Computacao

Banco de Dados

Cicero Tadeu Pereira Lima Franca
Joaquim Celestino Junior

Historia

Educacao
Fisica

aumica] 88022 .

B

Quimica

Computacao

Banco de Dados

Cicero Tadeu Pereira Lima Franca
Joaquim Celestino Junior

22 edicao
Fortaleza - Ceara

=
o

— 10
v m

)

Artes .
Plasticas Computagao

4

Geografia

Historia

Educagao
Fisica

Pedagogia

Copyright © 2015. Todos os direitos reservados desta edicdo a UAB/UECE. Nenhuma parte deste material podera
ser reproduzida, transmitida e gravada, por qualquer meio eletrnico, por fotocépia e outros, sem a prévia autori-

zagao, por escrito, dos autores.

Editora Filiada a

A

B
mgc
SEOCIAC,

A A BRASILE
DAS EDITORAS UNIVERSITARIAS

Presidenta da Republica

Dilma Vana Rousseff

Ministro da Educagao

Renato Janine Ribeiro

Presidente da CAPES

Carlos Afonso Nobre

Diretor de Educagao a Distancia da CAPES
Jean Marc Georges Mutzig

Governador do Estado do Ceara
Camilo Sobreira de Santana

Reitor da Universidade Estadual do Ceara
José Jackson Coelho Sampaio
Vice-Reitor

Hidelbrando dos Santos Soares
Pré-Reitor de Pés-Graduagao

Jerffeson Teixeira de Souza

Coordenador da SATE e UAB/UECE
Francisco Fabio Castelo Branco

Coordenadora Adjunta UAB/UECE

Eloisa Maia Vidal

Dire¢do do CED/UECE

José Albio Moreira de Sales

Coordenagao da Licenciatura em Computagao
Francisco Assis Amaral Bastos

Coordenagéao de Tutoria da

Licenciatura em Computagao
Maria Wilda Fernandes Felipe

Editor da EAUECE
Erasmo Miessa Ruiz
Coordenadora Editorial
Rocyléania Isidio de Oliveira
Projeto Grafico e Capa
Roberto Santos
Diagramador

Francisco Oliveira

Revisao Ortografica
Fernanda Ribeiro

Conselho Editorial

Antdnio Luciano Pontes

Eduardo Diatahy Bezerra de Menezes
Emanuel Angelo da Rocha Fragoso
Francisco Horéacio da Silva Frota
Francisco Josénio Camelo Parente
Gisafran Nazareno Mota Jucéa
José Ferreira Nunes

Liduina Farias Almeida da Costa
Lucili Grangeiro Cortez

Luiz Cruz Lima

Manfredo Ramos

Marcelo Gurgel Carlos da Silva
Marcony Silva Cunha

Maria do Socorro Ferreira Osterne
Maria Salete Bessa Jorge

Silvia Maria Nébrega-Therrien

Conselho Consultivo

Antdnio Torres Montenegro (UFPE)

Eliane P. Zamith Brito (FGV)

Homero Santiago (USP)

leda Maria Alves (USP)

Manuel Domingos Neto (UFF)

Maria do Socorro Silva Aragao (UFC)

Maria Lirida Callou de Arajo e Mendonga (UNIFOR)
Pierre Salama (Universidade de Paris VIII)

Romeu Gomes (FIOCRUZ)

Tulio Batista Franco (UFF)

Dados Internacionais de Catalogagdo na Publicagéo
Sistema de Bibliotecas
Biblioteca Central Prof. Anténio Martins Filho
Meirilane Santos de Morais Bastos — CRB-3 / 785
Bibliotecéria

Inclui referéncias.

ISBN:

F814b Franga, Cicero Tadeu Pereira Lima.
Banco de dados / Cicero Tadeu Pereira Lima Franga, Joaquim
Celestino Junior. — 2. ed. — Fortaleza, CE : EQUECE, 2015.
117 p. :il.; 20,0cm x 25,5cm. (Computagdo)

1. Banco de dados. |. Celestino Junior, Joaquim . Il. Titulo.

CDD : 001.64

Editora da Universidade Estadual do Cearad — EQUECE
Av. Dr. Silas Munguba, 1700 — Campus do Itaperi — Reitoria — Fortaleza — Ceara
CEP: 60714-903 - Fone: (85) 3101-9893
Internet: www.uece.br — E-mail: eduece@uece.br

Secretaria de Apoio as Tecnologias Educacionais
Fone: (85) 3101-9962

Sumario

P o] g ET=T g | = Loz o TR 5
Capitulo 1 - Visao geral sobre Banco de Dados.........cccccevercerreerrerrersennnens 7
1. Banco de Dados e Sistema Gerenciador de Banco de Dados 10

2. Modelos de Bancos de Dadoscccoovieiiiiiniieiieecee e 11

3. Arquiteturas de Banco de dadoscocooveviiiiieicieece e, 13

3.1. Arquitetura Centralizadacccooeiiiiiiccc e 13

3.2. Arquitetura Cliente-Servidor de Duas Camadas...............ccccoocvevevenenenn. 14

3.3. Arquitetura Cliente-Servidor de Trés Camadasccccoeeveveveverencnn. 15

3.4. Arquitetura Distribuida...............ccooiiiiii 16
Capitulo 2 — Modelagem de Dados e Normalizagao.........c.cccceeererrererennens 21
1. SiNOPSE O PrOJETO ... 23

2. Modelo COoNCEItUALooiiiiiii e, 24

2.1. Identificando os Tipos Entidadesccooooiiiiiiiiiiice 24

2.2. |dentificando os Tipos Relacionamento..............c.ccocooiiiiiiiicccce 25

2.3, NOMMAlIZAGEO ... 27

2.4, M0odelo LOGICO ... 36
Capitulo 3 — PostgreSQL e Modelagem Fisica.........ccccceervierveeriernersennienns 39
L POSIGrESQL. ... 41

1.1. Instalando 0 PoStgreSQL...........cccviiiiiiiiicei e 41

2. MOCEIO FISICO ... 48

2.0 PGAAMIN ..o 48
Capitulo 4 — Introduga@o @ SQL.........cccereeeeeeeccrcrcrere e 57
L HISTOMA ..o 59

2. GIUPOS. ..., 61

2.1 OUIOS GIUPOS ..o 61

3 SOL EAHON ... 61

4. DDL=Parte Lcooooeeeeeeeeeeeeeee e 62

4.1. Comando CREATE TABLE ..o 62

4.2. Comando ALTER TABLEco oo 65
4.3.Comando DROP TABLEcoo oo 67

A5 DMLt 67

4.6. Comando SELECT —Parte 1........cccooiiiiiiiiee e 75
Capitulo 5 — SQL AVaNGadaccceeerererrerserseneresessessesssssssessssssssssssssssssssens 87
1. Comando SELECT —Parte 2., 89

1.1. Clausula WHERE com Condigdes Complexas...........c.ccoooevririiierecnns 89

1.2. Clausula ORDER BY ..o 91

1.3.Comando JOIN ..o 93
1.4.Comando UNION. ... 97
1.5. FUNGOES BASICAS.......c..ivieeeeeieeeee e, 100
1.6. Clausula GROUP BYcooiiiiiiiicieieeee et 102
1.7. ClAuSUIa DISTINCT ..ottt 104
1.8. Operadores de ManipulaGao............c.cccooveeoioieeeececeeeeeeeeeeee e, 105
1.9.NeSted QUETIES ..., 108
2. DDL=Pare 2 ... 109
2L VIEW Lo 109
2.2. STORE PROCEDURE..........ccooiiiiiiiiieeteee e 110
2.3 TRIGGER ..o 113
2.4, DOMAIN Lottt 115

(ST0) 0] =0 3= 10| (o) (=1 TR 117

Apresentacao

Desde os primérdios, a humanidade sempre procurou uma maneira para or-
ganizar seus conhecimentos de uma forma que a pesquisa por esses nao
demandasse grandes esforcos. Tendo isso como base, podemos vé& uma
biblioteca como uma evolugdo desse conceito tdo antigo quanto a prépria
consciéncia humana, uma vez que a ideia da biblioteca é justamente disponi-
bilizar conhecimentos estruturados sistematicamente para facilitar a busca da
informacao desejada.

Com o advento do comércio, outros requisitos foram incluidos a essa
necessidade, pois além de guardar o conhecimento ou informag&o das nego-
ciages, passou-se a ter a necessidade de poder incluir, modificar e excluir tais
dados de uma maneira eficiente e eficaz. Um recurso usado por muito tempo
para esses fins foi manter essas informagdes em arquivos (livros, fichas, etc.)
e guardadas em local seguro. O armazenamento inadequado poderia causar
transtornos e a perda de negécios.

O surgimento dos computadores e estudos relacionados ao armazena-
mento de dados levou as empresas a iniciarem uma migrag&o gradativa para
o mundo digital, inicialmente um recurso sé disponivel para grandes empresas
devido os custos nos primeiros anos da computacdo moderna. Com a po-
pularizagdo dos computadores esses custos reduziram-se, ao ponto de toda
empresa poder usufruir tais recurso.

As informagdes que migraram para o mundo computacional ficam ar-
mazenadas de maneira digital em banco dados. Esses bancos de dados fo-
ram multiplicados e nessa multiplicagéo apareceram diversos modelos rodan-
do sobre diversas arquiteturas computacionais.

Nos dias atuais 0os bancos de dados se tornaram algum corriqueiro nos
computadores, celulares, tablets, smartphone ou qualquer outro dispositivo
computacional que tenham um aplicativo com necessite de um minimo de
armazenamento de dados.

Este livro apresentard o mundo dos bancos de dados de forma clara e
simples, mostrando desde os conceitos basicos, indo do projeto a criagdo e
uso de um banco de dados. No decorre do livro serdo apresentadas técnicas
e tecnologias que possibilitardo a base necessario para o uso de banco de
dados. Também sera apresentado o PostgreSQL, uma SGBDR gratuito e de
grande respeito na comunidade.

O livro esta organizado em cinco capitulos. O primeiro capitulo disponi-
bilizar um conhecimento geral sobre banco de dados, os modelos de banco
de dados mais conhecidos e as arquiteturas mais populares. No capitulo 2 é
iniciado um projeto de banco de dados e descrito técnicas para a criagéo do
modelo conceitual, sua normalizagao e criagdo do modelo légico. O capitulo 3
apresenta o PostgreSQL e mostra como criar um modelo fisico no mesmo. Os
capitulos 4 e 5 sao destinados a SQL, mostrando desde um rapido histérico
até seus comandos mais comuns segundo a ISO/IEC 9075.

O conteldo apresentado neste livro destina-se principalmente a pro-
fessores e alunos de graduagdo em Ciéncias da computagéo ou areas afins,
fornecendo uma base tedrica e uma pratica em projetos de banco de dados
relacionais.

O autor

Gapitulo

\isdo geral Sobre
Banco de Dados

Obijetivo

e Todas as informagdes encontradas no mundo computacional ficam armaze-
nadas de maneira digital em banco de dados. Paralela a evolugdo da compu-
tacéo, os banco de dados também evoluiram para atender as novas necessi-
dade e exigéncias do mundo digital. Os modelos e arquiteturas de banco de
dados mais comuns devem ser conhecidos, uma vez que eles apresentam
varias opgoes para resolver as questdes de armazenamento de dados co-
nhecidas. O objetivo do capitulo é o conhecimento destes modelos.

Introducgao

Até pouco tempo a maior parte das empresas mantinham as informagdes de
cliente, fornecedores, produtos, entre outros, em arquivos de ago (figura 1.1)
guardados em local seguro e com acesso fisico controlado. Os dados do clien-
te, por exemplo, eram colocados em fichas de papel, e arquivados em ordem
alfabética. Essas fichas continham informacdes de interesse da empresa, tais
como nome, endereco, etc. Todos os clientes tinham uma ficha Unica que era
armazenada de maneira apropriada em um arquivo fisico. O armazenamento
inadequado causava transtornos tanto para o cliente como para a empresa.

| Ficha do Clenie |
— Home | Tadeu Pereira |
Ehd.u'el:c-| Rua Padre Cicera |
—1 Baimo | Salesianos |
Cidade | Juzzeiro do Morte - CE |
—1

Figura 1.1 — Arquivo de a¢o antigo

Com advento dos computadores, as empresas migraram os dados para
o mundo digital, facilitando e agilizando o seu manuseio. Muitos dos conceitos
usados para manuseio fisico de informagdes, conforme descrito acima, foram
adaptados para os bancos de dados. A tabela 1.1 mostra um paralelo entre
estes dois mundos.

Banco de Dados

10

FRANGA, C.T.P LLE JNIOR, J.C.

Tabela 1.1
Mundo Fisico Mundo Digital
Conjunto de Arquivos de aco Banco de dados
Arquivo de aco Tabela
Fichas de papel Registro
Informagoes da ficha de papel Campo

Um banco de dados pode ser visto como uma colegéo de dados rela-
cionados, que devem estar organizados para facilitar a busca e atualizagao
desses dados. Os dados devem ter significado implicito e se referirem a fatos.

1. Banco de Dados e Sistema Gerenciador de Banco de Dados

Um banco de dados é um projeto delineado para o armazenamento de fa-
tos que possuam um significado implicito, representando aspectos do mundo
real. O conjunto de informagdes (dados) armazenado deve ter um significado
efetivo que atenda um propésito especifico.

Segundo [ELMASRI e NAVATHE, 2005] os dados devem ser providos
de alguma fonte e ter “alguns niveis de interagdo com os eventos do mundo
real e um publico efetivamente interessado em seus contetdos”.

Por outro lado, podemos definir ainda um Sistema Gerenciador de Ban-
co de Dados (SGBD), que € um conjunto de programas que permite a cria-
¢ao e manipulagcéo do banco de dados, facilitando os processos de definicao,
construcdo, manipulacdo e compartihamento dos dados.

Para [RAMAKRISHNAN e GEHRKE, 2008] o uso de um SGBD propor-
ciona varias vantagens. Uma delas é a possibilidade de “utilizar os recursos
do SGBD para gerenciar os dados de uma forma robusta e eficiente”. Outra
vantagem citada é o suporte indispensavel do SGBD “a medida que cresce o
volume de dados e o nimero de usuarios”.

De uma maneira simplista, um banco de dados especifica os dados, as
estruturas e as restricdes, enquanto o SGBD gerencia a manipulagdo desses
dados facilitando o acesso aos mesmos, extraindo essas responsabilidades
dos usuarios e aplicativos. Afigura 1.2 mostra uma visao superficial do relacio-
namento entre o usuério, 0 SGBD e o banco de dados.

Usuario

SGBD

Figura 1.2 — Visé&o superficial de um SGBD e seus relacionamentos

Banco de Dados

2. Modelos de Bancos de Dados
A medida que aumentava o uso de banco de dados, foram surgindo necessi-
dades que antes n&o eram vislumbradas, tais como:

e Compartilhamento dos dados armazenados;

« Controle de concorréncia de uso sobre dados;

e Surgimento de novos paradigmas computacionais;

e Entre outros.

Com isso antigos modelos de banco de dados foram cedendo espagos
para novos modelos, causando uma evolugdo nos mesmos. Na sequéncia sao
mostrados alguns modelos de banco de dados e suas caracteristicas principais:

e Banco de Dados Hierarquico: Esse modelo foi muito utilizado nas
primeiras aplicagdes de banco de dados; ele conecta registros numa
estrutura de arvore de dados através de um relacionamento do tipo
um-para-muitos (figura 1.3).

Setor 01| Vendas 02 | Cobranga

o

Funciendrio 20 Josa | | 40| Maria |
~
M
i N . - F . -
Conla bancdria | 155|1234-5 | | 160 | 5432-1 | | 170 | 6789-0] | 100 | 0987-6]

Figura 1.3 — Modelo de banco de dados hierarquico

e Banco de Dados em Rede: Semelhante ao anterior, mas nesse caso
o relacionamento € do tipo muitos-para-muitos (figura 1.4).

| |
Setor | Funciondrio | Conta banciria

1 | 100 | 0987-6
- 20| Jose p

01| Vendas " 155 | 1234-5

30| Joana

02| Cobranca - 160 | 5432-1
I 40| Maria
I 170 | 6789-0
|

Figura 1.4 — Modelo de banco de dados em rede

1

12

FRANGA, C.T.P LLE JNIOR, J.C.

e Banco de Dados Relacional: Concebido inicialmente para separar
o modelo fisico do conceitual, além de prover uma fundamentagéo
matematica; sendo um modelo baseado na légica e na teoria de
conjuntos tornou-se o primeiro modelo de banco de dados formal;
esse modelo é uma abstracdo que define 0 armazenamento, mani-
pulacao e recuperacao dos dados estruturados na forma de tabelas;

sendo largamente utilizado nos dias atuais (figura 1.5).

Conta bancdria

Funciondrio
Setor Codigo | Conta | Funcionirio

Codigo | Nome | Sefor

Codigo | Nome 100 0987-6 | 30
20 José 01

01 Vendas 155 1234-5 | 20
30 Joana 02

02 Cobrancga 160 5432-1 | 40
40 Maria | 01

170 6789-0 | 30

Figura 1.5 — Modelo de banco de dados relacional

e Banco de Dados Orientado a Objetos: Esse modelo foi criado pen-
sando na necessidade do armazenamento e consulta de dados
complexos, incorporando paradigmas ja conhecidos da programa-
¢ao orientada a objetos (POQO), tais como a abstracdo de dados,

encapsulamento, heranga e identificagéo de objetos (figura 1.6).

Pessoa

- Codigo :int
- Mome : String

+|ncluird o wvoid
+ Alterar) :wvaoid
+ Excluird :wvoid

+ Consultard :void

Cliente

- Limite_Credito : float

Funcionario

- Setor:int

Figura 1.6 — Modelo de banco de dados orientado a objetos

e Banco de Dados Objeto-Relacional: Esse modelo é semelhante ao
modelo relacional, mas alguns conceitos do modelo orientado a ob-
jeto foram incorporados; os esquemas do banco de dados dao su-

porte a criagdo e consulta de objetos, classes e heranga (figura 1.7).

Pessoa
Codigo :int
MHame : String
Cliente Funcionario
Lirmite_Credito : float Setor: int

Figura 1.7 — Modelo de banco de dados objeto-relacional

3. Arquiteturas de Banco de dados

O dicionério Michaelis define arquitetura de uma maneira geral como:

1. Arte de projetar e construir prédios, edificios ou outras estruturas;
arquitetonica.

2. Constituicdo do edificio.
3. Contextura de um todo.
4. Intencgéo, projeto.

O mesmo dicionario define arquitetura em camadas como o “projeto de
um sistema de computador em camadas, de acordo com a fun¢&o ou priorida-
de”. Essa defini¢do € a que melhor se aplica ao banco de dados.

Assim como os modelos de banco de dados citados anteriormente, no
decorrer do tempo foram propostas varias arquiteturas. As principais arquite-
turas propostas que foram e ainda s&o usadas sao apresentadas nesta se¢ao.

3.1. Arquitetura Centralizada

As arquiteturas dos bancos de dados centralizados utilizavam o conceito de con-

Banco de Dados E

centrar nos mainframes o processamento das fungdes do sistema, E——
ermina

Terminal

Terminal

programas de aplicacao, programas de interface entre outras fun-
cionalidades do SGBD. ‘

Os usuérios acessavam os sistemas via terminais de com-
putadores que apenas exibiam resultados, mas n&o tinham po-
der computacional de processamento. Os processos em si eram
executados remotamente no mainframe, que apds processar o
solicitado, enviava ao terminal as informacoes de exibicio e os
controles (figura 1.8).

Memoria

Mainfirame

=

Figura 1.8 — Arquitetura centralizada

14

FRANGA, C.T.P LLE JNIOR, J.C.

Com a queda nos precos do hardware, os usuarios foram substituindo os
antigos terminais por computadores pessoais (PCs) e workstations. No inicio
dessa mudanca os SGBDs ainda trabalhavam de forma centralizada, como
se estivessem em terminais de computadores, mas aos poucos os SGBDs
comegaram a buscar o poder computacional disponiveis do lado do usuario.
Essa mudanga também causou mudangas na arquitetura centralizada, dire-
cionando a mesma para uma arquitetura conhecida com Cliente-Servidor.

3.2. Arquitetura Cliente-Servidor de Duas Camadas

Essa arquitetura € uma evolugdo da arquitetura centralizada, pois gragas a
troca dos antigos terminais cliente por PCs e workstations o poder computa-
cional do lado cliente aumentou, possibilitando passar parte do processamen-
to para os mesmos e “desafogando” os servidores. Os programas de interface
com o usuario e os de aplicagao foram transpostos para o lado cliente.

Um cliente é geralmente uma maquina de usuario com poder computa-
cional e com funcionalidade de interfaces, mas sempre que precisar acessar
0 banco de dados conecta-se com o servidor que viabiliza o acesso aos da-
dos (figura 1.9). Geralmente tém-se maquinas com software cliente e outras
com software servidor, mas podem-se ter maquinas com ambos.

Memoria Memoria Memoria

Cliente Cliente Cliente

] =D

Camada Clieinte

Memoria

SGBD

Camada Servidor

Figura 1.9 — Arquitetura cliente/servidor de duas camadas

Na arquitetura cliente-servidor o programa cliente estabelece uma co-
nexao com o programa servidor para comunicar-se com o SGBD. Apés es-
tarem conectados, os sistemas cliente enviam solicitagdes de manipulagéo e
consulta dos dados, as mesmas séo processadas pelo servidor e enviadas
de volta para o programa cliente, que processa e apresenta o resultado de
acordo com a necessidade.

3.3. Arquitetura Cliente-Servidor de Trés Camadas

Com o crescimento da WWW (World Wide Web — Rede de Alcance Mundial
— ou simplesmente Web) os papéis na arquitetura cliente-servidor de duas ca-
madas sofreram mudanc¢as que levaram a arquitetura cliente-servidor de duas
camadas para a arquitetura cliente-servidor de trés camadas, ou arquitetura
de trés camadas. Na arquitetura de trés camadas foi colocada uma camada
intermediaria entre a maquina cliente e o servidor de banco de dados. Essa
camada do meio passou a chamar-se de servidor de aplicacédo ou servidor
Web, dependendo do contexto onde o aplicativo esta inserido.

“Esse servidor desempenha um papel intermediario armazenando as
regras de negécio [...] que séo usadas para acessar os dados do servidor de
banco de dados.” [ELMASRI e NAVATHE, 2005]. Checar as credenciais do
cliente antes de aceitar a solicitagdo do mesmo também pode ser incremen-
tado nesse servidor, deixando por sua conta a segurang¢a do banco de dados,
liberando o servidor de banco de dados desse processo.

Resumidamente essa arquitetura (figura 1.10) tem trés camadas defini-
das da seguinte maneira:

e Camada de Apresentacao (Cliente). Implementa a interface do usu-
ario, também chamada de GUI (Graphics User Interface — Interface
Gréfica para o Usuario), podendo incorporar algumas regras de negé-
cios especificas da aplicagao, mas seu papel principal é interagir com
0 usuério fazendo solicitagdes de dados e apresentando o resultado.

e Camada de Negécio (Servidor de Aplicagc&o). Implementa as fun-
¢coes e regras de negdcio, ndo interagindo diretamente com o usua-
rio, apenas recebendo as solicitagdes enviada pela camada de apre-
sentagao, processando e enviando, ou n&o, os comandos de banco
de dados a camada seguinte. Por fim, recebe e repassa os dados do
servidor de banco de dados para a camada de apresentagdo, nao
mantendo nenhum dado localmente.

e Camada de Dados (Servidor de Dados). Mantém os dados, servin-
do como repositério; recebe e executa as solicitagbes da camada
de negécio, enviando de volta a mesma os dados processado. O
repasse desses dados para a camada de apresentacao é responsa-
bilidade da camada de negécio.

Banco de Dados

16

FRANGA, C.T.P LLE JNIOR, J.C.

Camada de Apresentacio Cliente Cliente Cliente
Servidor
Camada de Negécio de

Aplicaciao

Camada de Dados SGBD

Figura 1.10 — Arquitetura cliente/servidor de trés camadas

A arquitetura em trés camadas pode parecer igual a arquitetura em
duas camadas, mas ao retirar do servidor de dados regras de negocios e de
seguranga, deixa-se o servidor menos sobrecarregado, pois fica responsavel
por gerenciar apenas o0s dados.

Algumas aplicagdes em duas camadas passavam parte das regras de
negdcio para o cliente, exigindo um poder computacional maior nessas ma-
quinas. Com a inclusdo da camada de negdcio deixa-se a camada de apre-
sentagio basicamente com a GUI e a camada de dados apenas com o arma-
zenamento e gerenciamento dos dados.

Outra vantagem que pode ser colocada para a arquitetura em trés ca-
madas é a escalabilidade da camada intermediaria, uma vez que se pode
incluir mais de um servidor de aplicagédo — conectados ao mesmo servidor de
dados - e redistribuir 0 acesso dos clientes entre esses servidores.

3.4. Arquitetura Distribuida

O uso dessa arquitetura traz para o banco de dados n&o apenas as vantagens
da computacgao distribuida, mas também as dificuldades relacionadas a seu
gerenciamento, pois as “fun¢des comuns de gerenciamento do banco de dados
[...] n&o se aplicam, contudo, a esse cenario.” [ELMASRI e NAVATHE, 2005].

Um BDD (Banco de Dados Distribuido) € um conjunto de banco de
dados distribuidos através de uma rede de computadores, mas logicamente
inter-relacionados, enquanto o SGBDD (Sistema Gerenciador de Banco de
dados Distribuido) ndo apenas gerencia o BDD, mas também torna a distribui-
¢ao e transagdes transparentes para o usuario (figura 1.11).

Camada Cliente Cliente Cliente Cliente

3
Camada de Dados m m m

Figura 1.11 — Arquitetura distribuida

Existem dois tipos de banco de dados distribuidos, os (i) homogéneos
que sdo compostos por um Unico tipo de banco de dados e os (i) heterogéne-
0s que sdo compostos por mais de um tipo de banco de dados.

Num banco de dados distribuidos, os dados podem estar replicados ou
fragmentados. Na replicagdo, é criada uma copia de cada dado em bases di-
ferentes, deixando as bases com os dados iguais. Na fragmentagao, os dados
sé&o divididos entre bases diferentes.

3.4.1. Vantagens

Alguns dos motivos que levaram ao desenvolvimento dessa arquitetura (BDD)
foram a (i) descentralizagdo dos dados, aumentando o poder computacional
de processamento; a (i) fragmenta¢éo dos dados levando em consideragéo a
estrutura organizacional, persistindo os dados no local desejado (Ex.: Departa-
mento de Compras) aumentando a autonomia local; a (jii) melhoria no desem-
penho devido a proximidade dos dados, paralelismo e balanceamento entre
os servidores de dados; (iv) tolerancia a falhas aumentando a disponibilidade
dos dados; (v) economia na aquisicao de servidores menores a medida que o
poder computacional exigido for aumentado; (vi) facilidade de acrescentar ou
remover novos servidores.

Podemos citar ainda, o gerenciamento de dados distribuidos com niveis
diferentes de transparéncia (transparéncia de distribuicao ou de rede, transpa-
réncia de replicac&o e transparéncia de fragmentacao). Mas [ELMASRI e NA-
VATHE, 2005] afirma que as transparéncias incluem “um compromisso entre
a facilidade de uso e o custo da sobrecarga de proporcionar a transparéncia”.

No banco de dados distribuidos os dados ficam armazenados em locais
diferentes. Usualmente cada local é gerenciado por um SGBD independente.
“A vis&o classica de um sistema de banco de dados distribuido é que o sis-
tema deve tornar o impacto da distribuicdo dos dados transparentes” [RA-
MAKRISHNAN e GEHRKE, 2008].

Banco de Dados

18

FRANGA, C.T.P LLE JNIOR, J.C.

3.4.2. Desvantagens

O uso do banco de dados distribuido n&o sé tem vantagens, mas traz con-
sigo algumas desvantagens como (i) complexidade exigida para garantir a
distribuicdo de forma transparente para o usuério; (ii) custo maior de imple-
mentacao devido ao trabalho extra exigido; (iii) planejamento mais dificil de-
vido a fragmentacao, alocagéo e, algumas vezes, a replicagdo dos dados;
(iv) integridade do banco exige alto recurso de rede; (v) exigéncia de maior
seguranga tanto nos servidores quanto na infra-estrutura; (vi) inexisténcia de
um padrédo que auxilie a conversdo dos bancos de dados centralizados para
os banco de dados distribuidos; (vii) poucos casos praticos disponiveis para
serem analisados.

Para [ELMASRI e NAVATHE, 2005] a obten¢do das vantagens do ban-
co de dados distribuido leva ao projeto e a implementacéo de um sistema
gerenciador mais complexo, onde o SGBDD deve prover, além das funciona-
lidades do SGBD centralizado, (i) rastreamento de dados; (ii) processamento
de consultas distribuidas; (i) gerenciamento de transagdes distribuidas; (iv)
gerenciamento dos dados replicados; (V) recuperagao de banco de dados dis-
tribuido; (vi) seguranga; (i) gerenciamento do diretério distribuido.

3.4.3. Fragmentagao de Dados

O tipo mais simples de fragmentagéo de banco de dados é a fragmentagao
de uma relagéo inteira, ou seja, os dados de uma tabela inteira s&o colocados
num unico servidor do BDD. Dessa maneira sempre que se precisar de algu-
ma informacdo da tabela, o SGBDD ir4 busca essa informa¢&o no servidor
que a mantém. Para exemplificar suponha que um BDD de um supermercado
tenha cinco servidores de dados e que as tabelas do BDD estao espalhadas
como mostrado na tabela 1.2.

Tabela 1.2
Servidor Tabela # Registros
S01 Cliente 10000
S02 Fornecedor 1000
S03 Compra 1000000
S04 Compra_ltem 4000000
S05 Estoque 10000

No servidor SO1 ficam armazenados todos os dados de todos os clien-
tes, neste caso os dados de dez mil clientes. Ja o servidor S02 é responsavel
por manter os dados dos fornecedores. O servidor SO3 armazena os dados

da compra, tais como data da compra, cliente que efetuou a compra, valor da
compra, forma de pagamento, etc.

O servidor S04 registras os itens que o cliente adquiriu em cada compra
(arroz, feijdo, macarrao, etc.), a quantidade de cada item e o valor de pago pelo
item. Os itens em estoque e seus dados (descri¢do do item, quantidade em esto-
que, valor de compra, valor de venda, etc.) ficam armazenados no servidor S05.

Neste exemplo o servidor S02 vai precisar de um poder computacional
bem menor que o servidor S04 para atender as solicitacoes feitas, uma vez
gue o numero de registros do servidor S02 é bem menor que do servidor S04,
causando um desbalanceamento de carga entre os servidores.

Na fragmentagao horizontal, as tuplas (registros) séo divididas horizon-
talmente entre os varios servidores. Esse tipo de fragmenta¢&o diminui o pro-
blema do desbalanceamento de carga entre os servidores como pode ser
visto natabela 1.3. Com a fragmentagéo horizontal cada registro da tabela fica

em um servidor, junto com todos os seus atributos (colunas).
Tabela 1.3

EXEMPLO DE FRAGMENTAGAO HORIZONTAL

Tahela: Cliente

Servidor ID_Cliente Nome_Cliente Cidade_Cliente
S01 1 Roberto Juazeiro do Norte
S02 2 Helena Fortaleza
S03 3 Francisco Crato
S01 4 Lucas Barbalha
S02 5 Ylane Juazeiro do Norte
S03 6 Eduardo Barbalha
S01 7 Carlos Fortaleza
S02 8 Vitor Fortaleza
S03 9 Maria Crato

A fragmentac&o vertical divide as tuplas e seus atributos (tabela 1.4),
o problema nesse tipo de fragmentagao esta na obrigatoriedade de incluir a
chave priméria ou chave candidata em cada parte da fragmentagao, para que
esses valores possam ser resgatados e unidos quando necessario.

Existe ainda a possibilidade de combinar a fragmentac&o horizontal
com a fragmentagao vertical gerando uma fragmentagao mista ou hibrida.

3.4.4. Replicagcao de Dados

A replicagao ou redundancia de dados € usada para melhorar a disponibilida-
de dos dados, pois através dela obtém-se um sistema de alta disponibilidade,
mantendo o sistema sempre disponivel, mesmo em casos de falhas de com-
ponentes ou sobrecargas do sistema.

Banco de Dados

20 FRANGA, C.T.P LLE JNIOR, J.C.

Tabela 1.4

EXEMPLO DE FRAGMENTACAO VERTICAL

Servidor

S01
S02
S03
S01
S02
S03
S01
S02
S03

Tahela: Cliente

ID_Cliente Nome_Cliente Servidor ID_Cliente Cidade_Cliente
1 Roberto S04 1 Juazeiro do Norte
2 Helena S05 2 Fortaleza
3 Francisco S06 3 Crato
4 Lucas S05 4 Barbalha
5 Ylane S04 5 Juazeiro do Norte
6 Eduardo S06 6 Barbalha
7 Carlos S06 7 Fortaleza
8 Vitor S04 8 Fortaleza
9 Maria S05 9 Crato

Na replicagdo completa os dados armazenados séo replicados de ma-
neira inteira em todos os sites do sistema distribuido. “O outro caso extremo
da replicagéo completa envolve possuir nenhuma replicagao [...] Entre esse
dois extremos, temos um amplo espectro de replicagao parcial dos dados”
[ELMASRI e NAVATHE, 2005].

Embora a replicagédo de dados melhore a disponibilidade e o desem-
penho do banco de dados, a mesma reduz a velocidade das operacdes de
atualizac&o, uma vez que cada atualizagéo devera ser replicada em todas as
copias existentes para manter a consisténcia dos dados redundantes.

Gapitulo

Modelagem de Dados
e Normalizacéo

Obijetivo

e Saber transformar a necessidade do armazenamento de dados num pro-
jeto eficaz e eficiente de banco de dados passa por algumas etapas. Este
capitulo tem o foco em trés etapas importantes do projeto de um banco de
dados, iniciando com a modelagem conceitual através de uma abordagem
pratica, passado pela normalizacdo de dados e finalizando com a modela-
gem légica do banco de dados.

Introducgao

Neste capitulo sera apresentando o projeto de um aplicativo que utiliza um
banco de dados relacional. No decorre do capitulo serdo proporcionadas téc-
nicas para transformar o levantamento de requisitos, feitos pela engenharia de
software, num projeto de banco de dados relacional bem sucedido.

1. Sinopse do Projeto

Um mercantil deseja informatiza alguns processos internos. O controle do es-
toque & de suma importancia, pois a geréncia precisa constantemente fazer
levantamento de inventario de mercadoria.

Os pontos de venda (PDVs) também devem ser automatizados, inclusi-
ve passando a ser obrigatério o uso do Emissor de Cupom Fiscal (ECF).

Com o uso do PDV vinculado a ECF passa a ser obrigatério expli-
citar os itens que cada cliente levou na compra e a forma de pagamento
usado pelo mesmo.

As impressdes na ECF dos itens adquirido, assim como a atualizagéo
do estoque, devem acontecer concomitantemente, ou seja, quando for pas-
sado um item no PDV, o mesmo deve ser impresso na ECF e também ser
baixado do estoque a quantidade vendida.

No PDV deve ser informada a data da venda, o cliente que efetuou a
compra, o valor da compra e a forma de pagamento utilizada pelo cliente. Os
itens vinculados ao PDV devem ter a quantidade comprada, o valor unitério
de venda e o valor total.

O cadastro do cliente tem que ser informado com nome, endereco,
telefones.

Banco de Dados

“Requisitos de um
sistema sédo descrigoes
dos servicos fornecidos
pelo sistema e as suas
restricdes operacionais”
[SOMMERVILLE, 2007].

“Engenharia de software
€ uma disciplina de
engenharia relacionada
a todos os aspectos da
producéao de software,
desde os estaagios
iniciais de especificacao
do sistema até sua
manutencao, depois que

este entrar em operacao”

[SOMMERVILLE, 2007].

23

24

FRANGA, C.T.P LLE JNIOR, J.C.

2. Modelo Conceitual

O primeiro elemento que deve ser criado para um projeto de banco de dados
€ o modelo conceitual, este modelo deve ser de facil entendimento para o
usuario final, logo ele precisa ser um modelo de alto nivel (mais préximo da
realidade do usuario).

Nesse momento se procura uma descricao precisa dos dados, sendo
necessario especificar quais objetos estao presente no projeto e como eles se
relacionam. Detalhes sobre como serdo implementados os dados ou relacio-
namentos devem ser omitidos.

O modelo conceitual deve servir como meio de comunica¢ao nao am-
biguo entre os usuarios do sistema e os desenvolvedores do banco de dados.
Obrigando, desta forma, o entendimento e atendimento dos requisitos por es-
tes dois grupos, sendo muito mais valioso para os desenvolvedores reconhe-
cer e validar as reais necessidades do usuario.

No modelo conceitual devem esta presente as entidades e seus relacio-
namentos além dos atributos das entidades, e em alguns casos dos relacio-
namentos. Uma entidade é a representacao, no ambiente de banco de dados,
de um objeto do mundo real (professor, aluno, etc.) ou conceitual (disciplina,
nota, etc.). Toda entidade tem propriedades (tamanho, cor, nome, etc.), essas
propriedades s&o chamadas de atributos. Existem entidades que se conec-
tam com outros, mostrando uma associacdo entre as mesmas, essas asso-
ciacoes sao identificadas como relacionamentos.

No decorre desta secio sera mostrado como criar o modelo conceitual
do projeto proposto neste capitulo.

2.1. Identificando os Tipos Entidades

Uma entidade é definida por [ROB e CORONEL, 2011] como “algo (uma pes-
soa, um local, um objeto, um evento) sobre o qual sejam coletados e arma-
zenados dados. Ela representa um tipo particular de objeto no mundo real”,
eles concluem afirmando que as “entidades podem ser objetos fisicos, como
clientes e produtos, mas também abstracées, como rotas de véo ou apresen-
tacdes musicais”.

Embora muitos chamem o tipo entidade de entidade, os dois ndo s&o a
mesma coisa, mas sdo complementares. “Um tipo entidade define uma cole-
¢ao (ou conjunto) de entidades que possuem os mesmos atributos. Cada tipo
entidade no banco de dados é descrito por seu nome e atributos” [ELMASRI
e NAVATHE, 2005]. Fazendo uma analogia a linguagem de programag¢ao, po-
demos dizer que uma entidade esta para um tipo entidade, assim como uma
variavel esta para um tipo primitivo.

Para identificar os tipos entidade presentes num texto, o primeiro pro-
cedimento é localizar os substantivos que indiquem um objeto como Unico no
mundo real ou conceitual. No texto apresentado na se¢ao 2.1 foram identifica-
dos com tipos entidades os substantivos estoque, PDV, item da venda, forma
de pagamento e cliente (figura 2.1).

ESTOQUE PDV ITEM_PDV FORMA_PGTO CLIENTE

Figura 2.1 — Tipos entidade

Embora mercantil seja um substantivo, ele ndo apareceu na figura 2.1
porque se o mesmo fosse transformado num tipo entidade, sé teria apenas
uma unica apari¢ao no banco de dados.

Existem outros substantivos no texto (ECF, processos internos, gerén-
cia, etc.), mas eles ndo tém um papel representativo no projeto, suas apari-
¢des no texto servem apenas para nos ajuda a entender o projeto.

Outro substantivo descartado foi inventario de mercadoria, pois ele re-
presenta uma funcionalidade do software que sera criado, devendo ficar claro
que esta funcionalidade vai ser criada com base nas informagdes presentes
no tipo entidade ESTOQUE, e nao ser um tipo entidade do banco de dados.

2.2. Identificando os Tipos Relacionamento

A identificacao dos tipos relacionamento de um projeto € mais simples, pois ja
tendo descoberto os tipos entidade, o relacionamento entre os mesmo se da
através de verbos ou preposicoes que os conectem.

Os tipos relacionamento encontrado no texto sado apresentados na figu-
ra 2.2 como losangos unindo os tipos entidade.

ESTOQUE FORMA_PGTO

n 1 n 1
ITEM_PDV PDV CLIENTE

Figura 2.2 — Tipos entidade e tipos relacionamento

Banco de Dados

25

26

FRANGA, C.T.P LLE JNIOR, J.C.

Na figura 2.2 também é apresentado a razdo de cardinalidade para os
relacionamentos. A razdo de cardinalidade especifica 0 nimero maximo de
relacionamentos que uma entidade pode participar.

No tipo relacionamento TORNA-SE, ESTOQUEITEM_PDV tem razao
IN. Em outras palavras, cada entidade estoque pode se relacionar com N
entidades item_pdv.

No exemplo todos os tipos relacionamento s&o de grau binario, ou seja,
cada relacionamento suporta a participagao de apenas duas entidades. Mas o
modelo conceitual permite tipos relacionamento de véarios graus, embora seja
altamente recomendavel tentar utilizar sempre o grau binario.

2.2.1. Identificando os Atributos

Reconhecido os tipos entidade e tipos relacionamento, o proximo passo é
identificar os atributos dos tipos entidade. Uma vez que um tipo entidade é a
representacdo de um objeto e todo objeto tem propriedades, devemos repre-
sentar essas propriedades através dos atributos. O modelo conceitual tam-
bém permite aos tipos relacionamento terem atributos. Um atributo também
pode ser visto como um substantivo que descreve outro substantivo.

A figura 2.3 representa os atributos encontrados na se¢éo 2.1 através
de circulos fixados diretamente no tipo entidade.

Produto — &1
ESTOQUE Qllant FORMA_PGTO
o Vr_Compra —ODescrlcao

Vr_Venda

Tipo
Logradouro
Numero
Endereco Bairro
’_O Cidade

n 1 n 1
ITEM_PDV @ @ CLIENTE CEP

UF

l¢m l¢wm l¢m
Quant Dt_Venda Nome
Vr Unit Vr_Compra Telefones (1,n)

Vr_Total

Figura 2.3 — Modelo conceitual do projeto

Atabela 2.1 explana sobre o0s tipos de atributos representados na figura
anterior.

Banco de Dados

Tabela 2.1

TIPOS DE ATRIBUTOS ENCONTRADOS NA FIGURA 2.3

Atributo

Atributo multivalorado

Atributo monovalorado

Atributo composto

Atributo simples ou atomico

Atributo chave simples

Atributo chave composto

2.3. Normalizacao

Exemplo

LO Telefones (1,n)
J—O Descricao

Tipo
Logradouro
Numero

Endereco Bairro
Cidade
UF
ENTE CEP

J—O Descricao

—l_. i1}

— @ 1D_Produto
— @ 1D_PDV

Descricao

Atributo formado por um conjunto de valores por
entidade.

Atributo formado por um Gnico valor por entidade.
Este atributo é o complemento do atributo multi-
valorado.

Atributo que pode ser dividido em partes menores,
formando uma hierarquia de atributos.

Atributo que néo pode ser dividido em partes
menores. Este atributo é o complemento do atributo
composto.

Também chamado de restricao de unicidade ou
chave primdria simples.
Este atributo ndo pode ter o valor nulo, nem ter
duas entidades com o mesmo valor.

Semelhante ao atributo chave simples, mas nesse
caso sao usados dois ou mais atributos para
definir a restricdo de unicidade. Também pode ser
chamado de chave primaria composta.

Com o modelo conceitual pronto, o passo seguinte é transforméa-lo no mode-
lo légico, mas antes devemos ter o conhecimento da formas normais. Esse
conhecimento & necessario, pois 0 modelo conceitual ndo se preocupar com
a implementagéo, enquanto o modelo légico apresenta uma visdo abstrata
apropriada a equipe de desenvolvimento.

A normalizagao procura simplificar a maneira como os dados ser&o ar-
mazenados no banco de dados para conseguir mais eficiéncia. Neste contex-
to a palavra “eficiéncia” n&o se refere melhorar o desempenho do banco de
dados ou facilitar o processo de consulta. A eficiéncia procurada aqui se refere
a diminuicdo da complexidade da estrutura I6gica do banco de dados.

27

28

FRANGA, C.T.P LLE JNIOR, J.C.

Joana

A normalizacao € o processo de andlise efetuado sobre esquemas re-
lacionais para conseguir caracteristicas desejaveis, tais como a minimizagao
de redundancia e, consequentemente, a reducdo de anomalias de insercéo,
atualizacéo e exclusao.

A redundéancia de dados acontece quando “uma determinada informa-
céo esta representada no sistema em computador vérias vezes” [HEUSER,
2001]. Um exemplo de normalizagéo apresentado por [ELMASRI e NAVATHE,
2005] é o de um banco de dados de uma universidade, onde dois grupos de
usuarios (secretaria e contabilidade) mantém arquivos independentes com os
dados dos alunos. “A contabilidade também guarda os dados de matricula e
as informagdes relacionadas a pagamentos, enquanto a secretaria mantém o
controle dos cursos e notas dos alunos” [ELMASRI e NAVATHE, 2005].

2.3.1. Forma Normal

Uma forma normal € uma regra que deve ser seguida para que uma tabela
seja bem avaliada. Aforma normal sujeita o esquema de relagcéo a uma cadeia
de avaliagdo para garantir que ele satisfaz a forma normal. Esse processo de
avaliagdo segue o estilo top-down, onde cada relagdo é avaliada sob os crité-
rios das formas normais.

2.3.1.1. Primeira Forma Normal (1FN)

Uma tabela esta na 1FN se nao possuir atributo multivalorado ou atributo com-
posto, esse procedimento elimina tabelas aninhadas. A figura 2.4 mostra uma
tabela que nao atende a 1FN, pois temos um atributo multivalorado (Telefone)
e um atributo composto (Endereco).

ID MNome Telefone Endereco

(85) 3211-0000

Antonio | (85) 3212-0000 | Rua Padre Cicero, 999 — Aldeota— Fortaleza—CE

(85) 9288-0000

(88) 3566-0000

(88) 9977-0000 Rua 53¢ Paula, 355 — Matriz — Juazeiro do Norte — CE

Maria (81) 8881-0000 | Av. Caxanga, 1200 — Centro — Recife — PE
losé (88) 3521-0000 | Rua Dom Manuel, 208 — Centro— Crato— CE

Figura 2.4 — Tabela fora da 1FN

Para resolver o problema do atributo multivalorado, deve-se criar uma
nova tabela com o atributo multivalorado (figura 2.5), essa nova tabela deve
se relacione com a tabela.

ID Telefone Telefone 1D
1 (85) 3211-0000 | 1
2 |(85)3212-0000 | 1
3 (85) 9988-0000 | 1
4 | (88)3566-0000 | 2
5 (88) 9977-0000 2
6 | (81) 8881-0000 | 3
7 (88) 3521-0000 | 4

Figura 2.5 — Tabela criada com base no campo multivalorado

O problema do atributo composto é mais simples, os atributos base devem
ser inseridos direto na tabela, eliminando-se o atributo compostos (figura 2.6).

ID MNome Tipo

Logradouro

1 [Antonio Rua | Padre Cicero
2 |Joana Rua L 530 Paulo

2 | Maria Avenida | Caxanga

4 |losé Rua .

Figura 2.6 — Tabela na 1FN

Dom Manuel

Nro Bairro Cidade

999 | Aldeota | Fortaleza CE

355 | Matriz . luazeirodo Norte | CE
1 1200 | Centro .Recife PE

208 | Centro | Crato | CE

Afigura 2.7 mostra 0 modelo conceitual do exemplo apresentado para

a 1FN.

[forn

SEM_1FN

Telefone (1,n) C—] Tipo
Logradouro
\-O Nro
Endereco Bairro
Cidade

UF

Tabela ndo normalizada

Figura 2.7 — Modelo conceitual da 1FN

2.3.1.2. Segunda Forma Normal (2FN)

o

Telefone

COM_1FN

|-O UF
Cidade
Bairro
Nro

Legradouro
Tipo

Tabela normalizada

Uma tabela esta na 2FN se estiver na 1FN e n&o possuir dependéncia funcio-
nal parcial. Uma dependéncia parcial ocorre quando os atributos ndo chave
nao dependem de toda chave primaria composta (Ler Tabela 2.1 — Atributo

Banco de Dados

29

30 FRANGA, C.T.P LLE JNIOR, J.C.

chave simples e Atributo chave composto). A figura 2.8 mostra uma tabela que
n&o atende a 2FN.

ID Produto Descricao Vr_Unit Qtd Vr_Total

1 | 1234 Camiseta 30,00 2 60,00
1 4321 Calga 120,00 1 120,00
2 | 1234 Camiseta 30,00 3 90,00
2 4321 Calga 120,00 2 240,00

Figura 2.8 — Tabela fora da 2FN

Neste exemplo a chave primaria € composta por dois atributos (ID,
ID_Produto). Dois atributos nao chave (Descricao, Vr_Unit) tém dependén-
cia funcional parcial com a chave primaria. Explanando de outra maneira,
os dois atributos nao chave mencionados tém seus valores diretamente
relacionados com o atributo ID_Produto. A figura 2.9 apresenta a tabela ja
atendendo a 2FN.

ID Produto Descricao Vr_Unit

ID IDProduto Qtd Vr_Total

1234 Camiseta 30,00 1 | 1234 2 60,00
4321 Calga 120,00 1 | 4321 1 120,00
2 | 1234 3 90,00
2 | 4321 2 240,00

Figura 2.9 — Tabela na 2FN

Afigura 2.10 mostra o modelo conceitual do exemplo apresentado para
a 2FN.

1] D
|-. ID_Produto l-. 1ID_Produto |-. ID_Produto
n 1
") Descricao) Descricao
SEM_2FN COM_2FN PRODUTO
-) Vr_Unit - () Vr_Unit
_O Vr_Total _O Vr_Total

Qtd Qtd

[Tabela nio nnrmal'lzada] [Tabela normalizada]

Figura 2.10 — Modelo conceitual da 2FN

Banco de Dados

2.3.1.3. Terceira Forma Normal (3FN)

Uma tabela esta na 3FN se estiver na 2FN e n&o possuir nenhuma dependén-
cia funcional transitiva. Uma dependéncia transitiva ocorre quando um atribu-
to ndo chave depende de outro atributo ndo chave. A figura 2.11 mostra uma
tabela que nao atende a 3FN.

1D Nome ID_Cargo Cargo Salario

1 | Antonio 1 Engenheiro 7.000,00 |
2 loana 2 Medico IID.CIIDI’.'II,EID]
3 ‘ Maria ‘ 3 ‘ Advogado 50.000,00 |
4 |José 1 | Engenheiro | ?.GDO,GD]

Figura 2.11 — Tabela fora da 3FN

Os atributos nao chave Cargo e Salario tm dependéncia funcional
transitiva com o atributo nao chave ID_Cargo. A solugdo é semelhante a
da 2FN, ou seja, cria-se uma nova tabela para solucionar a dependéncia
funcional (figura 2.12).

ID Cargo Cargo Salario Nome ID_Cargo
1 Engenheiro | 7.000,00 | 1 | Antonio 1
2 ‘ Medico ‘ 10.000,00 ‘ 2 - loana 2
} 3 | Advogado | 50.000,00 | | 3 |maria ’ 3
| | | — : |

losé
Figura 2.12 — Tabela na 3FN

Afigura 2.13 mostra o modelo conceitual do exemplo apresentado para
a 3FN.

[~ own o

n 1
— " Cargo —{_ Cargo
SEM_3FN COM_3FN CARGO
- —_) Salario - —_) Salario
|-O ID_Cargo |-O 1D_Cargo |-. ID_Cargo

[Tabela ndo normalizada] [Tabela normalizada]

Figura 2.13 — Modelo conceitual da 3FN

31

32

FRANGA, C.T.P LLE JNIOR, J.C.

Na maioria dos projetos, quando se chega a 3FN o esquema do banco
de dados ja estda com a normalizagao satisfatéria. Mas em alguns casos, para
atingir uma normalizagdo aceitavel é necessario executar a 4FN e 5FN.

2.3.1.4. Quarta Forma Normal (4FN)

Uma tabela esta na 4FN se estiver na 3FN e n&o existir dependéncia funcional
multivalorada. Uma dependéncia multivalorada ocorre quando dois ou mais
atributos multivalorados dependem de um atributo chave. A figura 2.14 mostra
uma tabela que nao atende a 4FN.

Filme Produtor

Karl
William
Stephen

Charlten

Jack

Gunnar
2 | O5étimo Selo ——— Ingmar
Bengt

Figura 2.14 — Tabela fora da 4FN
Os atributos multivalorados Ator e Produtor tém dependéncia funcional mul-

tivalorada com o atributo chave |ID. Neste caso, cada atributo multivalora-
do se transformara numa tabela independente da tabela original (figura 2.15).

1 | Ben-Hur

2 | OSétimo Selo

ID Ator Ator ID Prod Produtor

| 1 Charlton 1 Karl

2 |lack | 2 william
3 Gunnar L 3 |5teph|=_-n |
4 Bengt 4 Ilngmar |

Figura 2.15 — Tabelas derivadas da figura 2.14

Cada tabela derivada dos atributos multivalorados deve se relacionar com
a tabela original através de uma tabela intermediéria (figura 2.16). As tabelas
intermediarias tém o atributo chave da tabela original (ID) e o atributo chave
das tabelas derivadas (ID_Ator, ID_Prod). O produtor do filme produziu.

Banco de Dados

D ID Ator ID ID Prod

1 1 1 1

1 2 1 2

2 2 1 3

2 4 ‘ 2 }-‘l ‘

Figura 2.16 — Tabelas intermediarias

Afigura 2.17 mostra o modelo conceitual do exemplo apresentado para

a4FN.
l.. 1]
Ator (1,n)0— SEM_afN | —CrProdutor (1,n)
|-O Filme
[Ta bela ndo normalizada]
|-. ID_Ator ’—. 1] ’-. ID_Prod
Ator {_—] ATOR coM_arn |—) Filme PRODUTOR |—(Produtor
1 1 1 1
PARTICIPOU PRODUZIU
n n
n n
e — @™
ATOR_FILME PROD_FILME
1ID_Ator #§— - - — 4@ ID_Prod

[Tabela normalizada]

Figura 2.17 — Modelo conceitual da 4FN

2.3.1.5. Quinta Forma Normal (5FN)

Uma tabela esté na 5FN se estiver na 4FN e n&o existir dependéncia funcional
ciclica. Uma dependéncia ciclica ocorre quando um atributo X depende do
atributo Y, o atributo Y depende do atributo Z e o atributo Z depende do atributo
X. Afigura 2.18 mostra uma tabela que n&o atende a 5FN.

33

34

FRANGA, C.T.P LLE JNIOR, J.C.

ID Prof

Professor

Disciplina

ID Apost

Apostila

1 Tadeu 11 Bancode Dados | 111 Tutorial Banco de Dados
p Robério 22 POO 222 Tutorial POD
3 losé Maria | 33 Marketing 333 Tutorial Marketing
Figura 2.18 — Tabela fora da 5FN
A tabela apresentada na figura 2.18 poderia mostrar que o professor
Tadeu ministra a disciplina Banco de Dados, e que sé podera ministrar essa
disciplina se utilizar a apostila Tutorial Banco de Dados. Desta maneira é cria-
da uma dependéncia ciclica entre os atributos Professor, Disciplina e Apostila.
Para evitar essa dependéncia ciclica, devem-se criar novas tabelas que rela-
cionem esses atributos de forma binéria (figura 2.19).
1D Prof Professor 1D Disc Disciplina Apostila
| 1 Tadeu 11 Bancode Dados 111 Tutorial Banco de Dados
2 Roberio 22 POO 222 Tutorial POO
| 3 losé Maria a3 Marketing 333 Tutorial Marketing

ID Prof 1D Disc

11 |11 1 11 |1 111
22 222 2 22 2 222
33 333 3 |33 3 333

Figura 2.19 — Tabelas derivadas da figura 2.18

Afigura 2.20 mostra o modelo conceitual do exemplo apresentado para

a 5FN.

— 4 ID_Disc
—_» Disciplina

_. |_O Apostila

ID_Apost

SEM_SFN

[Ta bela ndo normalizada :]

n 1
ID_Prof #— —4@ ID_Prof
PROF_APOST PROFESSOR
ID_Apost] -) Professor

n 1
1 n
1D_Apost §—| — @ ID_Prof

APOSTILA PROF_DISC
Apostila {_}—| - —4@ ID_Disc
1 n
n 1
n 1
1D_Disc @— — 4@ ID_Disc
DISC_APOST DISCIPLINA
1ID_Apost @—] - —_) Disciplina

[Tabela normalizada]

Figura 2.20 — Modelo conceitual da 5FN

2.3.2. Desnormalizagao

A desnormalizac&o € um assunto pouco mencionado na literatura por ser con-
troverso e ndo ser uma técnica unanime. Mas em certos casos podem reque-
rer a redundancia de parte dos dados, ou que atributos nao relacionados
sejam combinados em tipos entidade simples.

Um caso em particular que requer a desnormalizagcao é a necessidade
de manter um histérico sobre os dados armazenados. Um exemplo dessa
necessidade é a obrigatoriedade de manter os dados dos documentos fiscais
emitidos sem alteragdo, apés terem sido consolidados. Para ficar mais claro
sera apresentado um cenario que reflete melhor esse exempilo:

1. A distribuidora ABCD emite uma nota fiscal eletrénica (NF-€) para
o cliente XYZ, no ato da emissao da NF-e o cliente XYZ morava na
RUA J50, tendo efetuado a compra de 100 refrigerantes no valor
unitario de R$ 2,95.

Banco de Dados

35

36 FRANGA, C.T.P LLE JNIOR, J.C.

No capitulo 5 sera
apresentado o conceito e
exemplos praticos sobre
jungodes de tabelas.

2. Um ano apés a emisséo da NF-e, a Secretaria da Fazendo solicita
o reenvio dos dados da mesma. A distribuidora ABCD sabe que os
dados que serdo enviados devem ser idénticos aos enviados um
ano antes no ato da emisséao.

3. Atualmente o cliente XYZ estd morando na RUA WASHINGTON
SOARES, para piorar a circunstancia o refrigerante que o cliente
comprou ja mudou de pre¢o algumas vezes.

4. Adistribuidora ABCD nao conseguira atender a solicitagao da Secre-
taria da Fazenda, pois para evitar redundéncia de dados, o banco de
dados foi totalmente normalizado.

Outro caso, ainda mais controverso, € a desnormalizacdo para evitar
consultas complexas que sao requeridas constantemente. Entenda-se com
consultas complexas aquelas que fazem uso de jungdes entre duas ou mais
tabelas para chegar ao resultado desejado.

Mas desnormalizar para ganhar desempenho talvez seja 0 mais contro-
verso argumento para desnomalizar um banco de dados, pois é muito dificil
comprovar que o ganho de desempenho com a desnormalizagao é significativo.

2.4. Modelo Légico

O modelo légico apresenta uma visdo abstrata apropriada a equipe de de-
senvolvimento. Um modelo Iégico eficiente tem que esta normalizado e ter as
chaves estrangeiras criadas corretamente.

A partir deste ponto (i) tipo entidade sera citado como tabela; (ii) entidade sera
citada como registro; e (iii) atributo sera citado como coluna ou campo.

2.4.1. Chave Estrangeira

Uma chave estrangeira é uma ou mais colunas de uma tabela cujos valo-
res devem, fundamentalmente, esté presente como chave priméria de outra
tabela. Recordando que a chave priméaria (ou atributo chave) é uma ou mais
colunas cujos valores tornam um registro como Unico na tabela.

No modelo I6gico a chaves estrangeiras substituem os tipos relaciona-
mento do modelo conceitual, mas essa substituicdo atende a determinadas
regras baseadas na cardinalidade existente no modelo conceitual:

Cardinalidade 1.1 — Neste tipo de relacionamento, na maioria das vezes,
a chave estrangeira pode ser criada em qualquer uma das tabelas. A figura
2.21 mostra o0 modelo conceitual e seu similar no modelo légico para a cardi-
nalidade 1:1.

|-. Chave_Primaria |-. Chave_Primaria

P

{ Modelo Conceitual |

P Chave_Primaria: Integer
(c' Chave_Estrangeira: Integer

P Chave_Primaria: Integer

(Modelo Légico |

Figura 2.21 — Cardinalidade 1.1

Cardinalidade 1N — Neste tipo de relacionamento a chave estrangeira
deve ser criada na tabela que tem a cardinalidade N (figura 2.22).

|—. Chave_Primaria |—. Chave_Primaria

T~

(Modelo Conceitual |

P Chave_Primaria: Integer
(O Chave_Estrangeira: Integer

P Chave_Primaria: Integer

[Modelo Légico]

Figura 2.22 — Cardinalidade 1N

Cardinalidade N:N — Neste tipo de relacionamento, deve-se criar uma
nova tabela e inserir nela a chave estrangeira referente as tabelas envolvidas
no relacionamento. As tabelas antigas passam a se relacionar através da nova
tabela através de um cardinalidade 1N (figura 2.23).

|-. Chave_Primaria

|-. Chave_Primaria

.

1 n):‘ Chave_Estrangeira_1: Integer

P Chave_Primaria: Integer

P Chave_Primaria: Integer = "
(,D Chave_Estrangeira_2: Integer

Figura 2.23 — Cardinalidade N:N

Banco de Dados

37

38 FRANGA, C.T.P LLE JNIOR, J.C.

2.4.2. Criagao do Modelo Légico

O modelo légico criado sera baseado no modelo conceitual do projeto, apre-
sentado na figura 2.3. Como o modelo l6gico deve esta normalizado, deve-se
verificar se a figura 2.3 precisa ser normalizada. No modelo conceitual da
figura citada, s6 é necessario normalizar tabela CLIENTE, devido o mesmo
apresentar uma coluna composta (Endereco) e outra multivalorado (Telefone).
Apbs normalizar, o modelo conceitual ficara como mostra a figura 2.24.

Produto -y
ESTOQUE Qllant FORMA_PGTO
o Vr_Compra —ODescrlcao

Vr_Venda

n 1 n 1
ITEM_PDV @ PDV @
lem len
Quant Dt_Venda
Vr Unit Vr_Compra

Vr_Total

Figura 2.24 — Modelo conceitual do projeto normalizado
Os tipos de dados mais

comuns utilizados nos

TELEFONES

@ 1m
— " Telefone

s & T

Log radouro
_,_O Numero
CLIENTE [——— O Bairro
— 1 {"Cidade
—l_o UF
le m—|—0 cep

Nome

Tendo como base o modelo conceitual mostrado na figura 2.24 é possi-

bancos de dados seréo vel criar o modelo l6gico (figura 2.25), transformando os relacionamentos em
apresentados no capitulo 4. chaves estrangeiras, de acordo com as regras apresentadas anteriormente.

ESTOQUE FORMA_PGTO
P 1D: Integer P ID: Integer
Produto: Varchar(40) Descricao: Varchar(20)
Quant: Numeric(15,3)

Vr_Compra: Numeric(l... 1

Vr_Venda: Numeric(15,2)

1

n
ITEM_PDV

P ID: Integer =
- P ID: Integer
Quant: Numeric(15,3)
- — Dt_Venda: Date
Vr_Unit: Numeric(15,2) n 1 n

FDV

Telefones
P 1D: Integer
Telefones: Varchar(14)
P ID_Cliente: Integer

1

CLIENTE

4[3 1D: Integer

Nome: Varchar(50)

Tipo: Varchar(10)

Logradouro: Varchar(25)

- Vr_Compra: Numeric(15,2)
Vr_Total: Numeric(15,2) (D ID_Forma,_Poto: Integer
" ID_Estoque: Integer I — = -
é’D‘ —-=0d = P ID_Cliente: Integer
47 ID_PDV: Integer

Figura 2.25 — Modelo l6gico do projeto

Numero: Varchar(s)

Bairro: Varchar{25)

Cidade: Varchar(25)

UF: Char{2)

CEP: Varchar{10)

Além de transformando os relacionamentos em chaves estrangeiras, o
modelo légico traz uma informagao a mais, o tipo de dado que pode ser arma-

zenado com cada coluna da tabela.

Gapitulo

PostgreSQL
¢ Modelagem Fisica

Obijetivo

e Um projeto de um banco de dados é finalizado com a escolha do banco de
dados que sera usado e com a criacdo do modelo fisico. O modelo fisico
esta diretamente relacionado ao banco de dados escolhido, uma vez que
0 mesmo representa a forma como os dados serdo armazenados fisica-
mente. O capitulo abordara o banco de dados PostgreSQL e como criar o
modelo fisico baseado no mesmo.

Introdugao

O capitulo anterior apresentou o projeto de um aplicativo que utiliza um ban-
co de dados relacional. Foram utilizadas técnicas para a criagdo do modelo
conceitual e do modelo légico do projeto baseados nos requisitos levantados.

Neste capitulo iremos explicar como criar o modelo fisico baseado no mo-
delo légico apresentado no capitulo 2. O modelo fisico é criado via SQL (Struc-
tured Query Language — Linguagem Estruturada de Consulta) e executado di-
retamente no SGBD, devido a isto, o capitulo inicia mostrando como instalar o
SGBD PostgreSQL no sistema operacional Linux sobre a distribuicao Ubuntu.

1. PostgreSQL

O PostgreSQL é um SGBD proveniente do POSTGRES que foi escrito na Univer-
sidade da Califérnia em Berkely. A primeira verséo de demonstragéo do POST-
GRES tornou-se operacional em 1987, em 1994 passou a se chamar Postgres95
e em 1996 recebeu o nome PostgreSQL, sendo 0 nome usado até hoje.

O PostgreSQL é um projeto open source coordenado pelo PostgreSQL
Global Developent Group, tendo seu desenvolvimento sido feito por um grupo
de desenvolvedores distribuidos pelo mundo, em sua maioria, voluntérios. E
considerado “atualmente o mais avan¢ado banco de dados de cédigo aberto
disponivel em qualquer lugar.” [POSTGRESQL, 2011].

1.1. Instalando o PostgreSQL

Essa subseg¢do mostrara como instalar o PostgreSQL 8.4 no sistema opera-
cional Linux sobre a distribuicdo Ubuntu 10.4.

O primeiro passo a ser efetuado é fazer o download do instalador do
PostgreSQL. O arquivo que sera utilizado é o postgresql-8.4.8-1-linux.bin,
baixado do enderec¢o http://www.postgresql.org/download/.

Banco de Dados 4

Open source refere-se aos
software com codigo aberto
e foi criado pela Open
Source Initiative (OSI).
Acesse http://opensource.
org/ para maiores
informacgoes.

4e FRANGA, C.T.P LLE JNIOR, J.C.

Acesse http://lwww.cassic.

com.br/carregar/tutoriais/
SERVL_TIPACESS para
maiores informagdes sobre
0 comando chmod.

Apb6s o download deve-se entrar no console (terminal) do Ubuntu e
entrar no diretério onde se encontra o arquivo de instalagdo (Ex.. cd /home/
linuxubuntu-vb/Downloads). As permissdes do arquivo devem ser mudadas
através do comando chmod 755 postgresql-8.4.8-1-linux.bin.

Ainda no console do Ubuntu o comando sudo ./postgresql-8.4.8-1-linux.
bin deve ser executado para iniciar a instalagéo. Deste ponto por diante a ins-
talag&o sera no modo visual. Todos os passos seguintes serdo apresentados
em topicos, a mudanga entre as janelas acontecera através do botao Next.
Serdo mantidos os dados padrdes apresentados nas janelas, a menos que
seja solicitada a sua alteragéo.

1. Aprimeira janela exposta pelo instalador € a de boas-vindas (figura 3.1).

"\ Setup - PostgresQL

|| Welcome to the PostgreSQL Setup Wizard.

PostgreSQL

Fackaged by

Enterprise "

‘ Emaes

Figura 3.1 — Janela de boas-vindas.

2. Na janela seguinte (figura 3.2) é solicitado o diretério onde o Post-
greSQL sera instalado.

Installation Directory

Please specify the directory where PostgreSQL will be installed.
Installation Directory lfoptjPostgreSQus.d | i g

BitRock Installer

| <sack |[wext> || cancel

Figura 3.2 — Diretério de instalagéo.

Banco de Dados ~2

3. Em seguida (figura 3.3) é solicitado o diretério onde os dados ser&o
mantidos.

Data Directory ‘?

Please select a directory under which to store your data.
Data Directory | /opt/PostgresqLis.a/data 1| &

BitRotk Installer

[<Back |[Next> |[cance

Figura 3.3 — Diretério de dados.

4. Asenha do banco de dados deve ser informada e confirmada (figura 3.4).
A senha usada foi postgres, que € 0 mesmo nome do super-usuario.

Password ‘j

Please provide a password for the database superuser (postgres). A locked Unix user
account (postgres) will be created if not present.

N —
| I—

BitRock Installer

]_ < Back J[Next > J| Cancel

Figura 3.4 — Criag&o da senha.

44 FRANGA, C.T.P LLE JNIOR, J.C.

Para o PostgreSQL um
cluster de banco de dados
€ um conjunto de bancos
de dados gerenciada por
uma Unica instancia de
um servidor de banco de
dados.

5. Aporta utilizada pelo servidor para atender as solicitacbes deve ser
informada como mostrado figura 3.5.

Port _"‘jtg:

Please select the port number the server should listen on.

Port [5432 |

BitRotk Installer

| <Back J[Next > _]| Cancel

Figura 3.5 — Porta usada pelo servidor.

6. Em opg¢des avangadas é solicitado o local que sera usado num pro-
vavel cluster de banco de dados. Também é solicitado a confirmagao
da instalagéo da pl/pgsgl no templatel do banco de dados. Deixe as
opgbes como mostradas na figura 3.6.

Advanced Options ..-l % 3

Select the locale to be used by the new database cluster.
Locale ﬁDefauIt locale] —[v-;

[X] Install pl/pgsql in templatel database?

BitRotk Installer

L < Back J[Next > H cancel

Figura 3.6 — Opgdes avangadas.

Banco de Dados

7. Nafigura 3.7 o instalador informa que esta pronto para iniciar instala-
¢ao do PostgreSQL. Clicar no botdo Next.

Ready to Install

‘Setup is now ready to begin instaliing PostgreSQL on your computer.

BitRock Installer

] < Back H Next > H Cancel

Figura 3.7 — Instalagao pronta para iniciar.

8. Apds completar a instalagéo do PostgreSQL, o instalador pergunta
se é desejavel baixar e instalar ferramentas adicionais, drivers e apli-
cagdes complementares através do Stack Builder (figura 3.8). Com
a opgao marcada, clicar no botao Finish.

Completing the PostgreSQL Setup Wizard
Y Setup has finished installing PostgreSQL on your
computer.

Launch Stack Builder at exit?

[3¢ Stack Builder may be used to download and install
additional tools, drivers and applications to
complement your PostgreSQL installation.

PostgreSQL

Packaged by

[<sack |[eimish][cancel

Figura 3.8 — Instalagdo concluida.

48 FRANGA, C.T.P LLE JNIOR, J.C.

9. Na janela de boas-vindas do Stack Builder informe a opgéo Post-
greSQL 8.4 on port 5432 (figura 3.9).

? Stack Builder 3.0.0

Welcome to Stack Builder!

This wizard will help you install additional software to
complement your PostgreSQL or EnterpriseDB Postgres Plus
installation.

To begin, please select the installation you are installing
software for from the list below. Your computer must be
connected to the Intemet before proceeding.

PostgreSQL 8.4 on port .l]

Proxy servers

< Back | Next > I ﬂs;ancelarl

Figura 3.9 — Janela de boas-vindas do Stack Builder.

10.Ajanela seguinte do Stack Builder solicita os aplicativos que deverao
ser instalados. Marcar as opgdes apresentadas na figura 3.10.

™ Stack Builder 3.0.0

Please select the applications you would like to
install.
= m= Categories
b m Add-ons, tools and utilities
= m= Database Drivers
[T Npgsgl v2.0.11-1
¥ pgjDBC v8.4-702-1
¥ psglODBC v08.04.0200-1
b = Registration-required add-ons
b = Replication Solutions

LY T ST [L

< Back I Next > | & s;ancelarl

Figura 3.10 — Aplicativos a serem instados.

11. Antes de iniciar o download e instalagcdo dos aplicativos, o Stack
Builder pede a revisdo das escolhas feitas na janela anterior, assim
como o diretdrio que sera usado para o download (figura 3.11).

™ Stack Builder 3.0.0

Review your selections and choose a download directory if
required, and then click the Next button to begin
downloading the packages you have selected.

Selected packages:

pg/DBC v8.4-702-1
psqlODBC v08.04.0200-1

Download directory:

i, |
< Back | Next > | ﬁs;ancelarl

Figura 3.11 — Confirmacéao de instalag&o.

12. Apds efetuar o download de todos os arquivos de instalagdo, o Stack
Builder solicita um clique no botdo Next para iniciar as instalagées
(figura 3.12).

™ stack Builder 3.0.0

All the installation files have now been successfully
downloaded.

Please click the "Next" button to start the installations.
Note: You must allow all installations to run to completion. If
you are prompted to restart the computer, click "No" or

"Restart Later" and manually restart your computer when all
the installation have finished.

[skip Installation

< Back | Next > | ggancelarl

Figura 3.12 — Downloads efetuado com sucesso.

Banco de Dados

47

48 FRANGA, C.T.P LLE JNIOR, J.C.

Um front-end é uma
interface responsavel

por coletar os dados de
entrada inseridos pelo
usuario, efetuar um pré-
processamento e envia-los
ao seu destino final (back-
end), captura a resposta

e apresenta ao usuario de
forma inteligivel.

O préximo capitulo é
dedicado exclusivamente
a SOQL, onde sera possivel
conhecer varios comandos
da SQL.

13.Depois de ter instalado todos os complementos, o botdo Finish deve
ser acionado (figura 3.13).

™ Stack Builder 3.0.0

Installation Completed

Installation of the packages you selected has finished. The
downloaded files have been retained to allow future
installations or upgrades {some packages require the original
installation files when being upgraded).

1 installations were skipped - you may attempt to manually
install those packages using the downloaded files.

You may run this wizard again at any time to add to or
upgrade the software in your stack. If you wish to remove
any software, please use the Add/Remove Programs Control
Panel applet.

<gack [Enish | gg;anceaar|

Figura 3.13 — Instalag&o concluida.

2. Modelo Fisico

Apbs instalar o PostgreSQL, deve-se utilizar a SQL para criar o modelo fisico
do banco de dados. Nesta secéo sera usado o font-end pgAdmin para auto-
matizar o uso da SQL.

2.1. pgAdmin

O pgAdmin é o font-end usado pelo PostgreSQL. Com ele é possivel manipular
o banco de dados de varias maneiras. Mas como afirmado anteriormente, neste
momento o pgAdmin sera usado para automatizar a criagdo do modelo fisico.

Para iniciar o pgAdmin deve-se selecionar o menu Aplicativos do Linux
Ubuntu e na seqiiéncia escolher a opgao PostgreSQL 8.4 e em seguida pgA-
dmin lll. Esse procedimento ira abrir o pgAdmin (figura 3.14).

O pgAdmin permite ao usuario criar varias conexdes com um ou mais
servidores. Para criar uma conexdo com o servidor local deve-se clicar no
botéo & e preencher como mostrado na figura 3.15 e clique no botéo OK.

[B] sonvidares (0

Propreilaces

Nenhuma popriedade esth disponivel para a selegho atual

- Faimed 800

IC}

Recupermndo detalhes de Senvidores. Concluldo

095 seq.

Figura 3.14 — Janela inicial do pgAdmin.

Hovo Reglstro de Servidor

tome |PostgresaL &.4
Magpiina [locaitost
Parta [s432

. I

Manutencio GOBD |postgres

K E

Nome de usudria [postgres

AITHBEENET SEnha [l
Restaurar ambienter [

restricho de BD

Servico
Caneclar agors m

Colour |

.':tm]

Fok | & canceinr|

Figura 3.15 — Configuragéo da nova conexao com o servidor.

Para conectar-se com o servidor, € necessario da um clique duplo sobre a
conexao configurada na figura 3.15, que esta no Navegador de objetos do pgAd-
min (lado esquerdo). Na janela Conectar ao Servidor (figura 3.16) deve ser infor-
mado a senha criada na instalag&o do PostgreSQL (a senha usada foi postgres).

Banco de Dados

S0

FRANGA, C.T.P LLE JNIOR, J.C.

-

| Navegador de objetos
= [@ servidores (1)

D ERsE-1® 7 |

é]‘q| ProDﬁedadeSIEstaﬁsﬂcnsI Dependéncias | Dependentesl

ey | Propriedade [valor
= Descrigao PostgreSQL 8.4
Mome da Maguina localhost

Conectar ao Servidor

Por faver digite senha para usuario postgres
no servidor PostgreSQL 8.4 (localhost)

!

[] Armazenar senha

4 Ajuda <ok nganmlar|

A

;lﬂecuperando detalhes de Servidor...Concluido 10,02 seg. /’.':

Figura 3.16 — Abrindo conexao com servidor.

2.1.1. Criando a Tabela ESTOQUE

No Navegador de objetos abra o objeto Banco de Dados, em seguida os objetos
postgres, Esquemas e public para ter acesso ao objeto Tabelas (figura 3.17).
1

pgAdmin I
-éﬁ (;/Qg m ~ G@, = |

¥ =N
| Navegador de objetos ﬁq| mmedades|emﬁsum| Depend&ﬁas.| Wm'
abela I Dono | Comentario

= [& servidores (1)
=[]l PostgresQL 8.4 (locathos |
- [=! Bancos de Dados (1)

= postgres
+ @ Catalogos (2)
= b Esguemas (1)
= £ public
5 Dominios (0)
@» FTs Configur, |
il FTs Dictional /|
© FTS Parsers (|Painel SOL ®
ii FTS Template
& Funcdes (0)
& Sequéncias (
& Funcoes de ¢
101 Visdes (0)
% Replicacao (0)
5= Tablespaces (2)
58 Roles do Grupo (0) ||

:lMcuperando detalhes de Tabelas...Concluido 10,02 seg. /'.':

Figura 3.17 — Acessando objeto Tabelas.

Tendo como referéncia o modelo légico do capitulo anterior execute os pas-
sos apresentados na sequéncia para criar a tabela ESTOQUE. Estes mesmos
passos devem ser seguidos para criar as tabelas FORMA_PGTO e CLIENTE.

1

Clicar com o botao inverso do mouse e escolher a opgéo Nova Ta-
bela...

2. No campo Nome da guia Propriedades digitar ESTOQUE.

3. Na guia Colunas clicar no botao Adicionar.

4. Na janela Nova Coluna preencher como mostrado na figura 3.18 e

clicar no botdo OK.

Nova Coluna...

Nome da ¢ Propriedades | Privilégios |

Mome [lD

Tipe de dado isen‘al LI

Tamanho I

Precisao I

Valor padrao I

Nao € NULL

Estatisticas [

Comentario

utilizar replicaso | j

[t Ajuda | Jox | Ks;ancelar|']mr

H Ajuda [cancel arl

Figura 3.18 — Coluna ID da tabela ESTOQUE.

Banco de Dados

51

@ FRANGA, C.T.P LLE JNIOR, J.C.

5. Clicar novamente no botdo Adicionar e preencher como mostrado

na figura 3.19.

e
""—_]
Mo nwnmtm.nlew[|

Tipo de dado

II: RArACTer varying ;I

Tamanho [+0

Mo & NULL -

[
|
Eruclsh |
J
|

Estatisticas |

uilizar repiicacha |

=

(o] Beamam?>™ |

_ Gl |,

Figura 3.19 — Coluna Produto da tabela ESTOQUE.

6. Clicar outra vez no botao Adicionar e preencher como mostrado na
figura 3.20.

Comentirio

utitizar repticagdo | _:]

o aiuda | [P lxmdﬂ
14 Aivda g cocver|

Figura 3.20 — Coluna Quant da tabela ESTOQUE.

7. A criagdo dos campos Vr_Compra e Vr_Venda é semelhante ao
campo Quant criado no passo 6.

8. Na guia Restrigdes com a opgao Chave Priméaria selecionada clicar
no botao Adicionar (figura 3.21).

9. Na guia Colunas da janela Nova Chave Primaria... selecionar o
campo ID, clicar no botdo Adicionar e em seguida no botdo OK.

10.Na janela Nova Tabela... clicar no botao OK.

——— N

[m j Adicionar | Remover |
I Ajuda | Hox | xmaml.
[Por favor especifique as colunas.) /
|Chave Primaria \ LI Adicionar | REMOVED][

490k | Hgancelar]

Figura 3.21 — Especificando a chave primaria.

As figuras 3.18 e 3.19 trazem dois tipos diferentes dos utilizados no
modelo légico. Os tipos usados no modelo I6gico sdo aceitos por qualquer
SGBDR. Se na criagéo da coluna for utilizado o tipo Varchar, o PostgreSQL
convertera o mesmo para seu tipo nativo Character Varying.

Da mesma maneira o tipo Serial € um tipo nativo do PostgreSQL, que
neste caso € equivalente a um tipo inteiro com uma sequéncia criada de ma-
neira implicita. Desta maneira o campo ID se torna um campo auto-incremente.

2.1.2. Criando a Tabela PDV

Os passos para criar a tabela PDV, suas colunas e a chave primaria sdo simi-
lares aos da tabela ESTOQUE. A diferenga esta no passo seguinte a criagao

Banco de Dados

53

54

FRANGA, C.T.P LLE JNIOR, J.C.

da chave primaria, apés criar a chave priméaria devem-se criar as chaves es-
trangeiras da tabela.

Trés informacdes sdo essenciais para a criagdo de uma chave estran-
geira, (i) o campo da tabela local que sera a chave estrangeira, (ii) a tabela
estrangeira e (iii) 0 campo da tabela estrangeira que sera referenciado. Essas
informagdes podem ser passadas de maneira visual no pgAdmin.

Apbs criar todos os campos apresentados no modelo légico e a chave
primaria, execute 0s passos apresentados na sequéncia. Estes mesmos pas-
sos devem ser executados para as tabelas ITEM_PDV e TELEFONES.

Na guia Restricdes com a opgao Chave Estrangeira selecionada clicar
no botao Adicionar (figura 3.22).

Escolher a opcédo FORMA_PGTO (tabela estrangeira) no campo Refe-
réncias da guia Propriedades da janela Nova Chave Estrangeira...

=]
| O
Prorrogado O Opgla FORMA_PGTO
Match full O
Indice auto FK
Covering index |
Comentana
Utilizar replicacdo | =]
;j}ﬁludnj i 8 ox |.ﬂ;m:edar|
IChave Estran-ifu'a ﬂ n-:ir.ionarl Remnover | -
;;Muﬂal \ Ao | ﬂ;aﬂ:elarl

Figura 3.22 — Tabela referéncia para a chave estrangeira.

Banco de Dados =k

3. Na guia Colunas, nos campos Coluna local e Referenciando infor-
mar respectivamente ID_Forma_Pgto (campo da tabela local que
sera a chave estrangeira) e ID (campo da tabela estrangeira que
sera referenciado), clicar no botéo adicionar (figura 3.23).

Hova Chave Estrangeira

Local | Reterenciade |

Coluna local [1D_Forma_Pgto -

Referenciando |ID ll
ld-\'.lmwl LT riawe I

23 Alra oK | X cancelar|

Figura 3.23 — Coluna local e referenciada para a chave estrangeira.

4. Na guia A¢do, marcar as opgdes de acordo com a figura 3.24 e cli-
car no botéo OK.

™ MNova Chave Estrangeira...

Pmpnedadesl Colunas A,géol
Ao Atualizar- Ao Apagar-
|O NO ACTION O NO ACTION
1O RESTRICT () RESTRICT
| (&) CASCADE (=) CASCADE
| () SET NULL (O SET NULL
| O SET DEFAULT O SET DEFAULT
11 Ajuda <Hox I &gancelarl

Figura 3.24 — Agdes para a chave estrangeira.

56

FRANGA, C.T.P L E JONIOR, J.C.

As opgcdes CASCADE do campo Ao Atualizar (figura 3.23) informa ao
SGBD que caso um ID da tabela estrangeira FORMA_PGTO seja atualizado,
todos os campos ID_Forma_Pgto da tabela local PDV que tenham o mesmo
valor seréo atualizados.

Ja a opgédo CASCADE do campo Ao Apagar informa ao SGBD que
caso um registro da tabela estrangeira FORMA_PGTO seja excluido, todos
os registros da tabela local PDV com o valor do campo ID_Forma_Pgto igual
ao ID do registro excluido também serao excluidos.

Repetir os passo da criagdo da chave estrangeira do campo ID_For-
ma_Pgto para criar a chave estrangeira do campo ID_Cliente. No final clicar
no botdo OK da janela Nova Tabela...

Gapitulo
Introduco a SQL

Obijetivo

e Com a evolugéo dos bancos de dados, surgiu uma linguagem descritiva
que com o tempo foi se tornando um padrao para os bancos de dados rela-
cionais. A SQL é uma linguagem declarativa criada para trabalhar exclusi-
vamente com banco de dados, o seu conhecimento se torna indispenséavel
para a atual conjuntura dos bancos de dados. Este capitulo é dedicado a
histéria da SQL e aos comandos do grupo DDL e DML, além do comando
SELECT e sua clausula WHERE.

Introducao

Este é o primeiro de dois capitulos dedicados a SQL (Structured Query Lan-
guage — Linguagem Estruturada de Consulta), uma linguagem declarativa de-
senvolvida para os bancos de dados relacionais, que devido sua simplicidade
e facilidade de uso tornou-se um padréo para banco de dados relacionais.

O grande diferencial da SQL em relag&o a outras linguagens de consul-
ta esta no seu paradigma, pois a SQL € uma linguagem declarativa e ndo uma
linguagem procedural. Para os novos usuarios ela parece ser um pouco com-
plicada, mas isso ocorre devido ao desconhecimento do paradigma declara-
tivo, assim, o aluno apds absorver os principios desse paradigma, observara
que o ciclo de aprendizagem da SQL é bastante reduzido.

Uma boa justificativa para se ter dois capitulos dedicados a SQL € dado
por [DEITEL, 2010] quando afirma que “os sistemas de banco de dados atuais
mais populares sao os banco de dados relacionais” e ele conclui informando
que a SQL “é a linguagem padrao internacional utilizada quase universalmente
com banco de dados relacionais para realizar consultas e manipular dados”.

Neste capitulo as sintaxes dos comandos e sub-comandos da SQL se-
rao apresentados baseados no padrédo EBNF (Extended Backus-Naur Form
— Forma Backus-Naur Estendida).

1. Historia
A SQL permitiu padronizar a construgéo e acesso a SGBDR (Sistema de Ge-

renciamento de Bancos de Dados Relacional) de diferentes tipos e em dife-
rentes plataformas de software e hardware.

Essa padronizacdo impulsionou ndo apenas a disseminagcdo dos
SGBDR, mas também a prépria SQL. Para entender a importancia da SQL
séo mostrados nesta subsec¢éo todos os pontos que levaram os DBAs (Da-

Banco de Dados =2

A BNF foi criada por JOHN
BACKUS para descrever

0 ALGOL 58 e modificada
ligeiramente por PETER
NAUR para descrever

o0 ALGOL 60. Algumas
inconveniéncias causaram
a extensdo da BNF dando
origem a EBNF.

60 FRANGA, C.T.P LLE JNIOR, J.C.

O prémio ACM TURING
AWARD é conferido a uma
pessoa que tenha dado
contribuicées de natureza
técnica a comunidade
computacional.

XML é uma linguagem
universal usada para troca
de informagdes entre
organizagdes, empresas,
departamentos e banco de
dados — entre outros — de
uma forma transparente

e organizada, permitindo
ao desenvolvedor criar as
marcagdes (tags) mais
adequadas para cada
situacao.

tabase Administrator — Administrador de Banco de Dados) a ter na SQL um
aliado importante.

No final da década de 1960 o matematico Edgar Frank Codd apresen-
tou as primeiras idéias sobre banco de dados relacional. Em junho de 1970
publicou o artigo “A relational model of data for large shared data banks — Um
modelo relacional de dados para grandes bancos de dados compartilhados”,
o que |lhe rendeu em 1981 o prémio ACM TURING AWARD.

Em 1973 a IBM criou o seu primeiro gerenciador de dados relacional, o
SYSTEM R que utilizava a linguagem de consulta SEQUEL (Structured En-
glish Query Language — Linguagem Inglesa Estruturada de Consulta). Por
motivos legais, a sigla foi alterada para SQL, mas o primeiro SGBDR disponi-
vel comercialmente foi o ORACLE em 1979.

A primeira versao padronizada da SQL ocorreu em 1986, ficando co-
nhecida como SQL-86. Esse padr&o foi inicialmente desenvolvido no &mbito
da ANSI (American National Standards Institute — Instituto Nacional America-
no de Padrées) sendo aprovado pela ISO (International Organization for Stan-
dardization — Organizagao Internacional para Padronizagéo) em 1987.

Em 1989 foi publicada uma extensdo do padrdo SQL-86 chamada de
SQL-89. A SQL-92, também chamada de SQL2, foi publicado em 1992 e
aprovado pela ISO. Essa verséo da SQL foi dividida tem trés partes:

1. Entry Level (Nivel de Entrada) — Nesse nivel foi definido um conjunto
minimo de comando para ser considerado padrao SQL;

2. Intermediate level (Nivel Intermediério);
3. Full (Completo).

A SQL-99 ou SQL3 foi aprovada pela ISO no final do ano de 1999. Nela
foram definidos os usos de triggers, stored procedures, consultas recursivas,
entre outros. Esse padrao também definiu regras para os SGBDOR (Sistema de
Gerenciamento de Bancos de Dados Objeto-Relacional) (Ler 1.2. Modelos de
Bancos de Dados), implementando assim o suporte ao tratamento de objetos.

No ano de 2003 foi langado o SQL-2003, introduzindo caracteristicas
relacionadas ao XML (eXtensible Markup Language — Linguagem de Mar-
cacao Extensiva), sequéncias padronizadas e colunas com valores de auto-
-generalizagao.

A versdo SQL-2008 trouxe nas especificagdes formas para a SQL po-
der ser usada em conjunto com XML, incluindo importag&o, armazenamento,
manipulagéo e publicagéo de dados XML no SGBDR.

A SQL é uma linguagem padronizada, mas cada SGBDR apresenta
dialeto préprio, com extensodes diferentes entre cada fabricante de SGBD.

2. Grupos

Os comandos da SQL séo tradicionalmente separados em dois grupos:

o DDL (Data Definition Language — Linguagem de Definicao de Dados):
Subconjunto utilizado para criar, alterar e excluir tabelas e elementos
associados; esse é o grupo que mais muda de um fabricante para outro.

e DML (Data Manipulation Language — Linguagem de Manipula-
¢ao de Dados): Subconjunto dos comandos usado para inserir, atu-
alizar e apagar dados.

Para recuperar (consultar) os dados utiliza-se o comando select. Alguns
autores incluem esse comando dentro do grupo DML, uma vez que para re-
cuperar os dados € necessario manipula-los, sem necessariamente ter que
alterar seu estado. Outros ja preferem definir um grupo especifico para ele
chamado DQL (Data Query Language — Linguagem de Consulta de Dados).

2.1. Outros Grupos

Além da divisdo tradicional, & possivel ver outras divisdes que foram criadas
no decorrer do tempo:

e DCL (Data Control Language - Linguagem de Controle de Da-
dos): Subconjunto de comandos que controla o acesso dos usuéa-
rios aos dados.

e DTL (Data Transaction Language - Linguagem de Transagao de
Dados): Subconjuntos de comandos usados para iniciar e finalizar
transacées.

e DQL (Data Query Language — Linguagem de Consulta de Da-
dos): Com apenas um Unico comando — select — e suas varias
clausulas e opgdes — nem sempre obrigatérias — permite recuperar
os dados de uma ou mais tabelas através de consultas elaboradas
como uma descricado do resultado desejado.

Além desses grupos de comandos a SQL tem operadores légicos, ope-
radores relacionais e fungdes de agregacao que, assim como na DDL, podem
mudar de um fabricante para outro.

3. SQL Editor

Para executar os exemplos apresentados neste capitulo sera usado o SQL
Editor do pgAdmin. Com o banco de dados desejado selecionado no nave-
gador de objetos, deve-se clicar no botdo = | para abrir o SQL Editor (figura
4.1). Apés escrever os exemplos apresentados neste capitulo, deve-se clicar
no bot&o J para executar o comando digitado.

Banco de Dados

61

FRANGA, . T.P.L.E JUNIOR, 1. C.

Botio para Abrir o SOL Editor

A SQL é CASE
INSENSITIVE (ndo
diferencia letras mailsculas
de minusculas). Mas vale
ressaltar que os dados
armazenados podem

ser CASE SENSITIVE
(diferencia letras
mailsculas de minusculas),
este fato depende do
SGBDR.

Na EBNF os COLCHETES
denotam uma parte
opcional e as CHAVES
indicam que partes

podem ser repetidas
indefinidamente ou omitidas
completamente.

W E oo SO Ed |H e o waa | Painiel de rablicos "
+ ' Tablespaces (2) A
i Roles do Grupa (0)
. Login Roles (1)
*
Fained de saids ST ®
““*Mlmlwlml
WM&MDJ
pronto [Unix Un1Cod 1Ch1

Figura 4.1 — Editor de SQL.

Os exemplos apresentados neste capitulo ndo fazem parte do projeto
apresentado nos capitulo 2 e 3. Serdo apresentados exemplos didaticos para
melhor entendimento da SQL, independente do projeto onde serao usados.

4. DDL - Parte 1

ADDL é o grupo que mais muda de um dialeto para o outro, mas vale ressaltar
que a sintaxe apresentada aqui € muito semelhante a maioria dos SGBDRs
(Sistemas Gerenciadores de Bancos de Dados Relacionais).

4.1. Comando CREATE TABLE

O comando CREATE TABLE é usado para criar uma tabela onde os dados
serdo armazenados.

Sintaxe:
create table Tabela (
Atributo Tipo_Dado [Restrigéo]

[{, Atributo Tipo_Dado [Restri¢éo] }]

)
[Rétwo | Desericio |
Tabela Nome da tabela
Atributo Nome do atributo
Tipo_Dado Tipo de dados do atributo
Restrigao Restricdo de dados para o atributo

TIPOS DE DADOS MAIS COMUNS A0S SGBDRS

Char(n) Caractere de tamanho fixo
Varchar(n) Caractere de tamanho varidvel
Number(n, p) ~ Nimeros de ponto flutuante com total de digitos n e total de digitos a direita do ponto decimal p
Integer Nimeros inteiros - Alguns SGBDR utilizam Number(n) para identificar um nimero inteiro
Date Armazena data - Alguns SGBDR armazenam data e hora
Exemplo,:

create table Setor (
ID integer not null primary key,
Setor varchar(20)

);

Neste exemplo foi criada a tabela Se-

Query - postgres em postgres@localhost:5432 *
tor, esta tabelatem os atributos () IDdotipo ' o = L m @& @ m o b B

Banco de Dados o2

inteiro e (ii) Setor que pode armazenar até 20 | so; ggitor | araphicat query Builder

caracteres. Um detalhe interessante neste | create table Setor [

exemplo é o atributo Setor que é homénimo s o cag BNy Ay
da tabela, isso € possivel porque a sintaxe da Vi

SQL é bem elaborada, deixando claro quem
€ a tabela e quem é atributo.

A restricdo NOT NULL colocada no
atributo ID informa ao SGBDR que sé pode
aceitar um registro nesta tabela quando esse

atributo for informado, ou seja, o atributo ID |aineie saiaa
n&o pode ser nulo. Também foi informado ao | 5#da de Dados | Explain Mensagens | vistérico|

"Painel de rabiscos ®

SGBDR que o atributo ID é uma chave prima-
ria através do sub-comando PRIMARY KEY.

A figura 4.2 mostra como o Editor de

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit in
Consulta executada com sucesso sem resultados em 312 ms.

|OK. /Unix |Lin 4 Col 3Ch 79

312ms -

SQL fica apés o comando anterior ser exe-

cutado com éxito. Figura 4.2 — Comando CREATE apds executado no Editor de SQL.

64

FRANGA, C.T.P L E JONIOR, J.C.

Exemplo,:
create table Funcion (
ID integer not null primary key,
Nome varchar(40),
ID_Setor integer,
primary key(ID),
foreign key(ID_Setor) references Setor (ID) on delete cascade

);

Esse comando criada a tabela Funcion, com os atributos ID, Nome e
ID_Setor. Mas neste exemplo a chave priméria foi criada de outra forma, o
sub-comando PRIMARY KEY foi inserido apés o altimo atributo (ID_Setor) e
foi colocado entre parénteses o campo que representa a chave primaria.

Se a chave primaria for simples (composta por apenas um Unico atri-
buto), pode-se usar dos dois modos apresentados nos exemplos. Mas se a
chave primaria for composta (composta por dois ou mais atributos), deve-se
usar o modo apresentado no segundo exemplo, separando os campos com
virgula como mostrado na sintaxe abaixo:

create table Tabela (

Atributo Tipo not null,

Atributo Tipo not null [{, Atributo Tipo [Restric&o] }],
primary key(Atributo [{, Atributo}])

):

Neste exemplo também foi criada a chave estrangeira através do sub-
-comando FOREIGN KEY. Para criar uma chave estrangeira junto com o co-
mando CREATE TABLE, a tabela estrangeira ja deve esta criada.

A semantica para criar a chave estrangeira é a seguinte:

e Apods o sub-comando FOREIGN KEY deve-se colocar entre parén-
teses o atributo da tabela que sera a chave estrangeira;

e Apobs a palavra reservada REFERENCES deve-se informar a tabela
que esta sendo referenciada pela chave estrangeira, e entre parén-
teses o atributo da tabela referenciada;

e As palavras reservadas ON DELETE CASCADE indicam ao SGB-
DR que apds excluir um registro da tabela referenciada, todos os
registros da tabela atual que tem chave estrangeira com o mesmo
valor serao excluidos (Leia 3.2.1.2. Criando a Tabela PDV).

Banco de Dados

4.2. Comando ALTER TABLE

O comando ALTER TABLE é usado para fazer alteracdes em tabelas ja exis-
tentes no banco de dados.

4.2.1. Adicionar Atributo a Tabela

Para adicionar um ou mais atributos numa tabela j& existente, deve-se usar o
comando ALTER TABLE em conjunto com o sub-comando ADD.

Sintaxe:

alter table Tabela

add Atributo Tipo_Dado [Restric&o]

[{, add Atributo Tipo_Dado [Restri¢éo] }];

Exemplo:

alter table Funcion

add Salario numeric(7, 2),
add Dt_Nasc date;

Este exemplo adiciona os atributos (i) Salario do tipo numérico de tama-
nho 7 com precisao 2 e (ii) Dt_Nasc do tipo data.

4.2.2. Modificar Tipo de Dados do Atributo

Para modificar o tipo de dados de um ou mais atributos ja existentes numa
tabela, deve-se usar o comando ALTER TABLE em conjunto com os sub-
-comandos ALTER e TYPE.

Sintaxe:

alter table Tabela

alter Atributo type Tipo_Dado

[{, alter Atributo type Tipo_Dado }];

Exemplo:
alter table Funcion
alter Dt_Nasc type varchar(10);

A mudanca do tipo de dados do atributo Dt _Nasc de date para var-
char(10) s6 foi possivel devido eles serem compativeis. Se fosse tentando

65

66

FRANGA, C.T.P LLE JNIOR, J.C.

modificar o tipo date para varchar(5) seria gerado um erro, pois o tipo date
nao pode ser convertido no tipo varchar(5) sem que haja a perda de dados
armazenados.

4.2.3. Excluir Atributo da Tabela

Para excluir um ou mais atributos numa tabela ja existente, deve-se usar o
comando ALTER TABLE em conjunto com o sub-comando DROP.

Sintaxe:

alter table Tabela
drop Atributo

[{, drop Atributo } J;

Exemplo:
alter table Funcion
drop Dt_Nasc;

Os sub-comando DROP esté informando ao SGBD que o atributo Dt_
Nasc da tabela Funcion deve ser excluido.

4.2.4. Adicionar Chave Primaria a Tabela

Para incluir uma chave primaria numa tabela ja existente, deve-se usar o co-
mando ALTER TABLE em conjunto com o sub-comando PRIMARY KEY.

Sintaxe:
alter table Tabela add primary key(Atributo [, Atributo]) ;

Exemplo:
alter table Funcion add primary key(ID);

Neste exemplo é adicionada a chave priméaria na tabela Funcion. Mas o
exemplo sé sera executado com éxito se a tabela mencionada ainda néo tiver
chave priméria declarada.

4.2.5. Adicionar Chave Estrangeira a Tabela

Para incluir uma ou mais chaves estrangeiras numa tabela ja existente, deve-
-se usar o comando ALTER TABLE em conjunto com o sub-comando FO-
REIGN KEY.

Sintaxe:

alter table Tabela foreign key(Atributo) references Tabela_FK (Atribu-
to_FK));

Exemplo:
alter table Funcion foreign key(ID_Setor) references Setor (ID));

Aqui é adicionada uma chave estrangeira na tabela Funcion. A vanta-
gem dessa abordagem sobre a apresentada anteriormente € a flexibilidade de
poder criar todas as tabelas, para sé depois criar os relacionamentos existente
entre elas, independente da ordem que as tabelas foram criadas.

4.3. Comando DROP TABLE

O comando DROP TABLE é usado para excluir tabelas do banco de dados.

Sintaxe:
drop table Tabela;

Exemplo:
drop table Funcion;

A tabela Funcion e todos os seus registros sdo excluidos do banco de
dados com este exemplo.

4.5. DML

As inclusoes, alteracdes e exclusdes de dados numa tabela s&o feitas pelos
comandos do grupo DML. As sintaxes apresentadas nesta se¢éo pertencem
ao SQL padrao, mas assim como os comandos DDL, alguns SGBDRs podem
apresentar dialetos diferentes.

Banco de Dados

67

68

FRANGA, C.T.P LLE JNIOR, J.C.

4.5.1. Preparando o Banco de Dados

Antes de mostrar os comandos DML é preciso excluir todas as tabelas do banco
de dados através do comando DROP TABLE, para evitar conflitos de tabelas.

Apdbs excluir todas as tabelas do banco de dados devem-se criar as tabelas
que serao usadas nos exemplos. Na sequéncia sdo apresentadas as tabelas:

Setor: Armazenara os dados dos setores onde os funcionarios da
empresa podem ser lotados. Esta tabela tem o atributo ID que € a
chave priméria e o atributo Setor (homdnimo da tabela) guardado o
nome do setor.

Funcion: Armazenara os dados dos funcionarios da empresa. O
atributo ID é a chave primaria, 0 nome do funcionario deve ser infor-
mado no atributo Nome. O salario mensal do funcionario € gravado
no atributo Salario. O relacionamento entre o funcionério e o setor
onde esta lotado é representado pela chave estrangeira ID_Setor.

Cliente: Armazenara os dados dos clientes da empresa. A chave pri-
maria do cliente é representada pelo atributo ID. O nome e 0 sobre-
nome do cliente ficam guardados nos atributo Nome e Sobrenome,
respectivamente.

Pedido: Armazenara os dados dos pedidos. O atributo ID registrara
a chave priméaria do pedido. O valor total do pedido sera guardado no
atributo Valor. O atributo ID_Cliente € a chave estrangeira responsa-
vel por fazer o relacionamento entre o pedido e o cliente.

Afigura 4.3 mostra o modelo légico utilizado nos exemplos que se seguem.

FUNCION
- ID: integer SETOR
Mome: varchar(10) n 1| integer
Salario: numeric(15, 2} Setor: varchar(20)
(O ID_Setor: integer

CLIENTE PEDIDO
P ID: integer 1 n P ID: integer
Mome: varchar(10) (O ID_Cliente: integer
Sobrenome; varchar{10) Valor: numeric(15, 2)

Figura 4.3 — Modelo I6gico.

O modelo fisico baseado no modelo légico apresentado anteriormente
€ mostrado na figura 4.4.

create table Funcion (
ID integer not null primary key,
Nome wvarchar (10},
salario numeric(l5s, 2J,
ID_Setor integer

create table setor (
ID integer not null primary key,
Setor wvarchar(20)

create table Cliente (
ID integer not null primary key,
Nome wvarchar {10},
sobrenome varchar (10)

create table pPedido (
ID integer not null primary key,
ID_cCliente integer,
valor numeric{l5, 2),

foreign key(ID_Cliente) references Cliente(ID)

alter table Funcion add foreign key(ID_Setor) references Setor(ID);

Figura 4.4 — Modelo fisico.

4.5.2. Comando INSERT

O comando INSERT adiciona um novo registro numa tabela.

Sintaxe:

insert into Tabela [(Atributo [{, Atributo} 1)]

values (Valor [{, Valor}]);

Tabela Nome da tabela
Atributo Nome do atributo
Valor Valor que sera inserido no atributo

As tabelas criadas usando o modelo fisico da figura 4.4, serdo povoa-
das com os comandos INSERTs dos exemplos mostrados na continuacéo, e

ficardo como mostradas na figura 4.5.

Banco de Dados

69

70 FRANGA, C.T.P LLE JNIOR, J.C.

Figura 4.5 — Tabelas povoadas.

Tabela Funcion Tabela Setor
] Nome Salario ID_Setor] Setor
1 | Tadeu 1500,00 1 1 | Desenvolvedor
2 | Ylane 1200,00 2 Manutengdo
3 Julian 1000,00 1 3 Financeiro
4 | Ewerton 1000,00 1
5 | Jodo 800,00 2
6 | Celestino 1500,00 3
7 | Maria 500,00 naull
8 Joana 1000,00 4
9 | Fernanda 1000,00 4

Tabela Cliente Tabela Pedido

1D Nome Sobrenome 1D ID_Cliente Valor
1 Francisco Silva 1 2 1000,00
2 | José Lima 2 4 2000,00
3 Maria Silva 3 2 1500,00
4 | Adriana Ferreira 4 5 2500,00
5 Jodo Oliveira 5 2 1000,00
6 | Eduardo Souza

Exemplos, — Inser¢do com atributos explicitos:

insert into Setor (ID, Setor)
values (1, ‘Desenvolvedor);

Query - postgres em postgres@localhost:5432 *

DEE & B & Co T T o T | postgre
SQL Editor | Graphical Query Builder i =
insert into Setor (ID, Setor)
values (1, 'Desenveolvedor');
Palnel de saida e 3
Saida de Dados | Explain Mensagens| Histérico |
Query returned successfully: 1 row affected, 238 ms executi
1 row affected. Unix Lin 2 Col 29 Ch 59 23Bms -

Figura 4.6 — Comando INSERT apds executado no Editor de SQL.

Este exemplo é incluido na tabela
Setor um registro onde o atributo ID rece-
ber o valor 1, e o atributo Setor receber o
valor Desenvolvedor.

Os valores dos atributos que arma-
zenam caracteres devem ser colocados
entre apéstrofos, assim como os valores
dos atributos que armazenam datas. Ja
os atributos que armazenam ndmeros po-
dem ser informados sem os apéstrofos.

A figura 4.6 mostra como o Editor
de SQL fica apds o comando anterior ser
executado com éxito.

Exemplos, — Insergéo com atributos implicitos:
insert into Setor
values (2, ‘Manutenco’);

Neste caso o primeiro atributo da tabela (ID) recebe o valor 2 e o segun-
do atributo da tabela (Setor) recebe o valor Manutengéo.

Embora a SQL nao faca diferenca entre estes dois modos de insercéo,
as boas praticas recomenda utilizar o modo explicito motivos como os apre-
sentados na sequéncia:

e Ainclusdo de novos atributos na tabela, de uma forma geral, ndo
obriga a alteragdo do comando;

e Aalteragdo na posi¢éo de atributos da tabela ndo obriga a alteragéo
do comando;

e Permite a inclusdo de registros com atributos nulos, desde que o
atributo ndo tenha a restricido NOT NULL;

e O comando é executado de imediato, uma vez que o SGBDR néo
vai precisar pesquisar quais s&o os atributos da tabela utilizada, an-
tes de executar o comando INSERT.

A figura 4.7 apresenta os outros comandos INSERTs que devem ser
usados para povoar a tabela Setor.

insert into Setor (ID, Setor)
values (3, ‘Financeiro’);

insert into Setor (ID, Setor)
values (4, ‘vendas’);

Figura 4.7 — Povoando a tabela Setor.

A figura 4.8 apresenta os comandos INSERTs usados para povoar a
tabela Funcion. O detalhe desta figura fica por conta da inclusédo do sétimo
registro; nesta inclus&o o atributo ID_Setor néo foi informado, com isto este
registro tera o valor NULO conferido ao atributo ID_Setor.

Ainda sobre a figura 4.8, sé é possivel informar no atributo ID_Setor va-
lores que tenham referéncias na tabela Setor, uma vez que o atributo ID_Setor
€ uma chave estrangeira. Caso seja informado no ID_Setor um valor n&o exis-
tente na tabela Setor o SGBDR ir4 gerar um erro de integridade.

Banco de Dados

71

/e FRANGA, C.T.P LLE JNIOR, J.C.

insert into Funcion (ID, Nome, Salario, ID_Setor)
values (1, ‘Tadeu®, 1500, 1);

insert into Funcion {(ID, Nome, Salario, ID_Setor)
values (2, ‘Ylane®', 1200, 2);

insert into Funcion {(ID, Nome, Salario, ID_Setor)
values (3, ‘iulian’, 1000, 1);

insert into Funcion {(ID, Nome, Salario, ID_Setor)
values (4, ‘Ewerton’, 1000, 1);

insert into Funcion {(ID, Nome, Salario, ID_Setor)
values (5, ‘Joao’, 800, 2);

insert into Funcion (ID, Nome, Salario, ID_Setor)
values (6, ‘Celestinc’, 1500, 3);

insert into Funcion (ID, Nome, salario)
values (7, ‘Maria’, 500);

insert into Funcion (ID, Nome, Salario, ID_Setor)
values (&, “Joana’, 1000, 4);

insert into Funcion
values (9, ‘Fernanda’, 1000, 4);

Figura 4.8 — Povoando a tabela Setor.

A figura 4.9 apresenta os comandos INSERTs usados para povoar a
tabela Cliente.

insert into Cliente (ID, Nome, Sobrenome)
values (1, ‘Francisco’, ‘silva’);

insert into Cliente (ID, Nome, Sobrenome)
values (2, "losé’, ‘Lima’);

insert into Cliente (ID, Nome, Sobrenome)
values (3, ‘Maria’, ‘silwva’);

insert into Cliente (ID, Nome, Sobrenome)
values (4, ‘Adriana’, ‘Ferreira’);

insert into Cliente (ID, Nome, Sobrenome)
values (5, “Jodo’, ‘0ldiveira’);

insert into Cliente (ID, Nome, Sobrenome)
values (6, ‘eduarda’, ‘souza’);

Figura 4.9 — Povoando a tabela Cliente.

A figura 4.10 apresenta os comandos INSERTs usados para povoar a
tabela Pedido. O atributo ID_Cliente da tabela Pedido & uma chave estrangei-

ra que faz referéncia a tabela Cliente, logo sé é possivel informar para este
atributo valores devidamente referenciados na tabela Cliente.

insert into Pedido {ID, ID_Cliente,
values (1, 2, 1000);

insert into Pedido {(ID, ID_Cliente,
values (2, 4, 2000);

insert into Pedido {(ID, ID_Cliente,
values (3, 2, 1500);

insert into Pedido {(ID, ID_Cliente,
values {4, 5, 2500);

insert into Pedido {ID, ID_Cliente,
values (5, 2, 1000);

Figura 4.10 — Povoando a tabela Pedido.

4.5.3. Comando UPDATE

O comando UPDATE altera um ou mais registros. Os registros que serao alte-

valor)

valor)

valor)

valor)

valor)

rados dependem do filtro incluido na clausula WHERE.

Sintaxe:

update Tabela set Atributo = Valor [{, Atributo = Valor}]

[where Condigéo J;

Exemplo,:
update Funcion set Salario = 1200
where ID_Setor = 4;

Com este comando todos os registros da tabela Funcion com o atributo
ID_Setor igual a 4 terdo o atributo Salario alterado para 1.200,00. Se a clau-
sula WHERE for omitida, todos os registros da tabela Funcion terao o atributo

Salario alterado para 1.200,00.

Exemplo,:

update Funcion set Salario = Salario * 1.5;

where ID_Setor = 4;

Banco de Dados

A clausula WHERE sera
mais bem explicada na
secéo 4.6.

73

74

FRANGA, C.T.P LLE JNIOR, J.C.

Com este comando todos os registros da tabela Funcion com o atributo
ID_Setor igual a 4 terao o atributo Salario aumentado em 50%, ou seja, altera
o valor do atributo de 1.200,00 para 1.800,00.

4.5.4. Comando DELETE

O comando DELETE exclui um ou mais registros. Os registros que serdo ex-
cluidos dependem do filtro incluido na clausula WHERE.

Sintaxe:
delete from Tabela

[where Condigéo];

Exemplo:
delete from Funcion
ID_Setor = 4;

Este comando exclui todos os registros da tabela Funcion com o atribu-
to ID_Setor igual a 4. Se a clausula WHERE for omitida, todos os registros da
tabela Funcion serao excluidos.

4.5.5. Comando COMMITE

Apbs executar um ou mais dos comandos de manipulagcao de dados apre-
sentados (INSERT, UPDATE, DELETE) os dados ficam na memaria cache da
transagéo, para os dados serem persistidos no banco de dados é necessario
utilizar o comando COMMIT.

O pgAdmin efetua o COMMIT automaticamente apds a execugao dos
comandos, mas isso € uma caracteristica deste front-end, o mesmo pode nao
acontecer com outros front-ends.

Sintaxe:
commit;

Exemplo:
commit;

Banco de Dados

4.5.6. Comando ROLLBACK
Para descartar os dados que estdo na memodria cache da transagéo, deve-se
usar o comando ROLLBACK.

Sintaxe:
rollback;

Exemplo:
rollback;

4.6. Comando SELECT - Parte 1

A recuperacao dos dados armazenados no banco de dados é efetuada atra-
vés do comando SELECT. Este comando pode recuperar os dados de uma
ou mais tabelas, sendo um dos comandos mais simples e, ao mesmo tempo,
mais extenso da SQL devido as suas fun¢des, operandos, comandos, sub-
-comandos e clausulas n&o obrigatérias.

4.6.1. Comando SELECT simples
Este comando recupera todos os registros de uma tabela.

Sintaxe:
select Atributo [{, Atributo}] from Tabela;

Exemplol:
select ID, Nome from Funcion;

O resultado deste exemplo trara os atributos ID e Nome de todos os
registros da tabela Funcion.

Resultado,:

ID Nome

1 Tadeu

2 Ylane

3 Julian

4 Ewerton
5 Joéo

6 Celestino
7 Maria

75

76 FRANGA, C.T.P LLE JNIOR, J.C.

Afigura 4.11 mostra como o Editor de SQL fica apés o comando anterior
ser executado com éxito.

Query - postgres em postgres@localhost:5432 *
DEE SREc dal Ll b e B¢ |§pnstgre

Palnel de rablscos B

SQL Editor | Graphical Query Builder
select ID, Nome from Funcion;

Painel de saida ®
Saida de Dados | Explain] Mensagens | Histarico |

id nome
_ Integer | character
1 (1 Tadeu
v} '2 Ylane
3 3 Julian
4 4 Ewerton
5 |5 Jodo
6 6 Celestino
T (7 Maria
oK. [Unix in1col30ch30 [7rows. [24ms

Figura 4.11 — Comando SELECT apés executado no Editor de SQL.

Exemplo,:
select * from Funcion;

O resultado deste exemplo trara todos os atributos de todos os registros
da tabela Funcion.

Resultado,:

ID Nome Salario ID_Setor
1 Tadeu 1500,00 1

2 Ylane 1200,00 2

3 Julian 1000,00 1

4 Ewerton 1000,00 1

5 Jodo 800,00 2

6 Celestino 1500,00 3

7 Maria 500,00 null

Neste exemplo foi inserido o caractere asterisco no lugar dos atributos.
O asterisco € uma mascara que informa ao SGBDR que ele deve ser trocado
por todos os atributos da tabela consultada.

4.6.2. Clausula WHERE com Condigées Simples

E possivel filtrar registros para mostrar apenas os dados de interesse através
da clausula WHERE em conjunto com os operadores comparativos.

Sintaxe:
select Atributo [{, Atributo}] from Tabela
[where Condicao];

4.6.2.1. Operador Comparativo “=" (Igual)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE igual ao valor informado apds o operador “=".

Exemplo,:
select ID, Nome from Funcion
where Nome = ‘Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja igual a “Tadeu”.

Resultadol:
ID Nome
1 Tadeu

Como comentado anteriormente, a SQL é CASE INSENSITIVE (ndo
diferencia letras mailsculas de mindsculas), logo o resultado sera igual ao
apresentado mesmo que o comando seja executado no exemplo2:

Exemplo,:
SELECT ID, NOME FROM FUNCION
WHERE NOME = Tadeu’;

Ja o resultado do comando mostrado no exempo3 e exempo4 depende
do SGBDR, pois caso os dados armazenados sejam CASE SENSITIVE (dife-
rencia letras mailsculas de minasculas) o seu resultado sera vazio.

Banco de Dados 7

Embora a clausula WHERE
seja opcional, é altamente
recomendavel sempre
usa-la para qualquer

tipo de consulta que for

ser realizada. Mas por
questdes didaticas, alguns
exemplos apresentados
neste capitulo iram omitir a
clausula WHERE.

/8 FRANGA, C.T.P LLE JNIOR, J.C.

Exemplo,:
select ID, Nome from Funcion
where Nome = ‘tadeu’;

Exemplo,:
select ID, Nome from Funcion
where Nome = TADEU’;

4.6.2.2. Operador Comparativo “<>" (Diferente)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE diferente do valor informado apds o operador “<>".

Exemplo:
select ID, Nome from Funcion
where Nome <> Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja diferente de “Tadeu”.

Resultado:

ID Nome

2 Ylane

3 Julian

4 Ewerton
5 Jodo

6 Celestino
7 Maria

4.6.2.3. Operador Comparativo “>" (Maior que)

Retorna apenas os registros que tenham o valor do atributo citado na
clausula WHERE maior que o valor informado apds o operador “>".

Exemplo:
select ID, Nome from Funcion
where Nome > ‘Tadeu’;

Banco de Dados

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja maior que “Tadeu”, ou seja, fiquem apés “Tadeu”
numa ordenacao ascendente.

Resultado:
ID Nome
2 Ylane

4.6.2.4. Operador Comparativo “>=" (Maior que ou Igual)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE maior ou igual ao valor informado apds o operador “>=".

Exemplo:
select ID, Nome from Funcion

where Nome >= ‘Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja maior ou igual a “Tadeu’”.

Resultado:

ID Nome
1 Tadeu
2 Ylane

4.6.2.5. Operador Comparativo “<”’ (Menor que)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE menor que o valor informado apés o operador “<”.

Exemplo:
select ID, Nome from Funcion
where Nome < ‘Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja menor que “Tadeu”.

79

80

FRANGA, C.T.P LLE JNIOR, J.C.

Resultado:

ID Nome

3 Julian

4 Ewerton
5 Jodo

6 Celestino
7 Maria

4.6.2.6. Operador Comparativo “<=" (Menor que ou Igual)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE menor ou igual ao valor informado apés o operador “<=".

Exemplo:
select ID, Nome from Funcion
where Nome <= ‘Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja menor ou igual a “Tadeu”.

Resultado:

ID Nome

1 Tadeu

3 Julian

4 Ewerton
5 Jodo

6 Celestino
7 Maria

4.6.2.7. Operador Comparativo “BETWEEN ... AND ...” (entre dois valores)

Retorna apenas os registros que tenham o valor do atributo citado na clau-
sula WHERE (i) maior ou igual ao primeiro valor informado apés o operador
BETWEEN e (ii) menor ou igual ao segundo valor informado apds o operador
BETWEEN.

Exemplo:
select ID, Nome from Funcion
where Nome between ‘Jodo’ and ‘Tadeu’;

Banco de Dados &l

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja maior ou igual a “Jo&o” e menor ou igual a “Tadeu’”.

Resultado:

ID Nome
1 Tadeu
3 Julian
5 Joéo
7 Maria

4.6.2.8. Operador Comparativo “NOT BETWEEN ... AND ...” (ndo esta en-
tre dois valores)

Retorna apenas os registros que tenham o valor do atributo citado na clau-
sula WHERE (i) menor ou igual ao primeiro valor informado apés o operador
NOT BETWEEN e (ii) maior ou igual ao segundo valor informado apds o ope-
rador NOT BETWEEN.

Exemplo:
select ID, Nome from Funcion
where Nome not between ‘Jo&o’ and ‘Tadeu’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja menor que “Joao” e maior que “Tadeu”.

Resultado:

ID Nome

2 Ylane
Ewerton

6 Celestino

4.6.2.9. Operador Comparativo “in (lista)” (igual a qualquer valor da lista)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE igual a pelo menos um dos valores informados apés o operador IN.

Exemplo:
select ID, Nome from Funcion
where Nome in (‘Jodo’, Tadeu”);

82 FRANGA, C.T.P LLE JNIOR, J.C.

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome igual a “Jo&o” ou igual a “Tadeu”.

Resultado:

ID Nome
1 Tadeu
5 Jodo

4.6.2.10. Operador Comparativo “not in (lista)” (diferente de qualquer va-
lor da lista)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE diferente de todos os valores informados apds o operador NOT IN.

Exemplo:
select ID, Nome from Funcion
where Nome not in (Jo&o’, Tadeu’);

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja diferente de “Jodo” e diferente de “Tadeu”.

Resultado:

ID Nome
Ylane
Julian
Ewerton

Celestino

N O WN

Maria

4.6.2.11. Operador Comparativo “like” (Igual a uma cadeia de caracteres)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE com uma cadeia de caracteres igual ao valor informado apés o ope-
rador LIKE.

Exempilo,:
select ID, Nome from Funcion
where Nome like'J%’;

Banco de Dados =

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome comega com o caractere “J”, independente do que ve-
nha apés este caractere.

Resultadol:
ID Nome
3 Julian

5 Jodo

Exemplo,:
select ID, Nome from Funcion
where Nome like'%n’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome termina com o caractere “n”, independente do que ve-
nha antes deste caractere.

Resultado,:

ID Nome

3 Julian

4 Ewerton

Exemplo,:
select ID, Nome from Funcion
where Nome like'%e%";

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome tenha o caractere “e”, independente do que venha antes
ou apos este caractere.

Resultado,:

ID Nome

1 Tadeu

2 Ylane

4 Ewerton
6 Celestino

84 FRANGA, C.T.P LLE JNIOR, J.C.

Exemplo,:
select ID, Nome from Funcion
where Nome like'%ria%’;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome tenha a cadeia de caracteres “ria”, independente do que
venha antes ou apés esta cadeia de caracteres.

Resultado4:
ID Nome
7 Maria

A mascara usada nos exemplos do operador “like” foi 0 “%", porém esta
mascara pode mudar de um SGBDR para outro.

4.6.2.12. Operador Comparativo “not like”
(diferente de uma cadeia de caractere)
Retorna apenas os registros que tenham o valor do atributo citado na clausu-

la WHERE com cadeias de caracteres diferentes do valor informado apés o
operador NOT LIKE.

Exemplo:
select ID, Nome from Funcion
where Nome not like'd%';

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome n&o comega com o caractere “J”, independente do que
venha ap0s este caractere.

Resultado:

ID Nome
Tadeu
Ylane
Ewerton
Celestino

N oA N PR

Maria

Banco de Dados g

4.6.2.13. Operador Comparativo “is null” (Valor nulo)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE igual a nulo.

Exemplo:
select ID, Nome from Funcion

where Setor is null;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Setor seja igual a nulo.

Resultado:
ID Nome
7 Maria

4.6.2.14. Operador Comparativo “is not null” (Valor ndo nulo)

Retorna apenas os registros que tenham o valor do atributo citado na clausula
WHERE diferente de nulo.

Exemplo:
select ID, Nome from Funcion

where Setor is not null;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Setor diferente de nulo.

Resultado:

ID Nome

1 Tadeu

2 Ylane

3 Julian

4 Ewerton
5 Joéo

6 Celestino

86

FRANGA, C.T.P L E JONIOR, J.C.

Os exemplos sobre operadores comparativos apresentados neste capi-
tulo podem ser usados por atributos de qualquer tipo (CHAR, VARCHAR, IN-
TEGER, NUMBER, DATE, etc.), a excegao vai para o operador comparativo
LIKE e seu complemento NOT LIKE que sé podem ser usados por atributos
do tipo CHAR, VARCHAR e equivalentes de cada SGBDR.

Até aqui foram vistos os comandos DML, além da primeira parte dos
comandos DDL e do comando SELECT. Com esses comandos ja fica visivel
o poder da SQL e o porqué dela ter se tornado uma linguagem padrao os ban-
cos de dados relacionais. No préximo capitulo sera apresentada a segunda
parte do comando SELECT, e conceitos mais complexos disponiveis na DDL.

Gapitulo
o0l Avancada

Obijetivo

e O comando SELECT vai além do uso da clausula WHERE, varios sub-co-
mandos e fungdes podem ser usadas em conjunto com o comando SELECT,
transformando-o num comando com uma ortogonalidade elevada. Este ca-
pitulo proporciona uma visdo mais aprofundada no comando SELECT, sen-
do finalizado com conceitos e comandos da DDL mais avangados.

Introdugao

Neste capitulo serdo apresentadas caracteristicas mais complexas do co-
mando SELECT. Também serao vislumbrados conceitos disponiveis na DDL
que nao foram oferecidos no capitulo anterior.

1. Comando SELECT - Parte 2

O comando SELECT é muito mais que consultas simples utilizando a clausula
WHERE. Nesta segunda parte serd apresentado como executar a clausula
WHERE com condi¢des complexa, além de mostrar.

1. O motivo para efetuar jungdes de tabelas e como fazé-lo;

2. Como efetuar unides de tabelas e qual a diferenga entre uma unido
€ uma jungao;

3. Fungdes basicas contidas na SQL;

4. Etc.

1.1. Clausula WHERE com Condi¢oes Complexas

Para filtrar registros que requerem condigdes complexas € utilizada a clausula
WHERE em conjunto com os operadores comparativos e légicos.

Sintaxe:

select Atributo [{, Atributo}] from Tabela

[where Condigéo [{Operador_Légico Condi¢ao}]];
1.1.1. Operador Légico “and” (E)

Retorna apenas os registros que atendam todas as condi¢des citados na clau-
sula WHERE.

0 FRANGA, C.T.P LLE JNIOR, J.C.

Exemplo:
select ID, Nome from Funcion
where ID_Setor is not nulland ID = 1;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo ID_Setor seja igual a nulo e o atributo ID seja igual a 1.

Resultado:
ID Nome
1 Tadeu

Atabela 5.1 apresenta a tabela verdade deste operador légico.

Tabela 5.1
12 Condicao 22 Condicao Resultado
Falso Falso Falso
Falso Verdadeiro Falso
Verdadeiro Falso Falso
Verdadeiro Verdadeiro Verdadeiro

1.1.2. Operador Légico “or” (OU)

Retorna apenas os registros que atendam a pelo menos uma das condi¢oes
citados na clausula WHERE.

Exemplo:
select ID, Nome from Funcion
where Nome = ‘Tadeu’ or ID_Setor = 3;

O resultado deste exemplo trara todos os registros da tabela Funcion
onde o atributo Nome seja igual a “Tadeu” ou o atributo ID_Setor sejaigual a 3.

Resultado:
ID Nome
1 Tadeu

6 Celestino

Atabela 5.2 apresenta a tabela verdade deste operador légico.

Tabela 5.2
12 Condicao 22 Condigao Resultado
Falso Falso Falso
Falso Verdadeiro Verdadeiro
Verdadeiro Falso Verdadeiro
Verdadeiro Verdadeiro Verdadeiro

1.1.3. Regras de Precedéncia

As condigdes complexas seguem algumas regras de precedéncia, essas re-
gras estao descritas na tabela 5.3.

Tabela 5.3
Ordem Regra
1 Expressoes entre parénteses “(...)"

2 Todos os operadores de comparagao “=,<>>>=,<,<=,IN...”
3 Operador logico “AND”
4 Operador logico “OR”

Caso duas condicdes estejam na mesma ordem de precedéncia, tera
maior precedéncia a que estiver mais préxima da clausula WHERE.

1.2. Clausula ORDER BY

Através da clausula ORDER BY é possivel mostrar os registros de uma con-
sulta ordenados por um ou mais atributos. A ordenagao tanto pode ser ascen-
dente como descendente.

Sintaxe:

select Atributo [{, Atributo}] from Tabela

[where Condigéo [{Operador_Légico Condi¢éao}]]

[order by Atributo [Modo_Ordenac¢éao] [{, Atributo [Modo_Ordenagaol}
1T

1.2.1. Modo de Ordenagao Ascendente - ASC

A palavra reservada ASC ordena o atributo que a precede de modo ascenden-
te. Este modo de ordenacgéo é o padrao, logo caso néo se informe o tipo de
ordenacao apds o atributo a ordenacao sera ascendente.

Banco de Dados

91

e FRANGA, C.T.P L E JONIOR, J.C.

Exemplo.:
select ID, Nome from Funcion
order by Nome asc;

O resultado deste exemplo trara todos os registros da tabela Funcion
ordenados pelo atributo Nome de forma ascendente.

Resultado,:

ID Nome
Celestino
Ewerton
Joéo
Julian
Maria
Tadeu

N PN W o AO

Ylane

Exemplo,:
select ID, Nome from Funcion
order by Nome;

O resultado deste exemplo é igual ao anterior, uma vez que a ordena-
¢ao ascendente é padrao, logo a palavra reservada ASC pode ser suprimida.

Exemplo,:
select ID, Nome from Funcion
order by 2;

Neste exemplo, o nome do atributo Nome da tabela Funcion foi trocado
pela posicdo que o mesmo atributo aparecera na lista do comando SELECT.
As boas préticas recomendam o n&o uso desta abordagem, pois no caso de
mudanc¢a nos atributos do comando SELECT, a clausula ORDER BY deve ser
revisada. Outra desvantagem é a impossibilidade de poder ordenar os regis-
tros por um atributo que nao estejam na lista do comando SELECT.

Banco de Dados =

1.2.2. Modo de Ordenagao Descendente - DESC

A palavra reservada DESC ordena o atributo que a precede de modo descendente.

Exemplo:
select ID, Nome from Funcion
order by Nome desc;

O resultado deste exemplo trara todos os registros da tabela Funcion
ordenados pelo atributo Nome de forma descendente.

Resultado:

ID Nome
Ylane
Tadeu
Maria
Julian
Jodo
Ewerton

O A U1 W N PN

Celestino

1.3. Comando JOIN

Ao normalizar o banco de dados (Leia 2.3. Normalizag&o), as informagdes de
um tipo entidade do modelo conceitual podem ser distribuidas por dois ou mais
tipos entidade do modelo légico, vale relembrar que cada tipo entidade do mo-
delo légico ira se transformar numa tabela do modelo fisico (Ler capitulo 3).

Mas ao consultar as informagdes, algumas vezes é necessario juntar os
dados que foram distribuidos pelas tabelas no momento da normalizagdo. O
comando JOIN permite trazer os dados de duas ou mais tabelas no resultado
de um Unico SELECT.

Sintaxe:

select Atributo [{, Atributo}] from Tabela

[where Condig&o [{Operador_Légico Condi¢ao}]]

[[Clausula_Jung¢éao] join Tabela_Jung&o on Condigdo_Jungéo]

[order by Atributo [Modo_Ordenacgao] [{, Atributo [Modo_Ordenagaol}
11

o4 FRANGA, C.T.P LLE JNIOR, J.C.

1.3.1. Clausula INNER

Com a clausula INNER sé serdo mostrados os registros que tenham referén-

cia nas duas tabelas.

Exemplo,:

select Funcion.ID, Funcion.Nome, Setor.Setor from Funcion

inner join Setor on (Setor.ID = Funcion.ID_Setor);

O resultado deste exemplo trara os atributos ID e Nome de todos os
registros da tabela Funcion e o atributo Setor de todos os registros da tabela
Setor onde o atributo ID da tabela Setor seja igual ao atributo ID_Setor da

tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion
n&o aparecera, pois o atributo ID_Setor € igual a nulo, consequentemente ndo

tem referéncia na tabela Setor.

Também n&o aparecera no resultado o registro com o atributo ID igual
a 4 da tabela Setor, pois o atributo ID igual 4 ndo tem referéncia na tabela

Funcion.
Resultado,:
ID Nome
1 Tadeu
2 Ylane
3 Julian
4 Ewerton
5 Jodo
6 Celestino

Setor
Desenvolvimento
Manutencao
Desenvolvimento
Desenvolvimento
Manutencao
Financeiro

Este modo de jungéo é padréo, logo a cldusula INNER pode ser supri-
mida, como mostrado no proximo exemplo. O resultado do exemplo2 é igual

ao resultado do exemplol.

Exemplo,:

select Funcion.ID, Funcion.Nome, Setor.Setor from Funcion

join Setor on (Setor.ID = Funcion.ID_Setor);

Uma boa prética é dar um apelido as tabelas envolvidas na jungao, pois
dessa maneira quando se for referenciar a um atributo basta informar o ape-
lido no lugar do nome da tabela. O apelido deve ser informado logo ap6s a
tabela, separado apenas por espaco.

Os dois proximos exemplos sdo semelhantes ao exemplo anterior, a
diferenc¢a esta no uso dos apelidos.

Exemplo,:
select fnc.ID, fnc.Nome, st.Setor from Funcion fnc
join Setor st on (st.ID = fnc.ID_Setor);

Exemplo,:
select a.ID, a.Nome, b.Setor from Funcion a
join Setor b on (b.ID = a.ID_Setor);

1.3.2. Clausula OUTER

Com a clausula OUTER serdo mostrados os registros que tenham ou n&o
referéncia nas duas tabelas.

1.3.2.1. Palavra Reservada LEFT

A palavra reservada LEFT antes da clausula OUTER indica que todos os re-
gistros da tabela a esquerda do JOIN (primeira tabela da jungéo) serdo mos-
trados, independente dela ter ou n&o referéncia na tabela da direita do JOIN
(segunda tabela da jungéo).

Exemplo:
select a.ID, a.Nome, b.Setor from Funcion a
left outer join Setor b on (b.ID = a.ID_Setor);

O resultado deste exemplo trara os atributos ID e Nome de todos os regis-
tros da tabela Funcion e o atributo Setor de todos os registros da tabela Setor onde
o atributo ID da tabela Setor seja igual ao atributo ID_Setor da tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion
aparecera, pois mesmo sem 0 seu atributo ID_Setor ter uma referéncia na
tabela Setor, a palavra reservada LEFT permite sua apari¢éo.

Mas n&o aparecera no resultado o registro com o atributo ID igual a 4 da
tabela Setor, pois o atributo ID igual 4 ndo tem referéncia na tabela Funcion.

Banco de Dados

95

96

FRANGA, C.T.P LLE JNIOR, J.C.

Resultado:

ID Nome Setor

1 Tadeu Desenvolvimento
2 Ylane Manutencao

3 Julian Desenvolvimento
4 Ewerton Desenvolvimento
5 Jodo Manutengéo

6 Celestino Financeiro

7 Maria null

1.3.2.2. Palavra Reservada RIGHT

A palavra reservada RIGHT antes da clausula OUTER indica que todos os
registros da tabela a direita do JOIN (segunda tabela da jun¢do) serdo mostra-
dos, independente dela ter ou nao referéncia na tabela da esquerda do JOIN
(primeira tabela da jung¢éo).

Exemplo:
select a.ID, a.Nome, b.Setor from Funcion a
right outer join Setor b on (b.ID = a.lD_Setor);

O resultado deste exemplo trara os atributos ID e Nome de todos os regis-
tros da tabela Funcion e o atributo Setor de todos os registros da tabela Setor onde
o atributo ID da tabela Setor seja igual ao atributo ID_Setor da tabela Funcion.

No resultado, o registro com o atributo ID igual a 4 da tabela Setor apa-
recera, pois mesmo sem o seu atributo ID ter uma referéncia na tabela Fun-
cion, a palavra reservada RIGHT permite sua aparigéo.

Mas n&o aparecera no resultado o registro com o atributo ID igual a 7 da
tabela Funcion, pois o atributo ID_Setor é igual a nulo, consequentemente nao
tem referéncia na tabela Setor.

Resultado:

ID Nome Setor

1 Tadeu Desenvolvimento
2 Ylane Manutencao

3 Julian Desenvolvimento
4 Ewerton Desenvolvimento
5 Jodo Manutencao

6 Celestino Financeiro

null null Vendas

1.3.2.3. Palavra Reservada FULL

A palavra reservada FULL antes da clausula OUTER indica que todos os re-
gistros da tabela tabelas envolvidas no JOIN serdo mostradas independente
do registro ter ou n&o referéncia nas duas tabelas.

Exemplo:
select a.ID, a.Nome, b.Setor from Funcion a
full outer join Setor b on (b.ID = a.ID_Setor);

O resultado deste exemplo trara os atributos ID e Nome de todos os
registros da tabela Funcion e o atributo Setor de todos os registros da tabela
Setor onde o atributo ID da tabela Setor seja igual ao atributo ID_Setor da
tabela Funcion.

No resultado, o registro com o atributo ID igual a 7 da tabela Funcion
aparecera, pois mesmo sem 0 seu atributo ID_Setor ter uma referéncia na
tabela Setor, a palavra reservada FULL permite sua aparigéo.

No resultado também aparecera o registro com o atributo ID igual a 4 da
tabela Setor, pois mesmo sem o seu atributo ID ter uma referéncia na tabela
Funcion, a palavra reservada FULL permite sua apari¢ao.

Resultado:

ID Nome Setor

1 Tadeu Desenvolvimento
2 Ylane Manutencao

3 Julian Desenvolvimento
4 Ewerton Desenvolvimento
5 Jodo Manutencéao

6 Celestino Financeiro

7 Maria null

null null \endas

1.4. Comando UNION

O comando UNION permite trazer os registros de duas ou mais tabelas no
resultado de um Unico SELECT.

Para quem esta vendo pela primeira vez os comandos UNION e JOIN,
a explicagdo dos dois parecem semelhantes, mas os dois comandos sao to-
talmente diferentes.

Banco de Dados

97

o8 FRANGA, C.T.P L E JONIOR, J.C.

Enguanto no comando JOIN cada registro mostrado é composto por

atributos de duas ou mais tabelas, no comando UNION cada registro mos-
trado € composto por atributos de apenas uma Unica tabela, mas os registros
mostrados pertencem a duas ou mais tabelas.

11

Sintaxe:

select Atributo [{, Atributo}] from Tabela

[where Condigéo [{Operador_Légico Condig&o}]]

[[Cldusula_Junc¢ao] join Tabela_Jungéo on Condi¢éo_Jungéo]
[

union [all]

select Atributo [{, Atributo}] from Tabela

[where Condigéo [{Operador_Légico Condi¢ao}]]

[[Clausula_Jung¢ao] join Tabela_Jungéo on Condi¢do_Jungéo]
]

[order by Atributo [Modo_Ordenac¢éo] [{, Atributo [Modo_Ordenagéo]}

Exemplo:
select Nome from Funcion
union

select Nome from Cliente;

O resultado deste exemplo traré o atributo Nome de todos os registros

da tabela Funcion unido com os atributos Nome de todos os registros da tabe-
la Cliente. O nome “Joao” e “Maria” existem nas duas tabelas, mas cada um
s6 aparece uma vez no resultado.

Resultado:
Nome
Adriana
Celestino
Eduarda
Ewerton
Francisco

José

Banco de Dados &

Jodo

Julian
Maria
Tadeu
Ylane

1.4.1. Clausula ALL

Por padrao os registros duplicados sao eliminados do resultado, para mostrar
todos os registros, idénticos ou ndo, deve-se utilizar a clausula ALL.

Exemplo:

select Nome from Funcion
union all

select Nome from Cliente;

O resultado deste exemplo trara o atributo Nome de todos os registros
da tabela Funcion unido com os atributos Nome de todos os registros da tabe-
la Cliente. O nome “Jodo” e “Maria” existem nas duas tabelas, e neste exem-
plo aparecem duas vezes no resultado.

Resultado:
Nome
Tadeu
Ylane
Julian
Ewerton
Joéo
Celestino
Maria
Francisco
José
Maria
Adriana
Joéo
Eduardo

100 FRANGA, C.T.P LLE JNIOR, J.C.

1.5. Fungodes Basicas

A SQL tem fungdes béasicas que ajudam no resgates das informagdes relacio-
nadas aos dados armazenados.

Sintaxe:
select Funcao(Parametro) [{, Fungéo(Parémetro)}] from Tabela
[where Condigéo [{Operador_Légico Condi¢ao}]];

1.5.1. Fun¢ao AVG

Afungao AVG retorna a média aritmética do atributo passado como parémetro.

Exempilo,:
select avg(Salario) from Funcion;

O resultado deste exempilo trara a média aritmética dos valores do atri-
buto Salario da tabela Funcion.

Resultado,:
AVG
1071.4285714285714286

E possivel mudar o rétulo de um atributo que aparecera na lista do co-
mando SELECT, para isto basta acrescentar apés o atributo a palavra reser-
vada AS seguida do nome que ird substituir o nome do atributo.

Exemplo,:
select avg(Salario) as Media from Funcion;

O resultado deste exempilo trara a média aritmética dos valores do atri-
buto Salario da tabela Funcion.

Resultado,:
Media
1071.4285714285714286

Banco de Dados

1.5.2. Fungao MAX

A funcdo MAX retorna o maior valor do atributo passado como parametro.

Exemplo:
select max(Salario) as Maior_Salario from Funcion;

O resultado deste exemplo trara o maior valor inserido no atributo Sala-
rio da tabela Funcion.

Resultado:
Maior_Salario
1500.00

1.5.3. Fung¢ao MIN

A funcao MIN retorna o menor valor do atributo passado como parametro.

Exemplo:
select min(Salario) as Menor_Salario from Funcion;

O resultado deste exemplo trard o menor valor inserido no atributo Sa-
lario da tabela Funcion.

Resultado:
Menor_Salario
500.00

1.5.4. Fungao SUM

Afungéo SUM retorna o somatério do valor do atributo passado como parametro.

Exemplo:
select sum(Salario) as Soma_Salario from Funcion;

O resultado deste exemplo trara a soma dos valores inseridos no atribu-
to Salario da tabela Funcion.

101

102

FRANGA, C.T.P LLE JNIOR, J.C.

Resultado:
Soma_Salario
7500.00

1.5.5. Fungao COUNT

Afuncdo COUNT retorna a quantidade de registros ndo nulos do atributo pas-
sado como parametro.

Exempilo,:
select count(Salario) as Quant_Salario from Funcion;

O resultado deste exemplo trara a quantidade de registro que tém um
valor informado no atributo Salario da tabela Funcion.

Resultado,:
Quant_Salario
7

Exemplo,:
select count(ID_Setor) as Quant_Setor from Funcion;

O resultado deste exemplo trara a quantidade de registro que tém um
valor informado no atributo ID_Setor da tabela Funcion.

Resultado,:
Quant_Setor
6

1.6. Clausula GROUP BY

Para recuperar o resultado de uma ou mais fungdes agrupadas por um ou
mais atributos deve-se usar a clausula GROUP BY.

Sintaxe:

select Fungcéo(Parémetro) [{, Func&o(Parémetro)}] [{, Atributo}] from Ta-
bela

[where Condigéo [{Operador_Légico Condi¢éo}]]
[group by Atributo [{, Atributo}]]
[order by Atributo [Modo_Ordenacgao] [{, Atributo [Modo_Ordenagaol}

Exemplo:
select sum(salario) as Soma_Salario, ID_Setor from Funcion
group by ID_Setor;

O resultado deste exemplo trard a soma dos valores inseridos no atri-

buto Salario da tabela Funcion agrupados pelo atributo ID_Setor. Todos os
atributos que forem informados antes da palavra reservada FROM devem ser
declarados na clausula GROUP BY.

Resultado:
Soma_Salario ID_Setor

500.00 null
1500.00 3
2000.00 2
3500.00 1

Este resultado informa que o valor total da folha de pagamento do setor

1é de R$ 3.500,00, enquanto do setor 2 é de R$ 2.000,00. O setor 3 tem uma
folha de pagamento no valor total de R$ 1.500,00 . J& a folha de pagamentos
dos funcionérios que ndo estao lotados em nenhum setor totaliza R$ 500,00.

1.6.1. Clausula HAVING

Caso seja necessario filtrar o resultado de uma ou mais fungdes agrupadas
pela clausula GROUP BY, deve-se usar a clausula HAVING.

Sintaxe:

select Fungao(Parémetro) [{, Funcao(Parametro)}] [{, Atributo}] from Tabela
[where Condigéo [{Operador_Légico Condi¢ao}]

[group by Atributo [{, Atributo}]]

[having Condigao_Fun¢éo]

[order by Atributo [Modo_Ordenagao] [{, Atributo [Modo_Ordenagaol}

Banco de Dados J

03

104

FRANGA, C.T.P LLE JNIOR, J.C.

Exemplo:

select sum(salario) as Soma_Salario, ID_Setor from Funcion
group by ID_Setor

having sum(salario) > 1500

O resultado deste exemplo trara a soma dos valores inseridos no atribu-

to Salario da tabela Funcion agrupados pelo atributo ID_Setor, onde a soma
dos valores inseridos no atributo Salario seja maior que R$ 1.500,00.

Resultado:

Soma_Salario ID_Setor
2000.00 2
3500.00 1

1.7. Clausula DISTINCT

Para filtrar os valores duplicados de um atributo recuperado pelo comando
SELECT deve-se usar a clausula DISTINCT.

Sintaxe:

select distinct(Atributo) [{, Atributo}] from Tabela;

[where Condigéo [{Operador_Ldgico Condig&o}]]

[order by Atributo [Modo_Ordenagéo] [{, Atributo [Modo_Ordenagaol}]];

Exemplo:
select distinct(ID_Setor) from Funcion

O resultado deste exemplo trara o valor do atributo ID_Setor da tabela

Funcion filtrando os valores duplicados.

Resultado:
ID_Setor
null

1

2

3

1.8. Operadores de Manipulagao

A SQL permite operagdes de manipulagcéo sobre os atributos que aparecerdo
na lista do SELECT através dos operadores de manipulagao.

Sintaxe:

select Operagdo_Manipulagéo [{, Atributo}] from Tabela;

[where Condig&o [{Operador_Légico Condi¢éo}]]

[order by Atributo [Modo_Ordenacgéao] [{, Atributo [Modo_Ordenagaol}
1L

1.8.1. Operador de Manipulagao “||” (Concatenagao)

Para combinar duas ou mais cadeias de caracteres (atributos ou constantes)
e apresentar seu resultado como um atributo da lista do SELECT deve-se usar
o operador “||";

Exemplo:
select Nome || * ' || Sobrenome as Nome_Completo from Cliente;

O resultado deste exemplo trara os atributos Nome e Sobrenome da ta-
bela Cliente unidos como se fossem um Unico atributo. Entre os dois atributos
foi inserido um espago em branco para facilitar a leitura.

Resultado:
Nome_Completo
Francisco Silva
José Lima

Maria Silva
Adriana Ferreira
Joédo Oliveira
Eduarda Souza

1.8.2. Operador de Manipulagao “+” (Adigao)

Para mostrar a soma de dois ou mais valores (atributos ou constantes) e
apresenta seu resultado como um atributo da lista do SELECT deve-se usar
o operador “+”;

Banco de Dados !

05

106 FRANGA, C.T.P LLE JNIOR, J.C.

Exemplo:
select Nome, (Salario + 200) as Salario_Atual from Funcion;

O resultado deste exemplo trara os atributos Nome e Salario da tabela
Funcion, mas o atributo Salario tera o seu valor adicionado em R$ 200,00.

Resultado:

Nome Salario_Atual
Tadeu 1700,00
Ylane 1400,00
Julian 1200,00
Ewerton 1200,00
Jodo 1000,00
Celestino 1700,00
Maria 700,00

1.8.3. Operador de Manipulagao “-’ (Subtra¢ao)

Para mostrar a subtrag&o de dois ou mais valores (atributos ou constantes) e
apresenta seu resultado como um atributo da lista do SELECT deve-se usar
o operador “-";

Exemplo:
select Nome, (Salario - 200) as Salario_Atual from Funcion;

O resultado deste exemplo trara os atributos Nome e Salario da tabela
Funcion, mas o atributo Salario tera o seu valor subtraido em R$ 200,00.

Resultado:

Nome Salario_Atual
Tadeu 1300,00
Ylane 1000,00
Julian 800,00
Ewerton 800,00
Jodo 600,00
Celestino 1300,00

Maria 300,00

1.8.4. Operador de Manipulagao “*” (Multiplica¢ao)

Para mostrar a multiplicagao de dois ou mais valores (atributos ou constantes)
e apresenta seu resultado como um atributo da lista do SELECT deve-se usar
o operador “*";

Exemplo:
select Nome, (Salario * 1.5) as Salario_Atual from Funcion;

O resultado deste exemplo traré os atributos Nome e Salario da tabela
Funcion, mas o atributo Salario tera o seu valor multiplicado por 1,5, ou seja, o
atributo Salario tera um aumento de 50%.

Resultado:

Nome Salario_Atual
Tadeu 2250.00
Ylane 1800.00
Julian 1500.00
Ewerton 1500.00
Jodo 1200.00
Celestino 2250.00
Maria 750.00

1.8.5. Operador de Manipulagao “/” (Divisao)

Para mostrar a divisdo entre dois valores (atributos ou constantes) e apre-
sentar seu resultado como um atributo da lista do SELECT deve-se usar o
operador “/";

Exemplo:
select Nome, (Salario / 2) as Salario_Quinzena from Funcion;

O resultado deste exemplo trara os atributos Nome e Salario da tabela
Funcion, mas o atributo Salario tera o seu valor dividido por 2.

Banco de Dados J

07

108

FRANGA, C.T.P LLE JNIOR, J.C.

Resultado:

Nome Salario_Quinzena
Tadeu 750.00

Ylane 600.00

Julian 500.00

Ewerton 500.00

Jodo 400.00

Celestino 750.00

Maria 250.00

1.9. Nested Queries

E possivel restringir os dados mostrados em uma consulta principal baseados
nos resultados de uma sub-consulta. Esse processo é chamado de NESTED
QUERIES (Ninhos de Pesquisa).

Sintaxe:
select Atributo [{, Atributo}] from Tabela;
[where Atributo Operador_Comparativo
[select Atributo_Ninho from Tabela_Ninho [where Condigéo_Ninho]]
[order by Atributo [Modo_Ordenac¢éo] [{, Atributo [Modo_Ordenagao]}
1L
Exempilo.:
select ID, Nome from Cliente
where ID in (select ID_Cliente from Pedido where Valor >= 2000);

O resultado deste exemplo trara os atributos ID e Nome da tabela Clien-
te onde o atributo ID seja igual a um dos atributos ID_Cliente retornado pela
sub-consulta feita na tabela Pedido.

Resultadol:
ID Nome
4 Adriana

5 Joédo

Banco de Dados

Exemplo,:
select ID, Nome from Funcion
where ID_Setor = (select max(ID) - 1 from Setor);

O resultado deste exemplo trara os atributos ID e Nome da tabela Fun-
cion onde o atributo ID seja igual ao maior valor do atributo ID da tabela Setor
menos 1.

Resultadoz:

ID Nome

6 Celestino
2. DDL - Parte 2

Na secédo 4.4 vimos os comando basicos da DDL, nesta secdo iremos um
pouco mais além, abordando views, stored procedures, triggers e domains.
A sintaxe usada nesta sec¢ao é direcionada para o PostgreSQL, podendo nao
funcionar em outros SGBDR, uma vez que esta é a parte da SQL que mais
muda de um SGBDR para outro.

2.1. VIEW

Uma VIEW funciona como um comando SELECT salvo dentro do banco de da-
dos, assim como acontece com as tabelas e os dados armazenados nas tabelas.

Sintaxe:
create view Vis&o [(Atributo [{,Atributo}])]
as Comando_Select;

Exemplo de Criagao:

create view Cliente_Pedido (ID, NomeCompleto, SomaPedido)

as
selecta.ID, (a.Nome || * ' || a.Sobrenome), sum(b.Valor) from Cliente a
join Pedido b on (b.ID_Cliente = a.ID)
group by a.ID, a.Nome, a.Sobrenome;

Este exemplo cria uma VIEW com o nome de Cliente_Pedido. A lista
de atributos que esta VIEW retornara sera ID, NomeCompleto, SomaPedido.

109

110

FRANGA, C.T.P LLE JNIOR, J.C.

O comando SELECT desta VIEW ira fazer uma jungao entre as tabelas
Cliente e Pedido. Esta jungéo trard a soma dos valores do atributo Valor da
tabela Pedido agrupados pelos atributos ID, Nome e Sobrenome da tabela
Cliente. Os atributos Nome e Sobrenome da tabela Cliente foram concatena-
dos com um espag¢o em branco.

Ao passar a lista de atributos da VIEW (ID, NomeCompleto, SomaPe-
dido) no momento da criag&o, estamos explicitando o nome dos atributos que
a VIEW retornara.

Exemplo de Uso:

select * from Cliente_Pedido
where SomaPedido > 2000
order by NomeCompleto;

O resultado deste exemplo trara todos os atributos da viséo Cliente_Pe-
dido onde o atributo SomaPedido seja maior que 2000 e ordenado pelo atri-
buto NomeCompleto.

Resultado:

ID NomeCompleto SomaPedido
5 Joédo Oliveira 2500.00

2 José Lima 3500.00

Com estes dois exemplos pode-se afirmar que a VIEW.
e Funciona como um comando SELECT salvo no banco de dados;

e Simplifica 0 uso dos comandos SELECTs complexos, pois permite
aplicar novos comandos SELECTs sobre ela;

« E vista pelo usuério como uma tabela real do banco de dados, quan-
do na realidade é uma tabela virtual;

e Possibilita mostrar ao usuario uma versao personalizada das tabelas
do banco de dados.

2.2. STORE PROCEDURE

Uma STORE PROCEDURE funciona como uma fungao definida pelo usuario
salva dentro do banco de dados. A STORE PROCEDURE também suporta a
declaragéo de variaveis, estruturas condicionais, estruturas de repeticdo, etc.

Banco de Dados U

Tem como vantagem a velocidade, uma vez que executado dentro do
banco de dados. E como desvantagem esta o aumento na utilizagéo dos re-
cursos do servidor de banco de dados.

No PostgreSQL STORE PROCEDURE s&o chamadas simplesmente
de FUNCTION.

Sintaxe:

create function Fungéo (Tipo_Entrada [{, Tipo_Entrada}])
[returns Tipo_Retorno]

as $% Instrucdes_Funcéo $$

language Linguagem_Usada;

Exemplo de Cria¢ao:
create function TipoSalarioFuncion(integer) returns varchar as
$$
declare
p_id integer;
linha numeric(15, 2);
retorno varchar; Caso a linguagem
begin procedural padréo
pid =51 reconheddo, dove.se
select Salario from Funcion where id = p_id into linha; cria-la através do comando
if (linha < 1000) then Sffé;gtANGUAGE
retorno = ‘Salario menor que R$ 1000,00;
elseif (linha = 1000) then
retorno = ‘Salério igual a R$ 1000,00;
else
retorno = ‘Salario maior que R$ 1000,00;
end f;
return retorno;
end;

$$
language plpgsql;

Este exemplo cria uma STORE PROCEDURE com o nome de Tipo-
SalarioFuncion, que recebe como parametro de entrada um tipo INTEGER e
retorna um valor do tipo VARCHAR.

12

FRANGA, C.T.P L E JONIOR, J.C.

No corpo séo declaradas as variaveis p_id do tipo INTEGER, linha do
tipo NUMERIC e retorno do tipo VARCHAR.

A varidvel p_id recebe o primeiro e Unico parédmetro de entrada ($1),
esta varidvel é usada para regatar o valor do atributo Salario da tabela Funcion
onde o atributo ID seja igual a p_id.

Avariavel linha recebe o resultado do comando SELECT, em seguida é
verificado seu valor para atribuir o tipo de salario correto a variavel retorno, que
€ passada como retorno da STORE PROCEDURE.

A Ultima linha informa a linguagem que esta sendo usada pela STORE
PROCEDURE. As linguagens padroes do PostgreSQL sdo INTERNAL, C,
SQL e PLPGSQL.

Exemplo de Uso,:
select TipoSalarioFuncion(1);

O resultado deste exemplo trara o tipo de salario do registro da tabela
Funcion com o atributo ID igual a 1.

Resultado,:
TipoSalarioFuncion
Salario maior que R$ 1000,00

Exemplo de Uso,:
select ID, Nome, Salario, TipoSalarioFuncion(ID) from Funcion

O resultado deste exemplo trara os atributos ID, Nome e Salario de to-
dos os registros da tabela Funcion, com os seus respectivos tipo de salario.

Resultado,:

ID Nome Salario TipoSalarioFuncion

1 Tadeu 1500,00 Salario maior que R$ 1000,00
2 Ylane 1200,00 Salario maior que R$ 1000,00
3 Julian 1000,00 Salério igual a R$ 1000,00

4 Ewerton 1000,00 Salario igual a R$ 1000,00

5 Jodo 800,00 Salario menor que R$ 1000,00
6 Celestino 1500,00 Salario maior que R$ 1000,00
7 Maria 500,00 Salario menor que R$ 1000,00

2.3. TRIGGER

Um TRIGGER é um gatilho disparado automaticamente pelo SGBDR quando
um comando INSERT, UPDATE ou DELETE é executado numa tabela do
banco de dados. No PostgreSQL uma STORE PROCEDURE deve ser criada
exclusivamente para se utilizar o TRIGGER.

Sintaxe:
create trigger Gatilho { {before | after} Evento [{or Evento}] } on Tabela

[for [each] {row | statement}] execute procedure Store_Procedure;

As palavras reservadas BEFORE e AFTER indicam se o TRIGGER vai
ser disparado antes ou depois do evento, respectivamente. Ja o evento pode
ser um comando INSERT, UPDATE ou DELETE.

Se na criagéo do TRIGGER for informado o FOR EACH ROW, o gati-
lho sera disparado uma vez para cada linha modificada. Informando o FOR
EACH STATEMENT, o gatilho sé sera disparado uma vez, independente da
quantidade de linhas modificadas.

Exemplo de Criagao da STORE PROCEDURE usada pelo TRIGGER:
create or replace function MaxIDFuncion() returns trigger as
$$
declare
max_ID integer;
begin
select max(id) from Funcion into max_ID;
new.id .= max_ID + 1;
return new;

end;

$$
language plpgsql;

Neste exemplo foi criado a STORE PROCEDURE que sera usada pelo
TRIGGER. O exemplo executa a fungédo MAX sobre o atributo ID da tabela
Funcion e atribui o resultado a variavel max_ID. A variavel max_ID acrescido
de um é atribuido ao novo ID (new.id) do evento. As varidveis NEW e OLD sao
criadas automaticamente.

Banco de Dados

13

14

FRANGA, C.T.P L E JONIOR, J.C.

A variavel NEW mantém os novos valores de todos os atributos do re-
gistro que esta sendo enviada ao banco de dados, sé pode ser usada em
conjunto com os comandos INSERT e UPDATE.

A variadvel OLD é o oposto, mantém os antigos valores de todos os atri-
butos do registro que estd sendo enviada ao banco de dados, sé pode ser
usada em conjunto com os comandos UPDATE e DELETE.

Exemplo de Cria¢do do TRIGGER:
create trigger Trg_Funcion before insert on Funcion
for each row execute procedure MaxIDFuncion();

Neste exemplo foi criado um TRIGGER com o nome de Trg_Funcion
para a tabela Funcion. Ele sera disparado antes do comando INSERT e exe-
cutard a STORE PROCEDURE MaxIDFuncion para cada linha modificada.

Exemplo de Uso:
insert into Funcion (Nome, Salario, ID_Setor) values (Jesus’, 2000, 4);
select * from Funcion;

O primeiro comando insere um novo registro na tabela Funcion, mas
0 mesmo nao informa o atributo ID desse novo registro. A insergdo dispara o
TRIGGER Trg_Funcion que executa a STORE PROCEDURE MaxIDFuncion.

A STORE PROCEDURE MaxIDFuncion captura o maior valor do atri-
buto ID da tabela Funcion, adiciona em 1 e o atribui a varidvel NEW.ID, o novo
registro tera o valor do seu atributo ID igual a variavel NEW.ID.

O segundo comando trara todos os atributos de todos os registros da
tabela Funcion ja com o novo registro devidamente cadastrado.

Resultado:

ID Nome Salario ID_Setor
1 Tadeu 1500,00 1

2 Ylane 1200,00 2

3 Julian 1000,00 1

4 Ewerton 1000,00 1

5 Jodo 800,00 2

6 Celestino 1500,00 3

7 Maria 500,00 null

8 Jesus 2000.00 4

2.4. DOMAIN

Um DOMAIN ou dominio é um tipo de dado definidos pelo usuério com a fi-
nalidade de reaproveitamento. O DOMAIN padroniza e centraliza os tipos de
dados utilizados pelas tabelas do banco de dados.

Sintaxe:
create domain Nome_Domain [as] Tipo_Dado
[default Valor_Padréo] [Restricao] [check(Restricao)];

Exemplo:
create domain DM_VALOR as numeric(15,2)
default 0 not null check (value >= 0);

Neste exemplo foi criado um DOMAIN com o nome de DM_VALOR do
tipo Numeric(15,2), onde seu valor padréao sera zero, ele ndo pode ser nulo e
nunca aceitara que seja inserido nele um valor inferior a zero.

Exemplo de Uso:

create table Conta (
ID integer not null primary key,
Agencia varchar(5),
Saldo numeric(15,2) default 0 not null,
LimiteConta DM_VALOR,
LimiteEmprestimo DM_VALOR

Neste exemplo foi criada a tabela Conta. O atributo ID é do tipo Integer
nao pode ser nulo e é uma chave primaria, enquanto o atributo Agencia € do
tipo Varchar(5). O atributo Saldo é do tipo Numeric(15,2), seu valor padrao é
Zero e nao pode ser nulo.

Os atributos LimiteConta e LimiteEmprestimo sdo do tipo DM_VALOR.
Isto esta dizendo implicitamente ao SGBDR que os atributos sdo do tipo Nu-
meric(15,2), seu valor padrao é zero, ndo podem ser nulo e nunca devera ser
incluido neles valores negativos.

15

116

FRANGA, C.T.P LLE JNIOR, J.C.

Referéncias

[DEITEL, 2010] DEITEL, Paul; DEITEL, Harvey. Java: Como Programar. 8.
ed. S&o Paulo, Pearson Prentice Hall, 2010.

[ELMASRI e NAVATHE, 2005] ELMASRI, Ramez; NAVATHE, Shamkant B. Sis-
temas de Banco de Dados. 4. ed. Sdo Paulo, Pearson Addison Wesley, 2005.
[HEUSER, 2001] HEUSER, Carlos Alberto. Projeto de Banco de Dados. 4.
ed. Porto Alegre, Sagra Luzzatto, 2001.

[POSTGRESQL, 2011] POSTGRESQL. Documentagao do PostgreSQL
8.2.0. http://pgdocptbr.sourceforge.net/pg82/history.html. Setembro de 2011.
[RAMAKRISHNAN e GEHRKE, 2008] RAMAKRISHNAN, Raghu; GEHRKE,

Johannes. Sistemas de Banco de Dados. 2. ed. Sdo Paulo; McGraw-Hill,
2008. 884 p.

[ROB e CORONEL, 2011] ROB, Peter; CORONEL, Carlos. Sistema de Ban-
co de Dados. Sao Paulo, Cengage Learning, 2011.

[SOMMERVILLE, 2007] SOMMERVILLE, lan. Engenharia de Software. 8.
ed. Sao Paulo, Pearson Addison Wesley, 2007.

Sobre os autores

Cicero Tadeu Pereira Lima Franca: E mestre em Computacéo Aplicada pela
UECE, especialista em Engenharia de Software com énfase em Padrées de
Software e especialista em Gestao de Projetos de Tl, graduado como tecno-
logo em Automética pelo IFCE. Tem experiéncia na area de Ciéncia da Com-
putacdo, atuando principalmente no desenvolvimento de softwares. Professor
da Faculdade Ledo Sampaio.

Joaquim Celestino Junior: Possui graduagdo em Engenharia Eletrénica
pela Pontificia Universidade Catélica do Rio de Janeiro (1985), mestrado
em Ciéncia da Computacao pela Universidade Federal da Paraiba/Campina
Grande(1989), doutorado em Redes de Computadores - Universite de Paris
VI (Pierre et Marie Curie) (1994) e pds-doutorado em Redes Veiculares pela
Columbia University in New York City (2010). E professor adjunto da Univer-
sidade Estadual do Cearad (UECE). Tem experiéncia na area de Ciéncia da
Computagéo, com énfase em Teleinforméatica, atuando principalmente nos se-
guintes temas: redes de computadores, gerenciamento de redes e seguranga.

Banco de Dados

17

@080

A ndo ser que indicado ao contrario a obra Banco de Dados, disponivel em: http://educapes.capes.gov.br, esta
licenciada com uma licenga Creative Commons Atribuigdo-Compartilha Igual 4.0 Internacional (CC BY-SA 4.0).
Mais informagdes em: <http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR. Qualquer parte ou a totalidade
do conteldo desta publicagédo pode ser reproduzida ou compartilhada. Obra sem fins lucrativos e com distribuicdo
gratuita. O conteldo do livro publicado é de inteira responsabilidade de seus autores, ndo representando a posi¢éo
oficial da EJUECE.

)

Computagao

iel a sua missao de interiorizar o ensino superior no estado Ceara, a UECE,
como uma instituicdo que participa do Sistema Universidade Aberta do
Brasil, vem ampliando a oferta de cursos de graduacgao e pds-graduagao
na modalidade de educagdo a distancia, e gerando experiéncias e possibili-
dades inovadoras com uso das novas plataformas tecnoldgicas decorren-
tes da popularizacdo da internet, funcionamento do cinturdao digital e
massificacdo dos computadores pessoais.

Comprometida com a formacao de professores em todos os niveis e
a qualificacdo dos servidores publicos para bem servir ao Estado,
os cursos da UAB/UECE atendem aos padrdes de qualidade
estabelecidos pelos normativos legais do Governo Fede-
ral e se articulam com as demandas de desenvolvi-

mento das regides do Ceara.

I‘S‘EH H‘M-\“E-HE“HE‘E‘-‘E
97885 GHE b42e2e H

2

UNIVERSIDADE
ABERTA DO BRASIL

UNIVERSIDADE ESTADUAL DO CEARA C AP E S

