FLÁVIO BRITO DE SOUZA ARNALDO SILVA BRITO NATÃ FIRMINO SANTANA ROCHA

$$y = mx + b$$

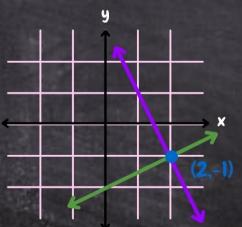
$$M = \left(\frac{X_1 + X_2}{2}, \frac{y_1 + y_2}{2}\right)$$

GEOMETRA PARA O ENSINO MEDIO ANALITICA

UMA ABORDAGEM VETORIAL

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$ax + by = C$$



SETEMBRO DE 2025

FLÁVIO BRITO DE SOUZA ARNALDO SILVA BRITO NATÃ FIRMINO SANTANA ROCHA

GEOMETRIA ANALÍTICA PARA ENSINO MÉDIO: UMA ABORDAGEM VETORIAL.

Dedico este trabalho a minha mãe, você é a razão pela qual eu nunca desisti. Agradeço por sua fé mim e perseverança.

Apresentação

Este E-Book apresenta uma proposta de abordagem didático-pedagógica para o ensino de Geometria Analítica direcionada ao 3º ano do ensino médio, norteado pelo que rege a Base Nacional Comum Curricular (BNCC, 2018) para ensino de matemática, com ênfase no tratamento vetorial como instrumento metodológico. Visamos aqui, promover uma compreensão mais profunda e significativa dos conceitos geométricos. Daremos destaque as definições e rigor matemático no que tange as demonstrações de teoremas e ou proposições. Consideramos ter escolhido uma sequência didática satisfatória, onde em cada capítulo apresentamos um breve comentário sobre o conteúdo exposto, além é claro das definições, demonstrações, exemplos e observações pertinentes ao que está sendo proposto.... Ao término, disponibilizamos uma lista de exercícios para uma melhor compreensão do conteúdo apresentado.

SUMÁRIO

1	V	ETO	RES	8
	1.1	PLA	NO CARTESIANO (\mathbb{R}^2)	8
	1.2	RET	A ORIENTADA	9
	1.3	SEG	MENTO ORIENTADO	10
	1	.3.1	Segmento nulo	11
	1.	.3.2	Segmento oposto	11
	1	.3.3	Medida de um segmento	12
	1	.3.4	Direção e sentido	12
	1.4	SEG	MENTOS EQUIPOLENTES	13
	1.5	VET	OR	14
	1.6	OPE	RAÇÕES GEOMÉTRICA ENTRE VETORES	15
	1	.6.1	Adição de vetores	15
	1.	.6.2	Subtração de vetores	16
	1.7	FOR	MA ALGÉBRICA DE UM VETOR	17
	1	.7.1	Igualdade e operações entre vetores	17
	1	.7.2	Propriedades da adição de vetores	18
	1	.7.3	Multiplicação de vetor por número real	20
	1	.7.4	Propriedades da multiplicação de vetor por um número real	20
	1	.7.5	Representação algébrica de um vetor fora da origem	20
	1.8	PAR	ALELISMO ENTRE VETORES	22
	1.9	PRO	DUTO INTERNO	23
	1.10	MÓI	DULO DE UM VETOR	23
	1.11	ÂNC	GULOS ENTRE VETORES	24
	1.12	PRO	JEÇÃO ENTRE VETORES	26
2	T	RIÂ	NGULOS	29
	2.1	CONI	DIÇÃO DE EXISTÊNCIA	29
	2.2	CLAS	SIFICAÇÃO DOS TRIÂNGULOS QUANTO AOS ÂNGULOS	30
	2	.2.1	Triângulo retângulo	30
	2	.2.2	Triângulo obtusângulo	33
	2	.2.3	Triângulo acutângulo	34
	2.3	CLAS	SSIFICAÇÃO DOS TRIÂNGULOS QUANTO AOS LADOS	35
	2.4	ÁREA	A DO TRIÂNGULO	36
3	E	STU	DO DA RETA	40
	3.1	Еоп	AÇÃO VETORIAL DA RETA	40
	3.2	_	AÇÃO REDUZIDA DA RETA	

2.1 Coeficiente angular da reta	3.2.1
POSIÇÕES ENTRE DUAS RETAS	3.3 POSI
3.1 Retas paralelas	3.3.1
3.2 Equação reduzida da reta paralela a uma reta dada e contendo um ponto fora dela	3.3.2
44	
3.3 Retas concorrentes	3.3.3
3.4 Método prático para determinar o ponto comum entre duas retas concorrentes4	3.3.4
3.5 Discussão de um sistema linear de duas equações e duas vaiáveis4	3.3.5
3.6 Ângulos entre duas retas concorrentes	3.3.6
3.7 Retas perpendiculares	3.3.7
3.8 Equação reduzida da reta perpendicular a uma reta dada e contendo um ponto fora	3.3.8
ela	dela
RÊNCIAS5	REFERÊNO
DICE A5	APÊNDICE

1 VETORES

Nesse capítulo, abordaremos tópicos essenciais para uma boa compreensão do conceito de vetor, ferramenta essa, que será de fundamental importância para o desenvolvimento do nosso trabalho. Iremos aqui, definir vetor e destacar algumas das principais operações entre os mesmos. Nesse primeiro momento teremos como ambiente de trabalho o conjunto dos pontos da geometria euclidiana de duas dimensões, que a partir de agora denotaremos por plano cartesiano ou \mathbb{R}^2 . Alguns resultados da geometria euclidiana serão usados livremente, supondo o autor ser conceitos já assimilados pelo leitor.

1.1 PLANO CARTESIANO (\mathbb{R}^2)

Para o estudo que segue, iremos utilizar o plano cartesiano. Trata-se de um sistema de eixos coordenados perpendiculares entre si. O ponto comum a esses eixos (Ponto *O*) é dito origem do plano cartesiano. Para cada ponto *P* pertencente ao plano cartesiano existe uma correspondência biunívoca a um par de números sobre os eixos.

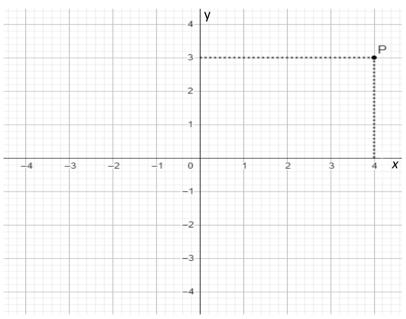


Figura 1- Plano cartesiano

Denotamos a reta Ox como eixo das abscissas e a reta Oy como eixo das ordenadas. Dizemos que o ponto P, veja Figura 1, tem abscissa x=4 e ordenada y=3 ou simplesmente P=(4,3). O par de números (4,3) é dito par ordenado e os números 4 e 3, nessa ordem, são as coordenadas do ponto P em relação ao eixo das abscissas e ao eixo das ordenadas, respectivamente. Os eixos coordenados dividem o plano cartesiano em quatro quadrantes:

3º Quadrante

Figura 2- Quadrantes

Fonte: Autor

4º Quadrante

 1° Quadrante: temos x > 0 e y > 0;

 2° Quadrante: temos x < 0 e y > 0;

 3° Quadrante: temos x < 0 e y < 0;

 4° Quadrante: temos x > 0 e y < 0.

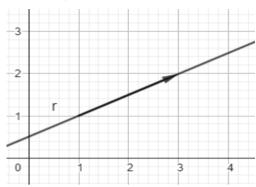
1.2 RETA ORIENTADA

Antes de mergulharmos na definição de reta orientada, vamos considerar um conceito fundamental na matemática: a noção de direção e sentido¹. Imagine uma linha reta que se estende infinitamente em ambas as direções. Agora, pense em como podemos atribuir um significado especial a essa linha, definindo um sentido como positivo e o outro como negativo. Essa ideia simples, mas poderosa, é a base para o conceito de reta orientada.

¹ Direção refere-se à linha imaginária sobre a qual uma reta se encontra, enquanto sentido indica a orientação específica nessa linha, podendo ser dois sentidos opostos para cada direção.

Definição 2.1: Uma reta r diz-se orientada quando lhe é fixado o sentindo de percurso, considerado positivo, e é indicada por uma seta.

Figura 3- Reta orientada



Fonte: Autor

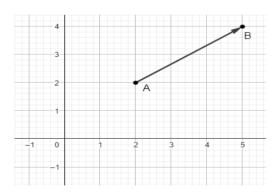
Observação 2.1: O sentido oposto é dito negativo.

1.3 SEGMENTO ORIENTADO

Imagine um segmento de reta, definido por dois pontos distintos. Agora, pense em como podemos atribuir um significado especial a esse segmento, definindo um ponto inicial e um ponto final. Essa ideia é fundamental para o conceito de segmento orientado.

Definição 1.2: Dados os pontos A e B no plano cartesiano, se A é a origem e B é a extremidade do segmento por eles determinados, então esse segmento é dito orientado. Notação: AB (Lê-se; segmento AB).

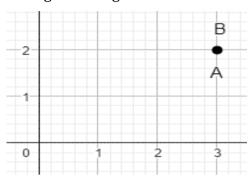
Figura 4- Segmento orientado AB



1.3.1 Segmento nulo

Definição 1.3: Um segmento cuja a origem coincide com a extremidade é dito segmento nulo.

Figura 5- Segmento nulo AB

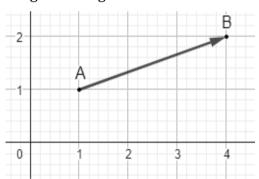


Fonte: Autor

1.3.2 Segmento oposto

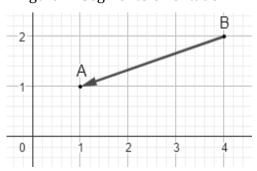
Definição 1.4: Seja AB um segmento orientado, dizemos que o segmento BA é o seu oposto.

Figura 6- Segmento orientado AB



Fonte: Autor

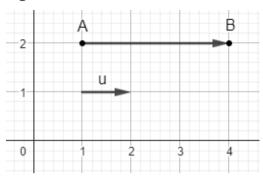
Figura 7- Segmento orientado BA



1.3.3 Medida de um segmento

Fixada uma medida de comprimento u, podemos determinar a medida do segmento AB, usado como unidade de medida o comprimento de u.

Figura 8- Fixando unidade de medida



Fonte: Autor

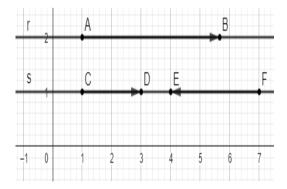
- Medida do segemento AB igual 3u, onde denotamos por $\overline{AB} = 3u$. (Figura 8);
- Note que o segmento orientado $\overline{BA} = 3u$, segue que $\overline{AB} = \overline{BA}$.

Observação 1.2: Segmento nulo tem medida igual a zero.

1.3.4 Direção e sentido

Definição 1.5: Dizemos que dois segmentos orientados *AB* e *CD* possuem mesma direção se suas retas suportes são paralelas ou coincidentes.

Figura 9- Segmentos de mesma direção



Na Figura 9 temos r paralela a s. Note que r e s são as retas suporte do segmentos AB e CD, FE respectivamente. Segue que os segmentos AB, CD e FE estão na mesma direção;

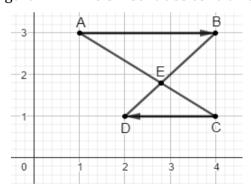
Definição 1.6: Sejam $AB \in CD$ dois segmentos orientados com mesma direção. Dizemos que os segmentos $AB \in CD$ tem mesmo sentido se os segmentos $AC \in BD$ não se intersectam.

3 A B B C D D

Figura 10 - AB e CD mesmo sentido

Fonte: Autor

Figura 11 - AB e CD sentidos contrários



Fonte: Autor

Observação 1.3: Só se pode comparar sentido entre segmentos, se os mesmos estiverem na mesma direção.

1.4 SEGMENTOS EQUIPOLENTES

Suponha dois segmentos de reta orientados, cada um com seu próprio ponto inicial e ponto final. Agora, pense em como podemos comparar esses segmentos para determinar se eles têm a mesma direção, sentido e comprimento. Essa ideia é fundamental para o conceito de segmentos equipolentes.

Definição 1.7: Dados os segmentos orientados $AB \in CD$. Dizemos que estes segmentos são equipolentes (notação: $AB \sim CD$) se eles possuem mesma direção, mesmo sentido e mesma medida.

Exemplo 1.1: Seja ABCD um paralelogramo. Considere os segmentos orientados AB,BC,DC e DA.

Figura 12- Segmentos equipolentes

Fonte: Autor

- Temos, $AB \sim DC$;
- Temos, $DA \neq BC$.

Observação 1.4: Dois segmentos nulos são sempre equipolentes.

1.5 VETOR

Imagine que você precisa descrever uma quantidade que tem não apenas magnitude (ou tamanho), mas também direção e sentido. Por exemplo, quando você descreve um deslocamento de um ponto a outro no espaço. Nesse contexto, surge a necessidade de um conceito matemático que possa capturar essas características de maneira eficaz. Agora que temos uma ideia geral, vamos definir formalmente o que é um vetor e apresentar suas principais características.

Definição 1.8: Dado um segmento orientado AB, chama-se vetor ao conjunto de todos os segmentos equipolentes a AB.

Tomando \overrightarrow{AB} como notação para o conjunto mencionado, temos:

$$\overrightarrow{AB} = \{CD / CD \sim AB\}$$

Definição 1.9: Chama-se módulo de um vetor \overrightarrow{AB} a medida do comprimento do segmento orientado que o representa.

Notação;
$$|\overrightarrow{AB}| = \overline{AB}$$

Definição 1.10: Dois vetores \overrightarrow{AB} e \overrightarrow{CD} são ditos iguais quando $AB \sim CD$.

Notação:
$$\overrightarrow{AB} = \overrightarrow{CD}$$

Definição 1.11: Um vetor \overrightarrow{AB} é dito nulo se $\overline{AB} = 0$.

Notação:
$$\overrightarrow{AB} = \overrightarrow{0}$$

Definição 1.12: Chama-se o vetor \overrightarrow{AB} de unitário se $|\overrightarrow{AB}| = 1$.

Definição 1.13: O versor de um vetor \overrightarrow{AB} é o vetor que tem mesma direção, mesmo sentido de \overrightarrow{AB} e como módulo igual a 1.

Observação 1.5: A notação do vetor oposto de \overrightarrow{AB} é dada por \overrightarrow{BA} ou $-\overrightarrow{AB}$. O que diferencia os vetores \overrightarrow{AB} e \overrightarrow{BA} é unicamente o sentido.

Para simplificar a notação, é usual representar o vetor \overrightarrow{AB} por uma letra minúscula acompanhada de uma seta. Tal convenção, além de prática, será amplamente adotada nas seções subsequentes.

Notação:
$$\vec{u} = \overrightarrow{AB}$$

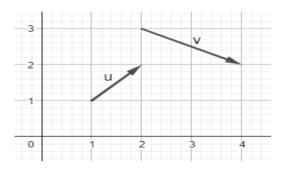
1.6 OPERAÇÕES GEOMÉTRICA ENTRE VETORES

As operações geométricas entre vetores podem ser pensadas como combinações de "flechas" no \mathbb{R}^2 , onde cada operação produz um novo vetor resultante. Essa representação visual nos ajuda a entender melhor como os vetores se combinam.

1.6.1 Adição de vetores

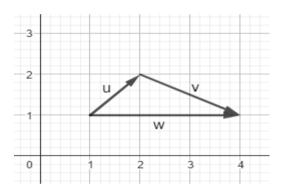
Definição 1.14: Para somar dois vetores geometricamente, coloca-se a extremidade de um vetor na origem do próximo, o vetor soma é o segmento orientado de origem do primeiro vetor e extremidade do segundo. (Figura 14)

Figura 13 - Vetores \vec{u} e \vec{v}



Fonte: Autor

Figura 14- Soma $\vec{w} = \vec{u} + \vec{v}$



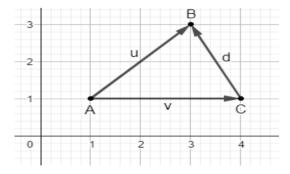
Fonte: Autor

Temos que a soma dos vetores \vec{u} e \vec{v} por definição é o vetor \vec{w} . Portanto, $\vec{w} = \vec{u} + \vec{v}$. **Observação 1.6:** A definição acima se matem para a soma superior a dois vetores.

1.6.2 Subtração de vetores

Definição 1.15: Definimos a diferença entre os vetores \vec{u} e \vec{v} , como $\vec{u} - \vec{v}$ onde o vetor $-\vec{v}$ é o vetor oposto do vetor \vec{v} .(Figura 15)

Figura 15- Subtração $\vec{u}-\vec{v}$



Note que $\overrightarrow{CA} = -\vec{v}$. Segue:

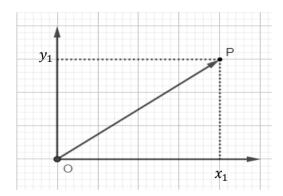
$$\vec{d} = \overrightarrow{CA} + \vec{u} = -\vec{v} + \vec{u} = \vec{u} - \vec{v}$$

1.7 FORMA ALGÉBRICA DE UM VETOR

Até o momento, tudo que foi definido em relação a vetores diz respeito a sua forma geométrica. Nessa seção, iremos representar vetores de forma algébrica, tal representação será bastante útil para efeito de cálculos.

Pela Seção 1.1, para todo ponto P pertencente ao plano cartesiano podemos definir sua localização por meio de suas coordenadas nos eixos das abcissas e ordenadas. Nesta seção iremos associar a cada ponto P, um vetor que terá como origem o ponto Q e extremidade o ponto P e sua representação analítica será dada pelas coordenadas do ponto P. Veja Figura 16.

Figura 16- Vetor
$$\overrightarrow{OP} = (x_1, y_1)$$



Fonte: Autor

Assim, o vetor \overrightarrow{OP} terá representação analítica dada pelo par ordenado (x_1, y_1) .

1.7.1 Igualdade e operações entre vetores

Definição 1.16: Dados o vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$, definiremos \vec{u} igual a \vec{v} quando tivermos $x_1=x_2$ e $y_1=y_2$. Notação: $\vec{u}=\vec{v}$.

Definição 1.17: Dados o vetores $\vec{u} = (x_1, y_1)$ e $\vec{v} = (x_2, y_2)$, definiremos $\vec{u} + \vec{v} = (x_1 + x_2, y_1 + y_2)$. De forma análoga, $\vec{u} - \vec{v} = (x_1 - x_2, y_1 - y_2)$.

1.7.2 Propriedades da adição de vetores

Para as demonstrações que segue, tomaremos $\vec{u}=(x_1,y_1)$, $\vec{v}=(x_2,y_2)$, $\vec{w}=(x_3,y_3)$ e $\vec{0}=(0,0)$.

P1) Comutativa: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$

Temos:

$$\vec{u} + \vec{v} = (x_1, y_1) + (x_2, y_2)$$

$$= (x_1 + x_2, y_1 + y_2)$$

$$= (x_2 + x_1, y_2 + y_1)$$

$$= (x_2, y_2) + (x_1, y_1)$$

$$= \vec{v} + \vec{u}$$

P2) Associativa: $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$

Note que:

$$(\vec{u} + \vec{v}) + \vec{w} = (x_1 + x_2, y_1 + y_2) + (x_3, y_3)$$

$$= ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3)$$

$$= (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3))$$

$$= (x_1, y_1) + (x_2 + x_3, y_2 + y_3)$$

$$= \vec{u} + (\vec{v} + \vec{w})$$

P3) Existência e unicidade do vetor nulo: $\vec{u} + \vec{0} = \vec{u}$

Existência:

Temos:

$$\vec{u} + \vec{0} = (x_1, y_1) + (0, 0) = (x_1 + 0, y_1 + 0) = (x_1, y_1) = \vec{u}$$

Unicidade:

Suponha que exista um vetor $\vec{n}=(a,b)$ tal que $\vec{u}+\vec{n}=\vec{u}$.

Segue,

$$\vec{u} + \vec{n} = \vec{u} \Leftrightarrow (x_1 + a, y_1 + b) = (x_1, y_1)$$

Daí,

$$x_1 + a = x_1$$
 e $y_1 + b = y_1$

Isto é,

$$a = 0$$
 e $b = 0$

Logo,

$$\vec{n} = \vec{0}$$

P4) Existência e unicidade do vetor oposto: $\vec{u} + (-\vec{u}) = \vec{0}$

Existência:

Temos:

$$\vec{u} + (-\vec{u}) = (x_1, y_1) + (-x_2, -y_2) = (x_1 + (-x_1), y_1 + (-y_1)) = (0, 0) = \vec{0}$$

Unicidade:

Suponha que exista um vetor $\vec{n} = (a, b)$ tal que $\vec{u} + \vec{n} = \vec{0}$.

Segue,

$$\vec{u} + \vec{n} = \vec{0} \iff (x_1 + a, y_1 + b) = (0, 0)$$

Daí,

$$x_1 + a = 0$$
 e $y_1 + b = 0$

Isto é,

$$a = -x_1 \quad e \quad b = -y_1$$

Logo,

$$\vec{n} = -\vec{u}$$

Observação 1.7: Tudo que foi dito para igualdade e operações de vetores se aplica para mais de dois vetores.

1.7.3 Multiplicação de vetor por número real

Definição 1.18: Dado um vetor \vec{v} e um númeror real α , definiremos a multiplicação de α por \vec{v} por $\alpha \cdot \vec{v}$, onde:

- 1. Se $\alpha = 0$ ou $\vec{v} = \vec{0}$, então $\alpha \cdot \vec{v} = \vec{0}$ (Por definição)
- 2. Se $\alpha \neq 0$ e $\vec{v} \neq \vec{0}$, então $\alpha \cdot \vec{v} \neq \vec{0}$, e ainda:
 - $\alpha \cdot \vec{v}$ terá mesma direção de \vec{v} ;
 - Se $\alpha > 0$, então $\alpha \cdot \vec{v}$ terá mesmo sentido de \vec{v} ;
 - Se α < 0, então $\alpha \cdot \vec{v}$ terá sentido contrário ao de \vec{v} .
 - $|\alpha \cdot \vec{v}| = |\alpha| \cdot |\vec{v}|$

1.7.4 Propriedades da multiplicação de vetor por um número real

M1)
$$\alpha \cdot (\vec{u} + \vec{v}) = \alpha \cdot \vec{u} + \alpha \cdot \vec{v}$$
 $\forall \alpha \in \mathbb{R} \ e \ \forall \ \vec{u}, \vec{v} \in \mathbb{R}^2$

M2)
$$(\alpha + \beta) \cdot \vec{u} = \alpha \cdot \vec{u} + \beta \cdot \vec{u} \quad \forall \alpha, \beta \in \mathbb{R} \ e \ \forall \vec{u} \in \mathbb{R}^2$$

M3)
$$\alpha \cdot (\beta \cdot \vec{u}) = (\alpha \cdot \beta) \cdot \vec{u}$$
 $\forall \alpha, \beta \in \mathbb{R} \ e \ \forall \ \vec{u} \in \mathbb{R}^2$

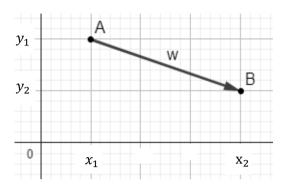
M4)
$$1 \cdot \vec{v} = \vec{v}$$
 $\forall \vec{v} \in \mathbb{R}^2$

Observação 1.8: As propriedades aqui expostas, também são válidas para os números reais, dessa forma as operações entre vetores (adição e multiplicação por um número real) seguem o mesmo princípio que o cálculo algébrico elementar.

1.7.5 Representação algébrica de um vetor fora da origem

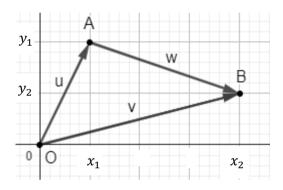
Na Seção 1.7 associamos para cada ponto $P \in \mathbb{R}^2$ um vetor de origem em O e extremidade em P. Aqui, daremos uma representação algébrica para vetores fora da origem. Veja as Figuras 17 e 18.

Figura 17- Vetor \vec{w}



Fonte: Autor

Figura 18- Vetores \vec{u} , \vec{v} e \vec{w}



Fonte: Autor

Note que o vetor $\overrightarrow{AB} = \overrightarrow{v} - \overrightarrow{u} = (x_2, y_2) - (x_1, y_1) = (x_2 - x_1, y_2 - y_1)$. Assim, podemos exibir as coordenadas de vetores determinados por pontos quaisquer do \mathbb{R}^2 , isto é, as coordenadas do vetor \overrightarrow{AB} será dada pela diferença entre o vetor $\overrightarrow{v} = \overrightarrow{OB}$ e o vetor $\overrightarrow{u} = \overrightarrow{OA}$ ou simplesmente $\overrightarrow{AB} = B - A$.

Exemplo 1.2: Seja A = (3,5) e B = (1,-6). Segue, que as coordenadas cartesianas do vetor \overrightarrow{AB} será:

$$\overrightarrow{AB} = B - A = (1, -6) - (3, 5) = (1 - 3, -6 - 5) = (-2, -11)$$

Exemplo 1.3: Sejam $A=(x_1,y_1)$ e $B=(x_2,y_2)$ pontos do \mathbb{R}^2 . Determine as coordenadas do ponto médio do segmento \overline{AB} .

Seja M=(x,y) o ponto médio do segmento \overline{AB} . Daí, $\overline{AB}=\overline{AM}+\overline{MB}$. Como $\overline{AM}=\overline{MB}$. Temos:

$$\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{AM} + \overrightarrow{AM} = 2 \overrightarrow{AM}$$

Daí,

$$B-A=2(M-A) \iff M=\frac{1}{2}(A+B)$$

Logo,

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Exemplo 1.4: Os pontos A = (3, -5) e C = (-1, 3) são o vértices da diagonal de um paralelogramo. Determine o ponto de interseção das diagonais.

É suficiente determinar o ponto médio do segmento \overline{AB} . Utilizando o Exemplo 1.3 temos:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = \left(\frac{3 + (-1)}{2}, \frac{-5 + 3}{2}\right) = \left(\frac{2}{2}, \frac{-2}{2}\right) = (1, -1)$$

1.8 PARALELISMO ENTRE VETORES

Dados os vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ no \mathbb{R}^2 . Suponha que exista um $\alpha\in\mathbb{R}$ tal que:

$$\vec{u} = \alpha \cdot \vec{v}$$

Pela Subseção 1. 7.3, temos $\alpha \cdot \vec{v}$ com mesma direção de \vec{v} , isto é, $\alpha \cdot \vec{v} \mid \mid \vec{v}$ segue $\vec{u} \mid \mid \vec{v}$. Em outras palavras, o vetor \vec{u} será paralelo ao vetor \vec{v} se, e somonte se, o vetor \vec{u} for múltiplo do vetor \vec{v} .

Exemplo 1.5: Seja $\vec{u} = (3, 2)$ e $\vec{v} = (6, 4)$. Note que:

$$\vec{v} = (6,4) = 2 \cdot (3,2) = 2. \vec{u} \quad \Rightarrow \quad \vec{u} \mid \mid \vec{v}$$

Observação 1.9: Sejam $A=(x_1,y_1)$, $B=(x_2,y_2)$ e $C=(x_3,y_3)$ pontos do \mathbb{R}^2 . Daí, $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$ e $\overrightarrow{AC}=(x_3-x_1,y_3-y_1)$. Se existir um $\alpha \in \mathbb{R}$ tal que $\overrightarrow{AB}=\alpha \cdot \overrightarrow{AC}$, então os pontos A,B e C são colineares.

$$A, B \in C$$
 são colineares $\Leftrightarrow \frac{x_2 - x_1}{x_3 - x_1} = \frac{y_2 - y_1}{y_3 - y_1}$

1.9 PRODUTO INTERNO

O produto interno entre vetores é uma operação que associa dois vetores a um número real, fornecendo uma medida da relação entre suas direções e magnitudes. Ele é fundamental em diversas áreas da matemática, permitindo calcular ângulos, projeções e determinar ortogonalidade entre vetores.

Definição 1.19: Dados o vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ no \mathbb{R}^2 . Chama-se produto interno de \vec{u} por \vec{v} ou simplesmente \vec{u} interno \vec{v} (Notação: $\vec{u}\cdot\vec{v}$ ou $<\vec{u},\vec{v}>$) o número real dado por:

$$\vec{u} \cdot \vec{v} = x_1 \cdot x_2 + y_1 \cdot y_2$$

Exemplo 1.6: Seja $\vec{u} = (-4,7)$ e $\vec{v} = (3,-4)$. O produto interno de \vec{u} por \vec{v} é dado por:

$$\vec{u} \cdot \vec{v} = -4 \cdot 3 + 7 \cdot (-4) = -12 - 28 = -40$$

1.10 MÓDULO DE UM VETOR

Na Definição 1.9 definimos módulo como sendo o comprimento de um vetor. Nessa seção, iremos determinar o comprimento de um vetor dado. Veja Figura 19.

y₂

y₁

O ×1

X₂

Figura 19- Representação do vetor \overrightarrow{AB}

Fonte: Autor

Temos que $|\vec{u}| = \overline{AB}$, $\overline{AC} = (x_2 - x_1)$ e $\overline{BC} = (y_2 - y_1)$. Note que o triângulo ABC é retângulos em C. Segue que:

Segue:

$$|\vec{u}|^2 = \overline{AC}^2 + \overline{BC}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Logo,

$$|\vec{u}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Note ainda que a representação algébrica do vetor $\vec{u} = \overrightarrow{AB} = B - A = (x_2, y_2) - (x_1, y_1) = (x_2 - x_1, y_2 - y_1)$. Logo, $|\vec{u}|$ será a raiz quadrada da soma dos quadrados das coordenadas do vetor \vec{u} .

Observação 1.10: Obter o módulo de um vetor é equivalente a obter a distâncias entre os dois pontos que o determina, isto é; $d_{A,B} = |\vec{\mathbf{u}}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

(Notação: $d_{A,B}$ é a distância do ponto A ao ponto B)

Exemplo 1.7: Dados os vetores $\vec{u} = (-2, 4)$ e $\vec{v} = (3, 2)$, segue que:

$$|\vec{u}| = \sqrt{(-2)^2 + 4^2} = \sqrt{4 + 16} = \sqrt{20}$$

e

$$|\vec{v}| = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$$

Observação 1.11: Tomando $\vec{u}=(x_1,y_1)$, temos que $|\vec{u}|=\sqrt{{x_1}^2+\ {y_1}^2}$, temos:

$$|\vec{u}|^2 = (\sqrt{x_1^2 + y_1^2})^2 = x_1^2 + y_1^2 \iff |\vec{u}|^2 = \vec{u} \cdot \vec{u}$$

A observação acima, nos diz que a norma do vetor \vec{u} ao quadrado é igual ao produto interno do \vec{u} por ele mesmo.

Observação 1.12: Conhecido a forma de calcular o módulo de um vetor \vec{u} , podemos determinado o versor de \vec{u} da seguinte forma. Seja \vec{v} o vesor de \vec{u} , temos:

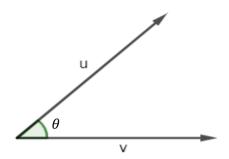
$$\vec{v} = \frac{1}{|\vec{u}|} \vec{u}$$

Note que \vec{v} tem mesmo sentido e diração de \vec{u} , e ainda, $|\vec{v}| = 1$

1.11 ÂNGULOS ENTRE VETORES

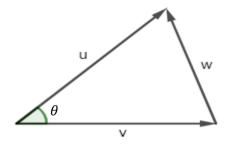
Seja θ o ângulo formado pelos vetores não nulos \vec{u} , $\vec{v} \in \mathbb{R}^2$, onde $0^{\circ} \le \theta \le 180^{\circ}$.

Figura 20- Ângulos entre vetores



Fonte: Autor

Figura 21- Triângulo entre vetores



Fonte: Autor

Note que o vetor:

$$\vec{w} = \vec{u} - \vec{v} \Rightarrow |\vec{w}| = |\vec{u} - \vec{v}|$$

Segue,

$$|\vec{w}|^2 = |\vec{u} - \vec{v}|^2$$

$$= (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$= |\vec{u}|^2 - 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2.$$

Aplicando a Lei dos cossenos no triângulo formado pelos vetores \vec{u} , \vec{v} e \vec{w} (Figura 21), temos:

$$|\vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2$$
. $|\vec{u}| \cdot |\vec{v}| \cos \theta$

Daí,

$$|\vec{u}|^2 - 2 \cdot \vec{u} \cdot \vec{v} + |\vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2 \cdot |\vec{u}| \cdot |\vec{v}| \cos \theta$$

E ainda,

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Logo,

$$\theta = arc \cos \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Como,

$$0 \le \theta = arc \cos \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} \le 180^{\circ}$$

Então,

(i)
$$\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} < 0 \iff 90^{\circ} < \theta \le 180^{\circ};$$

(ii)
$$0 < \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} \iff 0^{\circ} \le \theta < 90^{\circ};$$

(iii)
$$\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = 0 \iff \theta = 90^{\circ}.$$

Do item (iii) e pelo fato dos vetores \vec{u} , \vec{v} serem não nulos, segue que $\theta = 90^{\circ}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

Exemplo 1.8: Dados os vetores $\vec{u} = (2, 3)$ e $\vec{v} = (2, 1)$.

Segue,

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{(2,3) \cdot (2,1)}{(\sqrt{2^2 + 3^2}) \cdot (\sqrt{2^2 + 1^1})} = \frac{2 \cdot 2 + 3 \cdot 1}{\sqrt{13} \cdot \sqrt{5}} = \frac{7}{\sqrt{65}}$$

Logo,

$$\theta = arc \cos \frac{7}{\sqrt{65}}$$

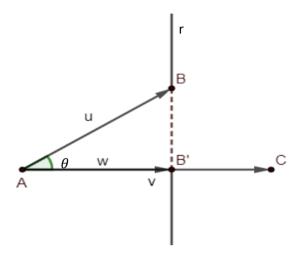
1.12 PROJEÇÃO ENTRE VETORES

Dados os vetores não nulos $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ e seja θ o ângulo formado por eles.

Veja as Figuras 22 e 23.

Caso 1: $0^{\circ} < \theta < 90^{\circ}$

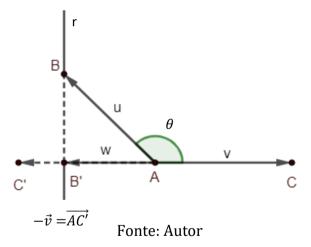
Figura 22- Proj. de \vec{u} sobre \vec{v}



Fonte: Autor

Caso 2: $90^{\circ} < \theta < 180^{\circ}$

Figura 23- Proj. de \vec{u} sobre $-\vec{v}$.



- Seja r perpendicular a \vec{v} e B' o ponto de interseção, segue $\vec{w} = \overrightarrow{AB'}$ é dito a projeção de \vec{u} sobre \vec{v} .(Figura 22)
- Seja r perpendicular a $(-\vec{v})$ e B' o ponto de interseção, segue $\vec{w} = \overrightarrow{AB'}$ é dito a projeção de \vec{u} sobre \vec{v} .(Figura 23)

Observação 1.13: Caso em que $\theta = 90^{\circ}$, teremos $\vec{w} = \overrightarrow{AB'}$, onde A = B', isto é, $\vec{w} = \overrightarrow{AB'} = \vec{0}$.

De posse do que foi dito, iremos exibir o vetor \vec{w} em função dos vetores \vec{u} e \vec{v} . As Figuras 22 e 23 ilustram as duas situações possíveis para o ângulo θ . Note que em ambas os casos teremos \vec{w} na mesma direção do vetor \vec{v} , isto é, existe um $k \in \mathbb{R}$, tal que:

$$\vec{w} = k \cdot \vec{v} \tag{1.4}$$

Daí:

$$|\vec{w}| = |k| \cdot |\vec{v}| \iff |k| = \frac{1}{|\vec{v}|} \cdot |\vec{w}|$$

Temos ainda que:

$$|\vec{w}| = |\vec{u}| \cdot \cos \theta = |\vec{u}| \cdot \left(\frac{|\vec{u}.\vec{v}|}{|\vec{u}|.|\vec{v}|}\right) = \frac{|\vec{u}.\vec{v}|}{|\vec{v}|}$$

Logo,

$$|k| = \frac{1}{|\vec{v}|} \cdot \left(\frac{|\vec{u} \cdot \vec{v}|}{|\vec{v}|}\right) = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{v}|^2} \iff k = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}$$
(1.5)

Substituindo (1.5) em (1.4), temos:

$$\vec{w} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \cdot \vec{v}$$

Notação:

$$Proj_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \cdot \vec{v}$$

Exemplo 1.9: Dados $\vec{u} = (2, 1)$ e $\vec{v} = (-1, 0)$. Determine a $Proj_{\vec{v}} \vec{u}$. Temos:

$$Proj_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \cdot \vec{v} = \left(\frac{2(-1)+1\cdot 0}{(-1)^2+(0)^2}\right) \cdot (-1,0) = \left(\frac{-2}{1}\right) \cdot (-1,0) = (2,0)$$

2 TRIÂNGULOS

Este capítulo apresenta o estudo dos triângulos sob uma perspectiva vetorial, utilizando conceitos fundamentais da geometria analítica para explorar propriedades, classificações e características centrais dessas figuras planas.

2.1 CONDIÇÃO DE EXISTÊNCIA

Nesta seção, discutiremos as condições necessárias para a existência de um triângulo. A análise vetorial nos permitirá visualizar quando três vetores formam ou não um triângulo, considerando seus módulos e direções.

Dados os pontos $A=(x_1,y_1)$, $B=(x_2,y_2)$ e $C=(x_3,y_3)$ pontos do \mathbb{R}^2 e seja θ o ângulo formado pelos vetores $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$ e $\overrightarrow{AC}=(x_3-x_1,y_3-y_1)$. Pela Seção 1.13, os pontos A,B e C serão colineares se:

(i)
$$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = 1$$

(ii)
$$\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = -1$$

Do item (i) temos:

$$\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = 1 \quad \Leftrightarrow \quad \overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}|$$

Como,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = (x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)$$

e

$$|\overrightarrow{AB}| \cdot |\overrightarrow{AC}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \cdot \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}$$

Segue,

$$[(x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)]^2 = 0$$

Isto é,

$$(x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1) = 0$$

De forma análoga, tem-se o mesmo resultado para o item (ii).

Portanto, os pontos A, B e C serão vértices de um triângulo se:

$$det\begin{pmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{pmatrix} \neq 0$$

Isto é, os pontos A,B e C serão vértice de um triângulo se o determinante das coordenadas dos vetores \overrightarrow{AB} e \overrightarrow{AC} for diferente de O(zero).

Exemplo 2.1: Dados os pontos A = (2,3), B = (-2,5) e C = (1,4). Mostremos que os pontos são vértices de um triângulo.

Temos,

$$\overrightarrow{AB} = (-4, 2) e \overrightarrow{AC} = (-1, 1).$$

Daí,

$$det \begin{pmatrix} -4 & 2 \\ -1 & 1 \end{pmatrix} = -4 \cdot 1 - (2(-1)) = -4 + 2 = -2 \neq 0$$

Logo, *A*, *B* e *C* são vértice de um triângulo.

2.2 CLASSIFICAÇÃO DOS TRIÂNGULOS QUANTO AOS ÂNGULOS

Utilizando a linguagem vetorial, classificaremos os triângulos com base na medida de seus ângulos internos. Essa abordagem permite deduzir tais classificações a partir de produtos escalares e cálculo da norma de vetores, proporcionando uma análise rigorosa e coerente com a estrutura algébrica do plano.

2.2.1 Triângulo retângulo

Proposição 2.1: Dados os pontos *A*, *B* e *C* vértice de um triângulo. Segue:

- (i) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \iff \Delta ABC \text{ \'e retângulo em \^A};$
- (ii) $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}|^2 \iff \Delta ABC \text{ \'e retângulo em } \widehat{B};$
- (iii) $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AC}|^2 \iff \Delta ABC \text{ \'e retângulo em } \hat{C}.$

Prova do item (i):

Seja θ o ângulo formado pelos vetores os $\vec{u}=\overrightarrow{AC}$ e $\vec{v}=\overrightarrow{AB}$. Pela definição de produto interno temos:

$$\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos \theta \iff \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Logo,

$$\theta = arc \cos \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|}$$

Pela Seção 1.11 temos $0 \le \theta = arc \cos \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} \le 180^{\circ}$.

Assim,

$$\frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = 0 \iff \theta = 90^{\circ}$$

Portanto,

$$\vec{u} \cdot \vec{v} = 0 \iff \theta = 90^{\circ}$$

O que prova o item (i).

Prova do item (ii):

Na Seção 1.14 foi mostrado como exibir a projeção entre dois vetores.

De fato,

$$Proj_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}\right) \vec{v} \tag{2.1}$$

Por hipótese,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}|^2 \iff \overrightarrow{u} \cdot \overrightarrow{v} = |\overrightarrow{v}|^2 \iff \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|^2} = 1$$
 (2.2)

Substituindo (2.2) em (2.1) temos:

$$Proj_{\vec{v}} \vec{u} = 1 \cdot \vec{v} = \vec{v}$$

Logo o triângulo de vértices ABC é retângulo em \hat{B} .

Prova do item (iii) é análoga ao item (ii), segue:

$$Proj_{\vec{u}} \ \vec{v} = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2}\right) \vec{u} \tag{2.3}$$

Por hipótese,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AC}|^2 \iff \overrightarrow{v} \cdot \overrightarrow{u} = |\overrightarrow{u}|^2 \iff \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}|^2} = 1$$
 (2.4)

Substituindo (2.4) em (2.3) temos:

$$Proj_{\vec{u}} \vec{v} = 1 \cdot \vec{u} = \vec{u}$$

Logo o triângulo de vértices ABC é retângulo em \hat{C} .

Fica assim demonstrado a Proposição 2.1. A recíproca da Proposição 2.1 é imediata.

Exemplo 2.2: Sejam A, B e C pontos não colineares do \mathbb{R}^2 . Mostre que tais pontos são vértices de um triângulo retângulo.

a)
$$A = (2, 1)$$
; $B = (4, 3)$; $C = (2, 5)$

b)
$$A = (-3,3)$$
; $B = (1,-1)$; $C = (-3,-1)$

c)
$$A = (-2, 1)$$
; $B = (0, 3)$; $C = (1, -2)$

Resolução da alternativa (a)

Note que,

$$\overrightarrow{AB} = (2, 2) e \overrightarrow{AC} = (0, 4).$$

Segue,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \cdot 0 + 2 \cdot 4 = 8$$

e

$$|\overrightarrow{AB}|^2 = (2)^2 + (2)^2 = 4 + 4 = 8$$

Aplicando o item (ii) da Proposição 2.1, temos:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}|^2 \Rightarrow \Delta ABC$$
 é retângulo em \widehat{B} .

Resolução da alternativa (b)

Note que,

$$\overrightarrow{AB} = (4, -4) e \overrightarrow{AC} = (0, -4).$$

Segue,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 16$$

e

$$|\overrightarrow{AC}|^2 = (0)^2 + (-4)^2 = 16$$

Aplicando o item (iii) da Proposição 2.1, temos:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AC}|^2 \Rightarrow \Delta \ ABC \ \text{\'e} \ \text{retângulo em} \ \widehat{C}.$$

Resolução da alternativa (c)

Note que,

$$\overrightarrow{AB} = (2, 2) \ \overrightarrow{AC} = (3, -3).$$

Segue,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 - 6 = 0$$

Aplicando o item (i) da Proposição 2.1, temos:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 0 \Rightarrow \Delta ABC$$
 é retângulo em \widehat{A} .

2.2.2 Triângulo obtusângulo

Proposição 2.2: Dados os pontos *A*, *B* e *C* vértice de um triângulo. Segue:

(i)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} < 0 \iff \hat{A} > 90^{\circ}$$

(ii)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} > |\overrightarrow{AB}|^2 \iff \widehat{B} > 90^{\circ}$$

(iii)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} > |\overrightarrow{AC}|^2 \iff \hat{C} > 90^{\circ}$$

Demonstração: Análoga a demonstração da Proposição 2.1.

Observação 2.1: Como a soma dos ângulos internos de um triângulo é sempre igual a 180°, temos que para um triângulo ser obtusângulo se faz necessário que ocorra apenas um dos itens acima.

2.2.3 Triângulo acutângulo

Proposição 2.3: Dados os pontos *A*, *B* e *C* vértice de um triângulo. Segue:

(i)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} > 0 \Leftrightarrow \widehat{A} < 90^{\circ}$$

(ii)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} < |\overrightarrow{AB}|^2 \iff \widehat{B} < 90^{\circ}$$

(iii)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} < |\overrightarrow{AC}|^2 \iff \hat{C} < 90^{\circ}$$

Demonstração: Análoga a demonstração da Proposição 2.1.

Observação 2.2: Para que o triângulo seja acutângulo, os itens acima devem ser satisfeitos simultaneamente.

Exemplo 2.3: Dados A, B e C pontos não colineares do \mathbb{R}^2 . Classifique os triângulos quanto aos ângulos.

a)
$$A = (4, 1)$$
; $B = (1, 2)$; $C = (2, 4)$

b)
$$A = (5,3)$$
; $B = (-1,3)$; $C = (-2,-1)$

Resolução da alternativa a)

Note que,

$$\overrightarrow{AB} = (-3, 1) e \overrightarrow{AC} = (-2, 3)$$

Segue,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 + 3 = 9$$

$$|\overrightarrow{AB}|^2 = (-3)^2 + (1)^2 = 9 + 1 = 10$$

e

$$|\overrightarrow{AC}|^2 = (-2)^2 + (3)^2 = 4 + 9 = 13$$

Pela Proposição 2.3 temos que o triângulo Δ ABC é acutângulo.

Resolução da alternativa b)

Note que,

$$\overrightarrow{AB} = (-6, 0)$$
 e $\overrightarrow{AC} = (-7, -4)$.

Segue,

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 42 + (0) = 42$$

e

$$|\overrightarrow{AB}|^2 = (-6)^2 + (0)^2 = 36$$

Pela Proposição 2.3 temos que o triângulo Δ *ABC* é obtusângulo.

2.3 CLASSIFICAÇÃO DOS TRIÂNGULOS QUANTO AOS LADOS

Nesta seção, trataremos da classificação dos triângulos segundo a relação entre os comprimentos de seus lados. O enfoque vetorial permite calcular e comparar módulos dos vetores associados aos lados.

Definição 2.1: Sejam A, B e C pontos não colineares do \mathbb{R}^2 . Temos:

- (i) $|\overrightarrow{AB}|^2 \neq |\overrightarrow{AC}|^2 \neq |\overrightarrow{BC}|^2$, temos \triangle ABC é escaleno;
- (ii) $|\overrightarrow{AB}|^2 = |\overrightarrow{AC}|^2$ ou $|\overrightarrow{AB}|^2 = |\overrightarrow{BC}|^2$ ou $|\overrightarrow{AC}|^2 = |\overrightarrow{BC}|^2$, temos $\triangle ABC$ é isósceles;
- (iii) $|\overrightarrow{AB}|^2 = |\overrightarrow{AC}|^2 = |\overrightarrow{BC}|^2$, temos $\triangle ABC$ é equilátero.

Exemplo 2.4: Sejam $A, B \in C$ pontos não colineares do \mathbb{R}^2 . Classifique os triângulos quanto aos lados.

a)
$$A = (4, 1)$$
; $B = (1, 2)$; $C = (4, 4)$

b)
$$A = (5,2)$$
; $B = (1,2)$; $C = (3,4)$

c)
$$A = (0,0)$$
; $B = (2,0)$; $C = (1,\sqrt{3})$

Resolução da alternativa (a)

Note que:

$$\overrightarrow{AB} = (-3, 1)$$
, $\overrightarrow{AC} = (0, 3)$ e $\overrightarrow{BC} = (3, 2)$.

Daí,

$$|\overrightarrow{AB}|^2 = 10$$
; $|\overrightarrow{AC}|^2 = 9$; $|\overrightarrow{BC}|^2 = 13$

Logo o triângulo Δ *ABC* é escaleno.

Resolução da alternativa (b)

Note que:

$$\overrightarrow{AB} = (-4, 0)$$
, $\overrightarrow{AC} = (-2, 2)$ e $\overrightarrow{BC} = (2, 2)$

Daí,

$$|\overrightarrow{AB}|^2 = 16$$
; $|\overrightarrow{AC}|^2 = 8$; $|\overrightarrow{BC}|^2 = 8$

Logo o triângulo Δ *ABC* é isósceles.

Resolução da alternativa (c)

Note que:

$$\overrightarrow{AB} = (2,0)$$
, $\overrightarrow{AC} = (1,\sqrt{3})$ e $\overrightarrow{BC} = (-1,\sqrt{3})$

Daí,

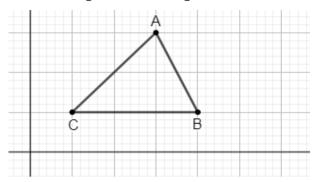
$$|\overrightarrow{AB}|^2 = 4$$
; $|\overrightarrow{AC}|^2 = 4$; $|\overrightarrow{BC}|^2 = 4$

Logo o triângulo \triangle *ABC* é equilátero.

2.4 ÁREA DO TRIÂNGULO

Ao estudar vetores, tomamos posse de uma excelente ferramenta que nos auxilia em diversos problemas matemáticos, entre eles, temos o cálculo de áreas de figuras geométricas. Nesta seção, teremos condições de calcular área de um triângulo determinado por quaisquer pontos $A, B \in C \in \mathbb{R}^2$, não colineares. Veja Figura 24.

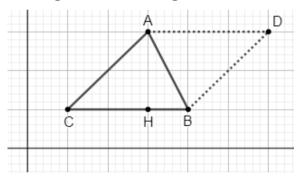
Figura 24- Triângulo *ABC*



Fonte: Autor

Tomemos um ponto $D \in \mathbb{R}^2$, tal que ADBC seja um paralelogramo. Considere ainda o ponto $H \in CB$, onde AH é altura do triângulo ABC. Veja Figura 25.

Figura 25- Paralelogramo ADBC



Fonte: Autor

Temos:

$$\overrightarrow{CH} = Proj_{\overrightarrow{CB}} \ \overrightarrow{CA} = \left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CB}|^2}\right) \overrightarrow{CB}$$

Isto é,

$$|\overrightarrow{CH}| = \frac{|\overrightarrow{CA} \cdot \overrightarrow{CB}|}{|\overrightarrow{CB}|}$$

Assim,

$$|\overrightarrow{CA}|^2 = |\overrightarrow{AH}|^2 + |\overrightarrow{CH}|^2 = |\overrightarrow{AH}|^2 + \left(\frac{|\overrightarrow{CA} \cdot \overrightarrow{CB}|}{|\overrightarrow{CB}|}\right)^2$$

Daí,

$$|\overrightarrow{AH}|^2 = |\overrightarrow{CA}|^2 - \left(\frac{|\overrightarrow{CA} \cdot \overrightarrow{CB}|}{|\overrightarrow{CB}|}\right)^2 = \frac{|\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2}{|\overrightarrow{CB}|^2}$$

Logo,

$$|\overrightarrow{AH}| = \frac{\sqrt{|\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2}}{|\overrightarrow{CB}|}$$

Assim, sendo A_p a área do paralelogramo determinado pelos vetores \overrightarrow{CA} e \overrightarrow{CB} , temos:

$$A_p = |\overrightarrow{CB}| \frac{\sqrt{|\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2}}{|\overrightarrow{CB}|} = \sqrt{|\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2}$$

Segue,

$$(A_p)^2 = |\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2$$

Tomando $\overrightarrow{CA} = (x_1, y_1)$ e $\overrightarrow{CB} = (x_2, y_2)$, temos:

$$(A_p)^2 = |\overrightarrow{CA}|^2 \cdot |\overrightarrow{CB}|^2 - (\overrightarrow{CA} \cdot \overrightarrow{CB})^2 = (x_1^2 + y_1^2)(x_2^2 + y_2^2) - (x_1x_2 + y_1y_2)^2$$

Daí,

$$(A_p)^2 = (x_1y_2 - y_1x_2)^2$$

Assim,

$$A_p = |x_1 y_2 - y_1 x_2| = \left| \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} \right|$$

Temos que a área do paralelogramo será o determinante em módulo, das coordenadas dos vetores \overrightarrow{CA} e \overrightarrow{CB} . Como o triângulo de vértices A, B e C tem metade da área do paralelogramo determinado pelos vetores \overrightarrow{CA} e \overrightarrow{CB} , segue:

$$A_T = \frac{1}{2} A_p$$

Exemplo 2.5: Seja A = (1, -2), B = (2, -1)e C = (-1, -3) vértices de um triângulo. Calcule sua área.

Temos,

$$\overrightarrow{AB} = (1,1)$$
 e $\overrightarrow{AC} = (-2,1)$

Segue,

$$A_T = \frac{1}{2} \left| \det \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \right| = \frac{1}{2} |1(1) - 1(-2)| = \frac{1}{2} |1 + 2| = \frac{1}{2} |3| = \frac{3}{2}$$

3 ESTUDO DA RETA

Neste capítulo, exploraremos o conceito de reta no plano utilizando uma abordagem vetorial. A descrição de retas por vetores diretores e pontos de apoio favorece a compreensão geométrica e algébrica simultânea, unificando diferentes formas de representação da reta. Esse estudo é fundamental na geometria analítica vetorial, pois permite estabelecer relações entre direção, inclinação e interseções.

3.1 EQUAÇÃO VETORIAL DA RETA

Apresentaremos a equação vetorial da reta como expressão fundamental que liga um ponto dado no espaço a um vetor diretor. Essa forma facilita a construção e interpretação geométrica da reta. Seja P um ponto e \vec{v} um vetor, ambos pertencentes a \mathbb{R}^2 .

Figura 26- Ponto P e vetor \vec{v}

Fonte: Autor

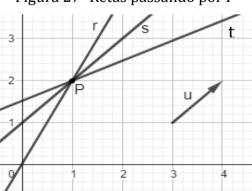


Figura 27- Retas passando por P

Fonte: Autor

Na Figura 26 temos a representação do ponto P e o vetor \vec{v} . A Figura 27 mostra que as retas r, s e t passam por P, no entanto, apenas a reta s passa por P e tem mesma direção do vetor \vec{v} . Portanto, existe uma única reta passando por P e com mesma direção de \vec{v} . Se A é um ponto da reta s, temos que existe um $\lambda \in \mathbb{R}$ tal que:

$$\overrightarrow{PA} = \lambda \cdot \vec{v} \iff A - P = \lambda \cdot \vec{v} \iff A = P + \lambda \cdot \vec{v}$$

Temos que $A = P + \lambda \cdot \vec{v}$ é dito equação vetorial da reta.

- 0 ponto *A* pertence a reta **s** para $\lambda \in \mathbb{R}$;
- \vec{v} é dito vetor diretor da reta s.

Exemplo 3.1: Obtenha a equação vetorial da reta que passa pelos pontos A = (2,3) e B = (5,4).

Note que $\overrightarrow{AB} = (3,1)$. Assim, se X(x,y) é um ponto da reta que passa por $A \in B$ temos que existe um $\lambda \in \mathbb{R}$ tal que:

$$\overrightarrow{AX} = \lambda \cdot \overrightarrow{AB} \iff X - A = \lambda \cdot \overrightarrow{AB} \iff X = A + \lambda \cdot \overrightarrow{AB} \iff (x, y) = (2, 3) + \lambda(3, 1)$$

3.2 EQUAÇÃO REDUZIDA DA RETA

Mostraremos como a equação vetorial pode ser transformada na equação reduzida (ou explícita) da reta, discutindo sua interpretação geométrica e aplicação em problemas práticos.

Seja r a reta que passa pelo ponto $P=(x_1,y_1)$ e $\vec{v}=(a,b)$ o vetor diretor da reta r. Se A=(x,y) é um ponto qualquer de da reta r.

Temos,

$$A = P + \lambda \cdot \vec{v} \quad \Leftrightarrow \quad (x, y) = (x_1, y_1) + \lambda(a, b) \quad \Leftrightarrow \quad \begin{cases} x = x_1 + \lambda \cdot a \\ y = y_1 + \lambda \cdot b \end{cases}$$

E ainda,

$$\begin{cases} \lambda a = x - x_1 \\ \lambda b = y - y_1 \end{cases} \iff \frac{x - x_1}{a} = \frac{y - y_1}{b} \iff y = \frac{b}{a}x - \frac{b}{a}x_1 + y_1$$

Tomando
$$m = \frac{b}{a}$$
 e $n = (-\frac{b}{a}x_1 + y_1)$

Segue,

$$y = m \cdot x + n \tag{3.2}$$

Temos que (3.2) é dito equação reduzida da reta.

Exemplo 3.2: Iremos exibir a equação reduzida do Exemplo 3.1.

Temos,

$$(x,y) = (2,3) + \lambda(3,1) \Leftrightarrow \begin{cases} x = 2 + \lambda \cdot 3 \\ y = 3 + \lambda \cdot 1 \end{cases} \Leftrightarrow \begin{cases} 3\lambda = x - 2 \\ \lambda = y - 3 \end{cases}$$

Daí,

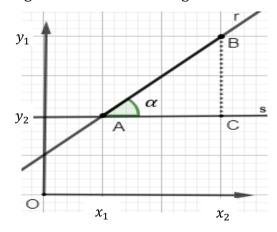
$$\frac{x-2}{3} = \frac{y-3}{1} \iff y = \frac{x+7}{3}$$

3.2.1 Coeficiente angular da reta

Determinaremos o coeficiente angular a partir da razão entre as componentes do vetor diretor, destacando seu papel na inclinação da reta e nas relações entre retas.

Definição 3.1: Definimos por coeficiente angular da reta a tangente do ângulo determinado pela reta e o eixo das abscissas.

Figura 28- Coeficiente angular da reta



Fonte: Autor

Dada a reta s paralela ao eixo das abscissas e $\overrightarrow{AB} = (a,b)$ o vetor diretor da reta r. O coeficiente angular da reta r é dado pela tangente do ângulo α . Daí, temos:

$$tg \ \alpha = \frac{y_2 - y_1}{x_2 - x_1} = \frac{b}{a} = m \qquad (a \neq 0)$$

Logo, o coeficiente angular da reta r será a razão entre a segunda e a primeira coordenadas do seu vetor diretor.

Observação 3.1: Em relação ao estudo do sinal do coeficiente angular *m*, temos:

- m > 0, dizemos que a inclinação de r é positiva;
- m < 0, dizemos que a inclinação de r é negativa;
- m = 0, dizemos que a reta r é paralela ao eixo das abscissas.

Exemplo 3.3: Seja r uma reta determinada pelos pontos A = (4,8) e B = (6,-2). Determine o coeficiente angular da reta r.

Vimos que o coeficiente angular da reta r será a razão entre a segunda e a primeira coordenadas do seu vetor diretor. Daí:

$$\overrightarrow{AB} = (2, -10)$$
. Logo $m = \frac{-10}{2} = -5 \implies m = -5$

3.3 POSIÇÕES ENTRE DUAS RETAS

Analisaremos como duas retas podem se relacionar no plano: sendo paralelas, concorrentes ou perpendiculares, a partir da comparação entre seus vetores diretores.

3.3.1 Retas paralelas

A proposição seguinte nos dá condições necessárias para determinar o paralelismo entre duas retas r e s contidas em um plano, analisando seus respectivos vetores diretores.

Proposição 3.1: Sejam $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$ os vetores diretores das retas r e s, respectivamente. Dizemos que r é paralela a s (Notação; $r \mid\mid s$) se existe um $\lambda \in \mathbb{R}$ tal que:

$$\vec{u} = \lambda \cdot \vec{v} \iff \frac{x_1}{x_2} = \frac{y_1}{y_2} \iff \frac{y_2}{x_2} = \frac{y_1}{x_1} \iff m_r = m_s$$

onde m_r e m_s são os coeficientes angulares das retas r e s respectivamente.

Demonstração: É imediato, vide a Subseção 3.2.1

Observação 3.2: Note que:

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} \Leftrightarrow x_1 y_2 = y_1 x_2 \Leftrightarrow x_1 y_2 - y_1 x_2 = 0 \Leftrightarrow det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} = 0.$$

Isto é, as retas r e s serão paralelas se, somente se, o determinante das coordenadas dos vetores \vec{u} e \vec{v} for igual a 0.

Exemplo 3.4: Seja $\vec{u} = (3, 2)$ o vetor diretor da reta r. Os pontos A = (4, 8) e B = (-2, 4) pertencem a reta s. Mostremos que $r \mid \mid s$.

Note que $\overrightarrow{AB} = (-6, -4)$ o vetor diretor da reta *s*. Temos:

$$m_r = \frac{2}{3} \text{ e } m_s = \frac{-4}{-6} = \frac{2}{3} \implies m_r = m_s \implies r \mid\mid s.$$

3.3.2 Equação reduzida da reta paralela a uma reta dada e contendo um ponto fora dela

O resultado que segue, nos dará condições de exibir a equação reduzida da reta paralela a uma reta \overrightarrow{AB} dada e contendo um ponto $P = (x_P, y_P)$ fora dela.

Proposição 3.2: Dada uma reta r determinada pelos pontos A e B. Seja $P=(x_P,y_P)$ um ponto não pertencente a r e $\vec{v}=(a,b)$ o vetor diretor da reta \overrightarrow{AB} . A equação reduzida de uma reta paralela a reta r passando pelo ponto P será dada por:

$$\det\begin{pmatrix} a & b \\ x - x_P & y - y_P \end{pmatrix} = 0,$$

onde x e y são as coordenadas do ponto $Q \neq P$, tal que $\overrightarrow{AB} \parallel \overrightarrow{PQ}$.

Demonstração:

De fato,

Note que $\overrightarrow{PQ} = (x - x_P, y - y_P)$ é vetor diretor da reta \overrightarrow{PQ} . Assim:

$$\overleftarrow{AB} \parallel \overleftarrow{PQ} \iff \vec{v} \parallel \overrightarrow{PQ}$$

Daí:

$$\det\begin{pmatrix} a & b \\ x - x_P & y - y_P \end{pmatrix} = 0$$

Segue,

$$a(y - y_P) - b(x - x_P) = 0$$

Logo,

$$y = \frac{b}{a}(x - x_P) + y_P$$

O que conclui a demonstração.

Exemplo 3.5: Determine a equação da reta paralela à reta determinada pelos pontos de coordenadas A = (1,3) e B = (3,-3) passando pelo ponto P = (2,3).

Seja $Q=(x,y)\notin \overrightarrow{AB}$. Note que $\overrightarrow{AB}=(2,-6)$ e $\overrightarrow{PQ}=(x-2,\ y-3)$ são os vetores diretores das retas \overleftarrow{AB} e \overrightarrow{PQ} , respectivamente.

Temos,

$$det \begin{pmatrix} a & b \\ x - x_P & y - y_P \end{pmatrix} = 0 \Leftrightarrow det \begin{pmatrix} 2 & -6 \\ x - 2 & y - 3 \end{pmatrix} = 0$$

Segue,

$$2.(y-2)-(x-2)(-6)=0$$

Logo, a equação da reta paralela à reta determinada pelos pontos de coordenadas A = (1,3) e B = (3,-3) passando pela ponto P = (2,3) é dada por:

$$y = -3x + 9$$

3.3.3 Retas concorrentes

Exploraremos as condições sob as quais duas retas se interceptam em um único ponto, isto é $m_s \neq m_r$, analisando a compatibilidade entre seus sistemas vetoriais.

Exemplo 3.6: Dados $\vec{u}=(4,8)$ e $\vec{v}=(3,9)$ vetores diretores das retas r e s , respectivamente. Temos:

$$m_s = \frac{y_2}{x_2} = \frac{9}{3} = 3$$
 e $m_r = \frac{y_1}{x_1} = \frac{8}{4} = 2$

Temos $m_s \neq m_r$. Logo, a reta r é concorrente a reta s.

Observação 3.2: Vide Observação 3.1 , é imediato que as retas $r \in s$ serão concorrentes se $det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} \neq 0$.

3.3.4 Método prático para determinar o ponto comum entre duas retas concorrentes

Segue um procedimento algébrico prático para encontrar o ponto de interseção entre duas retas, partindo de suas equações vetoriais.

Proposição 3.3: Sejam r e s duas retas concorrentes, onde $(x_A, y_A) \in r$ e $(x_B, y_B) \in s$, e ainda, (a, b) e (c, d) vetores diretores das retas r e s, respectivamente. Logo existem $\alpha, \beta \in \mathbb{R}$ tais que:

$$r \cap s = (x_A + \alpha \cdot a, y_A + \alpha \cdot b) = (x_B + \beta \cdot c, y_B + \beta \cdot d)$$

onde,

$$\alpha = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ c & d \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}} \quad \text{e} \quad \beta = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ a & b \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

Demonstração:

De fato,

$$r := (x, y) = (x_A, y_A) + \alpha(a, b), \operatorname{com} \alpha \in \mathbb{R} \Rightarrow r := \begin{cases} x = x_A + \alpha \cdot a \\ y = y_A + \alpha \cdot b \end{cases}$$
(3.3)

$$s := (x, y) = (x_B, y_B) + \beta(c, d), \operatorname{com} \beta \in \mathbb{R} \Rightarrow s := \begin{cases} x = x_B + \beta \cdot c \\ y = y_B + \beta \cdot d \end{cases}$$
(3.4)

De (3.3) e (3.4) temos:

$$x_A + \alpha \cdot a = x_B + \beta \cdot c \quad \Rightarrow \quad \beta = \frac{x_A + \alpha \cdot a - x_B}{c}$$
 (3.5)

$$y_A + \alpha \cdot b = y_B + \beta \cdot d \quad \Rightarrow \quad \beta = \frac{y_A + \alpha \cdot b - y_B}{d}$$
 (3.6)

De (3.5) e (3.6) temos:

$$\frac{x_A + \alpha \cdot a - x_B}{c} = \frac{y_A + \alpha \cdot b - y_B}{d} \quad \Leftrightarrow \quad \alpha = \frac{d(x_B - x_A) - c(y_B - y_A)}{ad - bc}$$

Logo,

$$\alpha = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ c & d \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

De forma análoga, temos:

$$\beta = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ a & b \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

Portanto, o ponto $r \cap s = (x_A + \alpha \cdot a, y_A + \alpha \cdot b) = (x_B + \beta \cdot c, y_B + \beta \cdot d)$, onde:

$$\alpha = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ c & d \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}} \quad \text{e} \quad \beta = \frac{\det \begin{pmatrix} x_B - x_A & y_B - y_A \\ a & b \end{pmatrix}}{\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}}$$

Exemplo 3.7: Dadas as retas r e s, não paralelas e definidas pelas equações abaixo. Determine o ponto de interseção dessas retas.

$$r := (x, y) = (1, 5) + \alpha(2, 1), \text{ com } \alpha \in \mathbb{R}$$

$$s := (x, y) = (4, 3) + \beta(3, 5), \text{com } \beta \in \mathbb{R}$$

Utilizando a Proposição 3.3, existe um $\alpha \in \mathbb{R}$, tal que o ponto $P = (x_A + \alpha \cdot a, y_A + \alpha \cdot b) = r \cap s$. Daí:

$$\alpha = \frac{\det \binom{x_B - x_A \quad y_B - y_A}{c}}{\det \binom{a \quad b}{c \quad d}} = \frac{\det \binom{4 - 1 \quad 3 - 5}{3 \quad 5}}{\det \binom{2 \quad 1}{3 \quad 5}}$$
$$= \frac{\det \binom{3 \quad -2}{3 \quad 5}}{\det \binom{2 \quad 1}{3 \quad 5}}$$
$$= \frac{3 \cdot 5 - (-2) \cdot 3}{2 \cdot 5 - 1 \cdot 3} = \frac{15 + 6}{10 - 3} = \frac{21}{7} = 3$$

Portanto,

$$P = (1 + 3 \cdot 2.5 + 3 \cdot 1) \Leftrightarrow P = (7.8)$$

3.3.5 Discussão de um sistema linear de duas equações e duas vaiáveis

Relacionaremos o estudo das retas com a resolução de sistemas lineares, discutindo os casos de existência e unicidade de solução. Essa conexão evidencia a importância da álgebra linear no tratamento de problemas geométricos.

Dados $(x_A, y_A) \in r$, $(x_B, y_B) \in s$ e sejam $\vec{u} = (a, b)$ e $\vec{v} = (c, d)$ os vetores diretores das retas r e s, respectivamente. Temos:

(i) O sistema linear é dito possível e indeterminado se:

$$det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$$
 e $det\begin{pmatrix} x_B - x_A & y_B - y_A \\ c & d \end{pmatrix} = 0$;

- (ii) O sistema linear é dito possível e determinado se $det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$;
- (iii) O sistema linear é dito impossível se:

$$det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$$
 e $det\begin{pmatrix} x_B - x_A & y_B - y_A \\ c & d \end{pmatrix} \neq 0$.

Observação 3.3: A análise feita acima é análoga para o $det \begin{pmatrix} x_B - x_A & y_B - y_A \\ a & b \end{pmatrix}$.

3.3.6 Ângulos entre duas retas concorrentes

Mostraremos como calcular o ângulo formado entre duas retas concorrentes utilizando o produto escalar de seus vetores diretores. Para tanto, iniciemos com a seguinte definição.

Definição 3.2: Seja θ o ângulo formado por duas retas concorrentes r e s. O valor de θ será o ângulo formado pelos vetores diretores de suas respectivas retas.

Exemplo 3.8: Sejam $\vec{u}=(2,2)$ e $\vec{v}=(1,0)$ vetores diretores das retas r e s , respectivamente. O ângulo formado por r e s será dado por:

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = \frac{(2,2)(1,0)}{(\sqrt{2^2 + 2^2})(\sqrt{1^2 + 0^1})} = \frac{2}{\sqrt{8} \cdot \sqrt{1}} = \frac{2}{\sqrt{8}}$$

Logo,

$$\theta = arc \cos \frac{2}{2\sqrt{2}} \iff \theta = 45^{\circ}$$

3.3.7 Retas perpendiculares

Apresentaremos as condições vetoriais para a perpendicularidade entre duas retas, com base na ortogonalidade de seus vetores diretores. A proposição que segue nos dará condição necessária para tal verificação.

Proposição 3.4: Dados $\vec{u} = (x_1, y_1)$ e $\vec{v} = (x_2, y_2)$ os vetores diretores das retas r e s, respectivamente. Se o produto interno dos vetores \vec{u} e \vec{v} for igual a zero então a reta r será perpendicular a reta s (Notação; $r \perp s$)

Demonstração:

Seja θ o ângulo formado pelos vetores \vec{u} e \vec{v} . Pela Seção 1.11 item (iii) temos que:

$$\vec{u} \cdot \vec{v} = 0 \Rightarrow \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{v}|} = 0 \Rightarrow \theta = 90^{\circ}$$

Exemplo 3.9: Seja $\vec{u} = (3, -2)$ o vetor diretor da reta r. Os pontos A = (2, -8) e B = (6, -2) pertencem a reta s. Mostremos que $r \perp s$.

Note que $\overrightarrow{AB} = (4, 6)$ o vetor diretor da reta s. Temos:

$$\vec{u} \cdot \vec{v} = 3.4 + (-2).6 = 12 - 12 = 0 \implies r \perp s.$$

3.3.8 Equação reduzida da reta perpendicular a uma reta dada e contendo um ponto fora dela

O resultado que apresentaremos, nos dar condições de exibir a equação reduzida da reta perpendicular a uma reta \overrightarrow{AB} dada e contendo um ponto $P = (x_P, y_P)$ fora dela.

Proposição 3.5: Dada uma reta r determinada pelos pontos A e B, e ainda, $\vec{v}=(a,b)$ seu vetor diretor. Seja $P=(x_P,y_P)$ um ponto não pertencente a r. A equação reduzida de uma reta perpendicular a reta r passando pelo ponto P será dada por:

$$(a,b)(x-x_{P},y-y_{P})=0$$

onde x e y são as coordenadas do ponto Q, tal que $\overrightarrow{AB} \perp \overrightarrow{PQ}$.

Demonstração:

Note que $\overrightarrow{PQ} = (x - x_P, y - y_P)$ é o vetor diretor da reta \overleftarrow{PQ} . Assim:

$$\overleftrightarrow{AB} \perp \overleftrightarrow{PQ} \Leftrightarrow \vec{v} \perp \overrightarrow{PQ}$$

Daí,

$$\vec{v} \cdot \overrightarrow{PQ} = 0 \Leftrightarrow (a, b)(x - x_P, y - y_P) = 0$$

Segue,

$$a(x - x_P) + b(y - y_P) = 0$$

Logo,

$$y = -\frac{a}{b}x + \left(\frac{a \cdot x_P + b \cdot y_P}{b}\right)$$

O que conclui nossa demonstração.

Exemplo 3.10: Seja r a reta que passa pelos pontos A=(2,1) e B=(1,0). Dê a equação da reta s que passa pelo ponto P=(2,3) e é perpendicular à reta r.

Tome $Q=(x,y)\in r$. Note que $\vec{v}=(-1,-1)$ e $\overrightarrow{PQ}=(x-2,\ y-3)$ são os vetores diretores das retas r e \overrightarrow{PQ} , respectivamente. Queremos $r\perp\overrightarrow{PQ}$. Pela Proposição 3.5 temos que a equação reduzida da reta \overrightarrow{PQ} será dada pelo $\vec{v}\cdot\overrightarrow{PQ}=0$.

Daí,

$$\vec{v} \cdot \overrightarrow{PQ} = 0 \Leftrightarrow (-1, -1)(x - 2, y - 3) = 0$$

Segue,

$$(-1)(x-2) + (-1)(y-3) = 0$$

Logo, a equação da reta s que passa pelo ponto P=(2,3) e é perpendicular à reta r é dada por:

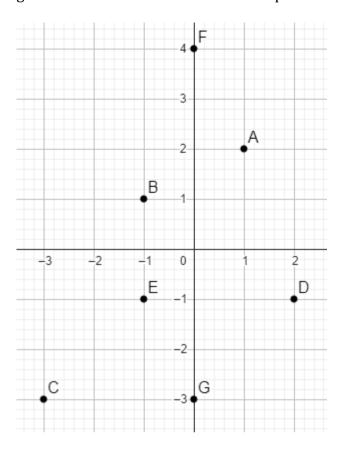
$$y = -x + 5$$

REFERÊNCIAS

- [1] BRASIL, M. DA E. Parâmetro Curriculares Nacionais: Ensino Médio. , [s.d.]. Disponível em: <chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.gov.br/mec/pt-br/escola-em-tempo-integral/BNCC_EI_EF_110518_versaofinal.pdf>. Acesso em: 13 agosto. 2025
- [2] LIMA, E. L. Geometria analítica e álgebra linear. [s.l.] Instituto Nacional de Mathática Pura e Aplicada, 2015.
- [3] OLIVEIRA, C. G. G. GEOMETRIA ANALÍTICA E VETORES NO ENSINO MÉDIO. GEOMETRIA ANALÍTICA E VETORES NO ENSINO MÉDIO, p. 85, 19 set. 2020.
- [4] FURLANI, C. UNIVERSIDADE ESTADUAL DE PONTA GROSSA SETOR DE CIÊNCIAS EXATAS E NATURAIS PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA PROFMAT. 2016.
- [5] WINTERLE, P.; STEINBRUCH, A. Geometria analítica. [s.l.] Makron Books, São Paulo, 2000.
- [6] BOULOS, P.; CAMARGO, I. DE. Geometria Analítica-Um tratamento vetorial. São Paulo: Ed. Prentice Hall Brasil, , 2005.
- [7] IEZZI, G. Fundamentos de matemática elementar, 7: geometria analítica/Gelson Iezzi.-. São Paulo: Atual, , 2005.
- [8] DANTE, Luiz Roberto. Matemática Contexto & Aplicações. Ens. Médio Vol. 3. São Paulo: Ática, 1999.
- [9] SMOLE, Kátia Cristina Stocco; DINIZ, Maria Ignez. Matemática Para Compreender o Mundo Ensino Médio Volume 3. 1. ed. São Paulo: Saraiva, 2016.

APÊNDICE A

1.1-Observe a figura e determine as coordenadas dos pontos em destaque.

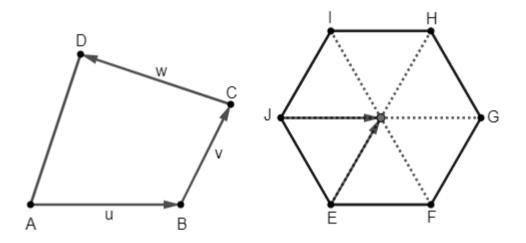


- 1.2-(DANTE,1999). Marque no sistema de coordenadas cartesianas ortogonais os pontos:
 - a) A(1,-2)
- b) D(0,3) c) Q(3,-2) d) B(-3,3)

- e) P(-1, -5)

- f) N(0,-4) g) C(4,4) h) M(-4,0)
- 1.3-(DANTE,1999). Sabendo que a. b > 0, em que (ou quais) quadrante(s) se encontra o ponto P(a, b)?
- 1.4-(DANTE,1999). Sabendo que P(2m + 1, -3m - 4) pertence ao terceiro quadrante, determine os possíveis valores de m.
- 1.5-(SMOLE,2016). Determine o valor de m para que o ponto M(m, 5) pertença ao(à):
- b) 1º quadrante c) 2º quadrante d) Bissetriz do 1º e 3º a) Eixo y quadrantes

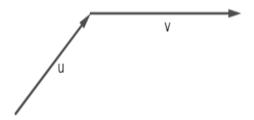
- e) Bissetriz do 2° e 4° quadrantes f) 3° quadrante
- 1.6- Seja $\vec{u}=(x+5,3+y)$ e $\vec{v}=(-2,4)$. Sabendo que $\vec{u}=\vec{v}$. Determine os valores de x e y.
- 1.7- Determine a soma dos vetores nas figuras abaixo:



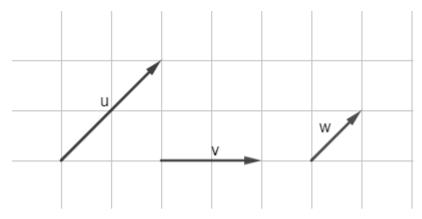
Obs: ABCD → Quadrilátero;

EFGHIJ → Hexágono regular.

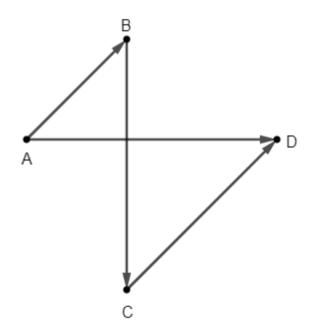
- 1.8- Em relação a exercício 1.7. Dê exemplos de vetores L. D e L. I.
- 1.9- Dados os vetores \vec{u} e \vec{v} represente graficamente o vetor $\vec{u} \vec{v}$.



1.10- Sabendo que a malha quadriculada tem quadradinhos de lado de medida 1(um). Determine o módulo dos vetores \vec{u} , \vec{v} e \vec{w} .



- 1.11- Utilizando o exercício 1.10. Qual o valor de:
 - a) $\vec{u} + \vec{v}$
 - b) $2.\vec{u} \vec{v} + \vec{w}$
 - c) $\vec{u} + 3.\vec{w}$
- 1.12- Observe a figura abaixo. Determine $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DB}$.



- 1.13- Dados o vetores $\vec{u}=(1, 3), \vec{v}=(-2, 4)$ e $\vec{w}=(-1, -5)$ encontre as componentes dos vetores abaixo:
 - a) $2.\vec{u} + \vec{w}$
 - b) $3.\vec{u} 2.\vec{v}$
 - c) $-\vec{u} + 2.\vec{v} 3.\vec{w}$
 - d) $\vec{w} \vec{v}$

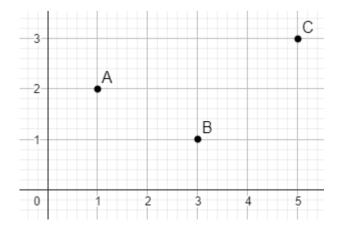
- 1.14- (DANTE, 1999). Determine as coordenadas do ponto médio dos segmentos de extremidades:
 - a) A(-1, 6) e B(-5, 4)
 - b) A(1, -7) e B(3, 5)
 - c) $A(-1, 5) \in B(5, -2)$
 - d) A(-4, -2) e B(-2, -4)
- 1.15- Os pontos A(1, 4), B(4, 9) e C(10, 15) são vértice de um triângulo. Determine as coordenadas do ponto médio de seus lados.
- 1.16- (EEM-SP). Determine as coordenadas dos vértices de um triângulo, sabendo que os pontos médios dos lados do triângulo são M(-2, 1), N(5, 2) e P(2, -3).
- 1.17- (DANTE, 1999). Num paralelogramo ABCD, M(1, -2) é o ponto de encontro das diagonais AC e BD. Sabendo que A(2, 3) e B(6, 4) são dois vértices consecutivos. Determine as coordenadas dos vértices C e D.
- 1.18- (SMOLE, 2016). A(3, -5), B(5, -3) e C(-1, 3) são vértices de um paralelogramo ABCD. Determine as coordenadas do ponto de interseção das diagonais.
- 1.19- Seja $\vec{u} = (4, -8)$ e $\vec{v} = (-2, 4)$. Mostre que $\vec{u} \mid | \vec{v}$.
- 1.20- Dado $\vec{u} \mid \mid \vec{v}$ e seja $\vec{u} = (x^2 + 2, -8)$ e $\vec{v} = (-11, 8)$. Determine os possíveis valores de x.
- 1.21- Sejam A(1,5), B(5,7) e C(3,6). Mostre que os pontos A, B e C são colineares.
- 1.22- (PUC-MG) Calcule o valor de t, sabendo que os pontos $A(\frac{1}{2}, t)$, $B(\frac{2}{3}, 0)$ e C(-1, 6) são colineares.

- 1.23- (FEI-SP) Os pontos A(0, 1), B(1, 0) e C(p, q) estão numa mesma reta. Nessas condições, calcule o valor de p em função de q.
- 1.24- Utilizando o exercício 1.21. Determine $|\overrightarrow{AB}|$, $|\overrightarrow{AC}|$ e $|\overrightarrow{BC}|$.
- 1.25- (UFU-MG) São dados os pontos A(2, y), B(1, -4) e C(3, -1). Qual deve ser o valor de y para que o triângulo \triangle ABC seja retângulo em \widehat{B} .
- 1.26- Calcule a distância entre os pontos dados:
 - a) $A(-2, 3) \in B(-6, 1)$
 - b) A(1, -5) e B(3, 1)
 - c) A(-3, 2) e B(2, -2)
 - d) A(3, -4) e B(5, -3)
- 1.27- Calcule os valores de x, tal que o módulo do $\vec{u} = (x, -2)$ seja igual a 4.
- 1.28- Seja θ o ângulo formados pelos vetores $\vec{u}=(2,1)$ e $\vec{v}=(1,x)$. Determine o valor de x para que tenhamos $\theta=\frac{\pi}{2}$.
- 1.29- Seja $\vec{u} = (\sqrt{3}, 1)$ e $\vec{v} = (1, x)$. Determine o valor de x para que tenhamos:
 - a) $\vec{u} \parallel \vec{v}$
 - b) $\vec{u} \perp \vec{v}$
 - c) $\vec{u} \land \vec{v} = \frac{\pi}{6}$
- 1.30- Determine o valor do ângulo entre os vetores \vec{u} e \vec{v} .
 - a) $\vec{u} = (-4, 2) e \vec{v} = (-5, -1)$
 - b) $\vec{u} = (1, 4) e \vec{v} = (0, -5)$
 - c) $\vec{u} = (-3, 1) e \vec{v} = (3, -2)$
 - d) $\vec{u} = (-2, 1) e \vec{v} = (-1, -6)$

- 1.31- Utilizando o exercício 1.30. Determine a projeção do vetor \vec{u} sobre o vetor \vec{v} .
- 1.32- Sejam A(-2,4), B(-4,1) e C(1,1) vértice de um triângulo. Determine a altura relativa a base BC .
- 1.33- Utilizando o exercício 1.30. Determine a área do triângulo ΔABC.
- 1.34- Sejam A(0, 4), B(0, 1) e C(5, 1) vértice de um triângulo. Utilizando projeção entre vetores, mostre que o triângulo Δ ABC é retângulo em \widehat{B} .
- 2.1- Determine o valor de m para que os pontos abaixo sejam vértices de um triângulo.
 - a) A(-2, 1), B(-4, m) e C(3, -1)
 - b) A(m, -5), B(3, 1) e C(2, -1)
 - c) A(-3, 4), B(2, -1) e C(m, -2)
 - d) A(4, -4), B(m, -3) e C(1, 2)
- 2.2- Sejam A, B e C vértice de um triângulo. Classifique os triângulos quanto aos ângulos:
 - a) A(-8, 4), B(-8, 2) e C(-4, 2)
 - b) A(-3, 1), B(-4, -1) e C(-2, -1)
 - c) A(-1, 4), B(1, 2) e C(4, 2)
- 2.3- (SMOLE,2016) Determine o baricentro de um triângulo ABC, sabendo que A(0, 2) e que M(6, 7) é o ponto médio de BC.
- 2.4- Um triângulo ABC é tal que os pontos médios de seus lados são M(-1,3), N(1,6) e Q(3,5). Quais são as coordenadas dos três vértices do triângulo?
- 2.5- O baricentro de um triângulo ABC é G(1, 6), e dois dos seus vértices são A(2, 5) e B(4, 7). Determine seu terceiro vértice.

- 2.6- Sejam A(-3,2), B(-4,0), C(0,0) e D(1,2) vértices de um paralelogramo. Determine a área do paralelogramo ABCD.
- 2.7- Calcule a área do paralelogramo determinado pelos vetores:
 - a) $\vec{u} = (3, 2) e \vec{v} = (5, -1)$
 - b) $\vec{u} = (3, 4) e \vec{v} = (2, -5)$
 - c) $\vec{u} = (5, -1) e \vec{v} = (1, -2)$
 - d) $\vec{u} = (4, -1) e \vec{v} = (1, 4)$
- 2.8- Seja $\theta = \frac{\pi}{4}$ o ângulo formado pelos vetores \overrightarrow{AB} e \overrightarrow{AC} . Tomando $\overrightarrow{AB} = (2, 2)$, calcule a área do paralelogramo determinado pelos vetores \overrightarrow{AB} e \overrightarrow{AC} .
- 2.9- Calcule a área dos triângulos de vértices:
 - a) A(2, -3), B(3, 2) e C(-2, 5)
 - b) A(-3, 2), B(5, -2) e C(1, 3)
 - c) A(3, -4), B(-2, 3) e C(4, 5)
 - d) A(-1, 4), B(5, -2) e C(2, 3)
- 2.10- (DANTE,1999) Um triângulo tem como vértices os pontos A(5,3), B(4,2), C(2, k). A área do triângulo ABC mede 8 unidades. Nessas condições, calcule o valor de k.
- 2.11- (DANTE,1999) Calcule a altura relativa ao lado AC do triângulo ABC, sabendo que A(1, 2), B(2, 4) e C(5, 3).
- 3.1- Determine a equação vetorial da reta para os pares de pontos dados:
 - a) $A(-2,3) \in B(-6,1)$
 - b) A(1, -5) e B(3, 1)
 - c) A(-3, 2) e B(2, -2)

- d) A(3, -4) e B(5, -3)
- 3.2- Utilizando o exercício 3.1. Determine as equações reduzidas da reta.
- 3.3- Calcule o coeficiente angular da reta que passa pelos pontos A(2, 1) e B(3,5).
- 3.4- Determine a equação da reta r que tem coeficiente angular $m_r = -2$ e que o ponto $A(0, -1) \in r$.
- 3.5- (DANTE,1999) Se uma reta r passa pelo ponto A(-1, 2) e é paralela a uma reta s, determinada pelos pontos B(2, 3) e C(-1, -4), escreva a equação da reta r.
- 3.6- Determine a equação da reta paralela à reta determinada pelos pontos de coordenadas A(2,3) e B(1,-4) passando pelo pontoP(0,0).
- 3.7- Seja r a reta que passa pelos pontos A(0,1) e B(1,0). Dê a equação da reta s que passa pelo ponto P(1,2) e é perpendicular à reta r.
- 3.8- (FUVEST-SP) Qual deve ser a relação de igualdade que se pode estabelecer entre as coordenadas a e b para que a reta r, de equação x 3y + 15 = 0, seja paralela à s, determinada pelos pontos P(a, b) e Q(1, 2).
- 3.9- Determine as equações das retas que passam pelos pontos da figura:



3.10- Sejam r e s duas retas concorrentes que têm como vetores diretores $\vec{u} =$ (1, .2) e $\vec{v} = (2, .3)$, respectivamente. Determine o ponto $P = r \cap s$.

$$r := (x, y) = (3, 4) + \lambda (1, 2)$$
 e $s := (x, y) = (3, 1) + \lambda (2, 3)$

- 3.11- Dadas as retas r e s, com os pontos A, B \in r e C, D \in s. Determine o ponto P $= r \cap s$.
 - a) A(2, -3), B(3, 2), C(-2, 5) e D(1, 2)
 - b) A(-3, 2), B(5, -2), C(1, 3) e D(3, 1)
 - c) A(3, -4), B(-2, 3), C(4, 5) e D(5, 2)
 - d) A(-1, 4), B(5, -2) C(2, 3) e D(1, 3)
- 3.12- Resolva os sistemas lineares.

 - b) $\begin{cases} -2x + 4y = 18 \\ 4x + 2y = 14 \end{cases}$ c) $\begin{cases} 3x 2y = 10 \\ -2x + 3y = 5 \end{cases}$ d) $\begin{cases} x + y = 2 \\ -3x + 2y = 21 \end{cases}$
- 3.13- (DANTE,1999) Determine a equação da reta que passa pelo ponto P(2, 1) e forma ângulo de 45° com reta de equação y = 5x + 3.
- 3.14- Determine o ângulo formado pelas retas r e s do exercício 3.9.
- 3.15- Sejam r e s duas retas definidas como:

$$r := (x, y) = (3, 4) + \lambda(2, 3)$$
 e $s := (x, y) = (3, 2) + \lambda(m, 5)$

Determine:

- a) O valor de m para que se tenha r \perp s
- b) As coordenadas do ponto $P = r \cap s$.