
Fiel a sua missão de interiorizar o ensino superior no estado Ceará, a UECE,  
como uma instituição que participa do Sistema Universidade Aberta do 
Brasil, vem ampliando a oferta de cursos de graduação e pós-graduação 

na modalidade de educação a distância, e gerando experiências e possibili-
dades inovadoras com uso das novas plataformas tecnológicas decorren-

tes da popularização da internet, funcionamento do cinturão digital e 
massificação dos computadores pessoais.  

Comprometida com a formação de professores em todos os níveis e 
a qualificação dos servidores públicos para bem servir ao Estado, 

os cursos da UAB/UECE atendem aos padrões de qualidade 
estabelecidos pelos normativos legais do Governo Fede-

ral e se articulam com as demandas de desenvolvi-
mento das regiões do Ceará.  

Ba
nc

o 
de

 D
ad

os

Cicero Tadeu Pereira Lima França
Joaquim Celestino Júnior

Computação

Computação

Banco de Dados

U
ni

ve
rs

id
ad

e 
Es

ta
du

al
 d

o 
Ce

ar
á 

- U
ni

ve
rs

id
ad

e 
Ab

er
ta

 d
o 

Br
as

il

ComputaçãoQuímica Física Matemática PedagogiaArtes 
Plásticas

Ciências 
Biológicas

Geografia

Educação 
Física

História

9

12

3



Cicero Tadeu Pereira Lima França
Joaquim Celestino Júnior

Banco de Dados

Computação

2ª edição
Fortaleza - Ceará

2015

ComputaçãoQuímica Física Matemática PedagogiaArtes 
Plásticas

Ciências 
Biológicas

Geografia

Educação 
Física

História

9

12

3



Presidenta da República
Dilma Vana Rousseff

Ministro da Educação
Renato Janine Ribeiro

Presidente da CAPES
Carlos Afonso Nobre

Diretor de Educação a Distância da CAPES 
Jean Marc Georges Mutzig

Governador do Estado do Ceará
Camilo Sobreira de Santana

Reitor da Universidade Estadual do Ceará
José Jackson Coelho Sampaio

Vice-Reitor
Hidelbrando dos Santos Soares

Pró-Reitor de Pós-Graduação
Jerffeson Teixeira de Souza

Coordenador da SATE e UAB/UECE
Francisco Fábio Castelo Branco

Coordenadora Adjunta UAB/UECE
Eloísa Maia Vidal

Direção do CED/UECE
José Albio Moreira de Sales

Coordenação da Licenciatura em Computação
Francisco Assis Amaral Bastos

Coordenação de Tutoria da
Licenciatura em Computação

Maria Wilda Fernandes Felipe

Editor da EdUECE
Erasmo Miessa Ruiz

Coordenadora Editorial
Rocylânia Isidio de Oliveira

Projeto Gráfico e Capa
Roberto Santos

Diagramador
Francisco Oliveira

Revisão Ortográfica
Fernanda Ribeiro

Conselho Editorial

Antônio Luciano Pontes

Eduardo Diatahy Bezerra de Menezes

Emanuel Ângelo da Rocha Fragoso 

Francisco Horácio da Silva Frota

Francisco Josênio Camelo Parente

Gisafran Nazareno Mota Jucá

José Ferreira Nunes

Liduina Farias Almeida da Costa

Lucili Grangeiro Cortez

Luiz Cruz Lima

Manfredo Ramos

Marcelo Gurgel Carlos da Silva

Marcony Silva Cunha

Maria do Socorro Ferreira Osterne

Maria Salete Bessa Jorge

Silvia Maria Nóbrega-Therrien

Conselho Consultivo

Antônio Torres Montenegro (UFPE)

Eliane P. Zamith Brito (FGV)

Homero Santiago (USP)

Ieda Maria Alves (USP)

Manuel Domingos Neto (UFF)

Maria do Socorro Silva Aragão (UFC)

Maria Lírida Callou de Araújo e Mendonça (UNIFOR)

Pierre Salama (Universidade de Paris VIII)

Romeu Gomes (FIOCRUZ)

Túlio Batista Franco (UFF)

F814b    França, Cícero Tadeu Pereira Lima.
Banco de dados / Cícero Tadeu Pereira Lima França, Joaquim

Celestino Júnior. – 2. ed. – Fortaleza, CE : EdUECE, 2015.
117 p. : il. ; 20,0cm x 25,5cm. (Computação)
Inclui referências.

ISBN:

1.  Banco de dados. I.  Celestino  Júnior ,  Joaquim . II .  Título.

CDD : 001.64

Dados Internacionais de Catalogação na Publicação
Sistema de Bibliotecas

Biblioteca Central Prof. Antônio Martins Filho
Meirilane Santos de Morais Bastos – CRB-3 / 785

Bibliotecária 

Copyright © 2015. Todos os direitos reservados desta edição à UAB/UECE. Nenhuma parte deste material poderá 
ser reproduzida, transmitida e gravada, por qualquer meio eletrônico, por fotocópia e outros, sem a prévia autori-
zação, por escrito, dos autores.

Editora Filiada à

Editora da Universidade Estadual do Ceará – EdUECE
Av. Dr. Silas Munguba, 1700 – Campus do Itaperi – Reitoria – Fortaleza – Ceará

CEP: 60714-903 – Fone: (85) 3101-9893
Internet: www.uece.br – E-mail: eduece@uece.br

Secretaria de Apoio às Tecnologias Educacionais
Fone: (85) 3101-9962



Sumário
Apresentação.....................................................................................................5

Capítulo 1 – Visão geral sobre Banco de Dados..........................................7
1. Banco de Dados e Sistema Gerenciador de Banco de Dados.....................10

2. Modelos de Bancos de Dados.........................................................................11

3. Arquiteturas de Banco de dados......................................................................13

3.1. Arquitetura Centralizada.............................................................................13

3.2. Arquitetura Cliente-Servidor de Duas Camadas.......................................14

3.3. Arquitetura Cliente-Servidor de Três Camadas........................................15

3.4. Arquitetura Distribuída.................................................................................16

Capítulo 2 – Modelagem de Dados e Normalização..................................21
1. Sinopse do Projeto............................................................................................23

2. Modelo Conceitual............................................................................................24

2.1. Identificando os Tipos Entidades...............................................................24

2.2. Identificando os Tipos Relacionamento.....................................................25

2.3. Normalização..............................................................................................27

2.4. Modelo Lógico.............................................................................................36

Capítulo 3 – PostgreSQL e Modelagem Física...........................................39
1. PostgreSQL........................................................................................................41

1.1. Instalando o PostgreSQL............................................................................41

2. Modelo Físico....................................................................................................48

2.1. pgAdmin.......................................................................................................48

Capítulo 4 – Introdução a SQL......................................................................57
1. História...............................................................................................................59

2. Grupos................................................................................................................61

2.1. Outros Grupos.............................................................................................61

3. SQL Editor..........................................................................................................61

4. DDL – Parte 1....................................................................................................62

4.1. Comando CREATE TABLE........................................................................62

4.2. Comando ALTER TABLE...........................................................................65

4.3. Comando DROP TABLE............................................................................67

4.5. DML..............................................................................................................67

4.6. Comando SELECT – Parte 1........................................................................75

Capítulo 5 – SQL Avançada...........................................................................87
1. Comando SELECT – Parte 2...........................................................................89

1.1. Cláusula WHERE com Condições Complexas........................................89



1.2. Cláusula ORDER BY..................................................................................91

1.3. Comando JOIN...........................................................................................93

1.4. Comando UNION........................................................................................97

1.5. Funções Básicas.......................................................................................100

1.6. Cláusula GROUP BY................................................................................102

1.7. Cláusula DISTINCT..................................................................................104

1.8. Operadores de Manipulação....................................................................105

1.9. Nested Queries.........................................................................................108

2. DDL – Parte 2..................................................................................................109

2.1. VIEW..........................................................................................................109

2.2. STORE PROCEDURE.............................................................................110

2.3. TRIGGER..................................................................................................113

2.4. DOMAIN....................................................................................................115

Sobre os autores...........................................................................................117



Apresentação

Desde os primórdios, a humanidade sempre procurou uma maneira para or-
ganizar seus conhecimentos de uma forma que a pesquisa por esses não 
demandasse grandes esforços. Tendo isso como base, podemos vê uma 
biblioteca como uma evolução desse conceito tão antigo quanto a própria 
consciência humana, uma vez que a ideia da biblioteca é justamente disponi-
bilizar conhecimentos estruturados sistematicamente para facilitar a busca da 
informação desejada.

Com o advento do comércio, outros requisitos foram incluídos a essa 
necessidade, pois além de guardar o conhecimento ou informação das nego-
ciações, passou-se a ter a necessidade de poder incluir, modificar e excluir tais 
dados de uma maneira eficiente e eficaz. Um recurso usado por muito tempo 
para esses fins foi manter essas informações em arquivos (livros, fichas, etc.) 
e guardadas em local seguro. O armazenamento inadequado poderia causar 
transtornos e a perda de negócios.

O surgimento dos computadores e estudos relacionados ao armazena-
mento de dados levou as empresas a iniciarem uma migração gradativa para 
o mundo digital, inicialmente um recurso só disponível para grandes empresas 
devido os custos nos primeiros anos da computação moderna. Com a po-
pularização dos computadores esses custos reduziram-se, ao ponto de toda 
empresa poder usufruir tais recurso.

As informações que migraram para o mundo computacional ficam ar-
mazenadas de maneira digital em banco dados. Esses bancos de dados fo-
ram multiplicados e nessa multiplicação apareceram diversos modelos rodan-
do sobre diversas arquiteturas computacionais.

Nos dias atuais os bancos de dados se tornaram algum corriqueiro nos 
computadores, celulares, tablets, smartphone ou qualquer outro dispositivo 
computacional que tenham um aplicativo com necessite de um mínimo de 
armazenamento de dados.

Este livro apresentará o mundo dos bancos de dados de forma clara e 
simples, mostrando desde os conceitos básicos, indo do projeto à criação e 
uso de um banco de dados. No decorre do livro serão apresentadas técnicas 
e tecnologias que possibilitarão a base necessário para o uso de banco de 
dados. Também será apresentado o PostgreSQL, uma SGBDR gratuito e de 
grande respeito na comunidade.



O livro está organizado em cinco capítulos. O primeiro capítulo disponi-
bilizar um conhecimento geral sobre banco de dados, os modelos de banco 
de dados mais conhecidos e as arquiteturas mais populares. No capítulo 2 é 
iniciado um projeto de banco de dados e descrito técnicas para a criação do 
modelo conceitual, sua normalização e criação do modelo lógico. O capítulo 3 
apresenta o PostgreSQL e mostra como criar um modelo físico no mesmo. Os 
capítulos 4 e 5 são destinados a SQL, mostrando desde um rápido histórico 
até seus comandos mais comuns segundo a ISO/IEC 9075.

O conteúdo apresentado neste livro destina-se principalmente a pro-
fessores e alunos de graduação em Ciências da computação ou áreas afins, 
fornecendo uma base teórica e uma prática em projetos de banco de dados 
relacionais.

O autor



7

Capítulo

Visão geral sobre
Banco de Dados 

1Capítulo





9Banco de Dados

Objetivo
•	 Todas as informações encontradas no mundo computacional ficam armaze-

nadas de maneira digital em banco de dados. Paralela a evolução da compu-
tação, os banco de dados também evoluíram para atender as novas necessi-
dade e exigências do mundo digital. Os modelos e arquiteturas de banco de 
dados mais comuns devem ser conhecidos, uma vez que eles apresentam 
várias opções para resolver as questões de armazenamento de dados co-
nhecidas. O objetivo do capítulo é o conhecimento destes modelos.

Introdução
Até pouco tempo a maior parte das empresas mantinham as informações de 
cliente, fornecedores, produtos, entre outros, em arquivos de aço (figura 1.1) 
guardados em local seguro e com acesso físico controlado. Os dados do clien-
te, por exemplo, eram colocados em fichas de papel, e arquivados em ordem 
alfabética. Essas fichas continham informações de interesse da empresa, tais 
como nome, endereço, etc. Todos os clientes tinham uma ficha única que era 
armazenada de maneira apropriada em um arquivo físico. O armazenamento 
inadequado causava transtornos tanto para o cliente como para a empresa.

 
Figura 1.1 – Arquivo de aço antigo

Com advento dos computadores, as empresas migraram os dados para 
o mundo digital, facilitando e agilizando o seu manuseio. Muitos dos conceitos 
usados para manuseio físico de informações, conforme descrito acima, foram 
adaptados para os bancos de dados. A tabela 1.1 mostra um paralelo entre 
estes dois mundos.



10
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Tabela 1.1

PARALELO ENTRE CONCEITOS
Mundo Físico Mundo Digital

Conjunto de Arquivos de aço Banco de dados

Arquivo de aço Tabela
Fichas de papel Registro 

Informações da ficha de papel Campo

Um banco de dados pode ser visto como uma coleção de dados rela-
cionados, que devem estar organizados para facilitar a busca e atualização 
desses dados. Os dados devem ter significado implícito e se referirem a fatos.

1. Banco de Dados e Sistema Gerenciador de Banco de Dados
Um banco de dados é um projeto delineado para o armazenamento de fa-
tos que possuam um significado implícito, representando aspectos do mundo 
real. O conjunto de informações (dados) armazenado deve ter um significado 
efetivo que atenda um propósito específico.

Segundo [ELMASRI e NAVATHE, 2005] os dados devem ser providos 
de alguma fonte e ter “alguns níveis de interação com os eventos do mundo 
real e um publico efetivamente interessado em seus conteúdos”.

Por outro lado, podemos definir ainda um Sistema Gerenciador de Ban-
co de Dados (SGBD), que é um conjunto de programas que permite a cria-
ção e manipulação do banco de dados, facilitando os processos de definição, 
construção, manipulação e compartilhamento dos dados.

Para [RAMAKRISHNAN e GEHRKE, 2008] o uso de um SGBD propor-
ciona várias vantagens. Uma delas é a possibilidade de “utilizar os recursos 
do SGBD para gerenciar os dados de uma forma robusta e eficiente”. Outra 
vantagem citada é o suporte indispensável do SGBD “à medida que cresce o 
volume de dados e o número de usuários”.

De uma maneira simplista, um banco de dados especifica os dados, as 
estruturas e as restrições, enquanto o SGBD gerencia a manipulação desses 
dados facilitando o acesso aos mesmos, extraindo essas responsabilidades 
dos usuários e aplicativos. A figura 1.2 mostra uma visão superficial do relacio-
namento entre o usuário, o SGBD e o banco de dados.

Figura 1.2 – Visão superficial de um SGBD e seus relacionamentos



11Banco de Dados

2. Modelos de Bancos de Dados
À medida que aumentava o uso de banco de dados, foram surgindo necessi-
dades que antes não eram vislumbradas, tais como:

•	Compartilhamento dos dados armazenados;

•	Controle de concorrência de uso sobre dados;

•	Surgimento de novos paradigmas computacionais;

•	Entre outros.

Com isso antigos modelos de banco de dados foram cedendo espaços 
para novos modelos, causando uma evolução nos mesmos. Na seqüência são 
mostrados alguns modelos de banco de dados e suas características principais:

•	 Banco de Dados Hierárquico: Esse modelo foi muito utilizado nas 
primeiras aplicações de banco de dados; ele conecta registros numa 
estrutura de árvore de dados através de um relacionamento do tipo 
um-para-muitos (figura 1.3).

Figura 1.3 – Modelo de banco de dados hierárquico

•	 Banco de Dados em Rede: Semelhante ao anterior, mas nesse caso 
o relacionamento é do tipo muitos-para-muitos (figura 1.4).

Figura 1.4 – Modelo de banco de dados em rede



12
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

•	 Banco de Dados Relacional: Concebido inicialmente para separar 
o modelo físico do conceitual, além de prover uma fundamentação 
matemática; sendo um modelo baseado na lógica e na teoria de 
conjuntos tornou-se o primeiro modelo de banco de dados formal; 
esse modelo é uma abstração que define o armazenamento, mani-
pulação e recuperação dos dados estruturados na forma de tabelas; 
sendo largamente utilizado nos dias atuais (figura 1.5).

Figura 1.5 – Modelo de banco de dados relacional

•	 Banco de Dados Orientado a Objetos: Esse modelo foi criado pen-
sando na necessidade do armazenamento e consulta de dados 
complexos, incorporando paradigmas já conhecidos da programa-
ção orientada a objetos (POO), tais como a abstração de dados, 
encapsulamento, herança e identificação de objetos (figura 1.6).

Figura 1.6 – Modelo de banco de dados orientado a objetos

•	 Banco de Dados Objeto-Relacional: Esse modelo é semelhante ao 
modelo relacional, mas alguns conceitos do modelo orientado a ob-
jeto foram incorporados; os esquemas do banco de dados dão su-
porte à criação e consulta de objetos, classes e herança (figura 1.7).



13Banco de Dados

Figura 1.7 – Modelo de banco de dados objeto-relacional

3. Arquiteturas de Banco de dados

O dicionário Michaelis define arquitetura de uma maneira geral como: 

1.	 Arte de projetar e construir prédios, edifícios ou outras estruturas; 
arquitetônica. 

2.	 Constituição do edifício. 

3.	 Contextura de um todo. 

4.	 Intenção, projeto.

O mesmo dicionário define arquitetura em camadas como o “projeto de 
um sistema de computador em camadas, de acordo com a função ou priorida-
de”. Essa definição é a que melhor se aplica ao banco de dados.

Assim como os modelos de banco de dados citados anteriormente, no 
decorrer do tempo foram propostas varias arquiteturas. As principais arquite-
turas propostas que foram e ainda são usadas são apresentadas nesta seção.

3.1. Arquitetura Centralizada

As arquiteturas dos bancos de dados centralizados utilizavam o conceito de con-
centrar nos mainframes o processamento das funções do sistema, 
programas de aplicação, programas de interface entre outras fun-
cionalidades do SGBD.

Os usuários acessavam os sistemas via terminais de com-
putadores que apenas exibiam resultados, mas não tinham po-
der computacional de processamento. Os processos em si eram 
executados remotamente no mainframe, que após processar o 
solicitado, enviava ao terminal as informações de exibição e os 
controles (figura 1.8).

Figura 1.8 – Arquitetura centralizada



14
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Com a queda nos preços do hardware, os usuários foram substituindo os 
antigos terminais por computadores pessoais (PCs) e workstations. No inicio 
dessa mudança os SGBDs ainda trabalhavam de forma centralizada, como 
se estivessem em terminais de computadores, mas aos poucos os SGBDs 
começaram a buscar o poder computacional disponíveis do lado do usuário. 
Essa mudança também causou mudanças na arquitetura centralizada, dire-
cionando a mesma para uma arquitetura conhecida com Cliente-Servidor.

3.2. Arquitetura Cliente-Servidor de Duas Camadas

Essa arquitetura é uma evolução da arquitetura centralizada, pois graças à 
troca dos antigos terminais cliente por PCs e workstations o poder computa-
cional do lado cliente aumentou, possibilitando passar parte do processamen-
to para os mesmos e “desafogando” os servidores. Os programas de interface 
com o usuário e os de aplicação foram transpostos para o lado cliente.

Um cliente é geralmente uma máquina de usuário com poder computa-
cional e com funcionalidade de interfaces, mas sempre que precisar acessar 
o banco de dados conecta-se com o servidor que viabiliza o acesso aos da-
dos (figura 1.9). Geralmente têm-se máquinas com software cliente e outras 
com software servidor, mas podem-se ter máquinas com ambos.

Figura 1.9 – Arquitetura cliente/servidor de duas camadas

Na arquitetura cliente-servidor o programa cliente estabelece uma co-
nexão com o programa servidor para comunicar-se com o SGBD. Após es-
tarem conectados, os sistemas cliente enviam solicitações de manipulação e 
consulta dos dados, as mesmas são processadas pelo servidor e enviadas 
de volta para o programa cliente, que processa e apresenta o resultado de 
acordo com a necessidade.

3.3. Arquitetura Cliente-Servidor de Três Camadas



15Banco de Dados

Com o crescimento da WWW (World Wide Web – Rede de Alcance Mundial 
– ou simplesmente Web) os papéis na arquitetura cliente-servidor de duas ca-
madas sofreram mudanças que levaram a arquitetura cliente-servidor de duas 
camadas para a arquitetura cliente-servidor de três camadas, ou arquitetura 
de três camadas. Na arquitetura de três camadas foi colocada uma camada 
intermediaria entre a máquina cliente e o servidor de banco de dados. Essa 
camada do meio passou a chamar-se de servidor de aplicação ou servidor 
Web, dependendo do contexto onde o aplicativo está inserido.

“Esse servidor desempenha um papel intermediário armazenando as 
regras de negócio [...] que são usadas para acessar os dados do servidor de 
banco de dados.” [ELMASRI e NAVATHE, 2005]. Checar as credenciais do 
cliente antes de aceitar a solicitação do mesmo também pode ser incremen-
tado nesse servidor, deixando por sua conta a segurança do banco de dados, 
liberando o servidor de banco de dados desse processo.

Resumidamente essa arquitetura (figura 1.10) tem três camadas defini-
das da seguinte maneira:

•	 Camada de Apresentação (Cliente): Implementa a interface do usu-
ário, também chamada de GUI (Graphics User Interface – Interface 
Gráfica para o Usuário), podendo incorporar algumas regras de negó-
cios especificas da aplicação, mas seu papel principal é interagir com 
o usuário fazendo solicitações de dados e apresentando o resultado.

•	 Camada de Negócio (Servidor de Aplicação): Implementa as fun-
ções e regras de negócio, não interagindo diretamente com o usuá-
rio, apenas recebendo as solicitações enviada pela camada de apre-
sentação, processando e enviando, ou não, os comandos de banco 
de dados a camada seguinte. Por fim, recebe e repassa os dados do 
servidor de banco de dados para a camada de apresentação, não 
mantendo nenhum dado localmente.

•	 Camada de Dados (Servidor de Dados): Mantém os dados, servin-
do como repositório; recebe e executa as solicitações da camada 
de negócio, enviando de volta a mesma os dados processado. O 
repasse desses dados para a camada de apresentação é responsa-
bilidade da camada de negócio.



16
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 1.10 – Arquitetura cliente/servidor de três camadas

A arquitetura em três camadas pode parecer igual a arquitetura em 
duas camadas, mas ao retirar do servidor de dados regras de negócios e de 
segurança, deixa-se o servidor menos sobrecarregado, pois fica responsável 
por gerenciar apenas os dados.

Algumas aplicações em duas camadas passavam parte das regras de 
negócio para o cliente, exigindo um poder computacional maior nessas má-
quinas. Com a inclusão da camada de negócio deixa-se a camada de apre-
sentação basicamente com a GUI e a camada de dados apenas com o arma-
zenamento e gerenciamento dos dados.

Outra vantagem que pode ser colocada para a arquitetura em três ca-
madas é a escalabilidade da camada intermediária, uma vez que se pode 
incluir mais de um servidor de aplicação – conectados ao mesmo servidor de 
dados – e redistribuir o acesso dos clientes entre esses servidores.

3.4. Arquitetura Distribuída

O uso dessa arquitetura traz para o banco de dados não apenas as vantagens 
da computação distribuída, mas também as dificuldades relacionadas a seu 
gerenciamento, pois as “funções comuns de gerenciamento do banco de dados 
[...] não se aplicam, contudo, a esse cenário.” [ELMASRI e NAVATHE, 2005].

Um BDD (Banco de Dados Distribuído) é um conjunto de banco de 
dados distribuídos através de uma rede de computadores, mas logicamente 
inter-relacionados, enquanto o SGBDD (Sistema Gerenciador de Banco de 
dados Distribuído) não apenas gerencia o BDD, mas também torna a distribui-
ção e transações transparentes para o usuário (figura 1.11).



17Banco de Dados

Figura 1.11 – Arquitetura distribuída

Existem dois tipos de banco de dados distribuídos, os (i) homogêneos 
que são compostos por um único tipo de banco de dados e os (ii) heterogêne-
os que são compostos por mais de um tipo de banco de dados.

Num banco de dados distribuídos, os dados podem estar replicados ou 
fragmentados. Na replicação, é criada uma cópia de cada dado em bases di-
ferentes, deixando as bases com os dados iguais. Na fragmentação, os dados 
são divididos entre bases diferentes.

3.4.1. Vantagens

Alguns dos motivos que levaram ao desenvolvimento dessa arquitetura (BDD) 
foram a (i) descentralização dos dados, aumentando o poder computacional 
de processamento; a (ii) fragmentação dos dados levando em consideração a 
estrutura organizacional, persistindo os dados no local desejado (Ex.: Departa-
mento de Compras) aumentando a autonomia local; a (iii) melhoria no desem-
penho devido a proximidade dos dados, paralelismo e balanceamento entre 
os servidores de dados; (iv) tolerância a falhas aumentando a disponibilidade 
dos dados; (v) economia na aquisição de servidores menores a medida que o 
poder computacional exigido for aumentado; (vi) facilidade de acrescentar ou 
remover novos servidores.

Podemos citar ainda, o gerenciamento de dados distribuídos com níveis 
diferentes de transparência (transparência de distribuição ou de rede, transpa-
rência de replicação e transparência de fragmentação). Mas [ELMASRI e NA-
VATHE, 2005] afirma que as transparências incluem “um compromisso entre 
a facilidade de uso e o custo da sobrecarga de proporcionar a transparência”.

No banco de dados distribuídos os dados ficam armazenados em locais 
diferentes. Usualmente cada local é gerenciado por um SGBD independente. 
“A visão clássica de um sistema de banco de dados distribuído é que o sis-
tema deve tornar o impacto da distribuição dos dados transparentes” [RA-
MAKRISHNAN e GEHRKE, 2008].



18
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

3.4.2. Desvantagens

O uso do banco de dados distribuído não só tem vantagens, mas traz con-
sigo algumas desvantagens como (i) complexidade exigida para garantir a 
distribuição de forma transparente para o usuário; (ii) custo maior de imple-
mentação devido ao trabalho extra exigido; (iii) planejamento mais difícil de-
vido a fragmentação, alocação e, algumas vezes, a replicação dos dados; 
(iv) integridade do banco exige alto recurso de rede; (v) exigência de maior 
segurança tanto nos servidores quanto na infra-estrutura; (vi) inexistência de 
um padrão que auxilie a conversão dos bancos de dados centralizados para 
os banco de dados distribuídos; (vii) poucos casos práticos disponíveis para 
serem analisados.

Para [ELMASRI e NAVATHE, 2005] a obtenção das vantagens do ban-
co de dados distribuído leva ao projeto e a implementação de um sistema 
gerenciador mais complexo, onde o SGBDD deve prover, além das funciona-
lidades do SGBD centralizado, (i) rastreamento de dados; (ii) processamento 
de consultas distribuídas; (iii) gerenciamento de transações distribuídas; (iv) 
gerenciamento dos dados replicados; (v) recuperação de banco de dados dis-
tribuído; (vi) segurança; (vii) gerenciamento do diretório distribuído.

3.4.3. Fragmentação de Dados

O tipo mais simples de fragmentação de banco de dados é a fragmentação 
de uma relação inteira, ou seja, os dados de uma tabela inteira são colocados 
num único servidor do BDD. Dessa maneira sempre que se precisar de algu-
ma informação da tabela, o SGBDD irá busca essa informação no servidor 
que a mantém. Para exemplificar suponha que um BDD de um supermercado 
tenha cinco servidores de dados e que as tabelas do BDD estão espalhadas 
como mostrado na tabela 1.2.

					     Tabela 1.2

EXEMPLO DE FRAGMENTAÇÃO DE UMA RELAÇÃO INTEIRA
Servidor Tabela # Registros

S01 Cliente 10000
S02 Fornecedor 1000
S03 Compra 1000000
S04 Compra_Item 4000000
S05 Estoque 10000

No servidor S01 ficam armazenados todos os dados de todos os clien-
tes, neste caso os dados de dez mil clientes. Já o servidor S02 é responsável 
por manter os dados dos fornecedores. O servidor S03 armazena os dados 



19Banco de Dados

da compra, tais como data da compra, cliente que efetuou a compra, valor da 
compra, forma de pagamento, etc.

O servidor S04 registras os itens que o cliente adquiriu em cada compra 
(arroz, feijão, macarrão, etc.), a quantidade de cada item e o valor de pago pelo 
item. Os itens em estoque e seus dados (descrição do item, quantidade em esto-
que, valor de compra, valor de venda, etc.) ficam armazenados no servidor S05.

Neste exemplo o servidor S02 vai precisar de um poder computacional 
bem menor que o servidor S04 para atender as solicitações feitas, uma vez 
que o número de registros do servidor S02 é bem menor que do servidor S04, 
causando um desbalanceamento de carga entre os servidores.

Na fragmentação horizontal, as tuplas (registros) são divididas horizon-
talmente entre os vários servidores. Esse tipo de fragmentação diminui o pro-
blema do desbalanceamento de carga entre os servidores como pode ser 
visto na tabela 1.3. Com a fragmentação horizontal cada registro da tabela fica 
em um servidor, junto com todos os seus atributos (colunas).
Tabela 1.3

EXEMPLO DE FRAGMENTAÇÃO HORIZONTAL
Tabela: Cliente

Servidor ID_Cliente Nome_Cliente Cidade_Cliente
S01 1 Roberto Juazeiro do Norte
S02 2 Helena Fortaleza
S03 3 Francisco Crato
S01 4 Lucas Barbalha
S02 5 Ylane Juazeiro do Norte
S03 6 Eduardo Barbalha
S01 7 Carlos Fortaleza
S02 8 Vitor Fortaleza
S03 9 Maria Crato

A fragmentação vertical divide as tuplas e seus atributos (tabela 1.4), 
o problema nesse tipo de fragmentação está na obrigatoriedade de incluir a 
chave primária ou chave candidata em cada parte da fragmentação, para que 
esses valores possam ser resgatados e unidos quando necessário.

Existe ainda a possibilidade de combinar a fragmentação horizontal 
com a fragmentação vertical gerando uma fragmentação mista ou híbrida.

3.4.4. Replicação de Dados

A replicação ou redundância de dados é usada para melhorar a disponibilida-
de dos dados, pois através dela obtém-se um sistema de alta disponibilidade, 
mantendo o sistema sempre disponível, mesmo em casos de falhas de com-
ponentes ou sobrecargas do sistema.



20
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Tabela 1.4

EXEMPLO DE FRAGMENTAÇÃO VERTICAL
Tabela: Cliente

Servidor ID_Cliente Nome_Cliente Servidor ID_Cliente Cidade_Cliente
S01 1 Roberto S04 1 Juazeiro do Norte
S02 2 Helena S05 2 Fortaleza
S03 3 Francisco S06 3 Crato
S01 4 Lucas S05 4 Barbalha
S02 5 Ylane S04 5 Juazeiro do Norte
S03 6 Eduardo S06 6 Barbalha
S01 7 Carlos S06 7 Fortaleza
S02 8 Vitor S04 8 Fortaleza
S03 9 Maria S05 9 Crato

Na replicação completa os dados armazenados são replicados de ma-
neira inteira em todos os sites do sistema distribuído. “O outro caso extremo 
da replicação completa envolve possuir nenhuma replicação [...] Entre esse 
dois extremos, temos um amplo espectro de replicação parcial dos dados” 
[ELMASRI e NAVATHE, 2005].

Embora a replicação de dados melhore a disponibilidade e o desem-
penho do banco de dados, a mesma reduz a velocidade das operações de 
atualização, uma vez que cada atualização deverá ser replicada em todas as 
cópias existentes para manter a consistência dos dados redundantes.



21

Capítulo

Modelagem de Dados
e Normalização

Capítulo 2





23Banco de Dados

Objetivo

•	 Saber transformar a necessidade do armazenamento de dados num pro-
jeto eficaz e eficiente de banco de dados passa por algumas etapas. Este 
capítulo tem o foco em três etapas importantes do projeto de um banco de 
dados, iniciando com a modelagem conceitual através de uma abordagem 
prática, passado pela normalização de dados e finalizando com a modela-
gem lógica do banco de dados.

Introdução

Neste capítulo será apresentando o projeto de um aplicativo que utiliza um 
banco de dados relacional. No decorre do capítulo serão proporcionadas téc-
nicas para transformar o levantamento de requisitos, feitos pela engenharia de 
software, num projeto de banco de dados relacional bem sucedido.

1. Sinopse do Projeto

Um mercantil deseja informatiza alguns processos internos. O controle do es-
toque é de suma importância, pois a gerência precisa constantemente fazer 
levantamento de inventário de mercadoria.

Os pontos de venda (PDVs) também devem ser automatizados, inclusi-
ve passando a ser obrigatório o uso do Emissor de Cupom Fiscal (ECF).

Com o uso do PDV vinculado a ECF passa a ser obrigatório expli-
citar os itens que cada cliente levou na compra e a forma de pagamento 
usado pelo mesmo.

As impressões na ECF dos itens adquirido, assim como a atualização 
do estoque, devem acontecer concomitantemente, ou seja, quando for pas-
sado um item no PDV, o mesmo deve ser impresso na ECF e também ser 
baixado do estoque a quantidade vendida.

No PDV deve ser informada a data da venda, o cliente que efetuou a 
compra, o valor da compra e a forma de pagamento utilizada pelo cliente. Os 
itens vinculados ao PDV devem ter a quantidade comprada, o valor unitário 
de venda e o valor total.

O cadastro do cliente tem que ser informado com nome, endereço, 
telefones.

“Requisitos de um 
sistema são descrições 
dos serviços fornecidos 
pelo sistema e as suas 
restrições operacionais” 
[SOMMERVILLE, 2007].

“Engenharia de software 
é uma disciplina de 
engenharia relacionada 
a todos os aspectos da 
produção de software, 
desde os estaágios 
iniciais de especificação 
do sistema até sua 
manutenção, depois que 
este entrar em operação” 
[SOMMERVILLE, 2007].



24
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

2. Modelo Conceitual

O primeiro elemento que deve ser criado para um projeto de banco de dados 
é o modelo conceitual, este modelo deve ser de fácil entendimento para o 
usuário final, logo ele precisa ser um modelo de alto nível (mais próximo da 
realidade do usuário).

Nesse momento se procura uma descrição precisa dos dados, sendo 
necessário especificar quais objetos estão presente no projeto e como eles se 
relacionam. Detalhes sobre como serão implementados os dados ou relacio-
namentos devem ser omitidos.

O modelo conceitual deve servir como meio de comunicação não am-
bíguo entre os usuários do sistema e os desenvolvedores do banco de dados. 
Obrigando, desta forma, o entendimento e atendimento dos requisitos por es-
tes dois grupos, sendo muito mais valioso para os desenvolvedores reconhe-
cer e validar as reais necessidades do usuário.

No modelo conceitual devem está presente as entidades e seus relacio-
namentos além dos atributos das entidades, e em alguns casos dos relacio-
namentos. Uma entidade é a representação, no ambiente de banco de dados, 
de um objeto do mundo real (professor, aluno, etc.) ou conceitual (disciplina, 
nota, etc.). Toda entidade tem propriedades (tamanho, cor, nome, etc.), essas 
propriedades são chamadas de atributos. Existem entidades que se conec-
tam com outros, mostrando uma associação entre as mesmas, essas asso-
ciações são identificadas como relacionamentos.

No decorre desta seção será mostrado como criar o modelo conceitual 
do projeto proposto neste capítulo.

2.1. Identificando os Tipos Entidades

Uma entidade é definida por [ROB e CORONEL, 2011] como “algo (uma pes-
soa, um local, um objeto, um evento) sobre o qual sejam coletados e arma-
zenados dados. Ela representa um tipo particular de objeto no mundo real”, 
eles concluem afirmando que as “entidades podem ser objetos físicos, como 
clientes e produtos, mas também abstrações, como rotas de vôo ou apresen-
tações musicais”.

Embora muitos chamem o tipo entidade de entidade, os dois não são a 
mesma coisa, mas são complementares. “Um tipo entidade define uma cole-
ção (ou conjunto) de entidades que possuem os mesmos atributos. Cada tipo 
entidade no banco de dados é descrito por seu nome e atributos” [ELMASRI 
e NAVATHE, 2005]. Fazendo uma analogia a linguagem de programação, po-
demos dizer que uma entidade está para um tipo entidade, assim como uma 
variável está para um tipo primitivo.



25Banco de Dados

Para identificar os tipos entidade presentes num texto, o primeiro pro-
cedimento é localizar os substantivos que indiquem um objeto como único no 
mundo real ou conceitual. No texto apresentado na seção 2.1 foram identifica-
dos com tipos entidades os substantivos estoque, PDV, item da venda, forma 
de pagamento e cliente (figura 2.1).

Figura 2.1 – Tipos entidade

Embora mercantil seja um substantivo, ele não apareceu na figura 2.1 
porque se o mesmo fosse transformado num tipo entidade, só teria apenas 
uma única aparição no banco de dados.

Existem outros substantivos no texto (ECF, processos internos, gerên-
cia, etc.), mas eles não têm um papel representativo no projeto, suas apari-
ções no texto servem apenas para nos ajuda a entender o projeto.

Outro substantivo descartado foi inventário de mercadoria, pois ele re-
presenta uma funcionalidade do software que será criado, devendo ficar claro 
que esta funcionalidade vai ser criada com base nas informações presentes 
no tipo entidade ESTOQUE, e não ser um tipo entidade do banco de dados.

2.2. Identificando os Tipos Relacionamento

A identificação dos tipos relacionamento de um projeto é mais simples, pois já 
tendo descoberto os tipos entidade, o relacionamento entre os mesmo se dá 
através de verbos ou preposições que os conectem.

Os tipos relacionamento encontrado no texto são apresentados na figu-
ra 2.2 como losangos unindo os tipos entidade.

 

Figura 2.2 – Tipos entidade e tipos relacionamento



26
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Na figura 2.2 também é apresentado a razão de cardinalidade para os 
relacionamentos. A razão de cardinalidade especifica o número máximo de 
relacionamentos que uma entidade pode participar.

No tipo relacionamento TORNA-SE, ESTOQUE:ITEM_PDV tem razão 
1:N. Em outras palavras, cada entidade estoque pode se relacionar com N 
entidades item_pdv.

No exemplo todos os tipos relacionamento são de grau binário, ou seja, 
cada relacionamento suporta a participação de apenas duas entidades. Mas o 
modelo conceitual permite tipos relacionamento de vários graus, embora seja 
altamente recomendável tentar utilizar sempre o grau binário.

2.2.1. Identificando os Atributos

Reconhecido os tipos entidade e tipos relacionamento, o próximo passo é 
identificar os atributos dos tipos entidade. Uma vez que um tipo entidade é a 
representação de um objeto e todo objeto tem propriedades, devemos repre-
sentar essas propriedades através dos atributos. O modelo conceitual tam-
bém permite aos tipos relacionamento terem atributos. Um atributo também 
pode ser visto como um substantivo que descreve outro substantivo.

A figura 2.3 representa os atributos encontrados na seção 2.1 através 
de círculos fixados diretamente no tipo entidade.

Figura 2.3 – Modelo conceitual do projeto

A tabela 2.1 explana sobre os tipos de atributos representados na figura 
anterior.



27Banco de Dados

Tabela 2.1

TIPOS DE ATRIBUTOS ENCONTRADOS NA FIGURA 2.3
Atributo Exemplo Descrição

Atributo multivalorado
Atributo formado por um conjunto de valores por 

entidade.

Atributo monovalorado
Atributo formado por um único valor por entidade.
Este atributo é o complemento do atributo multi-

valorado.

Atributo composto
Atributo que pode ser dividido em partes menores, 

formando uma hierarquia de atributos.

Atributo simples ou atômico
Atributo que não pode ser dividido em partes 

menores. Este atributo é o complemento do atributo 
composto.

Atributo chave simples

Também chamado de restrição de unicidade ou 
chave primária simples.

Este atributo não pode ter o valor nulo, nem ter 
duas entidades com o mesmo valor.

Atributo chave composto

Semelhante ao atributo chave simples, mas nesse 
caso são usados dois ou mais atributos para 

definir a restrição de unicidade. Também pode ser 
chamado de chave primária composta.

2.3. Normalização

Com o modelo conceitual pronto, o passo seguinte é transformá-lo no mode-
lo lógico, mas antes devemos ter o conhecimento da formas normais. Esse 
conhecimento é necessário, pois o modelo conceitual não se preocupar com 
a implementação, enquanto o modelo lógico apresenta uma visão abstrata 
apropriada a equipe de desenvolvimento.

A normalização procura simplificar a maneira como os dados serão ar-
mazenados no banco de dados para conseguir mais eficiência. Neste contex-
to a palavra “eficiência” não se refere melhorar o desempenho do banco de 
dados ou facilitar o processo de consulta. A eficiência procurada aqui se refere 
a diminuição da complexidade da estrutura lógica do banco de dados.



28
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

A normalização é o processo de análise efetuado sobre esquemas re-
lacionais para conseguir características desejáveis, tais como a minimização 
de redundância e, consequentemente, a redução de anomalias de inserção, 
atualização e exclusão.

A redundância de dados acontece quando “uma determinada informa-
ção está representada no sistema em computador várias vezes” [HEUSER, 
2001]. Um exemplo de normalização apresentado por [ELMASRI e NAVATHE, 
2005] é o de um banco de dados de uma universidade, onde dois grupos de 
usuários (secretaria e contabilidade) mantêm arquivos independentes com os 
dados dos alunos. “A contabilidade também guarda os dados de matrícula e 
as informações relacionadas a pagamentos, enquanto a secretaria mantém o 
controle dos cursos e notas dos alunos” [ELMASRI e NAVATHE, 2005].

2.3.1. Forma Normal

Uma forma normal é uma regra que deve ser seguida para que uma tabela 
seja bem avaliada. A forma normal sujeita o esquema de relação a uma cadeia 
de avaliação para garantir que ele satisfaz a forma normal. Esse processo de 
avaliação segue o estilo top-down, onde cada relação é avaliada sob os crité-
rios das formas normais.

2.3.1.1. Primeira Forma Normal (1FN)

Uma tabela está na 1FN se não possuir atributo multivalorado ou atributo com-
posto, esse procedimento elimina tabelas aninhadas. A figura 2.4 mostra uma 
tabela que não atende a 1FN, pois temos um atributo multivalorado (Telefone) 
e um atributo composto (Endereco).

Figura 2.4 – Tabela fora da 1FN

Para resolver o problema do atributo multivalorado, deve-se criar uma 
nova tabela com o atributo multivalorado (figura 2.5), essa nova tabela deve 
se relacione com a tabela.



29Banco de Dados

Figura 2.5 – Tabela criada com base no campo multivalorado

O problema do atributo composto é mais simples, os atributos base devem 
ser inseridos direto na tabela, eliminando-se o atributo compostos (figura 2.6).

Figura 2.6 – Tabela na 1FN

A figura 2.7 mostra o modelo conceitual do exemplo apresentado para 
a 1FN.

Figura 2.7 – Modelo conceitual da 1FN

2.3.1.2. Segunda Forma Normal (2FN)

Uma tabela está na 2FN se estiver na 1FN e não possuir dependência funcio-
nal parcial. Uma dependência parcial ocorre quando os atributos não chave 
não dependem de toda chave primária composta (Ler Tabela 2.1 – Atributo 



30
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

chave simples e Atributo chave composto). A figura 2.8 mostra uma tabela que 
não atende a 2FN.

Figura 2.8 – Tabela fora da 2FN

Neste exemplo a chave primária é composta por dois atributos (ID, 
ID_Produto). Dois atributos não chave (Descricao, Vr_Unit) têm dependên-
cia funcional parcial com a chave primária. Explanando de outra maneira, 
os dois atributos não chave mencionados têm seus valores diretamente 
relacionados com o atributo ID_Produto. A figura 2.9 apresenta a tabela já 
atendendo a 2FN.

Figura 2.9 – Tabela na 2FN

A figura 2.10 mostra o modelo conceitual do exemplo apresentado para 
a 2FN.

Figura 2.10 – Modelo conceitual da 2FN



31Banco de Dados

2.3.1.3. Terceira Forma Normal (3FN)

Uma tabela está na 3FN se estiver na 2FN e não possuir nenhuma dependên-
cia funcional transitiva. Uma dependência transitiva ocorre quando um atribu-
to não chave depende de outro atributo não chave. A figura 2.11 mostra uma 
tabela que não atende a 3FN.

Figura 2.11 – Tabela fora da 3FN

Os atributos não chave Cargo e Salario têm dependência funcional 
transitiva com o atributo não chave ID_Cargo. A solução é semelhante a 
da 2FN, ou seja, cria-se uma nova tabela para solucionar a dependência 
funcional (figura 2.12).

Figura 2.12 – Tabela na 3FN

A figura 2.13 mostra o modelo conceitual do exemplo apresentado para 
a 3FN.

Figura 2.13 – Modelo conceitual da 3FN



32
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Na maioria dos projetos, quando se chega a 3FN o esquema do banco 
de dados já está com a normalização satisfatória. Mas em alguns casos, para 
atingir uma normalização aceitável é necessário executar a 4FN e 5FN.

2.3.1.4. Quarta Forma Normal (4FN)

Uma tabela está na 4FN se estiver na 3FN e não existir dependência funcional 
multivalorada. Uma dependência multivalorada ocorre quando dois ou mais 
atributos multivalorados dependem de um atributo chave. A figura 2.14 mostra 
uma tabela que não atende a 4FN.

Figura 2.14 – Tabela fora da 4FN

Os atributos multivalorados Ator e Produtor têm dependência funcional mul-
tivalorada com o atributo chave ID. Neste caso, cada atributo multivalora-
do se transformará numa tabela independente da tabela original (figura 2.15).

Figura 2.15 – Tabelas derivadas da figura 2.14

Cada tabela derivada dos atributos multivalorados deve se relacionar com 
a tabela original através de uma tabela intermediária (figura 2.16). As tabelas 
intermediárias têm o atributo chave da tabela original (ID) e o atributo chave 
das tabelas derivadas (ID_Ator, ID_Prod). O produtor do filme produziu. 



33Banco de Dados

Figura 2.16 – Tabelas intermediárias

A figura 2.17 mostra o modelo conceitual do exemplo apresentado para 
a 4FN.

Figura 2.17 – Modelo conceitual da 4FN

2.3.1.5. Quinta Forma Normal (5FN)

Uma tabela está na 5FN se estiver na 4FN e não existir dependência funcional 
cíclica. Uma dependência cíclica ocorre quando um atributo X depende do 
atributo Y, o atributo Y depende do atributo Z e o atributo Z depende do atributo 
X. A figura 2.18 mostra uma tabela que não atende a 5FN.



34
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 2.18 – Tabela fora da 5FN

A tabela apresentada na figura 2.18 poderia mostrar que o professor 
Tadeu ministra a disciplina Banco de Dados, e que só poderá ministrar essa 
disciplina se utilizar a apostila Tutorial Banco de Dados. Desta maneira é cria-
da uma dependência cíclica entre os atributos Professor, Disciplina e Apostila. 
Para evitar essa dependência cíclica, devem-se criar novas tabelas que rela-
cionem esses atributos de forma binária (figura 2.19).

Figura 2.19 – Tabelas derivadas da figura 2.18

A figura 2.20 mostra o modelo conceitual do exemplo apresentado para 
a 5FN.



35Banco de Dados

Figura 2.20 – Modelo conceitual da 5FN

2.3.2. Desnormalização

A desnormalização é um assunto pouco mencionado na literatura por ser con-
troverso e não ser uma técnica unânime. Mas em certos casos podem reque-
rer a redundância de parte dos dados, ou que atributos não relacionados 
sejam combinados em tipos entidade simples. 

Um caso em particular que requer a desnormalização é a necessidade 
de manter um histórico sobre os dados armazenados. Um exemplo dessa 
necessidade é a obrigatoriedade de manter os dados dos documentos fiscais 
emitidos sem alteração, após terem sido consolidados. Para ficar mais claro 
será apresentado um cenário que reflete melhor esse exemplo:

1.	 A distribuidora ABCD emite uma nota fiscal eletrônica (NF-e) para 
o cliente XYZ, no ato da emissão da NF-e o cliente XYZ morava na 
RUA J50, tendo efetuado a compra de 100 refrigerantes no valor 
unitário de R$ 2,95.



36
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

2.	 Um ano após a emissão da NF-e, a Secretaria da Fazendo solicita 
o reenvio dos dados da mesma. A distribuidora ABCD sabe que os 
dados que serão enviados devem ser idênticos aos enviados um 
ano antes no ato da emissão.

3.	 Atualmente o cliente XYZ está morando na RUA WASHINGTON 
SOARES, para piorar a circunstância o refrigerante que o cliente 
comprou já mudou de preço algumas vezes.

4.	 A distribuidora ABCD não conseguirá atender a solicitação da Secre-
taria da Fazenda, pois para evitar redundância de dados, o banco de 
dados foi totalmente normalizado.

Outro caso, ainda mais controverso, é a desnormalização para evitar 
consultas complexas que são requeridas constantemente. Entenda-se com 
consultas complexas aquelas que fazem uso de junções entre duas ou mais 
tabelas para chegar ao resultado desejado.

Mas desnormalizar para ganhar desempenho talvez seja o mais contro-
verso argumento para desnomalizar um banco de dados, pois é muito difícil 
comprovar que o ganho de desempenho com a desnormalização é significativo.

2.4. Modelo Lógico

O modelo lógico apresenta uma visão abstrata apropriada a equipe de de-
senvolvimento. Um modelo lógico eficiente tem que está normalizado e ter as 
chaves estrangeiras criadas corretamente.

Observação

A partir deste ponto (i) tipo entidade será citado como tabela; (ii) entidade será 
citada como registro; e (iii) atributo será citado como coluna ou campo. 

2.4.1. Chave Estrangeira

Uma chave estrangeira é uma ou mais colunas de uma tabela cujos valo-
res devem, fundamentalmente, está presente como chave primária de outra 
tabela. Recordando que a chave primária (ou atributo chave) é uma ou mais 
colunas cujos valores tornam um registro como único na tabela.

No modelo lógico a chaves estrangeiras substituem os tipos relaciona-
mento do modelo conceitual, mas essa substituição atende a determinadas 
regras baseadas na cardinalidade existente no modelo conceitual:

Cardinalidade 1:1 – Neste tipo de relacionamento, na maioria das vezes, 
a chave estrangeira pode ser criada em qualquer uma das tabelas. A figura 
2.21 mostra o modelo conceitual e seu similar no modelo lógico para a cardi-
nalidade 1:1. 

No capítulo 5 será 
apresentado o conceito e 
exemplos práticos sobre 
junções de tabelas.



37Banco de Dados

Figura 2.21 – Cardinalidade 1:1

Cardinalidade 1:N – Neste tipo de relacionamento a chave estrangeira 
deve ser criada na tabela que tem a cardinalidade N (figura 2.22).

Figura 2.22 – Cardinalidade 1:N

Cardinalidade N:N – Neste tipo de relacionamento, deve-se criar uma 
nova tabela e inserir nela a chave estrangeira referente as tabelas envolvidas 
no relacionamento. As tabelas antigas passam a se relacionar através da nova 
tabela através de um cardinalidade 1:N (figura 2.23).

Figura 2.23 – Cardinalidade N:N



38
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

2.4.2. Criação do Modelo Lógico

O modelo lógico criado será baseado no modelo conceitual do projeto, apre-
sentado na figura 2.3. Como o modelo lógico deve está normalizado, deve-se 
verificar se a figura 2.3 precisa ser normalizada. No modelo conceitual da 
figura citada, só é necessário normalizar tabela CLIENTE, devido o mesmo 
apresentar uma coluna composta (Endereco) e outra multivalorado (Telefone). 
Após normalizar, o modelo conceitual ficará como mostra a figura 2.24.

Figura 2.24 – Modelo conceitual do projeto normalizado

Tendo como base o modelo conceitual mostrado na figura 2.24 é possí-
vel criar o modelo lógico (figura 2.25), transformando os relacionamentos em 
chaves estrangeiras, de acordo com as regras apresentadas anteriormente.

Figura 2.25 – Modelo lógico do projeto

Além de transformando os relacionamentos em chaves estrangeiras, o 
modelo lógico traz uma informação a mais, o tipo de dado que pode ser arma-
zenado com cada coluna da tabela.

Os tipos de dados mais 
comuns utilizados nos 
bancos de dados serão 
apresentados no capítulo 4.



39

Capítulo

PostgreSQL
e Modelagem Física

Capítulo 3





41Banco de Dados

Objetivo
•	 Um projeto de um banco de dados é finalizado com a escolha do banco de 

dados que será usado e com a criação do modelo físico. O modelo físico 
está diretamente relacionado  ao banco de dados escolhido, uma vez que 
o mesmo representa a forma como os dados serão armazenados fisica-
mente. O capítulo abordará o banco de dados PostgreSQL e como criar o 
modelo físico baseado no mesmo.

Introdução
O capítulo anterior apresentou o projeto de um aplicativo que utiliza um ban-
co de dados relacional. Foram utilizadas técnicas para a criação do modelo 
conceitual e do modelo lógico do projeto baseados nos requisitos levantados.

Neste capítulo iremos explicar como criar o modelo físico baseado no mo-
delo lógico apresentado no capítulo 2. O modelo físico é criado via SQL (Struc-
tured Query Language – Linguagem Estruturada de Consulta) e executado di-
retamente no SGBD, devido a isto, o capítulo inicia mostrando como instalar o 
SGBD PostgreSQL no sistema operacional Linux sobre a distribuição Ubuntu.

1. PostgreSQL
O PostgreSQL é um SGBD proveniente do POSTGRES que foi escrito na Univer-
sidade da Califórnia em Berkely. A primeira versão de demonstração do POST-
GRES tornou-se operacional em 1987, em 1994 passou a se chamar Postgres95 
e em 1996 recebeu o nome PostgreSQL, sendo o nome usado até hoje.

O PostgreSQL é um projeto open source coordenado pelo PostgreSQL 
Global Developent Group, tendo seu desenvolvimento sido feito por um grupo 
de desenvolvedores distribuídos pelo mundo, em sua maioria, voluntários. É 
considerado “atualmente o mais avançado banco de dados de código aberto 
disponível em qualquer lugar.” [POSTGRESQL, 2011].

1.1. Instalando o PostgreSQL

Essa subseção mostrará como instalar o PostgreSQL 8.4 no sistema opera-
cional Linux sobre a distribuição Ubuntu 10.4. 

O primeiro passo a ser efetuado é fazer o download do instalador do 
PostgreSQL. O arquivo que será utilizado é o postgresql-8.4.8-1-linux.bin, 
baixado do endereço http://www.postgresql.org/download/.

Open source refere-se aos 
software com código aberto 
e foi criado pela Open 
Source Initiative (OSI). 
Acesse http://opensource.
org/ para maiores 
informações.



42
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Após o download deve-se entrar no console (terminal) do Ubuntu e 
entrar no diretório onde se encontra o arquivo de instalação (Ex.: cd /home/
linuxubuntu-vb/Downloads). As permissões do arquivo devem ser mudadas 
através do comando chmod 755 postgresql-8.4.8-1-linux.bin.

Ainda no console do Ubuntu o comando sudo ./postgresql-8.4.8-1-linux.
bin deve ser executado para iniciar a instalação. Deste ponto por diante a ins-
talação será no modo visual. Todos os passos seguintes serão apresentados 
em tópicos, a mudança entre as janelas acontecerá através do botão Next. 
Serão mantidos os dados padrões apresentados nas janelas, a menos que 
seja solicitada a sua alteração.

1.	 A primeira janela exposta pelo instalador é a de boas-vindas (figura 3.1).

	

	 Figura 3.1 – Janela de boas-vindas.

2.	 Na janela seguinte (figura 3.2) é solicitado o diretório onde o Post-
greSQL será instalado.

Figura 3.2 – Diretório de instalação.

Acesse http://www.cassic.
com.br/carregar/tutoriais/
SERVL_TIPACESS para 
maiores informações sobre 
o comando chmod.



43Banco de Dados

3.	 Em seguida (figura 3.3) é solicitado o diretório onde os dados serão 
mantidos.

	

	 Figura 3.3 – Diretório de dados.

4.	 A senha do banco de dados deve ser informada e confirmada (figura 3.4). 
A senha usada foi postgres, que é o mesmo nome do super-usuário.

	

	 Figura 3.4 – Criação da senha.



44
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

5.	 A porta utilizada pelo servidor para atender as solicitações deve ser 
informada como mostrado figura 3.5.

	

	 Figura 3.5 – Porta usada pelo servidor.

6.	 Em opções avançadas é solicitado o local que será usado num pro-
vável cluster de banco de dados. Também é solicitado a confirmação 
da instalação da pl/pgsql no template1 do banco de dados. Deixe as 
opções como mostradas na figura 3.6.

	

	 Figura 3.6 – Opções avançadas.

Para o PostgreSQL um  
cluster  de banco de dados 
é um conjunto de bancos 
de dados gerenciada por 
uma única instância de 
um servidor de banco de 
dados.



45Banco de Dados

7.	 Na figura 3.7 o instalador informa que está pronto para iniciar instala-
ção do PostgreSQL. Clicar no botão Next.

	

	 Figura 3.7 – Instalação pronta para iniciar.

8.	 Após completar a instalação do PostgreSQL, o instalador pergunta 
se é desejável baixar e instalar ferramentas adicionais, drivers e apli-
cações complementares através do Stack Builder (figura 3.8). Com 
a opção marcada, clicar no botão Finish.

	

	 Figura 3.8 – Instalação concluída.



46
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

9.	 Na janela de boas-vindas do Stack Builder informe a opção Post-
greSQL 8.4 on port 5432 (figura 3.9).

	

	 Figura 3.9 – Janela de boas-vindas do Stack Builder.

10.	A janela seguinte do Stack Builder solicita os aplicativos que deverão 
ser instalados. Marcar as opções apresentadas na figura 3.10.

	

	 Figura 3.10 – Aplicativos a serem instados.



47Banco de Dados

11.	Antes de iniciar o download e instalação dos aplicativos, o Stack 
Builder pede a revisão das escolhas feitas na janela anterior, assim 
como o diretório que será usado para o download (figura 3.11).

	

	 Figura 3.11 – Confirmação de instalação.

12.	Após efetuar o download de todos os arquivos de instalação, o Stack 
Builder solicita um clique no botão Next para iniciar as instalações 
(figura 3.12).

	

	 Figura 3.12 – Downloads efetuado com sucesso.



48
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

13.	Depois de ter instalado todos os complementos, o botão Finish deve 
ser acionado (figura 3.13).

	

	 Figura 3.13 – Instalação concluída.

2. Modelo Físico

Após instalar o PostgreSQL, deve-se utilizar a SQL para criar o modelo físico 
do banco de dados. Nesta seção será usado o font-end  pgAdmin para auto-
matizar o uso da SQL.

2.1. pgAdmin

O pgAdmin é o font-end usado pelo PostgreSQL. Com ele é possível manipular 
o banco de dados de várias maneiras. Mas como afirmado anteriormente, neste 
momento o pgAdmin será usado para automatizar a criação do modelo físico.

Para iniciar o pgAdmin deve-se selecionar o menu Aplicativos do Linux 
Ubuntu e na seqüência escolher a opção PostgreSQL 8.4 e em seguida pgA-
dmin III. Esse procedimento irá abrir o pgAdmin (figura 3.14).

O pgAdmin permite ao usuário criar várias conexões com um ou mais 
servidores. Para criar uma conexão com o servidor local deve-se clicar no 
botão  e preencher como mostrado na figura 3.15 e clique no botão OK.

Um front-end é uma 
interface responsável 
por coletar os dados de 
entrada inseridos pelo 
usuário, efetuar um pré-
processamento e enviá-los 
ao seu destino final (back-
end), captura a resposta 
e apresenta ao usuário de 
forma inteligível.

O próximo capítulo é 
dedicado exclusivamente 
a SQL, onde será possível 
conhecer vários comandos 
da SQL.



49Banco de Dados

	

	 Figura 3.14 – Janela inicial do pgAdmin.

	

	 Figura 3.15 – Configuração da nova conexão com o servidor.

Para conectar-se com o servidor, é necessário dá um clique duplo sobre a 
conexão configurada na figura 3.15, que está no Navegador de objetos do pgAd-
min (lado esquerdo). Na janela Conectar ao Servidor (figura 3.16) deve ser infor-
mado a senha criada na instalação do PostgreSQL (a senha usada foi postgres).



50
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 3.16 – Abrindo conexão com servidor.

2.1.1. Criando a Tabela ESTOQUE

No Navegador de objetos abra o objeto Banco de Dados, em seguida os objetos 
postgres, Esquemas e public para ter acesso ao objeto Tabelas (figura 3.17).

Figura 3.17 – Acessando objeto Tabelas.



51Banco de Dados

Tendo como referência o modelo lógico do capítulo anterior execute os pas-
sos apresentados na sequência para criar a tabela ESTOQUE. Estes mesmos 
passos devem ser seguidos para criar as tabelas FORMA_PGTO e CLIENTE.

1.	 Clicar com o botão inverso do mouse e escolher a opção Nova Ta-
bela...

2.	 No campo Nome da guia Propriedades digitar ESTOQUE.

3.	 Na guia Colunas clicar no botão Adicionar.

4.	 Na janela Nova Coluna preencher como mostrado na figura 3.18 e 
clicar no botão OK.

	

	 Figura 3.18 – Coluna ID da tabela ESTOQUE.



52
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

5.	 Clicar novamente no botão Adicionar e preencher como mostrado 
na figura 3.19.

	

	 Figura 3.19 – Coluna Produto da tabela ESTOQUE.

6.	 Clicar outra vez no botão Adicionar e preencher como mostrado na 
figura 3.20.

	

	 Figura 3.20 – Coluna Quant da tabela ESTOQUE. 



53Banco de Dados

7.	 A criação dos campos Vr_Compra e Vr_Venda é semelhante ao 
campo Quant criado no passo 6.

8.	 Na guia Restrições com a opção Chave Primária selecionada clicar 
no botão Adicionar (figura 3.21).

9.	 Na guia Colunas da janela Nova Chave Primária... selecionar o 
campo ID, clicar no botão Adicionar e em seguida no botão OK.

10.	Na janela Nova Tabela... clicar no botão OK.

	

	 Figura 3.21 – Especificando a chave primária.

As figuras 3.18 e 3.19 trazem dois tipos diferentes dos utilizados no 
modelo lógico. Os tipos usados no modelo lógico são aceitos por qualquer 
SGBDR. Se na criação da coluna for utilizado o tipo Varchar, o PostgreSQL 
converterá o mesmo para seu tipo nativo Character Varying.

Da mesma maneira o tipo Serial é um tipo nativo do PostgreSQL, que 
neste caso é equivalente a um tipo inteiro com uma seqüência criada de ma-
neira implícita. Desta maneira o campo ID se torna um campo auto-incremente.

2.1.2. Criando a Tabela PDV

Os passos para criar a tabela PDV, suas colunas e a chave primária são simi-
lares aos da tabela ESTOQUE. A diferença está no passo seguinte a criação 



54
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

da chave primária, após criar a chave primária devem-se criar as chaves es-
trangeiras da tabela.

Três informações são essenciais para a criação de uma chave estran-
geira, (i) o campo da tabela local que será a chave estrangeira, (ii) a tabela 
estrangeira e (iii) o campo da tabela estrangeira que será referenciado. Essas 
informações podem ser passadas de maneira visual no pgAdmin.

Após criar todos os campos apresentados no modelo lógico e a chave 
primária, execute os passos apresentados na seqüência. Estes mesmos pas-
sos devem ser executados para as tabelas ITEM_PDV e TELEFONES.

Na guia Restrições com a opção Chave Estrangeira selecionada clicar 
no botão Adicionar (figura 3.22).

Escolher a opção FORMA_PGTO (tabela estrangeira) no campo Refe-
rências da guia Propriedades da janela Nova Chave Estrangeira... 

	

	 Figura 3.22 – Tabela referência para a chave estrangeira.



55Banco de Dados

3.	 Na guia Colunas, nos campos Coluna local e Referenciando infor-
mar respectivamente ID_Forma_Pgto (campo da tabela local que 
será a chave estrangeira) e ID (campo da tabela estrangeira que 
será referenciado), clicar no botão adicionar (figura 3.23).

	

	 Figura 3.23 – Coluna local e referenciada para a chave estrangeira.

4.	 Na guia Ação, marcar as opções de acordo com a figura 3.24 e cli-
car no botão OK.

	

	 Figura 3.24 – Ações para a chave estrangeira.



56
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

As opções CASCADE do campo Ao Atualizar (figura 3.23) informa ao 
SGBD que caso um ID da tabela estrangeira FORMA_PGTO seja atualizado, 
todos os campos ID_Forma_Pgto da tabela local PDV que tenham o mesmo 
valor serão atualizados.

Já a opção CASCADE do campo Ao Apagar informa ao SGBD que 
caso um registro da tabela estrangeira FORMA_PGTO seja excluído, todos 
os registros da tabela local PDV com o valor do campo ID_Forma_Pgto igual 
ao ID do registro excluído também serão excluídos. 

Repetir os passo da criação da chave estrangeira do campo ID_For-
ma_Pgto para criar a chave estrangeira do campo ID_Cliente. No final clicar 
no botão OK da janela Nova Tabela...



57

Capítulo

Introdução a SQL

Capítulo 4





59Banco de Dados

Objetivo
•	 Com a evolução dos bancos de dados, surgiu uma linguagem descritiva 

que com o tempo foi se tornando um padrão para os bancos de dados rela-
cionais. A SQL é uma linguagem declarativa criada para trabalhar exclusi-
vamente com banco de dados, o seu conhecimento se torna indispensável 
para a atual conjuntura dos bancos de dados. Este capítulo é dedicado a 
história da SQL e aos comandos do grupo DDL e DML, além do comando 
SELECT e sua cláusula WHERE.

Introdução
Este é o primeiro de dois capítulos dedicados a SQL (Structured Query Lan-
guage – Linguagem Estruturada de Consulta), uma linguagem declarativa de-
senvolvida para os bancos de dados relacionais, que devido sua simplicidade 
e facilidade de uso tornou-se um padrão para banco de dados relacionais.

O grande diferencial da SQL em relação a outras linguagens de consul-
ta está no seu paradigma, pois a SQL é uma linguagem declarativa e não uma 
linguagem procedural. Para os novos usuários ela parece ser um pouco com-
plicada, mas isso ocorre devido ao desconhecimento do paradigma declara-
tivo, assim, o aluno após absorver os princípios desse paradigma, observará 
que o ciclo de aprendizagem da SQL é bastante reduzido.

Uma boa justificativa para se ter dois capítulos dedicados a SQL é dado 
por [DEITEL, 2010] quando afirma que “os sistemas de banco de dados atuais 
mais populares são os banco de dados relacionais” e ele concluí informando 
que a SQL “é a linguagem padrão internacional utilizada quase universalmente 
com banco de dados relacionais para realizar consultas e manipular dados”.

Neste capítulo as sintaxes dos comandos e sub-comandos da SQL se-
rão apresentados baseados no padrão EBNF (Extended Backus-Naur Form 
– Forma Backus-Naur Estendida).

1. História
A SQL permitiu padronizar a construção e acesso a SGBDR (Sistema de Ge-
renciamento de Bancos de Dados Relacional) de diferentes tipos e em dife-
rentes plataformas de software e hardware.

Essa padronização impulsionou não apenas a disseminação dos 
SGBDR, mas também a própria SQL. Para entender a importância da SQL 
são mostrados nesta subseção todos os pontos que levaram os DBAs (Da-

A BNF foi criada por JOHN 
BACKUS para descrever 
o ALGOL 58 e modificada 
ligeiramente por PETER 
NAUR para descrever 
o ALGOL 60. Algumas 
inconveniências causaram 
a extensão da BNF dando 
origem a EBNF.



60
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

tabase Administrator – Administrador de Banco de Dados) a ter na SQL um 
aliado importante.

No final da década de 1960 o matemático Edgar Frank Codd apresen-
tou as primeiras idéias sobre banco de dados relacional.  Em junho de 1970 
publicou o artigo “A relational model of data for large shared data banks – Um 
modelo relacional de dados para grandes bancos de dados compartilhados”, 
o que lhe rendeu em 1981 o prêmio ACM TURING AWARD.

Em 1973 a IBM criou o seu primeiro gerenciador de dados relacional, o 
SYSTEM R que utilizava a linguagem de consulta SEQUEL (Structured En-
glish Query Language – Linguagem Inglesa Estruturada de Consulta).  Por 
motivos legais, a sigla foi alterada para SQL, mas o primeiro SGBDR disponí-
vel comercialmente foi o ORACLE em 1979.

A primeira versão padronizada da SQL ocorreu em 1986, ficando co-
nhecida como SQL-86.  Esse padrão foi inicialmente desenvolvido no âmbito 
da ANSI (American National Standards Institute – Instituto Nacional America-
no de Padrões) sendo aprovado pela ISO (International Organization for Stan-
dardization – Organização Internacional para Padronização) em 1987.

Em 1989 foi publicada uma extensão do padrão SQL-86 chamada de 
SQL-89. A SQL-92, também chamada de SQL2, foi publicado em 1992 e 
aprovado pela ISO.  Essa versão da SQL foi dividida tem três partes:

1.	 Entry Level (Nível de Entrada) – Nesse nível foi definido um conjunto 
mínimo de comando para ser considerado padrão SQL;

2.	 Intermediate level (Nível Intermediário);

3.	 Full (Completo).

A SQL-99 ou SQL3 foi aprovada pela ISO no final do ano de 1999.  Nela 
foram definidos os usos de triggers, stored procedures, consultas recursivas, 
entre outros. Esse padrão também definiu regras para os SGBDOR (Sistema de 
Gerenciamento de Bancos de Dados Objeto-Relacional) (Ler 1.2. Modelos de 
Bancos de Dados), implementando assim o suporte ao tratamento de objetos. 

No ano de 2003 foi lançado o SQL-2003, introduzindo características 
relacionadas ao XML (eXtensible Markup Language – Linguagem de Mar-
cação Extensiva), sequências padronizadas e colunas com valores de auto-
-generalização. 

A versão SQL-2008 trouxe nas especificações formas para a SQL po-
der ser usada em conjunto com XML, incluindo importação, armazenamento, 
manipulação e publicação de dados XML no SGBDR.

A SQL é uma linguagem padronizada, mas cada SGBDR apresenta 
dialeto próprio, com extensões diferentes entre cada fabricante de SGBD.

O prêmio ACM TURING 
AWARD é conferido a uma 
pessoa que tenha dado 
contribuições de natureza 
técnica a comunidade 
computacional.

XML é uma linguagem 
universal usada para troca 
de informações entre 
organizações, empresas, 
departamentos e banco de 
dados – entre outros – de 
uma forma transparente 
e organizada, permitindo 
ao desenvolvedor criar as 
marcações (tags) mais 
adequadas para cada 
situação.



61Banco de Dados

2. Grupos

Os comandos da SQL são tradicionalmente separados em dois grupos:

•	 DDL (Data Definition Language – Linguagem de Definição de Dados): 
Subconjunto utilizado para criar, alterar e excluir tabelas e elementos 
associados; esse é o grupo que mais muda de um fabricante para outro.

•	 DML (Data Manipulation Language – Linguagem de Manipula-
ção de Dados): Subconjunto dos comandos usado para inserir, atu-
alizar e apagar dados.

Para recuperar (consultar) os dados utiliza-se o comando select. Alguns 
autores incluem esse comando dentro do grupo DML, uma vez que para re-
cuperar os dados é necessário manipulá-los, sem necessariamente ter que 
alterar seu estado. Outros já preferem definir um grupo especifico para ele 
chamado DQL (Data Query Language – Linguagem de Consulta de Dados).

2.1. Outros Grupos

Além da divisão tradicional, é possível ver outras divisões que foram criadas 
no decorrer do tempo:

•	 DCL (Data Control Language – Linguagem de Controle de Da-
dos): Subconjunto de comandos que controla o acesso dos usuá-
rios aos dados.

•	 DTL (Data Transaction Language - Linguagem de Transação de 
Dados): Subconjuntos de comandos usados para iniciar e finalizar 
transações.

•	 DQL (Data Query Language – Linguagem de Consulta de Da-
dos): Com apenas um único comando – select – e suas várias 
cláusulas e opções – nem sempre obrigatórias – permite recuperar 
os dados de uma ou mais tabelas através de consultas elaboradas 
como uma descrição do resultado desejado.

Além desses grupos de comandos a SQL tem operadores lógicos, ope-
radores relacionais e funções de agregação que, assim como na DDL, podem 
mudar de um fabricante para outro.

3. SQL Editor

Para executar os exemplos apresentados neste capítulo será usado o SQL 
Editor do pgAdmin. Com o banco de dados desejado selecionado no nave-
gador de objetos, deve-se clicar no botão  para abrir o SQL Editor (figura 
4.1). Após escrever os exemplos apresentados neste capítulo, deve-se clicar 
no botão  para executar o comando digitado.



62
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 4.1 – Editor de SQL.

Os exemplos apresentados neste capítulo não fazem parte do projeto 
apresentado nos capítulo 2 e 3. Serão apresentados exemplos didáticos para 
melhor entendimento da SQL, independente do projeto onde serão usados.

4. DDL – Parte 1

A DDL é o grupo que mais muda de um dialeto para o outro, mas vale ressaltar 
que a sintaxe apresentada aqui é muito semelhante a maioria dos SGBDRs 
(Sistemas Gerenciadores de Bancos de Dados Relacionais).

4.1. Comando CREATE TABLE

O comando CREATE TABLE é usado para criar uma tabela onde os dados 
serão armazenados.

Sintaxe:

create table Tabela (

  Atributo Tipo_Dado [Restrição]

A SQL é CASE 
INSENSITIVE (não 
diferencia letras maiúsculas 
de minúsculas). Mas vale 
ressaltar que os dados 
armazenados podem 
ser CASE SENSITIVE 
(diferencia letras 
maiúsculas de minúsculas), 
este fato depende do 
SGBDR.

Na EBNF os COLCHETES 
denotam uma parte 
opcional e as CHAVES 
indicam que partes 
podem ser repetidas 
indefinidamente ou omitidas 
completamente.



63Banco de Dados

  [ {, Atributo Tipo_Dado [Restrição] } ]

);

Rótulo Descrição
Tabela Nome da tabela

Atributo Nome do atributo
Tipo_Dado Tipo de dados do atributo

Restrição Restrição de dados para o atributo

TIPOS DE DADOS MAIS COMUNS AOS SGBDRS
Char(n) Caractere de tamanho fixo

Varchar(n) Caractere de tamanho variável

Number(n, p) Números de ponto flutuante com total de dígitos n e total de dígitos à direita do ponto decimal p

Integer Números inteiros – Alguns SGBDR utilizam Number(n) para identificar um número inteiro

Date Armazena data – Alguns SGBDR armazenam data e hora

Exemplo1:

create table Setor ( 

  ID integer not null primary key,

  Setor varchar(20)

);

Neste exemplo foi criada a tabela Se-
tor, esta tabela tem os atributos (i) ID do tipo 
inteiro e (ii) Setor que pode armazenar até 20 
caracteres. Um detalhe interessante neste 
exemplo é o atributo Setor que é homônimo 
da tabela, isso é possível porque a sintaxe da 
SQL é bem elaborada, deixando claro quem 
é a tabela e quem é atributo.

A restrição NOT NULL colocada no 
atributo ID informa ao SGBDR que só pode 
aceitar um registro nesta tabela quando esse 
atributo for informado, ou seja, o atributo ID 
não pode ser nulo. Também foi informado ao 
SGBDR que o atributo ID é uma chave primá-
ria através do sub-comando PRIMARY KEY.

A figura 4.2 mostra como o Editor de 
SQL fica após o comando anterior ser exe-
cutado com êxito. Figura 4.2 – Comando CREATE após executado no Editor de SQL.



64
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo2:

create table Funcion (

  ID integer not null primary key,

  Nome varchar(40),

  ID_Setor integer,

  primary key(ID),

  foreign key(ID_Setor) references Setor (ID) on delete cascade

);

Esse comando criada a tabela Funcion, com os atributos ID, Nome e 
ID_Setor. Mas neste exemplo a chave primária foi criada de outra forma, o 
sub-comando PRIMARY KEY foi inserido após o último atributo (ID_Setor) e 
foi colocado entre parênteses o campo que representa a chave primária.

Se a chave primária for simples (composta por apenas um único atri-
buto), pode-se usar dos dois modos apresentados nos exemplos. Mas se a 
chave primária for composta (composta por dois ou mais atributos), deve-se 
usar o modo apresentado no segundo exemplo, separando os campos com 
vírgula como mostrado na sintaxe abaixo:

create table Tabela (

  Atributo Tipo not null, 

  Atributo Tipo not null [ {, Atributo Tipo [Restrição] } ] ,

  primary key( Atributo [ {, Atributo} ] )

);

Neste exemplo também foi criada a chave estrangeira através do sub-
-comando FOREIGN KEY. Para criar uma chave estrangeira junto com o co-
mando CREATE TABLE, a tabela estrangeira já deve está criada.

A semântica para criar a chave estrangeira é a seguinte:

•	 Após o sub-comando FOREIGN KEY deve-se colocar entre parên-
teses o atributo da tabela que será a chave estrangeira;

•	 Após a palavra reservada REFERENCES deve-se informar a tabela 
que está sendo referenciada pela chave estrangeira, e entre parên-
teses o atributo da tabela referenciada;

•	 As palavras reservadas ON DELETE CASCADE indicam ao SGB-
DR que após excluir um registro da tabela referenciada, todos os 
registros da tabela atual que tem chave estrangeira com o mesmo 
valor serão excluídos (Leia 3.2.1.2. Criando a Tabela PDV).



65Banco de Dados

4.2. Comando ALTER TABLE

O comando ALTER TABLE é usado para fazer alterações em tabelas já exis-
tentes no banco de dados.

4.2.1. Adicionar Atributo a Tabela

Para adicionar um ou mais atributos numa tabela já existente, deve-se usar o 
comando ALTER TABLE em conjunto com o sub-comando ADD.

Sintaxe:

alter table Tabela

add Atributo Tipo_Dado [Restrição]

[ {, add Atributo Tipo_Dado [Restrição] } ];

Exemplo:

alter table Funcion

add Salario numeric(7, 2),

add Dt_Nasc date;

Este exemplo adiciona os atributos (i) Salario do tipo numérico de tama-
nho 7 com precisão 2 e (ii) Dt_Nasc do tipo data.

4.2.2. Modificar Tipo de Dados do Atributo

Para modificar o tipo de dados de um ou mais atributos já existentes numa 
tabela, deve-se usar o comando ALTER TABLE em conjunto com os sub-
-comandos ALTER e TYPE.

Sintaxe:

alter table Tabela

alter Atributo type Tipo_Dado

[ {, alter Atributo type Tipo_Dado } ];

Exemplo:

alter table Funcion

alter Dt_Nasc type varchar(10);

A mudança do tipo de dados do atributo Dt_Nasc de date para var-
char(10) só foi possível devido eles serem compatíveis. Se fosse tentando 



66
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

modificar o tipo date para varchar(5) seria gerado um erro, pois o tipo date 
não pode ser convertido no tipo varchar(5) sem que haja a perda de dados 
armazenados.

4.2.3. Excluir Atributo da Tabela

Para excluir um ou mais atributos numa tabela já existente, deve-se usar o 
comando ALTER TABLE em conjunto com o sub-comando DROP.

Sintaxe:

alter table Tabela

drop Atributo

[ {, drop Atributo } ];

Exemplo:

alter table Funcion

drop Dt_Nasc;

Os sub-comando DROP está informando ao SGBD que o atributo Dt_
Nasc da tabela Funcion deve ser excluído.

4.2.4. Adicionar Chave Primária a Tabela

Para incluir uma chave primária numa tabela já existente, deve-se usar o co-
mando ALTER TABLE em conjunto com o sub-comando PRIMARY KEY.

Sintaxe:

alter table Tabela add primary key( Atributo [, Atributo] ) ;

Exemplo:

alter table Funcion add primary key(ID);

Neste exemplo é adicionada a chave primária na tabela Funcion. Mas o 
exemplo só será executado com êxito se a tabela mencionada ainda não tiver 
chave primária declarada.



67Banco de Dados

4.2.5. Adicionar Chave Estrangeira a Tabela

Para incluir uma ou mais chaves estrangeiras numa tabela já existente, deve-
-se usar o comando ALTER TABLE em conjunto com o sub-comando FO-
REIGN KEY.

Sintaxe:

alter table Tabela foreign key(Atributo) references Tabela_FK (Atribu-
to_FK) );

Exemplo:

alter table Funcion foreign key(ID_Setor) references Setor (ID) );

Aqui é adicionada uma chave estrangeira na tabela Funcion. A vanta-
gem dessa abordagem sobre a apresentada anteriormente é a flexibilidade de 
poder criar todas as tabelas, para só depois criar os relacionamentos existente 
entre elas, independente da ordem que as tabelas foram criadas.

4.3. Comando DROP TABLE

O comando DROP TABLE é usado para excluir tabelas do banco de dados.

Sintaxe:

drop table Tabela;

Exemplo:

drop table Funcion;

A tabela Funcion e todos os seus registros são excluídos do banco de 
dados com este exemplo.

4.5. DML

As inclusões, alterações e exclusões de dados numa tabela são feitas pelos 
comandos do grupo DML. As sintaxes apresentadas nesta seção pertencem 
ao SQL padrão, mas assim como os comandos DDL, alguns SGBDRs podem 
apresentar dialetos diferentes.



68
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

4.5.1. Preparando o Banco de Dados

Antes de mostrar os comandos DML é preciso excluir todas as tabelas do banco 
de dados através do comando DROP TABLE, para evitar conflitos de tabelas.

Após excluir todas as tabelas do banco de dados devem-se criar as tabelas 
que serão usadas nos exemplos. Na sequência são apresentadas as tabelas:

•	 Setor: Armazenará os dados dos setores onde os funcionários da 
empresa podem ser lotados. Esta tabela tem o atributo ID que é a 
chave primária e o atributo Setor (homônimo da tabela) guardado o 
nome do setor.

•	 Funcion: Armazenará os dados dos funcionários da empresa. O 
atributo ID é a chave primária, o nome do funcionário deve ser infor-
mado no atributo Nome. O salário mensal do funcionário é gravado 
no atributo Salario. O relacionamento entre o funcionário e o setor 
onde está lotado é representado pela chave estrangeira ID_Setor.

•	 Cliente: Armazenará os dados dos clientes da empresa. A chave pri-
mária do cliente é representada pelo atributo ID. O nome e o sobre-
nome do cliente ficam guardados nos atributo Nome e Sobrenome, 
respectivamente.

•	 Pedido: Armazenará os dados dos pedidos. O atributo ID registrará 
a chave primária do pedido. O valor total do pedido será guardado no 
atributo Valor. O atributo ID_Cliente é a chave estrangeira responsá-
vel por fazer o relacionamento entre o pedido e o cliente.

A figura 4.3 mostra o modelo lógico utilizado nos exemplos que se seguem.

Figura 4.3 – Modelo lógico.

O modelo físico baseado no modelo lógico apresentado anteriormente 
é mostrado na figura 4.4.



69Banco de Dados

Figura 4.4 – Modelo físico.

4.5.2. Comando INSERT

O comando INSERT adiciona um novo registro numa tabela.

Sintaxe:

insert into Tabela [ (Atributo [ {, Atributo} ] ) ]

values (Valor [ {, Valor } ] );

Rótulo Descrição
Tabela Nome da tabela

Atributo Nome do atributo
Valor Valor que será inserido no atributo

As tabelas criadas usando o modelo físico da figura 4.4, serão povoa-
das com os comandos INSERTs dos exemplos mostrados na continuação, e 
ficarão como mostradas na figura 4.5.



70
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 4.5 – Tabelas povoadas.

Exemplos1 – Inserção com atributos explícitos:

insert into Setor (ID, Setor)

values (1, ‘Desenvolvedor’);

Este exemplo é incluído na tabela 
Setor um registro onde o atributo ID rece-
ber o valor 1, e o atributo Setor receber o 
valor Desenvolvedor.

Os valores dos atributos que arma-
zenam caracteres devem ser colocados 
entre apóstrofos, assim como os valores 
dos atributos que armazenam datas. Já 
os atributos que armazenam números po-
dem ser informados sem os apóstrofos.

A figura 4.6 mostra como o Editor 
de SQL fica após o comando anterior ser 
executado com êxito.

Figura 4.6 – Comando INSERT após executado no Editor de SQL.



71Banco de Dados

Exemplos2 – Inserção com atributos implícitos:

insert into Setor

values (2, ‘Manutenção’);

Neste caso o primeiro atributo da tabela (ID) recebe o valor 2 e o segun-
do atributo da tabela (Setor) recebe o valor Manutenção.

Embora a SQL não faça diferença entre estes dois modos de inserção, 
as boas práticas recomenda utilizar o modo explícito motivos como os apre-
sentados na sequência:

•	 A inclusão de novos atributos na tabela, de uma forma geral, não 
obriga a alteração do comando;

•	 A alteração na posição de atributos da tabela não obriga a alteração 
do comando;

•	 Permite a inclusão de registros com atributos nulos, desde que o 
atributo não tenha a restrição NOT NULL;

•	 O comando é executado de imediato, uma vez que o SGBDR não 
vai precisar pesquisar quais são os atributos da tabela utilizada, an-
tes de executar o comando INSERT.

A figura 4.7 apresenta os outros comandos INSERTs que devem ser 
usados para povoar a tabela Setor.

Figura 4.7 – Povoando a tabela Setor.

A figura 4.8 apresenta os comandos INSERTs usados para povoar a 
tabela Funcion. O detalhe desta figura fica por conta da inclusão do sétimo 
registro; nesta inclusão o atributo ID_Setor não foi informado, com isto este 
registro terá o valor NULO conferido ao atributo ID_Setor.

Ainda sobre a figura 4.8, só é possível informar no atributo ID_Setor va-
lores que tenham referências na tabela Setor, uma vez que o atributo ID_Setor 
é uma chave estrangeira. Caso seja informado no ID_Setor um valor não exis-
tente na tabela Setor o SGBDR irá gerar um erro de integridade.



72
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Figura 4.8 – Povoando a tabela Setor.

A figura 4.9 apresenta os comandos INSERTs usados para povoar a 
tabela Cliente. 

Figura 4.9 – Povoando a tabela Cliente.

A figura 4.10 apresenta os comandos INSERTs usados para povoar a 
tabela Pedido. O atributo ID_Cliente da tabela Pedido é uma chave estrangei-



73Banco de Dados

ra que faz referência a tabela Cliente, logo só é possível informar para este 
atributo valores devidamente referenciados na tabela Cliente.

Figura 4.10 – Povoando a tabela Pedido.

4.5.3. Comando UPDATE

O comando UPDATE altera um ou mais registros. Os registros que serão alte-
rados dependem do filtro incluído na cláusula WHERE.

Sintaxe:

update Tabela set Atributo = Valor [ {, Atributo = Valor} ] 

[ where Condição ];

Exemplo1:

update Funcion set Salario = 1200

where ID_Setor = 4;

Com este comando todos os registros da tabela Funcion com o atributo 
ID_Setor igual a 4 terão o atributo Salario alterado para 1.200,00. Se a cláu-
sula WHERE for omitida, todos os registros da tabela Funcion terão o atributo 
Salario alterado para 1.200,00.

Exemplo2:

update Funcion set Salario = Salario * 1.5;

where ID_Setor = 4;

A cláusula WHERE será 
mais bem explicada na 
seção 4.6.



74
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Com este comando todos os registros da tabela Funcion com o atributo 
ID_Setor igual a 4 terão o atributo Salario aumentado em 50%, ou seja, altera 
o valor do atributo de 1.200,00 para 1.800,00.

4.5.4. Comando DELETE

O comando DELETE exclui um ou mais registros. Os registros que serão ex-
cluídos dependem do filtro incluído na cláusula WHERE.

Sintaxe:

delete from Tabela

[ where Condição ];

Exemplo:

delete from Funcion

ID_Setor = 4;

Este comando exclui todos os registros da tabela Funcion com o atribu-
to ID_Setor igual a 4. Se a cláusula WHERE for omitida, todos os registros da 
tabela Funcion serão excluídos.

4.5.5. Comando COMMITE

Após executar um ou mais dos comandos de manipulação de dados apre-
sentados (INSERT, UPDATE, DELETE) os dados ficam na memória cache da 
transação, para os dados serem persistidos no banco de dados é necessário 
utilizar o comando COMMIT.

O pgAdmin efetua o COMMIT automaticamente após a execução dos 
comandos, mas isso é uma característica deste front-end, o mesmo pode não 
acontecer com outros front-ends.

Sintaxe:

commit;

Exemplo:

commit;



75Banco de Dados

4.5.6. Comando ROLLBACK

Para descartar os dados que estão na memória cache da transação, deve-se 
usar o comando ROLLBACK.

Sintaxe:

rollback;

Exemplo:

rollback;

4.6. Comando SELECT – Parte 1

A recuperação dos dados armazenados no banco de dados é efetuada atra-
vés do comando SELECT. Este comando pode recuperar os dados de uma 
ou mais tabelas, sendo um dos comandos mais simples e, ao mesmo tempo, 
mais extenso da SQL devido as suas funções, operandos, comandos, sub-
-comandos e cláusulas não obrigatórias.

4.6.1. Comando SELECT simples

Este comando recupera todos os registros de uma tabela. 

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela;

Exemplo1:

select ID, Nome from Funcion;

O resultado deste exemplo trará os atributos ID e Nome de todos os 
registros da tabela Funcion.

Resultado1:

ID	 Nome

1		 Tadeu

2		 Ylane

3		 Julian

4		 Ewerton

5		 João

6		 Celestino

7		 Maria



76
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

A figura 4.11 mostra como o Editor de SQL fica após o comando anterior 
ser executado com êxito.

Figura 4.11 – Comando SELECT após executado no Editor de SQL.

Exemplo2:

select * from Funcion;

O resultado deste exemplo trará todos os atributos de todos os registros 
da tabela Funcion.

Resultado2:

ID	 Nome		  Salario		 ID_Setor

1		 Tadeu		  1500,00	 1

2		 Ylane		  1200,00	 2

3		 Julian		  1000,00	 1

4		 Ewerton	 1000,00	 1

5		 João		    800,00	 2

6		 Celestino	 1500,00	 3

7		 Maria		    500,00	 null



77Banco de Dados

Neste exemplo foi inserido o caractere asterisco no lugar dos atributos. 
O asterisco é uma máscara que informa ao SGBDR que ele deve ser trocado 
por todos os atributos da tabela consultada.

4.6.2. Cláusula WHERE com Condições Simples

É possível filtrar registros para mostrar apenas os dados de interesse através 
da cláusula WHERE em conjunto com os operadores comparativos.

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela

[where Condição];

4.6.2.1. Operador Comparativo “=” (Igual)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE igual ao valor informado após o operador “=”.

Exemplo1:

select ID, Nome from Funcion

where Nome = ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja igual a “Tadeu”.

Resultado1:

ID	 Nome

1		 Tadeu

Como comentado anteriormente, a SQL é CASE INSENSITIVE (não 
diferencia letras maiúsculas de minúsculas), logo o resultado será igual ao 
apresentado mesmo que o comando seja executado no exemplo2:

Exemplo2:

SELECT ID, NOME FROM FUNCION

WHERE NOME = ‘Tadeu’;

Já o resultado do comando mostrado no exempo3 e exempo4 depende 
do SGBDR, pois caso os dados armazenados sejam CASE SENSITIVE (dife-
rencia letras maiúsculas de minúsculas) o seu resultado será vazio.

Embora a cláusula WHERE 
seja opcional, é altamente 
recomendável sempre 
usá-la para qualquer 
tipo de consulta que for 
ser realizada. Mas por 
questões didáticas, alguns 
exemplos apresentados 
neste capítulo iram omitir a 
cláusula WHERE.



78
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo3:

select ID, Nome from Funcion

where Nome = ‘tadeu’;

Exemplo4:

select ID, Nome from Funcion

where Nome = ‘TADEU’;

4.6.2.2. Operador Comparativo “<>” (Diferente)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE diferente do valor informado após o operador “<>”.

Exemplo:

select ID, Nome from Funcion

where Nome <> ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja diferente de “Tadeu”.

Resultado:

ID	 Nome

2		 Ylane

3		 Julian

4		 Ewerton

5		 João

6		 Celestino

7		 Maria

4.6.2.3. Operador Comparativo “>” (Maior que)

Retorna apenas os registros que tenham o valor do atributo citado na 
cláusula WHERE maior que o valor informado após o operador “>”.

Exemplo:

select ID, Nome from Funcion

where Nome > ‘Tadeu’;



79Banco de Dados

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja maior que “Tadeu”, ou seja, fiquem após “Tadeu” 
numa ordenação ascendente.

Resultado:

ID	 Nome

2		 Ylane

4.6.2.4. Operador Comparativo “>=” (Maior que ou Igual)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE maior ou igual ao valor informado após o operador “>=”.

Exemplo:

select ID, Nome from Funcion

where Nome >= ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja maior ou igual a “Tadeu”.

Resultado:

ID	 Nome

1		 Tadeu

2		 Ylane

4.6.2.5. Operador Comparativo “<” (Menor que)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE menor que o valor informado após o operador “<”.

Exemplo:

select ID, Nome from Funcion

where Nome < ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja menor que “Tadeu”.



80
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Resultado:

ID	 Nome

3		 Julian

4		 Ewerton

5		 João

6		 Celestino

7		 Maria

4.6.2.6. Operador Comparativo “<=” (Menor que ou Igual)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE menor ou igual ao valor informado após o operador “<=”.

Exemplo:

select ID, Nome from Funcion

where Nome <= ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja menor ou igual a “Tadeu”.

Resultado:

ID	 Nome

1		 Tadeu

3		 Julian

4		 Ewerton

5		 João

6		 Celestino

7		 Maria

4.6.2.7. Operador Comparativo “BETWEEN ... AND ...” (entre dois valores)

Retorna apenas os registros que tenham o valor do atributo citado na cláu-
sula WHERE (i) maior ou igual ao primeiro valor informado após o operador 
BETWEEN e (ii) menor ou igual ao segundo valor informado após o operador 
BETWEEN.

Exemplo:

select ID, Nome from Funcion

where Nome between ‘João’ and ‘Tadeu’;



81Banco de Dados

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja maior ou igual a “João” e menor ou igual a “Tadeu”.

Resultado:

ID	 Nome

1		 Tadeu

3		 Julian

5		 João

7		 Maria

4.6.2.8. Operador Comparativo “NOT BETWEEN ... AND ...” (não está en-
tre dois valores)

Retorna apenas os registros que tenham o valor do atributo citado na cláu-
sula WHERE (i) menor ou igual ao primeiro valor informado após o operador  
NOT BETWEEN e (ii) maior ou igual ao segundo valor informado após o ope-
rador NOT BETWEEN.

Exemplo:

select ID, Nome from Funcion

where Nome not between ‘João’ and ‘Tadeu’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja menor que “João” e maior que “Tadeu”.

Resultado:

ID	 Nome

2		 Ylane

4		 Ewerton

6		 Celestino

4.6.2.9. Operador Comparativo “in (lista)” (igual a qualquer valor da lista)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE igual a pelo menos um dos valores informados após o operador IN.

Exemplo:

select ID, Nome from Funcion

where Nome in (‘João’,‘Tadeu’);



82
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome igual a “João” ou igual a “Tadeu”.

Resultado:

ID	 Nome

1		 Tadeu

5		 João

4.6.2.10. Operador Comparativo “not in (lista)” (diferente de qualquer va-
lor da lista)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE diferente de todos os valores informados após o operador NOT IN.

Exemplo:

select ID, Nome from Funcion

where Nome not in (‘João’,‘Tadeu’);

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja diferente de “João” e diferente de “Tadeu”.

Resultado:

ID	 Nome

2		 Ylane

3		 Julian

4		 Ewerton

6		 Celestino

7		 Maria

4.6.2.11. Operador Comparativo “like” (Igual a uma cadeia de caracteres)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE com uma cadeia de caracteres igual ao valor informado após o ope-
rador LIKE.

Exemplo1:

select ID, Nome from Funcion

where Nome like‘J%’;



83Banco de Dados

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome começa com o caractere “J”, independente do que ve-
nha após este caractere.

Resultado1:

ID	 Nome

3		 Julian

5		 João

Exemplo2:

select ID, Nome from Funcion

where Nome like‘%n’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome termina com o caractere “n”, independente do que ve-
nha antes deste caractere.

Resultado2:

ID	 Nome

3		 Julian

4		 Ewerton

Exemplo3:

select ID, Nome from Funcion

where Nome like‘%e%’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome tenha o caractere “e”, independente do que venha antes 
ou após este caractere.

Resultado3:

ID	 Nome

1		 Tadeu

2		 Ylane

4		 Ewerton

6		 Celestino



84
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo4:

select ID, Nome from Funcion

where Nome like‘%ria%’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome tenha a cadeia de caracteres “ria”, independente do que 
venha antes ou após esta cadeia de caracteres.

Resultado4:

ID	 Nome

7		 Maria

A máscara usada nos exemplos do operador “like” foi o “%”, porém esta 
máscara pode mudar de um SGBDR para outro.

4.6.2.12. Operador Comparativo “not like”

		     (diferente de uma cadeia de caractere)

Retorna apenas os registros que tenham o valor do atributo citado na cláusu-
la WHERE com cadeias de caracteres diferentes do valor informado após o 
operador NOT LIKE.

Exemplo:

select ID, Nome from Funcion

where Nome not like‘J%’;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome não começa com o caractere “J”, independente do que 
venha após este caractere.

Resultado:

ID	 Nome

1		 Tadeu

2		 Ylane

4		 Ewerton

6		 Celestino

7		 Maria



85Banco de Dados

4.6.2.13. Operador Comparativo “is null” (Valor nulo)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE igual a nulo.

Exemplo:

select ID, Nome from Funcion

where Setor is null;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Setor seja igual a nulo.

Resultado:

ID	 Nome

7		 Maria

4.6.2.14. Operador Comparativo “is not null” (Valor não nulo)

Retorna apenas os registros que tenham o valor do atributo citado na cláusula 
WHERE diferente de nulo.

Exemplo:

select ID, Nome from Funcion

where Setor is not null;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Setor diferente de nulo.

Resultado:

ID	 Nome

1		 Tadeu

2		 Ylane

3		 Julian

4		 Ewerton

5		 João

6		 Celestino



86
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Os exemplos sobre operadores comparativos apresentados neste capí-
tulo podem ser usados por atributos de qualquer tipo (CHAR, VARCHAR, IN-
TEGER, NUMBER, DATE, etc.), a exceção vai para o operador comparativo 
LIKE e seu complemento NOT LIKE que só podem ser usados por atributos 
do tipo CHAR, VARCHAR e equivalentes de cada SGBDR.

Até aqui foram vistos os comandos DML, além da primeira parte dos 
comandos DDL e do comando SELECT. Com esses comandos já fica visível 
o poder da SQL e o porquê dela ter se tornado uma linguagem padrão os ban-
cos de dados relacionais. No próximo capítulo será apresentada a segunda 
parte do comando SELECT, e conceitos mais complexos disponíveis na DDL.



87

Capítulo

SQL Avançada

Capítulo 5





Objetivo

•	 O comando SELECT vai além do uso da cláusula WHERE, vários sub-co-
mandos e funções podem ser usadas em conjunto com o comando SELECT, 
transformando-o num comando com uma ortogonalidade elevada. Este ca-
pítulo proporciona uma visão mais aprofundada no comando SELECT, sen-
do finalizado com conceitos e comandos da DDL mais avançados.

Introdução

Neste capítulo serão apresentadas características mais complexas do co-
mando SELECT. Também serão vislumbrados conceitos disponíveis na DDL 
que não foram oferecidos no capítulo anterior.

1. Comando SELECT – Parte 2

O comando SELECT é muito mais que consultas simples utilizando a cláusula 
WHERE. Nesta segunda parte será apresentado como executar a cláusula 
WHERE com condições complexa, além de mostrar:

1.	 O motivo para efetuar junções de tabelas e como fazê-lo;

2.	 Como efetuar uniões de tabelas e qual a diferença entre uma união 
e uma junção;

3.	 Funções básicas contidas na SQL;

4.	 Etc.

1.1. Cláusula WHERE com Condições Complexas

Para filtrar registros que requerem condições complexas é utilizada a cláusula 
WHERE em conjunto com os operadores comparativos e lógicos.

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ];

1.1.1. Operador Lógico “and” (E)

Retorna apenas os registros que atendam todas as condições citados na cláu-
sula WHERE.



90
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo:

select ID, Nome from Funcion

where ID_Setor is not null and ID = 1;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo ID_Setor seja igual a nulo e o atributo ID seja igual a 1.

Resultado:

ID	 Nome

1		 Tadeu

A tabela 5.1 apresenta a tabela verdade deste operador lógico.

Tabela 5.1

TABELA VERDADE DO OPERADOR LÓGICO AND.
1ª Condição 2ª Condição Resultado

Falso Falso Falso

Falso Verdadeiro Falso

Verdadeiro Falso Falso

Verdadeiro Verdadeiro Verdadeiro

1.1.2. Operador Lógico “or” (OU)

Retorna apenas os registros que atendam a pelo menos uma das condições 
citados na cláusula WHERE.

Exemplo:

select ID, Nome from Funcion

where Nome = ‘Tadeu’ or ID_Setor = 3;

O resultado deste exemplo trará todos os registros da tabela Funcion 
onde o atributo Nome seja igual a “Tadeu” ou o atributo ID_Setor seja igual a 3.

Resultado:

ID	 Nome

1		 Tadeu

6		 Celestino



91Banco de Dados

A tabela 5.2 apresenta a tabela verdade deste operador lógico.

Tabela 5.2

TABELA VERDADE DO OPERADOR LÓGICO OR
1ª Condição 2ª Condição Resultado

Falso Falso Falso
Falso Verdadeiro Verdadeiro

Verdadeiro Falso Verdadeiro
Verdadeiro Verdadeiro Verdadeiro

1.1.3. Regras de Precedência

As condições complexas seguem algumas regras de precedência, essas re-
gras estão descritas na tabela 5.3.

Tabela 5.3

ORDEM DE PRECEDÊNCIA
Ordem Regra

1 Expressões entre parênteses “(...)”

2 Todos os operadores de comparação “=,<>,>,>=,<,<=,IN...”

3 Operador lógico “AND”

4 Operador lógico “OR”

Caso duas condições estejam na mesma ordem de precedência, terá 
maior precedência a que estiver mais próxima da cláusula WHERE.

1.2. Cláusula ORDER BY

Através da cláusula ORDER BY é possível mostrar os registros de uma con-
sulta ordenados por um ou mais atributos. A ordenação tanto pode ser ascen-
dente como descendente.

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ]; 

1.2.1. Modo de Ordenação Ascendente - ASC

A palavra reservada ASC ordena o atributo que a precede de modo ascenden-
te. Este modo de ordenação é o padrão, logo caso não se informe o tipo de 
ordenação após o atributo a ordenação será ascendente.



92
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo1:

select ID, Nome from Funcion

order by Nome asc;

O resultado deste exemplo trará todos os registros da tabela Funcion 
ordenados pelo atributo Nome de forma ascendente.

Resultado1:

ID	 Nome

6		 Celestino

4		 Ewerton

5		 João

3		 Julian

7		 Maria

1		 Tadeu

2		 Ylane

Exemplo2:

select ID, Nome from Funcion

order by Nome;

O resultado deste exemplo é igual ao anterior, uma vez que a ordena-
ção ascendente é padrão, logo a palavra reservada ASC pode ser suprimida.

Exemplo3:

select ID, Nome from Funcion

order by 2;

Neste exemplo, o nome do atributo Nome da tabela Funcion foi trocado 
pela posição que o mesmo atributo aparecerá na lista do comando SELECT. 
As boas práticas recomendam o não uso desta abordagem, pois no caso de 
mudança nos atributos do comando SELECT, a cláusula ORDER BY deve ser 
revisada. Outra desvantagem é a impossibilidade de poder ordenar os regis-
tros por um atributo que não estejam na lista do comando SELECT.



93Banco de Dados

1.2.2. Modo de Ordenação Descendente - DESC

A palavra reservada DESC ordena o atributo que a precede de modo descendente.

Exemplo:

select ID, Nome from Funcion

order by Nome desc;

O resultado deste exemplo trará todos os registros da tabela Funcion 
ordenados pelo atributo Nome de forma descendente.

Resultado:

ID	 Nome

2		 Ylane

1		 Tadeu

7		 Maria

3		 Julian

5		 João

4		 Ewerton

6		 Celestino

1.3. Comando JOIN

Ao normalizar o banco de dados (Leia 2.3. Normalização), as informações de 
um tipo entidade do modelo conceitual podem ser distribuídas por dois ou mais 
tipos entidade do modelo lógico, vale relembrar que cada tipo entidade do mo-
delo lógico irá se transformar numa tabela do modelo físico (Ler capítulo 3).

Mas ao consultar as informações, algumas vezes é necessário juntar os 
dados que foram distribuídos pelas tabelas no momento da normalização. O 
comando JOIN permite trazer os dados de duas ou mais tabelas no resultado 
de um único SELECT.

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ]

[ [Cláusula_Junção] join Tabela_Junção on Condição_Junção]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];



94
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

1.3.1. Cláusula INNER

Com a cláusula INNER só serão mostrados os registros que tenham referên-
cia nas duas tabelas.

Exemplo1:

select Funcion.ID, Funcion.Nome, Setor.Setor from Funcion

inner join Setor on (Setor.ID = Funcion.ID_Setor);

O resultado deste exemplo trará os atributos ID e Nome de todos os 
registros da tabela Funcion e o atributo Setor de todos os registros da tabela 
Setor onde o atributo ID da tabela Setor seja igual ao atributo ID_Setor da 
tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion 
não aparecerá, pois o atributo ID_Setor é igual a nulo, conseqüentemente não 
tem referência na tabela Setor. 

Também não aparecerá no resultado o registro com o atributo ID igual 
a 4 da tabela Setor, pois o atributo ID igual 4 não tem referência na tabela 
Funcion.

Resultado1:

ID	 Nome		  Setor

1		 Tadeu		  Desenvolvimento	

2		 Ylane		  Manutenção

3		 Julian		  Desenvolvimento

4		 Ewerton	 Desenvolvimento

5		 João		  Manutenção

6		 Celestino	 Financeiro

Este modo de junção é padrão, logo a cláusula INNER pode ser supri-
mida, como mostrado no próximo exemplo. O resultado do exemplo2 é igual 
ao resultado do exemplo1.

Exemplo2:

select Funcion.ID, Funcion.Nome, Setor.Setor from Funcion

join Setor on (Setor.ID = Funcion.ID_Setor);



95Banco de Dados

Uma boa prática é dar um apelido as tabelas envolvidas na junção, pois 
dessa maneira quando se for referenciar a um atributo basta informar o ape-
lido no lugar do nome da tabela. O apelido deve ser informado logo após a 
tabela, separado apenas por espaço.

Os dois próximos exemplos são semelhantes ao exemplo anterior, a 
diferença está no uso dos apelidos.

Exemplo3:

select fnc.ID, fnc.Nome, st.Setor from Funcion fnc

join Setor st on (st.ID = fnc.ID_Setor);

Exemplo4:

select a.ID, a.Nome, b.Setor from Funcion a

join Setor b on (b.ID = a.ID_Setor);

1.3.2. Cláusula OUTER

Com a cláusula OUTER serão mostrados os registros que tenham ou não 
referência nas duas tabelas.

1.3.2.1. Palavra Reservada LEFT

A palavra reservada LEFT antes da cláusula OUTER indica que todos os re-
gistros da tabela a esquerda do JOIN (primeira tabela da junção) serão mos-
trados, independente dela ter ou não referência na tabela da direita do JOIN 
(segunda tabela da junção).

Exemplo:

select a.ID, a.Nome, b.Setor from Funcion a

left outer join Setor b on (b.ID = a.ID_Setor);

O resultado deste exemplo trará os atributos ID e Nome de todos os regis-
tros da tabela Funcion e o atributo Setor de todos os registros da tabela Setor onde 
o atributo ID da tabela Setor seja igual ao atributo ID_Setor da tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion 
aparecerá, pois mesmo sem o seu atributo ID_Setor ter uma referência na 
tabela Setor, a palavra reservada LEFT permite sua aparição.

Mas não aparecerá no resultado o registro com o atributo ID igual a 4 da 
tabela Setor, pois o atributo ID igual 4 não tem referência na tabela Funcion.



96
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Resultado:

ID	 Nome		  Setor

1		 Tadeu		  Desenvolvimento

2		 Ylane		  Manutenção

3		 Julian		  Desenvolvimento

4		 Ewerton	 Desenvolvimento

5		 João		  Manutenção

6		 Celestino	 Financeiro

7		 Maria		  null

1.3.2.2. Palavra Reservada RIGHT

A palavra reservada RIGHT antes da cláusula OUTER indica que todos os 
registros da tabela a direita do JOIN (segunda tabela da junção) serão mostra-
dos, independente dela ter ou não referência na tabela da esquerda do JOIN 
(primeira tabela da junção).

Exemplo:

select a.ID, a.Nome, b.Setor from Funcion a

right outer join Setor b on (b.ID = a.ID_Setor);

O resultado deste exemplo trará os atributos ID e Nome de todos os regis-
tros da tabela Funcion e o atributo Setor de todos os registros da tabela Setor onde 
o atributo ID da tabela Setor seja igual ao atributo ID_Setor da tabela Funcion.

No resultado, o registro com o atributo ID igual a 4 da tabela Setor apa-
recerá, pois mesmo sem o seu atributo ID ter uma referência na tabela Fun-
cion, a palavra reservada RIGHT permite sua aparição.

Mas não aparecerá no resultado o registro com o atributo ID igual a 7 da 
tabela Funcion, pois o atributo ID_Setor é igual a nulo, consequentemente não 
tem referência na tabela Setor.

Resultado:

ID	 Nome		  Setor

1		 Tadeu		  Desenvolvimento

2		 Ylane		  Manutenção

3		 Julian		  Desenvolvimento

4		 Ewerton	 Desenvolvimento

5		 João		  Manutenção

6		 Celestino	 Financeiro

null 	 null 		  Vendas



97Banco de Dados

1.3.2.3. Palavra Reservada FULL

A palavra reservada FULL antes da cláusula OUTER indica que todos os re-
gistros da tabela tabelas envolvidas no JOIN serão mostradas independente 
do registro ter ou não referência nas duas tabelas.

Exemplo:

select a.ID, a.Nome, b.Setor from Funcion a

full outer join Setor b on (b.ID = a.ID_Setor);

O resultado deste exemplo trará os atributos ID e Nome de todos os 
registros da tabela Funcion e o atributo Setor de todos os registros da tabela 
Setor onde o atributo ID da tabela Setor seja igual ao atributo ID_Setor da 
tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion 
aparecerá, pois mesmo sem o seu atributo ID_Setor ter uma referência na 
tabela Setor, a palavra reservada FULL permite sua aparição.

No resultado também aparecerá o registro com o atributo ID igual a 4 da 
tabela Setor, pois mesmo sem o seu atributo ID ter uma referência na tabela 
Funcion, a palavra reservada FULL permite sua aparição.

Resultado:

ID	 Nome		  Setor

1		 Tadeu		  Desenvolvimento

2		 Ylane		  Manutenção

3		 Julian		  Desenvolvimento

4		 Ewerton	 Desenvolvimento

5		 João		  Manutenção

6		 Celestino	 Financeiro

7		 Maria		  null

null	 null		  Vendas

1.4. Comando UNION

O comando UNION permite trazer os registros de duas ou mais tabelas no 
resultado de um único SELECT.

Para quem está vendo pela primeira vez os comandos UNION e JOIN, 
a explicação dos dois parecem semelhantes, mas os dois comandos são to-
talmente diferentes.



98
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Enquanto no comando JOIN cada registro mostrado é composto por 
atributos de duas ou mais tabelas, no comando UNION cada registro mos-
trado é composto por atributos de apenas uma única tabela, mas os registros 
mostrados pertencem a duas ou mais tabelas.

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ]

[ [Cláusula_Junção] join Tabela_Junção on Condição_Junção]

[ 

union [all]

select  Atributo [ {, Atributo} ] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ]

[ [Cláusula_Junção] join Tabela_Junção on Condição_Junção]

]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];

Exemplo:

select Nome from Funcion

union

select Nome from Cliente;

O resultado deste exemplo trará o atributo Nome de todos os registros 
da tabela Funcion unido com os atributos Nome de todos os registros da tabe-
la Cliente. O nome “João” e “Maria” existem nas duas tabelas, mas cada um 
só aparece uma vez no resultado.

Resultado:

Nome

Adriana

Celestino

Eduarda

Ewerton

Francisco

José



99Banco de Dados

João

Julian

Maria

Tadeu

Ylane

1.4.1. Cláusula ALL

Por padrão os registros duplicados são eliminados do resultado, para mostrar 
todos os registros, idênticos ou não, deve-se utilizar a cláusula ALL.

Exemplo:

select Nome from Funcion

union all

select Nome from Cliente;

O resultado deste exemplo trará o atributo Nome de todos os registros 
da tabela Funcion unido com os atributos Nome de todos os registros da tabe-
la Cliente. O nome “João” e “Maria” existem nas duas tabelas, e neste exem-
plo aparecem duas vezes no resultado.

Resultado:

Nome

Tadeu

Ylane

Julian

Ewerton

João

Celestino

Maria

Francisco

José

Maria

Adriana

João

Eduardo



100
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

1.5. Funções Básicas

A SQL tem funções básicas que ajudam no resgates das informações relacio-
nadas aos dados armazenados.

Sintaxe:

select  Função(Parâmetro) [{, Função(Parâmetro)}] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ];

1.5.1. Função AVG

A função AVG retorna a média aritmética do atributo passado como parâmetro.

Exemplo1:

select avg(Salario) from Funcion;

O resultado deste exemplo trará a média aritmética dos valores do atri-
buto Salario da tabela Funcion.

Resultado1:

AVG

1071.4285714285714286

É possível mudar o rótulo de um atributo que aparecerá na lista do co-
mando SELECT, para isto basta acrescentar após o atributo a palavra reser-
vada AS seguida do nome que irá substituir o nome do atributo.

Exemplo2:

select avg(Salario) as Media from Funcion;

O resultado deste exemplo trará a média aritmética dos valores do atri-
buto Salario da tabela Funcion.

Resultado2:

Media

1071.4285714285714286



101Banco de Dados

1.5.2. Função MAX

A função MAX retorna o maior valor do atributo passado como parâmetro.

Exemplo:

select max(Salario) as Maior_Salario from Funcion;

O resultado deste exemplo trará o maior valor inserido no atributo Sala-
rio da tabela Funcion.

Resultado:

Maior_Salario

1500.00

1.5.3. Função MIN

A função MIN retorna o menor valor do atributo passado como parâmetro.

Exemplo:

select min(Salario) as Menor_Salario from Funcion;

O resultado deste exemplo trará o menor valor inserido no atributo Sa-
lario da tabela Funcion.

Resultado:

Menor_Salario

500.00

1.5.4. Função SUM

A função SUM retorna o somatório do valor do atributo passado como parâmetro.

Exemplo:

select sum(Salario) as Soma_Salario from Funcion;

O resultado deste exemplo trará a soma dos valores inseridos no atribu-
to Salario da tabela Funcion.



102
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Resultado:

Soma_Salario

7500.00

1.5.5. Função COUNT

A função COUNT retorna a quantidade de registros não nulos do atributo pas-
sado como parâmetro.

Exemplo1:

select count(Salario) as Quant_Salario from Funcion;

O resultado deste exemplo trará a quantidade de registro que têm um 
valor informado no atributo Salario da tabela Funcion.

Resultado1:

Quant_Salario

7

Exemplo2:

select count(ID_Setor) as Quant_Setor from Funcion;

O resultado deste exemplo trará a quantidade de registro que têm um 
valor informado no atributo ID_Setor da tabela Funcion.

Resultado2:

Quant_Setor

6

1.6. Cláusula GROUP BY

Para recuperar o resultado de uma ou mais funções agrupadas por um ou 
mais atributos deve-se usar a cláusula GROUP BY.

Sintaxe:

select  Função(Parâmetro) [{, Função(Parâmetro)}] [{, Atributo}] from Ta-
bela



103Banco de Dados

[ where Condição [ {Operador_Lógico Condição} ] ]

[ group by Atributo [{, Atributo}] ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];

Exemplo:

select sum(salario) as Soma_Salario, ID_Setor from Funcion

group by ID_Setor;

O resultado deste exemplo trará a soma dos valores inseridos no atri-
buto Salario da tabela Funcion agrupados pelo atributo ID_Setor. Todos os 
atributos que forem informados antes da palavra reservada FROM devem ser 
declarados na cláusula GROUP BY.

Resultado:

Soma_Salario	 ID_Setor

  500.00		  null

1500.00		  3

2000.00		  2

3500.00		  1

Este resultado informa que o valor total da folha de pagamento do setor 
1 é de R$ 3.500,00, enquanto do setor 2 é de R$ 2.000,00. O setor 3 tem uma 
folha de pagamento no valor total de R$ 1.500,00 . Já a folha de pagamentos 
dos funcionários que não estão lotados em nenhum setor totaliza  R$ 500,00.

1.6.1. Cláusula HAVING

Caso seja necessário filtrar o resultado de uma ou mais funções agrupadas 
pela cláusula GROUP BY, deve-se usar a cláusula HAVING.

Sintaxe:

select  Função(Parâmetro) [{, Função(Parâmetro)}] [{, Atributo}] from Tabela

[ where Condição [ {Operador_Lógico Condição} ] ]

[ group by Atributo [{, Atributo}] ]

[ having Condição_Função ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];



104
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo:

select sum(salario) as Soma_Salario, ID_Setor from Funcion

group by ID_Setor

having sum(salario) > 1500

O resultado deste exemplo trará a soma dos valores inseridos no atribu-
to Salario da tabela Funcion agrupados pelo atributo ID_Setor, onde a soma 
dos valores inseridos no atributo Salario seja maior que R$ 1.500,00.

Resultado:

Soma_Salario	 ID_Setor

2000.00		  2

3500.00		  1

1.7. Cláusula DISTINCT

Para filtrar os valores duplicados de um atributo recuperado pelo comando 
SELECT deve-se usar a cláusula DISTINCT.

Sintaxe:

select  distinct(Atributo) [ {, Atributo} ] from Tabela;

[ where Condição [ {Operador_Lógico Condição} ] ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} ] ];

Exemplo:

select distinct(ID_Setor) from Funcion

O resultado deste exemplo trará o valor do atributo ID_Setor da tabela 
Funcion filtrando os valores duplicados.

Resultado:

ID_Setor

null

1

2

3



105Banco de Dados

1.8. Operadores de Manipulação

A SQL permite operações de manipulação sobre os atributos que aparecerão 
na lista do SELECT através dos operadores de manipulação.

Sintaxe:

select  Operação_Manipulação [ {, Atributo} ] from Tabela;

[ where Condição [ {Operador_Lógico Condição} ] ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];

1.8.1. Operador de Manipulação “||” (Concatenação)

Para combinar duas ou mais cadeias de caracteres (atributos ou constantes) 
e apresentar seu resultado como um atributo da lista do SELECT deve-se usar 
o operador “||”;

Exemplo:

select Nome || ‘ ’ || Sobrenome as Nome_Completo from Cliente;

O resultado deste exemplo trará os atributos Nome e Sobrenome da ta-
bela Cliente unidos como se fossem um único atributo. Entre os dois atributos 
foi inserido um espaço em branco para facilitar a leitura.

Resultado:

Nome_Completo

Francisco Silva

José Lima

Maria Silva

Adriana Ferreira

João Oliveira

Eduarda Souza

1.8.2. Operador de Manipulação “+” (Adição)

Para mostrar a soma de dois ou mais valores (atributos ou constantes) e  
apresenta seu resultado como um atributo da lista do SELECT deve-se usar 
o operador “+”;



106
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Exemplo:

select Nome, (Salario + 200) as Salario_Atual from Funcion;

O resultado deste exemplo trará os atributos Nome e Salario da tabela 
Funcion, mas o atributo Salario terá o seu valor adicionado em R$ 200,00.

Resultado:

Nome		  Salario_Atual

Tadeu		  1700,00

Ylane		  1400,00

Julian		  1200,00

Ewerton		  1200,00

João		  1000,00

Celestino		 1700,00

Maria	   	   700,00

1.8.3. Operador de Manipulação “-” (Subtração)

Para mostrar a subtração de dois ou mais valores (atributos ou constantes) e  
apresenta seu resultado como um atributo da lista do SELECT deve-se usar 
o operador “-”;

Exemplo:

select Nome, (Salario - 200) as Salario_Atual from Funcion;

O resultado deste exemplo trará os atributos Nome e Salario da tabela 
Funcion, mas o atributo Salario terá o seu valor subtraído em R$ 200,00.

Resultado:

Nome		  Salario_Atual

Tadeu		  1300,00

Ylane		  1000,00

Julian		    800,00

Ewerton		    800,00

João		    600,00

Celestino		 1300,00

Maria		    300,00



107Banco de Dados

1.8.4. Operador de Manipulação “*” (Multiplicação)

Para mostrar a multiplicação de dois ou mais valores (atributos ou constantes) 
e apresenta seu resultado como um atributo da lista do SELECT deve-se usar 
o operador “*”;

Exemplo:

select Nome, (Salario * 1.5) as Salario_Atual from Funcion;

O resultado deste exemplo trará os atributos Nome e Salario da tabela 
Funcion, mas o atributo Salario terá o seu valor multiplicado por 1,5, ou seja, o 
atributo Salario terá um aumento de 50%.

Resultado:

Nome		  Salario_Atual

Tadeu		  2250.00

Ylane		  1800.00

Julian		  1500.00

Ewerton		  1500.00

João		  1200.00

Celestino		 2250.00

Maria		    750.00

1.8.5. Operador de Manipulação “/” (Divisão)

Para mostrar a divisão entre dois valores (atributos ou constantes) e apre-
sentar seu resultado como um atributo da lista do SELECT deve-se usar o 
operador “/”;

Exemplo:

select Nome, (Salario / 2) as Salario_Quinzena from Funcion;

O resultado deste exemplo trará os atributos Nome e Salario da tabela 
Funcion, mas o atributo Salario terá o seu valor dividido por 2.



108
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Resultado:

Nome		  Salario_Quinzena

Tadeu		  750.00

Ylane		  600.00

Julian		  500.00

Ewerton		  500.00

João		  400.00

Celestino		 750.00

Maria		  250.00

1.9. Nested Queries

É possível restringir os dados mostrados em uma consulta principal baseados 
nos resultados de uma sub-consulta. Esse processo é chamado de NESTED 
QUERIES (Ninhos de Pesquisa).

Sintaxe:

select  Atributo [ {, Atributo} ] from Tabela;

[ where Atributo Operador_Comparativo 

     [ select  Atributo_Ninho from Tabela_Ninho [where Condição_Ninho] ]

[ order by Atributo [Modo_Ordenação] [ {, Atributo [Modo_Ordenação]} 
] ];

Exemplo1:

select ID, Nome from Cliente

where ID in ( select ID_Cliente from Pedido where Valor >= 2000 );

O resultado deste exemplo trará os atributos ID e Nome da tabela Clien-
te onde o atributo ID seja igual a um dos atributos ID_Cliente retornado pela 
sub-consulta feita na tabela Pedido.

Resultado1:

ID	 Nome

4		 Adriana

5		 João



109Banco de Dados

Exemplo2:

select ID, Nome from Funcion

where ID_Setor = ( select max(ID) - 1 from Setor );

O resultado deste exemplo trará os atributos ID e Nome da tabela Fun-
cion onde o atributo ID seja igual ao maior valor do atributo ID da tabela Setor 
menos 1.

Resultado2:

ID	 Nome

6		 Celestino

2. DDL – Parte 2

Na seção 4.4 vimos os comando básicos da DDL, nesta seção iremos um 
pouco mais além, abordando views, stored procedures, triggers e domains. 
A sintaxe usada nesta seção é direcionada para o PostgreSQL, podendo não 
funcionar em outros SGBDR, uma vez que esta é a parte da SQL que mais 
muda de um SGBDR para outro.

2.1. VIEW

Uma VIEW funciona como um comando SELECT salvo dentro do banco de da-
dos, assim como acontece com as tabelas e os dados armazenados nas tabelas.

Sintaxe:

create view Visão [ ( Atributo [ {,Atributo} ] ) ]

as Comando_Select;

Exemplo de Criação:

create view Cliente_Pedido (ID, NomeCompleto, SomaPedido)

as 

  select a.ID, (a.Nome || ‘ ’ || a.Sobrenome), sum(b.Valor) from Cliente a

  join Pedido b on (b.ID_Cliente = a.ID)

  group by a.ID, a.Nome, a.Sobrenome;

Este exemplo cria uma VIEW com o nome de Cliente_Pedido. A lista 
de atributos que esta VIEW retornará será ID, NomeCompleto, SomaPedido. 



110
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

O comando SELECT desta VIEW irá fazer uma junção entre as tabelas 
Cliente e Pedido. Esta junção trará a soma dos valores do atributo Valor da 
tabela Pedido agrupados pelos atributos ID, Nome e Sobrenome da tabela 
Cliente. Os atributos Nome e Sobrenome da tabela Cliente foram concatena-
dos com um espaço em branco.

Ao passar a lista de atributos da VIEW (ID, NomeCompleto, SomaPe-
dido) no momento da criação, estamos explicitando o nome dos atributos que 
a VIEW retornará.

Exemplo de Uso:

select * from Cliente_Pedido

where SomaPedido > 2000

order by NomeCompleto;

O resultado deste exemplo trará todos os atributos da visão Cliente_Pe-
dido onde o atributo SomaPedido seja maior que 2000 e ordenado pelo atri-
buto NomeCompleto.

Resultado:

ID	 NomeCompleto	 SomaPedido

5		 João Oliveira		  2500.00

2		 José Lima		  3500.00

Com estes dois exemplos pode-se afirmar que a VIEW:

•	 Funciona como um comando SELECT salvo no banco de dados;

•	 Simplifica o uso dos comandos SELECTs complexos, pois permite 
aplicar novos comandos SELECTs sobre ela;

•	 É vista pelo usuário como uma tabela real do banco de dados, quan-
do na realidade é uma tabela virtual;

•	 Possibilita mostrar ao usuário uma versão personalizada das tabelas 
do banco de dados.

2.2. STORE PROCEDURE

Uma STORE PROCEDURE funciona como uma função definida pelo usuário 
salva dentro do banco de dados. A STORE PROCEDURE também suporta a 
declaração de variáveis, estruturas condicionais, estruturas de repetição, etc.



111Banco de Dados

Tem como vantagem a velocidade, uma vez que executado dentro do 
banco de dados. E como desvantagem está o aumento na utilização dos re-
cursos do servidor de banco de dados.

No PostgreSQL STORE PROCEDURE são chamadas simplesmente 
de FUNCTION.

Sintaxe:

create function Função ( Tipo_Entrada [ {, Tipo_Entrada} ] )

  [returns Tipo_Retorno]

as $$ Instruções_Função $$

language Linguagem_Usada;

Exemplo de Criação:

create function TipoSalarioFuncion( integer ) returns varchar as 

$$

declare

    p_id integer;

    linha numeric(15, 2);

    retorno varchar;

begin

   p_id := $1;

   select Salario from Funcion where id = p_id into linha;

   if ( linha < 1000 ) then 

      retorno := ‘Salário menor que R$ 1000,00’;

   elseif ( linha = 1000 ) then 

      retorno := ‘Salário igual a R$ 1000,00’;

   else 

      retorno := ‘Salário maior que R$ 1000,00’;

   end if;

   return retorno;

end;

$$

language plpgsql;

Este exemplo cria uma STORE PROCEDURE com o nome de Tipo-
SalarioFuncion, que recebe como parâmetro de entrada um tipo INTEGER e 
retorna um valor do tipo VARCHAR.

Caso a linguagem 
procedural padrão 
PLPGSQL não seja 
reconhecido, deve-se 
cria-la através do comando 
CREATE LANGUAGE 
PLPGSQL;



112
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

No corpo são declaradas as variáveis p_id do tipo INTEGER, linha do 
tipo NUMERIC e retorno do tipo VARCHAR.

A variável p_id recebe o primeiro e único parâmetro de entrada ($1), 
esta variável é usada para regatar o valor do atributo Salario da tabela Funcion 
onde o atributo ID seja igual a p_id.

A variável linha recebe o resultado do comando SELECT, em seguida é 
verificado seu valor para atribuir o tipo de salário correto a variável retorno, que 
é passada como retorno da STORE PROCEDURE.

A última linha informa a linguagem que esta sendo usada pela STORE 
PROCEDURE. As linguagens padrões do PostgreSQL são INTERNAL, C, 
SQL e PLPGSQL.

Exemplo de Uso1:

select TipoSalarioFuncion(1);

O resultado deste exemplo trará o tipo de salário do registro da tabela 
Funcion com o atributo ID igual a 1.

Resultado1:

TipoSalarioFuncion

Salário maior que R$ 1000,00

Exemplo de Uso2:

select ID, Nome, Salario, TipoSalarioFuncion(ID) from Funcion

O resultado deste exemplo trará os atributos ID, Nome e Salario de to-
dos os registros da tabela Funcion, com os seus respectivos tipo de salário.

Resultado2:

ID	 Nome		  Salario		 TipoSalarioFuncion

1 	 Tadeu		  1500,00	 Salário maior que R$ 1000,00

2 	 Ylane		  1200,00	 Salário maior que R$ 1000,00

3 	 Julian		  1000,00	 Salário igual a R$ 1000,00

4 	 Ewerton	 1000,00	 Salário igual a R$ 1000,00

5 	 João		    800,00	 Salário menor que R$ 1000,00

6 	 Celestino	 1500,00	 Salário maior que R$ 1000,00

7 	 Maria		    500,00	 Salário menor que R$ 1000,00



113Banco de Dados

2.3. TRIGGER

Um TRIGGER é um gatilho disparado automaticamente pelo SGBDR quando 
um comando INSERT, UPDATE ou DELETE é executado numa tabela do 
banco de dados. No PostgreSQL uma STORE PROCEDURE deve ser criada 
exclusivamente para se utilizar o TRIGGER.

Sintaxe:

create trigger Gatilho { {before | after} Evento [ {or Evento} ] } on Tabela

[ for [each] {row | statement} ] execute procedure Store_Procedure;

As palavras reservadas BEFORE e AFTER indicam se o TRIGGER vai 
ser disparado antes ou depois do evento, respectivamente. Já o evento pode 
ser um comando INSERT, UPDATE ou DELETE.

Se na criação do TRIGGER for informado o FOR EACH ROW, o gati-
lho será disparado uma vez para cada linha modificada. Informando o FOR 
EACH STATEMENT, o gatilho só será disparado uma vez, independente da 
quantidade de linhas modificadas.

Exemplo de Criação da STORE PROCEDURE usada pelo TRIGGER:

create or replace function MaxIDFuncion() returns trigger as

$$

declare

  max_ID integer;

begin

  select max(id) from Funcion into max_ID;

  new.id := max_ID + 1;

  return new;

end;

$$

language plpgsql;

Neste exemplo foi criado a STORE PROCEDURE que será usada pelo 
TRIGGER. O exemplo executa a função MAX sobre o atributo ID da tabela 
Funcion e atribui o resultado a variável max_ID. A variável max_ID acrescido 
de um é atribuído ao novo ID (new.id) do evento. As variáveis NEW e OLD são 
criadas automaticamente. 



114
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

A variável NEW mantém os novos valores de todos os atributos do re-
gistro que está sendo enviada ao banco de dados, só pode ser usada em 
conjunto com os comandos INSERT e UPDATE. 

A variável OLD é o oposto, mantém os antigos valores de todos os atri-
butos do registro que está sendo enviada ao banco de dados, só pode ser 
usada em conjunto com os comandos UPDATE e DELETE.

Exemplo de Criação do TRIGGER:

create trigger Trg_Funcion before insert on Funcion

for each row execute procedure MaxIDFuncion();

Neste exemplo foi criado um TRIGGER com o nome de Trg_Funcion 
para a tabela Funcion. Ele será disparado antes do comando INSERT e exe-
cutará a STORE PROCEDURE MaxIDFuncion para cada linha modificada.

Exemplo de Uso:

insert into Funcion (Nome, Salario, ID_Setor) values (‘Jesus’, 2000, 4);

select * from Funcion;

O primeiro comando insere um novo registro na tabela Funcion, mas 
o mesmo não informa o atributo ID desse novo registro. A inserção dispara o 
TRIGGER Trg_Funcion que executa a STORE PROCEDURE MaxIDFuncion.

A STORE PROCEDURE MaxIDFuncion captura o maior valor do atri-
buto ID da tabela Funcion, adiciona em 1 e o atribui a variável NEW.ID, o novo 
registro terá o valor do seu atributo ID igual a variável NEW.ID.

O segundo comando trará todos os atributos de todos os registros da 
tabela Funcion já com o novo registro devidamente cadastrado.

Resultado:

ID	 Nome		  Salario		 ID_Setor

1		 Tadeu		  1500,00	 1

2		 Ylane		  1200,00	 2

3		 Julian		  1000,00	 1

4		 Ewerton	 1000,00	 1

5		 João		    800,00	 2

6		 Celestino	 1500,00	 3

7		 Maria		    500,00	 null

8		 Jesus		  2000.00	 4



115Banco de Dados

2.4. DOMAIN

Um DOMAIN ou domínio é um tipo de dado definidos pelo usuário com a fi-
nalidade de reaproveitamento. O DOMAIN padroniza e centraliza os tipos de 
dados utilizados pelas tabelas do banco de dados.

Sintaxe:

create domain Nome_Domain [as] Tipo_Dado 

[default Valor_Padrão] [Restrição] [check(Restrição)];

Exemplo:

create domain DM_VALOR as numeric(15,2) 

default 0 not null check (value >= 0);

Neste exemplo foi criado um DOMAIN com o nome de DM_VALOR do 
tipo Numeric(15,2), onde seu valor padrão será zero, ele não pode ser nulo e 
nunca aceitará que seja inserido nele um valor inferior a zero.

Exemplo de Uso:

create table Conta (

  ID integer not null primary key,

  Agencia varchar(5),

  Saldo numeric(15,2) default 0 not null,

  LimiteConta DM_VALOR,

  LimiteEmprestimo DM_VALOR

);

Neste exemplo foi criada a tabela Conta. O atributo ID é do tipo Integer 
não  pode ser nulo e é uma chave primária, enquanto o atributo Agencia é do 
tipo Varchar(5).  O atributo Saldo é do tipo Numeric(15,2), seu valor padrão é 
zero e não pode ser nulo.

Os atributos LimiteConta e LimiteEmprestimo são do tipo DM_VALOR. 
Isto está dizendo implicitamente ao SGBDR que os atributos são do tipo Nu-
meric(15,2), seu valor padrão é zero, não podem ser nulo e nunca deverá ser 
incluído neles valores negativos.



116
FRANÇA, C. T. P. L. E JÚNIOR, J. C.

Referências 
[DEITEL, 2010] DEITEL, Paul; DEITEL, Harvey. Java: Como Programar. 8. 
ed. São Paulo, Pearson Prentice Hall, 2010.

[ELMASRI e NAVATHE, 2005] ELMASRI, Ramez; NAVATHE, Shamkant B. Sis-
temas de Banco de Dados. 4. ed. São Paulo, Pearson Addison Wesley, 2005.

[HEUSER, 2001] HEUSER, Carlos Alberto. Projeto de Banco de Dados. 4. 
ed. Porto Alegre, Sagra Luzzatto, 2001.

[POSTGRESQL, 2011] POSTGRESQL. Documentação do PostgreSQL 
8.2.0. http://pgdocptbr.sourceforge.net/pg82/history.html. Setembro de 2011.

[RAMAKRISHNAN e GEHRKE, 2008] RAMAKRISHNAN, Raghu; GEHRKE, 
Johannes. Sistemas de Banco de Dados. 2. ed. São Paulo: McGraw-Hill, 
2008. 884 p.

[ROB e CORONEL, 2011] ROB, Peter; CORONEL, Carlos. Sistema de Ban-
co de Dados. São Paulo, Cengage Learning, 2011.

[SOMMERVILLE, 2007] SOMMERVILLE, Ian. Engenharia de Software. 8. 
ed. São Paulo, Pearson Addison Wesley, 2007.



117Banco de Dados

Sobre os autores

Cicero Tadeu Pereira Lima França: É mestre em Computação Aplicada pela 
UECE, especialista em Engenharia de Software com ênfase em Padrões de 
Software e especialista em Gestão de Projetos de TI, graduado como tecnó-
logo em Automática pelo IFCE. Tem experiência na área de Ciência da Com-
putação, atuando principalmente no desenvolvimento de softwares. Professor 
da Faculdade Leão Sampaio.

Joaquim Celestino Júnior: Possui graduação em Engenharia Eletrônica 
pela Pontifícia Universidade Católica do Rio de Janeiro (1985), mestrado 
em Ciência da Computação pela Universidade Federal da Paraíba/Campina 
Grande(1989), doutorado em Redes de Computadores - Universite de Paris 
VI (Pierre et Marie Curie) (1994) e pós-doutorado em Redes Veiculares pela 
Columbia University in New York City (2010). É professor adjunto da Univer-
sidade Estadual do Ceará (UECE). Tem experiência na área de Ciência da 
Computação, com ênfase em Teleinformática, atuando principalmente nos se-
guintes temas: redes de computadores, gerenciamento de redes e segurança.



A não ser que indicado ao contrário a obra Banco de Dados, disponível em: http://educapes.capes.gov.br, está 
licenciada com uma licença Creative Commons Atribuição-Compartilha Igual 4.0 Internacional (CC BY-SA 4.0). 
Mais informações em: <http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR. Qualquer parte ou a totalidade 
do conteúdo desta publicação pode ser reproduzida ou compartilhada. Obra sem fins lucrativos e com distribuição 
gratuita. O conteúdo do livro publicado é de inteira responsabilidade de seus autores, não representando a posição 
oficial da EdUECE.



Fiel a sua missão de interiorizar o ensino superior no estado Ceará, a UECE,  
como uma instituição que participa do Sistema Universidade Aberta do 
Brasil, vem ampliando a oferta de cursos de graduação e pós-graduação 

na modalidade de educação a distância, e gerando experiências e possibili-
dades inovadoras com uso das novas plataformas tecnológicas decorren-

tes da popularização da internet, funcionamento do cinturão digital e 
massificação dos computadores pessoais.  

Comprometida com a formação de professores em todos os níveis e 
a qualificação dos servidores públicos para bem servir ao Estado, 

os cursos da UAB/UECE atendem aos padrões de qualidade 
estabelecidos pelos normativos legais do Governo Fede-

ral e se articulam com as demandas de desenvolvi-
mento das regiões do Ceará.  

Ba
nc

o 
de

 D
ad

os

Cicero Tadeu Pereira Lima França
Joaquim Celestino Júnior

Computação

Computação

Banco de Dados

U
ni

ve
rs

id
ad

e 
Es

ta
du

al
 d

o 
Ce

ar
á 

- U
ni

ve
rs

id
ad

e 
Ab

er
ta

 d
o 

Br
as

il

ComputaçãoQuímica Física Matemática PedagogiaArtes 
Plásticas

Ciências 
Biológicas

Geografia

Educação 
Física

História

9

12

3


