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CARTA AO LEITOR

Esse material,  apresentado como Recurso Educacional,  é parte integrante de 

nossa  pesquisa  de  Dissertação de Mestrado intitulada  Trabalhando Semelhança De 

Triângulos  Com A Dobradura Do Copo De Origami,  desenvolvida  no  Programa de 

Mestrado Profissional em Matemática em Rede Nacional – PROFMAT, da Universidade 

Federal Rural do Rio de Janeiro (UFRRJ), sob orientação do Professor Dr. Luciano Félix. 

Olá, professor(a), estudante ou pesquisador(a)!

Seja muito bem-vindo(a) a este recurso educacional!  É com entusiasmo que 

compartilho aqui uma proposta que nasceu da sala de aula e foi amadurecida ao longo de 

uma pesquisa cuidadosa e apaixonada: o uso da dobradura de um copo de origami como 

ferramenta  para  explorar  conceitos  da  Geometria,  com  foco  na  semelhança  de 

triângulos.

A proposta foi aplicada com alunos do 2º ano do Ensino Médio em uma escola 

particular de Angra dos Reis (RJ) e pode ser facilmente adaptada para outras turmas da 

Educação  Básica.  Embora  o  foco  seja  o  Ensino  Médio,  professores  do  Ensino 

Fundamental  II,  bem como estudantes de  Licenciatura em Matemática ou de  pós-

graduação  na  área  de  Ensino  de  Matemática,  encontrarão  aqui  uma  abordagem 

concreta, lúdica e fundamentada teoricamente — com base nos estudos de Van Hiele, 

Piaget e Vygotsky — para enriquecer suas práticas e reflexões.

Neste recurso, você encontrará não apenas um roteiro de aula detalhado, mas 

também fundamentações pedagógicas e sugestões práticas para integrar teoria e ação 

de forma significativa. A proposta vai além da memorização de fórmulas: ela busca 

provocar o olhar geométrico, estimular o raciocínio lógico e valorizar o protagonismo 

dos(as) estudantes por meio da experimentação com o papel.

Esperamos que este material te inspire tanto quanto nos inspirou ao produzi-lo. 

Que ele possa abrir portas para novas experiências em sala de aula, aproximando a 

matemática do cotidiano e tornando-a mais palpável, atrativa e significativa.

Boa leitura e, principalmente, boa aplicação!

Com consideração e desejo de bons dobramentos,
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Vinicius Coelho Fialho

Mestre em Matemática – PROFMAT/UFRRJ
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1 APRESENTAÇÃO DA PROPOSTA

Este recurso educacional foi pensado como uma alternativa concreta, acessível e 

envolvente para abordar a geometria plana com alunos do 2º ano do Ensino Médio. A 

atividade parte da construção de um copo de papel por meio de uma sequência de 

dobras — o tradicional copo de origami. Durante o processo de construção, os estudantes 

são convidados a observar, identificar e analisar propriedades geométricas como ângulos, 

semelhança de triângulos.

Trata-se de uma proposta interdisciplinar e investigativa que visa aproximar a 

matemática da prática,  valorizando a experimentação e a autonomia dos alunos.  O 

objetivo principal é trabalhar conceitos geométricos de forma significativa, em sintonia 

com  a  perspectiva  da  Educação  Matemática  que  valoriza  a  construção  ativa  do 

conhecimento.

2 REFERENCIAIS TEÓRICOS QUE EMBASAM A PRÁTICA

A  atividade  foi  inspirada  em  concepções  pedagógicas  que  reconhecem  a 

importância  de  experiências  concretas  e  contextualizadas  no  processo  de  ensino-

aprendizagem. A proposta encontra respaldo, por exemplo, na teoria dos níveis de Van 

Hiele, que indica que o pensamento geométrico se desenvolve em estágios e que o uso de 

representações visuais e manipulações favorece a transição entre eles.

Além disso, parte-se da concepção socioconstrutivista defendida por Vygotsky, 

segundo a qual o desenvolvimento do pensamento se dá em contextos de interação social 

mediados por ferramentas culturais — e o origami, neste caso, funciona como uma 

excelente mediação. Também se consideram os princípios de Piaget, que ressaltam o 

valor das ações concretas na formação do pensamento lógico.

3 DESCRIÇÃO DO RECURSO EDUCACIONAL

O recurso consiste em uma sequência didática de 100 minutos (dois tempos de 

50 minutos), com os seguintes componentes principais:

 Um roteiro de instrução para a construção do copo de papel;

 Análise dos ângulos formados nas dobras;

 Identificação e comparação de triângulos;

 Critérios de semelhança.
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Durante a dobradura, os alunos vão anotando os valores dos ângulos, marcando 

lados e comparando as figuras que surgem. A ideia é que eles formulem conjecturas 

sobre proporcionalidade e semelhança e que, ao final, consigam justificá-las com base 

nos critérios estudados.

4 ROTEIRO DE AULA: CONSTRUÇÃO DO COPO

Público-alvo: Alunos  do  2º  ano  do  Ensino  Médio
Duração: 1 aula de 100 minutos (dois tempos de 50 minutos)

Objetivos da Aula

✅ Explorar os conceitos de semelhança de triângulos.
✅ Trabalhar construções geométricas práticas por meio do origami.
✅ Desenvolver o raciocínio lógico-espacial e a percepção geométrica.
✅ Demonstrar como figuras com formatos diferentes podem ter áreas iguais.
✅ Incentivar a aprendizagem significativa e a participação ativa.

Conteúdos abordados

🔸 Semelhança de Triângulos
🔸 Soma dos ângulos internos de triângulos
🔸 Construção do copo de origami (geometria aplicada)

Materiais necessários

 Papel quadrado (origami ou sulfite cortado em quadrado)

 Régua

 Lápis e borracha

 Quadro e marcador

 Projetor ou slides para apoio visual (opcional)

Desenvolvimento da Aula

1º Tempo (50 minutos)

1. Introdução e contextualização (10 min)

 Breve apresentação sobre a geometria e a história do origami, relacionando com 
a importância de métodos ativos de aprendizagem (Piaget, Vygotsky, Van Hiele).

 Explicação dos objetivos e do foco da aula.
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2. Primeiro teste diagnóstico (15 min)

 Aplicação de um questionário diagnóstico para identificar o conhecimento prévio 
dos alunos sobre os conceitos de semelhança e congruência de triângulos,

 Orientar os alunos para responderem individualmente, sem troca de informações, 
reforçando a ideia de diagnóstico e não de avaliação de desempenho.

3. Revisão conceitual (25 min)

 Revisão da soma dos ângulos internos de um triângulo (180°).

 Apresentação dos critérios de semelhança de triângulos (AA, LAL, LLL).

 Explicação de como esses conceitos se conectam à dobradura que será feita na 
próxima etapa.

2º Tempo (50 minutos)

1. Atividade prática: dobradura do copo e análise geométrica (40 min)

 Entregar o papel quadrado e guiar passo a passo as dobras necessárias: diagonal, 
marcações, alinhamentos e finalização do “copo”.

 Orientar  os  alunos na identificação dos triângulos formados pela dobradura, 
destacando ângulos, lados e propriedades de congruência e semelhança.

 Relacionar  essas  construções  práticas  com  os  critérios  de  semelhança  de 
triângulo

 Destacar como diferentes figuras podem ter áreas iguais, mesmo com formas 
visivelmente distintas.

 Estimular a discussão e a interação entre os alunos,  reforçando conceitos e 
esclarecendo dúvidas pontuais.

CONSTRUÇÃO DO COPO

   Considere um quadrado de papel com vértices A, B, C e D, conforme os 

passos abaixo.

I. Dobre o papel quadrado sobre a diagonal AC:
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Fig. 3 e 4

II. Abra o papel e leve o lado CD, até a marca de dobra feita anteriormente, sobre 
a diagonal AC.

Fig. 5 e 6

 Desfaça a dobra CE, e faça a primeira AC, novamente, fazendo coincidir B com D:

 B ≡ D.
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Fig. 7 e 8

III. Leve o ponto C até o ponto E. 

Fig. 9 e 10

IV. Vire e leve o vértice A até F.

Fig. 11 e 12

V. Agora dobre a parte de cima na altura da linha b. Uma parte para cada lado.
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Fig. 13 e 14

    Obtendo-se o copo, abaixo representado:

Fig. 15

É possível ver três diferentes triângulos formados pelas dobras do copo. Se fosse 

dito que a área do triângulo branco é a soma das áreas dos dois triângulos cinzas, você 

acreditaria? Através de conceitos aprendidos, no estudo de ângulos e semelhança de 

triângulos, pode-se comprovar essa questão. Mas antes de começar a prova, deve-se 

lembrar o quanto é interessante mostrar para os alunos que formas, mesmo sendo 

diferentes, podem ter a mesma área. Conceitos mais abstratos em séries iniciais do 

Ensino Médio são de extrema importância, pois facilitam o entendimento de regras e 

conceitos em toda a área da Geometria, e, não só nela, mas em todas as áreas da 

Matemática.  Proporcionar  situações  para  trabalhar  e  desenvolver  a  capacidade  de 

abstração do estudante é uma necessidade.

 Para provar que a área do triângulo branco e a soma das áreas dos dois 

triângulos cinza são iguais na figura 16, serão feitas nomeações nos vértices do copo: C1, 

C2, C3, C4 e nos triângulos com o intuito de facilitar o entendimento.
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Fig. 16

     

Dado o triângulo C1NC2,  traçando a bissetriz, C1M, do ângulo â =C2 Ĉ1N ,  

forma-se no copo quatro triângulos C2C1M, C1MN, C1C3C4, C2C3N, nomeados: T1, T2, T3, T4, 

respectivamente. Será mostrado que os triângulos T1 e T2 são congruentes aos triângulos 

T3 e T4, respectivamente. Posteriormente, concluindo assim que áreas: 

A(T1) + A(T2) = A(T3)+ A(T4).

Fig. 17
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DEMONSTRAÇÃO DA SEMELHANÇA DOS TRIÂNGULOS

Desfazendo a dobradura até o momento da figura 10 podemos ver os seguintes 

ângulos:

Fig. 18

Os ângulos B ÂG e F ĈG medem 45º pois são bissetrizes de ângulos retos, obtidas 

através das dobras dos vértices do quadrado de papel inicial. Refazendo a dobra VI 

(figuras 11 e 12), pela sobreposição de ângulos na dobradura, é possível verificar que o 

ângulo  = 45°. Já temos que α F Ĉ B=45°,  C B̂ F=90°, assim F Ĉ B=45° . Dessa forma 

temos o triângulo FBC isósceles e os seguimentos FC e GA são paralelos.
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Fig. 19

Desfazendo o passo IV é possível verificar pela sobreposição da dobradura que os 

segmentos CF = FE.

Fig. 20

O ângulo C F̂ E é o suplementar do ângulo B F̂ E, ou seja, mede 135º. Trazendo o 

lado BC ao lado CA bisseccionando o ângulo BĈ A , temos a sobreposição dos pontos F e 

G formando o triângulo CFE.  Como verificado anteriormente CF = FE definindo o 

triângulo CFE como isósceles assim F Ĉ E=F ÊC=22,5o. Da sobreposição dos pontos F e 

G, CF = CG, assim o triângulo CFG é isósceles, lembrando que o ângulo F ĈG=45°. Pela 

soma dos ângulos internos temos que os ângulos iguais C F̂G e C Ĝ F medem 67,5º.

Fig. 21 e 22 
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 Voltando com a dobra do lado BC temos os ângulos:

Fig. 23

Refazendo a dobra IV onde leva-se o vértice C ao ponto E, figura 24, verificamos 

que o ângulo GĈ A=90° e, como C ÂG=45°, logo C Ĝ A=45° .

  

Fig. 24

Pela sobreposição do ângulo B F̂C no B F̂G pode-se notar que a diferença entre 

eles visto pelo ângulo B F̂G medirá 22,5º. Aqui temos uma dubiedade com relação ao 

ângulo BFG, mas isso é porque B pode ocupar duas posições. Uma antes e uma depois da 

dobra conforme figura 25 e 26.
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Fig. 25 e 26

Para facilitar a visualização das próximas dobras vamos voltar ao passo da figura 

23. Temos os triângulos CFG e AEH em que o segmento EH é formado pela dobra do 

passo IV. Esses dois triângulos são congruentes pois as dobras são feitas de forma 

simétrica nos dois lados.

Fig. 27

Voltando a figura 26 e com as informações anteriores temos o ponto H colinear 

ao ponto A, portanto C Ĝ H=45° . O ângulo reto GĈ A foi dividido em duas partes de 

medidas 67,5º e 22,5º. Como o triângulo CAH é isósceles pois o triângulo CGF também é 



16

isósceles, CG é côngruo a HÁ e CF é côngruo a AE, por simetria. Assim o ângulo GĈH é o 

complemento de AĈH e que CĜH é calculado usando a soma dos ângulos internos de um 

triângulo. Utilizamos o mesmo argumento para o ângulo G Ĥ C onde este é o suplemento 

do ângulo C Ĥ A .  Estamos quase finalizando nossa demonstração.

Fig. 28 e 29

Voltando a dobradura final do copo temos então os seguintes triângulos e seus 

respectivos ângulos:

Fig. 30
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Para terminar a demonstração faz-se a bissecção do ângulo DĈF, fazendo o 

segmento DC cair sobre o segmento FC. Dessa forma, seja M o ponto do segmento FD 

encontrado com essa dobra temos os triângulos DCM e CFM. Em DCM temos que 

M D̂C mede 90° e DĈM mede 22,5, portanto, pela soma dos ângulos internos, C M̂ D 

mede 67,5º pois como C M̂ F é o suplemento de C M̂ D , que mede 112,5°.

Fig. 31 e 32

 

Finalizando a demonstração de que o triângulo T1 é semelhante a T3 e o triângulo 

T2 é semelhante a T4. 
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Fig. 33

Provar-se-á agora a congruência entre eles.

DEMONSTRAÇÃO DA CONGRUÊNCIA ENTRE OS TRIÂNGULOS

Para verificar as congruências usaremos o caso ALA. Para tal, encontraremos 

um lado em comum entre os dois triângulos e verificaremos que os ângulos nos vértices 

desses lados são congruentes. Iniciaremos pelos triângulos T2 e T4.

Fig. 34

Pela figura 35 temos que o triângulo FNC é isósceles com os lados FD = DC. Como 

CD é lado do triângulo T2 e FD é lado do triângulo T4. Pela figura 32 os triângulos T2 e T4 

são semelhantes pelo critério AAA, tendo eles dois lados com as mesmas medidas, CD e 

FD, prova-se a congruência entre eles.

Fig. 35
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Para verificar a congruência dos triângulos T1 e T3 podemos observar que o 

triângulo FCG é isósceles, logo FC = CG. Como os triângulos T1 (FCM) e T2 (CGH) são 

semelhantes pelo caso AAA, logo são congruentes.

 

Fig. 36

Verificando assim a congruência entre os triângulos T1 e T3.

Fig. 37
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2. Segundo teste diagnóstico (15 min)

 Aplicação de um novo questionário  diagnóstico para avaliar  o entendimento 

adquirido durante a atividade prática.

 Solicitar aos alunos que respondam individualmente, para medir a evolução e 

identificar as possíveis lacunas de aprendizagem.

 Destacar que este momento serve para verificar avanços e dificuldades.

3. Encerramento e reflexão (5 min)

 Concluir  a  aula  destacando a importância de integrar teoria e prática para 

potencializar o aprendizado da geometria.

 Realizar uma roda de conversa para ouvir as opiniões e percepções dos alunos 

sobre a atividade realizada.

 Motivar os alunos a perceberem como a matemática está presente em diversas 

situações  práticas  do cotidiano,  estimulando a  curiosidade e  a  aplicação do 

raciocínio geométrico em outros contextos.

Avaliação

A avaliação será realizada por meio de questionários antes e depois da atividade, 

permitindo identificar avanços no entendimento dos conceitos abordados. Também será 

observada a participação e o envolvimento ativo dos alunos durante as atividades, assim 

como a capacidade de argumentação e justificativa nas construções geométricas feitas. 

Esse processo vai além de medir o acerto de respostas,  buscando compreender o 

raciocínio e a evolução de cada aluno em relação aos conceitos trabalhados.

CONVERSA FINAL COM O LEITOR

A construção do copo de origami revela-se uma oportunidade poderosa para 

desenvolver o raciocínio geométrico de forma leve e envolvente. Ao manipular o papel, os 
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estudantes se apropriam de conceitos abstratos por meio da experiência concreta, 

favorecendo a compreensão da geometria como uma ciência do espaço e da forma.

É importante que o professor estimule a troca de ideias e o trabalho em duplas ou 

grupos, criando um ambiente colaborativo que favoreça a aprendizagem. Durante a 

atividade prática, deve haver paciência para orientar os alunos que apresentam maior 

dificuldade na coordenação motora ao realizar  as  dobras.  Também é fundamental 

reforçar  constantemente  as  conexões  entre  a  teoria  e  a  prática,  para  que  a 

aprendizagem  seja  realmente  significativa.  Valorizar  a  participação  de  todos, 

especialmente dos alunos que inicialmente podem demonstrar desinteresse, também 

contribui para um ambiente mais inclusivo e engajador. É também importante ressaltar 

que alguns ângulos mudam de valor conforme a montagem do copo é realizada como 

exemplo da figura 23 onde o ângulo B F̂C mede 180º e na figura 24 passa a medir 45º. 

Isso ocorre outras vezes durante a montagem e é válido ressaltar aos alunos para que 

não haja dúvidas.

Mais do que ensinar fórmulas, a proposta busca criar condições para que os 

alunos descubram relações, testem hipóteses e se encantem com a Matemática. 

Este material só se tornou possível graças à contribuição direta de muitas pessoas. 

Gostaríamos  de  reconhecer,  em  especial,  os  estudantes,  cuja  participação  ativa  e 

entusiasmo deram vida a esta proposta, e também aos colegas que, com suas sugestões 

precisas, ajudaram a refinar cada etapa do processo. Um agradecimento especial vai ao 

orientador,  cuja orientação dedicada e apoio constante foram fundamentais para o 

desenvolvimento deste projeto. A soma desses esforços resultou no recurso que agora 

apresentamos. Esperamos que este recurso sirva como ponto de partida para novas 

experiências pedagógicas envolvendo o origami, especialmente na construção do copo 

de papel, explorando a semelhança de triângulos de forma concreta e criativa.
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