podemos encontrar a solução desse sistema usando a regra de Cramer. 
 
Assim,

 
 
 
Portanto, a única solução do sistema é (2 , -1 , 5).

EXERCÍCIO PROPOSTO

1. Classificar e resolver os sistemas de equações lineares:

  
2. Resolva o sistema de equações lineares 			      para:

a) b1  = 16,  b2 = -5  e  b3 = 11

b) b1 = 25,  b2 = -11  e  b3 = -5

c) b1 = 3, b2 = 5 e b3 = -5

2 3 15
2 10 .

3      1

x y z
x y z

x z

+ − = −
 − + =
 − =1 2 3

2 1 1 2 0
3 0 1

det
− 

 − = ≠ 
 − 

15 2 3 1 15 3
10 1 1 2 10 1
1 0 1 3 1 14 22,   1
1 2 3 1 2 32 2
2 1 1 2 1 1
3 0 1 3 0 1

det det

x y

det det

− − − −   
   −   
   − − −   = = = = = = −

− −   
   − −   
   − −   

1 2 15
2 1 10
3 0 1 10 5.
1 2 3 2
2 1 1
3 0 1

det

z

det

− 
 − 
 
 = = =

− 
 − 
 − 

2 4 6 10
2 8 4 24
4 2 2 16

x y z
x y z
x y z

+ − =
 + − =
 + + =

2 3 8
4 2 2 4

2 5 3 12

x y z
x y z

x y z

+ + =
 + + =
 + + = −

5 8 34
10 16 50

x y
x y

+ =
 + =

2 4 16
5 2 4

10 4 3

x y
x y
x y

+ =
 − =
 − =

0
2 3 0

4 4 2 0

x y z
x y z

x y z

+ − =
 − + =
 − − =

6 2 4 0
9 3 6 0
x y z
x y z
+ + =

− − − =

1

2

3

2 7
3 2

5 3 4

x y z b
x y z b
x y z b

+ + =
 + + =
 + + =

b)

a)

c)

d)

e)

f)
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3. Quais das seguintes matrizes estão na forma escalonada reduzida:

4. Resolva, usando o método de Gauss-Jordan, os seguintes sistemas:

5. Resolva os sistemas lineares, usando a regra de Cramer.

6. Seja 

a) Encontre a solução geral do sistema (A + 4I3) X = 0;

b) Encontre a solução geral do sistema (A - 2I3) X = 0.

a)

a)
d)

b)
e)

c)
f)

b)

c)

1 0 0 0 3 0 1 0 0 4
0 0 1 0 4 , 0 0 1 0 5 ,
0 0 0 1 2 0 0 0 1 2

A B
−   

   = − =   
   −   

1 0 0 0 3 0 0 0 0 0
  0 0 1 0 0   0 0 1 2 4

0 0 0 1 2 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0

C e D
   
   
   
   

= = −

   
   

2 8
2 3 1

3 7 4 10

x y z
x y z

x y z

+ + =
 − − + =
 − + =

2 2 2 0
2 5 2 1

8 4 1

x y z
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II ESPAÇO VETORIAL, TRANSFORMAÇÃO 
LINEAR E APLICAÇÃO

Nesta unidade vamos estudar os aspectos relacionados com 
uma estrutura chamada Espaço Vetorial. Nela veremos conjuntos 
linearmente independentes (LI) e linearmente dependentes (LD). 
Definimos base e dimensão de um espaço vetorial. Estudamos o 
conceito de transformação linear e aprendemos a determinar o 
núcleo e a imagem da mesma. 
 

Objetivos

• Definir e estudar alguns dos principais exemplos dessa estrutura.
• Identificar entre os conjuntos numéricos conhecidos os que são 
espaços vetoriais.
• Apresentar o conceito de subespaço vetorial de um espaço 
vetorial. 
• Apresentar os conceitos de dependência linear e independência 
linear.
• Estudar os conceitos de base e dimensão de um espaço vetorial.
• Estudar o conceito de transformação linear.
• Determinar o núcleo e a imagem de uma transformação linear.
• Apresentar o teorema da dimensão, algumas consequências e 
exemplos.
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Espaço Vetorial
UN 02

Definição: Dizemos que um conjunto, não vazio, V, munido das operações de adição (associa a cada 
par u, v  ∈  V, o elemento u + v ∈ V)  e multiplicação por escalar (que associa a cada par α ∈ R, v ∈ V, o 
elemento αv ∈ V )  é um espaço vetorial se, gozar das oito propriedades abaixo:

Quaisquer que sejam u, v, w ∈ V   e   α, β ∈ R

 
Em relação à adição:

(A1 )  associatividade: (u + v) + w = u + (v + w)

(A2 ) comutatividade:  u + v = v + u

(A3 ) Existência de vetor nulo: ∃0 ∈ V  tal que  u + 0 = u

(A4 ) Existência de inverso aditivo ou simétrico:  ∃(-u)  ∈  V  tal que u + (-u) = 0

 
Em relação à multiplicação por escalar:

(M1 ) Distributividade com relação à adição de vetores:  α (u + v) = αu + αv

(M2 ) Distributividade com relação à adição de escalar:  (α + β)u = αu + βu

(M3 ) Associatividade: (α. β) u  =  α. (βu)

(M4 ) Existência do elemento neutro: ∃1  ∈  R  tal que  1.u = u

Definição de espaço vetorial

SAIBA MAIS

Observe que, no lado esquerdo de (M2 ), o símbolo “+” é uma soma de escalares em R, e no 
lado direito, é uma soma de vetores em V. Observamos também que no lado esquerdo de 
(M3 ) temos primeiramente um produto entre escalares α e β e depois o produto do escalar 

 pelo vetor u. São produtos diferentes, nos quais, usamos o mesmo símbolo.

EXERCÍCIO RESOLVIDO

1.  Rn é um espaço vetorial, com as operações de adição e multiplicação por escalar usuais.

Com efeito, dados  u = (u1, u2, …, un ), v = (v1, v2, …, vn )  e  w =(w1, w2, …, wn )  em  Rn
  e  α, β  ∈  R  quaisquer, 

temos:

( )( ) ( ) ( )( ) ( )
( ) ( )
( ) ( ) ( )( )

�
( ) ( ) ( )( )

( ) ( )( )

1 1 2 1 2 1 2

1 1 2 2 1 2

1 1 1 2 2 2
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1 1 1 2 2 2

1 2 1 1 2 2

1 2
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n n n

n n n

n n n

n n n

n n n
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+ + = … + … + …

= + + … + + …

= + + + + … + +
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(*) Usamos nesta igualdade a associatividade dos números reais.

(*) Usamos a comutatividade dos números reais.

(*) Usamos a distributividade dos números reais.
 
(M2 ) (α + β)u = (α + β) (u1, u2, …, un ) = ((α + β)u1, (α + β)u2, …, (α + β)un )

 

(*) Usamos a distributividade dos números reais.

(*)Usamos a associatividade dos números reais.

SAIBA MAIS

As operações de adição e multiplicação por escalar dadas neste exemplo são denominadas 
operações usuais no Rn. Existem outras operações de adição e de multiplicação por escalar 
que podem ser feitas com os elementos de Rn e escalares, na verdade, podem ser criadas 
infinitas operações, só depende da nossa criatividade. Estas novas operações poderão, ou 
não, fornecer novos espaços vetoriais. Pelo exemplo 1, fazendo n=2, temos que o R2 é um 
espaço vetorial com as operações usuais, mas, no exemplo 4, o conjunto R2 não é um espaço 
vetorial com as operações definidas.  
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2. O conjunto de todas as matrizes reais “2 por 2”, M2×2 (R), é um espaço vetorial se a adição vetorial é 
definida pela adição matricial e a multiplicação vetorial por escalar é definida pela multiplicação matricial 
por escalar.

 
Com efeito, dados 					      		        em M2×2 (R) e  α, β ∈ R 
 
quaisquer, temos:

SAIBA MAIS

Não especificamos na definição de um espaço 
vetorial a natureza dos vetores, nem das 
operações. Qualquer tipo de objeto pode ser 
um vetor, como por exemplo, uma matriz, como 
podemos ver neste exemplo, ou um polinômio 
ou até mesmo um número real. As operações 
de adição e multiplicação por um escalar podem 
não ter relação alguma com as operações usuais 
em R2 e R3 , por exemplo. A única exigência é 
que as dez propriedades de espaço vetorial 
sejam satisfeitas.

(*) Usamos nesta igualdade a associatividade dos números reais.

(*) Usamos a comutatividade dos números reais.
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(*) Usamos a distributividade dos números reais.

(*) Usamos também a distributividade dos números reais.

(*) Usamos a associatividade dos números reais.

3. O conjunto de todas as matrizes reais “m  por  n”,  Mm×n (R), é um espaço vetorial. Usando também adição 
matricial e a multiplicação matricial por escalar, segue análogo ao exemplo anterior, basta substituir, por  
exemplo, 		        

 
por u =

4. O conjunto R2 = {(x, y)  ∈  R2; x, y  ∈  R} não é um espaço vetorial com as operações de adição e 
multiplicação por escalar definidas abaixo:

• (x, y) + ( x ̃,  ỹ) = (x + x ̃, y + ỹ)

• α (x, y) = (αx, y)

Com efeito, como a adição definida é a usual, ela verifica as quatro propriedades da adição. Vamos testar as 
propriedades relativas à multiplicação. Em particular, vamos testar a propriedade (M2 ):

5. O conjunto V = {(x, x2); x  ∈  R} é um espaço vetorial com as operações de adição e multiplicação por 
escalar definidas abaixo:

• (x, x2) + (x ̃, x ̃2) = (x + x ̃,(x + x ̃)2 )

• α(x, y) = (αx, α2  x2)



51

II -  ESPAÇO VETORIAL, TRANSFORMAÇÃO LINEAR E APLICAÇÃO

INTRODUÇÃO À ÁLGEBRA LINEAR
IAL	                 Autores: Antônia Jocivania Pinheiro e Paulo César Linhares da Silva

Com efeito, dados u = (u1, u1
2 ), v = (v1, v1

2)  e  w = (w1, w1
2)  em  V  e α, β  ∈  R  quaisquer, temos:

(*) Usamos a associatividade dos números reais.

(*) Usamos a comutatividade dos números reais.

(*) Usamos a distributividade dos números reais.

(*) Usamos também a distributividade dos números reais.
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(*) Usamos a associatividade dos números reais.

EXERCÍCIO PROPOSTO

Determine quais dos conjuntos abaixo são espaços vetoriais com as operações dadas. Para os que não são, 
liste todas as propriedades que falham.

1. O conjunto R3 com as operações:

(x, y, z) + (x', y', z' ) = (x +x', y + y', z + z')  e  α(x, y, z) = (αx, y, z)

 
2. O conjunto R3 com as operações:

(x, y, z)  +  (x', y', z')  =  (x+ x', y + y', z + z')  e  α(x, y, z) = (0, 0, 0)

 
3. O conjunto R2 com as operações:

(x, y)  +  (x', y')  =  (x + x', y + y' )  e  α(x, y) = (2αx, 2αy)

 
4. O conjunto {(x, 0); x ∈ R} com as operações usuais do R2.

 
5. O conjunto {(x, y)  ∈  R2; x ≥ 0} com as operações usuais do R2.

 
6. O conjunto {(x, x, …, x)  ∈  Rn } com as operações usuais do Rn.

 
7. O conjunto R2 com as operações:

(x, y) + (x', y' ) = (x + x' + 1, y + y' + 1)  e  α(x, y) = (αx, αy)

 
8. O conjunto 				    com a adição matricial e multiplicação matricial por escalar.

 
9. O conjunto 				    com a adição matricial e multiplicação matricial por escalar.

 
10. O conjunto 				                      com a adição matricial e multiplicação matricial por escalar.

 
11. O conjunto {(1, y);  y  ∈  R} com as operações:

(1, y) + (1, y' ) = (1, y + y' )  e  α(1, y) = (1, αy)

 
12. O conjunto de todos os polinômios da forma ax + b com as operações:

(a0 x + b0 ) + (a1x + b1 ) = (a0 + a1 )x + (b0 + b1 )  e  α(a0x + b0 ) = (αa0)x + (αb0 )

 
13. O conjunto {x  ∈  R; x ≥ 0} com as operações

			       x + y = xy   e   αx = xα
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Seja V um espaço vetorial sobre R. Dados u, v  e w  em V  e α em R, provaremos as seguintes propriedades:

 
P1) O elemento neutro 0 em V é único.

P2) O elemento oposto  -u ∈ V de um vetor  u ∈ V é único.

P3) Para quaisquer  u, v, w  ∈  V, se u + w = v + w, então u = v (lei do cancelamento).

P4) Para qualquer escalar α ∈ R  e  0  ∈  V, temos α. 0 = 0. 

P5) Para 0  ∈  R  e qualquer vetor  u  ∈  V, temos 0. u = 0. 

P6) Se  α. u = 0, onde α  ∈  R  e u  ∈  V, então α = 0  ou  u = 0. 

P7) Para qualquer escalar α  ∈  R  e qualquer vetor  u  ∈  V, temos (-α). u = α. (-u) = -α.u.

Demonstração:

P1) Suponha existir outro elemento neutro 0 em V. Mostraremos que  =0. Como 0 é um elemento 
neutro de V, temos que para qualquer v  ∈  V, v + 0 = v, logo em particular para  0 ∈ V temos,

0 + 0 =0,

Portanto,

(*) Esta igualdade é satisfeita pela propriedade (A3) da definição de espaço vetorial, já que 0 é 
elemento neutro em V.

(**) Esta igualdade é satisfeita por (A2).

(***) Esta igualdade também é satisfeita por (A3), já que 0  é elemento neutro em V.

 
P2) Suponhamos que v seja outro elemento inverso aditivo do elemento u ∈ V. Assim, u + v = 0. Logo,

Logo o elemento oposto -u ∈ V de um vetor u ∈ V é único.

 
P3) Dados u + w = v + w, temos:

Propriedades dos espaços vetoriais

SAIBA MAIS

Na última seção listamos alguns exemplos de espaços vetoriais e é bastante claro que existe 
apenas um elemento neutro em cada um, mas existem vários outros espaços vetoriais que 
ainda não conhecemos. Provamos então, nesta primeira propriedade que a existência de 
um único elemento neutro é um fato que decorre apenas da definição de espaço vetorial (e, 
portanto, vale em qualquer um).
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P4) Dado α ∈ R qualquer, temos:

P5) Dado u ∈ V qualquer, como 0 é o elemento neutro da adição, temos 0 = 0 + 0, logo:

P6) Dado α ∈ R  e  u ∈ V, suponhamos que α . u = 0  com α ≠ 0. Então devemos mostrar que u=0.  Como  
α ≠ 0, existe α-1 ∈ R, tal que  α-1 α = 1, logo:

P7) Dado α ∈ R  e  u ∈ V, temos:

logo, 

Logo, 

Demonstradas essas propriedades, podemos concluir que grande parte das contas que fazemos com 
vetores de R2 e R3 são válidas em qualquer espaço vetorial.

Além disso, temos
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Definição: Dado um espaço vetorial V, dizemos que um subconjunto S de V é um subespaço vetorial 
de V se S for um espaço vetorial com respeito as mesmas operações que tornam V um espaço vetorial.

 
Observações:

i. Uma consequência imediata dessa definição é que um subespaço vetorial S deve ser não vazio, 
já que uma das condições que devem ser satisfeitas para que S seja um subespaço vetorial de V é a 
existência em S de um elemento neutro para a adição de vetores: com isso, obrigatoriamente 0 ∈ S.

 
ii. Concluímos também da definição que para verificar se um dado subconjunto S de um espaço 
vetorial V é um subespaço vetorial de V , deve-se verificar se as operações de adição e multiplicação 
por escalar estão bem definidas em S, e se elas satisfazem a todas as condições dadas na definição 
de espaço vetorial.

 
iii. Todas as propriedades listadas na definição de espaço vetorial serão automaticamente 
“herdadas” pelo conjunto S, se S conter o vetor nulo, se a adição em S estiver bem definida (ou 
seja, se a soma de dois elementos quaisquer de S for também um elemento de S), e se o mesmo se 
verificar para a multiplicação por escalar.

 
Na verdade, a última observação nos traz o seguinte resultado:

 
Um subconjunto S de um espaço vetorial V é um subespaço vetorial de V, se forem 
satisfeitas as seguintes condições:

	 SV1)  O vetor nulo está em S, isto é, 0 ∈ S.

	 SV2) Se u, v ∈ S, então u + v ∈ S.

	 SV3) Se u ∈ S, então αu ∈ S para todo α ∈ R.

Subespaço vetorial

EXERCÍCIO RESOLVIDO

1. Dado um espaço vetorial V qualquer, os subconjuntos {0}(conjunto cujo único elemento é o vetor nulo) 
     e V são subespaços vetoriais de V.

Com efeito, temos que 0 ∈ {0} e além disso, dados u, v ∈ {0} temos u = v = 0, e portanto u + v = 0 + 0 = 0 ∈ 
{0}. Agora, dado u ∈ {0} temos que u = 0, logo, para todo α ∈ R, ficamos com  αu = α0 = 0 ∈ {0}. Concluímos 
então que {0} é um subespaço vetorial de V.  Já o subconjunto V, não há o que fazer, ele é obviamente um 
espaço vetorial com respeito às mesmas operações. 

 
2. Considere o espaço vetorial V = R3  e o subconjunto S = {(x, y, z) ∈ R3; z = x + y} de V. Verificaremos que  
    S é um subespaço vetorial de V. Com efeito,

i. O vetor (0, 0, 0) pertence a S, já que 0 + 0 = 0.

ii. Dados u = (x, y, z)  e  v =(x', y', z' )  em  S,  temos que 		           logo:

     u + v =(x + x', y + y', z + z') pertence a S, já que (x + x') + (y + y' ) = (x+y) + (x' + y') = z + z'.

iii. Dados u = (x, y, z) em S, temos que x + y = z. Logo, para todo α ∈ R, αu = α(x, y, z) = (αx, αy, αz) pertence 
      a S, já que αx + αy = α (x + y) = αz.

       Concluímos então que S é um subespaço vetorial de V.
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SAIBA MAIS

Por serem os subespaços mais simples do espaço vetorial V, {0} e V são chamados subespaços 
triviais de V.

3. Dado o conjunto F (R) = {f; f: R → R}, temos que o subconjunto C(R) = {f  ∈  F (R); f  é  contínua } ⊂ F(R) 
     é um subespaço vetorial de F(R). Com efeito, 

i. a função nula f0  (x) = 0 é uma função constante, e, portanto continua logo  f0  ∈ C(R). 

ii. Dadas as funções f, g ∈ C(R), temos que f + g  ∈  C(R), já que, (f + g) (x) = f (x) + g (x) e soma de funções 
continuas é uma função continua.

iii. Dada f  ∈  C(R), temos que, para todo α  ∈  R, αf  ∈  C(R), já que (αf) (x) = αf (x) e f é contínua.

4. O subconjunto K = {f  ∈ F(R); f(x) = f (-x)} das funções pares é também um subespaço vetorial de F(R). 
De fato,

i . a função nula f0  (x) = 0, para todo x  ∈  R,  satisfaz  f0  (x) = 0 = f0 (-x),  logo f0  ∈  K.

ii. Dadas f,  g  ∈  K, temos		                   Logo,

     (f + g) (x) = f (x) + g(x) =  f (-x) + g (-x) = (f + g)(-x), portanto, f + g é uma função par, assim, f + g  ∈  K.

iii. Dada f  ∈  K, temos f (x) = f (-x). Logo, para todo α  ∈  R , (αf) (x) = αf (x) = αf (-x) = (αf) (-x)

      portanto,  αf é uma função par,  isto é, αf  ∈  K.

EXERCÍCIO PROPOSTO

1. Nos itens abaixo verifique se o conjunto S dado é subespaço vetorial dos conjuntos apresentados com 
     relação às operações de adição e multiplicação usuais.

3. Seja W o conjunto das matrizes simétricas n × n, prove que W é um subespaço vetorial de Mn×n.

4. Seja F o conjunto de todas as funções que satisfazem a equação diferencial f" + f = 0, verifique que F é um 
subespaço vetorial de F,  onde  F = {f; f: R → R}.

5. Seja W o conjunto de todas as matrizes 2 × 2 com determinante igual a zero, W é um subespaço de M2×2.

2. Seja 		                : a, b ∈ R} um subespaço de M(2,2), pergunta-se:

 
      b) Qual o valor de k para que		     pertença a S?
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SAIBA MAIS

O vetor nulo é gerado por  v1,  v2,  …,  vn,  quaisquer que sejam estes vetores. Basta tomar  
α1 = α2 = ⋯ = αn = 0, e teremos 0 = 0v1 + 0v2 + ⋯ + 0vn.

Definição: Dado um espaço vetorial V, dizemos que um vetor w ∈ V é uma combinação linear  
dos vetores v1, v2, …, vn  ∈ V se existirem escalares α1, α2, …, αn,  tal que w possa ser escrito como  
w = α1 v1 + α2 v2 + … αn vn.

Observação: Se o vetor w for combinação linear dos vetores v1, v2, …, vn, dizemos que w é gerado pelos 
vetores v1,  v2, …, vn.

Combinação linear

EXERCÍCIO RESOLVIDO

1. Considere p1 = t2 - 2t + 1, p2 = t + 2   e   p3 = 2t2 - t  em P2.

a) Escreva o vetor  p = 5t2 - 5t + 7 como combinação linear de p1,  p2  e  p3.

Solução: Devemos encontrar  α, β   e   γ  reais, tais que  p = αp1 + βp2 + γp3, ou seja:

5t2 - 5t + 7 = α(t2 - 2t + 1)  +  β(t + 2)  +  γ(2t2 - t)⇔

5t2 - 5t + 7 =αt2 - 2αt + α + βt + 2β +2γt2 - γt⇔

5t2 - 5t + 7 = (α + 2γ)  t2 + (-2α + β - γ) t + α + 2β.

Logo, para que esta igualdade ocorra, devemos ter:

Fazendo (I)-(III), obtemos:

2γ - 2β = 5 - 7 ⇒ 2(γ - β) = -2 ⇒  γ - β = -1.

Como γ - β = -1 ⇒ β - γ = 1, substituindo esta expressão em (II) temos: 

-2α + 1 = -5 ⇒ -2α = -5 -1 ⇒ -2α = -6 ⇒ α = 3.

Substituindo α = 3 em (I) e (III), obtemos γ = 1  e  β = 2. Portanto, p = 3 p1 + 2p2 + p3.

b) É possível escrever p1  como combinação linear de p2  e  p3?

Solução: Verificaremos se existem α e β reais, tais que p1 = αp2 + βp3, ou seja:

t2 - 2t + 1 = α (t + 2) + β(2t2 - t)⇔

t2 - 2t + 1 = αt + 2α + 2βt2 - βt⇔

t2 - 2t + 1 = 2βt2 + (α-β)t + 2α.

Obtemos então:
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Como α = β =     , temos que α - β=             =0≠2, logo (II) não é satisfeito, assim p1 não pode ser escrito como  
combinação linear de p2  e p3.

 
2. No espaço vetorial M(2,2), escrever 	       como combinação linear de 	         

Solução: Devemos encontrar α, β  e  γ reais, tais que:

 

Assim:

Fazendo (II) - (I) obtemos 2γ + β = -1, somando esta equação com 2.(III), isto é, com 4β - 2γ = 16, ficamos 
com 5β = 15 ⇒ β = 3, e, portanto, α - 3 = 1 ⇒ α = 4  e  4 + 2γ = 0 ⇒ γ = -2.

Concluímos, então, que:

1
2

1
2

1
2

Teorema 1: Dado um espaço vetorial V, se v1, v2, …, vn são vetores de  V, então o conjunto  
S= {α1  v1 + α2  v2 + ⋯ + αn  vn;  α1, α2, …, αn  ∈  R} é um subespaço vetorial de V.

 
Prova: Como efeito,

 
i. O vetor nulo pertence a S, já que, podemos escrever 0 = 0v1 + 0v2 + ⋯ + 0vn.

 
ii. Dados u e v em S, digamos u = α1 v1 + α2 v2 + ⋯ + αn  vn  e  v = β1 v1 + β2  v2 + ⋯ + βn vn  com αi, βi  ∈  
R, temos que:

     u + v = (α1  v1 + α2 v2 + ⋯ + αn vn) + (β1 v1 + β2 v2 + ⋯ + βn vn)

		   =(α1 + β1)  v1 + (α2 + β2)  v2 + ⋯ + (αn + βn) vn

onde αi + βi  ∈  R. Assim u + v é também combinação linear dos vetores v1, v2, …, vn,  logo, u + v  ∈  S.

 
iii. Dados u em S, digamos u = α1  v1 + α2  v2 + ⋯ + αn  vn, com αi  ∈  R,  e  k  ∈  R temos que:

     ku = k(α1  v1 + α2  v2 + ⋯ + αn vn) = (kα1)  v1 + (kα2)  v2 + ⋯ + (kαn   vn

     onde kαi  ∈  R, logo ku é combinação linear dos vetores v1, v2, …, vn,  portanto, ku  ∈  S.

     Concluímos, então, que S é subespaço vetorial de V.
 
Observação: Este subespaço vetorial é chamado subespaço gerado pelos vetores v1, v2, …, vn, ou ainda 

Subespaços gerados
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subespaço gerado pelo conjunto {v1, v2, …, vn}. Denotamos este subespaço por S=[v_1,v_2,…,v_n ].  

Teorema 2: Sejam v1, v2, …, vn, w vetores de um espaço vetorial V, onde w é combinação linear de 
v1, v2, …, vn. Então, [v_1,v_2,…,v_n,w]=[v_1,v_2,…,v_n ].

Observação: Concluímos deste teorema que um subespaço pode ser gerado por uma infinidade de 
vetores, entretanto existe um número mínimo de vetores para gerá-lo.

EXERCÍCIO RESOLVIDO

1. Seja 

Determine:

a) O subespaço gerado por A;

Solução: Verificaremos primeiramente se um dos vetores é combinação linear dos outros dois, analisemos 
então, se existem α e β reais, tais que        Com efeito,

assim,

Temos então que               este é o conjunto dos pontos do 
plano que passa pela origem (0,0,0) e tem                como vetores diretores.

b) O valor de k para que o vetor (3, -1, k)  ∈  [A].

Solução:  Note que,

Fazendo (II) - (I), obtemos β = -4. Substituindo este valor em (I), temos que α = 7, logo k =7.

2. Dado o subespaço W = {A ∈ M2 (R)  / A = At}  de  M2 (R), verifique que W é gerado pelas matrizes

Solução: Dado uma matriz qualquer                              em W, temos que A = At, isto é,

Concluímos, então, pela igualdade de matrizes que b = c.

Portanto, toda matriz de W é da forma  .  Logo podemos escrever:

Assim, W é gerado pelas matrizes

plano que passa pela origem (0,0,0) e tem                como vetores diretores.
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EXERCÍCIO PROPOSTO

1. Verifique que  M23  =  [A11,  A12,  A13,  A21,  A22,  A23 ],  onde 

2. Seja ℘2 = {ax2 + bx + c; a, b, c  ∈ R}. Verifique se r(x) = 6x2 - 4x + 1  pertence ao [p (x), q (x)], onde 
     p(x) = x2 -x + 1  e  q(x) = -3x2 + x +2.

3. Verifique se C pertence ao conjunto gerado              onde C é dado por:

4. Verifique se  s(x)   pertence ao [p(x), q(x), r(x)],  onde p(x) = -2x + 1, q(x) = -x2 + x  e r(x) = x2 + 3x -2, com
     s(x) dado por:

              a) s(x) = -x2 -5x + 3        b) s(x) = x2 + x +1

5. M22  é gerado por

6. M22  é gerado  po r

Definição: Sejam v1, v2, …, vn vetores de um espaço vetorial V. Dizemos que esses vetores são 
linearmente independentes (LI) se a única solução da equação 

α1 v1 + α2  v2 +  … + αn  vn = 0

for a trivial, isto é, α_1=α_2=⋯=α_n=0. Em outras palavras, os vetores v_1,v_2,…,v_n são linearmente 
independentes se nenhum deles for combinação linear dos outros. Caso contrário, dizemos que os 
vetores são linearmente dependentes(LD).

Dependência e independência linear

EXERCÍCIO RESOLVIDO

1. Verifique se os conjuntos abaixo são LI ou LD:

    A={(0, 1, 1,), (1, 1, 0), (1, 0, 1), (1, 2, 3,)}

Solução: Considere a equação:

 α(0, 1, 1,) + β(1, 1, 0) + γ(1, 0, 1) + δ(1, 2, 3,) = (0, 0, 0).

Dizemos que o conjunto A é LI, se α = β = γ = δ = 0, caso contrário, A é LD. Dada a equação acima temos que

Logo, fazendo (II)-(I), obtemos α - γ + δ = 0, somando esta equação a (III), ficaremos com 2α + 4δ = 0 ⇒ 
α = -2δ. Substituindo este valor em (II) e (III), respectivamente, obtemos: β = 0  e  γ = -δ. Portanto, para todo 
δ real temos que α = -2δ,  β = 0  e  γ = -δ é solução para o sistema. Concluímos, então, que A é LD.
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b) B={(1,1,1)}

     Solução: A única solução para a equação α (1, 1, 1,) = (0, 0, 0) é α = 0, logo B é LI.

2. Responda os itens abaixo justificando sua resposta.

    a) Se os vetores  u,  v  e w  forem LI, serão os vetores u + v, v + w e  u + w  também LI?

    Solução: Para que os vetores u + v, v + w  e  u + w sejam LI, a única solução de α(u +v) + β(v + w) + γ(u +w)
 = (0, 0, 0),  deve ser α = β = γ = 0. Note que:

    Como os vetores u,  v  e  w  são LI, temos

Temos, então, das equações (I) e (II) que γ = β e a equação (III) nos dá γ = -β, portanto γ = β = 0, logo 
α = γ = β = 0. Concluimos então que os vetores u + v,  v + w  e u + w  são LI.

b) Se os vetores u,  v  e w  forem LI, serão os vetores u - v, v - w  e u - w também LI?

Solução: Para que os vetores u - v, v - w  e u - w  sejam LI, a única solução de α(u - v) + β(v  - w) + γ(u - w) 
= (0, 0, 0), deve ser α = β = γ =0. Note que:

Como os vetores u,  v  e  w são LI, temos

Concluímos, então, que para todo β real, temos que α = β  e  γ = -β é solução para o sistema. Portanto, os 
vetores u - v, v - w  e  u - w são LD.

 + v,  v + w  e u + w  são LI.

u

 +  +  +  sejam LI, a única solução de  + + w)

v  e v  e v w  forem LI, serão os vetores w  forem LI, serão os vetores w u v v + v + v w e  w e  w u + w  também LI?w  também LI?w

  são LI, temos

u v v w  e u - w também LI?w  e u - w também LI?w  e u - w também LI?  e u - w também LI?

 + v,  v + w  e u + w  são LI.

u

  sejam LI, a única solução de ) +  - w) + 

v  e w  forem LI, serão os vetores v  e w  forem LI, serão os vetores v  e w  forem LI, serão os vetores 

 + v,  v + w  e u + w  são LI. + v,  v + w  e u + w  são LI. + v,  v + w  e u + w  são LI. + v,  v + w  e u + w  são LI.

u v v w u 

EXERCÍCIO PROPOSTO

1. Verifique se os conjuntos abaixo são LI ou LD:
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2. Determine o valor de k para que:

a) A = {(1, 0, -1), (1, 1, 0), (k, 1, -1)} seja LI;

b)                     seja LD.

Agora, queremos determinar, dentro de um espaço vetorial V, um conjunto finito de vetores de 
cardinalidade mínima tal que qualquer outro vetor de V seja combinação linear deles. Um conjunto 
de vetores desse tipo é chamado de base de V.

Definição: Um conjunto A = {v1, v2, ..., vn}  ⊆  V é uma base do espaço vetorial V  se  A  é LI e A  gera  V.

Propriedades:

P1)  Se A = {v1, v2, ..., vn}  é um conjunto de vetores que gera um espaço vetorial V então A contém uma 
base de V.

P2) Se A  = {v1, v2, ..., vn }  é um conjunto de vetores que gera um espaço vetorial V então qualquer conjunto 
com mais de  n  vetores de  V  é  LD. (Concluímos, então, que, qualquer conjunto LI tem no máximo n vetores.)

P3) Qualquer base de um espaço vetorial possui o mesmo número de elementos. Este número é chamado 
de dimensão do espaço vetorial  V, e denotado por dim V.

P4)  Se  v1, v2, ..., vn  são vetores LI de um espaço vetorial  V  e  w  ∈ V não é combinação linear de v1, v2, ..., 
vn,  então os vetores v1, v2, ..., vn, w, também são LI.

P5) Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de 
modo a formar uma base de V.

P6) Se  dim V  = n  então qualquer conjunto de  n  vetores LI forma uma base de V.

P7) Dada uma base A = {v1, v2, ..., vn}  de um espaço vetorial V, cada vetor de V é escrito de forma única 
como combinação linear dos vetores de A.

Base de um espaço vetorial

EXERCÍCIO RESOLVIDO

1. Sejam os vetores v1 = (1, 2, 3), v2 = (0, 1, 2)  e  v3 = (0,0,1). Mostre que o conjunto B = {v1, v2, v3 } é uma
     base do R3.

Solução: Para provar que B é LI, deve-se mostrar que a1  v1 +  a2  v2 +  a3  v3 = 0 admite somente a solução 
trivial, isto é,  a1 = a2 = a3 = 0. Com efeito, 

Logo, B é LI.

Para mostrar que B gera o R3, deve-se mostrar que qualquer vetor v = (x, y, z)  ∈  R3  pode ser expresso 
como uma combinação linear dos vetores de B. Note que:

 = (x, y, z)  ∈  
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Como a1 = x, temos da segunda equação que a2 = y - 2x. E, portanto, da terceira equação obtemos 
a3 = z  -  3x  -  y + 2x = -x - y + z. Assim,

(x, y, z) = x(1, 2, 3)  +   (y - 2x)(0,1,2)+ (-x - y + z)(0, 0, 1).

Então, como B é LI e gera o R3, concluímos que B é uma base para o R3.

2. Sendo ( v1 ) = (1, 2)  ∈  R2, determine ( v2 )  ∈  R2  tal que { v1 , v2  } seja base de R2.

Solução:  Seja  v2  = (a,b), onde a, b  ∈  R. Para que { v1 ,  v2  } seja base de R2, devemos ter { v1,  v2 } LI, 
isto é, αv1  + βv2  = 0 admite somente a solução trivial. Assim,

Somando, membro a membro, as equações acima obtemos β (-2a + b) = 0. Como devemos ter β = 0, para 
que {v1,  v2 } seja LI, obrigatoriamente -2a + b ≠ 0, assim:

2a ≠ b ⇒ (a, b) ≠ (a, 2a) ⇒ (a, b) ≠ a(1, 2) ⇒  v2  ≠ av1 .

Portanto, qualquer vetor v2  em R2  tal que  v2
   ≠  av1  para todo a  ∈  R, gera uma base de R2 juntamente 

com v1.

βv

)  } seja base de 

, 2) ⇒  v ≠ av

EXERCÍCIO PROPOSTO

1. Determine para quais valores de k o conjunto A = {(1, k), (k, 4)} seja base do R2.

2. Seja B = {(0, 1, 1), (1, 1, 0), (1, 2, 1)}  ⊂  R3.

a) Mostre que B não é base do R3.

b) Determine uma base do R3 que possua dois elementos de B.

3.  Determine se o conjunto B é uma base para o espaço vetorial V.
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Transformações Lineares 
UN 02

Estudaremos agora, um tipo especial de função, conhecida como, transformações lineares. O seu 
domínio e contradomínio são espaços vetoriais. 

Definição: Sejam V e W espaços vetoriais. Dizemos que T : V → W é uma transformação linear se 
satisfaz as seguintes condições:

i) T ( u+ v ) = T (u) + T (v )

ii) T (αu) = α T(u)

∀ u, v   ∈   V, ∀ α   ∈   R.

Ou seja, uma transformação linear é uma função entre dois espaços vetoriais que preserva as 
operações de adição vetorial e multiplicação por escalar. Quando o domínio e o contradomínio de 
uma transformação linear T, coincidem dizemos que T é um  operador linear.

Defi nição de transformação linear

EXERCÍCIOS RESOLVIDOS

1. Dadas as transformações abaixo, verifique quais são lineares.

a) A simetria em relação a origem no R3, T : R3 → R3 tal que T ( v ) = -v.

Solução: Dados  u,  v  ∈  R3, temos que

Portanto, T é linear.

b) A translação no plano T : R2 → R2 dado por T (x, y) = (x + k1, y + k2 ),  onde k1, k2  ∈  R*.

Solução: Dados u  =  (x1, y1 )  e  v  =  (x2,  y2 ), temos:

       T( u  + v  ) = T (x1 + x2, y1 + y2 )  =  (x1 + x2 + k1, y1 + y2 + k2 )

 e

T ( u ) + T ( v ) = T (x1,  y1 )  + T (x2, y2 ) = (x1 +k1, y1 + k2 ) + (x2 + k1, y2 + k2 ) = (x1 + x2 + 2k1, y1 + y2 + 2k2 )

Assim T( u + v ) ≠ T ( u ) + T ( v ). Portanto, T não é linear.

2. Dada uma transformação linear T : V → W, verifique que:

a) T (0) = 0

Com efeito, seja v  um vetor qualquer em V, então T(0) = T (0.v ), mas sendo T uma transformação linear 
temos que T(0.v ) = 0. T( v ), portanto:

T(0) = T (0. v ) = 0. T ( v )=0.

) = -

  ) = 

 ) + 

 ) ≠  ) +  ). Portanto, 

 ) = 

 =  (   =  (

  um vetor qualquer em 
(0.v ) = 0. 

(0. v ) = 0. ( v )=0.

( v ), portanto:
 (0.v ), mas sendo 
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b) T( -v ) = -T ( v )

Sendo -v = (-1). v  e T uma transformação linear, temos que T(-v ) = T((-1).v ) = (-1). T( v ) = -T( v ).

c) T( u - v ) = T( u ) -T( v )

Sendo u - v = u + (-1). v  e T uma transformação linear, temos que T( u - v ) =T( u +(-1). v ) = T( u ) + 
T((-1). v ) = T( u ) + (-1) T( v ) = T( u ) -T ( v ).

3. Dada a transformação linear T : R2 → ℘2, tal que T (1, 1) = x2 - 3x + 2  e  T (2, 3) = -x2 + 1,  encontre
     T (-1, 2)  e  T(a, b).

Primeiramente verificaremos que B = {(1, 1), (2, 3)} é uma base para R2. Com efeito, para provar que B 
é LI, deve-se mostrar que a1 (1,1) +  a2 (2, 3) = (0, 0) admite somente a solução trivial, isto é, a1 = a2 = 0. 
De fato, 

Logo, B é LI.

Para mostrar que B gera o R2, deve-se mostrar que qualquer vetor v = (x, y)  ∈  R2  pode ser expresso 
como uma combinação linear dos vetores de B. Note que:

substituindo este valor na equação a1 + 2a2 = x, obtemos:

  a1 + 2(y - x) = x ⇒ a1 = x -2y + 2x ⇒ a1 = 3x - 2y.

Portanto, qualquer vetor (x, y)  ∈  R2  pode ser escrito como:

   (x, y) = (3x - 2y) (1, 1) + (y -x) (2, 3)

Provamos, então, que B = {(1, 1), (2, 3)} é uma base para R2. Logo, com isso, temos que o vetor (-1, 2) 
pode ser escrito na base B, isto é, 

 (-1, 2) = (3. (-1) -2. 2) (1, 1) + (2- (-1)) (2, 3) = -7. (1, 1) + 3. (2,3)

portanto, sendo T uma transformação linear temos:

 T (-1, 2) = T (-7. (1, 1) + 3.(2,3)) = -7. T (1, 1) + 3.T (2,3)

          = -7. (x2 -3x +2) + 3. (-x2 +1) = -10x2 + 21x -11.

Analogamente, temos que: (a, b) = (3a - 2b) (1, 1) + (b - a) (2, 3), logo:

 ) = -

 ) = u ) + (-1) ( v ) = T( u ) -T ( v ).( v ) = T( u ) -T ( v ).( v ) = T( u ) -T ( v ).
 + (-1).  +(-1).  ) + 

)

Sendo -  = (-1).   e T uma transformação linear, temos que ) =  ) = (-1). ) = - ( v ).

 )

, deve-se mostrar que qualquer vetor v = (x, y)  ∈  
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4. Dada a transformação linear T : R2 → R3, tal que T (1, -1) = (3, 2, -2)  e  T (-1,2) = (1, -1, 3), determine 
    T (x, y).

Seja B = {(1, -1), (-1, 2)}, verificaremos que B é uma base para R2. Com efeito, dados a1, a2  ∈  R, tal que 
a1 (1, -1)  +  a2  (-1, 2) = (0, 0) temos, 

Logo, B é LI.

Devemos mostrar agora que qualquer vetor  v = (x, y)  ∈  R2  pode ser expresso como uma combinação 
linear dos vetores de B. Note que:

substituindo este valor na equação a1 - a2 = x, obtemos:

a1 - (x + y) = x ⇒ a1 = x + x + y ⇒ a1 = 2x + y.

Portanto, B gera  R2. Logo, B é uma base para R2. Assim,

	          (x, y) = (2x + y) (1, -1) + (x + y) (-1, 2),

temos, então, que: 

EXERCÍCIO PROPOSTO

1. Dadas as transformações abaixo, verifique quais são lineares.

2. Dada a transformação linear T : R2 → R3  tal que T (1, 0) = (1, 2, -1)  e  T (0, 1) = (3, 0, 4),  encontre  
    T (5, 2)  e  T (a, b).

 
3. Dada a transformação linear T : R2 → ℘2  tal que T (1, 0) = -2x + 1  e  T (3, -1) = 2x2 + x,  encontre  
     T (-7, 9)  e  T (a, b).

 
4. Dado o operador linear T : R2 → R2  tal que T (1, 0) = (3, -2)  e  T (0, 1) =(1, 4), determine T (x, y). (Obs.: 
Um operador linear T é uma transformação linear de um espaço vetorial V nele mesmo, isto é, T : V → V)
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5. Seja T : R3 → R2  uma transformação linear tal que T (1, 1, 1) = (1, 2), T (1, 1, 0) = (2, 3)  e T (1, 0, 0) = (3,4).

a) Determinar T (x, y, z).

b) Determinar  v   ∈  R3  tal  que T( v ) = (-3, -2).

c) Determinar  v   ∈ R3  tal  que T ( v ) = (0, 0).

6. Seja T : R3 → R3  um operador linear tal que T (1, 0, 0) = (0, 2, 0), T (0, 1, 0) = (0, 0, -2)  e  T (0, 0, 1) = 
    (-1, 0, 3). Determinar  T (x, y, z).

   ∈  

   ∈ 

 ) = (-3, -2).

 ) = (0, 0).

Definição: Sejam V e W espaços vetoriais e T : V → W uma transformação linear. O conjunto de todos 
os vetores v  ∈  V  tais que T (v) = 0 é chamado núcleo de T e denotado por ker (T). Em símbolos temos,

 ker (T) = {v  ∈  V ∶ T (v)  =  0}.

Núcleo de uma transformação linear

SAIBA MAIS

o termo ker é proveniente do inglês “kernel” que signifi ca núcleo.

SAIBA MAIS

Uma função T : V → W é injetora se ∀v1, v2  ∈  V, com v1  ≠  v2  implica que T (v1)  ≠  T(v2). Ou se 
∀v1, v2  ∈  V com T (v1) = T (v2) implica que v1 = v2.

Teorema 1: O núcleo de uma transformação linear T : V → W é um subespaço vetorial de V.

Demonstração: Sejam v1  e  v2  vetores em ker (T)  e  α  ∈  R.  Então T(v1 ) = T (v2) = 0. Logo,

Concluímos, então, que v1 + v2  ∈   ker (T)  e  αv1  ∈   ker (T). E como T é uma transformação linear, temos 
que T (0) = 0,  assim 0 ∈  ker (T), portanto ker (T) é um subespaço vetorial de V.

Teorema 2: Uma transformação linear T : V → W é injetora se, e somente se, ker (T) = {0}.

Demonstração: Seja T injetora, provaremos que ker(T) = {0}. Para isso, dado v um vetor de ker (T), temos 
que T (v) = 0. Sendo T uma transformação linear, temos que T (0) = 0, mas como T é injetora, temos que 
v = 0. Portanto, o único elemento do núcleo é o vetor nulo, isto é, ker (T) = {0}. Seja agora ker (T) = {0}, 
provaremos que T é injetora. Então, dados v1, v2  ∈  V com T (v1 ) = T (v2 ), temos que T (v1)  -  T (v2 )=0, 
sendo T uma transformação linear, obtemos T (v1 - v2 ) = 0, assim v1 - v2  ∈  ker (T),  mas como ker (T) = 
{0}, então v1 - v2 = 0, o que implica que v1 = v2.  Provamos que dados v1, v2  ∈  V com T(v1) = T(v2), então
v1 = v2. Portanto, T é injetora.  
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EXERCÍCIO RESOLVIDO

1. Encontre o núcleo da transformação linear T : ℘1 → R definida por T (p (x)) =  ∫    p (x)dx.

    Solução: Dado p(x)  ∈  ℘1, temos que p(x) = ax + b, a, b  ∈  R, assim:

     Logo,

1

0

2. Encontre o núcleo da transformação linear T : M22 → M22  definida por T (A) = AT.

    Solução: Note que:

	   ker(T) =  {A  ∈  M22 ∶ T(A) = 0} = {A  ∈  M22  ∶ AT=0},

	   mas  AT = 0 ⇒ A = (AT)T = (0)T = 0, logo, ker(T) = {0}.

3. Encontre o núcleo da transformação linear T : R3  → R2  definida por T (x, y, z) = (x - y + 4z, 3x + y +8z).

     Solução: Sendo ker(T) =  {(x, y, z)  ∈  R3  ∶ T (x, y, z) = 0}, temos que:

     ker (T) = {(x, y, z)  ∈  R3 ∶(x -y + 4z, 3x + y + 8z) = (0, 0)}

     Logo, dizemos que (x, y, z)  ∈  ker (T), se, e somente se,

somando membro a membro as equações temos que, 4x + 12z = 0 ⇒ x = -3z. Substituindo este valor na 
equação x - y + 4z = 0, obtemos:

-3z - y + 4z = 0 ⇒ y =z.

Portanto, qualquer (x, y, z)  ∈  ker(T) é dado por:  (x, y, z) = (-3z, z, z). Assim 

           ker (T) =  {(-3z, z, z): z  ∈  R } = {z (-3, 1, 1): z  ∈  R} = [(-3, 1, 1)].

4. Verifique que a transformação linear T : R2 →℘1 definida por T(a, b) = (a + b) x + a é injetora.

Solução: Pelo teorema 2, temos que T é injetora se, e somente se, ker(T) = {(0,0)}. Note que, 

	 ker(T) = {(a, b)  ∈  R2 : T(a, b) = 0} = {(a, b)  ∈  R2 : (a + b) x + a = 0}

		          ={(a, b)  ∈  R2  : (a + b) = 0   e   a = 0} =

		          ={(a, b)  ∈  R2  : b = 0   e   a = 0} = {(0, 0)}

Portanto, T é injetora.
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Definição: O conjunto imagem de uma transformação linear T : V → W é formado por todos os pontos 
w  ∈  W que são imagens de algum vetor v  ∈  V. Isto é, 

Im(T) = {w  ∈  W : w = T(v) para algum v  ∈  V} = {T(v)  ∈  W : v  ∈  V}.

 
Observação: Se Im(T) = W, então T é sobrejetora.

Imagem de uma transformação linear

SAIBA MAIS

Uma função T : V → W é sobrejetora se ∀w  ∈  W, existir pelo menos um v  ∈  V tal que w = T(v).

EXERCÍCIO RESOLVIDO

1. A imagem de uma transformação linear T : V → W é um subespaço vetorial de W.

Solução: Sejam w1  e  w2  vetores de Im(T) e α  ∈  R. Vamos mostrar que w1 + w2  e  αw1  pertencem a 
Im(T). Para isto, devemos mostrar que existem vetores u e v em V tais que T(u) = w1 + w2  e T(v) = αw1.

Como w1, w2  ∈  Im(T), existem vetores v1, v2   ∈  V tais que T(v1 ) = w1  e  T(v2) = w2.  Fazendo u = v1 + 
v2 e v = αv1, temos:

 
T(u) = T(v1 + v2) = T(v1) + T(v2) = w1 + w2

e

T(v ) = T(αv1) = α.T(v1) = αw1.

Portanto, Im (T) é subespaço vetorial de W.

 
2. Encontre a imagem da transformação linear T : ℘1 → R definida por T(p(x))= ∫   p(x) dx.

Solução: Como para todo a ∈ R, existe p(x) = a  ∈  ℘1 tal que T(p(x)) = ∫    p(x) dx = ∫    adx= [ax] |  = a - 0 
= a, temos que R ⊂ Im(T), mas pela definição de Im(T), temos que Im(T)  ⊂  R, portanto Im(T) = R.

 
3. Encontre a imagem da transformação linear T : M22 → M22  definida por T(A) = AT.

Solução: Como para toda matriz A no contradominio M22, existe uma matriz B = AT no dominio M22, tal 
que T(AT) = (AT)T = A, temos que M22  ⊂  Im(T), mas pela definição de Im(T) temos  Im(T)  ⊂  M22, portanto 
Im(T) = M22.

 
4. Dada a transformação linear T: R2 → R2  definida por T(x, y) = (x - 2y, 2x + 3y), verifique se o vetor (5,3) 
pertence ao conjunto Im(T).

Solução: Verificaremos se existe (x, y)  ∈  R2  tal que T(x, y) = (5, 3), isto é, precisamos verificar se o sistema 
(x - 2y, 2x + 3y) = (5, 3) tem solução. Com efeito,

somando membro a membro as duas equações temos que: 7y = -7 ⇒ y = -1. 

Substituindo y = -1 na equação x -2y = 5, obtemos: x -2 (-1) = 5 ⇒

x = 3. Portanto, o sistema admite solução e, então, conclui-se que  (5, 3)  ∈  Im(T).

1

0
1

0

1

0
1
0
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SAIBA MAIS

Este teorema também é conhecido por Teorema do Posto, onde:
 nulidade (T) + posto (T) = dim V 
sendo,
 nulidade (T) = dim ker (T)  e  posto (T) = dim Im (T).

Teorema 1: Se T : V → W é uma transformação linear, onde V é um espaço de dimensão finita, então 

dim ker (T) + dim Im (T) = dim V.

 
Omitiremos a demonstração deste teorema, ela pode ser encontrada com facilidade em vários livros 
de Álgebra Linear.

 
Teorema 2: Se T : V → W é uma transformação linear injetora e dim V = dim W, então T transforma base 
em base, ou seja, se B = {v1, v2, ..., vn} é base de V, então o conjunto T(B)  = {T(v1), T(v2 ), ..., T(vn)} é 
base de W.

Demonstração:  Sendo dim V = dim W = n, basta mostrar que T (B) é LI. Ou seja, dada a igualdade 
c1 . T(v1) + c2 . T(v2) +  ...  +  cn.T(v_n ) = 0, devemos provar que c1 = c2 =  ...  = cn = 0. Com efeito,  pela 
linearidade de T, temos que

T (c1 . v1 + c2 . v2 + ... + cn . vn) = c1 . T(v1) + c2 . T(v2) + ... +  cn . T(vn) = 0

Sendo T injetora, temos que c1 . v1 + c2 . v2 + ... + cn . vn = 0, mas como B é base, B é LI e, portanto, c1 = 
c2 =  ...  = cn = 0. Logo, T(B) é base de W. 

Teorema da dimensão

EXERCÍCIO RESOLVIDO

1. Seja T : V → W é uma transformação linear com dim V = dim W = n, verifique que T será injetora se, e  
     somente se, T for sobrejetora.

Solução: Assumindo T injetora, temos que ker(T) = {0}, logo dim ker(T)=0. Assim, pelo teorema 1, 
obtemos:

dim ker(T) + dim Im(T) = dim V ⇒ 0 + dim Im (T) = n ⇒ dim Im(T) = n = dim W,

Concluimos, então, que Im(T) = W e, portanto, T é sobrejetora.

Reciprocamente, assumindo T sobrejetora temos Im(T) = W, isto é, dim Im(T) = dim W = n, assim pelo 
teorema 1, 

dimker(T) + dimIm(T) = dim V ⇒ dimker(T) + n = n ⇒ dimker(T) = 0,

assim, ker(T) = {0}, e portanto T é injetora.

2. Encontre o posto e a nulidade das transformações lineares abaixo:

      a) T : ℘2 → ℘3,  onde  T(p(x)) = xp(x).

Solução: Dado p(x) ∈ ℘2, temos que p (x) = ax2 + bx + c, assim T (p (x) ) = T(ax2 + bx + c) = x. (ax2 + bx + c) 
= ax3 + bx2 + cx. 
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SAIBA MAIS

Sendo {1, x, x2 } base canônica de ℘2, temos que dim ℘2 = 3.

Portanto, 

ker(T) = {p(x) ∈ ℘2  ∶ T(p(x)) = 0} 

                       = {ax2 + bx + c : ax3 + bx2 + cx = 0}

                       = {ax2 + bx + c : a = b= c = 0} = {0},

Concluimos, então, que nulidade(T) = dim ker(T) = 0. 

O teorema da dimensão garante que:

dim ker(T)+dim Im(T) = dim ℘2  ⇒ posto(T)

                    = dim Im(T) = 3 - 0 = 3.

2. T : W → ℘2,  onde 		  = (c - a) x2 + (b - c) x + (a - b) e W é o espaço vetorial formado pelas 
 
    matrizes simétricas 2×2.

Portanto, 	      é uma base para o núcleo de T, por isso nulidade(T) = dim ker(T) = 1. 

O teorema da dimensão garante que dim ker (T) + dim Im(T) = dim W ⇒ posto(T) = dim Im(T) = dim W - dim 
ker (T). Logo, para encontrarmos o posto(T), devemos saber dim W. Para isso, dada uma matriz qualquer 

						          base para  W, devemos  verificar se G é LI. Para isso, 
 
considere:

Temos, então, que a = b = c = 0, logo G é LI e, portanto, G é uma base para W. Concluímos que dimW =3. Assim:

Posto(T) = dim Im(T) = dim W - dim ker (T) = 3 - 1 = 2.

Solução: Sendo ker (T)

ker (T)

temos que:
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EXERCÍCIO PROPOSTO

1. Determine o núcleo e a imagem das transformações lineares:

a)  T: R3 → R3, T(x, y, z) = (x + 2y - z, y + 2z, x + 3y + z)

b) T : R2 → R2, T (x, y) = (3x - y, -3x + y)

c) T : R3 → R2, T (x, y, z) = (x + 2y - z, 2x - y + z)

d) T : R3 → R3, T (x, y, z) = (x -3y, x -z, z - x)

e) T : R2 → R3, T (x, y) = (x + y, x, 2y)

2. Dado o operador linear T : R2 → R2  definido por T (x, y) = (3x + y, 4x + 2y), verifique:

a) Quais dos vetores (1, -2), (2, -3)  e  (-3, 6) pertencem a ker (T)?

b) Quais dos vetores (2, 4), (-     ,-1)  e  (-1, 3) pertencem a Im (T)?

3. Dada a transformação linear T: M22 → 22  definida por 			             verifique:

4. Dada a transformação linear T : ℘2 → R2 definida por T(ax2 + bx + c) = (c - b, b + a), verifique:

a) Quais dos polinômios x + 1, -x2  +  x  e -x2 + x +1 pertencem a ker (T)?

b) Quais dos vetores (0, 0), (1, 0)  e  (0, 1) pertencem a Im(T)?

c) Descreva ker (T)  e  Im(T).

5. Encontre a nulidade e o posto de T, onde:

a)  T: M22 → R2  definida por 	                     = (a - b, c - d).

b) T : ℘2 → R2  definida por T (p (x)) = (p(0), p(1)).

c) T : R2  → R2, T (x, y) = (3x - y, -3x + y).

d) T : R3  → R2,  T(x, y, z) = (x + 2y - z, 2x - y + z).

e) T : R3  → R3,  T(x, y, z) = (x - 3y, x - z, z - x).

f) T : R2  → R3,  T (x, y) = (x + y, x, 2y).

6. Considere a transformação linear T : R2  → R3  tal que T (-2, 3) = (-1, 0, 1)  e  T (1, -2) = (0, -1, 0).

a) Determine T (x, y).

b) Determine ker(T) e Im(T).

c) T é injetora? E sobrejetora?

1
2

a) Quais das matrizes

b) Quais das matrizes

c) Descreva ker (T) e Im (T).

pertencem a ker (T)?

pertencem a Im (T)?
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7. Determine o núcleo e a imagem do operador linear T : R3 → R3  definido por 

   T (x, y, z) = (x + 2y - z, y + 2z, x + 3y + z).

8. Seja T : R3 → R2  a transformação linear tal que T(e1) = (1, 2), T(e2) = (0, 1)  e  T(e3) = (-1, 3), onde  
     {e1, e2,  e3 }  é a base canônica de R3. 
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Fonte: http://biblioteca.ufersa.edu.br/

t

III AUTOVALORES, AUTOVETORES, 
DIAGONALIZAÇÃO E ESPAÇO 
COM PRODUTO INTERNO

Nesta unidade vamos estudar os aspectos relacionados com 
Autovalores, Autovetores, Diagonalização e Espaço com Produto 
Interno.
 

Objetivos

• Definir e exemplificar os conceitos de autovalor e autovetor de 
um operador;
• Aplicar os conceitos de autovalores e autovetores para 
diagonalizar operadores;
• Compreender se um operador linear é diagonalizável; 
• Definir produto interno;
• Reconhecer um produto interno a partir da definição;
• Estudar os principais tipos de produto interno;
• Operar com o produto interno para a solução de problemas 
envolvendo espaços vetoriais;
• Operar com o produto interno para o estudo de problemas de 
ortogonalidade e perpendicularidade.
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Autovalores e Autovetores 
UN 03

Definição: Dado um espaço vetorial V e uma transformação linear T:V → V, dizemos que λ ∈ R é um 
autovalor associado ao autovetor v ∈ V se, λ e v satisfazem T(v) = λv.

Exemplo 1: Seja T:R2 → R2 definido por T(x,y) = (y,x) para todo (x,y) ∈ R2. Para que um número real λ 
seja um autovalor de T tem que existir um vetor não-nulo (x,y) ∈ R2 tal que T(x,y) = λ(x,y), isto é, (y,x) 
= λ(x,y), assim:

( ) ( )21 0 0    1
y x

y y y y ou
x y

λ
λ λ λ λ

λ
=

⇒ = ⇒ − = ⇒ = = ± =

Se y = 0, temos x = 0, mas o vetor (x,y) ≠ (0,0). Logo, λ = ±1 e, portanto, para λ1 = 1 obtemos (x,y) = (x,x) 
= x(1,1), assim v1 = (1,1). Analogamente, para λ2 = -1 obtemos (x,y) = (x,-x) = x(1,-1), assim v2 = (1,-1). 
Concluimos, então, que v1 é um autovetor de T associado ao autovalor λ1 = 1 e v2 é um autovetor de T 
associado ao autovalor λ2 = -1.

Teorema 1: Seja v um autovetor associado a um autovalor λ da transformação linear T:V → V, qualquer 
vetor w = αv (α ≠ 0) também é autovetor de T associado a λ.

Demonstração: Com efeito, sendo w = αv e T uma transformação linear temos que T(w) = T(αv) = αT(v), 
como v é um autovetor associado ao autovalor λ, isto é, T(v) = λv, obtemos T(w) = αT(v) = α(λv) = λ(αv) = 
λw, logo w = αv também é autovetor de T associado a λ.

Definição

SAIBA MAIS

No exemplo 1, usamos o seguinte resultado: se v é autovetor associado a um autovalor λ, 
então αv também o é. Este resultado está provado no teorema. 

SAIBA MAIS

Neste caso, T (v) e v tem a mesma direção, isto é, T (v) e v são paralelos.

Exemplo 2: Considere a transformação linear T:R2 → R2 definida por T(x,y) = (3x + y,x + 3y) para todo (x,y) 
∈ R2. Para encontrarmos os autovetores e autovalores de T, devemos resolver a equação T(x,y) = λ(x,y), 
que neste caso é (3x + y,x + 3y) = λ(x,y). Esta equação resulta no sistema

( ) ( )
( ) ( )

3 3 0    
.

3 3 0   
x y x x y I

x y y x y II
λ λ
λ λ

 + = ⇒ − + =
 + = ⇒ + − =

De (II) temos que x = -(3 - λ)y = (λ - 3)y, substituindo em (I) obtemos (3 - λ)(λ - 3)y + y = 0 ⇒ (λ2 - 6λ + 8)y 
= 0 ⇒ y = 0 ou λ2 - 6λ + 8 = 0.

Consideremos os casos y = 0 ou y ≠ 0.

i. Se y = 0, então temos da equação (II) que x = 0. Logo não nos interessa, já que os autovetores são 
vetores não-nulos.
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ii. Se y ≠ 0, então λ2 - 6λ + 8 = 0 e portanto λ1 = 2 ou λ2 = 4. Agora, para λ1 = 2, temos de (I) que x + y = 0 
⇒ y = -x. Concluímos, então, que, para o autovalor λ1 = 2, os autovetores associados são do tipo (x,-x), x 
≠ 0. Analogamente, para oautovalor λ2 = 4, obtemos y = x, e, portanto, os autovetores associados são do 
tipo (x,x), x ≠ 0.

Teorema 2: Se λ é um autovalor de um operador linear T:V → V, então, o conjunto Vλ = {v ∈ V:T(v) = λv} é 
um subespaço vetorial de V, associado ao autovalor λ. 

Demonstração: Com efeito, dados v, w ∈ Vλ, temos que T(v) = λv e T(w) = λw. Então, para qualquer escalar 
α ∈ R,

T(v + w) = T(v) + T(w) = λv + λw = λ(v + w) ⇒ v + w∈V_λ

e

T(αv) = αT(v) = α(λv) = λ(αv) ⇒ αv ∈ Vλ, ∀α ∈ R.

Portanto, Vλ é um subespaço vetorial de V.

Observação: A imagem T(Vλ) do subespaço Vλ está contida em Vλ, isto é, Vλ é invariante sob T. O subespaço 
Vλ é chamado autoespaço de T associado a λ e é formado por autovetores associados a λ e pelo vetor nulo.

Exemplo 3: Considerando o exemplo 2, temos os seguintes autoespaços, respectivamente:

Vλ1 = 2 ={(x,y) ∈ R2:y = -x} e Vλ2 = 4) = {(x,y) ∈ R2:y = x}.

SAIBA MAIS

Temos, então, pelo exemplo 3 que as retas Vλ = 2 e Vλ = 4 são invariante sob T.

Dada uma matriz quadrada A, de ordem n, dizemos que λ é autovalor associado ao autovetor v de A, se 
λ e v forem, respectivamente, o autovalor e autovetor da transformação linear T:Rn → Rn, cuja matriz 
associada é a matriz A, em relação à base canônica, isto é, T(v) = Av. Assim, um autovalor λ ∈ R e um 
autovetor v ∈ Rn de A são soluções da equação Av = λv ,v≠0. Sendo I:Rn → Rn a matriz identidade, 
temos que Av = λv equivale a Av = (λI)v, ou ainda, (A - λI)v = 0. Para que esse sistema homogêneo 
admita soluções não-nulas, deve-se ter: 

det(A - λI) = 0.

A equação det(A – λI) = 0 é denominada equação característica de T ou da matriz A. Suas raízes são 
exatamente os autovalores de T ou de A. A expressão det(A – λI) é um polinômio em λ denominado 
polinômio característico. Uma vez determinado os autovalores, os autovetores associados podem ser 
determinados resolvendo a equação (A – λI)v = 0 para cada autovalor λ.

Exemplo 1: Para encontrar todos os autovalores da matriz 
3 1
1 3

A  
=  

 
 do exemplo 2 da seção anterior, 

devemos determinar todas as soluções λ da equação det(A – λI) = 0. Como

( ) ( )2 23 1 1 0 3 1
 – 3 1 6 8

1 3 0 1 1 3
det A I det det

λ
λ λ λ λ λ

λ
  −     

= − = = − − = − +      −      

Polinômio característico
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temos λ1 = 2 e λ2 = 4. Para encontrar os autovetores associados precisamos resolver a equação (A – λI)
v = 0, assim:

Para λ1 = 2, temos ( )1

3 2 1 0 1 1 0
,

1 3 2 0 1 1 0
x x

y x v x x
y y

−         
= ⇒ = ⇒ = − ⇒ = −         −         

Para λ2 = 4, temos ( )2

3 4 1 0 1 1 0 0
, .

1 3 4 0 1 1 0 0
x x x y

x y v x x
y y x y

− − − + =          
= ⇒ = ⇒ ⇒ = ⇒ =         − − − =          

Exemplo 2: Encontre os autovalores e os correspondentes autoespaços da matriz 
0 1 0
0 0 1 .
2 5 4

A
 
 =  
 − 

Solução: O polinômio característico é det(A – λI) = det
1 0

0 1
2 5 4

λ
λ

λ

− 
 − 
 − − 

= 2 + (-λ)2 (4 - λ) - (-5)(-λ) = 2 + 4

λ2 - λ3 - 5λ = -λ3 + 4λ2 - 5λ + 2, fatorado temos, det(A – λI) = (λ - 1)2 (2 - λ). Logo det(A – λI) = 0 ⇒ (λ - 1)2 
(2 - λ) = 0 ⇒ λ = 1 e λ = 2.

Como λ = 1 é uma raiz de multiplicidade dois, vamos nomear os autovalores por λ1 = λ2 = 1 e λ3 = 2. Para 
encontrar os autovetores associados precisamos resolver a equação (A – λI)v = 0, assim:

Para λ1 = λ2 = 1, temos

( )
1 1 0 0 0

 – 0 1 1 0 0
2 5 3 0 2 5 3 0

x x y x y
A I v y y z z y

z x y z

− − + = ⇒ =     
    = − = ⇒ − + = ⇒ =    
    − − + =     

Como x = y e z = y satisfaz a terceira equação, temos que os autovetores são do tipo (y,y,y), portanto o 
autoespaço associado a λ1 = λ2 = 1 é dado por:

(R3)λ1 = λ2 = 1 ={(x,y,z) ∈ R3:x = y = z} = ger(1,1,1), ou seja, é o subespaço gerado pelo vetor (1,1,1).

Para λ3 = 2, temos

( )

2 02 1 0 0 2
 –2 0 2 1 0 2 0 2

2 5 2 0 2 5 2 0

yx y xx
A I v y y z z y

z x y z

 − + = ⇒ =−    
    = − = ⇒ − + = ⇒ =    
    − − + =     


Como 
2
yx =  e z = 2y, satisfaz a terceira equação temos que os autovetores são do tipo , ,2 ,

2
y y y 

 
 

 portanto 

o autoespaço associado a λ3 = 2 é dado por:

( ) ( ) ( ) ( )
3

3 3

2
, , :   2 , ,2 1,2,4 1,2,4 ,

2 2 2
y y yx y z x e z y y y ger

λ =

      = ∈ = = = = =      
      

R R  ou seja, é o subespaço 

gerado pelo vetor (1,2,4).
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EXERCÍCIO PROPOSTO

1. Determinar os autovalores e autovetores das seguintes transformações lineares:

a) T(x,y) = (x + 2y,-x + 4y);

b) T(x,y) = (y,-x);

c) T(x,y,z) = (x + y,y,z);

d) T(x,y,z ) = (x, -2 –y, 2x + y + 2z).

2. Encontre todos os autovalores e autovetores das matrizes abaixo:

a) 
2 2
1 3

 
 
 

b) 
1 2
1 0

 
 
 

c) 
1 1 1
0 2 1
0 2 2

 
 
 
 
 

d) 
1 1 0
2 3 1
1 2 2

− 
 
 
 
 

3. Quais são os autovalores e autovetores da matriz identidade?

4. Mostre que se u e v são autovetores de uma transformação linear associada a λ, então αu - βv é também 
autovetor associado ao mesmo λ.

5. Determine o operador linear T(x,y) cujos autovalores são λ1 = 1 e λ2 = 3 associados aos autovetores u = 
(y, -y) e v = (0,y), respectivamente.

6. Seja T:V → V um operador linear não-inversível. Os vetores não-nulos do núcleo de T são autovetores? 
Em caso afirmativo, determine o autovalor associado e, em caso negativo, justifique.

7. Determine os autovalores da matriz 
16 10

,
16 8
− 

 
 

caso existam.

8.  Prove o teorema a seguir: Seja A uma matriz n x n e λ um escalar, os seguintes enunciados são equivalentes: 

a) λ é um autovalor d e A.

b) (A - λI)x = 0 tem uma solução não trivial.

c) Nuc(A - λI) ≠ {0}

d) det(A - λI) = 0

9. Sejam u e v vetores linearmente independentes de R2, prove que o vetor |u|v + |v|u  está contido na 
bissetriz do ângulo formado por u e v.
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10. Para cada par de vetores u = (x,y) e v = (x’,y’) em R2, defina  a seguinte função; u.v = 2xx’ –xy’-x’y+2yy’. 
Prove que isto define um produto interno no espaço vetorial R2.

Diagonalização de operadores
UN 03

Dado um operador T:V → V, sabemos que a cada base B de V corresponde uma matriz [T]B que 
representa T na base B. Será que existe uma base em V, de modo que a representação  matricial de T 
seja a mais simples possível?

A resposta para esta pergunta está no processo chamado de diagonalização de operadores. A 
diagonalização de [T]B é o processo que nos permite encontrar uma matriz diagonal [T]B1. A nova 
base B1 é uma base formada de autovetores.  Vale a pena ressaltar que nem sempre é possível a 
diagonalização de um operador. Estes fatos nos levam a seguinte definição:

Definição: Um operador T:V → V é diagonalizável  se existe uma base de V formada de autovetores 
de T.

Existe também uma definição de operador diagonalizável equivalente à definição anterior, vejamos:

Definição: Uma matriz quadrada A é diagonalizável se existir uma matriz inversível P tal que P-1AP 
seja diagonal. A matriz P é uma matriz formada a partir dos autovetores da matriz A. Diz-se, nesse 
caso, que a matriz P diagonaliza A, ou que P é a matriz diagonalizadora.

DICA

Para diagonalizar um operador, primeiramente, deve-se encontrar os seus autovalores e 
autovetor!

De modo geral as definições acima podem ser entendidas como: um operador linear T:V→V é 
diagonalizável se existe uma base de V formada de autovetores.

Exemplo 1: Determinar uma matriz P que diagonaliza a matriz A dada a seguir, e em seguida calcular 
P-1AP.

3 1 1
1 5 1

1 1 3
A

− 
 = − − 
 − 

Solução: O primeiro passo será encontrar os autovalores da matriz A, para isto, devemos resolver a 
equação det(A - λI) = 0. Os autovetores são os seguintes:

V1= (1,0,-1) associado ao autovalor λ1 = 2

V2 = (1,1,1) associado ao autovalor λ2 = 3

V3 = (1,-2,1) associado ao autovalor λ3 = 6

Como todos os autovalores são distintos, então o conjunto B = {V1,V2,V3} é uma base de autovetores 
de R3, e portanto a matriz P, dada por:

1 1 1
0 1 2
1 1 1

P
 
 = − 
 − 

SAIBA MAIS

As colunas de P são formadas por autovetores.

DICA
As colunas de P 
são formadas por 

autovetores.
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ë1 0 0
0ë2 0 .
0 0ë3

 
 
 
 
 

Diagonaliza a matriz A.

De posse da matriz P, agora vamos encontrar o matriz D, tal que D = P-1AP. Para encontrar a inversa 
de P, pode-se utilizar os métodos estudados na unidade I.

1

1 10
2 2 3 1 1 1 1 1
1 1 1 1 5 1 0 1 2
3 3 3

1 1 3 1 1 11 1 1
6 3 6

P AP−

− 
 

−   
   = − − −   
    − −  − 

 
 

1

2 0 0
0 3 0
0 0 6

P AP D−

 
 = = 
 
 

Propriedade: Dado um operador linear T em R3 que admite uma base formada por autovalores λ1, 
λ2 e λ3 distintos, associados aos autovetores V1, V2 e V3, respectivamente, então a matriz de T na base 
formada por B={V1, V2, V3} é da forma:

T(V1) = λ1V1=λ1V1 + 0V2 +0V3

T(V2) = λ2V2 = 0V1 + λ2V2 + 0V3

T(V3) = λ3 V3 = 0V1 + 0V2 + λ3 V3

A representação matricial do operador T na base B é dada por:

                λ1   0    0
[T]B =     0   λ2   0      . Essa é a matriz que diagonaliza operador T na base B costuma ser representada
                 0    0   λ3

da forma [T]B por D.

DICA
Observe que a 
diagonal principal 
de D é formada por 

autovetores.

DICA

A matriz D que diagonaliza T é constituída dos autovalores de T dispostos na diagonal 
principal.

Como dissemos, anteriormente, é necessário termos uma base formada por autovetores para que seja 
possível diagonalizar um operador T:V→V. Para que seja possível encontrar um base formada por 
autovetores é necessário, como já vimos antes, resolvermos a equação matricial [T-λI]v=0, onde v é 
um vetor pertencente ao espaço V, na verdade este vetor é desconhecido, mas quando a equação dada 
for resolvida para λ, os v serão os elementos da base de autovetores para o operador T.

Vejamos alguns resultados que nos ajudam a encontrar uma base de autovetores.

1ª Propriedade: Autovetores associados a autovalores distintos são linearmente independentes. 

Demonstração: Faremos uma demonstração para λ1 e λ2 distintos. A prova para o caso de n vetores é 
similar.

Base de Autovetores
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Sejam T(v1)=λ1 v1  e  T(v2) = λ2 v2, com λ1 ≠ λ2. De posse desta hipótese agora tome a combinação 
linear abaixo:

(1)  a1 v1 + a2 v2 = 0

Aplique a transformação linear T a equação (1), e utilize a linearidade de T, com isso temos:

a1T(v1) + a2T(v2) = 0, ou de modo equivalente, 

(2)  a1λ1 v1 + a2λ2 v2 = 0

Multiplicando a equação por λ1, temos:

(3)  a1λ1 v1  +a2 λ1v2  = 0

Subtraindo a equação (3) de (2), temos:

a2(λ2 - λ1)v2 =0

Mas, por hipótese temos λ2 - λ1 ≠ 0 e v2 ≠ 0

Logo, temos a2 = 0.

Substituindo a2 = 0 na equação (1) e sabendo que v1 ≠ 0, temos:

a1 = 0

Logo, concluímos que os vetores {v1, v2} são linearmente independentes.

2ª Propriedade: Sempre que tivermos um operador linear T:V → V, com V=R2 e λ2 ≠ λ1, o conjunto 
formado pelos autovetores associados será uma base do R2. Este fato vale em geral, isto é, se T:V → V 
é linear, e o espaço V tem dimensão n e existem n autovalores distintos, então o conjunto {v1, ..., vn}, 
formado pelos correspondentes autovetores, é uma base de V. (Lembrando que este resultado nos 
permite construir uma base composta de n autovetores em um espaço de dimensão n)

Exemplo: Seja o operador linear T(x,y) = (-3x-5y, 2y), encontre uma base de autovetores para T.

Solução: A matriz de T escrita na base canônica de R2 é dada por:

[ ] 3 5
 

0 2
T

− − 
=  

 
A equação característica de T é:

( ) 3 5
 0

0 2
det A I

λ
λ

λ
− − −

− = =
−

det(A - λI) = λ2 + λ-6=0,

cujas raízes, são λ1=2 e  λ2=-3 e esses são os autovalores de T. Como λ2 ≠ λ1, os correspondentes autovetores 
formam uma base para R2.
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Os autovetores são encontrados resolvendo-se o sistema linear e homogêneo abaixo:

3 5 0
0 2 0

x
y

λ
λ

− − −     
=     −     

Obteremos:

Para λ1= 2 os vetores v1 = x(1,-1)

Para λ2=-3 os vetores v2 = x(-1,0)

Logo, o conjunto formado pelos vetores B={(1,-1);(-1,0)} é uma base de R2.

Definição: Duas matrizes A e B são ditas similares (semelhantes), se existir uma matriz inversível M, 
tal que A=M-1.B.M. O conceito de matriz semelhante define uma relação de equivalência .

1. (Propriedade da Reflexividade) Toda matriz A é semelhante a si mesma;

2. (Propriedade da Simetria) Se A é semelhante a B implica B é semelhante a A;

3. (Propriedade da Transitividade) Se A é semelhante a B e B é semelhante a C implica  que A é 
semelhante a C.

Demonstração

1) Considere A =I-1 AI, ou seja, A é semelhante a A.

2) Se A=M-1 BM, então B=N-1 AN, com N=M-1, ou seja, se A é semelhante a B implica B semelhante 
a A.

3) Se A=M-1BM e B=N-1CN, então A=P-1CP com P=NM, isto é, se A é semelhante a B e B é semelhante 
a C implica A semelhante a C.

Teorema: Sejam A e B matrizes n x n. Se B é similar a A, então as duas matrizes têm o mesmo polinômio 
característico e, consequentemente, os mesmo autovalores.

Demonstração: Sejam pA(x) e pB(x) os polinômios característicos de A e B, respectivamente. Se B é 
similar a A, então existe uma matriz não similar S tal que 

B= S-1.A.S. Logo, 

pB(x)=det(B-λI)

pB(x)=det(S-1.A.S-λI)

pB(x)=det(S-1(A-λI)S)

pB(x)=det(S-1)det(A-λI)det(S)

pa(x)=pb(x)

Os autovalores de uma matriz são as raízes do polinômio característico. Como as duas matrizes têm o 
mesmo polinômio característico, elas devem ter os mesmos autovalores.
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EXERCÍCIO PROPOSTO

1. Encontre uma base de autovetores para os operadores a seguir.

a) T(x,y) =(x,y);

b) T(x,y) =(x+y,x-y);

c) T(x,y,z) =(x,y, x+/z);

d) T(x,y,z) =(x+y, y-z, z-x).

2. Encontre todos os autovalores e autovetores do operador T(x,y,z)=(x+y+z, 2y+z, 2y+3z).

3. Determine uma matriz P que diagonaliza A  e calcule que P-1AP.

6 0 6 3 1 1
5 3

           ) 0 2 0           ) 1 5 1
3 5 

6 0 1 1
)

1 3
a b A AA c

−   
     = − = − −          − 

=

 

4. Quais são os autovalores e autovetores do operador derivação D:P → P, onde P é o espaço dos polinômios 
de grau menor ou igual a n.

Nosso objetivo é diagonalizarmos uma matriz simétrica A. Uma matriz A de ordem n é dita simétrica 
se A=AT. Ao impormos esta condição sob a matriz A, obtemos a seguinte conclusão aij = aji, para i,j 
pertencente ao conjunto {1,2,...,n}. Para diagonalizarmos a matriz A necessitamos de um resultado 
preliminar. Vejamos a seguir:

Propriedade: A equação característica de uma matriz simétrica tem apenas raízes reais. 

Demonstração: Faremos aqui uma demonstração para uma matriz simétrica de ordem 2. Para isto, 
considere a matriz abaixo:

p r
A

r q
 

=  
 

A equação característica de A é:

( ) 0
p r

Det A I
r q

λ
λ

λ
− 

− = = − 
Isto é:

(p-λ)(q-λ)-r2=0

Ou ainda:

pq-λp-λq+λ2-r2=0

λ2-(p+q)λ+(pq-r2)=0

O discriminante dessa equação do 2ª grau em λ é:

Δ = (p+q)2 – 4(pq-r2) = p2 +2pq+q2 -4pq+4r2 = (p-q)2 +4r2

Diagonalização de matrizes simétricas
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Exemplo: Seja o operador linear simétrico T:R2 → R2 definido pela matriz simétrica 
4 12

,
12 3

A  
=  − 

 
verifique se esse operador pode ser diagonalizado.

Solução: Para que a matriz A possa ser diagonalizada é preciso encontrar uma base formada de 
autovetores. 

A equação característica de A é dada por ( ) 4 12
0

12 3
det A I

λ
λ

λ
− 

− = = − − 
Isto é:

(4-λ)(-3-λ) - 144 = 0

Ou

λ2 - λ - 156 = 0

Aplicando a fórmula de Bháskara, acabamos por concluir que as raízes dessa equação é λ1 = -12 e λ2 = 
13. Como os autores são reais e distintos, então teremos uma base formada por autovetores.

A matriz 
4 12

12 3
A  

=  − 
 escrita na forma diagonal é a matriz dada por, 

12 0
,

0 13
D

− 
=  

 
perceba que a 

diagonal principal desta matriz é formada pelos autovalores λ1 = -12 e λ2 = 13 de acordo com a 1ª 
propriedade estudada na seção anterior.

Exemplo: Verifique se a matriz 
1 2

,
2 1

A  
=  − 

 encontre os autovalores da matriz A.

Solução: Os autovalores da matriz A são dados pela equação det(A-λI)=0, o que nos remete a:

( )2

1 2

1 2
det 0,

2 1

1 4 0,
1 2 ,      1 2i i

λ
λ

λ

λ λ

− 
= − − 

− + =

= + = −

Logo, os autovalores da matriz A não são reais.

Processo de diagonalização

1º passo: Encontrar a matriz do operador em uma base.

2º passo: Encontrar os autovalores da matriz resolvendo a equação det(A-λI)=0

3º passo: Encontrar uma base formada por autovetores associado a cada autovalor 
encontrado. Se todos os autovalores encontrados forem distintos e de mesma quantidade 
que a dimensão do espaço, então a matriz diagonal terá na sua diagonal principal esses 
autovalores. Caso contrário deverá ser analisado o sistema (A-λI)v=0
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Neste tópico estudaremos a noção de produto interno em espaços vetoriais. Esta noção, como veremos 
a seguir, generaliza a noção de produto escalar em R2 e em R3 e enriquece a estrutura de um espaço 
vetorial, permitindo definir vários conceitos de caráter geométrico previamente estudados em R2 e  
em R3.

Definição de produto interno

Seja V um espaço vetorial. Um produto interno em V é uma função que associa a cada par de vetores 
u e v em V um número real, denotado por u.v, que satisfaz as seguintes condições:

Para quaisquer vetores u, v em V e um número real k qualquer, 

1) v.v ≥ 0;

2) v.v =0 se, e somente se, v=0;

3) u.v=v.u

4) (u+v).w= u.w+v.w

5) (Ku).v= k(u.v)

DICA

Um espaço vetorial com produto interno é chamado, abreviadamente, de espaço com 
produto interno. 

Podemos definir diferentes produtos internos num mesmo espaço vetorial. Vejamos alguns deles:

O espaço vetorial Rn

O produto interno padrão (também chamado produto interno usual) em Rn é o produto escalar x.y = 

1

.
n

i i
i

x y
=
∑

Dado um vetor w com elementos positivos, também podemos definir um produto interno em Rn por x.y =

1

,
n

i i i
i

x y w
=
∑  os elementos wi são chamados de pesos.

O espaço vetorial Rmxn

Dados A, B em Rm x n, podemos definir um produto interno por A.B = 
1 1

m n

ij ij
i j

a b
= =
∑∑

Espaço vetorial C[a,b]

Podemos definir um produto interno em C[a,b] por  f.g = ( ) ( ) ;
b

a

f x g x dx∫

Se w(x) é um função positiva contínua em [a,b], então f.g = ( ) ( ) ( ) ;
b

a

f x g x w x dx∫

Espaço com produto interno
UN 03
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Também define um produto interno em C[a,b]. A função w(x) é chamada de função peso. Logo, é possível 
definir vários produtos internos em C[a,b].

Exemplo: Considere as funções f(x)=1 e g(x)=x, calcule o produto interno entre essas funções para x no 
intervalo [-1,1].

Solução:  Sabemos que um produto interno para funções é do tipo ( ) ( ) .
b

a

f x g x dx∫  Logo, temos:

( )
11 1 2

11 1

1 1(  1. 0.
2 2 2
xf x g x xdx xdx

+

−− −

= = = = − =∫ ∫

Como o produto interno é zero, podemos concluir que as funções f e g são ortogonais no intervalo [-1,1].

Exemplo: Sejam u=(x1, x2) e v=(y1, y2) vetores em R2, verifique que a função definida por u.v = x1 y1 + x2 
y2 define um produto escalar em R2.

Solução: Note que u.u = x1 x1+ y1 y1 = x12 + y12 ≥0, logo é satisfeita a condição 1 e 2.  O produto escalar 
de u.u só será zero se o vetor u for zero. Veja também que u.v = x1 y1 + x2 y2 = y1 x1 + y2 x2 =v.u, assim a 
condição 3 é  satisfeita. 

Se u=(x1, x2) , v=(y1, y2)  e w=(z1, z2), então:

(u+v)w= (x1 + y1) z1 + (x2 + y2) z2 = (x1 z1 + x2 z2) + ( y1 z1+ y2 z2) = u.w + v.w, logo a condição 4 é 
satisfeita.

E por fim temos, 

(ku).v = (k x1)y1 + (kx2)y2 = k(x1 x1+ y1 y1) =k(u.v)

Dessa forma, u.v = x1 y1 + x2 y2 = y1 x1 + y2 x2 denota um produto interno em R2.

EXERCÍCIO PROPOSTO

1. Dados u =(a,b) e v=(c,d) em R2, verifique se a função definida por u.v = a.c – 2 a.d + 4bd e defina um 
produto interno em R2.

2. Sejam os vetores v1=(x1,y1) e v2=(x2, y2) de V=R2, verifique quais funções  f:V x V →R definidas abaixo 
são produtos internos em V.

a) f(v1,v2)=2x1x2 + 3y1y2;

b) f(v1,v2)=4x1x2;

c) f(v1,v2)= x1y2 + x1y1;

d) f(v1,v2)=x1x2 + y1y2 +1.

3. No espaço V= P2 consideremos o produto interno ( ) ( ) ( ) ( )
1

0

.f t g t f t g t dt= ∫  Calcule f(t).g(t) e |f(t)| para 
f(t)=t2 – 2t e g(t)=t+3.

4. Seja V=R3 com o produto interno usual, determine um vetor u pertencente a R3 ortogonal aos vetores 
u1=(1,1,2), u2=(5,1,3) e u3=(2,-2,-3).

5. Determine o valor de m para que os vetores u=(1,m,-3) e v=(m-2, 2,4) sejam ortogonais em relação ao 
produto interno usual do R3.

6. Determine um vetor unitário simultaneamente ortogonal aos vetores u=(1,1,1) e v=(2,3,1).
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7. Construa a partir do vetor u=(-1,-2,-1) um base ortornal de R3 relativamente ao produto interno usual.

8. Verifique a desigualdade de Cauchy quando se tem os vetores u=(2,1,-1) e v=(1,1,1).

Espaços Vetoriais Normados

A palavra norma em matemática tem seu próprio significado que é independente de um produto interno 
e seu uso deve ser mostrado aqui. 

Definição: Um espaço vetorial V é dito um espaço vetorial normado se, para cada vetor v em V, é associado 
um número real, |v|, chamado norma de v, satisfazendo as condições a seguir.

i) |v| ≥ 0 com igualdade se e, somente, se v=0.

ii) |αv| = |α||v| para qualquer escalar α.

iii) |v + w| ≤ |u| + |w| para todo v, w ɛ V (Esta condição é chamada de desigualdade triangular)

Definição: Sejam u e v  vetores em R2 ou R3, a distância entre u e v é definida como o número |u - v|.

Fato decorrente da definição de norma: Se V é um espaço de produto interno, então a equação . ,v v v=  
para todo v ɛ V, define a norma em V.

Tipos diferentes de normas: É possível definir várias normas diferentes em um espaço vetorial dado. Por 
exemplo, em Rn poderíamos definir

1
1

.
n

i
i

x x
=

= ∑

Para todo x =(x1, ..., xn), é facilmente verificado que |.|1 define uma norma em Rn. Outra norma importante 
é a norma em Rn,  a norma uniforme ou norma infinita, que é definida por 

1 i n ix máx x≤ ≤∞
=

De modo mais geral, podemos definir uma norma em Rn por 

1

2
1

n pp
i

i

x x
=

 
=  

 
∑

Isto para um número real p≥1, em particular se p=2, temos a norma euclidiana.

DICA
Esta definição é tão 
importante quanto a 
definição de produto 

interno. 

EXERCÍCIO PROPOSTO

1. Sejam x e y vetores em um espaço vetorial com produto interno, mostre que,   se x e y são perpendiculares 

então a distância em entre eles é dado por 2 2 .x y+

2. Em C(-π,π) com o produto interno definido por ( ) ( ).
b

a

f g f x g x dx= ∫  mostre que cos(mx) e sen(nx) são 
ortogonais e ambos são vetores ortogonais.

3. Mostre que em qualquer espaço vetorial com uma norma temos |-v| = |v|.

4. Mostre que d:R × R → R, definida por d(x,y)=(x-y)2, não é uma métrica.
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Desigualdade de Cauchy- Schwarz

Se u e v são dois vetores quaisquer em um espaço de produto interno V, então |u.v| ≤ |u|.|v|, a igualdade é 
válida se e, somente, se os vetores u e v são linearmente dependentes.

Demonstração: Se v=0, então |u.v| = 0 = |u|.|v|. Se v≠0, então seja p a projeção ortogonal de u em v. Como 
p é ortogonal a u –p, segue-se pelo teorema de Pitágoras que 

|p|2 + |u - p|2 = |u|2

Logo, 

( )2
2 2 2

2

.u v
p u u p

v
= = − −

E, portanto, 

(u.v)2 = |u|2 |v|2 - |u - p|2 |v|2 ≤ |u|2 |v|2

Então 

|u.v| ≤ |u|.|v|

Uma consequência da desigualdade de Cauchy-Schwartz é que se u e v forem vetores não nulos, então

.1 1u v
u v

− ≤ ≤

E, portanto, há um único ângulo ϴ em [0,π], tal que

.cos ,u v
u v

θ =  que define o ângulo entre dois vetores entre dois vetores não nulos.

EXERCÍCIO PROPOSTO

1. Seja V um espaço vetorial euclidiano e u e v dois vetores contidos em V, determinar o cosseno do ângulo 

entre os vetores u e v, sabendo-se que |u| = 4, |v| = 8 e 5 5.u v+ =

2. Seja o produto interno usual no R3 e no R4, determinar o ângulo entre os seguintes pares de vetores:

a) u=(2,1,-5) e v=(5,0,2)

b) u=(1,0,0,1) e v=(-2,-4,-1,0)

c) u=(2,3,3) e v=(-4,-6,-6)

3. Consideremos o produto interno usual. Determinar a componente c do vetor v=(3,c,-6) de modo que o 
comprimento do vetor v seja 8.

4. Prove a desigualdade triangular: dados dois vetores u e v em  um espaço vetorial V, então |u + v| ≤ |u| + 
|v|.

5. Prove a desigualdade de Cauchy-Schwarz:  Dados os vetores u e v em um espaço vetorial V, então  |u.v| 
≤ |u|.|v|.

Dica: Utilize o  fato (u+αv).(u+αv) ≥ 0, e desenvolva esta desigualdade e faça um estudo dos discriminantes 
da equação do segundo grau.
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Muitas vezes é bastante útil saber que um produto interno sobre um espaço vetorial é determinado 
por outra função, a chamada forma quadrática determinada pelo produto interno. Para defini-la, 

indiquemos que a raiz quadrada positiva de u.u por | u| . ,u u=  é denominada norma de u em relação 
ao produto interno, note que pela primeira condição da definição de produto interno este número 

| u| . ,u u=  está bem definido.

u.v= 1
4

│u+v│2 1
4

− │u-v│2

Aplicação: Se tivermos um vetor u de coordenadas u=(a,b), então a sua norma é dada por 

2 2| | . . ,u a a b b a b= + = +  esta norma também representa o comprimento do vetor u.  Este fato nos 
permite generalizar a ideia de comprimento de um vetor para um espaço de dimensão n. Vejamos, 
considere u um vetor de Rn.

Então u=(x1, ... x2), o comprimento de u é dado por:

2 2
1| u| . nu u x x= = +…+

Relação entre produto interno e norma

FIGURA 1: Projeção ortogonal de um vetor u na direção de um vetor v

w=u-tv

vProj (u, v)=tv

Considere dois vetores u e v em R2, dispostos como na figura 1 acima, nosso intuito é responder a seguinte 
pergunta: Como determinar a projeção ortogonal do vetor u na direção do vetor v? Para responder esta 
pergunta utilizaremos o conceito de produto interno apresentado nesta unidade.

Para efeito de notação iremos representar a projeção ortogonal do vetor u na direção do vetor v por 
Proj(u,v), esta projeção pode ser interpretada geometricamente como o comprimento da sombra que o 
vetor u faz sobre o vetor v. Percebemos também pela construção feita que os vetores Proj(u,v) e v são 
Linearmente dependentes. Por isso, temos Proj(u,v)= t v, onde t é um parâmetro real.

Para determinarmos a Proj(u,v)=tv  é necessário encontrarmos o valor de t, já que o vetor v já é conhecido. 
Então, considere os seguintes fatos:

Fato 1: u = w + tv,, w=u-tv

Fato 2: Os vetores w e v são perpendiculares, logo w.v=0

De posse destes fatos, temos:

w.v=0

(u-tv)v=0

u.v-t.v.v=0

u.v=t│v│2

2

.t u v
v

=
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Logo, temos que o vetor projeção de u na direção de v é dado por, ( ) 2

., .u vProj u v v
v

 
 =
 
 

 A pergunta inicial 

fala acerca do compriemento do vetor projeção. O comprimento do vetor projeção é dado por:

( ) 2 2 2

. .. .,
u v u vu v u vProj u v v v v

vv v v

 
 = = = =
 
 

Por fim, temos que a projeção do vetor u na direção do vetor v é dada pela seguinte fórmula:

( )
.

,
u v

Proj u v
v

=

Exemplo: Encontre a projeção do vetor u=(1,2,1) na direção do vetor v=(1,1,1).

Solução: De acordo com os resultados encontrados, temos 

( )
( ) ( )

2 2 2

1,2,1 . 1,1,1. 4,
31 1 1

u v
Proj u v

v
= = =

+ +

EXERCÍCIO PROPOSTO

1. Encontre a projeção do vetor u=(1,2,2) na direção do vetor v+w, onde v=(1,0,0) e w=(-1,-3,2).

2. Encontre o vetor projeção de v=(1,0,9) na direção de w=(0,1,1)

3. Prove que se u e v são vetores de um espaço vetorial euclidiano, então:

a) Se u-v é perpendicular a u+v, então |u|=|v|.

b) Se u é perpendicular a v, então |u + v|2 = |u|2 + |v|2.

4. Prove que, se temos n vetores perpendiculares dois a dois, então esses vetores são linearmente 
independentes.

O processo de Gram-shimidt é um método para ortogonalização de um conjunto de vetores em um 
espaço com produto interno, normalmente o espaço Euclidiano Rn. O processo de Gram Schmidt 
recebe um conjunto finito, linearmente independente de vetores {v1, …, vn} e retorna um conjunto 
ortogonal {u1, …, un} que gera o mesmo subespaço S inicial. Este processo baseia-se inicialmente na 
ideia de projetar ortogonalmente um vetor v na direção de outro vetor u, e, em seguida, criar um novo 
vetor vetor w como sendo a diferença entre um vetor da base e a projeção calculada.

O processo ocorre da seguinte forma:

1º passo: Projeta-se o vetor v ortogonalmente sobre u, ou seja, ( ) 2

., v uProj u v v
v

 
 =
 
 

O processo de ortogonalização de 
Gram-Schmidt
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2º passo: Escolha u1=v1

3º passo: Faça u2 = v2 - proj(v2, u1)

4º passo: Faça u3 = v3 - proj (v3, u1) – proj(v3, u2)

Deste modo o k-ésimo vetor é dado por:

( )
1

1

 –  ,
k

k k
j

u v proj vk uj
−

=

= ∑

A base {u1, …, un} encontrada é ortogonal mas não ortonormal, para que os vetores normalizados 
basta que façamos a divisão de cada um dos vetores por seus respectivos comprimentos, formando 
uma base de vetores ortonormais {e1, …, en}. Ver figura abaixo.

u2

e2

e1

v2

v1
u1

proju1 v2

FIGURA 2: Divisão de cada um dos vetores por seus respectivos comprimentos, 
formando uma base de vetores ortonormais {e1, …, en}.

Exemplo: Seja B={v1 = (1,1,1), v2= (0,1,1), v3 =(0,0,1)} uma base em R3, os vetores contidos nesta 
base constituem uma base não-ortogonal em relação ao produto interno usual. Utilize o processo de 
ortogonalização de Gram Schmidt para obter uma base ortonormal.

Solução: Como primeiro passo vamos escolher um dos três vetores da base dada para ser o primeiro 
vetor da base ortonormal. Temos v1= (1,1,1). Em seguida, vamos tornar o vetor escolhido unitário, ou 
seja, vamos multiplicá-lo pelo inverso do seu comprimento, 

( )1 2 2 2

1 1 1 11,1,1 , ,
3 3 31 1 1

w  
= =  

 + +

O segundo passo é construirmos um vetor w2 que seja perpendicular a w1.

 z2 =  v2–proj(v2, w1)w1 = v2 – (v2, w1)w1

( ) ( )

( )

2

2

1 1 1 1 1 1 0,1,1  –  0,1,1  , , . , ,
3 3 3 3 3 3

2 1 1 1 2 1 1 0,1,1  – , , , ,
3 3 33 3 3 3

z

z

   
=    

   
   = = −   

  

O vetor z2 deve ser normalizado, para isso façamos 2 2
2

1 3 2 1 1 2 1 1, , , , .
3 3 36 6 6 6

w z
z

  = = − = −  
   

O terceiro e último passo é construirmos um vetor w3, ortogonal a w1 e w2 simultaneamente.

z3 = v3 – proj(v3, w2)w2 – proj(v3,w1)w1
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( ) ( ) ( )

( )

( )

3

3

3

2 1 1 2 1 1 1 1 1 1 1 1 0,0,1  –  0,0,1 . , , , , – 0,0,1 . , ,  , ,
6 6 6 6 6 6 3 3 3 3 3 3

1 2 1 1 1 1 1 1 0,0,1 , , , ,
6 6 6 6 3 3 3 3

2 1 1 1 1 1 1 1 0,0,1  , , , , 0, ,
6 6 6 3 3 3 2 2

z

z

z

     
= − −     

     
   

= − −   
   

     = − − − =

−

−     
     

Para finalizarmos o processo basta normalizar o vetor z3.

Para isto, faça 3 3
3

1 2 1 1 1 10, , 0, , .
2 22 2 2

w z
z

  = − = −  
   

=

Logo, a base ortonormal obtida pelo processo de ortogonalização de Gram Schmidt é:

1 
1 1 1 2 1 1 1 1, , , , , , 0, , .
3 3 3 6 6 6 2 2

B
      = − −      

     

EXERCÍCIO PROPOSTO

1. Consideremos as seguintes bases do R2 e do R3.

a) B={(3,4),(1,2)}

b) B={(1,0,0),(0,1,1),(0,1,2)}

c) B={(1,0,1), (1,0,-1),(0,3,4)}

Ortonormalize essas bases pelo processo de Gram-Shmidt, segundo o produto interno usual.

2. Qual é a base ortonormal de R3 obtida pelo processo de Gram-Scmidt a partir da base {u,v,w}, onde 
u=(2,6,3), v=(-5,6,24) e w=(9,-1,-4)?

3. Para todo número natural n, prove que a norma do vetor v=(n,n+1,n(n+1)) é um número natural inteiro.

4. Encontre uma base ortonromal aplicadndo o processo de orotogonalização de Gram-Schmidt para os 
vetores abaixo.

a) u=(3,0,0), v=(-1,3,0) e w=(2,-5,1)

b) u=(-1,1,0), v=(5,0,0) e w=(2,-2,3)

Pequena biografia de Jørgen Pedersen Gram

Jørgen Pedersen Gram (Nustrup, 27 de Junho de 1850 – Copenhagen, 
29 de Abril de 1916) foi um atuário e matemático dinamarquês que 
nasceu em Nustrup, no Ducado de Schleswig, Dinamarca e morreu 
aos 65 anos em Copenhagen, Dinamarca.

Entre seus trabalhos importantes inclui o On series expansions 
determined by the methods of least squares e Investigations of the 
number of primes less than a given number. O processo que leva o 
seu nome, Processo de Gram-Schmidt, foi publicado pela primeira 
vez em 1883.
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Para os teóricos sua principal fama se deve à série Função zeta de Riemann (a função exata 
de Bernhard Riemann em Função de contagem de números primos). Ao invés de usar uma 
série de logarítimos integrais, a função de Gram usa logarítimos de força e a função zeta de 
integros positivos. Foi recentemente substituída pela fórmula de Srinivasa Ramanujan que 
usa diretamente os Números de Bernoulli ao invés da função zeta.

Gram foi o primeiro matemático a providenciar uma teoria sistemática de desenvolvimento 
de frequência de curvas, mostrando que o erro de curva da simetria Gaussiana era apenas 
um caso especial de uma classe geral de frequência de curvas. 

Fonte: https://pt.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram
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