Aprendendo CTGV:

Estratégia proposta de Aprendizado Acelerado para
iniciantes:
Fase 1 (1-2 semanas): Descobrir as Formas
*Use gui.py (se disponivel) para montar redes visuais.
*Teste cada Shape individualmente:
*ORIGIN ¢ uma fonte.
*FLOW deixa passar sinal.
*DECISOR toma decisoes.
*RESONATOR amplifica padroes.
*INHIBITOR bloqueia.

Fase 2 (2-4 semanas): Projetos 1 e 2

*Implemente o semaforo inteligente.
*Depois o detector de anomalias.

*Regra de ouro: Desenhe a topologia (mapa da légica) no papel ou aplicativo antes de codificar.

Fase 3 (1-2 meses): Projetos 3 e 4

*Avance para otimizacao de rotas.
*Depois sistema de recomendacao.

*Documente cada decisao topolégica.

Fase 4 (continua): Projeto 5 e além

*Domine a simulagao distribuida.
*Crie suas proprias Shapes.

*Contribua para a educacdo com o codigo aberto.

Checklist de Dominio

*Sei diferenciar cada Shape e seu comportamento.

*Consigo modelar um problema simples em topologia CTGV.

*Entendo como a coeréncia mede a "satide" da rede.

*Sei usar o TemporalBindingArbiter para resolver ambiguidades.
*Consigo visualizar e interpretar a propagacao de campos.

*Sei quando usar CTGV vs. abordagens tradicionais.

Aplicacao Pratica em 6 Niveis

A partir deste material didatico que organiza 5 projetos praticos em um caminho estruturado, com
foco na aplicacao progressiva e no desenvolvimento intuitivo da modelagem topoldgica espero
repassar de maneira objetiva e facil de entender os conceitos fundamentais, do pensamento
topolégico / geométrico e sua aplicabilidade.

Nivel 1 — Fundamentacao Conceitual: Por que Topologia?

Conceito-chave:

No CTGYV, vocé ndo programa instrugoes, mas estrutura relacoes.

Pense em uma cidade: ruas (conexoes), semaforos (decisores), pragas (resonadores) e bloqueios
(inibidores).

O sistema propaga sinais como uma mente que “pensa” em geometria.

Analogia Inicial:

ORIGIN - FLOW - DECISOR - (AMPLIFIER ou INHIBITOR)
(Fonte) (Canal) (Escolha) (Amplifica ou Bloqueia)

Exercicio Mental (sem codigo):

Imagine modelar um restaurante como uma rede CTGV:

*ORIGIN = cozinha

*FLOW = garcons

*DECISOR = chefe de sala
*MEMORY = estoque

*INHIBITOR = mesa ocupada
Como o sinal (pedido) se propaga?

Nivel 2 — Projeto 1: Semaforo Inteligente

Objetivo: Controlar cruzamentos com base em sensores de trafego.

Topologia proposta:

[SENSOR_RUA_A] — [DECISOR_CENTRAL] - [FLOW_SEMAFORO_A] (verde)
1
[INHIBITOR_SEMAFORO_B] (vermelho)

Codigo guiado:
Pyton:

from enum import Enum

class Shape(Enum):
SENSOR =1
DECISOR =2

FLOW =3
INHIBITOR = 4

class Gebit:

def _init_ (self, shape, intensity, label):
self.shape = shape

self.intensity = intensity

self.label = label

self.connections =[]

def connect_to(self, other_geb, weight):
self.connections.append((other_geb, weight))

class CTGVENngine:

def propagate(self, sensors):

final_states = {}

Inicializa os estados com a intensidade dos sensores
for sensor in sensors:

final_states[sensor.label] = sensor.intensity

Calcula a intensidade do decisor baseado nos sensores e pesos
decisor_intensity = 0

total_weight =0

for sensor in sensors:

for (conn_geb, weight) in sensor.connections:

if conn_geb.shape == Shape.DECISOR:

decisor_intensity += sensor.intensity * weight

total_weight += weight

if total_weight > 0:

decisor_intensity /= total_weight

else:

decisor_intensity = 0
final_states['Controlador'] = decisor_intensity

Propaga para os semaforos considerando pesos dos decisor para semaforos
semaforo_a = None
semaforo_b = None

for (conn_geb, weight) in decisor.connections:
if conn_geb.label == "Semaforo_A":
semaforo_a = (conn_geb, weight)

elif conn_geb.label == "Semaforo_B":
semaforo_b = (conn_geb, weight)

Semaforo A ativado (verde)

if semaforo_a is not None:

intensity_a = decisor_intensity * semaforo_a[1]
final_states['Semaforo_A'] = intensity_a * 0.75

Semaforo B inibido (vermelho)

if semaforo_b is not None:

intensity_b = decisor_intensity * semaforo_b[1]
final_states['Semaforo_B'] = intensity_b * 0.10

return {'final_states': final_states}

1. Crie os gebits

sensor_a = Gebit(Shape.SENSOR, intensity=0.8, label="Sensor_A")
sensor_b = Gebit(Shape.SENSOR, intensity=0.3, label="Sensor_B")

decisor = Gebit(Shape.DECISOR, intensity=0.0, label="Controlador")
semaforo_a = Gebit(Shape.FLOW, intensity=0.0, label="Semaforo_A")
semaforo_b = Gebit(Shape.INHIBITOR, intensity=0.0, label="Semaforo_B")

2. Conecte a topologia
sensor_a.connect_to(decisor, 0.9)
sensor_b.connect_to(decisor, 0.9)
decisor.connect_to(semaforo_a, 1.0)
decisor.connect_to(semaforo_b, 1.0)

3. Execute a simulagao

engine = CTGVENngine()
result = engine.propagate([sensor_a, sensor_b])

print("text")

print(f"Sensor_A: {sensor_a.intensity:.2f}")

print(f"Sensor_B: {sensor_b.intensity:.2f}")

print(f"Controlador: {result['final_states']['Controlador']:.2f}")

print(f"Semaforo_A: {result['final_states']['Semaforo_A']:.2f} # Ativado (verde)")
print(f"Semaforo_B: {result['final_states']['Semaforo_B']:.2f} # Inibido (vermelho)")

Visualizacao esperada no console:

text

Sensor_A: 0.80

Sensor_B: 0.30

Controlador: 0.55

Semaforo_A: 0.41 # Ativado (verde)
Semaforo_B: 0.06 # Inibido (vermelho)

Aprendizado esperado:
-SENSOR captura intensidade (trafego).
DECISOR escolhe com base na entrada maior.

*FLOW deixa passar; INHIBITOR bloqueia.

Nivel 3 — Projeto 2: Detector de Anomalias em Transacoes

Objetivo: Identificar padrdes suspeitos em uma rede financeira.

Topologia avancada:

[CONTA_1] - [TRANSACAO_NORMAL] - [MEMORY_PADRAO]
[CONTA_2] - [TRANSACAO_ANOMALA] - [RESONATOR_ALERTA] -
[AMPLIFIER_SINAL]

Passo a passo:

1.Crie contas como MEMORY (guardam historico).

2.Transag¢des sao conexdes com peso = valor.

3.Valores altos ativam RESONATOR.
4.Use ClarificationEngine para detectar desvios.

Este c6digo modela as transacoes, calcula a entropia, ativa
alarmes se anomalias sao detectadas com base na entropia
da rede:

Codigo essencial:

Pyton

from enum import Enum
import math

Extende enum Shape com MEMORY, RESONATOR, AMPLIFIER
class Shape(Enum):

SENSOR =1

DECISOR =2

FLOW =3

INHIBITOR = 4

MEMORY =5

RESONATOR =6

AMPLIFIER = 7

class Gebit:

def __init__(self, shape, intensity, label):
self.shape = shape

self.intensity = intensity

self.label = label

self.connections =[]

def connect_to(self, other_geb, weight):
self.connections.append((other_geb, weight))

def activate(self):

if self.shape == Shape.RESONATOR:

Ressonador amplifica sua intensidade
self.intensity = min(1.0, self.intensity + 0.7)

class CTGVENngine:

def propagate(self, gebits):

for geb in gebits:

Propaga intensidade pelas conexdes

for (conn_geb, weight) in geb.connections:

conn_geb.intensity = min(1.0, conn_geb.intensity + geb.intensity * weight)
states = {g.label: g.intensity for g in gebits}

return {'final_states': states}

def calculate_network_entropy(gebits):

Entropia baseada na distribuicdo de intensidades normalizadas
intensities = [g.intensity for g in gebits]

total = sum(intensities) + 1e-9

probs = [i / total for i in intensities if i > 0]

entropy = -sum(p * math.log(p) for p in probs)

return entropy

Defini¢Bes iniciais
LIMITE = 0.7
THRESHOLD = 0.5

Criando Gebits de Contas (MEMORY)
conta_1 = Gebit(Shape.MEMORY, intensity=0.5, label="Conta_1")
conta_2 = Gebit(Shape.MEMORY, intensity=0.5, label="Conta_2")

Outros gebits da rede

transacao_normal = Gebit(Shape.FLOW, intensity=0.0, label="Transacao_Normal")
transacao_anomala = Gebit(Shape.FLOW, intensity=0.0, label="Transacao_Anomala")
memory_padrao = Gebit(Shape.MEMORY, intensity=0.0, label="Memory_Padrao")
resonator_alerta = Gebit(Shape.RESONATOR, intensity=0.0, label="Resonator_Alerta")
amplifier_sinal = Gebit(Shape.AMPLIFIER, intensity=0.0, label="Amplifier_Sinal")

Conectando a topologia
conta_1.connect_to(transacao_normal, weight=0.4)
transacao_normal.connect_to(memory_padrao, weight=0.8)

conta_2.connect_to(transacao_anomala, weight=0.9) # transag¢ao suspeita
transacao_anomala.connect_to(resonator_alerta, weight=1.0)
resonator_alerta.connect_to(amplifier_sinal, weight=1.2)

Ativando ressonador para valor alto
valor =0.9

if valor > LIMITE:
conta_2.connect_to(resonator_alerta, weight=0.9)
resonator_alerta.activate()

Simular propagacao

engine = CTGVENgine()

gebits = [conta_1, conta_2, transacao_normal, transacao_anomala, memory_padrao,
resonator_alerta, amplifier_sinal]

result = engine.propagate(gebits)

Calcular entropia da rede
entropy = calculate_network_entropy(gebits)

Resultado

print(f"Entropia da Rede: {entropy:.2f}")
if entropy > THRESHOLD:

print(" Possivel fraude detectada!")
else:

print(" Rede estavel")

Mostrar intensidades atuais
for geb in gebits:
print(f"{geb.label}: {geb.intensity:.2f}")

Visualizacao esperada no console:

Entropia da Rede: 1.78
Possivel fraude detectada!
Conta_1: 0.50
Conta_2: 0.50
Transacao_Normal: 0.20
Transacao_Anomala: 0.45
Memory_Padrao: 0.16
Resonator_Alerta: 1.00
Amplifier_Sinal: 1.00

Aprendizado esperado:
-Redes estaveis tém baixa entropia topolégica.

-Anomalias ressonam e amplificam sinais.

Nivel 4 — Projeto 3: Otimizador de Rotas Logisticas

Objetivo: Encontrar o melhor caminho em um mapa com obstaculos.

Conceito de campo de coeréncia:

ORIGIN (armazém) — propaga por todos os FLOWSs (estradas)
— encontra RESONATOR (destino)
— INHIBITOR (bloqueio) desvia o sinal

Implementacao:
Pyton

import math
from enum import Enum

class Shape(Enum):
SENSOR =1
DECISOR =2

FLOW =3
INHIBITOR = 4
MEMORY =5
RESONATOR =6
AMPLIFIER = 7
ORIGIN =8

class Gebit:
def __init_ (self, shape, intensity, label):
self.shape = shape

self.intensity = intensity
self.label = label
self.connections =[]

def connect_to(self, other_geb, weight):
self.connections.append((other_geb, weight))

class CTGVENngine:

def propagate(self, starting_gebits):

all_gebits = set(starting_gebits)

for _in range(10):

next_intensities = {}

current_gebits = list(all_gebits) # evita modificacdo durante iteracao
for geb in current_gebits:

for (conn_geb, weight) in geb.connections:

if conn_geb.shape == Shape.INHIBITOR:

continue

increment = geb.intensity * weight * 0.6

if conn_geb in next_intensities:

next_intensities[conn_geb] = max(next_intensities[conn_geb], increment)
else:

next_intensities[conn_geb] = increment

all_gebits.add(conn_geb)

for geb in all_gebits:

if geb in next_intensities:

geb.intensity = max(geb.intensity, next_intensities[geb])

return {g.label: g.intensity for g in all_gebits}

def create_map_grid(rows, cols, obstacles):

grid =]

for r in range(rows):

row =[]

for cin range(cols):

if (r, ¢) in obstacles:

gebit = Gebit(Shape.INHIBITOR, intensity=0.0, label=f"Block_{r}_{c}")
else:

gebit = Gebit(Shape.FLOW, intensity=0.0, label=f"Road_{r}_{c}")
row.append(gebit)

grid.append(row)

for r in range(rows):

for c in range(cols):

if c+1 < cols: grid[r][c].connect_to(grid[r][c+1], 1.0)

if -1 >=0: grid[r][c].connect_to(grid[r][c-1], 1.0)

if r+1 < rows: grid[r][c].connect_to(grid[r+1][c], 1.0)

if r-1 >=0: grid[r][c].connect_to(grid[r-1][c], 1.0)

return grid

def visualize_ctgv_processing(grid, intensities):
print("\nMapa com intensidades ap6s propagagao:")
for r, row in enumerate(grid):

line =
for ¢, geb in enumerate(row):
intensity = intensities.get(geb.label, 0)
if geb.shape == Shape.INHIBITOR:
line +="XX"

else:

if intensity > 0.75:

line +=" ##"

elif intensity > 0.5:

line +="++"

elif intensity > 0.25:

line+="."

else:

line+="--"

print(line)

if _name__ =="_main__":

rows, cols=5, 5
obstacles = [(2, 2), (3, 3)]

grid = create_map_grid(rows, cols, obstacles)
origin = grid[0][0]

origin.shape = Shape.ORIGIN
origin.intensity = 1.0

engine = CTGVENngine()
intensities = engine.propagate([origin])

visualize_ctgv_processing(grid, intensities)

Visualize o caminho 6timo com visualize_ctgv_processing().
Aprendizado:

*ORIGIN emite sinal que flui por FLOWSs.

*INHIBITORSs bloqueiam propagacao.

*O caminho com maior coeréncia é o mais eficiente.

Visualizacao esperada no console:

Mapa com intensidades apos propagacao:
-

e

- e == XX --

O mapa apresentado mostra uma grade 5x5 simulando uma malha de rotas
logisticas com propagacao de sinal a partir de um ponto origem:

®0s simbolos indicam a intensidade do sinal em cada posicdo da grade:
@"##" indica intensidade alta (mais coerente e provavel rota principal).
@"++" intensidade média-alta.

@".." intensidade média-baixa.

@"--" intensidade muito baixa ou auséncia de sinal.

O®As células marcadas com "XX" representam obstaculos (INHIBITOR), locais

bloqueados que impedem a passagem do sinal e forcam desvios.

@A propagag¢ao comeca no canto superior esquerdo (origem/armazém) com
intensidade maxima que diminui conforme se distancia e encontra obstaculos.
@0 mapa reflete caminhos possiveis para chegar a diferentes partes da grade,
mostrando os desvios causados pelos bloqueios.

Essa representacao auxilia a visualizar as rotas mais eficientes e como o sistema
ressoa a coeréncia das conexdes, simulando otimizacdo logistica em um ambiente
com obstaculos.

Nivel 5 — Projeto 4:

Sistema de Recomendacao Explicavel
Objetivo:Recomendar com base em similaridade topoldgica, ndo apenas historico.

Arquitetura:

[USUARIO] - [NARRATIVA_PRECO] - [TBA] - [RECOMENDACAOQ]
— [NARRATIVA_CATEGORIA]

Como funciona:

1.Cada usuario e produto é um Gebit.
2.Conexoes = interacoes (visualizacdao, compra).
3.Multiplas narrativas competem no TemporalBindingArbiter.

4.A narrativa mais coerente vence e gera explicacdo.

Cadigo simplificado:

Pyton

from enum import Enum

class Shape(Enum):
ORIGIN =1
DECISOR =2
AMPLIFIER = 3

class Gebit:

def __init__(self, shape, intensity=0.0, label=""):
self.shape = shape

self.intensity = intensity

self.label = label

self.connections =[]

def connect_to(self, other_gebit, weight=1.0):
self.connections.append((other_gebit, weight))

class TemporalBindingArbiter:
def __init_ (self, engine=None):
self.engine = engine

def coherence_score(self, narrative):

Simular coeréncia topoldgica, baseada em intensidade e conexdes
base = narrative.intensity

conn_weight = sum(weight for _, weight in narrative.connections)

Simples ponderacdo para coeréncia do exemplo

coherence = min(1.0, base * 0.8 + conn_weight * 0.2)

return coherence

def resolve_ambiguity(self, narratives):
scores = {}

for narrative in narratives:

score = self.coherence_score(narrative)
scores[narrative.label] = score

dominant_label = max(scores, key=scores.get)
dominant_score = scores[dominant_label]
return {

'dominant_narrative': dominant_label,
'dominant_score': dominant_score,

'scores'. scores

}

Criar narrativas
narrativa_preco = Gebit(Shape.ORIGIN, intensity=0.7, label="Narrativa_Preco")
narrativa_categoria = Gebit(Shape.ORIGIN, intensity=0.6, label="Narrativa_Categoria")

Conectar exemplos de estrutura comum que fortalece narrativa prego
decisor = Gebit(Shape.DECISOR, label="Decisor")
amplificador = Gebit(Shape. AMPLIFIER, label="Amplificador")

Exemplo conexdes que refletem topologia e reforco
narrativa_preco.connect_to(decisor, 0.9)
decisor.connect_to(amplificador, 0.8)

narrativa_categoria.connect_to(decisor, 0.5)
narrativa_categoria menos reforcada

Resolver competicdo com TBA

tba = TemporalBindingArbiter()
resultado = tba.resolve_ambiguity([narrativa_preco, narrativa_categoria])

Saida explicavel

print("Recomendamos 'Produto X' porque:")

print(f"s {int(narrativa_preco.intensity*100)}% dos usuarios com perfil topoldgico similar
compraram")

print(f"s Coeréncia estrutural: {resultado['dominant_score']:.2f}")

print(f"+ Narrativa dominante: {resultado['dominant_narrative']}")

Visualizacdo esperada no console; Saida explicavel:

Recomendamos 'Produto X' porque:

* 70% dos usuarios com perfil topoldgico similar compraram
* Coeréncia estrutural: 0.74

* Narrativa dominante: Narrativa_Preco

Aprendizado:
*TBA resolve competicao entre interpretacoes.
*Explicabilidade vem da estrutura da rede, ndo de estatisticas.

Esse cddigo cria estruturas Gebit para duas narrativas, define suas conexdes
topolégicas simulando interagdes, usa o arbiter para determinar a narrativa
dominante e apresenta uma explica¢ao textual com pontuacgao de coeréncia.

Nivel 6: Simulador de Epidemias

Objetivo:Modelar propagacdo de doengas com intervencgoes.

Topologia complexa:

[POPULACAO] - [CONTATOS] - [INFECCAO] - [INTERVENCAO]
I))
[SAUDAVEL] [INFECTADO] [VACINADO]

A IMPLEMENTACAO DISTRIBUIDA:
Pyton

from enum import Enum
import random
from typing import List, Dict, Tuple

class Shape(Enum):

"""Formas epidemioldgicas especializadas (CTGV)"""
SUSCEPTIBLE = 1 # Pessoa saudavel (memédria fraca)

INFECTED = 2 # Pessoa infectada (amplificador)

RECOVERED = 3 # Pessoa recuperada (resonador estavel)
QUARANTINE = 4 # Quarentena (inibidor)

VACCINATED = 5 # Vacina (transformador protetor)

HOSPITAL = 6 # Hospital (decisor de recursos) - nao usado ainda
SUPERSREADER = 7 # Superdisseminador (amplificador forte)

class EpidemiologicalGebit:
""Gebit especializado em modelagem epidemiolégica™"

def _init__(self, shape: Shape, infection_prob: float = 0.0, label: str =""):
self.shape = shape

self.infection_prob = infection_prob

self.label = label

self.connections: List[Tuple['EpidemiologicalGebit', float]] = []
self.days_infected =0

self.recovery_days = 14

self.isolation_factor = 1.0

Definir nivel de infec¢do inicial por forma

if shape in (Shape.INFECTED, Shape.SUPERSREADER):
self.infection_level = 0.8 if shape == Shape.INFECTED else 1.2
elif shape == Shape VACCINATED:

self.infection_level = 0.1

elif shape == Shape. QUARANTINE:

self.infection_level = 0.05

self.isolation_factor = 0.1

else:

self.infection_level = 0.0

def connect_to(self, other: 'EpidemiologicalGebit', contact_frequency: float = 1.0):
"""Conexao bidirecional com peso ajustado"""

if other == self:

return

weight = contact_frequency * (1.0 - abs(self.infection_level - other.infection_level))
if not any(o == other for o, _ in self.connections):

self.connections.append((other, weight))

other.connections.append((self, weight))

def propagate_infection(self) -> float:

"""Propagar infeccdo apenas se for amplificador™"

if self.shape not in (Shape.INFECTED, Shape.SUPERSREADER):
return 0.0

total_spread = 0.0

base_power = self.infection_level

decay = max(0.0, 1.0 - self.days_infected / self.recovery_days)
infection_power = base_power * decay

for neighbor, weight in self.connections:

if neighbor.shape == Shape.SUSCEPTIBLE:

transmission_prob = infection_power * weight * neighbor.isolation_factor
transmission_prob *= random.uniform(0.8, 1.2)

transmission_prob = min(1.0, transmission_prob)

if transmission_prob > neighbor.infection_prob:
neighbor.infection_prob = transmission_prob
total_spread += transmission_prob

self.days_infected += 1
return total_spread

def update_state(self):
"""Transicdes de estado
if self.shape in (Shape.INFECTED, Shape.SUPERSREADER) and self.days_infected >=
self.recovery_days:

if random.random() < 0.95: # 95% recuperam

self.shape = Shape.RECOVERED

self.infection_level = 0.01

elif self.shape == Shape.SUSCEPTIBLE and self.infection_prob > 0.7:
self.shape = Shape.INFECTED

self.infection_level = 0.8

self.days_infected =0

class EpidemicSimulator:
"""Simulador baseado em topologia CTGV"""

def __init__(self, population_size: int = 100):

self.population: List[EpidemiologicalGebit] = []
self.interventions: Dict[str, float] = {}

self.day =0
self._create_population(population_size)
self._create_social_network()

def _create_population(self, size: int):
Paciente zero
self.population.append(EpidemiologicalGebit(Shape.INFECTED, 1.0, "Patient_Zero"))

foriin range(1, size):

if i <size * 0.05:

self.population.append(EpidemiologicalGebit(Shape.VACCINATED, 0.0, f"Vaccinated_{i}"))
elif i < size * 0.10:

self.population.append(EpidemiologicalGebit(Shape.QUARANTINE, 0.0, f"Quarantine_{i}"))
else:

self.population.append(EpidemiologicalGebit(Shape.SUSCEPTIBLE, 0.0, f"Person_{i}"))

def create_social_network(self):
random.shuffle(self.population)

Clusters familiares

i=0

while i < len(self.population):
cluster_size = random.randint(3, 5)
cluster = self.population[i:i+cluster_size]

for p1in cluster:

for p2 in cluster:

if p11=p2:
p1.connect_to(p2, 0.9)
i += cluster_size

Conexdes sociais aleatdrias

for person in self.population:

for _in range(random.randint(4, 12)):

other = random.choice(self.population)

if other |= person and not any(o == other for o, _in person.connections):
person.connect_to(other, random.uniform(0.2, 0.6))

Superdisseminadores

num = max(2, int(len(self.population) * 0.02))
for s in random.sample(self.population, num):
if s.shape == Shape.SUSCEPTIBLE:

s.shape = Shape.SUPERSREADER
s.infection_level = 1.2

for _in range(20):

other = random.choice(self.population)

if other !I=s:

s.connect_to(other, 0.8)

def apply_intervention(self, intervention_type: str, intensity: float):

self.interventions[intervention_type] = intensity

if intervention_type == "lockdown":
for p in self.population:
p.isolation_factor *= (1.0 - intensity)

elif intervention_type == "vaccination_campaign":

targets = [p for p in self.population if p.shape == Shape.SUSCEPTIBLE]
num = int(len(targets) * intensity)

for p in random.sample(targets, min(num, len(targets))):

p.shape = Shape VACCINATED

p.infection_level = 0.1

elif intervention_type == "mass_testing":

infected = [p for p in self.population if p.shape in (Shape.INFECTED, Shape.SUPERSREADER)]
for p in infected:

if random.random() < intensity:

p.shape = Shape. QUARANTINE

p.isolation_factor = 0.05

elif intervention_type == "social_distancing":
for p in self.population:
p.connections = [(n, w * (1.0 - intensity)) for n, w in p.connections]

def simulate_day(self) -> Dict[str, float]:

self.day += 1

total_spread = sum(p.propagate_infection() for p in self.population)
for p in self.population:

p.update_state()

stats = self._calculate_statistics()

stats["day"] = self.day

stats["total_spread"] = total_spread

return stats

def _calculate_statistics(self) -> Dict[str, float]:
counts = {s: 0 for s in Shape}

for p in self.population:

counts[p.shape] += 1

infected = counts[Shape.INFECTED] + counts[Shape.SUPERSREADER]
total_conn_infected = sum(len(p.connections) for p in self.population if p.shape in
(Shape.INFECTED, Shape.SUPERSREADER))

r_effective = (total_conn_infected / infected * 0.15) if infected > 0 else 0.0
coherence = 1.0 - (infected / len(self.population))

return {

"infected": infected,

"susceptible": counts[Shape.SUSCEPTIBLE],
"recovered": counts[Shape.RECOVERED],
"vaccinated": counts[Shape .VACCINATED],

"quarantined": counts[Shape.QUARANTINE],
"superspreader": counts[Shape.SUPERSREADER],
"r_effective": r_effective,

"coherence": coherence,

"total_population": len(self.population)

}

class EpidemicPolicyArbiter:

""Arbitrador de politicas com explicabilidade topolégica"""
def __init__(self, simulator: EpidemicSimulator):
self.simulator = simulator

self.policy_scores: Dict[str, float] = {}

def evaluate_policy(self, policy_name: str, intensity: float, duration_days: int = 30) -> float:

Backup completo do estado

backup =

(p.shape, p.infection_prob, p.days_infected, p.isolation_factor, p.infection_level, p.connections[:])
for p in self.simulator.population

]

day_backup = self.simulator.day

self.simulator.apply_intervention(policy_name, intensity)

total_infected = sum(self.simulator.simulate_day()["infected"] for _ in range(duration_days))
avg_infected = total_infected / duration_days

score = 1.0 - (avg_infected / len(self.simulator.population))

Restaura¢do completa

self.simulator.day = day_backup

for i, person in enumerate(self.simulator.population):
shape, prob, days, iso, level, conns = backupli]
person.shape = shape

person.infection_prob = prob

person.days_infected = days

person.isolation_factor = iso

person.infection_level = level

person.connections = conns[:]

self.policy_scores[policy_name] = score
return score

def recommend_best_policy(self, policies: List[Tuple[str, float]]) -> Dict:
self.policy_scores.clear()

for name, intensity in policies:

self.evaluate_policy(name, intensity)

best = max(self.policy_scores.items(), key=lambda x: x[1])
return {

"recommended_policy": best[0],

"policy_score": best[1],

"all_scores": self.policy_scores.copy(),
"interpretation": self._generate_interpretation(best)

}

def _generate_interpretation(self, best_policy: Tuple[str, float]) -> str:

policy, score = best_policy

texts ={

"lockdown": "Restricdes de mobilidade para reduzir conexdes sociais",
"vaccination_campaign": "Imunizagdao em massa para criar barreiras topoldgicas",
"mass_testing": "Identificacdo e isolamento de nds infectados”,
"social_distancing": "Reducdo direta do peso das conexdes sociais"

}

base = texts.get(policy, "Intervencao topolégica")

efficacy = "altamente eficaz" if score > 0.8 else "moderadamente eficaz" if score > 0.6 else "pouco
eficaz"

return f"{base} - {efficacy} (score: {score:.2f})"

print("=" * 60)
print(" SIMULADOR DE EPIDEMIAS - MODELAGEM TOPOLOGICA CTGV")
print("="* 60)

simulator = EpidemicSimulator(population_size=100)

print(f"\n Populacdo criada: {len(simulator.population)} individuos")
statsO = simulator._calculate_statistics()

print(f" « Infectados iniciais: {statsO['infected']}")

print(f" « Vacinados: {statsO['vaccinated']}")

print(f" « Superdisseminadores: {statsO['superspreader']}")

print("\n FASE 1: Propagacdo natural (40 dias)")

print("-" * 50)

for day in range(40):

stats = simulator.simulate_day()

if day % 8 == 0 or day == 39:

print(f"Dia {stats['day']:3d}: {stats['infected']:3d} infectados | "
f"R = {stats['r_effective']:.2f} | Coeréncia = {stats['coherence']:.3f}")

print("\n FASE 2: Avalia¢ao de politicas")
print("-" * 50)
arbiter = EpidemicPolicyArbiter(simulator)

policies_to_test = [
("lockdown", 0.8),
("vaccination_campaign", 0.6),
("mass_testing", 0.75),

("social_distancing", 0.7)

]
recommendation = arbiter.recommend_best_policy(policies_to_test)

print(f"\n Politica recomendada: {recommendation['recommended_policy']}")
print(f" Score: {recommendation['policy_score']:.3f}")
print(f" Justificativa: {recommendation['interpretation']}")

print("\n Scores das politicas:")
for p, s in recommendation['all_scores'].items():
print(f" « {p:22s}: {s:.3f}")

print("\n FASE 3: Aplicando melhor politica + 40 dias")

print("-" * 50)

policy_name = recommendation['recommended_policy']

intensity = next((i for n, i in policies_to_test if n == policy_name), 0.5)
simulator.apply_intervention(policy_name, intensity)

for day in range(40):

stats = simulator.simulate_day()

if day % 10 == 0 or day == 39:

print(f"Dia {stats['day']:3d}: {stats['infected']:3d} infectados | "

f"R = {stats['r_effective']:.2f} | Coeréncia = {stats['coherence']:.3f}")

final_stats = simulator._calculate_statistics()
print("\n" + "="* 60)

print(" RELATORIO FINAL")

print("=" * 60)

print(f" Infectados: {final_stats['infected']}")
print(f" Recuperados: {final_stats['recovered']}")
print(f" Vacinados: {final_stats['vaccinated']}")
print(f" R efetivo: {final_stats['r_effective']..2f}")
print(f" Coeréncia: {final_stats['coherence']:.3f}")

diag=" CONTROLADA" if final_stats['coherence'] > 0.85 else \

" MODERADA" if final_stats['coherence'] > 0.6 else \

" ATIVA' if final_stats['coherence'] > 0.4 else" DESCONTROLADA"
print(f"\n DIAGNOSTICO: {diag}")

print("\n INSIGHTS TOPOLOGICOS PRESERVADOS:")

print(" « Forma define funcao (amplificador, inibidor, transformador)")
print(" « Coeréncia mede resiliéncia estrutural da rede")

print(" « Intervenc®es alteram topologia (pesos, nods, arestas)")

print(" « Superdisseminadores = alta centralidade")

print(ll\nll + H:ll * 60)
print("Modelo aprimorado: propagacao realista,")
print("=" * 60)

Visualizacao esperada no console:

Populacao criada: 100 individuos
* Infectados iniciais: 2
* Vacinados: 4
* Superdisseminadores: 1

FASE 1: Propagacao natural (40 dias)

Dia 1: 4 infectados|R = 3.56 | Coeréncia = 0.960
Dia 9: 4 infectados | R =3.56 | Coeréncia = 0.960
Dia 17: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 25: 0 infectados | R =0.00 | Coeréncia = 1.000
Dia 33: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 40: 0 infectados | R =0.00 | Coeréncia = 1.000

FASE 2: Avaliacao de politicas

Politica recomendada: lockdown
Score: 1.000
Justificativa: Restricdes de mobilidade para reduzir conexdes sociais - altamente eficaz (score:
1.00)

Scores das politicas:

* lockdown : 1.000
* vaccination_campaign : 1.000
* mass_testing :1.000

* social_distancing : 1.000

FASE 3: Aplicando melhor politica + 40 dias

Dia 41: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 51: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 61: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 71: 0 infectados | R = 0.00 | Coeréncia = 1.000
Dia 80: 0 infectados | R =0.00 | Coeréncia = 1.000

Infectados: 0
Recuperados: 4

Vacinados: 4
R efetivo: 0.00
Coeréncia: 1.000

DIAGNOSTICO: CONTROLADA

INSIGHTS TOPOLOGICOS PRESERVADOS:
* Forma define fungao (amplificador, inibidor, transformador)
+ Coeréncia mede resiliéncia estrutural da rede
* Intervengoes alteram topologia (pesos, nos, arestas)
» Superdisseminadores = alta centralidade

Modelo aprimorado: propagacao realista

Aprendizado:
*Propagacao como dinamica de rede.

*Intervencoes saio INHIBITORs ou RESONATORs.

*Coeréncia mede organizacao do sistema.

Dica Final

"No CTGYV, vocé ndo programa comportamentos; vocé projeta ecossistemas relacionais onde a
inteligéncia emerge da estrutura.”

Comece com redes pequenas (5-10 gebits),teste iterativamente, e documente cada descoberta. A
curva é ingreme, mas cada degrau revela uma nova forma de pensar sobre problemas complexos.

Tudo isso pode ser aprimorado, otimizado e desenvolvido com assisténcia das Inteligéncias
Artificiais treinada / implementada com esta a propria ferramenta.

Repositorio: https://github.com/Bear-urso/CTGV-System-V-1.5

Publicacao: https://doi.org/10.5281/zenodo.18360864

Autor: Begnomar dos Santos Porto (0009-0002-6109-7443) — ORCID

Direitos reservados sob: GitHub - Bear-urso/LICENSE-IL.TACC-: LICENSE FOR OPEN INNOVATION AND
COLLABORATIVE CAPITALIZATION (LIACC)

Registro de anterioridade:

No Bloco 933881 do Bitcoin, Minerado em 26,de janeiro de 2026 as 03:31:34 UTC. Que atesta a existéncia do
registro Timestamp of 6fb6036d3294 do Arquivo (Aprendendo CTGYV 26.01.26.pdf 485.7 kB) HASH SHA256:
6fb6036d32943b5579fac44b40d8b0707c9e2587a97efea22452fcc2elcfd5d1

Data 26 de janeiro de 2026.

https://orcid.org/0009-0002-6109-7443
https://doi.org/10.5281/zenodo.18360864
https://github.com/Bear-urso/CTGV-System-V-1.5
https://github.com/Bear-urso/LICENSE-LIACC-
https://github.com/Bear-urso/LICENSE-LIACC-

	🧠 Aprendendo CTGV:
	📚Estratégia proposta de Aprendizado Acelerado para iniciantes:
	Fase 1 (1-2 semanas): Descobrir as Formas
	Fase 2 (2-4 semanas): Projetos 1 e 2
	Fase 3 (1-2 meses): Projetos 3 e 4
	Fase 4 (contínua): Projeto 5 e além

	🎯 Checklist de Domínio

	Aplicação Prática em 6 Níveis
	🧩Nível 1 – Fundamentação Conceitual: Por que Topologia?
	🚦Nível 2 – Projeto 1: Semáforo Inteligente
	🕵️ Nível 3 – Projeto 2: Detector de Anomalias em Transações
	🗺️ Nível 4 – Projeto 3: Otimizador de Rotas Logísticas
	🧠 Nível 5 – Projeto 4:
	Sistema de Recomendação Explicável
	🧪Nível 6: Simulador de Epidemias
	💡Dica Final

