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APRESENTACAO DA DISCIPLINA
Carissimo discente,

Estamos iniciando uma disciplina que é de fundamental importéncia para todos
aqueles que estudam Matematica. Este curso de Introdugéo a Algebra Linear é base
para outras disciplinas mais avancadas do curso de Licenciatura em Matematica,
como por exemplo, Célculo Ill e Algebra Abstrata.

Vale a pena ressaltarmos aqui que, para um melhor aproveitamento dessa disciplina,
é aconselhavel que o discente tenha cursado Geometria Analitica, j&4 que faremos
uma extensdo de alguns conceitos vistos na disciplina como: vetores, espago vetorial
e base.

E muito importante que o discente procure tirar o maior proveito possivel de todos
os conteldos vistos durante o decorrer da disciplina, pois como ja dissemos sera
a base para o aprendizado de vérios conhecimentos que serdo essenciais para a
formacdo de um licenciando em matematica.

No mais, estamos a disposicao de todos sempre buscando contribuir com um
aprendizado que venha a colaborar de forma efetiva principalmente para aqueles
que irao atuar na area do ensino da matematica.

Bons estudos.

Os autores.
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MATRIZES, DETERMINANTES
E SISTEMAS DE EQUACOES
LINEARES

Nesta unidade trabalharemos com algumas ferramentas para o estudo
de uma estrutura chamada Espaco Vetorial: as matrizes, suas operacdes
e propriedades. Aprenderemos a calcular determinantes e, finalmente,
aplicaremos esse conhecimento para discutir e resolver sistemas de equagdes
lineares. Muitos dos principais problemas da fisica, engenharia, quimica e, é
claro, da matematica, recaem (ou procuramos fazer com que recaiam) num
sistema de equagdes lineares.

Objetivos

® Conhecer os tipos de matrizes e operacionalizar com elas;

* Aplicar o conceito de matrizes em situagdes reais;

* Conceituar determinantes e descrever suas propriedades;

* Definir e classificar sistemas lineares;

® Resolver sistemas lineares usando o método de Gauss-Jordan;
* Resolver sistemas lineares usando o método do escalonamento;
* Apresentar a Regra de Cramer.
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Matrizes

UN 01

Introducao

Consideremos o conjunto de alunos do curso de Licenciatura em Matematica da EaD, ligados ao polo
GCN, cursando a disciplina Introdugdo a Algebra Linear. Digamos que sejam 5 alunos. Ao longo do
semestre, eles fardo duas avalia¢des online e duas presenciais, num total de quatro notas parciais.
Representaremos esses dados na tabela abaixo:

TABELA 1: Notas de alunos do polo de GCN

Alunos AOl1 |AO2 |AP1 |AP2
Aline 4,5 6,2 |70 |55
Barbara 7,2 6,8 8,0 10,0
Charles 8,0 7,5 5,9 7,2
Davi 9,2 85 17,0 [8,0
Eliana 6,8 72 168 |75

Para calcular a nota final de um determinado aluno, digamos, o Charles, basta atentarmos para a linha
correspondente (8,0; 7,5; 5,9; 7,2); por outro lado, se estivermos interessados em calcular a média da
turma na segunda avaliacdo online, devemos olhar para a coluna correspondente (6,2; 6,8; 7,5; 8,5;
7,2). Também podemos ir diretamente ao local da tabela em que se encontra, por exemplo, a nota de
Charles na segunda avaliagdo presencial (7,2).

Vejamos agora, a defini¢do formal de matrizes.

Defini¢do: Uma matriz real A de ordem m X n (m por n) € uma tabela de mn nimeros reais, dispostos
em m linhas e n colunas, onde m e n sdo nimeros inteiros positivos.

Uma matriz real de m linhas e n colunas pode ser representada por A, ,(R). Neste curso, como s6
trabalharemos com matrizes reais, usaremos a notagao simplificada A, , que se & “matriz A m por
n". Também podemos escrever 4 = (ai]-); ondei € {1,2,...m} é o indice de linha e j €{1,2,...,n} é o indice
de coluna do termo genérico da matriz. Ou ainda,

a1 1 a12 aln

a a Qon
A= 21 :22

An1 Am2 Amn

SAIBA MAIS

Estrutura matematica é um conjunto no qual sdo definidas operagbes. As propriedades

dessas operagdes “estruturam” o conjunto. Talvez vocé ja tenha ouvido falar em alguma
das principais estruturas mateméticas, como grupo, anel e corpo. Vocé estudard essas
estruturas nas disciplinas de algebra.

INTRODUGCAO A ALGEBRA LINEAR

Autores: Antonia Jocivania Pinheiro e Paulo César Linhares da Silva
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O conjunto de todas as matrizes reais “m por n” é representado por M, .(R). Os elementos de uma
matriz sdo limitados por parénteses, colchetes ou barras duplas.

Exemplo 1

2
i. Uma matriz 2 x 3: (2 > 5)

(=}
[
o))

9
ii. Umamatriz3 x 1: | 3 ]

/5.
4 13 0
iii. Umamatriz3x3:|[1 O ‘f
7 -
2

Exemplo 2

Os dados da Tabela 1 representam as notas dos alunos do curso de Licenciatura em Matematica da EaD e
podem ser apresentados na matriz dada a seguir:

4,5 6,2 7,0 5,5
7,2 6,8 8,0 10,0
80 75 59 72|
9,2 85 7,0 8,0
6,8 7,2 68 7,5

1 4‘ onde cada elemento a;; dessa matriz é a nota obtida pelo aluno de nimero i na avalia¢ao j. Por exemplo, o
elemento a,, € anota (10,0) obtida pelo aluno que esta na segunda posicdo (Barbara) na quarta avaliacao
(segunda avalia¢ao presencial).

Podemos também representar os elementos de uma matriz por formulas, como ilustra o préximo exemplo.

Exemplo 3
Sejad € Myy3, A = (aij), tal que

i’,sei=j

% = ivjseiz]j

A matriz A é, portanto: 1 J

A_(all a, 013]_ 12 1+2 1+3 _(1 3 4J
\ay ay ay) (241 22 243) (3 4 5)
Tipos de matrizes

Primeiramente definiremos os tipos de matrizes dados de acordo com o nimero de linhas e colunas. Seja

Apen = (al-j ), esta matriz pode ser:

Matriz Linha

Defini¢do: Quando m=1, chamamos a matriz 4, de matriz linha:

A=(a; ay...a,).

Observagdo: A matriz linha é denominada vetor linha (ou simplesmente, vetor), assim

A=(ay,ay, ..,a,).

INTRODUCAO A ALGEBRA LINEAR
Autores: Antdnia Jocivania Pinheiro e Paulo César Linhares da Silva
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Matriz Coluna

Defini¢do: Quando n = 1, chamamos a matriz 4,,,.; de matriz coluna:

Observagdo: A matriz coluna pode ser denominada vetor coluna.

Matriz Quadrada

Defini¢do: Chamamos de matriz quadrada a matriz que tem o nimero de linhas igual ao nimero de colunas,
isto é, m =n:

ayy Ap ... g

A= (%21 ‘(122. a,,

Apy Gpz "+ Ay

Dizemos que a matriz acima é uma matriz quadrada de ordem n, e escrevemos apenas 4,

Destacamos numa matriz quadrada 4,, = (aij) os seguintes elementos:

> diagonal principal é formada pelos termos a;;, ou seja, pelos termos onde os indices de linha e
de coluna sao iguais.

»diagonal secundaria é formada pelos termos ajp ondei +j =n+1.

Exemplo: Destacamos a diagonal principal e a secundaria na matriz A5, 3 a seguir:

Diagonal Secunddria

Ly Diagonal Principal

Matrizes Quadradas Especiais
Dada uma matriz quadrada A, = (a;), dizemos que A é uma matriz:

» triangular superior, quando a;= 0sei > j,ouseja, possui todos os elementos abaixo da diagonal
principal nulos.

Exemplo: A matriz abaixo € uma matriz quadrada de ordem 4 chamada matriz triangular superior:

INTRODUGCAO A ALGEBRA LINEAR
Autores: Antdnia Jocivania Pinheiro e Paulo César Linhares da Silva
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» triangular inferior, quando a;= 0sei < j, ouseja, possui todos os elementos acima da diagonal
principal nulos.

Exemplo: A matriz abaixo € uma matriz quadrada de ordem 3 chamada matriz triangular inferior:

» diagonal, quando a;; = 0 se i # j, ou seja, possui todos os elementos fora da diagonal principal
nulos.

Observagdo: Uma matriz diagonal é, ao mesmo tempo, triangular superior e triangular inferior.

Exemplo: A matriz abaixo é uma matriz quadrada de ordem 4 chamada matriz diagonal:
2000
0100
0030
0004

0,sei+#j
e possui todos os elementos da diagonal principal iguais a um certo escalar k.

k,sei=j
»escalar, quando a; = { ondekéumreal qualquer. Isto é,umamatrizescalarédiagonal

Observagdo: Uma matriz escalar onde temos k = 1 é chamada matriz identidade. E é representada por I,,
ou simplesmente, .

Exemplo: A matriz abaixo é uma matriz quadrada de ordem 4 chamada matriz escalar:

7000
0700
0070
0007

Igualdade entre Matrizes

Defini¢do: Dadas as matrizes A, B € M, (R), dizemos que 4 = (aij) éigualaB= [bl-j), denotamos por
A =B, se a;; = bi}- paratodo i € {1, 2, .., m} etodoj€{1,?2, .., n}

5 81
. . 5 z .
Exemplo: Para determinar x, y e z sabendo que as matrizes ( 3 3 e , X sdo igualis,
y+ -
devemos, usando a definicdo, resolver as seguintes equagdes: z

72=81=2z=V81=22=9
yt3=2=sy=2-3=y=-1

3=§=>x=32=3-9=>x=27

INTRODUCAO A ALGEBRA LINEAR
Autores: Antdnia Jocivania Pinheiro e Paulo César Linhares da Silva
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Matriz Oposta

Defini¢do: Dada a matriz 4 = (aij) € M,,,, (R), dizemos que a matriz B = (bl-j) € M, (R) éoposta
de 4 se bij = - a; para todo i € {1, 2, .., m} e todoj € {1, 2, .., n}. Ou seja, os elementos da matriz
oposta de A sdo os elementos opostos aos elementos de A. Representamos a oposta de A por -A.

2 27 9 -2 =27 -9
Exemplo: A matrizopostade A=|-1 1 0]¢é-A=(1 -1 0 |
3 =7 4 -3 7 -4

Matriz Transposta

Defini¢do: Dada a matriz A = (al-]-) € M,,,,(R), dizemos que a matriz B = (bji) € M, (R) é transposta
de 4 se b]-l- = a; para todoi €{1,2,..,m} e todo j € {1,2,...,n}. Representamos a transposta de 4 por At.

Observagdo: Note que para obter a transposta de uma matriz A, basta escrever as linhas de A como
sendo as colunas da nova matriz ou, equivalentemente, escrever as colunas de A como as linhas da
nova matriz.

Exemplo: A seguir temos a matriz A e sua transposta:

2 2 0
2 5 2|
A= 3leAt=|5 J7
0 V7 6 2 .
3

Propriedades

Dadas as matrizes A = (al-j), B= (bl-j), € M,,,, (R) quaisquer e a € R, vale:
(T1) (AY)t=A.

(T2) (A + B)t=At+ Bt

(T3) (ad)t = aAt

(T4) (AB)t=Bt. At

Matriz Simétrica

Definicdo: Dizemos que uma matriz A = (al-]-) € M, (R) ésimétricase A = Al istoé, a; = a, Vi, j
€e{1,2,..n}

2 -1 3 2 -1 3
Exemplo: A matriz A={-1 1 -7| ésimétrica,jaque A"=|-1 1 -7|=A
3 -7 4 3 -7 4
Matriz Antissimétrica
Definicdo: Dizemos que uma matriz A = (aij) € M, (R) é antissimétrica se A = - A%, isto é,
O0,sei=]
%= _a sei#j
ji?

INTRODUGCAO A ALGEBRA LINEAR
Autores: Antdnia Jocivania Pinheiro e Paulo César Linhares da Silva
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0 1 -3 0 -1 3
Exemplo: A matriz A=|-1 0 7 é antissimétrica, jaque A'=| 1 0 -7 |=-A.
3 -7 0 -3 7 0

Observagdo: Note que, todos os elementos da diagonal principal de uma matriz antissimétrica sdo,
necessariamente, iguais a zero.

Operacdes com matrizes

Adicao

Vamos considerar novamente, o exemplo dos alunos do curso de Licenciatura em Matematica do polo
GCN que cursam a disciplina Introducio a Algebra Linear, onde a matriz, referente a nota desses
alunos, foi vista no exemplo 2 do tépico introdugdo. Cada aluno tem seu nome associado a um niimero
(o nimero da linha) e cada prova também é associada a um nimero (o nimero da coluna). Assim,
como vimos anteriormente temos a matriz abaixo:

45 6,2 7,0 55
7,2 6,8 8,0 10,0
N=80 7,559 7,2
9,2 85 7,0 8,0
6,8 7,2 6,8 7,5

Supondo que as provas tenham sido submetidas a uma recorrecdo, temos abaixo as alteracdes que
deverdo ser feitas nas notas:

0,5 -0,5 0,0 0,0
-0,2 0,0 0,0 0,0
R=|0,0 0,5 0,0 0,0
0,0 0,0 0,0 0,0
1,0 0,0 -0,3 0,0

Logo, as notas corrigidas, N, dos alunos serdo dadas pela soma da matriz N com a matriz R, isto é, a
matriz N, é formada pelas somas de cada nota (na matriz N) com seu fator de corre¢do (elementos
correspondentes, na matriz R):

45 6,2 7,0 5,5 0,5-0,5 0,0 0,0 4,5+0,5 6,2+(-0,5) 7,0+0,0 5,5+0,0
7,2 6,8 8,010,0| |-0,2 0,0 0,0 0,0 |72+(-0,2) 68+0,0  8,0+0,0 10,0+0,0
N.=N+R=|80 7,559 7,2 |+/00 0,500 0,0 {=|8,0+0,0 7,5+0,5 5,9+0,0 7,2+0,0
9,2 85 7,0 8,0 0,0 0,0 0,0 0,0 9,2+0,0 8,5+0,0 7,0+0,0 8,0+0,0
6,8 7,2 6,8 7,5 1,0 0,0-0,300) |6,8+1,0 7,2+0,0 6,8+(—0,3) 7,5+0,0

Portanto,

50 57 7,0 55
7,0 6,8 8,0 10,0
N.=/80 92 7,8 8,0
85 72 59 7,0
6,5 7,2 80 7,5

INTRODUCAO A ALGEBRA LINEAR
Autores: Antonia Jocivania Pinheiro e Paulo César Linhares da Silva
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Definicdo: Dadas as matrizes A = (aij) e B= (bij) em M, ., (R), definimos por C= (cij) €EM,,,(R)a
matriz soma de A e B, representada por A + B, tal que Cij = a; + bij, vi € {1,2,.. m} e Vje{1,2,..,n}.
Isto é, cada elemento de A + B é a soma dos elementos correspondentes das matrizes A e B.

11 0 -7

2 -1 7
Exemplo: Dadas as matrizes A= e B=
13 8 4

por: -3 0 4

2 -1 7) (11 0 -7 2411 (-1)+0 7+(-7)) (13 -1 0
A+B= + = — .
-3 0 4) (13 8 4) ((-3)+13 0+8  4+4 10 8 8

j a matriz soma de 4 por B é dada

Observagdo: A diferenca de A e B, indicada por A - B, é a soma de A com a matriz oposta de B, isto é,
A-B = A + (-B).

2 -1 7 11 0 -7
Exemplo: Dadas as matrizes A= e B= a diferenca de A por B é dada por:
-3 0 4 13 8 4

A—B:A+(—B):(2 ! 7}{_11 0 7}[ 2+(-11)  (-1)+0 747 J:[—9 -1 14}

-3 0 4) (-13 -8 —4) |(-3)+(-13) 0+(-8) 4+(-4)) \-16 -8 0

Propriedades

Dadas as matrizes A =(aij), B=(bij), C= (c,-j) € M, ., (R) quaisquer, vale as seguintes propriedades:

(A1) Comutativa: A+ B=B+ A

(A2) Associativa: (A+B)+C=A+ (B+ ()

(A3) Existéncia do elemento neutro: Existe 0 € M, (R) tal que A + O = A.

(A4) Existéncia do elemento oposto: Existe (-A) € M,,,, (R) tal que A + (-4) = 0.

(A5) Soma de transpostas: (A + B)t=At+ Bt

Multiplicacao de uma matriz por um escalar

Voltando a nossa tabela de notas dos alunos do polo GCN, suponhamos que, para facilitar o calculo das
médias, queiramos trabalhar numa escala de 0 a 100 (em vez de 0 a 10). Para isso, cada nota devera
ser multiplicada por 10. Assim, as notas dos alunos passardo a ser:

50 57 70 55
70 68 80 100
80 92 78 80
85 72 59 70

Na verdade, o que fizemos foi: 65 72 80 75

10.5,0 10.5,7 10.7,0 10.5,5
10.7,0 10.6,8 10.8,0 10.10,0
10.N.=|10.8,0 10.9,2 10.7,8 10.8,0
10.8,5 10.7,2 10.5,9 10.7,0
10.6,5 10.7,2 10.8,0 10.7,5
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Defini¢do: Dada a matriz 4 = (al-j) em M, (R)e a € R, definimos por C = (cij) € M,,,, (R), a matriz
produto de A por a, representada por a4, tal que cjj= aay, Vie{l,2,.,myeVje{l,?2, .., n} Istoé cada
elemento de a4 é o produto de a pelos elementos correspondentes da matriz A.

2 3 6 -2
Exemplo: Dadas as matrizes A=|-1 0 | e B=|11 4 | temos que
7 4 12 -6

i 34=-3/-1 0 |=|(3)(-1) (=3)0 || 3 0
7 4 (-3).7  (-3)4 | (-21 -12
_6 2
2 -3 6 -2\ (4 -6 2 2
i 24-1p-2/-1 o +(—lj 1 4 |=|—2 o[« 2
2 7 4 12 —6) (14 8 2z
B _12 6
2 2
4oy [0 4+(-3)  (-6)+1 15 -5
11 11 1
=2 0 |+|-= —2|=|(=2)+| =] 0+(-2)|=| -2 -2
L (2] 02|
-6 3 14+(-6) 8+3 8 11

Propriedades

Dadas as matrizes A = (aij), B= (bl-j) € M,.,(R) e a, B €Rquaisquer, vale as seguintes propriedades:

(M1) (aB)A = a(BA)
(M2) (a+B)A=ad + A
(M3) a (A+B)=aA +aB
(M4)1.A=A

(M5) (aA)t = aAt

t

Exemplo: Dadas as matrizes A:[Z 1 j e B:[ 4 Oj, vamos calcular 2.[2At _EBJ . Para
0 -1 -2 6 2

isso, vamos usar as propriedades vistas anteriormente:
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e Fur ) 342

Produto de matrizes

Considerando, novamente, o exemplo dos alunos da Introdugido a Algebra Linear, temos a seguinte
matriz, na qual fornece as notas dos alunos numa escala de 0 a 100:

50 57 70 55
70 68 80 100
N.={80 92 78 80
85 72 59 70
65 72 80 75

Lembrando que as duas primeiras colunas indicam as notas das avalia¢des online, e as duas ultimas,
as notas das avaliagdes presenciais dos alunos Aline, Barbara, Charles, Davi e Eliana, nessa ordem.

Supondo que as avalia¢cdes online tenham, cada uma, peso 2, isto é, cada uma colabora com
20%) da nota final. Enquanto cada avaliagdo presencial tera peso 3, ou seja, representara
30%) da nota final. Entdo, a nota final de cada aluno sera dada por:

(ou
(ou

= =
olwol"’

N 2Ao1 +2.A0 +3.4p, +3.4p _ 2 2 3 3
F 10 10 10

Logo, em vez de escrever uma expressao para cada um dos 5 alunos, basta efetuarmos a seguinte
operacao:

2 2 3 3
+ + +
10.50 1057  10.70  10.55
50 57 70 55\ %) |2, 2 , 3 . 3 58,9
70 68 50 100\ 3/ 1070 1068 10.80 10100 | |g; ¢
N,.P=80 92 78 80 .310 _ 10280+10280+10359+10372 - 71,3
g5 72 59 70 || Ho , , ; ; 80,4
3 + + +
65 72 80 75 )| 30] | To92 1085 1070 1080 72
2 2 3 3
+ + +
10.78 1072 10.65  10.75
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Note que para fazer a operacdo acima, devemos ter o nimero de colunas da primeira matriz igual ao
ndmero de linhas da segunda, ou equivalentemente, o niimero de termos em cada linha da primeira é
igual ao nimero de termos de cada coluna da segunda. Dessa forma, podemos multiplicar os pares de
elementos, simultaneamente, uma linha da primeira matriz e uma coluna da segunda e, depois, somamos
os produtos obtidos. Esse elemento obtido estara na posicdo ij da matriz resultante, onde i é o nimero
referente a linha da primeira matriz e j € o nimero referente a coluna da segunda. Por exemplo, a,; = 80,4,
pois esse elemento foi o resultado da operacao feita com a linha 4 da primeira matriz com a coluna 1 da
segunda matriz.

Definicdo: Dadas as matrizes A = (a;; ) € M ep (R) e B= (bkj) € My, (R), definimos por matriz produto
deAe B,amatriz A. B= (c,-j) € M. (R)tal que

mxn

p
Cjj = ZGik.bkj,i =1,2,...m;j=1,2,...,n
k=1

Observagdo: O somatoério anterior esta dizendo que o elemento ij do produto é igual a soma dos
produtos dos elementos da i-ésima linha de A pelos elementos correspondentes da j-ésima coluna de
B. Isto é,

a a A1p
. noaz o GwN\ fp by
11 Cin H : : : b b b
Cm1 Cmn : : : : b: : : : :
b, b
An1 Am2 Amp p1 pJ pn

p

Ouseja, ¢ =a;1by; + by +...+ay,by; = Z"ik by
k=1

. O produto dessas matrizes é
-3 0 4

= O Ul
w

1

2 -1 7
Exemplo: Considere as matrizes A:( ] e B=|0
5

dado por:

W o

(21+(-1).0+7.5 25+(-1).0+7.1 2.0+(-1).3+74) (37 17 25
“|(-3)1+0.0+45 (-3).5+0.0+4.1 (-3).0+03+44) (17 -11 16)

Propriedades
(P1) (A.B).C = A(B.C), VA € M, (R), B € M,,,,(R), C € My, (R);
(P2)A.(B+C)=AB+AC VA€ M,,,(R),B CEe M, (R);

(P3)(A+B).C=AC+BC VAB € M,,, (R),C € M, (R);

mxn
(P4) a(A.B) = (aA) . B=A.(aB),Y A € M, (R), B € M, (R);
(P5)DadaA € M, (R), I, A=Al =A4;

(P6) (AB)'=B!. ALY A € M,,,, (R), B € M,,, (R);

(P7) O produto matricial ndo é, em geral, comutativo.
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Exemplos

i. Considere as matrizes A = (% i) e B= (—12 g) Note que,

I R a7 G 2 )

Concluimos, entdo, desse exemplo, que a propriedade comutativa ndo vale para produto de matrizes.
ii. Dadas as matrizes quadradas A e B, vamos verificar se vale a igualdade

(A+B)(A-B) = AZ- BZ,
Temos pelas propriedades anteriores que:

(A+£)(A—B) (A+B)(A+ )P

ZAA+B.A+A(-B)+B.(-B)= A*+B.A-AB-B’

P
=(A+B).A+(A+B)(-B)
4

Concluimos, entdo que a igualdade vale se, e somente se, B.A - A.B = 0, ou seja, se, e somente se,
A.B =B.A. Como o produto de matrizes ndo é comutativo, a conclusdo é que a igualdade nao vale para
matrizes em geral.

Observacdo: A igualdade (A+B) (A-B) = A% - BZ s¢ vale se as matrizes A e B forem comutativas, isto &,
se valer A.B = B.A.

Inversio de matrizes

Definigcdo: Seja A uma matriz quadrada de ordem n, dizemos que B é a matriz inversa de 4, denotada
porB=A1se AB = BA = I, onde I, é a matriz identidade de ordem n. Se a matriz A possui inversa,
dizemos que A é inversivel ou ndo singular. Caso contrario, dizemos que A é ndo inversivel ou singular.

2 5 X
Exemplo: Determine, caso exista, a matriz inversade A= [1 3}. Seja B =( {] a matriz inversa de
z

A, assim,
2 5\(x y 10 2x+5z 2y+5t 10
AB=1,= = = =
1 3\z t 01 x+3z y+3t 01

2x+5z=1 |(2y+5t=0
y+3t=1"

Temos entao,

x+3z=0

Resolvendo o sistema, obtemosx=3, y=-5,z = -1 e t=2.

Observacdo: Quando definirmos determinantes, veremos que A~ 1o adj(A), onde det (A) é o

1
~ det(4)
determinante da matriz A e adj(A) é a matriz adjunta de A, definidos posteriormente.
Propriedades
(I1) Se A € M, (R) é inversivel, entdo (A1) '1=4
(I2)Se A, B € M, (R) sdo inversiveis, entdo AB é inversivel e (AB)1= B1 A°1;

(I3)Se A € M, (R) é inversivel, entdo (4t)1= (A1)t

INTRODUGCAO A ALGEBRA LINEAR
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Matriz Ortogonal

Defini¢do: Dada uma matriz A € M,, (R), inversivel, dizemos que A é ortogonal, se Al=At

Observagdo: Note que, A1 = At & AA"1 = AAt & [ =AA", assim para verificar se uma matriz 4 é ortogonal,
basta multiplicar A por Ate observar se o produto é a identidade.

3

2

Exemplo: A matriz A= é ortogonal, ja que,

1
2

V31
2 2
e

1
2 2
AA" =
NER
2

N |-
N | = N|%‘

EXERCICIO PROPOSTO

1. Escreva a matriz 4 = (a,-j) em cada caso:
3 . i+j,sei=j
a)Aédotipo2x3 eaq;=y. . "
i—2j,sei#j

—i,sei<j

b) A é quadrada de ordem 4 e a;=qi—j,sei=j

2j,sei>j

c) A é quadrada de terceira ordem e a;=1i- 2j + 4.

2. Considere as seguintes matrizes:

0o 7 2 0 3 -2
-1 0 3 7 5 31
A= ,B= ,C = ,D=19 -2 -2]|eE=|9 0 O
5 2 -2 1 0 2 0
1 3 2 1 -1 2
Se for possivel calcule:
a)2C-D
b) A.B-BA
c) (2Dt- 3E)t
2 x?
3. Calcule o valor de x, sabendo-se que A= 4, onde A= pe 1 0
X_

4. Verifique quais dos itens abaixo sdo verdadeiros ou falsos:
a) (-AH=-At
b) (A+B)t=Bt+At
c) SeAB=0entdioA=00uB=0
d) (kyA).(kyB)=(kikyy A.B, ki, k; € R.
e) (=4).(=B) =—(4.B)
f) Se Ae B sdo matrizes simétricas, entdo A.B = B.A

g) SeA.B=0,entioB.A =0
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2 5 3 2
5.Sabendo-se que, A.B= Lo e AC= 0 1) calcule A. (B + (), Bt A, Ct At e (ABA)C.

3
6.S5e A= (_4 3 ),ache B de modo que B2 = 4, onde B2= B.B.

7.Dadas as matrizes A = (x 4-2)e B=(2-3 5), encontre o valor de x sabendo que A. Bt= 0.

8.Se AB = BA e p é um inteiro positivo, mostre que (AB)P = AP BP.

2 4 2x-y
9. Determine x e y para que a matriz | X+y 3 0 seja simétrica.
-1 0 5

= 9 4 2 -8 7 -9
10. Determine as matrizes X e Y tais que 2X+Y A, onde A= e A=
X-2Y=B 6 12 11 -12 -19 -2

11. Calcule o valor de k para que a matriz (2 I?'J ndo tenha inversa.
. . 2 3 x -1
12. Determine os valores de x e y para que as matrizes A= 9 © e B= 3 comutem.
- y
13. Sejam 4, B e C inversiveis, determine X em cada equacio.
a)AXB=C
b) AB=CX
©) (AX)"1B=BC
d) [(AX)~1Bl'=C

14. Quais as condi¢des de k para que a matriz seja inversivel.

=N
N R
=~ N~

INTRODUGCAO A ALGEBRA LINEAR
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Determinantes

UN 01

Definicao de determinante

Seja A = (aij) uma matriz quadrada de ordem n, isto ¢, A € M, (R). Definimos o determinante de A4,
representado por det A ou |4|, da seguinte forma:

» Sen=1,ouseja, A= (ay,)entdo detA=ay;.

> Sen>1entdo A= Z?=1(—1)i+jaijdet(A_i,_j), onde / € uma linha qualquer fixadade Ae A; ; é amatriz
quadrada de ordem n-1 obtida a partir de 4, com a retirada da i-ésima linha e da j-ésima coluna.

Observe como € simples de calcular o determinante de uma matriz. Vamos calcular paran=2 e n=3:

a a

11 12 . . . . . . , . P

» n=2: Temos A =[ ) e seu determinante, considerando a primeira linha, isto é,i =1, é dado por:

a a
21 U2

detA=(~1)""a,det(A,_;)+(-1)""

26 a;; A4y Qg3

»n=3:Temos A=|a,, a,, a,; | e seu determinante, considerando a primeira linha, isto é,i =1, é

alzdet(A—l,—Z ) =0ay10yp — 010y

a3y 43 U3z

dado por:
B 1+1 142 143 _ |Gz O3 U1 O3
detA=(-1) " ayydet(A_y)+(-1) " aydet(A, ,)+(-1) " aydet(A, 5)=ay -ay,
' ' ' d3; 033 d3;  ds3
U1 Oy
+a .
v a3y 03

Observagdo: A definicdo de determinante também pode ser feita fixando uma coluna j ao invés de uma
linha. Assim, terfamos det A = ¥, (-1)"*a;;det(A_; ;).

21 4
Exemplo 1: Dadaamatriz A={0 2 1| , temos:
3005

detA:(—1)1+1.2.[(2) ;]+(—1)“2.1.[g ;]+(—1)“3.4.(g ﬁj=2.(2.5—0.1)—1.(0.5—3.1)+4(0.0—3.2)

=2.10—(-3)+4.(-6)=20+3-24=—1.

SAIBA MAIS

Determinante é uma fungdo que associa a cada matriz quadrada um valor real. Essa

funcdo, além de atuar na solugdo de sistemas de equagdes lineares, permite saber
se a matriz tem ou ndo inversa, pois as que nao tém sdo precisamente aquelas cujo
determinante é igual a 0.
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3 2 x
Exemplo2: Vamos determinar o valor de x sabendo que det| 1 -2 x |=8. Com efeito,
2 -1 x
302X 2 1 1 -2
141, =&« X 1+2 X 1+3 -
8=det|1 -2 x|=(-1) "3 +(-1) "2 +(-1) " x =3(-2x—-x)-2(x—-2x
i s Y i PO S B S R
-1 x

+x(-1-2(-2))=3(—x)-2(—x)+x(3 =—3x+2x+3x=2x:>2x=8:x=§:>x=4-.
(~1-2(-2))=3(~x) ~2(-x) +x(3) :

DICA

Note que o determinante de uma matriz de ordem 2 é a diferenca entre o produto dos

termos da diagonal principal e o produto dos termos da diagonal secundaria. Esses
produtos se chamam, respectivamente, termo principal e termo secundario da matriz.

Propriedades dos determinantes

Sejam A, B € M, (R), temos:
(D1) Se todos os elementos de uma linha (ou coluna) de A sdo nulos, entdo det A = 0.
(D2) det A =det AL,

(D3) Se multiplicarmos uma linha (ou coluna) de 4 por uma constante k, o determinante fica multiplicado
por k.

(D4) Quando trocamos duas linhas (ou colunas) de 4, o determinante troca de sinal.
(D5) Se A tem duas linhas (ou colunas) iguais, entdo detA = 0.

(D6) Se escrevemos cada elemento de uma linha (ou coluna) de A como soma de 2 parcelas, entdo detA é a
soma de dois determinantes de ordem n, cada um considerando como elemento daquela linha (ou coluna)
uma das parcelas, e repetindo as demais linhas (ou colunas)

(D7) O determinante de A ndo se altera se somarmos a uma linha outra linha multiplicada por uma
constante.

(D8) det (A .B) = detA.detB.
(D9) O determinante de uma matriz triangular é o seu termo principal.
(D10) Se A é inversivel, entdo det(A'l) = (detd)™.

(D11) SeA€ M, (R) é ortogonal, entdo detd = 1.

Concluimos da propriedade (D10) que:
Teorema: Seja A € M,, (R).

A é inversivel © detA # 0.
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1 -2 3
Exemplo 1: Para calcular o determinante damatriz A=| 2 1 -1 |, note que se somarmos asegunda
linha a terceira, obteremos a matriz 2 -1 2
1 -2 3
1 -1
1

Logo, pela propriedade (D7) o determinante dessas duas matrizes é o mesmo. Portanto,

1 -2 3
deen=dee 2 1 1|4 ode P2 o (caPtoae ) 0Py P
1 - 2 1 2 1
0 0 1
=1.1—2.(—2)=1+4—=5

Observagdo: Note que, no exemplo anterior, para calcularmos o determinante aplicamos a férmula fixando
a terceira linha para reduzir as contas, ja que a mesma contém dois zeros.

X
20-x x
Sabemos da propriedade (D10), que A é inversivel se, e somente se, detA # 0. Logo, devemos ter

Exemplo 2: Determine x para que a matriz A =[ J seja inversivel.

x*—(20-x)#0 < x* +x-20%0.

—1+,/1°-4.1.(=20) _1++/ 1+
Mas, note que, x2 4+ x-20=0< x= 71 ( ): 1_2 81: 12_9<:>x:4oux:—5.

Portanto,

xz—(ZO—x)¢0c>x¢4ex¢—5.

Matriz adjunta e matriz inversa

i

Defini¢do 1: Seja A € M,, (R). Chamamos de matriz dos cofatores de A a matriz A=(aj) € M1 (R), tal que
(@) = (-1)* det(A; )

onde A J é a matriz quadrada de ordem n - 1 obtida a partir de 4, com a retirada da i-ésima linha e
da j-ésima coluna.

a1 G A3
Exemplo 1: Dada a matriz A=| a,; d,, a3 |, temos que a matriz A_, 5 é dada por:

Q31 O3y U3z

a1 Uiz

;. Ay
A_Z’_3 B :( J
G31 O3
2 10
Exemplo 2: Determine a matriz dos cofatores da matrizA=| -3 1 4 |. Temos, por definicdo, que a
1 6 5

i

matriz dos cofatores é dada por A = (@;), onde & = (-1 det (A, ), logo:
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ay, =(-1)"" det (A, ):det(:’ :}5—24:—19

ay, =(-1) 7 det (A, ):—1.det(_13 :]:—(—15—4):19

1+3 -3 1
=(-1)"det(A d —-18-1=-19
a3 =(-1) et( =y 3) et(l 6]
ay =(-1)"" det(A,_, )= 1de{1 OJ ~(5-0)=-5
ay, =(-1)""det(A,_,) det[ J: (10-0)=

ayy =(-1) P det (A, ;)= ldet[ ] —(12-1)=-11

ay, =(-1)"" det (AL, det( ]: 4-0)=
a5, =(-1)"" det (A, _,)= 1det[ ]
a3 J (2+3)=5

a3 =(-1 )3+3det(A 53)= det[

Portanto,
-19 19 -19
A=| -5 10 -11|
4 -8 5

Defini¢do 2: Seja A € M, (R). Chamamos de matriz adjunta de 4, denotamos por adjA, a transposta da
matriz dos cofatores de A. Assim,

adjA = (A)t.
2 10
Exemplo 3: Determine a matriz adjunta da matriz A=| -3 1 4 |. Temos, por definicdo, que
_ 1 6 5
adjA = (A)t. Sabemos, do exemplo anterior, que
-19 19 -19
A=l -5 10 -11|.
4 -8 5
Logo,
8 -19 -5 4
—\t
ade:(A) =19 10 -8|.
-19 -11 5

Teorema 1: Toda matriz A € M, (R) satisfaz A.adjA = (detA) I,,.

Demonstragdo: Seja A = (a; ) e adjA = (b; ) ondeb = = (-1)y+ det(A _i)- Assim, A.adjA = (c; ) onde

= = . K detA, sei=j
Cij =kZ:;afk-bkj :;"ik'ajk :;"ik'( )]+ det( -, —k):{ 0,sei#j
logo, usando a propriedade de matriz temos:
detA O .. 0
Aadjd=(c;)=| 0 detA .. 0 |=(detd)l,
0 0 . deua
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_ 1 ,
Teorema 2: Toda matrizA € M, (R) inversivel satisfaz A = m.ad]A.
e

Demonstragdo: Seja A = (aij) uma matriz quadrada de ordem n, inversivel. Assim detA # 0. Temos pela
propriedade de determinante (D9) que:

Logo, pelo teorema 1:

. 1 . 1 1 . 1 1 1 . 1
AadjA=(detA)] = A| ——.adjA |=1 = A |A|—.adjA||=A""1 = (A .A)| —.adjA |=A
ja=(detA)l, [detA / j " { (detA / H " ( )(detA / )

1Y 1 . L1
I )| ——adiA|=A ——.|(adjA).I |=A ——.adjA=A".
:(")[detAa] j = detA [(a] ) "] = deta

Concluimos entao que:

Al= L.ade.
detA

Observagdo: O teorema 2 nos fornece outro método para calcular uma matriz inversa.

Al= L.ade
detA

6 2
Exemplo 4: Determine, caso exista, a matriz inversa da matriz A= (11 4).

Como detA =6.4-11.2 =2 # 0, temos que a matriz A é inversivel, isto é, existe a matriz AL Logo, sendo

1

Al= adjA
detA
temos,
(1) det(A ) (-1)"det(ALL)] (4 —11) . (4 -2
A= 2+1 2+2 :(_2 6 je ad]A:[_ll 6 j
(-1)" det(A, ) (-1)""det(A, ,)
Logo,
2 -1
1 1 4 -2
Al=——adiA== =
detA aa 2(—11 6) —% 3
2
Exemplo 5: Determine a matriz inversa da matriz A=| -3 1
1

A matriz adjunta dessa matriz ja foi calculada no exemplo 3. Logo, como:

1 4 -3 4 3 1
detA = 2.det ~1.det +0.det =2,(-19)~(~19)+0=-38+19=-19
6 5 15 16
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temos que:
5 _4
19 -5 4 19 19
A‘1=i.ade=i. 19 10 -g|=|-1 -9 8
detA -19 19 -11 5 19 19
o 1 _s
19 19
PEXERCICIO PROPOSTO
3 57 4 3 7 2 3 -1
1. Dadas as matrizes A=|4 -2 8|,B=|-1 0 2 |eC=|6 9 -2| calcule 0s seguintes
1 -9 6 3 1 -4 8 12 -3

determinantes:

a) det (A + B)

b) det (AB)

c) det (Bt AY)

d) det (24 - 5C + B)
e) det [A(C)t]

2. Encontre os determinantes abaixo, sabendo que det (4) = -2.

a) det (4)
b) det (24)
¢) det (43)

d) det (A1)

3. Resolva as equacgoes.

4 6 x
a) det|5 2 -x|=-128
7 4 2x
3 5 7
b) det| 2x x 3x|=39
4 6 7
x+3 x+1 x+4
c) det| 4 5 3 |=-7
9 10 7

4.Sejam A, B e C matrizes quadradas de mesma ordem e inversiveis. Resolva as equa¢des matriciais, onde
a X é a variavel.

a) ABX=C
b) CAXt=C
¢) AX2 C = AXBC
d) CX+2B=3B

INTRODUGCAO A ALGEBRA LINEAR
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5. Encontre todos os valores de x para os quais a matriz A= tem inversa.

[EE G
N O R
x o o

6. Mostre que, se At = A1 entdo detA =+ 1.
7.Seja A uma matriz quadrada, de ordem n. Mostre que A é inversivel se, e somente se, At A é inversivel.
8. Dadas as matrizes A e P quadradas, de ordem n, onde P é inversivel, mostre que det (P'1 AP) = detA.

9. Responda verdadeiro ou falso e justifique sua resposta.
a) Se A2=-2A2, entdo (I- A2)1=1-24%
b) Se At= -A? e detA # 0, entdo determinante de A é -1.
c) Se B = AAt A1, entdo detA = detB.

d) det(A + B) = detA + detB

10. Calcule os determinantes abaixo, usando as propriedades de determinantes,
a b c

sabendo que detA=|d e f|=10

32

a d g
a) det| -d —-e —f d) det|b e h
g h i c f i
a b c a b c
b) detlg h i e) det| d e f
d e f 3g 3h 3i
a b ¢ a b c
g det d e f f) det| g+d h+e i+f
5 5 5 d e f
g h i
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Sistemas de equacoes lineares

Introducao

Para que estudar sistemas lineares? Essa é uma pergunta feita com frequéncia pelos alunos. Por isso,
considere o problema abaixo como motivacao:

A nutricionista Marcia estabeleceu uma dieta diaria contendo 25 unidades de vitamina A4, 20 unidades
de vitamina B, 10 unidades de vitamina C, 5 unidades de vitamina D e 8 unidades de vitamina E. Essas
vitaminas estdo contidas em quantidades variadas em cinco alimentos que vamos chamar de 4, 4,,
As, A, e As. O quadro seguinte fornece o nimero de unidades das vitaminas 4, B, C, D e E em cada
unidade desses cinco alimentos.

TABELA 2: Numero de unidades das vitaminas
A, B, C,D e E por unidade de cada alimento.

Como calcular as quantidades dos cinco alimentos que devem ser incluidas na dieta diaria, para obter
os teores desejados de vitamina?

Veja como fica o problema:

Sejam x4, X5, X3, X, € X5 onumero de unidades dos alimentos A4;, 4,, A3, A, e Ag, respectivamente,
de uma dieta diaria. O teor de 25 unidades de vitamina A pode ser expresso pela seguinte equacgao:

0.x; +1.x, +4.x3 +4.x, +3.X5 =25 =X, +4X3 +4x, +3x; =25.

Analogamente, podemos expressar os teores das vitaminas B, C, D e E, respectivamente, pelas
equacgoes:

2Xq+ X+ 3x4+ 2x5=20
X+ Xy +2x,=10
X4+X5=5

4X4:8

Devemos entdo, encontrar os valores x4, X,, X3, X4 € Xz que satisfacam o sistema de equagdes abaixo:

X, +4x; +4x, +3x; =25
2Xy +Xy +3x, +2x5 =20
X, +Xx, +2x, =10
X, +X5=5
4x, =8

Encontramos com muita frequéncia problemas dessa natureza. Suas solu¢des dependem de
entendermos como resolver um sistema de equagdes lineares.

INTRODUGCAO A ALGEBRA LINEAR
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Sistemas e matrizes

E comum encontrar problemas em varias areas da Ciéncia e que recaem na solucido de sistemas lineares.
Vamos ver como a algebra matricial pode simplificar o estudo dos sistemas lineares.

Definicdo 1: Uma equagdo linear em n variaveis x4, X,, ..., X, ¢ uma equacao da forma
aix; + a; x, + - +a, x, =b,

em que aq, d,, .., d , € b sdo constantes reais.

Defini¢do 2: Um sistema de equagdes lineares ou simplesmente sistema linear € um conjunto de equacdes
lineares, ou seja, é um conjunto de equagdes da forma

Ay Xq + 015X, +...+a,X, =b;
Ay1Xy +0ppXy +...+ 0y, X, =b,

Ay Xq + Xy +...+ A, X, = b,
Em que a; e b, sdo constantes reais, parai, k=1,2,...me j=1,2,..,n.

Usando o produto de matrizes que definimos anteriormente, o sistema linear acima pode ser escrito

3 4- como uma equag¢do matricial
app Ay TN RS b,
Uy1 Uz o, Xy | | b,
. - )
A1 A2 Tnn Xy bn
ou, AX = B,onde
app Ay Aip Xy by
ay, Gy, ... @ X b . , . : :
A=| 20 T2 e Ty 1920 e B=| 2| A matriz A é chamada matriz do sistema linear ou
S Y An Xp bn

matriz dos coeficientes, X é a matriz das incognitas e B é a matriz dos termos independentes.

Exemplo 1: Sdo sistemas de equacgdes lineares:

2x-5y=5
3x+y=16

X—y+z=5
2x+y—-5z=8
2a-8b=0

iii. < a+5p=9
a+b=5

INTRODUCAO A ALGEBRA LINEAR
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Exemplo 2: Os sistemas de equagdes lineares do exemplo anterior podem ser escritos como as equagoes
matriciais abaixo:

2

3
X
a1 (5
21 57 Ls
VA
2 -8 0
iii. |1 5 |[?|2|9
b
11 5

Operacoes elementares

Para encontrar a solucdo de um sistema linear, podemos substituir o sistema inicial por outro que
tenha o mesmo conjunto solucdo do primeiro, mas que seja mais facil de resolver. Isso é feito aplicando
sucessivamente uma série de operacdes que nao alteram a solu¢do do sistema sobre as equacoes.
Essas operagdes sdo as seguintes:

» Trocar a posicdo de duas equagdes do sistema;
» Multiplicar uma equacgao por um escalar diferente de zero;

» Somar a uma equacgao outra equacdo multiplicada por um escalar.

Essas operagdes sdo chamadas de operacdes elementares. Quando aplicamos operagdes elementares
sobre as equac¢des de um sistema linear, somente os coeficientes do sistema sido alterados, assim
podemos aplicar as operagdes sobre a matriz de coeficientes do sistema, que chamamos de matriz
ampliada do sistema, ou seja, a matriz

a;; Ay ... Gq,|by
Ay, Qyy ... Gy, | by

Qpp Ay --- Ay | by

Usando essas operagdes, podemos construir um algoritmo para encontrar solucdo de sistemas de
equacgdes lineares da seguinte forma:

x+3z=-8
Exemplo: Dado o sistema {3x—2y—-5z=26
2x-4y=-4

i. Quando queremos permutar, por exemplo, a 22 equagdo com a 32, escrevemos:

x+3z=-8 x+3z=-8
3x—2y-52=26—1Ly; ¢ sistema resultante serd 2x—-4y=-4
2x—-4y=-4 3x-2y-5z=26

" - ~ 1
ii. Quando queremos multiplicar a 22 equacgdo, por exemplo, por 5> escrevemos:

x+3z=-8 x+3z=-8
1
2x-4y=-4 -, (—J e o sistema resultante sera x-2y=-2
3x—-2y-5z=26 3x-2y-5z=26

INTRODUGCAO A ALGEBRA LINEAR
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iii. Quando queremos substituir a 12 equagao, por exemplo, pela soma dela com a 22 equagdo multiplicada
por (-1), escrevemos:

x+3z=-8 x+3z=-8
X=-2y=-2->L,=L,+1, (—1) e o sistema resultante sera -2y-3z=6
3x-2y—-5z=26 3x-2y-5z=26

Observagdo: Depois que aprender a solucionar um sistema linear, vocé podera verificar que todos os
sistemas do exemplo anterior sdo equivalentes, isto é, ttm a mesma solu¢do. Analogamente, podemos
dizer que a aplicagdo de qualquer operagao elementar sobre um sistema de equagdes lineares produz um
sistema linear equivalente. Essa afirmacao justifica-se pelo fato de que uma operacdo elementar sempre
adiciona um mesmo valor em ambos os membros de uma equagao do sistema dado.

Baseado nesse fato, construiremos um algoritmo para encontrar solucdes de sistemas de equacgdes
lineares. Esse algoritmo esta descrito abaixo:

Método de Gauss-Jordan
0 método de Gauss-Jordan é dado pelas duas afirmagdes abaixo:

» Considere a matriz ampliada do sistema. Transformamos, por meio de operacdes elementares, a matriz
do sistema na matriz identidade;

» Transformada a matriz do sistema na matriz identidade, a matriz dos termos independentes ficara
3 6 transformada na soluc¢io do sistema.

Isto é, dada a matriz:
ay; Uy ... ap,| by

Ay, Gy ... Gy, | by

n

)

A1 Ay --- Gyl by

devemos aplicar as operagoes elementares de tal modo que a matriz anterior se transforme na matriz

abaixo:
1 0 ... Ofsy
0 1 ... 0ls,
0 0 ... 1s
s "
S2
onde | . | serdasolucdo do sistema.
s

SAIBA MAIS

Note que, para aplicar esse método, a matriz do sistema deve ser quadrada, ja que devemos
transforma-la na matriz identidade.
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x+3z=-8

Exemplo: Considere o sistema do exemplo anterior, {3x—2y—-5z=26

Solugéo: A matriz ampliada desse sistema é 2x—dy=-4
1 0 3|-8
3 -2 -5|26
2 -4 0|-4
Logo:
1 0 3|8 1 0 3-8
3 -2 -5/26|>Ly=|2 -4 0|-4 _{E]LZ
2 -4 0|4 3 -2 =526
1 0 3|-8 1 0 3|8
=1 =2 0|-2|>L=L+(-1)L,=|0 -2 -3| 6 |>L,=3L L,
3 -2 =526 3 -2 -5|26
1 0 31|-8 1 0 3|8
=10 -236 |>L=L+L,=/0-2 3|6 |>L=11L -3L,
0 2 14|2 0 0 118
11 0 0 |-112 11 0 0(-112 L
=10 2 3|6 |5L=11L+3L=|0 22 0|90 |>L="
0 0 11| 8 0 0 11| 8
1 0 0|-112/11 L 1 0 0}]-112/11 L
=[0 22 0] 90 |oL=-=|01 01-90/11 |>L=2
0 0 11 8 0 0 11 8

1 0 0]-112/11
=0 1 0[-90/11
00 1/ 8/11

112 90
Portanto, pelo método de Gauss-Jordan, a solugao do sistema é x = EETE y= 1 e z= 1

1 0 0]-112/11
Observacdo: Note que amatriz |0 1 0/-90/11 | ¢éamatrizampliada do sistema:
0 0 1] 8/11

1x+0y+02=—& x:—g
11 11

90 90
Ox+1y+0z=—-+ < =——
Y 11 4 11
0x+0y+1Z:£ z:i
11 11
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Classificacao de um sistema linear quanto a solugao

Um sistema linear pode nao ter solucdo. Mas, se tiver solucdo, podera ser uma ou mais de uma. Podemos,
entdo, classificar um sistema linear quanto a existéncia e quantidade de solu¢des em trés tipos:

» Compativel (ou possivel) e determinado: quando possui uma unica solucdo.

»Compativel e indeterminado: quando possui mais de uma solugao.

»Incompativel (ou impossivel): quando nédo possui solucéo.

Exemplo: Note que:
X+
i. O sistema { 1 possui uma tnica solug¢do, x=0 e y=1;
X—y=—
.. , x+y=1 L ~
ii. O sistema possui mais de uma solugdo, no caso:
2x+2y=2

12 solugdo:x=0e y=1;
228 solugdo:x=1 e y=0;
e V=

32 solugdo: x=

’

[N =
W=

42 solugdo: x=—e y=—;

-

4
Essas sao algumas das solugdes. Nesse exemplo, existem infinitas solucdes;

33

. x+y=1 . s L NP
iii. O sistema ndo possui solucdo (Ja que, a soma de dois niimeros reais € Unica).
x+y=0

SAIBA MAIS

Veja que, de acordo com as definicdes sobre classificagdo de um sistema, no exemplo ao
lado o item (i) é compativel e determinado, o item (ii) € compativel e indeterminado e o item
(iii) € incompativel .

Sistemas lineares homogéneos

Defini¢do: Dizemos que um sistema linear é homogéneo quando os termos independentes de todas as
equagdes que o compdem sdo iguais a zero.

x+2y+3z=0

ol x —z=0
Exemplo: N e {3x+y+2z=0
y-22=0 2x—y-z=0

Um sistema linear homogéneo em n incégnitas sempre admite a solucao

(0,0,...,0)

ﬁ_}

nelementos
chamada solugao trivial. Concluimos, entdo, que um sistema linear homogéneo é sempre compativel.
Assim, quando for determinado, possuird somente a solucdo trivial. E quando for indeterminado,
possuira outras solucdes, além da trivial, chamadas solu¢des ndo-triviais.

SAIBA MAIS

A solugdo trivial também é conhecida como solugdo nula ou ainda solugdo imprépria.
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Solucdes de um sistema de equacoes lineares

Defini¢do: Uma matriz Az(aij) estd na forma escalonada reduzida quando satisfaz as seguintes
.~ mxn
condigdes:

i. Todas as linhas nulas (formadas inteiramente por zeros) devem aparecer abaixo das linhas
nao nulas;

ii. O primeiro elemento ndo nulo de cada linha ndo nula é igual a 1;

iii. O primeiro elemento ndo nulo de cada linha ndo nula deve aparecer a direita do primeiro
elemento ndo nulo da linha anterior.

iv. Se uma coluna contém um primeiro elemento ndo nulo de uma linha, entio todos os seus
outros elementos sao iguais a zero.

Importante: Dizemos que uma matriz estd na forma escalonada se satisfaz as propriedades (i) e (iii),
mas ndo necessariamente (ii) e (iv).

1 00 15 0 2
Exemplo 1: As matrizes |0 1 0|e|0 0 1 -3
0 01 00 0O
sdo escalonadas reduzidas, enquanto
1 -1 2 0 2
0 1 1| e |0 0 -4 3
0 0 5 0 0O

sdo escalonadas, mas ndo sdo escalonadas reduzidas.

Importante: Esse método de resolucdo de sistemas, que consiste em aplicar operacdes elementares as
linhas da matriz ampliada até que a matriz do sistema esteja na forma escalonada, também é conhecido
como método de Gauss-Jordan. Nesse caso, o método vale para qualquer matriz, ndo apenas para matriz
quadrada.

Exemplo 2: Dado o sistema linear

x+2y+5z=28
2x+3y—-z=-1
4y+z=13
temos que sua matriz ampliada é:
1 2 5|28
2 3 -1|-1|
0 4 113

Como o primeiro elemento é 1, devemos obter zeros na primeira coluna, da segunda linha em diante. Note
que, nesse caso, como o elemento da terceira linha ja é zero, precisamos apenas obter zero na segunda linha.
Para isso, vamos substituir a segunda linha pela soma da mesma com a primeira linha multiplicada por -2:

1 2 5|28 1 2 528
2 3 -1-1|->L,=L,+(-2)L,=|0 -1 -11]-57
0 4 1|13 0 4 113

INTRODUGCAO A ALGEBRA LINEAR
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Passemos, agora, para a segunda coluna (ndo usaremos mais a primeira linha - ela estd pronta). Queremos
obter zero abaixo da segunda linha. Para isso, multiplicamos a segunda linha por 4 e somamos a terceira:

1 2 5|28 1 2 5128
0 -1 —11|-57 |>L,=L;+4L,=|0 -1 —-11|-57
0 4 113 0 0 -43-215

Temos entdo a matriz escalonada. Logo, o sistema associado a ela é:

x+2y+5z=28
-y-11z=-57
-43z=-215
Obtemos, da terceira equacao, z = — =z=5

Substituindo esse valor na segunda, teremos: —y-11.5=-57=-y=-57+55= y=2.
Finalmente, substituindo y =2 e z=>5 na primeira equacao ficamos com:

X+22+455=28=x=28-4-25=>x=-1

Logo, o conjunto solugdo é {(-1, 2, 5)}. Podemos classificar o sistema como compativel e determinado.

Regra de Cramer

Mostraremos agora outro método de resolucdo de sistemas de equagdes lineares. Usaremos, neste
método, o calculo da inversa de uma matriz e determinantes. O mesmo é conhecido como Regra de
Cramer.

Observagdo: Esse método sé se aplica a sistemas lineares em que o nimero de equagdes é igual ao
nimero de incégnitas.

Suponha que desejamos resolver o sistema linear de n equagdes e n incognitas.
Ay1X, + 015Xy +...+0,X, =b;
(y1Xq +0ypXy +...+ 0y, X, =b,

Il

A X1 +AypXy +...+ 0y, X, =b,
Escrevendo esse sistema na forma matricial, Obtemos:
ay Ay ... G, ) (X b,
Ay Ay ... Gy, || X5 [=| by
Ay Ay ... Gy, )\ X, b,
ou, A. X = B, onde
ay; Ay ... 4y, X,
a a ...a X
21 U 2n |, . - 2 , .
A=| . . . ¢ a matriz dos coeficientes, X=| é a matriz das
. Ay ... 4y, X,
b,
b.

incégnitase B=| 2 | éa matriz dos termos independentes.

b

n
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Supondo que det (A) # 0, temos que a matriz A possui inversa A"1. Assim, multiplicando a equagdo A.X =
B porA‘1 e, isolando X, temos:

ALAX)=A B> (A LA).X = A B>, . X=A'B=>X=A"1B

Mas, sabemos que A~ = ﬁ. adjA, logo X = @.(ade).B. Na forma matricial, temos:
) fan @ a (b
X2 |= Gz Gy .. A, |||
detA| : :
X — — — b
n dyp Gy - Uy n

para, ((T-j) = (-1)i+j det (A_i,_j) onde A_i’_j é a matriz quadrada de ordem n-1 obtida a partir de 4, com a
retirada da i-ésima linha e da j-ésima coluna.

Observagdo: A matriz adjA foi definida anteriormente.

Portanto,

_ a;;.b; +a,,.b, +...+0a,,.b,
detA

1

Porém, note que o numerador desta fracdo é igual ao determinante da matriz obtida de A substituindo a
primeira coluna pela matriz dos termos independentes:

b, a, .. a,
det| b, ay, ... ay, |=bj.a;;+bya, +...+b,0q,.
b, a, .. a,
Concluimos entao que
b, ay, aip
det| b, a,, a,
bn ) nn
X, =
;. Ay ... aq,
det| ay; Gy, ... ay,
Ay Ay ... gy

Analogamente, obtemos:

i—ésima coluna
-~

ay b, sy,
det| ay, - b, s Oy,
a b a
1 e .
X; = n 1 M2 parai=1,2,...,n.
a;; Q5 ... Qg
a,, a a
21 U2 -0
det| = = 7
Ay Ay - Gy

INTRODUGCAO A ALGEBRA LINEAR
Autores: Antdnia Jocivania Pinheiro e Paulo César Linhares da Silva

IAL



| - MATRIZES, DETERMINANTES E SISTEMAS DE EQUACOES LINEARES

Note que no denominador temos o determinante da matriz dos coeficientes (det A # 0), e no numerador
aparece o determinante da matriz obtida de A substituindo a i-ésima coluna pela coluna dos termos
independentes. Lembre-se de que esse método somente se aplica a um sistema linear de n equagdes e n
incognitas e quando o determinante da matriz dos coeficientes for ndo nulo.

Exemplo 1: Dado o sistema
x+2y-3z=-15

2x—-y+z=10 .
1 2 -3 3x -z=1
Como det|2 -1 1 |=2#0, podemos encontrar a solucdo desse sistema usando a regra de Cramer.
Assim, 3.0 -
-15 2 -3 1 -15 -3
det| 10 -1 1 det|2 10 1
‘e 1 0 -1 :fzz,y: 31 -1 :__2:_1
1 2 -3 2 1 2 -3 2
det|2 -1 1 det|2 -1 1
3 0 -1 3 0 -1
1 2 -15
det|2 -1 10
3 0 1 10
ST 3y 2
det|2 -1 1
3 0 -1

Portanto, a Uinica solugdo do sistema é (2, -1, 5).

EXERCICIO PROPOSTO

1. Classificar e resolver os sistemas de equagdes lineares:

2x+4y—-6z=10
a) {2x+8y—4z=24 2x+4y=16
4x+2y+2z=16 d) {5x-2y=4
2x+y+3z=8 10x—-4y=3
b) | 4x+2y+2z=4 x+y-z=0
2x+5y+3z=-12 e) | 2x-3y+z=0
4x-4y-2z=0
5x+8y =34
10x+16y =50 H 6x+2y+4z=0
-9x-3y-6z=0
2X+y+7z=b,

2. Resolva o sistema de equacdes lineares § x+3y+2z=>b, para:
S5x+3y+4z=0Db,
a)bl :16, b2='5 e b3=11

b) b, =25, by=-11 e b3=-5
C)b1:3,b2=5€b3=-5
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3. Quais das seguintes matrizes estdo na forma escalonada reduzida:

1 0 00 3 0100 -4
A=|0 01 0 -4|,B=/{0 0 1 0 5 |
00 01 2 000 -1 2
1 0 0 0 3 00 O0O0O
C=/0 01 0 O0leD=|{0 0 1 2 -4
0 001 2 00 010
0 00 00O 00 0O0O

4. Resolva, usando o método de Gauss-Jordan, os seguintes sistemas:

X+y+2z=8
a) § —x—-2y+3z=1
3x-7y+4z=10
2x+2y+2z=0
b) {-2x+5y+2z=1
8x+y+4z=-1
-y+3z=1
€) 43x+6y—-3z=-2
6x+6y+3z=5

5. Resolva os sistemas lineares, usando a regra de Cramer.

5x+8y=34 x+2y+3z=10
a)
10x+16y =50 d) {3x+4y+62=23
3x+2y-5z=8 3x+2y+3z=10
b) <2x—4y-2z=-4 5x-3y-7z=-5
x-2y-3z=—-4 e) 4x—y-z=2
x+3z=-8 -2x+4y+8z=10
) 2x—-4y=-4 x-y=0
3x—-2y-5z=26 ) 2y+4z=6
X+y+4z=6
1 0 5
6.Seja A=|1 1 1
01 -4

a) Encontre a solucdo geral do sistema (4 + 413) X = 0;

b) Encontre a solugdo geral do sistema (A - 213) X = 0.
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ESPACO VETORIAL, TRANSFORMACAO
LINEAR E APLICACAO

Nesta unidade vamos estudar os aspectos relacionados com
uma estrutura chamada Espaco Vetorial. Nela veremos conjuntos
linearmente independentes (LI) e linearmente dependentes (LD).
Definimos base e dimensdo de um espaco vetorial. Estudamos o
conceito de transformagdo linear e aprendemos a determinar o
nucleo e a imagem da mesma.

Objetivos

* Definire estudar alguns dos principais exemplos dessa estrutura.
¢ |[dentificar entre os conjuntos numéricos conhecidos os que sdo
espacos vetoriais.

* Apresentar o conceito de subespaco vetorial de um espago
vetorial.

* Apresentar os conceitos de dependéncia linear e independéncia
linear.

* Estudar os conceitos de base e dimensao de um espaco vetorial.
e Estudar o conceito de transformacao linear.

e Determinar o nucleo e a imagem de uma transformacao linear.
* Apresentar o teorema da dimensao, algumas consequéncias e
exemplos.
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Espaco Vetorial

UN 02

Definicao de espaco vetorial

Defini¢do: Dizemos que um conjunto, ndo vazio, ¥, munido das operacgdes de adi¢cdo (associa a cada
paru,v € V,oelemento u + v € V) e multiplicagdo por escalar (que associaa cadapara €R,veV, 0
elemento av € V) é um espaco vetorial se, gozar das oito propriedades abaixo:

Quaisquer que sejamu, v, weV e a BER

Em relagdo a adic¢éo:

(Ay) associatividade: (u+v) +w=u+ (v+w)

(A5 ) comutatividade: u+v=v+u

(A3) Existéncia de vetor nulo: 30 € V tal que u+ 0 =u

(A4 ) Existéncia de inverso aditivo ou simétrico: 3(-u) € V talqueu + (-u) =0

Em relacdo a multiplicacdo por escalar:
(M, ) Distributividade com relacdo a adicdo de vetores: a (u+v) = au + av

(M, ) Distributividade com relagdo a adicdo de escalar: (a + f)u = au + fu

(M3 ) Associatividade: (a. ) u = a. (fu)

(M, ) Existéncia do elemento neutro: 31 € R talque l.u=u

SAIBA MAIS

Observe que, no lado esquerdo de (M, ), o simbolo “+"” é uma soma de escalares em R, e no

lado direito, € uma soma de vetores em V. Observamos também que no lado esquerdo de
(M3) temos primeiramente um produto entre escalares @ e § e depois o produto do escalar
ap pelo vetor u. Sdo produtos diferentes, nos quais, usamos o mesmo simbolo.

DEXERCICIO RESOLVIDO

1. R, é um espago vetorial, com as operag¢des de adi¢do e multiplicagdo por escalar usuais.

Com efeito, dados u = (uq, uy, ..., u, ), v=_(vy, vy, .., v,) € w=(wy, w,, ..,w,) em R" e a, B € R quaisquer,
temos:

(A)(u+v)+w=((uttys. )+ (V2050 ,)) + (W Wy om,)
=(u, +v,uy + vyt +v, )+ (W, w,)

=((u1 +vl)+wl,(u2+v2)+w2,...,(un+vn)+wn)

~
I3z

(0 + (v + w0 )ty + (v, + W, )t + (v, +w,))
= (uyttyse st )+ (0 + W0, +wy00, +w,)
= (ul,uz,...,un)+((v1,v2,...,vn)+(w1,w2,...,wn ))

=u+(v+w)
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(*) Usamos nesta igualdade a associatividade dos nimeros reais.

(Ay) u+v=_~U,uy, ., uy) + vy, v, ..., vp)
= Uy + V1, Uy + Vs, e, Uy F V)
()
2 (W + Uy, vy + Uy, e, Uy F U)
= (U1, Vg oo, V) + (U, Uy, ., Uy)
=v+u

(*) Usamos a comutatividade dos niimeros reais.

(43) 30 = (0,0, ...,0) € R™ tal que
u+0 = (uy,uy, .., u,) +(0,0,..,00 = (uy + 0,u, + 0, ...,u,, + 0)
= (Uy, Uy, o, Up) = U

(A44) 3I(—w) = (—uy, —uy, ..., —U,) € R™ tal que
u+ (—w) = (ug, Uy, oo, Uy) + (—uy, —Uy, .., —Uy)
(u1 + (mup, up + (up), o, Uy + (_un))
= (Uy — Uy, Uy — Uy, .., Uy — Uy) = (0,0,...,0) =0

M) a(u+v) = a((ul,uz, v Up) + (g, vy, ...,vn))
=a(u, +vy,uy + vy, o, Uy + 1)
= (a(u1 +vy), a(uy +vy), ..., alu, + vn))
()
2 (auy + avy, auy + avy, ..., au, + av,)
= (auq, auy, ..., auy) + (Qvy, av,, ..., avy,)
= a(uy, Uy, oo, Uy) + a(Vy, Vg, ..., V)
=au+ av

(*) Usamos a distributividade dos nimeros reais.

48 (My) (a+ Bu=(a+p) (uy, uy, ..., u,) = ((a+pluy, (@+Puy, .., (a+Bu,)
O]
2 (auy + Puq, au, + fu,, ..., au, + fuy,)
= (auq, auy, ..., auy,) + (Buy, fuy, ..., fuy)
= a(ug, Uy, ..., uy) + Bug, Uy, v, Uy)
=au+ fu

(*) Usamos a distributividade dos nimeros reais.

(M3) (a. fu = (a. f)(uy, Uz, oo, up) = ((@. Puy, (@ fluy, ..., (@. fu,)
()
2 (@ (Buy), a. (Buy), .., a. (Buy,))
= a(Buq, fu,, ..., Bu,) = a[fuy, uy, ..., uy)]
= a.(fu)

(*)Usamos a associatividade dos nimeros reais.

(M,) 31 € R tal que
Lu=1 (u,uy, ..., uy) = (Lug, Louy, ..., 1.u,)
= (Uy, Uy, oy Up) = U

SAIBA MAIS

As operagdes de adigdo e multiplicagdo por escalar dadas neste exemplo sdo denominadas
operagdes usuais no R". Existem outras operagdes de adi¢do e de multiplicagdo por escalar
que podem ser feitas com os elementos de R" e escalares, na verdade, podem ser criadas

infinitas operacdes, sé depende da nossa criatividade. Estas novas operagdes poderao, ou
ndo, fornecer novos espagos vetoriais. Pelo exemplo 1, fazendo n=2, temos que o R? é um
espaco vetorial com as operacdes usuais, mas, no exemplo 4, o conjunto R2 ndo é um espago
vetorial com as operagdes definidas.
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2. 0 conjunto de todas as matrizes reais “2 por 2", M,,, (R), € um espaco vetorial se a adi¢do vetorial é
definida pela adi¢do matricial e a multiplicagio vetorial por escalar é definida pela multiplicacdo matricial
por escalar.

Uy Upp V11 V12 Wi1 Wy
v = e w=

em M R)e o, BER
Uz Upp Va1 V2 W1 sz) 2x2 (R) B

Com efeito, dados u = (

quaisquer, temos:

Uyq u12 Vi1 V12 W11 Wiz
A) @+v)+w= ((uu )+ (o UZZ)) + (ot W) SAIBA MAIS

_ (uu tV Ut '712) + (Wll le) N&o especificamos na definicdo de um espago
Uz + Uz Uz + Uy W21 Wz vetorial a natureza dos vetores, nem das

- ((uu toi) + Wi (U +v1p) + WIZ) operagdes. Qualquer tipo de objeto pode ser
(Uz1 +v21) + Wy (Upp + V32) + Wy um vetor, como por exemplo, uma matriz, como

(;) Uy + (Vg FWiq)  Ugp + (Vg +Wyy) podemos ver neste exemplo, ou um polinémio
B ( 21 + (Vy1 + Waq) Uy + (v + wzz))' ou até mesmo um numero real. As operagdes
ulZ) (1711 twy Vgt W1z) de adigdo e multiplicagdo por um escalar podem

u21 Uz Va1 +Wa1 Uz + Wy, ndo ter relagdo alguma com as operagdes usuais

_ ( 11 u12) + (Vu V1z) (W11 W12)> em R2 e R3, por exemplo. A Unica exigéncia é
Uz Uz V21 V22 Wa1 Wzz que as dez propriedades de espago vetorial

+W+w) sejam satisfeitas.

(*) Usamos nesta igualdade a associatividade dos nimeros reais.

Uy Upp Vi1 Vg Uy + V11 Upp + V1
(4) u+v= =
Uz Uz Va1 Va2 Uz + Va1 Upy + Uy

(;-? (Vu tup; vt u1z) _ (‘711 Ulz) (uu u12)

Va1 +Upp Voot Uy Va1 Va2 Uz; Uy
=v+u

(*) Usamos a comutatividade dos niimeros reais.

0 0
(43) 30 = (0 0) € M,,,(R) tal que

vro= (i )+ 6 D=(T0 - -

—Uypy
(Ay) 3I(—w) = ( u21 —u, ) € M,,,(R) tal que
_ (U1 ulZ —U;p TUp
ut (-u) = ( 21 uzz) + ( —Uz _uzz)
U + (—upp)  ugp + (- ulz))
Upy + (“Uz1)  Upy + (—Uyz)

<u —-u Uy — U
( 11 11 12 12)/
(

1610_1121 Uzz — Up2
0 0):0

Uy, u Vi v
LR (i tite)
_ (u11 tVv1 Ut 1712)
T Uy H Uy Upy U
<a(u11 +vi1) alup + 1712))
a(uz; +v21) gy +v;2)
(aull +avy; aug, + avlz)
AUy + Ay AUy, + AV,

(aull aulz) (av11 avlz)
AUz AUz AVy1 Ay
U1 U2 V11 V12
= +a
Uz Upz V21 V22

=au+ av

=
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(*) Usamos a distributividade dos nimeros reais.

_ _(l@+Puy (a+ Py

(M) (a+ u= (@ + ) ( = (et P (at )
é (auu +fuy; aupy + ,8u12>

Quyy + fuy; AUy, + Puy,
_ (aull aulz) 4 (ﬁull ﬁulz)
- au&l auuzz '8114121 5“22

11 2 11 Uz

-« (u21 u;z) +B (u21 uzz)
=oau+ fu

Uqq ulz)
U1 Uz

—~
N2

(*) Usamos também a distributividade dos niimeros reais.

_ U Uz _ ((@.plu (a.fu
(M5) (o f)u = (a. ) (u21 uzz) N ((a.ﬂ)uz (a.ﬁ)u;z)

g(a-(ﬁuu) a-(ﬁulz))
a. (Buy)  a.(Buyy)

_(Bun ﬂulz) _ Uy Upz
a a<ﬁuz1 Buza) “ 'B(um uzz)
= a.(fu)

(*) Usamos a associatividade dos nimeros reais.

(M,) 31 € R tal que

ull u12 1. u11 1.u12
Lu=1( )=
u21 uZZ 1.u21 1. u22
_ (ull u12) —u
Uz1  Upp
5 O 3. 0 conjunto de todas as matrizes reais “m por n”, M,,,, (R), ¢ um espaco vetorial. Usando também adicédo
matricial e a multiplicagdo matricial por escalar, segue analogo ao exemplo anterior, basta substituir, por
Ur Upp
exemplo, u = ( 1 1 )
U1 Upp
Uqq Uqy e Uqp
poru= | Uz Uy o+ Uzn
uml um2 e umn

4. 0 conjunto RZ = {(x, y) € RZ% x,y € R} ndo é um espaco vetorial com as operacdes de adicio e
multiplica¢do por escalar definidas abaixo:

c(xY)+ (X P)=(x+Xy+J)
ca(xy)=(ax,y)

Com efeito, como a adi¢do definida é a usual, ela verifica as quatro propriedades da adi¢do. Vamos testar as
propriedades relativas a multiplicacdo. Em particular, vamos testar a propriedade (M, ):

(My) (a + Pu = (a + B)(ug, uz) = ((a + Bluy, uy)
Q)
S (auy + Puy, uy)
= (auy, uz) + (fuy, 0)
# au + fu

5. 0 conjunto V = {(x, x2); x € R} é um espaco vetorial com as operag¢des de adicio e multiplicagdo por
escalar definidas abaixo:
o (x,x2) + (%, %2) = (x + X, (x + §)2)

o a(x,y) = (ax, a® x2)
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Com efeito, dados u = (uy, u;2),v=(vy,v{%) e w=(wy, w;2) em V eq, B € R quaisquer, temos:

(4) (u+v)+w= ((ul,u12) + (Ulﬂvlz)) + (wy, wy?)
= (uy + vy, (ug +v1)%) + (wy, wy?)
= ((u1 + ) + wy, ((u1 +vy) + wl)z)
(x
= (uy + (g +wy), (g + (g +w)”)
= (up, uy?) + (v + wy, (v +wy)?)
= (up,w?) + (v, v2) + (W, w D) =u+ (v +w)

~

(*) Usamos a associatividade dos nimeros reais.
(42) utv (=) (wy, ui®) + (v, 13 = (g + vy, (ug +v1)%)

2 (v +uy, vy +up?) = W, 1) + (U, uy?)
=v+u

(*) Usamos a comutatividade dos nimeros reais.

(45) 30 = (0,0%) = (0,0) € V tal que
u+0= (u1;u12) +(0,0) = (u; +0, (u, + 0)2)
=, u?) =u

(4) 3(—w) = (—uy, (_u1)2) € V tal que
u+(—u) = (u1;u12) + (—uy, (_u1)2)
= (ul + (—wy), (ul + (_u1))2)
= (uy —uy, (u —uy)?*) = (0,0) =0

(M) a(u+v) = 05((“1'“12) + (Ullvlz))
= au; + vy, (U +v;)%)
= (a(u; + U1):a2(u1 + U1)2)
= (a(ul +v1), (a(ul + Ul))z)
()
2 (auy + avy, (@u, + avy)?)
= (auy, (auy)?) + (avy, (av,)?)
= (aul, azulz) + (avy, a’v,?)
= auy,uy®) + a(vy, v,?)
=au+av

(*) Usamos a distributividade dos nimeros reais.

(Mp) (a+ Pu = (a+ B)(uy, w2 = ((a + Puy, (@ + B)?u,?)

= (@+ s, (@ + pu)’)
Q)

= (auy + fuq, (auy + ﬁu1)2)

= (auy, (@) + (Buy, (Buy)?)
= (aul, a2u12) + (ﬁullﬁzulz)
= a(uy,u,?) + B (ug,uy?)
=au+ fu

(*) Usamos também a distributividade dos nimeros reais.

(M3) (a.plu = (a-ﬁ)(ullulz) = ((a-ﬁ)ul' (a_ﬁ)zulz) = ((a-ﬁ)ul,((‘l-ﬁ)ul)z)

3=

(@ (Bun), (- (b)) = (@ (Bur), @ (Bu)?)

a(Buy, (Buy)?) = a(Buy, f2uy?) = alfuy, uy )
= a.(fu)
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(*) Usamos a associatividade dos nimeros reais.

(M,) 31 € Rtal que
Lu=1w, ) =1y, 12132
= u,u?) =u

DPEXERCICIO PROPOSTO

Determine quais dos conjuntos abaixo sdo espagos vetoriais com as operagdes dadas. Para os que nao sao,
liste todas as propriedades que falham.

1. 0 conjunto R3 com as operacdes:

xy,z)+(x\y,z')=(x+x"y+y,z+2z) e a(x,y, z) = (ax,y, z)

2. 0 conjunto R3 com as operacdes:

xy,z) + (x,y,2z) = (x+x,y+y,z+2z) e a(x,y,2z)=(0,0,0)

3. 0 conjunto R? com as operacdes:

(xy) + (X\y) = (x+x',y+y’) e alxy) = (2ax, 2ay)
4. 0 conjunto {(x, 0); x € R} com as operag¢des usuais do R2
5.0 conjunto {(x,y) € R%; x> 0} com as operagdes usuais do RZ.
6. 0 conjunto {(x, x, .., X) € R"} com as operacgdes usuais do R".

7.0 conjunto RZ com as operacdes:

)+ Ky )=x+x"+Ly+y'+1) e alxy) = (ax, ay)

8. O conjunto {(‘; 2) € Myy,;a,b € R} com a adi¢do matricial e multiplicacdo matricial por escalar.

9. 0 conjunto {(g 2) € Myyp;a,b € IR{} com a adi¢do matricial e multiplicagdo matricial por escalar.

10. O conjunto {( -T— b a Z b) € My, a,b € ]R} com a adigdo matricial e multiplicagdo matricial por escalar.
a

11. 0 conjunto {(1,y); y € R} com as operagoes:

Ly+@Ly)=Ly+y)ealy)=(1a)

12. O conjunto de todos os polindmios da forma ax + b com as operagdes:

(agx+bgy) +(ayx+by)=(ag+ay)x+(by+by) e alagx +b0) = (aay)x + (aby)

13. 0 conjunto {x € R; x = 0} com as operacoes

x+y=xy e ax=x"
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Propriedades dos espacos vetoriais

Seja Vum espago vetorial sobre R. Dadosu,v ew em V e em R, provaremos as seguintes propriedades:

P;) O elemento neutro 0 em V é unico.

P,) O elemento oposto -u € V de um vetor u € V é unico.

P3) Para quaisquer u,v,w € V,seu+w=v+w,entdo u=v (lei do cancelamento).
P,) Para qualquer escalara €R e 0 € V, temos a. 0 = 0.

P;) Para0 € R e qualquer vetor u € V,temos 0.u = 0.

P6)Se a.u=0,ondea € Reu € V,entdioa=0 ou u=0.

P;) Para qualquer escalar @« € R e qualquer vetor u € V, temos (-a). u = a. (-u) = -a.u.

Demonstragdo:

P;) Suponha existir outro elemento neutro 0 em V. Mostraremos que 0 =0. Como 0 é um elemento
neutro de V, temos que para qualquer v € V, v+ 0 = v, logo em particular para 0 € V temos,

0+0=0,

Portanto,
RN (+%) ()
020+0204+0 2 0.

*

(*) Esta igualdade é satisfeita pela propriedade (43) da definicdo de espaco vetorial, ja que 0 é
elemento neutro em V.

(**) Esta igualdade é satisfeita por (4,).

(***) Esta igualdade também é satisfeita por (43), ja que 0 ¢é elemento neutro em V.

P,) Suponhamos que v seja outro elemento inverso aditivo do elemento u € V. Assim, u + v = 0. Logo,

(43) (A9) (A1) (42)
vE2v+0 2 v+ (ut(-w) = w+w+(—w = w+v)+ (-w)
hip. (42) (43)

20+(-u) 2 (—u)+0 =2 —wu
Logo o elemento oposto -u € V de um vetor u € V é tnico.

P3) Dados u + w = v + w, temos:

(41)
wW+w)+(w) =@ +w) +(-w) S u+(w+(w)) =v+ W+ (-w))
(As) (43)

Bu+0=v+03u=v

SAIBA MAIS

Na ultima segdo listamos alguns exemplos de espagos vetoriais e é bastante claro que existe
apenas um elemento neutro em cada um, mas existem varios outros espagos vetoriais que

ainda ndo conhecemos. Provamos entdo, nesta primeira propriedade que a existéncia de
um Unico elemento neutro é um fato que decorre apenas da definicdo de espaco vetorial (e,
portanto, vale em qualquer um).
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P,) Dado a € R qualquer, temos:

(43) (M)
.0 2 a.(0+0) © a.0+a.0
Logo,
(A4)
@.0+ (=a.0) = (2.0 +a.0) + (-a.0) 3 0= a.0 + (@.0 + (~a.0))

(A1)
(A4) (43)

B0=a.04+030=0a.0

P:) Dado u € V qualquer, como 0 é o elemento neutro da adigdo, temos 0 = 0 + 0, logo:

(M3)
0O.u=(0+0)u = 0.u+0u=0u+(-0.u)=(0.u+0.u)+ (—0.u)
(44) (A4) (43)
Z0=0u+(0u+(-0w) 30=0u+030=0u
(A1)

Pg) Dado @ €ER e u € V, suponhamos que a.u =0 com a # 0. Entdo devemos mostrar que u=0. Como
a#0,existeal €R, tal que a’l a=1,logo:

(My) (M3) hip. (Ps)

u 2 lLu=(ata)u £ al(au) 2 alo=0.

P;)Dadoa €R e u €V, temos:

5 4 (My) (44) (Py)

aut+a(-u) 2 a(ut+(-uw) =2 a0 =20,
logo,

(—a.w) + (au+a.(-uw) = (—a.u) +0
(41)
S (Caw +au) +a (-u) = —a.u

(43)
(42)

S (au+ (—aw)+a.(—w) =—-a.u

(Aq) (42)
SB0+a(-w)=—au3 a(-W+0=—-a.u
(43)

S a(—uw=—-au

Além disso, temos

(M) (A4) (Ps)
~

au+(—a)u = (a+(-a))u 2 0u=0
Logo,

(—aw)+ (au+ (—a).u) = (—a.u)+0
A
S (Caw+au)+(-a)u=—-au

(43)
(42)

S (au+(—aw)+(—a)u=—-au

(A4) (A2)
S0+(-a)u=-au3 (-a)u+0=—au
(43)

8 (-a).u=—-au

Demonstradas essas propriedades, podemos concluir que grande parte das contas que fazemos com
vetores de R? e R3 sdo validas em qualquer espaco vetorial.
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Subespaco vetorial

Definicdo: Dado um espaco vetorial V, dizemos que um subconjunto S de ¥V é um subespacgo vetorial
de Vse S for um espaco vetorial com respeito as mesmas operagdes que tornam V um espacgo vetorial.

Observagoes:

i. Uma consequéncia imediata dessa definicado é que um subespaco vetorial S deve ser ndo vazio,
ja que uma das condi¢des que devem ser satisfeitas para que S seja um subespaco vetorial de I/ é a
existéncia em S de um elemento neutro para a adi¢cdo de vetores: com isso, obrigatoriamente 0 € S.

ii. Concluimos também da definicdo que para verificar se um dado subconjunto S de um espacgo
vetorial V é um subespaco vetorial de I/, deve-se verificar se as operacdes de adicdo e multiplicacio
por escalar estdo bem definidas em S, e se elas satisfazem a todas as condi¢des dadas na definicdo
de espaco vetorial.

iii. Todas as propriedades listadas na definicdo de espaco vetorial serdo automaticamente
“herdadas” pelo conjunto S, se S conter o vetor nulo, se a adicdo em S estiver bem definida (ou
seja, se a soma de dois elementos quaisquer de S for também um elemento de S), e se 0 mesmo se
verificar para a multiplicacao por escalar.

Na verdade, a ultima observacgdo nos traz o seguinte resultado:

Um subconjunto S de um espacgo vetorial V é um subespaco vetorial de V, se forem
satisfeitas as seguintes condigdes:

SV1) O vetor nulo estda em S, isto é, 0 € S.
SV2)Seu,veE S, entdou + v ES.

SV3) Seu € S, entdo au € S para todo a € R.

EXERCICIO RESOLVIDO

1. Dado um espaco vetorial V qualquer, os subconjuntos {0}(conjunto cujo tinico elemento é o vetor nulo)
e Vsdo subespacos vetoriais de V.

Com efeito, temos que 0 € {0} e além disso, dados u, v € {0} temosu =v=0,e portantou+v=0+0=0€
{0}. Agora, dado u € {0} temos que u = 0, logo, para todo a € R, ficamos com au = a0 = 0 € {0}. Concluimos
entdo que {0} é um subespaco vetorial de V. Ja o subconjunto V, ndo ha o que fazer, ele é obviamente um
espaco vetorial com respeito as mesmas operacgoes.

2. Considere o espaco vetorial V= R3 e o subconjunto S = {(x, y, z) € R3; z = x + y} de V. Verificaremos que
S é um subespaco vetorial de V. Com efeito,

i. O vetor (0, 0, 0) pertencea S,jaque 0+ 0 =0.
xt+y=z

x' +yl = z" lOgO:

ii. Dadosu=(x,y,z) e v=(x,y'z") em S, temos que {
u+v=(x+x,y+y,z+z)pertenceaS jaque (x+x)+(y+y')=(x+y)+(x'+y)=z+z2"

iii. Dados u = (x,y, z) em S, temos que x + y = z. Logo, para todo @ € R, au = a(x, y, z) = (ax, ay, az) pertence
aS,jAqueax+ay=a(x+y)=az.

Concluimos entdo que S é um subespaco vetorial de V.
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SAIBA MAIS

Por serem os subespagos mais simples do espaco vetorial V, {0} e V'sdo chamados subespacgos
triviais de V.

3. Dado o conjunto F (R) = {f; f: R = R}, temos que o subconjunto C(R) = {f € F (R); f é continua } c F(R)
é um subespaco vetorial de F(R). Com efeito,

i. a fun¢do nula f; (x) = 0 é uma funcdo constante, e, portanto continua logo f; € C(R).

ii. Dadas as funcdes f, g € C(R), temos que f+g € C(R),ja que, (f+g) (x) =f(x) + g (x) e soma de funcdes
continuas é uma fun¢do continua.

iii. Dada f € C(R), temos que, para todo a € R, af € C(R), ja que (af) (x) = af (x) e fé continua.

4. 0 subconjunto K = {f € F(R); f{x) = f (-x)} das fung¢des pares é também um subespaco vetorial de F(R).
De fato,
i.afungdonulaf, (x) =0, paratodox € R, satisfaz f, (x) =0=f;(-x), logof, € K.

f(x) =f(—x)
gx) = g(=x)

(f+9) (xX)=f(x) +g(x) = f(x) +g (x) = (f+ g)(-x), portanto, f + g é uma funcio par, assim, f+g € K.

ii. Dadas f, g € K, temos { Logo,
iii. Dada f € K, temos f(x) = f(-x). Logo, paratodo @ € R, (af) (x) = af (x) = af (-x) = (f) (-x)
5 6 portanto, af é uma funcdo par, isto é, af € K.

) EXERCICIO PROPOSTO

1. Nos itens abaixo verifique se o conjunto S dado é subespacgo vetorial dos conjuntos apresentados com
relacdo as operagoes de adicdo e multiplicacdo usuais.

a) S={(x,y):x+3y=0};R?

b) S={(xx?):x €R}; R?

o s={[¢ Z]:c=a+bed=0};M(2,2)

d) s={[z })]:a,b € R}; M(22)

e) S={xyzt)eRtx+y=0ez—t=0};R*

2.Seja S = {[Z I Z E‘g] : a, b € R} um subespaco de M(2,2), pergunta-se:

a) [i g] es?

—4

b) Qual o valor de k para que [ 5

k
_3] pertenca a S?

3. Seja W o conjunto das matrizes simétricas n x n, prove que W é um subespaco vetorial de M, .

4. Seja F o conjunto de todas as fun¢des que satisfazem a equagao diferencial f” + f= 0, verifique que F é um
subespaco vetorial de F, onde F={f; fR—R}.

5. Seja W o conjunto de todas as matrizes 2 x 2 com determinante igual a zero, W é um subespaco de M, .
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Combinacao linear

Defini¢do: Dado um espacgo vetorial V, dizemos que um vetor w € V é uma combinagio linear
dos vetores vy, v,, .., v, € V se existirem escalares a4, a,, ..., @,, tal que w possa ser escrito como
W=aqVvy+ayVy+ .a,V

n-'n'

Observagdo: Se o vetor w for combinagdo linear dos vetores vy, vy, ..., v,, dizemos que w é gerado pelos
vetores vy, Vo, ..., V.

SAIBA MAIS

O vetor nulo é gerado por Vi, Vg, .. V,, Quaisquer que sejam estes vetores. Basta tomar
a=ay=--=a,=0, eteremos 0 =0vy + 0v, + -+ + Ov,,.

DEXERCICIO RESOLVIDO

1. Considere p; = t?- 2t +1,p,=t+2 e p;=2t*-t emP,.
a) Escreva o vetor p = 5t2- 5t + 7 como combinacio linear de Py, Dy € P3.
Solugao: Devemos encontrar a, § e Y reais, tais que p = ap; + fp, + yp3, ou seja:
5t2-5t+ 7 =a(t?-2t+1) + B(t+2) + y(2t2- )

5t2-5t+ 7 =at?- 2at + a + Pt + 2 +2yt? - yte

5t2-5t+7 = (a+2y) t2+ (-2a+f-y) t+a+2p.

Logo, para que esta igualdade ocorra, devemos ter:

—2a+p-y=-5 ()

{ a+2y=5 (I)
a+28=7 (I

Fazendo (I)-(III), obtemos:
2y-26=5-7=22(y-f)=-2=>y-p=-1.
Comoy-fB=-1=f-y=1,substituindo esta expressao em (II) temos:
2a+1=-5>-2a=-5-1=>-2a=-6>a=3.

Substituindo a = 3 em (/) e (I}, obtemos y=1 e = 2. Portanto, p =3 p; + 2p, + p3.

b) E possivel escrever pq como combinacgdo linear de p, e p3?
Solugdo: Verificaremos se existem a e f§ reais, tais que p; = ap, + ip3, ou seja:
t2-2t+1=a(t+2)+pRL2- )
t2-2t+1=at+2a+ 2Pt - fte
t2-2t+1=2pt2 + (a-P)t + 2a.
Obtemos entao:
26=1=p= %
a—pF=-2 ()

2 1 -
= = =
[24 a
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Comoa=p =% , temos que a - /)’=%—% =0#2, logo (II) ndo ¢ satisfeito, assim p; ndo pode ser escrito como
combinacdo linear de p, e p3.

1 0 [—1 Ze[O —1]

1 8 PPV
] como combinacdo linear de [1 1Plo el 1)

2. No espago vetorial M(2,2), escrever [0 s

Solucdo: Devemos encontrar a, § e y reais, tais que:

o dl=ali ey vy
B 28] [0 -
=[Z 2]+[0 ﬁ]+[2y Vy
_[e—-8B 2B-v
—[a+2y a+,8+y]

Assim:
a—-p=1 ()
a+2y=0 ()
28—y =8I

a+B+y=5UV)

Fazendo (II) - (I) obtemos 2y + = -1, somando esta equag¢do com 2.(/I]), isto é, com 4f - 2y = 16, ficamos
com58=15=f=3,¢ portanto,a-3=1=>a=4 e 4+2y=0=>y=-2,

Concluimos, entdo, que:

o sl=+l al+3ly -2 7l

58
Subespacos gerados

Teorema 1: Dado um espago vetorial V, se vy, v,, .. v, sdo vetores de V, entdo o conjunto
S={a; vi+a, vy + - +a, V,; @, ay, ..., @, € R} é um subespaco vetorial de V.

Prova: Como efeito,

i. O vetor nulo pertence a S, ja que, podemos escrever 0 = 0vy + Ov, + --- + Ov,,.

ii. Dados uevem S, digamosu=a; vy +a, vy + - +a, vy e v=LFvy+ By vo+ -+ f v, comay,f; €
R, temos que:

u+v=(ag vi+rayvpt e agvg)+ (Byvyt fpvyt e+ fyvy)
=(ay+ B1) vi+(ag+By) vot o+ (ay+ By) vy

onde a; + f; € R. Assim u + v é também combinacdo linear dos vetores vy, vy, ..., v, logo,u+v € S.

iii. Dados u em S, digamosu = a; v{+a, v,+ - +a, v,,coma; € R, e k € Rtemos que:
ku = k[al V1 + az V2 + oo 0(n Vn) = [kal) Vl + (kaz) VZ + o [kan Vl’l

onde ka; € R, logo ku é combinacdo linear dos vetores vy, v,, .., vV, portanto, ku € S.

Concluimos, entdo, que S é subespaco vetorial de V.

Observacao: Este subespaco vetorial é chamado subespaco gerado pelos vetores vy, v,, ..., v, ou ainda
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subespaco gerado pelo conjunto {vy, vy, .., v,}. Denotamos este subespaco por S=[v_1,v_2,..,v_n].

Teorema 2: Sejam vy, v, ..., v, w vetores de um espaco vetorial V, onde w é combinagdo linear de
Vi, Vo, o V. Entéo, [v_1,v_2,..,v_n,w]=[v_1,v_2,..,v.n].

Observagdo: Concluimos deste teorema que um subespago pode ser gerado por uma infinidade de
vetores, entretanto existe um nimero minimo de vetores para gera-lo.

DEXERCICIO RESOLVIDO

1.Seja A = {v{,v5,v3}, onde v; = (1,1,1), v, = (1,2,0) e v3 = (1,3,—1).

Determine:

a) O subespago gerado por 4;

Solucgdo: Verificaremos primeiramente se um dos vetores é combinagdo linear dos outros dois, analisemos

entdo, se existem « e B reais, tais que vz = av; + fv,. Com efeito,

(13,-1) = a(1,1,1) + p(1,2,0) = (¢ + B, a + 23, a)

at+pf=1
Sja+2f=30a=-1lef =2,
a=-—1
assim,
Vs = —v; + 2v,.

— — —

Temos entdo que [A] = [V1,V3,75] = [v],v;] = {av] + fv3; a, B € R}, este é o conjunto dos pontos do
plano que passa pela origem (0,0,0) e tem v; ¢ 7, como vetores diretores.
b) O valor de k para que o vetor (3, -1, k) € [4].

Solucdo: Note que,

(3,-Lk)e[Al © 3,—-1,k) = a(1,1,1) + B(1,2,0)

a+p=301)
o @B, -Lk)=(@+p,a+2B,a) @ a+28=-1I)
a=k ()

Fazendo (II) - (I), obtemos £ = -4. Substituindo este valor em (I), temos que a = 7, logo k =7.

2. Dado o subespagco W ={A € M, (R) /A =A% de M, (R), verifique que W é gerado pelas matrizes
o _[0 1 _[0 0
M=l ol a=[i oleas=1y 3]

Solucdo: Dado uma matriz qualquer A = [Z Z] em W, temos que A = A%, isto é, [‘Cl Z] = [Z 2]
Concluimos, entdo, pela igualdade de matrizes que b = c.

Portanto, toda matriz de W é da forma A = [? Z] . Logo podemos escrever:

b od=lo o+l o+l al=clo ol+2l; ol+els 3l

1 0 0 1 0 0
Assim, W é gerado pelas matrizes A; = [0 O] Ay = [1 0 CAz = [O 1l
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DPEXERCICIO PROPOSTO

" 1 0 O 01 0

1.Verlf1que que M23 = [All’ Alz, A13, A21, Azz, A23 ], Onde All = [0 0 0]7 Alz = [O 0 0 ’
[0 0 1 _ 0 0 O 0 0 O _ [0 0 O
A13_[0 0 0]"421'[1 0 0’22'[0 1 06A23_[0 0o 1

2. Seja o, = {ax, + bx + ¢; a, b, ¢ € R}. Verifique se r(x) = 6x? - 4x + 1 pertence ao [p (x), q (x)], onde
p(x)=x2-x+1 e q(x) =-3x%+x+2.

3. Verifique se C pertence ao conjunto gerado A4 = [_11 ﬂ eB = [i _01] onde C é dado por:

v 5 4 Rl

4. Verifique se s(x) pertence ao [p(x), q(x), r(x)], onde p(x) =-2x + 1, g(x) = -x2 + x e r(x) = x2 + 3x -2, com
s(x) dado por:
a)s(x)=-x2-5x+3 b) s(x) =x%+x+1

5.M,, é gerado por [(1) ﬂ [(1) (1)] H (1)] [(1) _01]?

6. M,, é gerado por H 8], H (1)], H ﬂ, [(1) _01]?

Dependéncia e independéncia linear

Defini¢do: Sejam vy, v,, .., v, vetores de um espaco vetorial V. Dizemos que esses vetores sdo
linearmente independentes (L) se a Unica solucdo da equagdo

A vyt+ay v+ +a, vy=0

for a trivial, isto é, a_l=a_2=--=a_n=0. Em outras palavras, os vetores v_1,v_2,...,v_n sdo linearmente
independentes se nenhum deles for combinagio linear dos outros. Caso contrario, dizemos que os
vetores sdo linearmente dependentes(LD).

DEXERCICIO RESOLVIDO

1. Verifique se os conjuntos abaixo sao LI ou LD:
A={(0,1,1),(1,1,0),(1,0,1),(1,2,3,)}

Solucdo: Considere a equacao:

a(0,1,1,)+B(1,1,0) +y(1,0,1) +6(1,2,3,) = (0,0, 0).

Dizemos que o conjunto A é LI, se ==y =3 =0, caso contrario, A é LD. Dada a equagdo acima temos que

B+y+5=0 ()
B+y+6,a+p+25a+y+35)=(0000)=<5a++256=0 ().
a+y+38=0(I

Logo, fazendo (II)-(I), obtemos « - y + § = 0, somando esta equacgao a (III), ficaremos com 2a + 46 = 0 =
a=-28. Substituindo este valor em (II) e (III), respectivamente, obtemos: =0 e y =-4. Portanto, para todo
S real temos que a =-26, =0 e y=-6 é solugdo para o sistema. Concluimos, entdo, que A é LD.
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b) B={(1,1,1)}

Solucdo: A Unica solu¢do para a equacdo a (1,1,1,) =(0,0,0) é a=0,logo B é LI.

2. Responda os itens abaixo justificando sua resposta.
a) Se os vetores u, Vv e w forem LI, serdo os vetores i +Vv,Vv+we U+ W também LI?

Solucdo: Para que os vetores i + V,V+ w e U+ w sejam LI, a iinica solucdo de a(t +V) + f(V+ W) + y(U +W)
=(0,0,0), deve ser a =3 =y = 0. Note que:

a@+v)+ @+ w)+y@+w) =(0,0,0)
= ail+av+ pv+ W + yu + yw = (0,0,0)
s> (a+u+ (@+p)v+ (B +y)w = (0,0,0).

a+y=0=a=-y()
Como os vetores i, v e w sdo Ll,temos { a+ B =0=a=—-L ().

B+y=0=y=-BUI

Temos, entdo, das equagdes (I) e (1) que y = B e a equagdo (III) nos da y = -f, portanto y = = 0, logo
a=y=p=0.Concluimos entdo que os vetores i +V, V+ W e U+ w sdo LL

b) Se os vetores u, Vv e w forem LI, serdo os vetorest-V,V-w el - w também LI?

s

Solugdo: Para que os vetores /- V,V-w e U - w sejam LI, a iinica solucdo de a(u - V) + B(V - W) + y(u - w)
= (0,0, 0), deve ser a = § = y =0. Note que:

a(i—v)+ W —w)+y@ —w)=(0,0,0)
= au—av + Y — Bw + yu — yw = (0,0,0)
s (@+u+ (—a+ v+ (=B —y)w = (0,0,0).

a+y=0=a=-y()
Como os vetores U, v e wsdo Ll temos{ —a+pf=0=a=p8(I) .

~B-y=0=y=—F0I

Concluimos, entdo, que para todo [ real, temos que @ = § e y = -f3 é solucdo para o sistema. Portanto, os
vetores U -v,V-w e U-wsdo LD.

DPEXERCICIO PROPOSTO

1. Verifique se os conjuntos abaixo sao LI ou LD:

{[—14 —23]’ [—?iz _69 } c My,
b) {(2,-1),(1,3)} c R?

C) {(_15 _2’ 013)1 (2’ _1;010)1 (1105010)} c R4
d) {—x?2+2x+1, 3x> —x+2,7x*> —4x + 3} C g,
e {x?+x+1, 3x>?—x+1,—x*2+3x+1}c g,

ol Al ol gl)em
R PP S Y | S

h) {2x,—x% +x, x3+1,x3 —x2 + 2} c g,
) {1—2x—x3+x2+3x,2x3 +x%2+1,3x3 + 2x + 3} € g5

&
~

[o}
t=)

N—
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2. Determine o valor de k para que:

a)A={(1,0,-1),(1,1,0), (k 1,-1)} seja LI;

1 0]'1 1]'[2 -1

a={; ollo ol lx "olfseiaLn.

Base de um espaco vetorial

Agora, queremos determinar, dentro de um espacgo vetorial V, um conjunto finito de vetores de
cardinalidade minima tal que qualquer outro vetor de V seja combinacdo linear deles. Um conjunto
de vetores desse tipo é chamado de base de V.

Defini¢do: Um conjunto A = {v4, v, .., v,} € V€ uma base do espacgo vetorial V se A éLleA gera V.

Propriedades:

P1) Se A ={v4, vy, .., v,} € um conjunto de vetores que gera um espaco vetorial I entdo A contém uma
base de V.

P2) Se A ={v4,vy, .., v,} €éum conjunto de vetores que gera um espaco vetorial V entdo qualquer conjunto
com mais de n vetoresde V é LD. (Concluimos, entdo, que, qualquer conjunto LI tem no maximo n vetores.)

P3) Qualquer base de um espaco vetorial possui 0o mesmo numero de elementos. Este nimero é chamado
de dimensdo do espago vetorial V, e denotado por dim V.

6 2 P4) Se vy, vy, .., v, sdo vetores LI de um espaco vetorial V e w € V ndo é combinacao linear de vy, v,, ...,
v,, entdo os vetores vy, vy, .., v, W, também sao LI

P5) Qualquer conjunto de vetores LI de um espaco vetorial VV de dimenséo finita pode ser completado de
modo a formar uma base de V.

P6) Se dim V =n entdo qualquer conjunto de n vetores LI forma uma base de V.

P7) Dada uma base 4 = {v,, v, .., v} de um espaco vetorial V, cada vetor de V é escrito de forma tinica
como combinacao linear dos vetores de A.

DEXERCICIO RESOLVIDO

1. Sejam os vetores v, = (1, 2, 3),v, = (0, 1, 2) e v3=(0,0,1). Mostre que o conjunto B = {v, v, v3 } € uma
base do R3.

Solugdo: Para provar que B é LI, deve-se mostrar que a; v, + a, v, + a3 v3=0admite somente a solucdo
trivial, isto é, a; = a, = a3 = 0. Com efeito,

a,vq + a, Uy + azvz = 0= aq (1,2,3) + a2(0,1,2) + a3(0,0,1) = (0,0,0)
a; = 0
=4 204+a;=0 =a, =a,=a3=0.
3a; +a;+az; =0

Logo, Bé LI

Para mostrar que B gera o R3, deve-se mostrar que qualquer vetor V= (x,y,z) € R3 pode ser expresso
como uma combinacdo linear dos vetores de B. Note que:

UV=av + ayv, + azv; &
(11 =X
(x,v,2) =a,(1,2,3) + a,(0,1,2) + a5(0,0,1) & 2a,+a, =y
3a; +a;+az =z
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Como a; = x, temos da segunda equagdo que a, = y - 2x. E, portanto, da terceira equagao obtemos
a3=7 - 3x - y+2x=-x-y+z Assim,

xy,z)=x(1,2,3) + (v-2x)(0,1,2)+ (-x-y+2)(0,0,1).

Entio, como B é LI e gera o R3, concluimos que B é uma base para o R3.

2.Sendo v; =(1,2) € R% determine v, € R? tal que{v;, Vv, }sejabase deR2

Solugdo: Seja v, = (a,b), onde a,b € R.Paraque{v;, v, } seja base de R?, devemos ter { vy, v, } LI,
isto é, av; + Bv, =0 admite somente a solugdo trivial. Assim,

a+af =0

avy + v, = 0= a(1,2) + B(a,b) = (0,0) = {Za +bB=0

{—2a—2a,8=0
2a+bf=0"

Somando, membro a membro, as equagdes acima obtemos S (-2a + b) = 0. Como devemos ter § = 0, para
que {vy, v, } seja LI, obrigatoriamente -2a + b # 0, assim:

2a#b=(a,b)#(a,2a)= (a,b) #a(1,2) = v, #av;.

Portanto, qualquer vetor 72 em R? tal que 72 # a71 paratodo a € R, gera uma base de RZ juntamente
com vj.
1

DPEXERCICIO PROPOSTO

1. Determine para quais valores de k o conjunto 4 = {(1, k), (k, 4)} seja base do RZ.

2.SejaB=1{(0,1,1),(1,1,0),(1,2,1)} c R3.
a) Mostre que B nio é base do R3.
b) Determine uma base do R3 que possua dois elementos de B.

3. Determine se o conjunto B é uma base para o espaco vetorial V.
a) V=R3B = {(1,1,-1),(2,-1,0),(3,2,0)}
b) V=R3B = {(1,01),(0,—1,2),(-2,1,—4)}

¢) V=R%B = {(1,1,0,0),(0,0,1,1),(1,0,0,3),(0,0,0,5)}

o v=mas={y L[} TLL Al
T | B P e P A |
o v=me={g 01 JLL 0 A

o vttt ={y 3L ol 1) T

h)y V=g, B={—x*>+x,x+1,x}
) V=gp,,B={—x*+x—x*+1,-x+1}

i) V=g, B={3x+2x+ 11}
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Transformacoes Lineares

UN 02

Definicao de transformacao linear

Estudaremos agora, um tipo especial de fungdo, conhecida como, transformacgoes lineares. O seu
dominio e contradominio sdo espacos vetoriais.

Definicdo: Sejam V e W espacgos vetoriais. Dizemos que T : V — W é uma transformacao linear se
satisfaz as seguintes condigdes:

DT(u+v)=TWw)+T(v)
ii) T (au) = a T(u)

Yuv € V,Va € R

Ou seja, uma transformacio linear é uma funcdo entre dois espacos vetoriais que preserva as
operacdes de adicdo vetorial e multiplicacdo por escalar. Quando o dominio e o contradominio de
uma transformacio linear T, coincidem dizemos que T € um operador linear.

64 )EXERCICIOS RESOLVIDOS

1. Dadas as transformacoes abaixo, verifique quais sdo lineares.
a) A simetria em relagdo a origemno R3, T:R3 > R3talque T (v) = -v.

Solugdo: Dados u, v € R3, temos que

e TU+V)=—(i+V)=—-u—-v=-u+v) =T +TW)
e T(au) = —au = a(—u) = aT(W), Va € R.

Portanto, T é linear.
b) A translagdo no plano T: R? - R? dado por T (x,y) = (x + ky,y + k, ), onde ky, k, € R*.
Solugdo: Dados U = (x1,¥1) e V = (xy, ¥, ), temos:
T(U +V)=T X +Xp,¥1+Y) = Xy + X+ kg, Y1+ Y, + ky)
e

T(U)+T(V)=T(xy, y1) +T(xpy,) = (xg +ky,y1 + ky ) + (Xp + Ky, vy + ky) = (x1 + Xy + 2ky, yq + Yo + 2k3)
Assim T(u+v)# T (u)+ T(V).Portanto, T no é linear.

2. Dada uma transformacao linear T: V — W, verifique que:
a)T(0)=0

Com efeito, seja V um vetor qualquer em V, entdo T(0) = T (0. ), mas sendo T uma transformacio linear
temos que T(0.v) = 0. T( V'), portanto:

7(0) = T (0.%) = 0. T (¥)=0.
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b) T(V) =-T (V)

Sendo -v = (-1).V e T uma transformacdo linear, temos que T(-v) = T((-1).v) = (-1). T(V) =-T( V).

Q) T(i-v)=T(ud)-T(V)

Sendo t' - v'=u + (-1). V e T uma transformacio linear, temos que T(u' - V) =T(u +(-1). V) =T(u) +
T(-1).V)=T(x)+ (-1) T(V)=T(a)-T (V).

3. Dada a transformagdo linear T: R% - g,, tal que T (1, 1) =x*-3x+ 2 e T (2, 3) = -x>+ 1, encontre
T(-1,2) e T(a, b).

Primeiramente verificaremos que B = {(1, 1), (2, 3)} é uma base para R2. Com efeito, para provar que B
é L1, deve-se mostrar que a4 (1,1) + a, (2, 3) = (0, 0) admite somente a solugdo trivial, isto é, a; = a, = 0.
De fato,

a; +2a, =0=a, = —2a,
a,;(1,1) + a,(2,3) = (0,0) = £
a; +3a;, =0=a, = —3a,
= —-2a,=-3a;, 2a,=0=>a,;,=0

Logo, Bé LI.

Para mostrar que B gera o R, deve-se mostrar que qualquer vetor V = (x, y) € R? pode ser expresso
como uma combinacdo linear dos vetores de B. Note que:

a, +2a, =x —a, — 20, = —Xx
xy)=a,(1,1) + a,(2,3) & [ = { i
a, +3a, =y a,+3a, =y
= —-a;—2a,+a,+3a,=—x+y=>a,=y—x,

substituindo este valor na equacdo a; + 2a, = x, obtemos:
a;+2(y-x)=x=>ay=x-2y+2x>a;=3x-2y.
Portanto, qualquer vetor (x,y) € R pode ser escrito como:
(xy)=(8x-2y) (1, 1) + (y-x) (2,3)

Provamos, entdo, que B = {(1, 1), (2, 3)} é uma base para R2. Logo, com isso, temos que o vetor (-1, 2)
pode ser escrito na base B, isto é,

-1,2)=G.(-D-2.2) (L, D)+ 2-(-1)(2,3) =-7.(1,1) + 3. (2,3)
portanto, sendo T uma transformacgao linear temos:
T(-1,2)=T(-7.(1,1)+3.(23))=-7.T(1,1) +3.T(2,3)
=-7. (x2-3x +2) + 3. (-x2 +1) = -10x2 + 21x -11.
Analogamente, temos que: (a, b) = (3a - 2b) (1, 1) + (b-a) (2, 3), logo:
T(a,b) = T((3a—2b)(1,1) + (b —a)(2,3))
=QBa-20TQ,1)+ (b—a)T(2,3)
=Ba-2b)(x*=3x+2)+ (b—a)(—x*+1)
= (3a — 2b)x*> — 3(3a — 2b)x + 2(3a — 2b) — (b — a)x?

+ (b—a)=(3a—2b—(b—a))x*—3Ba—2b)x+5a—3b
= (4a — 3b)x?* + (6b — 9a)x + 5a — 3b
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4. Dada a transformacdo linear T: RZ — R3, tal que T (1,-1) = (3, 2,-2) e T (-1,2) = (1, -1, 3), determine
T (x,).

Seja B ={(1, -1), (-1, 2)}, verificaremos que B é uma base para RZ. Com efeito, dados ay, a, € R, tal que
a; (1,-1) + ay (-1,2) = (0, 0) temos,

a,(1,-1) + a,(-1,2) = (0,0) = [ i
—-a, +2a, =0=a, =2a,
sa,=aq=2a, @a,=0=>a,=0

Logo, Bé LI.

Devemos mostrar agora que qualquer vetor v = (x,y) € R2? pode ser expresso como uma combinagio
linear dos vetores de B. Note que:

,y)=a,(1,-1) + a,(-1,2) & {
—a, +2a, =y
sa—a+(—a;+2a)=x+y=>a,=x+y,

substituindo este valor na equacdo a, - a, = x, obtemos:
al-(x+y)=x=>a;=x+x+y=>a;=2x+y.
Portanto, B gera R2.Logo, B é uma base para R2. Assim,

() =(2x+y) (1,-1) + (x+y) (-1, 2),

temos, entdo, que:

T(x,y) =T((2x +y)(1, -1 + (x + y)(-1,2))
=2x+y)TA, -1+ (x+y)T(-1,2)
=2x+y)32,-2)+(x+y)(Q,-13)
= (3(2x +y)+(x+v),2Qx+y)—(x+y),-2Q2x+y)
+3(x+y)=Tx+4y,3x+y,—x +y).
Logo, T(x,y) = (7x + 4y,3x + y,—x + y).

DPEXERCICIO PROPOSTO

1. Dadas as transformagoes abaixo, verifique quais sdo lineares.

a) A projecdo ortogonal do R* sobre o plano xy, ou seja, T: R® - R3 tal que
T(x,y,z) = (x,,0).

b) T:R? - R% T(x,y) = (Ix|,y)

c) T:RE->R3%: T(x,y,2) = (x +y,x—y,0)

d) T:R*->R*%T(x,y) = ,xy, %)

& T:My - RT([¢ Z):det[z Z

2. Dada a transformagcéo linear T : RZ2 - R3 tal que T (1,0) = (1,2,-1) e T (0,1) = (3, 0, 4), encontre
T(5,2) e T(a,b).

3. Dada a transformagdo linear T: R > g, tal que T (1, 0) =-2x+ 1 e T (3,-1) = 2x? + X, encontre
T(-7,9) e T(a,b).

4. Dado o operador linear T : R2 —» RZ tal que T (1,0) = (3,-2) e T (0, 1) =(1, 4), determine T (x, y). (Obs.:
Um operador linear T é uma transformacao linear de um espaco vetorial V' nele mesmo, isto é, T: V = V)
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5.Seja T: R3 - R% uma transformacio linear tal que T (1,1,1) = (1,2), T(1,1,0) = (2,3) e T (1,0, 0) = (3,4).
a) Determinar T (x, y, z).

b) Determinar v € R3 tal que T(V') = (-3, -2).

c) Determinar v €R3 tal que T (V') = (0, 0).

6.Seja T: R3 - R3 um operador linear tal que T (1, 0, 0) = (0, 2,0), T(0,1,0)=(0,0,-2) e T(0,0,1) =
(-1, 0, 3). Determinar T (x,y, z).

NUcleo de uma transformacao linear

Defini¢do: Sejam V e W espacos vetoriais e T: V - W uma transformacao linear. O conjunto de todos
os vetoresv € V tais que T (v) = 0 é chamado niicleo de T e denotado por ker (T). Em simbolos temos,

ker (T)={v € V:T(v) = 0}.

SAIBA MAIS

o termo ker é proveniente do inglés “kernel” que significa nicleo.

Teorema 1: O ntcleo de uma transformacdo linear T: V— W é um subespaco vetorial de V.

Demonstragdo: Sejam v, e v, vetores em ker (T) e a € R. Entdo T(v,) =T (v,) = 0. Logo,

T +v,) =TWw)+T(w,)=04+0=0
{T(avl) =alT(v;) =a.0=0 ’

Concluimos, entdo, que vy + v, € ker (T) e av; € ker (T).E como T é uma transformacao linear, temos
que T (0) =0, assim 0 € ker (T), portanto ker (T) é um subespacgo vetorial de V.

Teorema 2: Uma transformacio linear T: V — W é injetora se, e somente se, ker (T) = {0}.

Demonstragdo: Seja T injetora, provaremos que ker(T) = {0}. Para isso, dado v um vetor de ker (T), temos
que T (v) = 0. Sendo T uma transformacao linear, temos que T (0) = 0, mas como T é injetora, temos que
v = 0. Portanto, o tnico elemento do nucleo é o vetor nulo, isto é, ker (T) = {0}. Seja agora ker (T) = {0},
provaremos que T é injetora. Entdo, dados vy, v, € Vcom T (vq) =T (v, ), temos que T (v{) - T (v5)=0,
sendo T uma transformacao linear, obtemos T (v; - v, ) = 0, assim v; - v, € ker (T), mas como ker (T) =
{0}, entdo v; - v, = 0, 0 que implica que v, = v,. Provamos que dados v;,v, € Vcom T(v{) = T(v,), entdo
vq = v,. Portanto, T € injetora.

SAIBA MAIS

Uma fungéo T: V— W ¢ injetora se Vvy, v, € V, com vy # v, implica que T (v;) # T(v,). Ou se
Vv, v, € V.com T (v4) = T (v,) implica que v, = v,.
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IAL

DEXERCICIO RESOLVIDO

1. Encontre o nucleo da transformacao linear T': ¢ — R definida por T (p (x)) = f(l) p (x)dx.

Solugdo: Dado p(x) € 4, temos que p(x) =ax+b,a, b € R, assim:

1

T(p(x)) = f p(x)dx = f (ax + b)dx = [a"z—z + bx]

0

:(g+b)—(a.g+b.0)=%+b.

Logo,
ker(1) = {p(x) € @1 : T(P()) = 0} = {p(x) € Py : 5+ b = 0}

a a
={pwep b= —5} S {ax—z,a €R}.
2. Encontre o nticleo da transformag3o linear T: M,, - M,, definida por T (4) = AT.
Solugdo: Note que:
ker(T) = {A € My,:T(A)=0}={A € M,, : AT=0},
mas AT=0=A4= (AT)T= (O)Tz 0, logo, ker(T) = {0}.

3. Encontre o nticleo da transformagcdo linear T: R3 — R2 definida por T (x,y, z) = (x -y + 4z, 3x + y +82).
Solugio: Sendo ker(T) = {(x,y,2) € R3 : T (x,y, z) = 0}, temos que:
ker (T) = {(x,y,2) € R3:(x-y + 4z 3x+y+8z)=(0,0)}
Logo, dizemos que (x,y, z) € ker (T), se, e somente se,

x—y+4z=0

(x—y+4Z,3x+y+82)=(0:0)@{3x+y+82=0’

somando membro a membro as equagdes temos que, 4x + 12z = 0 = x = -3z. Substituindo este valor na
equagio x - y + 4z = 0, obtemos:

-3z-y+4z=0=>y=z
Portanto, qualquer (x,y, z) € ker(T) é dado por: (x,y, z) = (-3z, z, z). Assim

ker (T)= {(-3z,z,2):z € R}={z(-3,1,1):z € R} =[(-3,1, 1)].

4. Verifique que a transformagdo linear T': R? -, definida por T(a, b) = (a + b) x + a € injetora.
Solucdo: Pelo teorema 2, temos que T é injetora se, e somente se, ker(T) = {(0,0)}. Note que,
ker(T) ={(a, b) € R2:T(a,b)=0}={(a,b) € R2:(a+b)x+a=0}
={(a,b) € R2:(a+h)=0 e a=0}=
={(a,b) € R2:b=0 e a=0}={(0,0)}

Portanto, T é injetora.
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Imagem de uma transformacao linear

Defini¢do: O conjunto imagem de uma transformacéo linear T: V- W é formado por todos os pontos
w € W que sdo imagens de algum vetor v € V. Isto é,

Im(T)={w € W:w=T(v) paraalgumv € V}={T(v) € W:v € V}.

Observagdo: Se Im(T) = W, entdo T é sobrejetora.

SAIBA MAIS

Uma fungdo T: V— W é sobrejetora se Yw € W, existir pelo menos um v € Vtal que w=T(v).

DEXERCICIO RESOLVIDO

1. A imagem de uma transformacgao linear T: V — W é um subespaco vetorial de W.

Solugdo: Sejam w; e w, vetores de Im(T) e« € R. Vamos mostrar que w; + w, e aw; pertencem a
Im(T). Para isto, devemos mostrar que existem vetores u e vem V tais que T(u) = wy + w, e T(v) = aw;.

Como wy, w, € Im(T), existem vetores v{, v, € Vtais que T(v;)=w; e T(v,) = w,. Fazendou =v, +
v, eV = avy, temos:

T(u) =T(vy+vy) =T(vy) + T(vy) =wy +w,

e
T(V) = T(a'Vl) = T(V].) = an.

Portanto, Im (T) é subespaco vetorial de W.

1
2. Encontre a imagem da transformacao linear T': ¢, — R definida por T(p(x))= I, p(x) dx.

1 1
Solugdo: Como para todo a € R, existe p(x) =a € g, tal que T(p(x)) = J, p()dx=][, adx=[ax] [s=a-0
=g, temos que R € Im(T), mas pela definicdo de Im(T), temos que Im(T) c R, portanto Im(T) =R.

3. Encontre a imagem da transformagao linear T: M,, - M,, definida por T(A4) = AT,

Solugdo: Como para toda matriz A4 no contradominio M,,, existe uma matriz B = AT no dominio M,,, tal
que T(AT) = (AT)T = 4, temos que M,, c Im(T), mas pela defini¢do de Im(T) temos Im(T) € M,,, portanto

Im(T) = Mp,.

4. Dada a transformacio linear T: RZ - R2 definida por T(x,y) = (x - 2y, 2x + 3y), verifique se o vetor (5,3)
pertence ao conjunto Im(T).

Solugio: Verificaremos se existe (x, ) € R? tal que T(x,y) = (5, 3), isto é, precisamos verificar se o sistema
(x - 2y, 2x + 3y) = (5, 3) tem solugdo. Com efeito,

x—2y=5 {—2x+4y=—10

(x—zy,2x+3y)=(5,3)=>{2x+3y=3@ 2x+3y=3 "’

somando membro a membro as duas equagdes temos que: 7y =-7 =y =-1.
Substituindo y = -1 na equagdo x -2y = 5, obtemos: x-2 (-1) =5 =

x = 3. Portanto, o sistema admite soluc¢do e, entdo, conclui-se que (5,3) € Im(T).
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SAIBA MAIS

Este teorema também é conhecido por Teorema do Posto, onde:

nulidade (T) + posto (T) = dim V
sendo,
nulidade (T) = dim ker (T) e posto (T) = dim Im (T).

Teorema da dimensao

Teorema 1: Se T: V- W é uma transformacao linear, onde V é um espaco de dimensio finita, entdo

dim ker (T) + dim Im (T) = dim V.

Omitiremos a demonstracio deste teorema, ela pode ser encontrada com facilidade em varios livros
de Algebra Linear.

Teorema 2: Se T: V— W é uma transformacao linear injetora e dim V = dim W, entdo T transforma base
em base, ou seja, se B = {v{, v,, .., v} é base de V, entdo o conjunto T(B) ={T(v{), T(vy), ... T(v,)} é

base de W.

Demonstragdo: Sendo dim V = dim W = n, basta mostrar que T (B) é LI. Ou seja, dada a igualdade

cq.T(vq) +cy.T(vy) + ... + ¢,.-T(v_n) =0, devemos provar que ¢ = ¢, = ... =c, = 0. Com efeito, pela
7 O linearidade de T, temos que

T(cp.vytcg.vyttcy.vy)=cy.T(v) +cy. T(vy) +.ot ¢, . T(v,) =0

Sendo T injetora, temos que ¢; . vy + ¢.V, + ... + ¢, . v, = 0, mas como B é base, B é Ll e, portanto, ¢; =
€y = .. =c,=0.Logo, T(B) é base de W.

DEXERCICIO RESOLVIDO
1. Seja T: V- W é uma transformacdo linear com dim V = dim W = n, verifique que T sera injetora se, e
somente se, T for sobrejetora.

Solucdo: Assumindo T injetora, temos que ker(T) = {0}, logo dim ker(T)=0. Assim, pelo teorema 1,
obtemos:

dim ker(T) + dim Im(T) =dim V= 0 +dimIm (T) =n = dim Im(T) =n=dim W,
Concluimos, entdo, que Im(T) = W e, portanto, T é sobrejetora.

Reciprocamente, assumindo T sobrejetora temos Im(T) = W, isto é, dim Im(T) = dim W = n, assim pelo
teorema 1,

dimker(T) + dimIm(T) = dim V = dimker(T) + n =n = dimker(T) = 0,

assim, ker(T) = {0}, e portanto T é injetora.

2. Encontre o posto e a nulidade das transformacdes lineares abaixo:
a) T: g, — 3, onde T(p(x)) = xp(x).

Solugdo: Dado p(x) € §,, temos que p (x) = ax? + bx + ¢, assim T (p (x) ) = T(ax? + bx + ¢) = x. (ax? + bx + ¢)
= ax3 + bx% + cx.
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Portanto,
ker(T) = {p(x) € $, : T(p(x)) = 0}

={ax?+ bx + c: ax3 + bx% + cx = 0}
={ax%+bx +c:a=b=c=0}={0},

Concluimos, entdo, que nulidade(T) = dim ker(T) = 0.

O teorema da dimensdo garante que:

dim ker(T)+dim Im(T) = dim g, = posto(T)
=dimIm(T)=3-0=3.

SAIBA MAIS

Sendo {1, x, x2} base canénica de §#,, temos que dim o, = 3.

2.T:W- g, onde T ([Z IZD =(c-a)x?+(b-c)x+ (a-b)eWéo espacgo vetorial formado pelas

matrizes simétricas 2x2.

Solugdo: Sendo ker (T) = {[Z IC)] eEW:T ([Z IC)D = 0},temos que:

ker (T) ={[Z IZ]EW:(c—a)x2+(b—c)x+(a—b):0}
- ﬂem@—@:@—ozm—w:q

; Jewia—p=o {2 }-ser(l; 1))

Portanto, {[1 ﬂ} € uma base para o ntcleo de T, por isso nulidade(T) = dim ker(T) = 1.

0 teorema da dimensao garante que dim ker (T) + dim Im(T) = dim W = posto(T) = dim Im(T) = dim W - dim
ker (T). Logo, para encontrarmos o posto(T), devemos saber dim W. Para isso, dada uma matriz qualquer

o e worenee s =af} Z ol Zrels s s poconms

(1 0170 1110 O
i={lp ol i oflo 1
considere:

}. Para que G sejauma base para W, devemos verificarseGéLI. Paraisso,
1 0 0 1 0 01_10 O
aly ol *+2ly ol+ely 1l=lo o

Temos, entdo, que a=b=c=0,logo G é Ll e, portanto, G € uma base para W. Concluimos que dimW =3. Assim:

Posto(T) = dim Im(T) =dim W - dim ker (T) =3 -1=2.
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DPEXERCICIO PROPOSTO

1. Determine o nucleo e a imagem das transformacoes lineares:
a) T:R3>R3, T(x,y,2) = (x+2y-2y+ 22X+ 3y +2)
b) T:RZ—>R2, T (x,y) = (3x-y,-3x+Y)
) T:R35RE T(x,y,2)=(x+2y-22x-y+2)
d)T:R3-R3, T(x,y,2) = (x-3y,x-2,2-X)

e)T:R?->R3T(xy)=(x+yx2y)

2. Dado o operador linear T': R2 — R2 definido por T (x,y) = (3x +y, 4x + 2y), verifique:
a) Quais dos vetores (1, -2), (2,-3) e (-3, 6) pertencem a ker (T)?

b) Quais dos vetores (2, 4), (-% ,-1) e (-1, 3) pertencem a Im (T)?

a

3. Dada a transformacao linear T: My, - M,, definida por T ([
c

b a 0 s
= f B
4 ) [0 al verifique
a) Quais das matrizes _11 g] , [g ;é] e [§ _23] pertencem a ker (T)?
i i t I ?
b) Quais das matrizes _1 3] , [2 0] e [0 _3] pertencem a Im (T)
7 Z c) Descreva ker (T) e Im (T).

4. Dada a transformagio linear T': §, - R? definida por T(ax? + bx + ¢) = (c - b, b + a), verifique:
a) Quais dos polindmios x + 1, -x2 + x e -x2 + x +1 pertencem a ker (T)?
b) Quais dos vetores (0, 0), (1, 0) e (0, 1) pertencem a Im(T)?

c) Descreva ker (T) e Im(T).

5. Encontre a nulidade e o posto de T, onde:
a) T: M,, > R? definida por T ([? ZD =(a-b,c-d).
b) T: ¢, - R? definida por T (p (x)) = (p(0), p(1)).
c)T:R2 ->RZ T (x,y)=(3x-y,-3x +y).
d)T:R3 >R T(x,y,2) = (x+2y -2z 2x-y + 2).
e)T:R3 >R3> T(x,y,2z)=(x-3y,x-22z-Xx).

f) T:RZ - R3, T(x,y) = (x+y,X,2y).

6. Considere a transformagcdo linear T: R2 - R3 tal que T (-2,3) =(-1,0,1) e T(1,-2)=(0,-1,0).
a) Determine T (x, ).
b) Determine ker(T) e Im(T).

c) T é injetora? E sobrejetora?
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7. Determine o nicleo e a imagem do operador linear T: R3 — R3 definido por

Txy z)=x+2y-zy+2zx+3y+27).

8. Seja T: R3 - RZ a transformacdo linear tal que T(eq) = (1, 2), T(ey) = (0,1) e T(ez) = (-1, 3), onde
{e1, e, e3} éabase candnica de R3.
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AUTOVALORES, AUTOVETORES,
DIAGONALIZACAO E ESPACO
COM PRODUTO INTERNO

Nesta unidade vamos estudar os aspectos relacionados com
Autovalores, Autovetores, Diagonalizagdo e Espago com Produto
Interno.

Objetivos

* Definir e exemplificar os conceitos de autovalor e autovetor de
um operador;

* Aplicar os conceitos de autovalores e autovetores para
diagonalizar operadores;

* Compreender se um operador linear é diagonalizavel;

* Definir produto interno;

® Reconhecer um produto interno a partir da defini¢do;

* Estudar os principais tipos de produto interno;

* Operar com o produto interno para a solugdo de problemas
envolvendo espacos vetoriais;

® Operar com o produto interno para o estudo de problemas de
ortogonalidade e perpendicularidade.
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Autovalores e Autovetores

UN 03

Definicao

Defini¢do: Dado um espago vetorial V e uma transformacao linear T:V — V, dizemos que A € R é um
autovalor associado ao autovetor v € Vse, A e v satisfazem T(v) = Av.

SAIBA MAIS

Neste caso, T(v) e vtem a mesma diregdo, isto é, T (v) e v sdo paralelos.

Exemplo 1: Seja T:R% — R2 definido por T(x,y) = (y,x) para todo (x,y) € R2. Para que um ntimero real A
seja um autovalor de T tem que existir um vetor ndo-nulo (x,y) € R? tal que T(x,y) = A(x,y), isto &, (y,x)
= A(xy), assim:

y=Ax
{Xz/ly:y=/1(,1y):>y(1—,12)=0:>y=0 ou A=+1

Sey =0, temos x = 0, mas o vetor (x,y) # (0,0). Logo, A = +1 e, portanto, paraA; = 1 obtemos (x,y) = (x,x)
=x(1,1), assim v; = (1,1). Analogamente, para A, = -1 obtemos (x,y) = (x,-x) = x(1,-1), assim v, = (1,-1).
Concluimos, entdo, que v; é um autovetor de T associado ao autovalor A; = 1 e v, é um autovetor de T
associado ao autovalor 1, = -1.

Teorema 1: Seja v um autovetor associado a um autovalor A da transformacao linear T:V — V, qualquer
vetor w = av (a # 0) também é autovetor de T associado a A.

Demonstracdo: Com efeito, sendo w = av e T uma transformacao linear temos que T(w) = T(av) = aT(v),
como v é um autovetor associado ao autovalor 4, isto é, T(v) = Av, obtemos T(w) = aT(v) = a(Av) = A(av) =
Aw, logo w = av também é autovetor de T associado a A.

SAIBA MAIS

No exemplo 1, usamos o seguinte resultado: se v é autovetor associado a um autovalor 2,
entdo av também o é. Este resultado estd provado no teorema.

Exemplo 2: Considere a transformagdo linear T:R? — R2 definida por T(x,y) = (3x + y,x + 3y) para todo (x,y)
€ RZ. Para encontrarmos os autovetores e autovalores de T, devemos resolver a equacio T(xy) = A(xy),
que neste caso é (3x + y,x + 3y) = A(xy). Esta equacao resulta no sistema

3x+y=Ax=(3-2)x+y=0 (I)
x+3y=Ay=x+(3-2)y=0 (IlI)

De (II) temos que x = -(3 - A)y = (A - 3)y, substituindo em (I) obtemos (3-A)(A-3)y +y=0= (A2- 61 + 8)y
=0=>y=00ui2-61+8=0.

Consideremos os casosy =0 ouy # 0.

i. Se y = 0, entdo temos da equagdo (/I) que x = 0. Logo ndo nos interessa, ja que os autovetores sao
vetores ndo-nulos.
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ii. Se y # 0, entdo A2 - 61 + 8 = 0 e portanto Ay =2o0uAl,=4.Agora, parad; = 2,temos de (I) quex+y=0
=y = -x. Concluimos, entdo, que, para o autovalor A; = 2, os autovetores associados sao do tipo (x,-x), x
# 0. Analogamente, para oautovalor A, = 4, obtemos y = x, e, portanto, os autovetores associados sdo do
tipo (x,x), x # 0.

Teorema 2: Se A é um autovalor de um operador linear T:V — V, entdo, o conjunto V; = {v € V:T(v) = Av} é
um subespaco vetorial de V, associado ao autovalor A.

Demonstrag¢do: Com efeito, dados v, w € V;, temos que T(v) = Av e T(w) = Aw. Entdo, para qualquer escalar
o ER,

Tv+w)=TW)+T(W)=Av+Aw=A(v+w) =Vv+weV_A

e

T(av) = aT(v) = a(Av) = A(av) = av € V;, Va E R.
Portanto, V; é um subespaco vetorial de V.

Observacdo: A imagem T(V;) do subespaco V, esta contida em V}, isto é, V, é invariante sob T. O subespaco
V, € chamado autoespaco de T associado a A e é formado por autovetores associados a A e pelo vetor nulo.

Exemplo 3: Considerando o exemplo 2, temos os seguintes autoespacos, respectivamente:

Vy, =2 ={(xy) € RZy=x}e Viy=4) ={(xy) € R2:y = x}.

SAIBA MAIS

78

Temos, entdo, pelo exemplo 3 que as retas V; _ , e V, _ 4 sdo invariante sob T.

PolinOmio caracteristico

Dada uma matriz quadrada 4, de ordem n, dizemos que A é autovalor associado ao autovetor v de 4, se
A e v forem, respectivamente, o autovalor e autovetor da transformacdo linear T:R" = R", cuja matriz
associada é a matriz 4, em relacdo a base candnica, isto é, T(v) = Av. Assim, um autovalor A € R e um
autovetor v € R" de A sdo solugdes da equacdo Av = Av ,v#0. Sendo [:R" — R" a matriz identidade,
temos que Av = Av equivale a Av = (Al)v, ou ainda, (4 - Al)v = 0. Para que esse sistema homogéneo
admita solugdes ndo-nulas, deve-se ter:

det(A - A) = 0.

A equacdo det(A - AI) = 0 é denominada equacdo caracteristica de T ou da matriz A. Suas raizes sdo
exatamente os autovalores de T ou de A. A expressao det(A - AI) é um polindmio em A denominado
polindmio caracteristico. Uma vez determinado os autovalores, os autovetores associados podem ser
determinados resolvendo a equacgdo (A - Al)v = 0 para cada autovalor A.

31
Exemplo 1: Para encontrar todos os autovalores da matriz A =[1 3] do exemplo 2 da se¢do anterior,

devemos determinar todas as solucdes A da equacgdo det(4 - AI) = 0. Como

3 1) (10 3-4 1
det(A -Al)=det .y = det =(3-2) -1=4*-61+8
1 3) o1 1 3-2
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temosA; = 2 e A, = 4. Para encontrar os autovetores associados precisamos resolver a equacgao (4 - Al)
v =0, assim:

et (2 LS e

3-4 1 X 0 -1 1)\(x 0 -x+y=0
Para A, = 4, temos = |= = |= =x=y=v,=(x,X).
1 3-4)y) o)7Lt —1)ly) lo)7 | x=y=0

01 0
Exemplo 2: Encontre os autovalores e os correspondentes autoespacos da matriz A=[{0 0 1|
2 -5 4
-1 1 0
Solugdo: O polindmio caracteristico é det(A-Al)=det| 0 -4 1 [=2+(-A)2(4-2)-(-5)(-N)=2+4
2 -5 4-4

A2-23-51=-23 + 412 - 5} + 2, fatorado temos, det(A - AI) = (A - 1)2 (2 - A). Logo det(A - AI) = 0 = (A - 1)2
(2-)=0>A=1er=2.

Como A = 1 é uma raiz de multiplicidade dois, vamos nomear os autovalores por A; =1, =1 e A; = 2. Para
encontrar os autovetores associados precisamos resolver a equagao (4 - AI)v = 0, assim:

ParaA; =2, =1, temos

-1 1 0)«x 0 -Xx+y=0=>x=y
(A-I)v=| 0 -1 1|y|=|0|=-y+z=0=>z=y
2 -5 3)\z 0 2x-5y+3z=0

Como x = y e z = y satisfaz a terceira equacdo, temos que os autovetores sdo do tipo (yy,y), portanto o
autoespaco associado aA; =1, =1 é dado por:

(R3)A1 =ap=1=txy2) € R3:x =y =z} = ger(1,1,1), ou seja, é o subespaco gerado pelo vetor (1,1,1).

Para A5 = 2, temos

- 4

2 1 0\x 0 —2x+y—0:>x—2

(A-2I)v=| 0 -2 1| y|=|0|=>{-2y+z=0=>2z=2y
2 -5 2)\z 0 2x-5y+2z=0

Como x =% e z = 2y, satisfaz a terceira equagio temos que os autovetores sdo do tipo (%,y,Zyj, portanto

0 autoespago associado a A3 = 2 é dado por:

(R3 )@:z = {(x,y,z) eR®:x= %ez = Zy} = {(%,y.Zy]} = {%(1,2,4)} =ger(1,2,4), ou seja, é o subespago
gerado pelo vetor (1,2,4).
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DEXERCICIO PROPOSTO

1. Determinar os autovalores e autovetores das seguintes transformacoes lineares:
a) T(xy) = (x + 2y,-x + 4y);

b) T(xy) = (y,x);

) T(xyz) = (x + yy.2);

d) T(xyz) = (X -2 -y, 2x + y + 27).

2. Encontre todos os autovalores e autovetores das matrizes abaixo:
2 2

a
1 2

b)
10

<)

o o R
NN e
NSRS

N

d)

[uny

3. Quais sdo os autovalores e autovetores da matriz identidade?

4. Mostre que se u e v sdo autovetores de uma transformacao linear associada a A, entdo au - fv é também
autovetor associado ao mesmo A.

5. Determine o operador linear T(x,y) cujos autovalores sdo A; = 1 e A, = 3 associados aos autovetores u =
(v, -y) e v =(0y), respectivamente.

6. Seja T:V — Vum operador linear ndo-inversivel. Os vetores nao-nulos do nucleo de T sdo autovetores?
Em caso afirmativo, determine o autovalor associado e, em caso negativo, justifique.

-16 10

7. Determine os autovalores da matriz ( g

j, caso existam.

8. Prove o teorema a seguir: SejaA uma matrizn xn e Aum escalar, os seguintes enunciados sdo equivalentes:
a) A é um autovalor d e A.

b) (A - AI)x = 0 tem uma solugdo ndo trivial.

c) Nuc(4 - AI) # {0}

d)det(A-A)=0

9. Sejam u e v vetores linearmente independentes de RZ, prove que o vetor |u|v + |v|u estd contido na
bissetriz do angulo formado por u e v.
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10. Para cada par de vetores u = (x,y) e v = (x,y’) em RZ, defina a seguinte fun¢io; u.v = 2xx’ -xy’-X'y+2yy.
Prove que isto define um produto interno no espago vetorial R2,

Diagonalizacao de operadores

UN 03

Dado um operador T:V — V, sabemos que a cada base B de V corresponde uma matriz [T]B que
representa T na base B. Serd que existe uma base em V, de modo que a representacdo matricial de T
seja a mais simples possivel?

A resposta para esta pergunta esta no processo chamado de diagonalizacdo de operadores. A
diagonalizacdo de [T]z é o processo que nos permite encontrar uma matriz diagonal [T]g;. A nova
base B; é uma base formada de autovetores. Vale a pena ressaltar que nem sempre é possivel a
diagonalizacdo de um operador. Estes fatos nos levam a seguinte defini¢do:

Definicdo: Um operador T:V — V é diagonalizavel se existe uma base de V formada de autovetores
deT.

Existe também uma definicdo de operador diagonalizavel equivalente a defini¢cdo anterior, vejamos:

Defini¢do: Uma matriz quadrada A é diagonalizavel se existir uma matriz inversivel P tal que P-1AP
seja diagonal. A matriz P é uma matriz formada a partir dos autovetores da matriz A. Diz-se, nesse
caso, que a matriz P diagonaliza A, ou que P é a matriz diagonalizadora.

DICA

Para diagonalizar um operador, primeiramente, deve-se encontrar os seus autovalores e
autovetor!

De modo geral as definigbes acima podem ser entendidas como: um operador linear T:V-V é
diagonalizavel se existe uma base de V formada de autovetores.

Exemplo 1: Determinar uma matriz P que diagonaliza a matriz A dada a seguir, e em seguida calcular
P-1AP.

3 -1 1
A=-1 5 -1
1 -1 3

Solucdo: O primeiro passo sera encontrar os autovalores da matriz A, para isto, devemos resolver a
equacdo det(A - Al) = 0. Os autovetores sdo os seguintes:

V,=(1,0,-1) associado ao autovalor A; = 2
V, =(1,1,1) associado ao autovalor A, = 3

V3 =(1,-2,1) associado ao autovalor A; = 6

Como todos os autovalores sdo distintos, entdo o conjunto B = {V;,V,,V3} é uma base de autovetores
de R3, e portanto a matriz P, dada por:

DICA
111 As colunas de P
P={0 1 -2 sao formadas por
11 1 autovetores.
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Diagonaliza a matriz A.

De posse da matriz P, agora vamos encontrar o matriz D, tal que D = P-1AP. Para encontrar a inversa
de P, pode-se utilizar os métodos estudados na unidade I.

1y 1

2 203 -1 1)1 1 1
P'AP= 111 -1 5 1|0 1 -2

303 3 1 1 3 11 1

1 -1 1

s 3 & DICA

Observe que a

2 00 diagonal principal

PlaP=l0 3 0l=D de D é formada por
autovetores.
0 0 6

Propriedade: Dado um operador linear T em R3 que admite uma base formada por autovalores 1,
A, e A5 distintos, associados aos autovetores V4, V, e V3, respectivamente, entdo a matriz de T na base
formada por B={V,, V,, V5} é da forma:

8 2 A representacdo matricial do operador T na base B é dada por:
A1 0 O
[TIB=] 0 A2 0 | Essaéamatriz que diagonaliza operador T na base B costuma ser representada
0 0 23

da forma [T]B por D.

DICA

A matriz D que diagonaliza T é constituida dos autovalores de T dispostos na diagonal
principal.

Base de Autovetores

Como dissemos, anteriormente, é necessario termos uma base formada por autovetores para que seja
possivel diagonalizar um operador T:V-V. Para que seja possivel encontrar um base formada por
autovetores é necessario, como ja vimos antes, resolvermos a equac¢do matricial [T-AI]v=0, onde v é
um vetor pertencente ao espaco V, na verdade este vetor é desconhecido, mas quando a equag¢do dada
for resolvida para A, os v serdo os elementos da base de autovetores para o operador T.

Vejamos alguns resultados que nos ajudam a encontrar uma base de autovetores.

12 Propriedade: Autovetores associados a autovalores distintos sdo linearmente independentes.

Demonstracdo: Faremos uma demonstragdo para A e A, distintos. A prova para o caso de n vetores é
similar.
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Sejam T(v{)=A; v{ e T(v,) =A; vy, com Ay # A,. De posse desta hipdtese agora tome a combinacdo
linear abaixo:

(1) ajvy+a,vy=0

Aplique a transformacao linear T a equacgio (1), e utilize a linearidade de T, com isso temos:
a;T(v4) +a,T(v,) =0, ou de modo equivalente,

(2) 317\1 Vl + az}\z Vz =0

Multiplicando a equagao por A, temos:

(3) alAlvl +a2Alv2 =0

Subtraindo a equacgido (3) de (2), temos:

ay(Ay - Aq)v, =0

Mas, por hipétese temos A, -A; #0ev, #0

Logo, temos a, = 0.

Substituindo a, = 0 na equagao (1) e sabendo que v, # 0, temos:

al = 0
Logo, concluimos que os vetores {v;, v,} sdo linearmente independentes.

22 Propriedade: Sempre que tivermos um operador linear T:V - V, com V=R? e A, # A4, 0 conjunto
formado pelos autovetores associados serd uma base do R2. Este fato vale em geral, isto é, se T:V —> V
¢ linear, e o espac¢o V tem dimensdo n e existem n autovalores distintos, entdo o conjunto {vy, .., v},
formado pelos correspondentes autovetores, é uma base de V. (Lembrando que este resultado nos
permite construir uma base composta de n autovetores em um espac¢o de dimensao n)

Exemplo: Seja o operador linear T(x,y) = (-3x-5y, 2y), encontre uma base de autovetores para T.
Solucdo: A matriz de T escrita na base canénica de R% é dada por:
-3 -5
7] =
0 2
A equacgao caracteristica de T é:

det(A—/u)z‘_?’_’l - ‘:

0 2-2
det(A - AI) = A2 + A-6=0,

cujasraizes, sdo A;=2 e A,=-3 e esses sdo os autovalores de T. Como A, # A, 0s correspondentes autovetores
formam uma base para R2.
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Os autovetores sdo encontrados resolvendo-se o sistema linear e homogéneo abaixo:
-3-4 -5 || x| |0
0 2-ily| |0
Obteremos:

Para A;= 2 os vetores v = x(1,-1)

Para A,=-3 os vetores v, = x(-1,0)
Logo, o conjunto formado pelos vetores B={(1,-1);(-1,0)} é uma base de RZ.

Definicdo: Duas matrizes A e B sdo ditas similares (semelhantes), se existir uma matriz inversivel M,
tal que A=M"1.B.M. O conceito de matriz semelhante define uma relagdo de equivaléncia .

1. (Propriedade da Reflexividade) Toda matriz A é semelhante a si mesma;
2. (Propriedade da Simetria) Se A é semelhante a B implica B é semelhante a A;

3. (Propriedade da Transitividade) Se A é semelhante a B e B é semelhante a C implica que A é
semelhante a C.

Demonstracao
1) Considere A =I'1 Al, ou seja, A é semelhante a A.

2) Se A=M"1 BM, entdo B=N-1 AN, com N=M1, ou seja, se A é semelhante a B implica B semelhante
aA.

3) Se A=M"1BM e B=N"1CN, entdo A=P-1CP com P=NM, isto &, se A é semelhante a B e B é semelhante
a Cimplica A semelhante a C.

Teorema: Sejam A e B matrizes n x n. Se B é similar a A, entdo as duas matrizes tém o mesmo polindmio
caracteristico e, consequentemente, os mesmo autovalores.

Demonstracdo: Sejam p,(x) e pg(x) os polindmios caracteristicos de A e B, respectivamente. Se B é
similar a A, entdo existe uma matriz ndo similar S tal que

B=S-1.A.S. Logo,
pg(x)=det(B-AI)
pp(x)=det(S1.A.S-AI)
pp(x)=det(S1(A-AD)S)
pg(x)=det(S 1)det(A-Al)det(S)

p.(x)=py(x)

Os autovalores de uma matriz sdo as raizes do polindmio caracteristico. Como as duas matrizes tém o
mesmo polindmio caracteristico, elas devem ter os mesmos autovalores.
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DPEXERCICIO PROPOSTO

1. Encontre uma base de autovetores para os operadores a seguir.
a) T(xy) =(xy);

b) T(xy) =(x+yxy);

c) T(xyz) =(xy, x+/2);

d) T(x,y,z) =(x+y, y-Z, Z-X).

2. Encontre todos os autovalores e autovetores do operador T(x,y,z)=(x+y+z, 2y+z, 2y+3z).

3. Determine uma matriz P que diagonaliza A e calcule que P-1AP.

c 4 6 0 6 3 -1 1
a)A:(B 5] b)A=|0 -2 0| c)A=|-1 5 -1
6 0 1 1 -1 3

4. Quais sdo os autovalores e autovetores do operador derivagdo D:P — P, onde P é o espago dos polindmios
de grau menor ou igual a n.

Diagonalizacdao de matrizes simétricas

Nosso objetivo é diagonalizarmos uma matriz simétrica A. Uma matriz A de ordem n é dita simétrica
se A=AT. Ao impormos esta condicio sob a matriz A, obtemos a seguinte conclusio ajj = ajj, para i
pertencente ao conjunto {1,2,..,n}. Para diagonalizarmos a matriz A necessitamos de um resultado
preliminar. Vejamos a seguir:

Propriedade: A equacdo caracteristica de uma matriz simétrica tem apenas raizes reais.

Demonstra¢do: Faremos aqui uma demonstragdo para uma matriz simétrica de ordem 2. Para isto,
considere a matriz abaixo:
pr
A =
rq

A equacio caracteristica de A é:

-1
Det(A—ﬂI)=[p g }:0
r q-A4
Isto é:
(p-M(q-1)-r2=0
Ou ainda:

Pg-Ap-Aq+A2-r2=0

A2-(p+q)A+(pg-r2)=0

O discriminante dessa equacdo do 22 grau em A é:

A= (p+q)2 -4(pq-r2) = p2 +2pq+q2 -4pq+4r2 = (p-q)2 +4r2
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4 12
Exemplo: Seja o operador linear simétrico T:R? — R? definido pela matriz simétrica A={ },
verifique se esse operador pode ser diagonalizado. 12 -3

Solucdo: Para que a matriz A possa ser diagonalizada é preciso encontrar uma base formada de
autovetores.

A equagdo caracteristica de A é dada por det(A—Al)= [4 —2/1 _313 /J o
[sto é:

(4-2)(-3-1) - 144 =0

Ou

A2-21-156=0

Aplicando a férmula de Bhaskara, acabamos por concluir que as raizes dessa equacdo é A; =-12 e A, =
13. Como os autores sdo reais e distintos, entdo teremos uma base formada por autovetores.

-12

0
diagonal principal desta matriz é formada pelos autovalores A = -12 e A, = 13 de acordo com a 12
propriedade estudada na se¢do anterior.

4 0
A matriz A= LZ } escrita na forma diagonal é a matriz dada por, D =[ 13}, perceba que a

2
Exemplo: Verifique se a matriz A =( J, encontre os autovalores da matriz A.

Solucao: Os autovalores da matriz A sdo dados pela equacgdo det(A-Al)=0, o que nos remete a:

1-4 2
det =0,
-2 1-2
(1-2) +4=0,
A =1+2i, A,=1-2i

Logo, os autovalores da matriz A ndo sdo reais.

Processo de diagonalizacio

12 passo: Encontrar a matriz do operador em uma base.

22 passo: Encontrar os autovalores da matriz resolvendo a equagdo det(A-Al)=0

32 passo: Encontrar uma base formada por autovetores associado a cada autovalor
encontrado. Se todos os autovalores encontrados forem distintos e de mesma quantidade
que a dimensdo do espago, entdo a matriz diagonal terd na sua diagonal principal esses
autovalores. Caso contrario devera ser analisado o sistema (A-AI)v=0
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Espaco com produto interno

UN 03

Neste topico estudaremos a nogdo de produto interno em espagos vetoriais. Esta no¢cdo, como veremos
a seguir, generaliza a noc¢do de produto escalar em R e em R3 e enriquece a estrutura de um espaco
vetorial, permitindo definir varios conceitos de carater geométrico previamente estudados em R? e
em R3.

Definiciao de produto interno

Seja V um espago vetorial. Um produto interno em V é uma funcdo que associa a cada par de vetores
uevem Vum nimero real, denotado por u.v, que satisfaz as seguintes condigdes:

Para quaisquer vetores u, vem V e um numero real k qualquer,
1) vv=0;

2) v.v =0 se, e somente se, v=0;

3) uw.v=vu

4) (u+v).w= u.w+v.w

5) (Ku).v=k(u.v)

DICA

Um espago vetorial com produto interno é chamado, abreviadamente, de espago com
produto interno.

Podemos definir diferentes produtos internos num mesmo espaco vetorial. Vejamos alguns deles:

O espaco vetorial R?

O produto interno padrdo (também chamado produto interno usual) em Rn é o produto escalar x.y =

n
zxiyi .
i=1

Dado um vetor w com elementos positivos, também podemos definir um produto interno em R" por x.y =

n
ZX, y;w;, os elementos wi sdo chamados de pesos.
i=1

0 espaco vetorial Rmxn

Dados A, Bem R™M X1 podemos definir um produto interno por A.B = ZZai].bij

i=1 j=1

Espaco vetorial C[a,b]

b
Podemos definir um produto interno em C[a,b] por f.g = If(x)g(x)dx;

a

b
Se w(x) é um fungdo positiva continua em [a,b], entdo f.g = If(x)g(x)w(x)dx;
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Também define um produto interno em C[a,b]. A funcdo w(x) é chamada de fung¢io peso. Logo, é possivel
definir varios produtos internos em C[a,b].

Exemplo: Considere as fungoes f(x)=1 e g(x)=x, calcule o produto interno entre essas fun¢des para x no
intervalo [-1,1].

b
Solugdo: Sabemos que um produto interno para fungdes é do tipo jf(x)g(x)dx. Logo, temos:
1 1

1 X2+ 1 1
=|1lxdx=|xdx=— ==-==0.
flxg(x) :[xx [xdx > =2

1 1

Como o produto interno é zero, podemos concluir que as fungdes f e g sdo ortogonais no intervalo [-1,1].

Exemplo: Sejam u=(x4, x,) e v=(y;, y,) vetores em R?, verifique que a fungio definida por u.v = x; y; +x,
y, define um produto escalar em R

Solugdo: Note que u.u = x; X4+ yq yq = x12 + y12 >0, logo é satisfeita a condi¢do 1 e 2. O produto escalar
de w.u s6 serd zero se o vetor u for zero. Veja também que w.v = X; y; + X5 y, = y1 X1 + ¥, X, =V.U, assim a
condicdo 3 é satisfeita.

Se u=(x4,x,),v=(y1,y,) e w=(z4, z,), entdo:

(utv)w= (xq +yq) 21 + (Xp + ¥2) 2y = (X1 21 + X Zp) + (¥ 21+ Y5 Z) = ww + v.w, logo a condigdo 4 ¢é
satisfeita.

E por fim temos,
(ku).v = (kxq)y; + (kxp)y, = k(xq X1+ y;1 y1) =k(u.v)

Dessa forma, u.v = X; y; + X, ¥, = y1 X1 + ¥, X, denota um produto interno em RZ,

EXERCICIO PROPOSTO

1. Dados u =(a,b) e v=(c,d) em RZ, verifique se a funcio definida por u.v = a.c - 2 a.d + 4bd e defina um
produto interno em R2.

2. Sejam os vetores v,=(x;,y1) € V,=(X,, y,) de V=RZ, verifique quais fun¢des £V x V —R definidas abaixo
sdo produtos internos em V.

a) f(v1,v,)=2x,Xy + 3y1¥5;
b) f(v,v,)=4x,Xy;
) f(vy,vo)= %1y, + X9y
d) f(vy,vy)=x1%, + y1y, +1.
1

3. No espago V= P2 consideremos o produto interno f(t)g(t)= jf(t)g(t)dt. Calcule f(t).g(t) e |f(t)| para
f(t)=t2 - 2t e g(t)=t+3. 0

4. Seja V=R3 com o produto interno usual, determine um vetor u pertencente a R3 ortogonal aos vetores
u;=(1,1,2), u,=(5,1,3) e uz=(2,-2,-3).

5. Determine o valor de m para que os vetores u=(1,m,-3) e v=(m-2, 2,4) sejam ortogonais em relacdo ao
produto interno usual do R3.

6. Determine um vetor unitario simultaneamente ortogonal aos vetores u=(1,1,1) e v=(2,3,1).
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7. Construa a partir do vetor u=(-1,-2,-1) um base ortornal de R3 relativamente ao produto interno usual.

8. Verifique a desigualdade de Cauchy quando se tem os vetores u=(2,1,-1) e v=(1,1,1).

Espacos Vetoriais Normados

A palavra norma em matematica tem seu préprio significado que é independente de um produto interno
e seu uso deve ser mostrado aqui.

Definicdo: Um espacgo vetorial V é dito um espaco vetorial normado se, para cada vetor vem V, é associado
um numero real, |v|, chamado norma de v, satisfazendo as condig¢des a seguir.

i) |v] 2 0 com igualdade se e, somente, se v=0. ch’:\ o
Esta definicao é tao
ii) |av| = |a||v| para qualquer escalar a. importante quanto a
definicao de produto
iii) |v+ w| < |u| + |w| para todo v, w € V (Esta condicdo é chamada de desigualdade triangular) interno.

Definigdo: Sejam u e v vetores em R? ou R3, a distancia entre u e v é definida como o ntimero |u - v|.
Fato decorrente da definicio de norma: Se V é um espaco de produto interno, entdo a equagao |v| =/vy,
para todo v € V, define a norma em V.

Tipos diferentes de normas: E possivel definir varias normas diferentes em um espagco vetorial dado. Por
exemplo, em R" poderiamos definir

n
el = 2 -

i=1

Para todo x =(x4, .., X)), é facilmente verificado que |.|; define uma norma em R". Outra norma importante
é anorma em R", a norma uniforme ou norma infinita, que é definida por

|X|w =max,,., Xi|

De modo mais geral, podemos definir uma norma em R" por
1
n » ;
I, =| ZJl
i=1
[sto para um numero real p=1, em particular se p=2, temos a norma euclidiana.

EXERCICIO PROPOSTO

1.Sejam x e y vetores em um espaco vetorial com produto interno, mostre que, sex ey sio perpendiculares

~ PPN . , 2 2
entdo a distancia em entre eles é dado por |x| + |y| .

2. Em C(-mt,m) com o produto interno definido por f.g= If )dx mostre que cos(mx) e sen(nx) sao
ortogonais e ambos sdo vetores ortogonais.

3. Mostre que em qualquer espago vetorial com uma norma temos |-v| = |v|.

4. Mostre que d:R x R — R, definida por d(x,y)=(x-y)?%, ndo é uma métrica.
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Desigualdade de Cauchy- Schwarz

Se u e v sdo dois vetores quaisquer em um espago de produto interno V, entdo |u.v| < |u|.|v|, a igualdade é
valida se e, somente, se os vetores u e v sdo linearmente dependentes.

Demonstracgao: Se v=0, entdo |u.v| = 0 = |u|.|v|. Se v#0, entdo seja p a projecdo ortogonal de u em v. Como
p é ortogonal a u -p, segue-se pelo teorema de Pitdgoras que

|pI? + |u - p|* = |u|?

Logo,
2
o=t = ot
E, portanto,
(wv)? = Jul? [v[?- [u-p|® [v|* < ul? |v|?
Entao

|uv| < |ul.|v|

Uma consequéncia da desigualdade de Cauchy-Schwartz é que se u e v forem vetores ndo nulos, entdo

-1< <1
(]
E, portanto, hd um dnico angulo 6 em [0,1], tal que
uv ) R . . ~
cosf = m, que define o angulo entre dois vetores entre dois vetores nao nulos.
u||v

EXERCICIO PROPOSTO

1. Seja V um espaco vetorial euclidiano e u e v dois vetores contidos em V, determinar o cosseno do angulo
entre os vetores u e v, sabendo-se que |u| =4, |v| =8¢ |u+v| =54/5.
2. Seja o produto interno usual no R3 e no R#%, determinar o angulo entre os seguintes pares de vetores:
a)u=(2,1,-5) e v=(5,0,2)
b) u=(1,0,0,1) e v=(-2,-4,-1,0)
c)u=(2,3,3) e v=(-4,-6,-6)

3. Consideremos o produto interno usual. Determinar a componente c do vetor v=(3,c,-6) de modo que o
comprimento do vetor v seja 8.

4. Prove a desigualdade triangular: dados dois vetores u e vem um espaco vetorial V, entdo |u + v| < |u| +
[vI.

5. Prove a desigualdade de Cauchy-Schwarz: Dados os vetores u e vem um espaco vetorial V, entdo |u.v|
< |ul.v].

Dica: Utilize o fato (u+av).(u+av) = 0, e desenvolva esta desigualdade e faca um estudo dos discriminantes
da equacdo do segundo grau.
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Relacao entre produto interno e norma

Muitas vezes é bastante util saber que um produto interno sobre um espaco vetorial é determinado
por outra fung¢do, a chamada forma quadratica determinada pelo produto interno. Para defini-la,

indiquemos que a raiz quadrada positiva de u.u por |u|=+~u.u, é denominada norma de u em relacido
ao produto interno, note que pela primeira condi¢do da definicio de produto interno este ntimero

|ul=~uu esta bem definido.

wv=1 |u+v|2—l |u-v |2
4 4

Aplicagdo: Se tivermos um vetor u de coordenadas u=(ab), entdo a sua norma é dada por

|u|=va.a+b.b =+a*+b*, esta norma também representa o comprimento do vetor u. Este fato nos
permite generalizar a ideia de comprimento de um vetor para um espac¢o de dimensdo n. Vejamos,
considere u um vetor de R™.

Entdo u=(x4, ... X,), o comprimento de u é dado por:
lul=Vuu =x} +...+x

FIGURA 1: Projecdo ortogonal de um vetor u na dire¢ao de um vetor v

w=u-tv

Proj (u, v)=tv %

Considere dois vetores u e vem R2, dispostos como na figura 1 acima, nosso intuito é responder a seguinte
pergunta: Como determinar a projec¢do ortogonal do vetor u na dire¢do do vetor v? Para responder esta
pergunta utilizaremos o conceito de produto interno apresentado nesta unidade.

Para efeito de notacao iremos representar a projecdo ortogonal do vetor u na dire¢do do vetor v por
Proj(u,v), esta projecao pode ser interpretada geometricamente como o comprimento da sombra que o
vetor u faz sobre o vetor v. Percebemos também pela construcio feita que os vetores Proj(u,v) e v sdo
Linearmente dependentes. Por isso, temos Proj(u,v)= t v, onde t é um parametro real.

Para determinarmos a Proj(u,v)=tv é necessario encontrarmos o valor de t, ja que o vetor vja é conhecido.
Entdo, considere os seguintes fatos:

Fato 1: u = w + tv,, w=u-tv
Fato 2: Os vetores w e v sdo perpendiculares, logo w.v=0

De posse destes fatos, temos:
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Logo, temos que o vetor proje¢do de u na dire¢do de v é dado por, Proj(u,v) = u—‘: v. A pergunta inicial

fala acerca do compriemento do vetor proje¢do. O comprimento do vetor projecao é dado por:

-t

wv wvl | |uv]
(T

|Pr0j(u’v)| Tz 2 2
V) VT v

Por fim, temos que a projecdo do vetor u na direcdo do vetor v é dada pela seguinte formula:

. |uv|
Proj(u,v)=—-——

Exemplo: Encontre a projecdo do vetor u=(1,2,1) na dire¢do do vetor v=(1,1,1).

Solucgao: De acordo com os resultados encontrados, temos

uv] (1,2,1).(1,1,1) 4

M Ji2+12+12 B

|Proj(u,v)|

DEXERCICIO PROPOSTO

9 2 1. Encontre a projecao do vetor u=(1,2,2) na dire¢ao do vetor v+w, onde v=(1,0,0) e w=(-1,-3,2).
2. Encontre o vetor proje¢ao de v=(1,0,9) na direcao de w=(0,1,1)
3. Prove que se u e v sdo vetores de um espaco vetorial euclidiano, entao:

a) Se u-v é perpendicular a u+v, entdo |u|=|v].

b) Se u é perpendicular a v, entdo |u + v|% = |u|% + |v|2.

4. Prove que, se temos n vetores perpendiculares dois a dois, entdo esses vetores sdo linearmente
independentes.

O processo de ortogonalizacao de
Gram-Schmidt

O processo de Gram-shimidt é um método para ortogonalizacdo de um conjunto de vetores em um
espaco com produto interno, normalmente o espaco Euclidiano Rn. O processo de Gram Schmidt
recebe um conjunto finito, linearmente independente de vetores {v1, ..., vn} e retorna um conjunto
ortogonal {ul, ..., un} que gera o mesmo subespaco S inicial. Este processo baseia-se inicialmente na
ideia de projetar ortogonalmente um vetor v na dire¢ao de outro vetor u, e, em seguida, criar um novo
vetor vetor w como sendo a diferenca entre um vetor da base e a projecao calculada.

0 processo ocorre da seguinte forma:

12 passo: Projeta-se o vetor v ortogonalmente sobre u, ou seja, Proj(u,v) = W
1%
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22 passo: Escolha u;=v;

32 passo: Faca u, = v, - proj(v,, uy)

42 passo: Faca uz = v3 - proj (v3, u;) - proj(vs, u,)
Deste modo o k-ésimo vetor é dado por:

k-1
u, = v, -y proj(vk,uj)

j=1

A base {uy, .., u,} encontrada é ortogonal mas nao ortonormal, para que os vetores normalizados
basta que fagamos a divisdo de cada um dos vetores por seus respectivos comprimentos, formando
uma base de vetores ortonormais {ey, ..., e,}. Ver figura abaixo.

FIGURA 2: Divisdo de cada um dos vetores por seus respectivos comprimentos,
formando uma base de vetores ortonormais {€e 1w en}'

Exemplo: Seja B={v; = (1,1,1), v,= (0,1,1), v3 =(0,0,1)} uma base em R3, os vetores contidos nesta
base constituem uma base ndo-ortogonal em relagdo ao produto interno usual. Utilize o processo de
ortogonalizacdo de Gram Schmidt para obter uma base ortonormal.

Solugdo: Como primeiro passo vamos escolher um dos trés vetores da base dada para ser o primeiro
vetor da base ortonormal. Temos v1=(1,1,1). Em seguida, vamos tornar o vetor escolhido unitario, ou
seja, vamos multiplica-lo pelo inverso do seu comprimento,

1

(11
JP 12+ 12 (1'1'1)_(«/?«@'J§j

w, =

0 segundo passo é construirmos um vetor w, que seja perpendicular a w;.

Zy = Vo=Pproj(vy, wiwy = v, - (v, wyjwy

N
N
1]
—_
=
=
—_
N—
I
—_
o
=
—_
N—
7\
w|"‘
w|"‘
&=
N—
VRS

SLUE EEEREY

. . 1 3( 211 2 1 1
O vetor z, deve ser normalizado, para isso fagamos w, =—2z, =— = .

R 333 R

O terceiro e ultimo passo € construirmos um vetor ws, ortogonal a w; e w, simultaneamente.

Z3 = V3 = proj(vs, w,)w, - proj(vs,w;)wy
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Para finalizarmos o processo basta normalizar o vetor z5.

Para isto, faga w —iz —i(o 1 lj—(o 1 i)
’ 3 |Z3| 3 \/E ’ 2;2 y \/E’\/E .

Logo, a base ortonormal obtida pelo processo de ortogonalizacao de Gram Schmidt é:
A1 1af 2 1 13, 11
B{(ﬁ@@)[ ﬁva'@}'("' ﬁ'ﬁj}
PEXERCICIO PROPOSTO

1. Consideremos as seguintes bases do RZ e do R3.
94 a) B={(34),(1,2)}
b) B={(1,0,0),(0,1,1),(0,1,2)}
¢) B={(1,0,1), (1,0,-1),(0,3,4)}
Ortonormalize essas bases pelo processo de Gram-Shmidt, segundo o produto interno usual.

2. Qual é a base ortonormal de R3 obtida pelo processo de Gram-Scmidt a partir da base {u,v,w}, onde
u=(2,6,3), v=(-5,6,24) e w=(9,-1,-4)?

3. Para todo niimero natural n, prove que a norma do vetor v=(n,n+1,n(n+1)) é um nimero natural inteiro.

4. Encontre uma base ortonromal aplicadndo o processo de orotogonalizacdo de Gram-Schmidt para os
vetores abaixo.

a) u=(3,0,0),v=(-1,3,0) e w=(2,-5,1)
b) u=(-1,1,0), v=(5,0,0) e w=(2,-2,3)

Pequena biografia de Jergen Pedersen Gram

Jorgen Pedersen Gram (Nustrup, 27 de Junho de 1850- Copenhagen,
29 de Abril de 1916) foi um atuario e matematico dinamarqués que
nasceu em Nustrup, no Ducado de Schleswig, Dinamarca e morreu
aos 65 anos em Copenhagen, Dinamarca.

Pedersen_Gram>

Entre seus trabalhos importantes inclui o On series expansions
determined by the methods of least squares e Investigations of the
number of primes less than a given number. O processo que leva o
seu nome, Processo de Gram-Schmidlt, foi publicado pela primeira
vez em 1883.
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Para os tedricos sua principal fama se deve a série Funcdo zeta de Riemann (a fungéo exata
de Bernhard Riemann em Funcéo de contagem de nimeros primos). Ao invés de usar uma
série de logaritimos integrais, a fungdo de Gram usa logaritimos de forga e a funcdo zeta de
integros positivos. Foi recentemente substituida pela férmula de Srinivasa Ramanujan que
usa diretamente os NUimeros de Bernoulli ao invés da funcdo zeta.

Gram foi o primeiro matemético a providenciar uma teoria sistematica de desenvolvimento
de frequéncia de curvas, mostrando que o erro de curva da simetria Gaussiana era apenas
um caso especial de uma classe geral de frequéncia de curvas.

Fonte: https://pt.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram
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